WO2024065820A1 - Improvement of accuracy of angle based positioning - Google Patents

Improvement of accuracy of angle based positioning Download PDF

Info

Publication number
WO2024065820A1
WO2024065820A1 PCT/CN2022/123608 CN2022123608W WO2024065820A1 WO 2024065820 A1 WO2024065820 A1 WO 2024065820A1 CN 2022123608 W CN2022123608 W CN 2022123608W WO 2024065820 A1 WO2024065820 A1 WO 2024065820A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
beams
access network
terminal device
power level
Prior art date
Application number
PCT/CN2022/123608
Other languages
French (fr)
Inventor
Jan Torst HVIID
Knud Knudsen
Diomidis Michalopoulos
Mikko SÄILY
Yong Liu
Yan Meng
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2022/123608 priority Critical patent/WO2024065820A1/en
Publication of WO2024065820A1 publication Critical patent/WO2024065820A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Various example embodiments relate to the field of communication, and in particular, to devices, methods, apparatuses and computer readable storage medium for improving the accuracy of the angle based positioning.
  • the position accuracy estimation by using UL-TDOA (Time Difference Of Arrival) /DL-TDOA/Multi-RTT timing based position methods, may be reduced in accuracy due to the reduction in bandwidth (causes loss of time resolution in peak search) .
  • Methods for compensating for the reduced position accuracy are under evaluation.
  • example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage medium for improving the accuracy of the angle based positioning.
  • the terminal device may include at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the terminal device at least to: receive a plurality of beams from an access network device; determine a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams, respectively; and transmit, to the access network device, a list including the determined time offset and the received power level, respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • an access network device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the access network device at least to: transmit, to a terminal device, a plurality of beams, and receive, from the terminal device, a list including a time offset, a received power level, and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  • an access network device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the access network device at least to: receive a plurality of beams from a terminal device; determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and transmit, to a core network device, a list including the determined time offset and the received power level, respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • the terminal device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the terminal device at least to: receive from a network element, a request for transmission of a sounding reference signal; and transmit, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
  • the core network device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the core network device at least to: receive, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, and a received power level, respectively, and a corresponding beam identity (ID) determined for each of a plurality of beams; and select, based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  • a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, and a received power level, respectively, and a corresponding beam identity (ID) determined for each of a plurality of beams
  • ID beam identity
  • a method at a terminal device may include: receiving, at the terminal device, a plurality of beams from an access network device; determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams, respectively; and transmitting, to the access network device, a list including the determined time offset and the received power level, respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • a method at an access network device may include: transmitting, to a terminal device, a plurality of beams, and receiving, from the terminal device, a list including a time offset, a received power level, and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  • a list including a time offset, a received power level, and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  • ID beam identity
  • a method at an access network device may include: receiving, at the access network device, a plurality of beams from a terminal device; determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and transmitting, to a core network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • a method at a terminal device may include: receiving, from a network element, a request for transmission of a sounding reference signal; and transmitting, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
  • a method at a core network device may include: receiving, at the core network device and from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  • a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams.
  • ID beam identity
  • an apparatus of a terminal device may include: means for receiving, at the terminal device, a plurality of beams from an access network device; means for determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams, respectively; and means for transmitting, to the access network device, a list including the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • an apparatus of an access network device may include: means for transmitting, to a terminal device, a plurality of beams, and means for receiving, from the terminal device, a list including a time offset and a received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  • ID beam identity
  • an apparatus of an access network device may include: means for receiving, at the access network device, a plurality of beams from a terminal device; means for determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams respectively; and means for transmitting, to a core network device, a list including the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • an apparatus of a terminal device may include: means for receiving from a network element, a request for transmission of a sounding reference signal; and means for transmitting, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
  • an apparatus of a core network device may include: means for receiving, at the core network device and from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and means for selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  • a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams.
  • ID beam identity
  • a non-transitory computer readable medium including program instructions stored thereon for performing at least the method of any one of above sixth to tenth aspects.
  • a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive a plurality of beams from an access network device; determine a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams; and transmit, to the access network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: transmit, to a terminal device, a plurality of beams; and receive, from the terminal device, a list including a time offset and a received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  • ID beam identity
  • a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive a plurality of beams from a terminal device; determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and transmit, to a core network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
  • a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive a plurality of beams from a terminal device; determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and transmit, to a core network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive from a network element, a request for transmission of a sounding reference signal; and transmit, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
  • a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and select, based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  • a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams
  • the terminal device may include: a receiving circuitry configured to receive a plurality of beams from an access network device; a determining circuitry configured to determine a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams; and a transmitting circuitry configured transmit to the access network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  • a receiving circuitry configured to receive a plurality of beams from an access network device
  • a determining circuitry configured to determine a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams
  • a transmitting circuitry configured transmit to the access network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • an access network device may include: a transmitting circuitry configured to transmit, to a terminal device, a plurality of beams; and a receiving circuitry configured to receive, from the terminal device, a list including a time offset and a received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  • a transmitting circuitry configured to transmit, to a terminal device, a plurality of beams
  • a receiving circuitry configured to receive, from the terminal device, a list including a time offset and a received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  • ID beam identity
  • an access network device may include: a receiving circuitry configured to receive a plurality of beams from a terminal device; a determining circuitry configured to determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and a transmitting circuitry configured to transmit, to a core network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
  • a receiving circuitry configured to receive a plurality of beams from a terminal device
  • a determining circuitry configured to determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams
  • a transmitting circuitry configured to transmit, to a core network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
  • the terminal device may include: a receiving circuit configured to receive from a network element, a request for transmission of a sounding reference signal; and a transmitting circuitry configured to transmit, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
  • the core network device may include: a receiving circuitry configured to receive, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and a selecting circuitry configured to select, based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  • a receiving circuitry configured to receive, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams
  • ID beam identity
  • Fig. 1 illustrates an example network environment in which example embodiments of the present disclosure may be implemented
  • Fig. 2A illustrates an example signaling process for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure
  • Fig. 2B illustrates an example method for selecting a best beam for downlink angle of departure (DL-AoD) angle based positioning of the terminal device in accordance with some embodiments of the present disclosure
  • Fig. 2C illustrates an example procedure for best beam selection based on SSB/PRS and DL-AoD in accordance with some embodiments of the present disclosure
  • Fig. 2D illustrates an example of the NLOS environment in accordance with some embodiments of the present disclosure
  • Fig. 2E illustrates an example of a plurality of slots for receiving a plurality of beams in accordance with some embodiments of the present disclosure
  • Fig. 2F illustrates an example of multiple paths for transmitting each beam of the plurality of beams in accordance with some embodiments of the present disclosure
  • Fig. 2G illustrates multiple impulse response caused by the multiple-path transmissions in accordance with some embodiments of the present disclosure
  • Fig. 2H illustrates an example method for calculating a delta time and the received power level in a case that each beam is transmitted in multiple paths in accordance with some embodiments of the present disclosure
  • Fig. 3A illustrates an example signaling process for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure
  • Fig. 3B illustrates an example method for selecting a best beam for uplink angle of arrival (UL-AoA) angle based positioning of the terminal device in accordance with some embodiments of the present disclosure
  • Fig. 3C illustrates an example procedure for a best beam selection based on SRS and UL-AoA in accordance with some embodiments of the present disclosure
  • Fig. 4A illustrates a method for calculating a best beam for angle based position performed by a location management entity in accordance with some embodiments of the present disclosure
  • Fig. 4B illustrates an example of the selection of best angle between two beams in accordance with some embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • Fig. 6 illustrates a flowchart of an example method implemented at a access network device in accordance with some embodiments of the present disclosure
  • Fig. 7 illustrates a flowchart of an example method implemented at a core network device in accordance with some embodiments of the present disclosure
  • Fig. 8 illustrates an example simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 9 illustrates an example block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “some embodiments, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms may only be used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as long term evolution (LTE) , LTE-advanced (LTE-A) , wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , narrow band Internet of things (NB-IoT) and so on.
  • LTE long term evolution
  • LTE-A LTE-advanced
  • WCDMA wideband code division multiple access
  • HSPA high-speed packet access
  • NB-IoT narrow band Internet of things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or beyond.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU remote radio unit
  • RH radio header
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) .
  • UE user equipment
  • SS subscriber station
  • MS mobile station
  • AT access terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • beam may be referred to a radio signal carrying communication resources. Different beams may be considered as different resources.
  • a beam may also be represented as a spatial filter.
  • a technology for forming a beam may be a beamforming technology or another technology. The beamforming technology may be specifically a digital beamforming technology, analog beamforming technology, or a hybrid digital/analog beamforming technology.
  • a communication device (including the terminal device and the network device) may communicate with another communication device through one or more beams.
  • One beam may include one or more antenna ports and be configured for a data channel, a control channel, or the like.
  • One or more antenna ports forming one beam may also be considered as an antenna port set.
  • a beam may be configured with a set of resource, or a set of resource for measurement, and a beam may be represented by, for example, a reference signal and/or related resource for the reference signal.
  • a beam may also represent by a reference cell identifier or resource identifier.
  • the position accuracy estimation by using UL-TDOA (Time Difference Of Arrival) /DL-TDOA/Multi-RTT timing based position methods, may be reduced in accuracy due to the reduction in bandwidth (causes loss of time resolution in peak search) , and angle based position (DL-AoD (Angle Of Departure) and UL-AoA (Angle Of Arrival) ) estimations may be a preferred alternative to the time based position estimations.
  • angle based position estimation is that it is not affected by the reduction of the bandwidth.
  • the angle based position may be quite inaccurate in a Non-Line Of Sight (NLOS) environment, due to “false” beam selection.
  • NLOS Non-Line Of Sight
  • angle based position has other limitations, especially in the Non-Line Of Sight (NLOS) environments.
  • the angle based position method is quite accurate in the line of sight (LOS) scenarios but may be quite inaccurate in the NLOS environment, due to “false” beam selection.
  • the best beam for positioning the terminal device should be a LOS beam in the direct direction from the network device to the terminal device and having the shortest direct path.
  • NLOS environment there may be a lot of obstacles for impeding the beam transmissions. If in this direct direction or in shortest direct path, some obstacles or structures (such as a solid wall of buildings in the urban area) may impede the transmission through the beam in the direct direction, the measured reference signal received power (RSRP) for this beam may not be the highest due to signal attenuation.
  • RSRP reference signal received power
  • the beam which is reflected by some objects and transmitted in the directions rather than the direct direction, may have the highest RSRP measurement, and may be mistakenly selected to be the best beam for positioning the terminal device based on the highest RSRP measurement during SSB scan. Accordingly, the selected beam reflected by the object based on signal power level may be the “false” beam.
  • a method is proposed to detect and select the beam with the shortest direct path to avoid false position estimates based on beams with strong reflections.
  • Fig. 1 illustrates an example network environment 100 in which example embodiments of the present disclosure may be implemented.
  • the environment 100 which may be a part of a communication network, includes terminal devices and network devices.
  • the communication network 100 may include a terminal device 110 (hereinafter may also be referred to as user equipment 110 or a UE 110) .
  • the communication network 100 may further include a network device 120, a network device 130 (hereinafter, also referred as an access network device) and a location management entity 140 (hereinafter, also referred as a core network device) .
  • One of the network device 120 and the network device 130 may be a serving network device and the other may be a neighboring network device of the serving network device.
  • Each network device of these network devices may manage one or more cells.
  • the network device 120 is configured with a plurality of beams 120-1 to 120-5 which provides coverage for the cell of the network device 12
  • the network device 130 is configured with a plurality of beams 130-1 to 130-5 which provide coverage for the cell of the network device 130.
  • the entity 140 may receive data from the network devices 120 and 130 so as to determine a best beam for angle based positioning of the terminal device 110 for each of the network device 120 or 130.
  • Communications in the network environment 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, the third generation (3G) , the fourth generation (4G) , the fifth generation (5G) or beyond, wireless local network communication protocols such as institute for electrical and electronics engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s any proper communication protocol
  • 3G third generation
  • 4G fourth generation
  • 5G Fifth generation
  • IEEE institute for electrical and electronics engineers
  • the communication may utilize any proper wireless communication technology, including but not limited to: multiple-input multiple-output (MIMO) , orthogonal frequency division multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , carrier aggregation (CA) , dual connection (DC) , and new radio unlicensed (NR-U) technologies.
  • MIMO multiple-input multiple-output
  • OFDM orthogonal frequency division multiplexing
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • Bluetooth ZigBee
  • MTC machine type communication
  • MTC enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable low latency communication
  • some obstacles 101 to 104 may be present in the paths from the network device 120 or 130 to the terminal device 110, which simulates the NLOS environment.
  • the NLOS environment will always add some error to the position estimate.
  • angle based methods may be used, the NLOS environment may severely change the AoA/AoD of beams, and thus making it difficult to use the angle based methods in location services due to high error probability and variance between consecutive estimates.
  • the best beam should be he beam 120-4 with the shortest direct path; however, the transmission of the beam 120-4 is impeded by the obstacle 101 (such as a solid wall of building) , and the received power level of this beam 120-4 at the terminal device 110 or at the access network device 120 is not that strong due to attenuation. Meanwhile, the beam 120-1 may be reflected by the obstacle 103 and reaches the terminal device 110 with relatively the highest power level.
  • the obstacle 101 such as a solid wall of building
  • the beam 120-1 may likely be selected as the best beam, which would obviously be the false beam selection, and the position of the terminal device 110 based on angle position may appear to be at the position designated by 110’, which is obviously a false position.
  • the beam 120-1 may falsely appear as the best beam for normal data communication but not the best beam for angle position estimation.
  • the best beam should be beam 130-3 with the shortest direct path; however, the transmission of the beam 130-3 may be obstructed by the obstacle 102 (such as a solid wall of building) , and therefore the received power level of this beam 130-3 may not be that strong.
  • the beam 130-5 may be reflected by the obstacle 104 and reaches the terminal device 110 with the highest power level. Based on the highest RSRP measurement, the beam 130-5 may be selected as the best beam, which is obviously the false beam selection.
  • the beam 130-5 may be the best beam for normal data communication but not the best beam for angle position estimation.
  • the beam 120-3 with the shortest direct path for the access network device 120 may be selected by the location management entity 140 (which is also a core network device) so as to avoid false position estimates based on beams with strong reflections.
