WO2024065661A1 - Devices, methods, apparatuses, and computer readable media for radio resource reservation - Google Patents

Devices, methods, apparatuses, and computer readable media for radio resource reservation Download PDF

Info

Publication number
WO2024065661A1
WO2024065661A1 PCT/CN2022/123227 CN2022123227W WO2024065661A1 WO 2024065661 A1 WO2024065661 A1 WO 2024065661A1 CN 2022123227 W CN2022123227 W CN 2022123227W WO 2024065661 A1 WO2024065661 A1 WO 2024065661A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio resource
network
network controller
resource reservation
network device
Prior art date
Application number
PCT/CN2022/123227
Other languages
French (fr)
Inventor
Hua Chao
Zhuyan Zhao
Jun Shen
Yonggang Wang
Tao Tao
Kejie Chen
Alistair Urie
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2022/123227 priority Critical patent/WO2024065661A1/en
Publication of WO2024065661A1 publication Critical patent/WO2024065661A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • H04W72/512Allocation or scheduling criteria for wireless resources based on terminal or device properties for low-latency requirements, e.g. URLLC

Definitions

  • Various embodiments relate to devices, methods, apparatuses, and computer readable media for radio resource reservation.
  • Radio resource reservation may be applied in new radio (NR) systems for time sensitive communications (TSC) traffic as defined in 3rd Generation Partnership Project (3GPP) specification 23.501 to guarantee quality of service (QoS) and reduce signaling overheads.
  • TSC assistance information (TSCAI) which contains periodicity and burst arrival time (BAT) parameter, may be used in a radio access network (RAN) for the radio resource reservation.
  • RAN radio access network
  • TSCAI BAT derivation is currently possible in a case that the TSN bridge supports per-stream filtering and policing (PSFP) .
  • the support of the PSPF is optional, which means that without the support of the PSFP, the BAT will not be provided to the RAN.
  • IP internet protocol
  • the TSCAI BAT is also an optional parameter.
  • the RAN cannot easily calculate suitable values for configured grant (CG) or semi-persistent scheduling (SPS) to provide periodic TSC traffic transmission with bounded latency requirement.
  • CG configured grant
  • SPS semi-persistent scheduling
  • the network controller may include at least one processor and at least one memory.
  • the at least one memory may store instructions that, when executed by the at least one processor, may cause the network controller at least to perform: updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
  • the instructions when executed by the at least one processor, may cause the network controller to further perform: subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the instructions when executed by the at least one processor, may cause the network controller to further perform: subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and receiving from the at least one network device the report of the incoming time sensitive communication related event.
  • the instructions when executed by the at least one processor, may cause the network controller to further perform: determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
  • the initial value for the local burst arrival time may be determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
  • the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the determined radio resource reservation instruction may be transmitted via an E2 interface.
  • the updated radio resource reservation instruction may be transmitted via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within one of the one or more network devices.
  • the network device may include at least one processor and at least one memory.
  • the at least one memory may store instructions that, when executed by the at least one processor, may cause the network device at least to perform: receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local burst arrival time; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
  • the instructions when executed by the at least one processor, may cause the network device to further perform: receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; performing a time sensitive communication related event monitoring; and reporting to the network controller, the time sensitive communication related event monitoring result.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the instructions when executed by the at least one processor, may cause the network device to further perform: transmitting to a core network, the updated value for the local burst arrival time.
  • the instructions when executed by the at least one processor, may cause the network device to further perform: receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and transmitting to the network controller, the report of the incoming time sensitive communication related event.
  • the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
  • the instructions when executed by the at least one processor, may cause the network device to further perform: receiving from the network controller, a radio resource reservation instruction which comprises an initial value for a local burst arrival time; and configuring the radio resource according to the radio resource reservation instruction.
  • the radio resource reservation instruction may further comprises: one or more cross-layer resource configuration parameters.
  • the instructions when executed by the at least one processor, may cause the network device to further perform: transmitting to a core network, the initial value for the local burst arrival time.
  • the radio resource reservation instruction may be received via an E2 interface.
  • the updated radio resource reservation instruction may be received via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within the network device.
  • the network controller may be within another network device controlled by the network controller.
  • a method performed by a network controller may comprise: updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
  • the method may further comprise: subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the method may further comprise: subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and receiving from the at least one network device the report of the incoming time sensitive communication related event.
  • the method may further comprise: determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
  • the initial value for the local burst arrival time may be determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
  • the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the determined radio resource reservation instruction may be transmitted via an E2 interface.
  • the updated radio resource reservation instruction may be transmitted via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within one of the one or more network devices.
  • a method performed by a network device may comprise: receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local burst arrival time; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
  • the method may further comprise: receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; performing a time sensitive communication related event monitoring; and reporting to the network controller, the time sensitive communication related event monitoring result.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the method may further comprise: transmitting to a core network, the updated value for the local burst arrival time.
  • the method may further comprise: receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and transmitting to the network controller, the report of the incoming time sensitive communication related event.
  • the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
  • the method may further comprise: receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local burst arrival time; and configuring the radio resource according to the radio resource reservation instruction.
  • the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the method may further comprise: transmitting to a core network, the initial value for the local burst arrival time.
  • the radio resource reservation instruction may be received via an E2 interface.
  • the updated radio resource reservation instruction may be received via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within the network device.
  • the network controller may be within another network device controlled by the network controller.
  • the apparatus as a network controller may comprise: means for updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; means for updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and means for transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
  • the apparatus may further comprise: means for subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the apparatus may further comprise: means for subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and means for receiving from the at least one network device the report of the incoming time sensitive communication related event.
  • the apparatus may further comprise: means for determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller; means for determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and means for transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
  • the initial value for the local burst arrival time may be determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
  • the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the determined radio resource reservation instruction may be transmitted via an E2 interface.
  • the updated radio resource reservation instruction may be transmitted via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within one of the one or more network devices.
  • the apparatus as a network device may comprise: means for receiving from a network controller, an updated radio resource reservation instruction which comprises an updated value for a local burst arrival time; and means for reconfiguring a radio resource according to the updated radio resource reservation instruction.
  • the apparatus may further comprise: means for receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; means for performing a time sensitive communication related event monitoring; and means for reporting to the network controller, the time sensitive communication related event monitoring result.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the apparatus may further comprise: means for transmitting to a core network, the updated value for the local burst arrival time.
  • the apparatus may further comprise: means for receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and means for transmitting to the network controller, the report of the incoming time sensitive communication related event.