  • the beam 130-3 with the shortest direct path for the access network device 130 may be selected by the location management entity 140 (which may also be a core network device, hereinafter) so as to avoid false position estimates based on beams with strong reflections.
  • Fig. 2A illustrates an example signaling process 200 for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure.
  • the process 200 may be described with reference to Fig. 1.
  • the process 200 may involve the terminal device 110 and network devices 120, 130, and a location management entity 140 as illustrated in Fig. 1.
  • the process 200 has been described in the communication environment 100 of Fig. 1, this process may be likewise applied to other communication scenarios with similar issues.
  • the location management entity 140 is shown separately from the network device 120, 130, the location management entity 140 may be included or integrated in any network device, for example network device 120, 130.
  • the location management entity 140 transmits, to the network device 120, a request for at least one beam for angle based positioning of the terminal device 110.
  • the network device may be the network device 120 of Fig. 1 or the network device 130 of Fig. 1.
  • the network device 120 is illustrated in the drawing, the person skilled in the art should understand that the network device also may be network device 130.
  • the network device 120 transmits, to the terminal device 110, a request for a time offset and reference signal received power (RSRP) level for each beam of a plurality of beams.
  • the terminal device 110 receives the request and may perform the estimation of time offset and RSRP level later when receiving associated data from the network device 120.
  • RSRP time offset and reference signal received power
  • the network device 120 transmits, to the terminal device 110, a plurality of beams.
  • each beam is associated with at least one of one or more synchronization signal blocks (SSB) or one or more downlink position reference signals (DL-PRS) .
  • the network device 120 sends at least one of SSB and DL-PRS on each beam of the plurality of beams to the terminal device 110. This data transmission step is repeated for the plurality of beams in a plurality of directions.
  • SSB synchronization signal blocks
  • DL-PRS downlink position reference signals
  • DL-PRS is preferred; however, in some cases SSB may be enough. As SSB is sent quite frequently, a combination of SSB and DL-PRS also may be used.
  • the network device 120 may either request a delta time estimation based on the SSB transmissions for all beams including RSRP values, or request delta time estimation based on the DL-PRS transmission for each beam and get the delta times estimated for all beams with belonging RSRP values.
  • the terminal device 110 determine a time offset referenced to a slot start reference which is synchronized to the network device and received power level for each of the plurality of beams.
  • the terminal device 110 receives the plurality of beams, each of which is associated with at least one of SSB and DL-PRS, in a plurality of different slots, respectively.
  • Each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the terminal device, wherein each received beam corresponds to a different slot based on an order of beam arrivals.
  • the slot start reference is transmitted to the terminal device 110 by the network device 120.
  • the slot start reference is set for each slot of the plurality of slots.
  • the slot start reference may be calculated based on the known positions or pre-defined positions of SSB and/or PRS signal.
  • the time offset is the time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot. That is to say, the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam, and the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths.
  • each beam of the plurality of beams is received by the terminal device 110 in a plurality of paths, and the time offset is the time difference between the slot start reference and a time point of first arrival of the beam.
  • the first arrival of the beam is transmitted through one of the plurality of paths, which is a shortest direct path.
  • a reference power level threshold which may be set to be, such as, a sensitivity level of the UE or terminal device, it means that the first arrival may not be an interference noise, and in this situation, the RSPR value of the first arrival may be measured as the received power level in the list, that is to say, the power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power threshold. Otherwise, the first arrival with a power level value below the threshold may be removed, and the arrival having the power level value above that reference power level threshold immediately after this arrival may be regarded as the actual first arrival for estimating the time offset.
  • the terminal device 110 may transmit the determined list including the time offset and the received power level respectively, and the corresponding beam identity (ID) for each beam to the network device 120.
  • ID the beam identity
  • the network device 120 may transmit the determined list to the location management entity 140.
  • the location management entity 140 may determine at least one beam, such as the best beam among the plurality of beams for angle based positioning of the terminal device 110, which will further be described in detail reference to Fig. 4A and 4B.
  • a time offset, a received power level and a corresponding beam identify (ID) may be determined for each beam by the terminal device, and the data for all beams may be stored in a list. If the beam is in the direction directly from the network device to the terminal device, then the transmission time through this beam may be the shortest, and thus the time offset between the slot start reference and the time point of receiving the respective beam should be the minimum one.
  • the location management entity 140 may select the beam with the minimum time offset as the best beam for angle based positioning of the terminal device, so as to avoid a false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity 140 may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with the shortest direct path, the location management entity 140 may sufficiently determine the position of the terminal device based on Down-Link Angle of Departure (DL-AoD) in high accuracy.
  • DL-AoD Down-Link Angle of Departure
  • Fig. 2B illustrates an example method for selecting a best beam for DL-AoD angle based positioning of the terminal device in accordance with some embodiments of the present disclosure.
  • the solution based on DL-AoD angle based positioning for “false” positioning estimate may include the following steps:
  • Pre-condition the UE, such as the terminal device 110, may be assumed to be connected to network 100.
  • the gNB such as the access network device 120/130, may send SSB or DL-PRS through each beam (anyone of 120-1 to 120-5 or 130-1 to 130-5) .
  • DL-PRS is preferred –but in some cases SSB may be enough.
  • a combination of SSB and DL-PRS may be used. This step (b) may be repeated for all beam directions (120-1 to 120-5 or 130-1 to 130-5) .
  • the UE may estimate the time offset (delta time) between slot start reference and received data (SSB or DL-PRS) . To do so, the UE may be provided with the slot start reference time by the access network device 120 or 130.
  • the step b) and c) may be repeated for a number of beams (120-1 to 120-5 or 130-1 to 130-5) .
  • the measurements may be limited to beams that are above a RSRP threshold, which may be set to be the sensitivity level of the UE.
  • the list of derived delta times and RSRP levels may be sent to the LMF.
  • the LMF may select at least one or the best beam for angle based position determination of the UE.
  • LMF may make a better resolution based on all the delta times or time offsets and measured power levels or RSRP levels, which may be described in more detail with reference to Figs. 4A to 4B later.
  • Fig. 2C illustrates an example procedure for a best beam selection based on SSB/PRS and DL-AoD, in accordance with some embodiments of the present disclosure.
  • step 282 there may require a precondition that the terminal device 110 may already be connected to the network and there may be a request for an update/estimate of a current positioning of the terminal device 110.
  • the LMF such as a core network device 140 may transmit a request for getting the best beam for angle based positioning to the gNB, such as an access network device 120.
  • the gNB may either request a delta time estimate (also known as time offset) based on the SSB transmissions for all beams including RSRP values (reference power levels) or schedule PRS transmissions on each beam and get the delta time estimated for each of the beams (such as 120-1 to 120-5) with respective RSRP values as well.
  • a delta time estimate also known as time offset
  • the gNB may either request a delta time estimate (also known as time offset) based on the SSB transmissions for all beams including RSRP values (reference power levels) or schedule PRS transmissions on each beam and get the delta time estimated for each of the beams (such as 120-1 to 120-5) with respective RSRP values as well.
  • the terminal device 110 may calculate the delta time based on slot boundary and sends the list return to gNB/LMF.
  • the LMF may use the list to calculate the best beam for an angle position estimation of the terminal device 110.
  • Fig. 2D illustrates an example of the NLOS environment in accordance with some embodiments of the present disclosure
  • Fig. 2E illustrates an example of a plurality of slots for receiving a plurality of beams in accordance with some embodiments of the present disclosure
  • Fig. 2F illustrates an example of multiple paths for transmitting each beam of the plurality of beams in accordance with some embodiments of the present disclosure
  • Fig. 2G illustrates a multiple impulse response caused by the multiple-path transmissions in accordance with some embodiments of the present disclosure
  • Fig. 2H illustrates an example method for calculating a delta time and the received power level in the case that each beam is transmitted in multiple paths in accordance with some embodiments of the present disclosure.
  • the gNB 120 in this example may be configured to send 5 beams in different angle (this is an example with 5 beams –normally will a gNB have 8 beams in FR1) .
  • the SSB/DL_PRS for the beams may be scheduled in in each slot. This may mean that SSB/DL_PRS for beam 1 may be scheduled in Slot 0, the SSB/DL_PRS for beam 2 may be scheduled in Slot 1 and so forth.
  • the UE 110 may be configured to receive and estimate a time of arrival of a first (direct/shortest) path for each beam that corresponds to each different slot from a plurality of slots for the beams. This may allow the UE 110 to derive both time estimate and an RSRP for each beam and to generate a list of beams with corresponding beam IDs, and corresponding time estimates combined with RSRP level values, respectively.
  • the location of the SSB/DL_PRS reference signal sent from each beam may be illustrated as respective order of arrivals in time domain.
  • a time offset T0 calculated as the delta time (or time offset) between the slot reference point (Slot time start point) and the first arrival path.
  • the time offset T0 may be shown as a first arrival path of a first beam as illustrated with more details in ⁇ ! ⁇ . 2G. It is shown that the first arrived signal 291 may not necessarily be the signal with a highest RSRP value.
  • the first arrived signal 291 may indicate a NLOS best signal, with a measured time offset value of t0 having a minimum time offset value that may be used for deriving the most direct path for angle based position estimation, provided that the first arrived signal 291 is also measured to have a power level that exceeds a reference level threshold.
  • a main beam 1 may have a plurality of side-lobes 1-1 to 1-4, since it may not ”ideal” for a beam to be transmitted with only one direction covered. Transmitted beams generally will always be transmitted with side lobes 1-1 to 1-4 with a gain much less that the main beam 1.
  • the impulse response for beam 1 may include effects from the side-lobes such as multiple times of arrivals of the side lobe beams 1-1 to 1-4, as illustrated in Fig. 2G.
  • Multipath impulse response estimation is used to estimate a time offset of the first arrival path 291, which is a first detected arrived impulse and a corresponding level of RSRP measured.
  • These time offsets estimations and corresponding power measurements may be done for all arriving beams/ all slots, which the SSB/ DL_PRS are decoded respectively, in order to derive or determine a best beam from the multipath impulse responses.
  • the complete list of time estimates + RSRP values may be sent to the LMF 140 and the LMF 140 may use the best beam having the shortest time offset estimate as reference for the angle-based position estimate, which will be described in detail with reference to Figs. 4A and 4B.
  • Fig. 3A illustrates another example of signaling process 300 for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure.
  • the process 300 may be described with reference to Fig. 1.
  • the process 300 may involve the terminal device 110 and network devices 120, 130, and a location management entity 140 as illustrated in Fig. 1. It would be appreciated that although the process 300 has been described in the communication environment 100 of Fig. 1, this process may be likewise be applied to other communication scenarios with similar issues.
  • the location management entity 140 transmits, to the network device, a request for at least one beam for angle based positioning of the terminal device 110.
  • the network device may be the network device 120 of Fig. 1 or the network device 130 of Fig. 1.
  • the network device 120 is illustrated in the drawing, the person skilled in the art should understand that the network device also may be network device 130.
  • the network device 120 transmits, to the terminal device 110, a request for transmitting a plurality of beams, each of which may be associated sounding reference signal (SRS) .
  • SRS sounding reference signal
  • the terminal device 110 transmits, to the network device 120, a plurality of beams.
  • each of the plurality of beams may be associated with the sounding reference signals (SRS) .
  • SRS sounding reference signals
  • the network device 120 may receive the plurality of beams, in a plurality of slots, each of which has a slot start reference.
  • Each of the plurality of beams may be received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the terminal device, wherein each received beam corresponds to a different slot based on an order of beam arrivals.
  • the network device 120 measures the received SRS (s) .
  • the network device 120 may measure the SRSs of all beams in one single step or measure one SRS transmitted via one beam at a time. If the plurality of beams are fully separated in hardwire design wise, one SRS transmission may be enough and the network device 120 may measure the SRSs on all beams in one single step. Otherwise, a plurality of SRS transmissions may be performed, and each SRS transmission may be performed for each change in beam configuration, and the network device 120 may measure one SRS transmitted via one beam at a time, and estimate a delta time or time offset for each beam with belonging RSRP values.
  • the network device 120 may determine, based on the SRS measurement, a time offset referenced to a slot start reference which is synchronized to the terminal device 110, and a received power level for each beam of the plurality of beams.
  • the network device 120 should get the information about the slot start reference.
  • the slot start reference is set for each slot of the plurality of slots. If the network device 120 is a neighboring network device of the serving network device such as network device 130, since there is on direct connection between the terminal device 110 and the neighboring network device 130, the network device 120 should get the information about the slot start reference from the location management entity 140. Specifically, the serving network device 130 may provide the slot start reference to the location management entity 140, and then the location management entity 140 may provide the slot start reference to all involved neighboring network devices.
  • the time offset is a time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot.
  • the time offset (t0 to t4) of each respective beam is a time difference between the slot start reference of each respective slot (slot 0 to slot 4) and a respective time point of receiving the respective beam (beam 1 to beam 5, as shown in Fig. 2D)
  • the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path, such as first arriving path 291 among a plurality of paths (291 to 295, as shown in Fig. 2G) in slot 0, as shown in FIG. 2G.
  • each beam of the plurality of beams, such as beam1 may be received by the network device 120 in a plurality of paths, such as paths 291 to 295 in FIG. 2G, and the time offset t0 is the time difference between the slot start reference and a time point of first arrival of the beam 1 (see path 291 in FIG. 2G) in slot 0.
  • the first arrival of the beam 1 may be transmitted through one of the plurality of paths, such as path 291, which is a shortest direct path among the paths 291-295 in slot 0.
  • a threshold which may be set to be, such as, the sensitivity of the access network device 120 or gNB, it may mean that the first arrival of beam (path 291) may not be an interference noise, and in this situation, the RSPR value of the first arrival of beam 1 (path 291) may be measured as the received power level in the list, that is to say, the power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power threshold. Otherwise, the first arrival with a power level below the threshold may be removed, and the arrival having the power level above that threshold immediately after this arrival to be regarded as the actual first arrival for the purpose of estimating the time offset t0.
  • the network device 120 may transmit the determined list including the time offset t0 and the received power level, respectively, and the corresponding beam identity (ID) to the location management entity 140.
  • the location management entity 140 may determine the best beam 1 (corresponds to path 291 in slot 0) among the plurality of beams 1 to 5 for angle based positioning of the terminal device 110, which may be described in detail reference to Fig. 4A and 4B.
  • a time offset, a received power level and a corresponding beam identify (ID) is determined for each beam by the network device, and the data for all beams may be stored in a list. If the beam 1 is in the direction directly from the network device 120 to the terminal device 110, the transmission time through this beam may be the shortest, and thus the time offset between the slot start reference and the time point of receiving the respective beam should be the minimum.
  • the location management entity 140 may select the beam 1 with the minimum time offset t0 as the best beam for angle based positioning the terminal device, so as to avoid false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity 140 may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with the shortest direct path (such as path 291) , the location management entity 140 may determine the position of the terminal device 110 based on an Up-Link Angle of Arrival (UL-AoA) method with substantially high accuracy.
  • U-AoA Up-Link Angle of Arrival
  • Fig. 3B illustrates an example method for selecting a best beam for UL-AoA angle based positioning of the terminal device in accordance with some embodiments of the present disclosure.
  • the solution based on UL-AoA angle based positioning for “false” positioning estimate may include the following steps:
  • the UE such as terminal device 110
  • the gNB such as access network device 120
  • the gNB 120 may estimate the time offset (delta time) between slot start reference and received signal (SRS) .
  • the gNBs (including apart from the serving gNB all the neighboring gNBs) obtain information about the slot start reference through the following way, as there is no direct connection between the UE and neighboring gNBs :
  • the serving gNB provides the slot start reference to the location management function (LMF) ;
  • the LMF 140 may provide the slot start reference to all involved neighboring gNBs.
  • IE information element
  • NRPPa new radio positioning protocol annex
  • step b) and c) may be repeated for a number of Beams unless the gNB support to measure on all beams in parallel.
  • the list of derived delta time and RSRP levels may be sent to the LMF.
  • the LMF may select the best beam for angle based position and may in most cases make a better resolution based on all the delta times (time offsets) and RSRP levels.
  • the procedure described in Fig. 3B may be performed by the usage of UL-AoA to find the best beam for calculation the angle direction to the UE. This makes it possible to use angle based position estimation also in NLoS environment and to keep the same accuracy as for LoS environment.
  • Fig. 3C illustrates an example procedure for best beam selection based on SRS and UL-AoA in accordance with some embodiments of the present disclosure.
  • step 371 the precondition is: the device is connected to the network and there is a request for update/estimate to current positioning for the device.
  • LMF may be configured for selecting the best beam for angle based positioning.
  • the gNB may request the device to transmit SRS data.
  • SRS data may be based on the capability in the gNB, either one SRS transmission may be enough if the beams are fully separated HW wise –if this is not the case SRS transmissions may be needed for each change in beam configuration.
  • For each beam delta time is estimated with belonging RSRP values as well.
  • the gNB may calculate the delta time based on slot boundary and send the list return to LMF.
  • the LMF may use the list to calculate the best beam for angle position estimation.
  • the method for calculating the delta time or time offset and the received power level for the solution based on SRS and UL-AoA may be similar to the method described with reference to Figs. 2D to 2H, which will not be described any more.
  • Fig. 4A illustrates a method for calculating best beam for angle based position performed by a location management entity in accordance with some embodiments of the present disclosure.
  • the LMF may get the beam list there contain beam IDs, delta time Td and the RSRP level.
  • step1 is the beam list checked for minimum RSRP level to avoid false detection due to very low SNR and thereby possible false timing estimates, and a minimum RSRP level may set to be the sensitivity threshold of the device.
  • step 2 After the beam list is checked for useable values, in step 2, will the algorithm select the beam with lowest delta time and acceptable RSRP level.
  • the neighboring beams be checked for delta times and RSRP values. These values may be used for in cooperation with the selected beam to derive a finer resolution of the best angle for position estimation.
  • Fig. 4B illustrates an example of the selection of best angle between two beams in accordance with some embodiments of the present disclosure.
  • Input is the beam list with calculated
  • Td_Min rd (x-1)
  • the LMF may determine the beam angle as an angle of a beam of the two beams having a higher received power level; and based on determining that the received power levels of the two beams being substantially identical, the LMF may determine the beam angle to be between the two beams 1, 2.
  • Fig. 5 illustrates a flowchart of an example method 500 implemented at a terminal device (for example, the terminal device 110) in accordance with some embodiments of the present disclosure.
  • a terminal device for example, the terminal device 110
  • the method 500 will be described from the perspective of the terminal device 110 with reference to Fig. 1.
  • the terminal device 110 receives a plurality of beams from an access network device.
  • each beam is associated with at least one of one or more synchronization signal blocks (SSB) or one or more downlink position reference signals (DL-PRS) .
  • the network device 120 sends at least one of SSB or DL-PRS on each beam of the plurality of beams to the terminal device 110. This data transmission step is repeated for the plurality of beams in a plurality of directions.
  • reference signals DL-PRS is preferred; however, in some cases SSB signals may be enough. As SSB is sent quite frequently, a combination of SSB and DL-PRS may also be used.
  • the terminal device is further caused to: receive, from the access network device, information indicative of the slot start reference.
  • the access network device is a serving network device.
  • the slot start reference for estimating the time offset may be provided by this access network device to the terminal device 110.
  • this access network device may be a neighboring network device of the serving network device.
  • the serving network device may provide the slot start reference to the location management entity.
  • the location management entity provides the slot start reference to all involved neighboring network devices.
  • the slot start reference for estimating the time offset may be provided by this neighboring network device to the terminal device 110.
  • each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the terminal device, wherein each received beam corresponds to a different slot based on an order of beam arrivals. That is to say, the terminal device 110 receives the plurality of beams, each of which is associated with at least one of SSB and DL-PRS, in a plurality of different slots, respectively.
  • the terminal device 110 determines a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each beam of the plurality of beams.
  • the slot start reference for estimating the time offset is transmitted to the terminal device 110 by the network device 120.
  • the slot start reference is set for each slot of the plurality of slots.
  • the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam. That is to say, the time offset is the time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot.
  • the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths. That is to say, each beam of the plurality of beams is received by the terminal device 110 in a plurality of paths, and the time offset is the time difference between the slot start reference and a time point of first arrival of the beam. The first arrival of the beam is transmitted through one of the plurality of paths, which is the shortest direct path.
  • the received power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power level threshold. That is to say, if measured received power level of a beam among the plurality of beams at the first arrival of the beam is above a reference power level threshold (such as sensitivity level of the device) , it means that the first arrival is not an interference noise, and in this situation, the RSPR value of the first arrival is measured as the received power level in the list. Otherwise, the first arrival with a power level below the threshold may be removed, and the arrival having the power level above that threshold immediately after this arrival may be regarded as the actual first arrival for estimating the time offset.
  • a reference power level threshold such as sensitivity level of the device
  • At least one best beam is selected from among the plurality of beams in the list by the access network device, wherein the at least one selected best beam is characterized with having a minimum time offset value and having the power level being measured to have exceeded the reference power level threshold .
  • the at least one best beam is utilized by the network device to position the terminal device, based on a downlink angle of departure (DL-AoD) method.
  • DL-AoD downlink angle of departure
  • the access network device may include one of: a network node device (gNB) or a network node device enabled with location management function.
  • gNB network node device
  • the terminal device 110 transmits, to the network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • the location management entity may select the beam with the minimum time offset as the best beam for angle based positioning the terminal device, so as to avoid false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with shortest direct path, the location management entity may determine the position of the terminal device based on Down-Link Angle of Departure (DL-AoD) in high accuracy.
  • DL-AoD Down-Link Angle of Departure
  • Fig. 6 illustrates a flowchart of an example method 600 implemented at a network device (for example, the network device 120) in accordance with some embodiments of the present disclosure.
  • a network device for example, the network device 120
  • the method 600 may be described from the perspective of the network device 120 with reference to Fig. 1.
  • the access network device 120 receives a plurality of beams from a terminal device 110.
  • each of the plurality of beams is associated with the sounding reference signals (SRS) .
  • SRS sounding reference signals
  • each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the access network device, wherein each received beam corresponds to a different slot based on an order of beam arrivals. That is to say, the access network device 120 receives the plurality of beams, in a plurality of slots, each of which has a slot start reference.
  • the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam. That is to say, the time offset is the time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot.
  • the access network device 120 determines a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams.
  • the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths.
  • Each beam of the plurality of beams is received by the network device 120 in a plurality of paths, and the time offset is the time difference between the slot start reference and a time point of first arrival of the beam.
  • the first arrival of the beam is transmitted through one of the plurality of paths, which is the shortest direct path.
  • the received power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power level threshold.
  • a reference power level threshold such as the sensitivity level of the device
  • the RSPR value of the first arrival is measured as the received power level in the list. Otherwise, the first arrival with a power level below the threshold may be removed, and the arrival having the power level above that threshold immediately after this arrival may be regarded as the actual first arrival for estimating the time offset.
  • the access network device 120 is a serving network device of the terminal device and is further caused to: transmit the slot start reference to the core network device 140.
  • the access network device 120 is a neighboring network device of a serving network device of the terminal device and is further caused to: receive the slot start reference from the core network device 140.
  • the access network device 120 is further caused to: receive, from the core network device 140, a request for determining at least one beam for angle based positioning of the terminal device; and transmit, to the terminal device, a request that the terminal device transmits the plurality of beams to the access network device.
  • the access network device 120 transmit to a core network device 140, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  • the core network device 140 may be a location management entity.
  • the at least one beam is selected from among the plurality of beams in the list by the core network device 140, wherein the at least one selected beam is characterized with a minimum time offset value and having the power level being measured to have exceeded the reference power threshold.
  • the at least one beam is utilized by the core network device 140 to position the terminal device, based on an uplink angle of arrival (UL-AoA) method.
  • U-AoA uplink angle of arrival
  • the location management entity may select the beam with the minimum time offset as the best beam for angle based positioning the terminal device, so as to avoid false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with the shortest direct path and the minimum time offset, the location management entity may determine the position of the terminal device based on Up-Link Angle of Arrival (UL-AoA) in high accuracy.
  • U-AoA Up-Link Angle of Arrival
  • Fig. 7 illustrates a flowchart of an example method 700 implemented at a core network device (for example, the network device 140, which is a core network device and acted as a location management entity) in accordance with some embodiments of the present disclosure.
  • a core network device for example, the network device 140, which is a core network device and acted as a location management entity
  • the method 700 may be described from the perspective of the network device 140 with reference to Fig. 1.
  • the core network device 140 receives, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams.
  • a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams.
  • ID beam identity
  • the plurality of beams may be transmitted from the terminal device 110 to the access network device120 or 130, and the list is determined by the access network device 120 or 130.
  • the plurality of beams may be transmitted from the access network device 120 or 130 to the terminal device 110, and the list is determined by the terminal device 110.
  • the core network device 140 further receives, from a further access network device, a further list including a time offset referenced to a further slot start reference which is synchronized between the terminal device and the further access network device, a further received power level and a further corresponding beam identity (ID) determined for each of a plurality of further beams, and select, based on the further list, at least one further beam from the plurality of further beams for determining the position of the terminal device.
  • a further list including a time offset referenced to a further slot start reference which is synchronized between the terminal device and the further access network device, a further received power level and a further corresponding beam identity (ID) determined for each of a plurality of further beams, and select, based on the further list, at least one further beam from the plurality of further beams for determining the position of the terminal device.
  • ID beam identity
  • the access network device is a serving network device of the terminal device, and the further access network device is a neighboring network device of the serving network device.
  • the access network device is the serving network device, and the core network receives, from the access network device, information indicative of the slot start reference; and transmits the information to a neighboring network device of the access network device.
  • step 720 the core network device 140 selects based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  • the core network device 140 selects the at least one beam by: determining at least one beam with a minimum time offset as the at least one beam for determining the position of the terminal device.
  • the core network device 140 selects the at least one beam by:selecting, from the plurality of beams, a set of beams having the received power level above a reference power level threshold (such as, the sensitivity level of the device) ; and selecting, from the set of beams, the at least one beam for determining the position of the terminal device.
  • a reference power level threshold such as, the sensitivity level of the device
  • the core network device 140 further selects, based on the further list, at least one further beam from the plurality of further beams for determining the position of the terminal device.
  • the core network device 140 after selecting at least one beam and at least one further beam, performs angle based positioning of the terminal device 110 based on the selected at least one beam and the selected at least one further beam by using UL-AoA or DL-AoD method. Specifically, the core network device 140 may perform angle based positioning of the terminal device based on the selected at least one beam and the selected at least one further beam based on down link angle of departure (DL-AoD) method based on determining that the plurality of beams may be transmitted from the access network device 120 to the terminal device 110 and the list is determined by the terminal device 110.
  • DL-AoD down link angle of departure
  • the core network device 140 may perform angle based positioning of the terminal device based on the selected at least one beam, and the selected at least one further beam based on an uplink angle of arrival (UL-AoA) method, based on determining that the plurality of beams may be transmitted from the terminal device to the access network device, and the list is determined by the access network device 120.
  • U-AoA uplink angle of arrival
  • the core network device 140 determines a beam angle based on the received power levels of the two beams. Specifically, based on determining that the received power levels of the two beams may be different, the core network device 140 determines the beam angle as an angle of a beam of the two beams having a higher received power level; and based on determining that the received power levels of the two beams may be substantially identical, the core network device 140 determines the beam angle to be between the two beams.
  • the core network device 140 is further caused to transmit, to the access network device, a request for determining at least one beam for angle based positioning of the terminal device.
  • an apparatus capable of performing the method 500 may include means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus may include: means for receiving, at the terminal device, a plurality of beams from an access network device; means for determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams; and means for transmitting, to the access network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • the means for receiving the plurality of beams may include means for receiving the plurality of beams in a plurality of different slots respectively.
  • the means for determining the time offset may include: means for determining the time point of receiving the beam as a time point of first arrival of the beam through a path among the plurality of paths, based on determining that a beam of the plurality of beams is received in a plurality of paths.
  • the means for determining the received power level may include: means for determining the measured received power level of the beam at the first arrival as the received power level in the list, based on determining that the measured received power level of the beam at the first arrival of the beam is above a reference power level threshold.
  • the apparatus further may include means for performing other steps in some embodiments of the method 500.
  • the means may include at least one processor and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
  • an apparatus capable of performing any of the method 600 may include means for performing the respective steps of the method 600.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus may include: means for receiving, at the access network device, a plurality of beams from a terminal device; means for determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and means for transmitting, to a core network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  • ID beam identity
  • the means for receiving a plurality of beams may include: means for receiving the plurality of beams in a plurality of different slots respectively.
  • the means for determining a time offset may include: means for determining the time point of receiving the beam as a time point of first arrival of the beam through a path among the plurality of paths, based on determining that a beam of the plurality of beams is received in a plurality of paths.
  • the means for determining a received power level may include: means for determining the measured received power level of beam at the first arrival as the received power level in the list, based on determining that the measured received power level of the beam at the first arrival of the beam is above a reference power level threshold.
  • the apparatus further may include means for performing other steps in some embodiments of the method 600.
  • the means may include at least one processor and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
  • an apparatus capable of performing any of the method 700 may include means for performing the respective steps of the method 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus may include: means for receiving, at the core network device and from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and means for selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  • a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams.
  • ID beam identity
  • the means for selecting at least one beam may include: means for determining at least one beam with a minimum time offset as the at least one beam for determining the position of the terminal device.
  • the means for selecting at least one beam may include: means for selecting, from the plurality of beams, a set of beams having the received power level above a reference power level threshold; and means for selecting, from the set of beams, the at least one beam for determining the position of the terminal device.
  • the apparatus further may include means for performing other steps in some embodiments of the method 700.
  • the means may include at least one processor and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
  • Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure.
  • the device 800 may be provided to implement the communication device, for example the terminal device 110, an access network device 120 or 130, or a core network device 140 as shown in Fig. 1.
  • the device 800 includes one or more processors 810, one or more memories 840 coupled to the processor 810, and one or more transmitters and/or receivers (TX/RX) 840 coupled to the processor 810.
  • TX/RX transmitters and/or receivers
  • the TX/RX 840 is for bidirectional communications.
  • the TX/RX 840 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network devices.
  • the processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 820 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a read only memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that may not last in the power-down duration.
  • a computer program 830 includes computer executable instructions that are executed by the associated processor 810.
  • the program 830 may be stored in the ROM 824.
  • the processor 810 may perform any suitable actions and processing by loading the program 830 into the RAM 822.
  • the embodiments of the present disclosure may be implemented by means of the program so that the device 800 may perform any process of the disclosure as discussed with reference to Figs. 2A to 7.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800.
  • the device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 9 illustrates an example of the computer readable medium 900 in form of CD or DVD.
  • the computer readable medium has the program 930 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out process 200 or 300, the method 500, 600 or 700 as described above with reference to Fig. 2A to Fig. 7.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • non-transitory is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to improvement of accuracy of angle based positioning. A terminal device receives a plurality of beams from an access network device. The terminal device determines a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams. The terminal device transmits, to the access network device, a list including the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams. The list of beams is utilized by an access network device to determine a position of the terminal device using an angled based positioning method.