  • the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
  • the apparatus may further comprise: means for receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local burst arrival time; and means for configuring the radio resource according to the radio resource reservation instruction.
  • the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the apparatus may further comprise: means for transmitting to a core network, the initial value for the local burst arrival time.
  • the radio resource reservation instruction may be received via an E2 interface.
  • the updated radio resource reservation instruction may be received via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within the network device.
  • the network controller may be within another network device controlled by the network controller.
  • a computer readable medium may comprise program instructions that, when executed by a network controller, may cause the network controller at least to perform: updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
  • the computer readable medium may further comprise instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the computer readable medium may further comprise instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and receiving from the at least one network device the report of the incoming time sensitive communication related event.
  • the computer readable medium may further comprise instructions that, when executed by the network controller, may cause the network controller to further perform: determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
  • the initial value for the local burst arrival time may be determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
  • the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the determined radio resource reservation instruction may be transmitted via an E2 interface.
  • the updated radio resource reservation instruction may be transmitted via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within one of the one or more network devices.
  • a computer readable medium may comprise program instructions that, when executed by a network device, cause the network device at least to perform: receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local burst arrival time; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
  • the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; performing a time sensitive communication related event monitoring; and reporting to the network controller, the time sensitive communication related event monitoring result.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
  • the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: transmitting to a core network, the updated value for the local burst arrival time.
  • the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and transmitting to the network controller, the report of the incoming time sensitive communication related event.
  • the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
  • the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local burst arrival time; and configuring the radio resource according to the radio resource reservation instruction.
  • the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: transmitting to a core network, the initial value for the local burst arrival time.
  • the radio resource reservation instruction may be received via an E2 interface.
  • the updated radio resource reservation instruction may be received via an E2 interface.
  • the network controller may be a near real time radio access network intelligent controller.
  • the network controller may be within the network device.
  • the network controller may be within another network device controlled by the network controller.
  • FIG. 1 briefly shows a scenario to which various example embodiments of the present disclosure may be implemented.
  • FIG. 2 shows exemplary sequence diagrams for radio resource reservation according to various example embodiments of the present disclosure.
  • FIG. 3 shows a flow chart illustrating an example method 300 for radio resource reservation according to the example embodiments of the present disclosure.
  • FIG. 4 shows a flow chart illustrating an example method 400 for radio resource reservation according to the example embodiments of the present disclosure.
  • FIG. 5 shows a block diagram illustrating an example device 500 for radio resource reservation according to the example embodiments of the present disclosure.
  • FIG. 6 shows a block diagram illustrating an example device 600 for radio resource reservation according to the example embodiments of the present disclosure.
  • FIG. 7 shows a block diagram illustrating an example apparatus 700 for radio resource reservation according to the example embodiments of the present disclosure.
  • FIG. 8 shows a block diagram illustrating an example apparatus 800 for radio resource reservation according to the example embodiments of the present disclosure.
  • Example embodiments of the present disclosure provide a solution for radio resource reservation.
  • suitable value (s) for local downlink (DL) and/or UL BAT can be estimated for the RAN to make radio resource reservation.
  • an initial value for the local BAT can be properly determined, and for the ongoing TSC traffic, the value for the local BAT can be properly and dynamically updated such that the TSC traffic can be guaranteed during the lifetime.
  • the example embodiments of the present disclosure may apply in both the case of the TSN bridge and the case of the generic TSC.
  • FIG. 1 briefly shows a scenario to which various example embodiments of the present disclosure may be implemented.
  • a network device 110 and a network device 120 are shown as examples of entities functioning as at least one base station (BS) , e.g. a next generation node-B (gNB) or an evolved node-B (eNB) or a centralized unit (CU) or a distributed unit (DU) or a combination of CU and DU in the RAN.
  • BS base station
  • gNB next generation node-B
  • eNB evolved node-B
  • CU centralized unit
  • DU distributed unit
  • a network controller 130 is shown as an example of an entity which can control the at least one base station.
  • the network devices 110 and 120 may represent any network device in the RAN controlled by the network controller 130.
  • the network controller 130 may be located within another network device functioning as a BS. Alternatively, the network controller 130 may located within the network device 110 and the network device 120.
  • a core network control plane (CN-CP) 150 is shown as an example of an entity or network function of a core network (CN) which is associated with the RAN.
  • the scenario shown in the FIG. 1 may apply in an open RAN (O-RAN) architecture.
  • O-RAN is an operator leads Alliance, which brings Openness and Programmability to the RAN.
  • a RAN Intelligent Controller (RIC) is a new virtualized function which adds RAN programmability to existing or new RAN networks.
  • a near real time RIC (Near-RT RIC) may connect with one or more “E2 Nodes” via an E2 interface, which may support near real time (e.g.
  • the E2 Node is a logical node terminating E2 interface, which may be at least one of the following: a gNB or an eNB or a CU or a DU or a combination of CU and DU.
  • the network controller 130 may be the Near-RT RIC and the network device 110 and/or the network device 120 may be an E2 Node, and the network controller 130 may communicate with the network device 110 and/or the network device 120 via the E2 interface in the O-RAN architecture.
  • the network controller 130 may subscribe to the network devices 110 and 120 a report of an incoming next generation application protocol (NGAP) request for a packet data unit (PDU) session setup or modification request that contains TSC information which may correspond to e.g. a TSC QoS flow.
  • NGAP next generation application protocol
  • PDU packet data unit
  • modification request may be termed as a TSC related event which may correspond to e.g. a TSC QoS flow.
  • the network device 120 may report to the network controller 130 the incoming TSC related event 122.
  • an incoming TSC related event e.g. an incoming TSC traffic, and an indication that an application function (AF) supports burst timing adaptation capabilities
  • the network controller 130 may determine an initial value 134 for the local BAT, determine a radio resource reservation instruction 132 based on the initial value 134 for the local BAT, and transmit to the network device 120 the determined radio resource reservation instruction 132 comprising the initial value 134 for the local BAT such that the network device 120 may configure a radio resource according to the radio resource reservation instruction 132.
  • the network device 120 may also transmit to the CN-CP 150 the initial value 134 for the local BAT.
  • the network controller 130 may update the value for the local BAT.
  • the network device 120 may subscribe to the network device 120 a report of a TSC related event monitoring result.
  • the network device 120 may perform a TSC related event monitoring and report to the network controller 130 the TSC related event monitoring result such that the network controller 130 may update the value for the local BAT and the radio resource reservation instruction.
  • FIG. 2 shows exemplary sequence diagrams for radio resource reservation according to various example embodiments of the present disclosure.
  • a network device 210 may be the network device 110 or the network device 120 and may function as any BS, e.g. gNB, in the RAN, and a network controller 260 may be the network controller 130 and may control one or more network devices including the network device 210.
  • BS e.g. gNB
  • a network controller 260 may be the network controller 130 and may control one or more network devices including the network device 210.
  • the example embodiments relating to the FIG. 2 may apply in an O-RAN architecture, in which the network controller 260 may be a Near-RT RIC and may communicate the BSs e.g. gNBs such as the network device 210 via an E2 interface in the O-RAN architecture.
  • the network device 210 may be e.g. an E2 Node, which may be at least one of the following: a gNB or an eNB or a CU or a DU or a combination of CU and DU.
  • a PDU session is established.
  • terminal devices such as a user equipment (UE) and/or a device-side TSN translator (DS-TT)
  • core network functions for example, 5GC network functions such as an access and mobility management function (AMF) , a session management function (SMF) , a user plane function (UPF) , a policy control function (PCF) , a TSN AF in case of the TSN bridge, e.g. a 5GS bridge, and/or a TSC and time synchronization function (TSCTSF) in case of the generic TSC, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • PCF policy control function
  • TSN AF in case of the TSN bridge
  • TSC and time synchronization function TSCTSF
  • the network controller 260 may subscribe RAN status and RAN performance information from the network devices controlled by the network controller 260.
  • the controlled network devices e.g. the network device 210
  • the report of the RAN status 214 and/or the RAN performance information 216 may be triggered by an event or periodical.
  • the RAN performance information 216 may comprise instant RAN performance information of the network device 210.
  • the RAN status 214 and/or the RAN performance information 216 may include, for example, at least one of the following factors of the network device 210: cell load, inter-cell interference, available resources, mobility data of one or more terminal devices, on-going and incoming traffic requirements or any other factors that may impact a resource configuration of the network device 210.
  • the network controller 260 may subscribe a report of an incoming TSC related event from one or more network devices controlled by the network controller 260.
  • the network controller 260 may transmit to the network device 210, a subscription 262 for a report of the incoming TSC related event.
  • the incoming TSC related event may correspond to a TSC QoS flow.
  • a centralized network configuration may perform a TSN stream scheduling and provide bridge configuration information to the TSN AF.
  • the TSCTSF may provide to the SMF via the PCF a TSC assistance container (TSCAC) .
  • TSC TSC assistance container
  • the SMF may build the TSCAI for the incoming TSC related event depending on the received TSCAC. If the BAT parameter is missing in the TSCAC, the TSCAI would be also without the BAT parameter.
  • the TSCAC may be transmitted with an indication indicating that the TSN AF or the TSCTSF supports burst timing adaptation capabilities. And the SMF may transmit the TSCAI without the BAT parameter and the indication of burst timing adaptation capabilities to the network devices controlled by the network controller 260.
  • the burst timing adaptation capabilities may be e.g. defined in the 3GPP technical report 23.700-25, solution#13, and may be used for the CN-CP, e.g. the CN-CP 150 to request RAN BAT preference information.
  • the network device 210 may transmit to the network controller 260, a report 222 of the incoming TSC related event.
  • the report 222 of the incoming TSC related event may comprise at least one of the following: a PDU session identifier (ID) , a QoS flow identifier (QFI) , the TSCAI, or one or more QoS parameters.
  • the PDU session ID may indicate the specific PDU session for the network controller 260.
  • the QFI may indicate the specific QoS flow for the network controller 260 such that the network controller 260 may be aware of e.g. the specific event.
  • the TSCAI may be the TSCAI received from SMF.
  • the one or more QoS parameters may involve QoS requirements regarding the specific TSC QoS flow, such as priority level, CN packet delay budget (PDB) , guaranteed flow bitrate (GFBR) , maximum data burst volume (MDBV) , packet error rate (PER) , etc.
  • QoS requirements regarding the specific TSC QoS flow such as priority level, CN packet delay budget (PDB) , guaranteed flow bitrate (GFBR) , maximum data burst volume (MDBV) , packet error rate (PER) , etc.
  • the network controller 260 may determine an initial value 226 for the local BAT in response to the report 222. In an embodiment, the network controller 260 may determine the initial value 226 for the local BAT based on at least one of the following: the report 222 of the incoming TSC related event which may corresponds to e.g. the TSC QoS flow, the RAN status 214, or RAN performance information 216.
  • the network controller 260 may take a role of a central coordinator of the TSC, based on the above-mentioned relevant factors which may impact the resource configuration, by e.g. an artificial intelligence (AI) and/or machine learning (ML) approach, the network controller 260 may determine a proper initial value 226 for a TSC traffic, for example, CG and/or SPS. In a case where the incoming TSC related event corresponds the TSC QoS flow, the initial value 226 for the local BAT may be used for an establishment of the TSC QoS flow.
  • AI artificial intelligence
  • ML machine learning
  • the network controller 260 may determine a radio resource reservation instruction 268 based on the initial value 226 for the local BAT.
  • the radio resource reservation instruction 268 may comprise the initial value 226 for the local BAT.
  • the determined radio resource reservation instruction 268 may further comprise one or more cross-layer resource configuration parameters, such as bandwidth part (BWP) for resource reservation, K-repetition values for medium access control (MAC) layer hybrid automatic repeat request (HARQ) transmission, packet data convergence protocol (PDCP) duplication parameters, and layer 1 (L1) frequency hopping pattern, etc.
  • BWP bandwidth part
  • PDCP packet data convergence protocol
  • L1 layer 1
  • the network controller 260 may transmit to the network device 210, the determined radio resource reservation instruction 268 which comprises at least the initial value 226 for the local BAT.
  • the determined radio resource reservation instruction 268 comprising the initial value 226 for the local BAT may be transmitted via an E2 interface in the O-RAN architecture, which may support near real time data exchange between the network controller 260 and the network device 210.
  • the network device 210 may configure the radio resource according to the determined radio resource reservation instruction 268.
  • the network device 210 may transmit to the CN, the initial value 226 for the local BAT. For example, the network device 210 may forward the initial value 226 for the local BAT as the RAN BAT preference information to the CN-CP 150.
  • the SMF may convert the initial value 226 for the local BAT in 5GS clock to the TSCAC BAT in a TSN clock based on a clock drift which is known via the input from the UPF.