Description

IMPROVEMENT OF ACCURACY OF ANGLE BASED POSITIONING FIELD
Various example embodiments relate to the field of communication, and in particular, to devices, methods, apparatuses and computer readable storage medium for improving the accuracy of the angle based positioning.
BACKGROUND
In 3GPP Rel. 17, it was agreed to have a bandwidth of 20MHz in FR1 for RedCap (Reduced Capability) devices. In Rel 18, it is aimed to reduce the bandwidth even further to 5MHz, which is still under evaluation.
By reducing the bandwidth from 20MHz to 5 MHz in FR1, it may impact the accuracy of the TOA (Time Of Arrival) /RTT (Round Trip Time) estimation by a factor of four (same factor as the reduction of the bandwidth) and thereby affect the position estimation based on the TOA/RTT timing estimation.
For RedCap devices, the position accuracy estimation, by using UL-TDOA (Time Difference Of Arrival) /DL-TDOA/Multi-RTT timing based position methods, may be reduced in accuracy due to the reduction in bandwidth (causes loss of time resolution in peak search) . Methods for compensating for the reduced position accuracy are under evaluation.
SUMMARY
In general, example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage medium for improving the accuracy of the angle based positioning.
In a first aspect, there is provided a terminal device. The terminal device may include at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the terminal device at least to: receive a plurality of beams from an access network device; determine a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams, respectively; and transmit, to the access  network device, a list including the determined time offset and the received power level, respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
In a second aspect, there is provided an access network device. The access network device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the access network device at least to: transmit, to a terminal device, a plurality of beams, and receive, from the terminal device, a list including a time offset, a received power level, and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
In a third aspect, there is provided an access network device. The access network device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the access network device at least to: receive a plurality of beams from a terminal device; determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and transmit, to a core network device, a list including the determined time offset and the received power level, respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
In a fourth aspect, there is provided a terminal device. The terminal device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the terminal device at least to: receive from a network element, a request for transmission of a sounding reference signal; and transmit, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
In a fifth aspect, there is provided a core network device. The core network device may include: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the core network device at least to: receive, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, and a received power level, respectively, and a corresponding beam identity (ID)  determined for each of a plurality of beams; and select, based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
In a sixth aspect, there is provided a method at a terminal device. The method may include: receiving, at the terminal device, a plurality of beams from an access network device; determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams, respectively; and transmitting, to the access network device, a list including the determined time offset and the received power level, respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
In a seventh aspect, there is provided a method at an access network device. The method may include: transmitting, to a terminal device, a plurality of beams, and receiving, from the terminal device, a list including a time offset, a received power level, and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
In an eighth aspect, there is provided a method at an access network device. The method may include: receiving, at the access network device, a plurality of beams from a terminal device; determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and transmitting, to a core network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
In a ninth aspect, there is provided a method at a terminal device. The method may include: receiving, from a network element, a request for transmission of a sounding reference signal; and transmitting, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
In a tenth aspect, there is provided a method at a core network device. The method may include: receiving, at the core network device and from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power  level and a corresponding beam identity (ID) determined for each of a plurality of beams; and selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
In an eleventh aspect, there is provided an apparatus of a terminal device. The apparatus may include: means for receiving, at the terminal device, a plurality of beams from an access network device; means for determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams, respectively; and means for transmitting, to the access network device, a list including the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
In a twelfth aspect, there is provided an apparatus of an access network device. The apparatus may include: means for transmitting, to a terminal device, a plurality of beams, and means for receiving, from the terminal device, a list including a time offset and a received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
In a thirteenth aspect, there is provided an apparatus of an access network device. The apparatus may include: means for receiving, at the access network device, a plurality of beams from a terminal device; means for determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams respectively; and means for transmitting, to a core network device, a list including the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
In a fourteenth aspect, there is provided an apparatus of a terminal device. The apparatus may include: means for receiving from a network element, a request for transmission of a sounding reference signal; and means for transmitting, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access  network device.
In a fifteenth aspect, there is provided an apparatus of a core network device. The apparatus may include: means for receiving, at the core network device and from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and means for selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
In a sixteenth aspect, there is provided a non-transitory computer readable medium including program instructions stored thereon for performing at least the method of any one of above sixth to tenth aspects.
In a seventeenth aspect, there is provided a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive a plurality of beams from an access network device; determine a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams; and transmit, to the access network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
In an eighteenth aspect, there is provided computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: transmit, to a terminal device, a plurality of beams; and receive, from the terminal device, a list including a time offset and a received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
In a nineteenth aspect, there is provided a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive a plurality of beams from a terminal device; determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and transmit, to a core network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
In a twentieth aspect, there is provided a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive from a network element, a request for transmission of a sounding reference signal; and transmit, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
In a twenty-first aspect, there is provided a computer program including instructions, which, when executed by an apparatus, cause the apparatus at least to: receive, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and select, based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
In a twenty-second aspect, there is provided a terminal device. The terminal device may include: a receiving circuitry configured to receive a plurality of beams from an access network device; a determining circuitry configured to determine a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams; and a transmitting circuitry configured transmit to the access network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
In a twenty-third aspect, there is provided an access network device. The access network device may include: a transmitting circuitry configured to transmit, to a terminal device, a plurality of beams; and a receiving circuitry configured to receive, from the terminal device, a list including a time offset and a received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams, wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
In a twenty-fourth aspect, there is provided an access network device. The access network device may include: a receiving circuitry configured to receive a plurality of beams from a terminal device; a determining circuitry configured to determine a time offset  referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and a transmitting circuitry configured to transmit, to a core network device, a list including the determined time offset and the received power level, respectively; and a corresponding beam identity (ID) for each of the plurality of beams.
In a twenty-fifth aspect, there is provided a terminal device. The terminal device may include: a receiving circuit configured to receive from a network element, a request for transmission of a sounding reference signal; and a transmitting circuitry configured to transmit, to an access network device, a plurality of beams, wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
In a twenty-sixth aspect, there is provided a core network device. The core network device may include: a receiving circuitry configured to receive, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and a selecting circuitry configured to select, based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure may become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments may now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example network environment in which example embodiments of the present disclosure may be implemented;
Fig. 2A illustrates an example signaling process for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure;
Fig. 2B illustrates an example method for selecting a best beam for downlink angle of departure (DL-AoD) angle based positioning of the terminal device in accordance with some embodiments of the present disclosure;
Fig. 2C illustrates an example procedure for best beam selection based on SSB/PRS and DL-AoD in accordance with some embodiments of the present disclosure;
Fig. 2D illustrates an example of the NLOS environment in accordance with some embodiments of the present disclosure;
Fig. 2E illustrates an example of a plurality of slots for receiving a plurality of beams in accordance with some embodiments of the present disclosure;
Fig. 2F illustrates an example of multiple paths for transmitting each beam of the plurality of beams in accordance with some embodiments of the present disclosure;
Fig. 2G illustrates multiple impulse response caused by the multiple-path transmissions in accordance with some embodiments of the present disclosure;
Fig. 2H illustrates an example method for calculating a delta time and the received power level in a case that each beam is transmitted in multiple paths in accordance with some embodiments of the present disclosure;
Fig. 3A illustrates an example signaling process for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure;
Fig. 3B illustrates an example method for selecting a best beam for uplink angle of arrival (UL-AoA) angle based positioning of the terminal device in accordance with some embodiments of the present disclosure;
Fig. 3C illustrates an example procedure for a best beam selection based on SRS and UL-AoA in accordance with some embodiments of the present disclosure;
Fig. 4A illustrates a method for calculating a best beam for angle based position performed by a location management entity in accordance with some embodiments of the present disclosure;
Fig. 4B illustrates an example of the selection of best angle between two beams in accordance with some embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of an example method implemented at a terminal  device in accordance with some embodiments of the present disclosure;
Fig. 6 illustrates a flowchart of an example method implemented at a access network device in accordance with some embodiments of the present disclosure;
Fig. 7 illustrates a flowchart of an example method implemented at a core network device in accordance with some embodiments of the present disclosure;
Fig. 8 illustrates an example simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 9 illustrates an example block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure may now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein may be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which the present disclosure belongs.
References in the present disclosure to “some embodiments, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It may be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms may only be used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or  multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as long term evolution (LTE) , LTE-advanced (LTE-A) , wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , narrow band Internet of things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or beyond. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music  storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
As used herein, the term “beam” may be referred to a radio signal carrying communication resources. Different beams may be considered as different resources. A beam may also be represented as a spatial filter. A technology for forming a beam may be a beamforming technology or another technology. The beamforming technology may be specifically a digital beamforming technology, analog beamforming technology, or a hybrid digital/analog beamforming technology. A communication device (including the terminal device and the network device) may communicate with another communication device through one or more beams. One beam may include one or more antenna ports and be configured for a data channel, a control channel, or the like. One or more antenna ports forming one beam may also be considered as an antenna port set. A beam may be configured with a set of resource, or a set of resource for measurement, and a beam may be represented by, for example, a reference signal and/or related resource for the reference signal. A beam may also represent by a reference cell identifier or resource identifier.
As mentioned above, the position accuracy estimation, by using UL-TDOA (Time Difference Of Arrival) /DL-TDOA/Multi-RTT timing based position methods, may be reduced in accuracy due to the reduction in bandwidth (causes loss of time resolution in peak search) , and angle based position (DL-AoD (Angle Of Departure) and UL-AoA (Angle Of Arrival) ) estimations may be a preferred alternative to the time based position estimations. The benefit of angle based position estimation is that it is not affected by the reduction of the bandwidth. However, the angle based position may be quite inaccurate in a Non-Line Of Sight (NLOS) environment, due to “false” beam selection. Thus, angle based position has other limitations, especially in the Non-Line Of Sight (NLOS) environments. The angle based position method is quite accurate in the line of sight (LOS)  scenarios but may be quite inaccurate in the NLOS environment, due to “false” beam selection.
For the angle based position, the best beam for positioning the terminal device should be a LOS beam in the direct direction from the network device to the terminal device and having the shortest direct path. In NLOS environment, there may be a lot of obstacles for impeding the beam transmissions. If in this direct direction or in shortest direct path, some obstacles or structures (such as a solid wall of buildings in the urban area) may impede the transmission through the beam in the direct direction, the measured reference signal received power (RSRP) for this beam may not be the highest due to signal attenuation.
Meanwhile, the beam, which is reflected by some objects and transmitted in the directions rather than the direct direction, may have the highest RSRP measurement, and may be mistakenly selected to be the best beam for positioning the terminal device based on the highest RSRP measurement during SSB scan. Accordingly, the selected beam reflected by the object based on signal power level may be the “false” beam.
According to embodiments of the present disclosure, a method is proposed to detect and select the beam with the shortest direct path to avoid false position estimates based on beams with strong reflections.