  • the SMF transmits the converted TSCAC BAT to the TSN AF (in case of the TSN bridge) or TSCTSF (in case of the generic TSC) via PCF.
  • the TSN AF or the TSCTSF may derive a recommended transmission offset parameter for a source end station and therefore impact on the transmission behavior of the source end station to utilize the TSC feature of the 5GS at the most.
  • the CN does not provide the value for the local BAT to the network device 210, and the network controller 260 determines and provides to the network device 210 the initial value 226 for the local BAT.
  • the initial value 226 for the local BAT may also be provided by the CN. No matter the initial value 226 for the local BAT is provided from the CN or determined by the network controller 260, according to the example embodiments of the present disclosure, during the TSC traffic lifetime, the network controller 260 may update the value for the local BAT.
  • the network controller 260 may subscribe to the network device 210 for a report of a TSC related event monitoring result, which may correspond to the TSC QoS flow.
  • the network controller 260 may transmit to the network device 210, a subscription 270 for the report of the TSC related event monitoring result.
  • the subscription 270 may indicate at least one monitoring parameter for the network device 210 to perform a TSC related event monitoring, e.g., a measurement and reporting.
  • the monitoring parameters may be for example QoS monitoring as defined in the 3GPP specification TS 23.502.
  • the subscription 270 may also indicate a QoS parameter to be measured, a report frequency and a threshold for the network device 210.
  • the QoS parameter to be measured may indicate UL packet delay, DL packet delay or both.
  • the report frequency may indicate the frequency for the reporting e.g., a time gap between two consecutive reports.
  • the threshold may be used in a way that if the TSC related event monitoring result measured on the TSC related event exceeds the threshold, the network device 210 will report the TSC related event monitoring result.
  • the subscription 270 may also indicate a measurement frequency and a threshold.
  • the network device 210 may perform a TSC related event monitoring. For example, in a case where the at least one monitoring parameter indicated in the subscription 270 is for a RAN part of uplink/downlink packet delay, the network device 210 may perform the RAN part of UL/DL packet delay measurement. If, for example, the measured RAN part of UL/DL packet delay exceeds the threshold, the network device 210 may report to the network controller 260, the measured RAN part of UL/DL packet delay as the TSC related event monitoring result. For example, the network device 210 may transmit to the network controller 260 a report 230 of the TSC related event monitoring result.
  • the network controller 260 may update the value for the local BAT in response to the report 230 of the TSC related event monitoring result.
  • the updating of the value for the local BAT may comprise: calculating the value for the local burst arrival time, by e.g. an AI and/or ML approach, based on at least one of the following: the reported TSC related event monitoring result, the RAN status 214, data buffer length, received downlink data packet age, received uplink packet access request age, or the RAN performance information 216.
  • an updated value 234 for the local BAT may be calculated.
  • the RAN status 214 and/or the RAN performance information 216 used in the operation 272 may be different from those used in the operation 264, because the RAN status 214 and/or the RAN performance information 216 may probably be updated after the operation 264.
  • the network controller 260 may update the radio resource reservation instruction based on the updated value 234 for the local BAT.
  • the updated radio resource reservation instruction 276 may comprise at least the updated value 234 for the local BAT.
  • the updated radio resource reservation instruction 276 may further comprise at least one of the following: a time range of a distribution of values for the local BAT or one or more cross-layer resource configuration parameters.
  • the time range of the distribution of the values for the local BAT may be predicted by the network controller 260. For example, if the TSC related event corresponds to the TSC QoS flow, the network controller 260 may predict the time range of the distribution of the values for the local BAT based on the reported TSC QoS flow monitoring results.
  • the one or more cross-layer resource configuration parameters may be different from those in the radio resource reservation instruction 268, for example, including at least one of the following: the number of CG/SPS configurations to cover the time range of the distribution of the values for the local BAT, the K-repetition values for the MAC layer HARQ transmission to speed up the scheduling, the PDCP duplication parameters, the L1 frequency hopping pattern, or dual/multi-connectivity activation/release indication.
  • the network controller 260 may transmit to the network device 210, the updated radio resource reservation instruction 276 which at least comprises the updated value 234 for the local BAT.
  • the updated radio resource reservation instruction 276 comprising the updated value 234 for the local BAT may be transmitted via an E2 interface in the O-RAN architecture, which may support near real time data exchange between the network controller 260 and the network device 210.
  • the network device 210 may reconfigure the radio resource according to the updated radio resource reservation instruction 276.
  • the network device 210 may transmit to the CN, the updated value 234 for the local BAT.
  • the updated value 234 for the local BAT and/or the updated radio resource reservation instruction 276 may be further updated in a way similar to obtain the updated value 234 for the local BAT and/or the updated radio resource reservation instruction 276.
  • the network controller 260 may be for example, a Near-RT RIC.
  • the Near-RT RIC may not be deployed, and/or the E2 interface in the O-RAN architecture or appropriate E2 service model (E2SM) e.g. for the O-RAN architecture may not be supported on the network device such as the network device 210, and in this case the network controller 260, e.g. the Near-RT RIC, may be located within a network device such as the network device 210.
  • the network controller 260 may be located within another network device, different from the network device 210, functioning as a BS.
  • the network controller 260 may located within the network device 210, and in this case, the network controller 260 may located within and function as the CU of the BS, and the network device 210 may function as the DU of the BS.
  • the example embodiments of the present disclosure allow the RAN to perform an estimate of a suitable value for the local BAT when this the BAT parameter is not present in the TSCAI provided by the CN over the NGAP interface, such that in such case an efficient and effective radio resource reservation mechanism in the RAN is achieved.
  • the example embodiments of the present disclosure can treat coordination for multiple TSC traffics because the network controller, e.g. the Near-RT RIC, has relevant information for multiple RAN BSs. Together with computing power of algorithms, including AI/ML algorithms, the network controller can be the role of the central coordinator of the ongoing TSC traffics, incoming TSC traffics and non-TSC traffics.
  • the example embodiments of the present disclosure can determine more efficient radio resource reservation for the TSC related event and reduce the radio resource reservation failure.
  • FIG. 3 shows a flow chart illustrating an example method 300 for radio resource reservation according to the example embodiments of the present disclosure.
  • the example method 300 may be performed for example by a network controller such as the network controller 260.
  • the example method 300 may include an operation 310 of updating a value for a local BAT in response to a report of a TSC related event monitoring result from at least one network device of one or more network devices controlled by the network controller; an operation 320 of updating a radio resource reservation instruction based on the updated value for the local BAT; and an operation 330 of transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local BAT.
  • the example method 300 may further include an operation of subscribing to at least one network device for the report of the TSC related event monitoring result, which may correspond to a TSC QoS flow, the updating of the value for the local BAT comprising: calculating the value for the local BAT based on at least one of the following: the reported TSC related event monitoring result, RAN status, data buffer length, received downlink data packet age, received uplink packet access request age, or RAN performance information.
  • the more details have been described in the above descriptions with respect to at least the subscription 230 for the report of the TSC related event monitoring result and the operation 232, and repetitive descriptions thereof are omitted here.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
  • the example method 300 may further include an operation of subscribing a report of an incoming TSC related event from the one or more network devices; and an operation of receiving from the at least one network device the report of the incoming TSC related event.
  • the example method 300 may further include an operation of determining an initial value for the local BAT in response to a report of an incoming TSC related event from the at least one network device of the one or more network devices controlled by the network controller; an operation of determining the radio resource reservation instruction based on the initial value for the local BAT; and an operation of transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local BAT.
  • the initial value for the local BAT may be determined based on at least one of the following: the report of the incoming TSC related event which may correspond to a TSC QoS flow, RAN status, or RAN performance information.
  • the report of the incoming TSC related event which may correspond to a TSC QoS flow, RAN status, or RAN performance information.
  • the determined radio resource reservation instruction may be transmitted via an E2 interface.
  • the updated radio resource reservation instruction may be transmitted via an E2 interface.
  • the network controller may be a Near-RT RIC.
  • the network controller may be within one of the one or more network devices.
  • FIG. 4 shows a flow chart illustrating an example method 400 for radio resource reservation according to the example embodiments of the present disclosure.
  • the example method 400 may be performed for example by a network device such as the network device 210.
  • the example method 400 may include an operation 410 of receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local BAT; and an operation 420 of reconfiguring a radio resource according to the updated radio resource reservation instruction.
  • the example method 400 may further include an operation of receiving from the network controller, a subscription for a report of a TSC related event monitoring result, which may correspond to a TSC QoS flow; an operation of performing a TSC related event monitoring; and an operation of reporting to the network controller, the TSC related event monitoring result.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
  • the example method 400 may further include an operation of transmitting to a CN, the updated value for the local BAT.
  • the example method 400 may further include an operation of receiving from the network controller, a subscription for a report of an incoming TSC related event which may correspond to a TSC QoS flow; and an operation of transmitting to the network controller, the report of the incoming TSC related event.
  • the report of the incoming TSC related event may comprise at least one of the following: a PDU session ID; a QFI; TSCAI; or one or more QoS parameters.
  • the example method 400 may further include an operation of receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local BAT; and an operation of configuring the radio resource according to the radio resource reservation instruction.
  • the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters. The more details have been described in the above descriptions with respect to at least the radio resource reservation instruction 268, and repetitive descriptions thereof are omitted here.
  • the example method 400 may further include an operation of transmitting to a CN, the initial value for the local BAT.
  • the radio resource reservation instruction may be received via an E2 interface.
  • the updated radio resource reservation instruction may be received via an E2 interface.
  • the network controller may be a Near-RT RIC.
  • the network controller may be within the network device.
  • the network controller may be within another network device controlled by the network controller.
  • FIG. 5 shows a block diagram illustrating an example device 500 for radio resource reservation according to the example embodiments of the present disclosure.
  • the device for example, may be at least part of a network controller such as the network controller 260 in the above examples.
  • the example device 500 may include at least one processor 510 and at least one memory 520 that may store instructions 530.
  • the instructions 530 when executed by the at least one processor 510, may cause the device 500 at least to perform the example method 300 described above.
  • the at least one processor 510 in the example device 500 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 510 may also include at least one other circuitry or element not shown in the FIG. 5.
  • at least one hardware processor including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) .
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the at least one memory 520 in the example device 500 may include at least one storage medium in various forms, such as a transitory memory and/or a non-transitory memory.
  • the transitory memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on.
  • the non-transitory memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on.
  • ROM read only memory
  • non-transitory, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
  • the at least memory 520 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the example device 500 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
  • the circuitries, parts, elements, and interfaces in the example device 500 may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
  • the structure of the device on the side of the network controller 260 is not limited to the above example device 500.
  • FIG. 6 shows a block diagram illustrating an example device 600 for radio resource reservation according to the example embodiments of the present disclosure.
  • the device for example, may be at least part of a network device such as the network device 210 in the above examples.
  • the example device 600 may include at least one processor 610 and at least one memory 620 that may store instructions 630.
  • the instructions 630 when executed by the at least one processor 610, may cause the device 600 at least to perform the example method 400 described above.
  • the at least one processor 610 in the example device 600 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 610 may also include at least one other circuitry or element not shown in the FIG. 6.
  • at least one hardware processor including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) .
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the at least one memory 620 in the example device 600 may include at least one storage medium in various forms, such as a transitory memory and/or a non-transitory memory.
  • the transitory memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on.
  • the non-transitory memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on.
  • ROM read only memory
  • non-transitory, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
  • the at least memory 620 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the example device 600 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
  • the circuitries, parts, elements, and interfaces in the example device 600 may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
  • the structure of the device on the side of the network device 210 is not limited to the above example device 600.
  • FIG. 7 shows a block diagram illustrating an example apparatus 700 for radio resource reservation according to the example embodiments of the present disclosure.
  • the apparatus may be at least part of a network controller such as the network controller 260 in the above examples.
  • the example apparatus 700 may include means 710 for performing the operation 310 of the example method 300, means 720 for performing the operation 320 of the example method 300, and means 730 for performing the operation 330 of the example method 300.
  • at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 700.
  • the example apparatus 700 may further include means for subscribing to at least one network device for the report of the TSC related event monitoring result, which may correspond to a TSC QoS flow, the updating of the value for the local BAT comprising: calculating the value for the local BAT based on at least one of the following: the reported TSC related event monitoring result, RAN status, data buffer length, received downlink data packet age, received uplink packet access request age, or RAN performance information.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
  • the example apparatus 700 may further include means for subscribing a report of an incoming TSC related event from the one or more network devices; and means for receiving from the at least one network device the report of the incoming TSC related event.
  • the example apparatus 700 may further include means for determining an initial value for the local BAT in response to a report of an incoming TSC related event from the at least one network device of the one or more network devices controlled by the network controller; means for determining the radio resource reservation instruction based on the initial value for the local BAT; and means for transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local BAT.