Fig. 1 illustrates an example network environment 100 in which example embodiments of the present disclosure may be implemented. The environment 100, which may be a part of a communication network, includes terminal devices and network devices.
As illustrated in Fig. 1, the communication network 100 may include a terminal device 110 (hereinafter may also be referred to as user equipment 110 or a UE 110) . The communication network 100 may further include a network device 120, a network device 130 (hereinafter, also referred as an access network device) and a location management entity 140 (hereinafter, also referred as a core network device) . One of the network device 120 and the network device 130 may be a serving network device and the other may be a neighboring network device of the serving network device. Each network device of these network devices may manage one or more cells. As an example, the network device 120 is configured with a plurality of beams 120-1 to 120-5 which provides coverage for the cell of the network device 12, and the network device 130 is configured with a plurality of beams 130-1 to 130-5 which provide coverage for the cell of the network device 130. In  an example, the entity 140 may receive data from the  network devices  120 and 130 so as to determine a best beam for angle based positioning of the terminal device 110 for each of the  network device  120 or 130.
Communications in the network environment 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, the third generation (3G) , the fourth generation (4G) , the fifth generation (5G) or beyond, wireless local network communication protocols such as institute for electrical and electronics engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, including but not limited to: multiple-input multiple-output (MIMO) , orthogonal frequency division multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , carrier aggregation (CA) , dual connection (DC) , and new radio unlicensed (NR-U) technologies.
As illustrated in Fig. 1, some obstacles 101 to 104 may be present in the paths from the  network device  120 or 130 to the terminal device 110, which simulates the NLOS environment. The NLOS environment will always add some error to the position estimate. Specifically, when angle based methods may be used, the NLOS environment may severely change the AoA/AoD of beams, and thus making it difficult to use the angle based methods in location services due to high error probability and variance between consecutive estimates.
For the angle based position of terminal device 100 performed by the network device 120, the best beam should be he beam 120-4 with the shortest direct path; however, the transmission of the beam 120-4 is impeded by the obstacle 101 (such as a solid wall of building) , and the received power level of this beam 120-4 at the terminal device 110 or at the access network device 120 is not that strong due to attenuation. Meanwhile, the beam 120-1 may be reflected by the obstacle 103 and reaches the terminal device 110 with relatively the highest power level. Based on the highest RSRP measurement in the conventional technology, the beam 120-1 may likely be selected as the best beam, which would obviously be the false beam selection, and the position of the terminal device 110 based on angle position may appear to be at the position designated by 110’, which is  obviously a false position. The beam 120-1 may falsely appear as the best beam for normal data communication but not the best beam for angle position estimation. As for the angle based position of terminal device 100 performed by the network device 130, the best beam should be beam 130-3 with the shortest direct path; however, the transmission of the beam 130-3 may be obstructed by the obstacle 102 (such as a solid wall of building) , and therefore the received power level of this beam 130-3 may not be that strong. Meanwhile, the beam 130-5 may be reflected by the obstacle 104 and reaches the terminal device 110 with the highest power level. Based on the highest RSRP measurement, the beam 130-5 may be selected as the best beam, which is obviously the false beam selection. The beam 130-5 may be the best beam for normal data communication but not the best beam for angle position estimation.
By the method of the present disclosure, the beam 120-3 with the shortest direct path for the access network device 120 may be selected by the location management entity 140 (which is also a core network device) so as to avoid false position estimates based on beams with strong reflections. Further, the beam 130-3 with the shortest direct path for the access network device 130 may be selected by the location management entity 140 (which may also be a core network device, hereinafter) so as to avoid false position estimates based on beams with strong reflections.
Hereinafter, the method of the present disclosure may be described in detail with reference to the Figs. 2A to 7.
Fig. 2A illustrates an example signaling process 200 for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the process 200 may be described with reference to Fig. 1. The process 200 may involve the terminal device 110 and  network devices  120, 130, and a location management entity 140 as illustrated in Fig. 1. It would be appreciated that although the process 200 has been described in the communication environment 100 of Fig. 1, this process may be likewise applied to other communication scenarios with similar issues. It should be understood that although the location management entity 140 is shown separately from the  network device  120, 130, the location management entity 140 may be included or integrated in any network device, for  example network device  120, 130.
In process 200, at 210, the location management entity 140 transmits, to the  network device 120, a request for at least one beam for angle based positioning of the terminal device 110. In this process, the network device may be the network device 120 of Fig. 1 or the network device 130 of Fig. 1. Although the network device 120 is illustrated in the drawing, the person skilled in the art should understand that the network device also may be network device 130.
At 220, the network device 120 transmits, to the terminal device 110, a request for a time offset and reference signal received power (RSRP) level for each beam of a plurality of beams. The terminal device 110 receives the request and may perform the estimation of time offset and RSRP level later when receiving associated data from the network device 120.
At 230, the network device 120 transmits, to the terminal device 110, a plurality of beams.
In some embodiments, each beam is associated with at least one of one or more synchronization signal blocks (SSB) or one or more downlink position reference signals (DL-PRS) . The network device 120 sends at least one of SSB and DL-PRS on each beam of the plurality of beams to the terminal device 110. This data transmission step is repeated for the plurality of beams in a plurality of directions.
To achieve best time resolution, DL-PRS is preferred; however, in some cases SSB may be enough. As SSB is sent quite frequently, a combination of SSB and DL-PRS also may be used.
Depending on the required accuracy, at 220, the network device 120 may either request a delta time estimation based on the SSB transmissions for all beams including RSRP values, or request delta time estimation based on the DL-PRS transmission for each beam and get the delta times estimated for all beams with belonging RSRP values.
At 240, the terminal device 110 determine a time offset referenced to a slot start reference which is synchronized to the network device and received power level for each of the plurality of beams.
In some embodiments, the terminal device 110 receives the plurality of beams, each of which is associated with at least one of SSB and DL-PRS, in a plurality of different slots, respectively. Each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the terminal device, wherein each received beam corresponds to a different slot  based on an order of beam arrivals.
In some embodiments, the slot start reference is transmitted to the terminal device 110 by the network device 120. The slot start reference is set for each slot of the plurality of slots. The slot start reference may be calculated based on the known positions or pre-defined positions of SSB and/or PRS signal.
In some embodiments, the time offset is the time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot. That is to say, the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam, and the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths.
In some embodiments, each beam of the plurality of beams is received by the terminal device 110 in a plurality of paths, and the time offset is the time difference between the slot start reference and a time point of first arrival of the beam. The first arrival of the beam is transmitted through one of the plurality of paths, which is a shortest direct path.
In some embodiments, if measured received power level of a beam among the plurality of beams at the first arrival of the beam is above a reference power level threshold, which may be set to be, such as, a sensitivity level of the UE or terminal device, it means that the first arrival may not be an interference noise, and in this situation, the RSPR value of the first arrival may be measured as the received power level in the list, that is to say, the power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power threshold. Otherwise, the first arrival with a power level value below the threshold may be removed, and the arrival having the power level value above that reference power level threshold immediately after this arrival may be regarded as the actual first arrival for estimating the time offset.
At 250, the terminal device 110 may transmit the determined list including the time offset and the received power level respectively, and the corresponding beam identity (ID) for each beam to the network device 120.
At 260, the network device 120 may transmit the determined list to the location management entity 140.
At 270, the location management entity 140 (also referred as a core network device) may determine at least one beam, such as the best beam among the plurality of beams for angle based positioning of the terminal device 110, which will further be described in detail reference to Fig. 4A and 4B.
In this process, a time offset, a received power level and a corresponding beam identify (ID) may be determined for each beam by the terminal device, and the data for all beams may be stored in a list. If the beam is in the direction directly from the network device to the terminal device, then the transmission time through this beam may be the shortest, and thus the time offset between the slot start reference and the time point of receiving the respective beam should be the minimum one.
By receiving the time offsets, the location management entity 140 may select the beam with the minimum time offset as the best beam for angle based positioning of the terminal device, so as to avoid a false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity 140 may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with the shortest direct path, the location management entity 140 may sufficiently determine the position of the terminal device based on Down-Link Angle of Departure (DL-AoD) in high accuracy.
To solve the “false” position estimate due to reflections, a method performed based on DL-AoD may described hereinafter.
Hereinafter, the solution for “false” positioning estimation is performed based on DL-AoD and may be described with reference to Figs. 2B to 2G.
Fig. 2B illustrates an example method for selecting a best beam for DL-AoD angle based positioning of the terminal device in accordance with some embodiments of the present disclosure.
As illustrated in Fig. 2B, the solution based on DL-AoD angle based positioning for “false” positioning estimate may include the following steps:
a) Pre-condition: the UE, such as the terminal device 110, may be assumed to be connected to network 100.
b) The gNB, such as the access network device 120/130, may send SSB or DL-PRS through each beam (anyone of 120-1 to 120-5 or 130-1 to 130-5) . To  achieve best time resolution, DL-PRS is preferred –but in some cases SSB may be enough. In an example, since the SSB is sent quite often, a combination of SSB and DL-PRS may be used. This step (b) may be repeated for all beam directions (120-1 to 120-5 or 130-1 to 130-5) .
c) The UE may estimate the time offset (delta time) between slot start reference and received data (SSB or DL-PRS) . To do so, the UE may be provided with the slot start reference time by the  access network device  120 or 130.
d) The step b) and c) may be repeated for a number of beams (120-1 to 120-5 or 130-1 to 130-5) . In implementation, the measurements may be limited to beams that are above a RSRP threshold, which may be set to be the sensitivity level of the UE.
e) The list of derived delta times and RSRP levels may be sent to the LMF.
f) The LMF may select at least one or the best beam for angle based position determination of the UE.
In most cases LMF may make a better resolution based on all the delta times or time offsets and measured power levels or RSRP levels, which may be described in more detail with reference to Figs. 4A to 4B later.
Hereinafter, the details on the procedure for best beam selection based on SSB/PRS and DL-AoD may be further described with reference to Fig. 2C.
Fig. 2C illustrates an example procedure for a best beam selection based on SSB/PRS and DL-AoD, in accordance with some embodiments of the present disclosure.
In step 282, there may require a precondition that the terminal device 110 may already be connected to the network and there may be a request for an update/estimate of a current positioning of the terminal device 110.
In step 284, the LMF such as a core network device 140 may transmit a request for getting the best beam for angle based positioning to the gNB, such as an access network device 120.
In step 286, depending on the required accuracy, the gNB may either request a delta time estimate (also known as time offset) based on the SSB transmissions for all beams including RSRP values (reference power levels) or schedule PRS transmissions on  each beam and get the delta time estimated for each of the beams (such as 120-1 to 120-5) with respective RSRP values as well.
In step 288, the terminal device 110 may calculate the delta time based on slot boundary and sends the list return to gNB/LMF.
In step 290, the LMF may use the list to calculate the best beam for an angle position estimation of the terminal device 110.
Hereinafter, it may describe how to calculate the delta time or time offset and the received power level with reference to Figs. 2D to 2H.
Fig. 2D illustrates an example of the NLOS environment in accordance with some embodiments of the present disclosure; Fig. 2E illustrates an example of a plurality of slots for receiving a plurality of beams in accordance with some embodiments of the present disclosure; Fig. 2F illustrates an example of multiple paths for transmitting each beam of the plurality of beams in accordance with some embodiments of the present disclosure; Fig. 2G illustrates a multiple impulse response caused by the multiple-path transmissions in accordance with some embodiments of the present disclosure; Fig. 2H illustrates an example method for calculating a delta time and the received power level in the case that each beam is transmitted in multiple paths in accordance with some embodiments of the present disclosure.
Referring to Fig. 2D, the gNB 120 in this example may be configured to send 5 beams in different angle (this is an example with 5 beams –normally will a gNB have 8 beams in FR1) . The SSB/DL_PRS for the beams may be scheduled in in each slot. This may mean that SSB/DL_PRS for beam 1 may be scheduled in Slot 0, the SSB/DL_PRS for beam 2 may be scheduled in Slot 1 and so forth. The UE 110 may be configured to receive and estimate a time of arrival of a first (direct/shortest) path for each beam that corresponds to each different slot from a plurality of slots for the beams. This may allow the UE 110 to derive both time estimate and an RSRP for each beam and to generate a list of beams with corresponding beam IDs, and corresponding time estimates combined with RSRP level values, respectively.
Referring to Fig. 2E, the location of the SSB/DL_PRS reference signal sent from each beam may be illustrated as respective order of arrivals in time domain. Here is a time offset T0 calculated as the delta time (or time offset) between the slot reference point (Slot time start point) and the first arrival path. The time offset T0 may be shown as a first  arrival path of a first beam as illustrated with more details in 错误!未找到引用源. 2G. It is shown that the first arrived signal 291 may not necessarily be the signal with a highest RSRP value. Nevertheless, the first arrived signal 291 may indicate a NLOS best signal, with a measured time offset value of t0 having a minimum time offset value that may be used for deriving the most direct path for angle based position estimation, provided that the first arrived signal 291 is also measured to have a power level that exceeds a reference level threshold.
Referring back to Fig. 2F, which illustrates an example of a main beam 1 may have a plurality of side-lobes 1-1 to 1-4, since it may not ”ideal” for a beam to be transmitted with only one direction covered. Transmitted beams generally will always be transmitted with side lobes 1-1 to 1-4 with a gain much less that the main beam 1. The impulse response for beam 1 may include effects from the side-lobes such as multiple times of arrivals of the side lobe beams 1-1 to 1-4, as illustrated in Fig. 2G.