  • the initial value for the local BAT may be determined based on at least one of the following: the report of the incoming TSC related event which may correspond to a TSC QoS flow, RAN status, or RAN performance information.
  • the determined radio resource reservation instruction may be transmitted via an E2 interface.
  • the updated radio resource reservation instruction may be transmitted via an E2 interface.
  • the network controller may be a Near-RT RIC.
  • the network controller may be within one of the one or more network devices.
  • examples of means in the example apparatus 700 may include circuitries.
  • an example of means 710 may include a circuitry configured to perform the operation 310 of the example method 300
  • an example of means 720 may include a circuitry configured to perform the operation 320 of the example method 300
  • an example of means 730 may include a circuitry configured to perform the operation 330 of the example method 300.
  • the example apparatus 700 may further include means comprising circuitry configured to perform the example method 300.
  • examples of means may also include software modules and any other suitable function entities.
  • FIG. 8 shows a block diagram illustrating an example apparatus 800 for radio resource reservation according to the example embodiments of the present disclosure.
  • the apparatus may be at least part of a network device such as the network device 210 in the above examples.
  • the example apparatus 800 may include means 810 for performing the operation 410 of the example method 400, and means 820 for performing the operation 420 of the example method 400.
  • at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 800.
  • the example apparatus 800 may further include means for receiving from the network controller, a subscription for a report of a TSC related event monitoring result, which may correspond to a TSC QoS flow; an operation of performing a TSC related event monitoring; and means for reporting to the network controller, the TSC related event monitoring result.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
  • the example apparatus 800 may further include means for transmitting to a CN, the updated value for the local BAT.
  • the example apparatus 800 may further include means for receiving from the network controller, a subscription for a report of an incoming TSC related event which may correspond to a TSC QoS flow; and means for transmitting to the network controller, the report of the incoming TSC related event.
  • the report of the incoming TSC related event may comprise at least one of the following: a PDU session ID; a QFI; TSCAI; or one or more QoS parameters.
  • the example apparatus 800 may further include means for receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local BAT; and means for configuring the radio resource according to the radio resource reservation instruction.
  • the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the example apparatus 800 may further include means for transmitting to a CN, the initial value for the local BAT.
  • the radio resource reservation instruction may be received via an E2 interface.
  • the updated radio resource reservation instruction may be received via an E2 interface.
  • the network controller may be a Near-RT RIC.
  • the network controller may be within the network device.
  • the network controller may be within another network device controlled by the network controller.
  • examples of means in the example apparatus 800 may include circuitries.
  • an example of means 810 may include a circuitry configured to perform the operation 410 of the example method 400
  • an example of means 820 may include a circuitry configured to perform the operation 420 of the example method 400.
  • the example apparatus 800 may further include means comprising circuitry configured to perform the example method 400.
  • examples of means may also include software modules and any other suitable function entities.
  • the example embodiments of the present disclosure also provide a computer readable medium comprising program instructions that, when executed by a network controller such as the network controller 260 in the above examples, may cause the network controller at least to perform: updating a value for a local BAT in response to a report of a TSC related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local BAT; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local BAT.
  • the computer readable medium may further include instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing to at least one network device for the report of the TSC related event monitoring result, which may correspond to a TSC QoS flow, the updating of the value for the local BAT comprising: calculating the value for the local BAT based on at least one of the following: the reported TSC related event monitoring result, RAN status, data buffer length, received downlink data packet age, received uplink packet access request age, or RAN performance information.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
  • the computer readable medium may further include instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing a report of an incoming TSC related event from the one or more network devices; and receiving from the at least one network device the report of the incoming TSC related event.
  • the computer readable medium may further include instructions that, when executed by the network controller, may cause the network controller to further perform: determining an initial value for the local BAT in response to a report of an incoming TSC related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local BAT; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local BAT.
  • the initial value for the local BAT may be determined based on at least one of the following: the report of the incoming TSC related event which may correspond to a TSC QoS flow, RAN status, or RAN performance information.
  • the determined radio resource reservation instruction may be transmitted via an E2 interface.
  • the updated radio resource reservation instruction may be transmitted via an E2 interface.
  • the network controller may be a Near-RT RIC.
  • the network controller may be within one of the one or more network devices.
  • the example embodiments of the present disclosure also provide a computer readable medium comprising program instructions that, when executed by a network device such as the network device 210 in the above examples, may cause the network device at least to perform: receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local BAT; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
  • the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of a TSC related event monitoring result, which may correspond to a TSC QoS flow; an operation of performing a TSC related event monitoring; and reporting to the network controller, the TSC related event monitoring result.
  • the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
  • the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: transmitting to a CN, the updated value for the local BAT.
  • the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of an incoming TSC related event which may correspond to a TSC QoS flow; and transmitting to the network controller, the report of the incoming TSC related event.
  • the report of the incoming TSC related event may comprise at least one of the following: a PDU session ID; a QFI; TSCAI; or one or more QoS parameters.
  • the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local BAT; and configuring the radio resource according to the radio resource reservation instruction.
  • the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
  • the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: transmitting to a CN, the initial value for the local BAT.
  • the radio resource reservation instruction may be received via an E2 interface.
  • the updated radio resource reservation instruction may be received via an E2 interface.
  • the network controller may be a Near-RT RIC.
  • the network controller may be within the network device.
  • the network controller may be within another network device controlled by the network controller.
  • circuitry throughout this disclosure may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) ; (b) combinations of hardware circuits and software, such as (as applicable) (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) ; and (c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
  • hardware-only circuit implementations such as implementations in only analog and/or digital circuitry
  • combinations of hardware circuits and software such as (as applicable) (i) a
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • Another example embodiment may relate to computer program or instructions which may cause an apparatus to perform at least respective methods described above.
  • Another example embodiment may be related to a computer readable medium having such computer program or instructions stored thereon.
  • a computer readable medium may include at least one storage medium in various forms such as a volatile memory and/or a non-volatile memory.
  • the volatile memory may include, but not limited to, for example, a RAM, a cache, and so on.
  • the non-volatile memory may include, but not limited to, a ROM, a hard disk, a flash memory, and so on.
  • the non-volatile memory may also include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the words “comprise, ” “comprising, ” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to. ”
  • the word “coupled” refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
  • the word “connected” refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
  • conditional language used herein such as, among others, “can, ” “could, ” “might, ” “may, ” “e.g., ” “for example, ” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states.
  • conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
  • the term "determine/determining” can include, not least: calculating, computing, processing, deriving, measuring, investigating, looking up (for example, looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (for example, receiving information) , accessing (for example, accessing data in a memory) , obtaining and the like. Also, “determine/determining” can include resolving, selecting, choosing, establishing, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are devices, methods, apparatuses, and computer readable media for radio resource reservation. An example network controller may include at least one processor and at least one memory. The at least one memory may store instructions that, when executed by the at least one processor, may cause the network controller at least to perform: updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and transmitting to the at least one network device, the updated radio resource reservation instruction which comprises the updated value for the local burst arrival time.

Description

DEVICES, METHODS, APPARATUSES, AND COMPUTER READABLE MEDIA FOR RADIO RESOURCE RESERVATION TECHNICAL FIELD
Various embodiments relate to devices, methods, apparatuses, and computer readable media for radio resource reservation.
BACKGROUND
Radio resource reservation may be applied in new radio (NR) systems for time sensitive communications (TSC) traffic as defined in 3rd Generation Partnership Project (3GPP) specification 23.501 to guarantee quality of service (QoS) and reduce signaling overheads. TSC assistance information (TSCAI) , which contains periodicity and burst arrival time (BAT) parameter, may be used in a radio access network (RAN) for the radio resource reservation. For the case of a fifth generation system (5GS) time sensitive networking (TSN) bridge, TSCAI BAT derivation is currently possible in a case that the TSN bridge supports per-stream filtering and policing (PSFP) . However, the support of the PSPF is optional, which means that without the support of the PSFP, the BAT will not be provided to the RAN. For internet protocol (IP) type TSC traffic without relying on TSN standards as defined by Institute of Electrical and Electronics Engineers (IEEE) (called as generic TSC in the rest of the present disclosure) , the TSCAI BAT is also an optional parameter. In a consequence, the RAN cannot easily calculate suitable values for configured grant (CG) or semi-persistent scheduling (SPS) to provide periodic TSC traffic transmission with bounded latency requirement. Furthermore, relying on a dynamic scheduling mechanism is not preferred for TSC traffic, for example for an uplink (UL) TSC traffic, due to heavy signaling overhead and extra scheduling delay.
SUMMARY
A brief summary of exemplary embodiments is provided below to provide basic understanding of some aspects of various embodiments. It should be noted that this summary is not intended to identify key features of essential elements or define scopes of the embodiments, and its sole purpose is to introduce some concepts in a simplified form as a preamble for a more  detailed description provided below.
In a first aspect, disclosed is a network controller. The network controller may include at least one processor and at least one memory. The at least one memory may store instructions that, when executed by the at least one processor, may cause the network controller at least to perform: updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network controller to further perform: subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
In some example embodiments, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network controller to further perform: subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and receiving from the at least one network device the report of the incoming time sensitive communication related event.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network controller to further perform: determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication  related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
In some example embodiments, the initial value for the local burst arrival time may be determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
In some example embodiments, the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In some example embodiments, the determined radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within one of the one or more network devices.
In a second aspect, disclosed is a network device. The network device may include at least one processor and at least one memory. The at least one memory may store instructions that, when executed by the at least one processor, may cause the network device at least to perform: receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local burst arrival time; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network device to further perform: receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; performing a time sensitive communication related event monitoring; and reporting to the  network controller, the time sensitive communication related event monitoring result.
In some example embodiments, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network device to further perform: transmitting to a core network, the updated value for the local burst arrival time.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network device to further perform: receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and transmitting to the network controller, the report of the incoming time sensitive communication related event.
In some example embodiments, the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network device to further perform: receiving from the network controller, a radio resource reservation instruction which comprises an initial value for a local burst arrival time; and configuring the radio resource according to the radio resource reservation instruction.
In some example embodiments, the radio resource reservation instruction may further comprises: one or more cross-layer resource configuration parameters.
In some example embodiments, the instructions, when executed by the at least one processor, may cause the network device to further perform: transmitting to a core network, the initial value for the local burst arrival time.
In some example embodiments, the radio resource reservation instruction may be received via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may  be received via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within the network device.
In some example embodiments, the network controller may be within another network device controlled by the network controller.
In a third aspect, disclosed is a method performed by a network controller. The method may comprise: updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
In some example embodiments, the method may further comprise: subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
In some example embodiments, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the method may further comprise: subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and receiving from the at least one network device the report of the incoming time sensitive communication related event.
In some example embodiments, the method may further comprise: determining an initial  value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
In some example embodiments, the initial value for the local burst arrival time may be determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
In some example embodiments, the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In some example embodiments, the determined radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within one of the one or more network devices.
In a fourth aspect, disclosed is a method performed by a network device. The method may comprise: receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local burst arrival time; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
In some example embodiments, the method may further comprise: receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; performing a time sensitive communication related event monitoring; and reporting to the network controller, the time sensitive communication related event monitoring result.
In some example embodiments, the updated radio resource reservation instruction may  further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the method may further comprise: transmitting to a core network, the updated value for the local burst arrival time.
In some example embodiments, the method may further comprise: receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and transmitting to the network controller, the report of the incoming time sensitive communication related event.
In some example embodiments, the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
In some example embodiments, the method may further comprise: receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local burst arrival time; and configuring the radio resource according to the radio resource reservation instruction.
In some example embodiments, the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In some example embodiments, the method may further comprise: transmitting to a core network, the initial value for the local burst arrival time.
In some example embodiments, the radio resource reservation instruction may be received via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may be received via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within the network device.
In some example embodiments, the network controller may be within another network  device controlled by the network controller.
In a fifth aspect, disclosed is an apparatus. The apparatus as a network controller may comprise: means for updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller; means for updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and means for transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
In some example embodiments, the apparatus may further comprise: means for subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
In some example embodiments, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the apparatus may further comprise: means for subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and means for receiving from the at least one network device the report of the incoming time sensitive communication related event.
In some example embodiments, the apparatus may further comprise: means for determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller; means for determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and means for transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
In some example embodiments, the initial value for the local burst arrival time may be determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
In some example embodiments, the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In some example embodiments, the determined radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within one of the one or more network devices.
In a sixth aspect, disclosed is an apparatus. The apparatus as a network device may comprise: means for receiving from a network controller, an updated radio resource reservation instruction which comprises an updated value for a local burst arrival time; and means for reconfiguring a radio resource according to the updated radio resource reservation instruction.
In some example embodiments, the apparatus may further comprise: means for receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; means for performing a time sensitive communication related event monitoring; and means for reporting to the network controller, the time sensitive communication related event monitoring result.