The procedure for deriving the time offset estimates may be illustrated in Fig. 2H. Multipath impulse response estimation is used to estimate a time offset of the first arrival path 291, which is a first detected arrived impulse and a corresponding level of RSRP measured. These time offsets estimations and corresponding power measurements may be done for all arriving beams/ all slots, which the SSB/ DL_PRS are decoded respectively, in order to derive or determine a best beam from the multipath impulse responses.
The complete list of time estimates + RSRP values may be sent to the LMF 140 and the LMF 140 may use the best beam having the shortest time offset estimate as reference for the angle-based position estimate, which will be described in detail with reference to Figs. 4A and 4B.
Fig. 3A illustrates another example of signaling process 300 for selecting a best beam for angle based positioning of the terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the process 300 may be described with reference to Fig. 1. The process 300 may involve the terminal device 110 and  network devices  120, 130, and a location management entity 140 as illustrated in Fig. 1. It would be appreciated that although the process 300 has been described in the communication environment 100 of Fig. 1, this process may be likewise be applied to other communication scenarios with similar issues.
In process 300, at 310, the location management entity 140 transmits, to the  network device, a request for at least one beam for angle based positioning of the terminal device 110. In this process, the network device may be the network device 120 of Fig. 1 or the network device 130 of Fig. 1. Although the network device 120 is illustrated in the drawing, the person skilled in the art should understand that the network device also may be network device 130.
At 320, the network device 120 transmits, to the terminal device 110, a request for transmitting a plurality of beams, each of which may be associated sounding reference signal (SRS) .
At 330, the terminal device 110 transmits, to the network device 120, a plurality of beams.
In some embodiments, each of the plurality of beams may be associated with the sounding reference signals (SRS) .
In some embodiments, the network device 120 may receive the plurality of beams, in a plurality of slots, each of which has a slot start reference. Each of the plurality of beams may be received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the terminal device, wherein each received beam corresponds to a different slot based on an order of beam arrivals.
At 340, the network device 120 measures the received SRS (s) .
In some embodiments, depending on the capability, the network device 120 may measure the SRSs of all beams in one single step or measure one SRS transmitted via one beam at a time. If the plurality of beams are fully separated in hardwire design wise, one SRS transmission may be enough and the network device 120 may measure the SRSs on all beams in one single step. Otherwise, a plurality of SRS transmissions may be performed, and each SRS transmission may be performed for each change in beam configuration, and the network device 120 may measure one SRS transmitted via one beam at a time, and estimate a delta time or time offset for each beam with belonging RSRP values.
At 350, the network device 120 may determine, based on the SRS measurement, a time offset referenced to a slot start reference which is synchronized to the terminal device 110, and a received power level for each beam of the plurality of beams.
To perform the estimation of the time offset, the network device 120 should get the information about the slot start reference. The slot start reference is set for each slot of the  plurality of slots. If the network device 120 is a neighboring network device of the serving network device such as network device 130, since there is on direct connection between the terminal device 110 and the neighboring network device 130, the network device 120 should get the information about the slot start reference from the location management entity 140. Specifically, the serving network device 130 may provide the slot start reference to the location management entity 140, and then the location management entity 140 may provide the slot start reference to all involved neighboring network devices.
In some embodiments, the time offset is a time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot. As shown in FIG. 2E, the time offset (t0 to t4) of each respective beam is a time difference between the slot start reference of each respective slot (slot 0 to slot 4) and a respective time point of receiving the respective beam (beam 1 to beam 5, as shown in Fig. 2D) , and the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path, such as first arriving path 291 among a plurality of paths (291 to 295, as shown in Fig. 2G) in slot 0, as shown in FIG. 2G.
In some embodiments, each beam of the plurality of beams, such as beam1 may be received by the network device 120 in a plurality of paths, such as paths 291 to 295 in FIG. 2G, and the time offset t0 is the time difference between the slot start reference and a time point of first arrival of the beam 1 (see path 291 in FIG. 2G) in slot 0. The first arrival of the beam 1 may be transmitted through one of the plurality of paths, such as path 291, which is a shortest direct path among the paths 291-295 in slot 0.
In some embodiments, if measured received power level of a beam among the plurality of beams at the first arrival of the beam is above a threshold, which may be set to be, such as, the sensitivity of the access network device 120 or gNB, it may mean that the first arrival of beam (path 291) may not be an interference noise, and in this situation, the RSPR value of the first arrival of beam 1 (path 291) may be measured as the received power level in the list, that is to say, the power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power threshold. Otherwise, the first arrival with a power level below the threshold may be removed, and the arrival having the power level above that threshold immediately after this arrival to be regarded as the actual first arrival for the purpose of estimating the time offset t0.
At 360, the network device 120 may transmit the determined list including the time offset t0 and the received power level, respectively, and the corresponding beam identity (ID) to the location management entity 140.
Then, at 370, the location management entity 140 (also referred as a core network device) may determine the best beam 1 (corresponds to path 291 in slot 0) among the plurality of beams 1 to 5 for angle based positioning of the terminal device 110, which may be described in detail reference to Fig. 4A and 4B.
In this process, a time offset, a received power level and a corresponding beam identify (ID) is determined for each beam by the network device, and the data for all beams may be stored in a list. If the beam 1 is in the direction directly from the network device 120 to the terminal device 110, the transmission time through this beam may be the shortest, and thus the time offset between the slot start reference and the time point of receiving the respective beam should be the minimum.
By receiving the time offsets t0 to t4, the location management entity 140 may select the beam 1 with the minimum time offset t0 as the best beam for angle based positioning the terminal device, so as to avoid false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity 140 may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with the shortest direct path (such as path 291) , the location management entity 140 may determine the position of the terminal device 110 based on an Up-Link Angle of Arrival (UL-AoA) method with substantially high accuracy.
To solve the “false” position estimate due to reflections, there is the other method, which corresponds to the method performed based on UL-AoA.
Hereinafter, the solution for “false” positioning estimation is performed based on UL-AoA and will be described with reference to Figs. 3B to 3C.
Fig. 3B illustrates an example method for selecting a best beam for UL-AoA angle based positioning of the terminal device in accordance with some embodiments of the present disclosure.
As illustrated in Fig. 3B, the solution based on UL-AoA angle based positioning for “false” positioning estimate that may include the following steps:
a) Pre-condition the UE assumed to be connected to network
b) The UE, such as terminal device 110, is requested to send UL-SRS. The gNB, such as access network device 120, measures either one beam at a time or all beams in one single step, depending on the capabilities or one beam direction at the time.
c) The gNB 120 may estimate the time offset (delta time) between slot start reference and received signal (SRS) .
To perform such estimation, the gNBs (including apart from the serving gNB all the neighboring gNBs) obtain information about the slot start reference through the following way, as there is no direct connection between the UE and neighboring gNBs :
■ the serving gNB provides the slot start reference to the location management function (LMF) ; and
■ then, the LMF 140 may provide the slot start reference to all involved neighboring gNBs.
This is a new process that involves a new information element (IE) as part of new radio positioning protocol annex (NRPPa) .
d) The step b) and c) may be repeated for a number of Beams unless the gNB support to measure on all beams in parallel.
e) The list of derived delta time and RSRP levels may be sent to the LMF.
f) The LMF may select the best beam for angle based position and may in most cases make a better resolution based on all the delta times (time offsets) and RSRP levels.
The procedure described in Fig. 3B may be performed by the usage of UL-AoA to find the best beam for calculation the angle direction to the UE. This makes it possible to use angle based position estimation also in NLoS environment and to keep the same accuracy as for LoS environment.
Hereinafter, the details on the procedure for best beam selection based on SRS and UL-AoA will be described with reference to Fig. 3C.
Fig. 3C illustrates an example procedure for best beam selection based on SRS and UL-AoA in accordance with some embodiments of the present disclosure.
In step 371, the precondition is: the device is connected to the network and there is  a request for update/estimate to current positioning for the device.
In step 372, LMF may be configured for selecting the best beam for angle based positioning.
In step 373, the gNB may request the device to transmit SRS data. Depending on the capability in the gNB, either one SRS transmission may be enough if the beams are fully separated HW wise –if this is not the case SRS transmissions may be needed for each change in beam configuration. For each beam delta time is estimated with belonging RSRP values as well.
In step 374 , the gNB may calculate the delta time based on slot boundary and send the list return to LMF.
In step 375, the LMF may use the list to calculate the best beam for angle position estimation.
The method for calculating the delta time or time offset and the received power level for the solution based on SRS and UL-AoA may be similar to the method described with reference to Figs. 2D to 2H, which will not be described any more.
Hereinafter, the calculation of best beam for angle based position performed by the location management entity may be found as illustrated in Figs. 4A and 4B.
Fig. 4A illustrates a method for calculating best beam for angle based position performed by a location management entity in accordance with some embodiments of the present disclosure.
As illustrated in Fig. 4A, as described above, the LMF may get the beam list there contain beam IDs, delta time Td and the RSRP level.
In step1 is the beam list checked for minimum RSRP level to avoid false detection due to very low SNR and thereby possible false timing estimates, and a minimum RSRP level may set to be the sensitivity threshold of the device.
After the beam list is checked for useable values, in step 2, will the algorithm select the beam with lowest delta time and acceptable RSRP level.
As an enhancement, may the neighboring beams be checked for delta times and RSRP values. These values may be used for in cooperation with the selected beam to derive a finer resolution of the best angle for position estimation.
Hereinafter, the neighboring beams for enhancing the calculation of best beam will be described with reference to Fig. 4B.
Fig. 4B illustrates an example of the selection of best angle between two beams in accordance with some embodiments of the present disclosure.
An example of carrying out the selection procedure may be performed as follows: Input is the beam list with calculated
Variable Td_Min /*variable there will contain the shortest time of arrival */
For x=1 to max /*in the example in this appendix is Max = 5*/
If RSRP_level (x) > rsrp min_threshold /*this check is to avoid false detection do to noise level in the system */
If td (x) <td (x-1) /*if the time of arrival for beam x is shorter than for the previous beam measurement Beam x is selected. This is repeated for all beams */
Best beam=x
Td_Min=td (x)
If rd (x) = td (x-1) /*if there are two beams with substantially identical time estimates the RSRP level will be used for selecting the best beam */
If RSRP (x) >RSRP (x-1)
Td_Min= rd (x)
If RSRP (x) <RSRP (x-1)
Td_Min= rd (x-1)
Else If RSRP (x) =RSRP (x-1) /*substantially identical RSRP level and time estimates */
Best fit is in-between Beam (x) and Beam (x-1)
End.
As discussed above, based on determining that the received power levels of the two beams may be different, the LMF may determine the beam angle as an angle of a beam of the two beams having a higher received power level; and based on determining that the received power levels of the two beams being substantially identical, the LMF may determine the beam angle to be between the two  beams  1, 2.
Fig. 5 illustrates a flowchart of an example method 500 implemented at a terminal  device (for example, the terminal device 110) in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described from the perspective of the terminal device 110 with reference to Fig. 1.
At 510, the terminal device 110 receives a plurality of beams from an access network device.
In some embodiments, each beam is associated with at least one of one or more synchronization signal blocks (SSB) or one or more downlink position reference signals (DL-PRS) . The network device 120 sends at least one of SSB or DL-PRS on each beam of the plurality of beams to the terminal device 110. This data transmission step is repeated for the plurality of beams in a plurality of directions. To achieve best time resolution, reference signals DL-PRS is preferred; however, in some cases SSB signals may be enough. As SSB is sent quite frequently, a combination of SSB and DL-PRS may also be used. In some embodiment, the terminal device is further caused to: receive, from the access network device, information indicative of the slot start reference.
In some embodiment, the access network device is a serving network device. When the terminal device 110 performs the estimation of time offset, the slot start reference for estimating the time offset may be provided by this access network device to the terminal device 110.
In some embodiment, this access network device may be a neighboring network device of the serving network device. The serving network device may provide the slot start reference to the location management entity. Then, the location management entity provides the slot start reference to all involved neighboring network devices. When the terminal device 110 performs the estimation of time offset, the slot start reference for estimating the time offset may be provided by this neighboring network device to the terminal device 110.
In some embodiments, each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the terminal device, wherein each received beam corresponds to a different slot based on an order of beam arrivals. That is to say, the terminal device 110 receives the plurality of beams, each of which is associated with at least one of SSB and DL-PRS, in a plurality of different slots, respectively.
At 520, the terminal device 110 determines a time offset referenced to a slot start  reference which is synchronized to the access network device and a received power level for each beam of the plurality of beams.
In some embodiments, the slot start reference for estimating the time offset is transmitted to the terminal device 110 by the network device 120. The slot start reference is set for each slot of the plurality of slots.
In some embodiments, the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam. That is to say, the time offset is the time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot.
In some embodiments, the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths. That is to say, each beam of the plurality of beams is received by the terminal device 110 in a plurality of paths, and the time offset is the time difference between the slot start reference and a time point of first arrival of the beam. The first arrival of the beam is transmitted through one of the plurality of paths, which is the shortest direct path.
In some embodiments, the received power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power level threshold. That is to say, if measured received power level of a beam among the plurality of beams at the first arrival of the beam is above a reference power level threshold (such as sensitivity level of the device) , it means that the first arrival is not an interference noise, and in this situation, the RSPR value of the first arrival is measured as the received power level in the list. Otherwise, the first arrival with a power level below the threshold may be removed, and the arrival having the power level above that threshold immediately after this arrival may be regarded as the actual first arrival for estimating the time offset.
In some embodiment, at least one best beam is selected from among the plurality of beams in the list by the access network device, wherein the at least one selected best beam is characterized with having a minimum time offset value and having the power level being measured to have exceeded the reference power level threshold .
In some embodiment, the at least one best beam is utilized by the network device to position the terminal device, based on a downlink angle of departure (DL-AoD) method.
In some embodiment, the access network device may include one of: a network  node device (gNB) or a network node device enabled with location management function.
At 530, the terminal device 110 transmits, to the network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
By receiving the time offsets, the location management entity may select the beam with the minimum time offset as the best beam for angle based positioning the terminal device, so as to avoid false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with shortest direct path, the location management entity may determine the position of the terminal device based on Down-Link Angle of Departure (DL-AoD) in high accuracy.
Fig. 6 illustrates a flowchart of an example method 600 implemented at a network device (for example, the network device 120) in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 600 may be described from the perspective of the network device 120 with reference to Fig. 1.
At 610, the access network device 120 receives a plurality of beams from a terminal device 110. In some embodiments, each of the plurality of beams is associated with the sounding reference signals (SRS) .
In some embodiments, each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the access network device, wherein each received beam corresponds to a different slot based on an order of beam arrivals. That is to say, the access network device 120 receives the plurality of beams, in a plurality of slots, each of which has a slot start reference.
In some embodiments, the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam. That is to say, the time offset is the time difference between the slot start reference of a slot among the plurality of different slots and a time point of receiving a corresponding beam among the plurality of beams in the slot.
At step 620, the access network device 120 determines a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level  for each of the plurality of beams. In some embodiments, the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths. Each beam of the plurality of beams is received by the network device 120 in a plurality of paths, and the time offset is the time difference between the slot start reference and a time point of first arrival of the beam. The first arrival of the beam is transmitted through one of the plurality of paths, which is the shortest direct path.
In some embodiments, the received power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power level threshold. In this way, if measured received power level of a beam among the plurality of beams at the first arrival of the beam is above a reference power level threshold (such as the sensitivity level of the device) , it means that the first arrival is not an interference noise, and in this situation, the RSPR value of the first arrival is measured as the received power level in the list. Otherwise, the first arrival with a power level below the threshold may be removed, and the arrival having the power level above that threshold immediately after this arrival may be regarded as the actual first arrival for estimating the time offset.
In some embodiment, the access network device 120 is a serving network device of the terminal device and is further caused to: transmit the slot start reference to the core network device 140.
In some embodiment, the access network device 120 is a neighboring network device of a serving network device of the terminal device and is further caused to: receive the slot start reference from the core network device 140.
In some embodiment, the access network device 120 is further caused to: receive, from the core network device 140, a request for determining at least one beam for angle based positioning of the terminal device; and transmit, to the terminal device, a request that the terminal device transmits the plurality of beams to the access network device. At 630, the access network device 120 transmit to a core network device 140, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams. The core network device 140 may be a location management entity.
In some embodiment, the at least one beam is selected from among the plurality of beams in the list by the core network device 140, wherein the at least one selected beam is characterized with a minimum time offset value and having the power level being measured  to have exceeded the reference power threshold.
In some embodiment, wherein the at least one beam is utilized by the core network device 140 to position the terminal device, based on an uplink angle of arrival (UL-AoA) method.
By receiving the time offsets, the location management entity may select the beam with the minimum time offset as the best beam for angle based positioning the terminal device, so as to avoid false position estimation based on beams with strong reflection. Further, by using the measured power level, the location management entity may remove interference noise with very low SNR first, which may render false timing estimation. Based on the selected beams with the shortest direct path and the minimum time offset, the location management entity may determine the position of the terminal device based on Up-Link Angle of Arrival (UL-AoA) in high accuracy.
Fig. 7 illustrates a flowchart of an example method 700 implemented at a core network device (for example, the network device 140, which is a core network device and acted as a location management entity) in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 700 may be described from the perspective of the network device 140 with reference to Fig. 1.
At step 710, the core network device 140 receives, from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams.
In some embodiments, the plurality of beams may be transmitted from the terminal device 110 to the access network device120 or 130, and the list is determined by the  access network device  120 or 130.
In some embodiments, the plurality of beams may be transmitted from the  access network device  120 or 130 to the terminal device 110, and the list is determined by the terminal device 110.
In some embodiments, the core network device 140 further receives, from a further access network device, a further list including a time offset referenced to a further slot start reference which is synchronized between the terminal device and the further access network device, a further received power level and a further corresponding beam identity (ID) determined for each of a plurality of further beams, and select, based on the further list,  at least one further beam from the plurality of further beams for determining the position of the terminal device.
In some embodiments, the access network device is a serving network device of the terminal device, and the further access network device is a neighboring network device of the serving network device.
In some embodiments, the access network device is the serving network device, and the core network receives, from the access network device, information indicative of the slot start reference; and transmits the information to a neighboring network device of the access network device.
In step 720, the core network device 140 selects based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
In some embodiments, the core network device 140 selects the at least one beam by: determining at least one beam with a minimum time offset as the at least one beam for determining the position of the terminal device.
In some embodiments, the core network device 140 selects the at least one beam by:selecting, from the plurality of beams, a set of beams having the received power level above a reference power level threshold (such as, the sensitivity level of the device) ; and selecting, from the set of beams, the at least one beam for determining the position of the terminal device.
In this step, the core network device 140 further selects, based on the further list, at least one further beam from the plurality of further beams for determining the position of the terminal device.
In some embodiments, after selecting at least one beam and at least one further beam, the core network device 140 performs angle based positioning of the terminal device 110 based on the selected at least one beam and the selected at least one further beam by using UL-AoA or DL-AoD method. Specifically, the core network device 140 may perform angle based positioning of the terminal device based on the selected at least one beam and the selected at least one further beam based on down link angle of departure (DL-AoD) method based on determining that the plurality of beams may be transmitted from the access network device 120 to the terminal device 110 and the list is determined by the terminal device 110. Alternatively, the core network device 140 may perform angle based positioning of the terminal device based on the selected at least one beam, and the  selected at least one further beam based on an uplink angle of arrival (UL-AoA) method, based on determining that the plurality of beams may be transmitted from the terminal device to the access network device, and the list is determined by the access network device 120.
In some embodiments, based on determining that the at least one beam may include two beams having the same time offset, the core network device 140 determines a beam angle based on the received power levels of the two beams. Specifically, based on determining that the received power levels of the two beams may be different, the core network device 140 determines the beam angle as an angle of a beam of the two beams having a higher received power level; and based on determining that the received power levels of the two beams may be substantially identical, the core network device 140 determines the beam angle to be between the two beams.
In some embodiments, the core network device 140 is further caused to transmit, to the access network device, a request for determining at least one beam for angle based positioning of the terminal device.
In some embodiments, an apparatus capable of performing the method 500 (for example, the terminal device 110) may include means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus may include: means for receiving, at the terminal device, a plurality of beams from an access network device; means for determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device and a received power level for each of the plurality of beams; and means for transmitting, to the access network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
In some embodiments, the means for receiving the plurality of beams may include means for receiving the plurality of beams in a plurality of different slots respectively.
In some embodiments, the means for determining the time offset may include: means for determining the time point of receiving the beam as a time point of first arrival of the beam through a path among the plurality of paths, based on determining that a beam of the plurality of beams is received in a plurality of paths.
In some embodiments, the means for determining the received power level may include: means for determining the measured received power level of the beam at the first arrival as the received power level in the list, based on determining that the measured received power level of the beam at the first arrival of the beam is above a reference power level threshold.
In some embodiments, the apparatus further may include means for performing other steps in some embodiments of the method 500. In some embodiments, the means may include at least one processor and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
In some embodiments, an apparatus capable of performing any of the method 600 (for example, the access network device 120 or 130) may include means for performing the respective steps of the method 600. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus may include: means for receiving, at the access network device, a plurality of beams from a terminal device; means for determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and means for transmitting, to a core network device, a list including the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
In some embodiments, the means for receiving a plurality of beams may include: means for receiving the plurality of beams in a plurality of different slots respectively.
In some embodiments, the means for determining a time offset may include: means for determining the time point of receiving the beam as a time point of first arrival of the beam through a path among the plurality of paths, based on determining that a beam of the plurality of beams is received in a plurality of paths.
In some embodiments, the means for determining a received power level may include: means for determining the measured received power level of beam at the first arrival as the received power level in the list, based on determining that the measured received power level of the beam at the first arrival of the beam is above a reference power level threshold.
In some embodiments, the apparatus further may include means for performing other steps in some embodiments of the method 600. In some embodiments, the means may include at least one processor and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
In some embodiments, an apparatus capable of performing any of the method 700 (for example, the core network device 140) may include means for performing the respective steps of the method 700. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus may include: means for receiving, at the core network device and from an access network device, a list including a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and means for selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
In some embodiments, the means for selecting at least one beam may include: means for determining at least one beam with a minimum time offset as the at least one beam for determining the position of the terminal device.
In some embodiments, the means for selecting at least one beam may include: means for selecting, from the plurality of beams, a set of beams having the received power level above a reference power level threshold; and means for selecting, from the set of beams, the at least one beam for determining the position of the terminal device.
In some embodiments, the apparatus further may include means for performing other steps in some embodiments of the method 700. In some embodiments, the means may include at least one processor and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure. The device 800 may be provided to implement the communication device, for example the terminal device 110, an  access network device  120 or 130, or a core network device 140 as shown in Fig. 1. As shown,  the device 800 includes one or more processors 810, one or more memories 840 coupled to the processor 810, and one or more transmitters and/or receivers (TX/RX) 840 coupled to the processor 810.
The TX/RX 840 is for bidirectional communications. The TX/RX 840 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network devices.
The processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 820 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a read only memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that may not last in the power-down duration.
computer program 830 includes computer executable instructions that are executed by the associated processor 810. The program 830 may be stored in the ROM 824. The processor 810 may perform any suitable actions and processing by loading the program 830 into the RAM 822.
The embodiments of the present disclosure may be implemented by means of the program so that the device 800 may perform any process of the disclosure as discussed with reference to Figs. 2A to 7. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800. The device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as  ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 9 illustrates an example of the computer readable medium 900 in form of CD or DVD. The computer readable medium has the program 930 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out  process  200 or 300, the  method  500, 600 or 700 as described above with reference to Fig. 2A to Fig. 7. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. The term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that may be described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above may be disclosed as example forms of implementing the claims.

Claims (49)

  1. A terminal device, comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the terminal device at least to:
    receive a plurality of beams from an access network device;
    determine a time offset referenced to a slot start reference which is synchronized to the access network device, and a received power level for each of the plurality of beams, respectively; and
    transmit, to the access network device, a list comprising the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  2. The terminal device of claim 1, wherein each of the plurality of beams is associated with at least one of:
    one or more synchronization signal blocks (SSB) , or
    one or more downlink position reference signals (DL-PRS) .
  3. The terminal device of claim 1 or 2, wherein the terminal device is further caused to:
    receive, from the access network device, information indicative of the slot start reference.
  4. The terminal device of any of claims 1-3, wherein each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the terminal device, wherein each received beam corresponds to a different slot based on an order of beam arrivals.
  5. The terminal device of claim 4, wherein the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam.
  6. The terminal device of claim 5, wherein the time point of receiving the  respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths.
  7. The terminal device of claim 6, wherein the received power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power level threshold.
  8. The terminal device of claim 1, wherein at least one beam is selected from among the plurality of beams in the list by the access network device, wherein the at least one selected beam is characterized with having a minimum time offset value and having the power level being measured to have exceeded the reference power level threshold.
  9. The terminal device of claim 8, wherein the at least one beam is utilized by the network device to position the terminal device, based on a downlink angle of departure (DL-AoD) method.
  10. An access network device, comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the access network device at least to:
    transmit, to a terminal device, a plurality of beams, and
    receive, from the terminal device, a list comprising a time offset and a received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams,
    wherein the list is determined by the terminal device based on the plurality of beams, , and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  11. The access network device of claim 10, wherein each of the plurality of beams is associated with at least one of:
    one or more synchronization signal blocks (SSB) , or
    one or more downlink position reference signals (DL-PRS) .
  12. The access network device of claim 10, wherein at least one beam is selected  from among the plurality of beams in the list by the access network device, wherein the at least one selected beam is characterized with having a minimum time offset value and having the power level being measured to have exceeded a reference power level threshold.
  13. The access network device of claim 12, wherein the at least one selected beam is utilized by the network device to position the terminal device, based on a downlink angle of departure (DL-AoD) method.
  14. The access network device of claim 10, wherein the access network device comprises one of: a network node device (gNB) or a network node device enabled with location management function (LMF) .
  15. An access network device, comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the access network device at least to:
    receive a plurality of beams from a terminal device;
    determine a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and
    transmit, to a core network device, a list comprising the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  16. The access network device of claim 15, wherein each of the plurality of beams is associated with one or more sounding reference signals.
  17. The access network device of claim 15 or 16, wherein each of the plurality of beams is received according to a respective slot out of a plurality of slots based on different time points of receiving the plurality of beams by the access network device, wherein each received beam corresponds to a different slot based on an order of beam arrivals.
  18. The access network device of claim 17, wherein the time offset of each respective beam is a time difference between the slot start reference of each respective slot and a respective time point of receiving the respective beam.
  19. The access network device of claim 18, wherein the time point of receiving the respective beam is a time point of first arrival of the respective beam through a path among a plurality of paths.
  20. The access network device of claim 19, wherein the received power level of each respective beam in the list is measured at a first arrival of each respective beam that exceeds a reference power level threshold.
  21. The access network device of any of claims 15-20, wherein the access network device is a serving network device of the terminal device and is further caused to:
    transmit the slot start reference to the core network device.
  22. The access network device of any of claims 15-20, wherein the access network device is a neighboring network device of a serving network device of the terminal device and is further caused to:
    receive the slot start reference from the core network device.
  23. The access network device of any of claims 15-22, wherein the access network device is further caused to:
    receive, from the core network device, a request for determining at least one beam for angle based positioning of the terminal device; and
    transmit, to the terminal device, a request that the terminal device transmits the plurality of beams to the access network device.
  24. The access network device of claim 23, wherein the at least one beam is selected from among the plurality of beams in the list by the core network device, wherein the at least one selected beam is characterized with a minimum time offset value and having the received power level being measured to have exceeded the reference power threshold.
  25. The access network device of claim 24, wherein the at least one beam is utilized by the core network device to position the terminal device, based on an uplink angle of arrival (UL-AoA) method.
  26. A terminal device,
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the terminal device at least to:
    receive from a network element, a request for transmission of a sounding reference signal; and
    transmit, to an access network device, a plurality of beams;
    wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams that are determined by the access network device.
  27. The terminal device of claim 26, wherein each of the plurality of beams is associated with one or more sounding reference signals (SRS) .
  28. A core network device, comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the core network device at least to:
    receive, from an access network device, a list comprising a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, and a received power level respectively, and a corresponding beam identity (ID) determined for each of a plurality of beams; and
    select, based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  29. The core network device of claim 28 wherein the core network device is caused to select the at least one beam by:
    determining at least one beam with a minimum time offset as the at least one beam for determining the position of the terminal device.
  30. The core network device of claim 28, wherein the core network device is caused to select the at least one beam by:
    selecting, from the plurality of beams, a set of beams having the received power level above a reference power level threshold; and
    selecting, from the set of beams, the at least one beam for determining the position of the terminal device.
  31. The core network device of any of claims 28-30, wherein:
    the plurality of beams are transmitted from the terminal device to the access network device and the list is determined by the access network device, or
    the plurality of beams are transmitted from the access network device to the terminal device and the list is determined by the terminal device.
  32. The core network device of any of claims 28-31, wherein the core network device is further caused to:
    receive, from a further access network device, a further list comprising a time offset referenced to a further slot start reference which is synchronized between the terminal device and the further access network device, a further received power level and a further corresponding beam identity (ID) determined for each of a plurality of further beams; and
    select, based on the further list, at least one further beam from the plurality of further beams for determining the position of the terminal device.
  33. The core network device of claim 32, wherein the core network device is caused to:
    perform angle based positioning of the terminal device based on the selected at least one beam, and the selected at least one further beam based on a down link angle of departure (DL-AoD) method that is based on determining that the plurality of beams are transmitted from the access network device to the terminal device, wherein the list is determined by the terminal device; or
    perform angle based positioning of the terminal device based on the selected at least one beam and the selected at least one further beam based on an uplink angle of arrival (UL-AoA) method based on determining that the plurality of beams are transmitted from the terminal device to the access network device, wherein the list is determined by the access network device.
  34. The core network device of any of claims 28-33, wherein the core network device is further caused to:
    based on determining that the at least one beam comprises two beams having the same time offset, determine a beam angle based on the received power levels of the two beams.
  35. The core network device of claim 34, wherein the core network device is caused to determine the beam angle by:
    based on determining that the received power levels of the two beams are different, determining the beam angle as an angle of a beam of the two beams having a higher received power level; and
    based on determining that the received power levels of the two beams are substantially identical, determining the beam angle to be between the two beams.
  36. The core network device of any of claims 32-35, wherein:
    the access network device is a serving network device of the terminal device, and
    the further access network device is a neighboring network device of the serving network device.
  37. The core network device of any of claims 28-36, wherein the core network device is further caused to:
    receive, from the access network device, information indicative of the slot start reference; and
    transmit the information to a neighboring network device of the access network device.
  38. The core network device of any of claims 28-37, wherein the core network device is further caused to:
    transmit, to the access network device, a request for determining at least one beam for angle based positioning of the terminal device.
  39. A method at a terminal device, comprising:
    receiving, at the terminal device, a plurality of beams from an access network device;
    determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device, and a received power level for each of  the plurality of beams, respectively; and
    transmitting, to the access network device, a list comprising the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  40. A method at an access network device, comprising:
    transmitting, to a terminal device, a plurality of beams; and
    receiving, from the terminal device, a list comprising a time offset and a received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams,
    wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  41. A method at an access network device, comprising:
    receiving, at the access network device, a plurality of beams from a terminal device;
    determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams; and
    transmitting, to a core network device, a list comprising the determined time offset, the received power level, and a corresponding beam identity (ID) for each of the plurality of beams.
  42. A method at a terminal device, comprising:
    receiving, from a network element, a request for transmission of a sounding reference signal; and
    transmitting, to an access network device, a plurality of beams,
    wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
  43. A method at a core network device, comprising:
    receiving, at the core network device and from an access network device, a list  comprising a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level, and a corresponding beam identity (ID) determined for each of a plurality of beams; and
    selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  44. An apparatus of a terminal device, comprising:
    means for receiving, at the terminal device, a plurality of beams from an access network device;
    means for determining, at the terminal device, a time offset referenced to a slot start reference which is synchronized to the access network device, and a received power level for each of the plurality of beams, respectively; and
    means for transmitting, to the access network device, a list comprising the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  45. An apparatus of an access network device, comprising:
    means for transmitting, to a terminal device, a plurality of beams; and
    means for receiving, from the terminal device, a list comprising a time offset and a received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams,
    wherein the list is determined by the terminal device based on the plurality of beams, and the time offset is referenced to a slot start reference which is synchronized to the access network device.
  46. An apparatus of an access network device, comprising:
    means for receiving, at the access network device, a plurality of beams from a terminal device;
    means for determining, at the access network device, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams respectively; and
    means for transmitting, to a core network device, a list comprising the determined time offset and the received power level respectively, and a corresponding beam identity (ID) for each of the plurality of beams.
  47. An apparatus of a terminal device, comprising:
    means for receiving from a network element, a request for transmission of a sounding reference signal; and
    means for transmitting, to an access network device, a plurality of beams;
    wherein based on the plurality of beams, a time offset referenced to a slot start reference which is synchronized to the terminal device and a received power level for each of the plurality of beams are determined by the access network device.
  48. An apparatus of a core network device, comprising:
    means for receiving, at the core network device and from an access network device, a list comprising a time offset referenced to a slot start reference which is synchronized between a terminal device and the access network device, a received power level and a corresponding beam identity (ID) determined for each of a plurality of beams; and
    means for selecting, at the core network device and based on the list, at least one beam from the plurality of beams for determining a position of the terminal device.
  49. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of Claims 39 to 43.
PCT/CN2022/123608 2022-09-30 2022-09-30 Improvement of accuracy of angle based positioning WO2024065820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123608 WO2024065820A1 (en) 2022-09-30 2022-09-30 Improvement of accuracy of angle based positioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123608 WO2024065820A1 (en) 2022-09-30 2022-09-30 Improvement of accuracy of angle based positioning

Publications (1)

Publication Number Publication Date
WO2024065820A1 true WO2024065820A1 (en) 2024-04-04

Family

ID=90475587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123608 WO2024065820A1 (en) 2022-09-30 2022-09-30 Improvement of accuracy of angle based positioning

Country Status (1)

Country Link
WO (1) WO2024065820A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052341A1 (en) * 2017-03-22 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods, Network Node and Wireless Terminal for Beam Tracking when Beamforming is Employed
WO2020068331A1 (en) * 2018-09-29 2020-04-02 Qualcomm Incorporated Enhanced cell identification location determination
WO2021159498A1 (en) * 2020-02-14 2021-08-19 Nokia Shanghai Bell Co., Ltd. Power control of positioning reference signal
CN114287150A (en) * 2019-08-26 2022-04-05 上海诺基亚贝尔股份有限公司 Beam selection during downlink positioning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052341A1 (en) * 2017-03-22 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods, Network Node and Wireless Terminal for Beam Tracking when Beamforming is Employed
WO2020068331A1 (en) * 2018-09-29 2020-04-02 Qualcomm Incorporated Enhanced cell identification location determination
CN114287150A (en) * 2019-08-26 2022-04-05 上海诺基亚贝尔股份有限公司 Beam selection during downlink positioning
WO2021159498A1 (en) * 2020-02-14 2021-08-19 Nokia Shanghai Bell Co., Ltd. Power control of positioning reference signal

Similar Documents

Publication Publication Date Title
WO2021092813A1 (en) Accurate sidelink positioning reference signal transmission timing
JP7124882B2 (en) Method, base station and terminal device for reference signal configuration
US9730179B2 (en) Passive locationing over multiple channels
EP3707943B1 (en) Method and apparatus for obstacle detection
WO2014154293A1 (en) Channel estimation in wireless communications
CN114287150B (en) Beam selection during downlink positioning
WO2021168657A1 (en) Transmit power control for positioning reference signal
CN112369086A (en) Method, apparatus, and computer-readable medium for beam information based positioning
WO2022027203A1 (en) Identification of an invalid reference device in device positioning
CN113271656B (en) Power control of positioning reference signals
WO2021022531A1 (en) Device, method, apparatus and computer readable medium for detecting cross link interference
WO2024065820A1 (en) Improvement of accuracy of angle based positioning
CN113424611B (en) Multi-cell positioning
US20240080114A1 (en) Positioning accuracy enhancements
WO2023231034A1 (en) Adaptive positioning measurement
TWI830169B (en) Device, method and apparatus for transmit beamforming for positioning and non-transitory computer readable medium comprising program instructions associated therewith
WO2024065637A1 (en) Devices, methods, apparatuses and computer readable medium for communications
CN116171617B (en) Large-scale terminal grouping for channel state information overhead reduction
US10673656B2 (en) Base station and method therein
WO2023077390A1 (en) Positioning enhancement for near-far field scenario
WO2024130662A1 (en) Distributed interference sensing
WO2024031441A1 (en) Deep fading report for positioning
WO2023102687A1 (en) Communication in sidelink positioning
WO2024087122A1 (en) Positioning
WO2021142841A1 (en) Fallback reference signal configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960428

Country of ref document: EP

Kind code of ref document: A1