In some example embodiments, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the apparatus may further comprise: means for transmitting to a core network, the updated value for the local burst arrival time.
In some example embodiments, the apparatus may further comprise: means for  receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and means for transmitting to the network controller, the report of the incoming time sensitive communication related event.
In some example embodiments, the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
In some example embodiments, the apparatus may further comprise: means for receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local burst arrival time; and means for configuring the radio resource according to the radio resource reservation instruction.
In some example embodiments, the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In some example embodiments, the apparatus may further comprise: means for transmitting to a core network, the initial value for the local burst arrival time.
In some example embodiments, the radio resource reservation instruction may be received via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may be received via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within the network device.
In some example embodiments, the network controller may be within another network device controlled by the network controller.
In a seventh aspect, a computer readable medium is disclosed. The computer readable medium may comprise program instructions that, when executed by a network controller, may cause the network controller at least to perform: updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at  least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local burst arrival time.
In some example embodiments, the computer readable medium may further comprise instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow, the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
In some example embodiments, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the computer readable medium may further comprise instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and receiving from the at least one network device the report of the incoming time sensitive communication related event.
In some example embodiments, the computer readable medium may further comprise instructions that, when executed by the network controller, may cause the network controller to further perform: determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local burst arrival time.
In some example embodiments, the initial value for the local burst arrival time may be  determined based on at least one of the following: the report of the incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
In some example embodiments, the determined radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In some example embodiments, the determined radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may be transmitted via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within one of the one or more network devices.
In an eighth aspect, a computer readable medium is disclosed. The computer readable medium may comprise program instructions that, when executed by a network device, cause the network device at least to perform: receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local burst arrival time; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
In some example embodiments, the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which may correspond to a time sensitive communication quality of service flow; performing a time sensitive communication related event monitoring; and reporting to the network controller, the time sensitive communication related event monitoring result.
In some example embodiments, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local burst arrival time; or one or more cross-layer resource configuration parameters.
In some example embodiments, the computer readable medium may further comprise  instructions that, when executed by the network device, may cause the network device to further perform: transmitting to a core network, the updated value for the local burst arrival time.
In some example embodiments, the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which may correspond to a time sensitive communication quality of service flow; and transmitting to the network controller, the report of the incoming time sensitive communication related event.
In some example embodiments, the report of the incoming time sensitive communication related event may comprise at least one of the following: a packet data unit session identifier; a quality of service flow identifier; time sensitive communication assistance information; or one or more quality of service parameters.
In some example embodiments, the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local burst arrival time; and configuring the radio resource according to the radio resource reservation instruction.
In some example embodiments, the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In some example embodiments, the computer readable medium may further comprise instructions that, when executed by the network device, may cause the network device to further perform: transmitting to a core network, the initial value for the local burst arrival time.
In some example embodiments, the radio resource reservation instruction may be received via an E2 interface.
In some example embodiments, the updated radio resource reservation instruction may be received via an E2 interface.
In some example embodiments, the network controller may be a near real time radio access network intelligent controller.
In some example embodiments, the network controller may be within the network device.
In some example embodiments, the network controller may be within another network device controlled by the network controller.
Other features and advantages of the example embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of example embodiments of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described, by way of non-limiting examples, with reference to the accompanying drawings.
FIG. 1 briefly shows a scenario to which various example embodiments of the present disclosure may be implemented.
FIG. 2 shows exemplary sequence diagrams for radio resource reservation according to various example embodiments of the present disclosure.
FIG. 3 shows a flow chart illustrating an example method 300 for radio resource reservation according to the example embodiments of the present disclosure.
FIG. 4 shows a flow chart illustrating an example method 400 for radio resource reservation according to the example embodiments of the present disclosure.
FIG. 5 shows a block diagram illustrating an example device 500 for radio resource reservation according to the example embodiments of the present disclosure.
FIG. 6 shows a block diagram illustrating an example device 600 for radio resource reservation according to the example embodiments of the present disclosure.
FIG. 7 shows a block diagram illustrating an example apparatus 700 for radio resource reservation according to the example embodiments of the present disclosure.
FIG. 8 shows a block diagram illustrating an example apparatus 800 for radio resource reservation according to the example embodiments of the present disclosure.
Throughout the drawings, same or similar reference numbers indicate same or similar elements. A repetitive description on the same elements would be omitted.
DETAILED DESCRIPTION
Herein below, some example embodiments are described in detail with reference to the accompanying drawings. The following description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known circuits, techniques and components are shown in block diagram form to avoid obscuring the described concepts and features.
Example embodiments of the present disclosure provide a solution for radio resource reservation. According to the example embodiments of the present disclosure, suitable value (s) for local downlink (DL) and/or UL BAT can be estimated for the RAN to make radio resource reservation. Alternatively or additionally, according to the example embodiments of the present disclosure, for an incoming TSC traffic, an initial value for the local BAT can be properly determined, and for the ongoing TSC traffic, the value for the local BAT can be properly and dynamically updated such that the TSC traffic can be guaranteed during the lifetime. The example embodiments of the present disclosure may apply in both the case of the TSN bridge and the case of the generic TSC.
FIG. 1 briefly shows a scenario to which various example embodiments of the present disclosure may be implemented.
Referring to the FIG. 1, a network device 110 and a network device 120 are shown as examples of entities functioning as at least one base station (BS) , e.g. a next generation node-B (gNB) or an evolved node-B (eNB) or a centralized unit (CU) or a distributed unit (DU) or a combination of CU and DU in the RAN. A network controller 130 is shown as an example of an entity which can control the at least one base station. The  network devices  110 and 120 may represent any network device in the RAN controlled by the network controller 130. The network controller 130 may be located within another network device functioning as a BS. Alternatively, the network controller 130 may located within the network device 110 and the network device 120. For example, if the network controller 130 is located within the network device 110, the network controller 130 may located within and function as a CU of the BS, and the network device 110 may function as a DU of the BS. A core network control plane (CN-CP) 150 is shown as an example of an entity or network function of a core network (CN) which is associated with the RAN.
The scenario shown in the FIG. 1 may apply in an open RAN (O-RAN) architecture. The O-RAN is an operator leads Alliance, which brings Openness and Programmability to the RAN. A RAN Intelligent Controller (RIC) is a new virtualized function which adds RAN programmability to existing or new RAN networks. A near real time RIC (Near-RT RIC) may connect with one or more “E2 Nodes” via an E2 interface, which may support near real time (e.g. 10-100ms) data exchange between the Near-RT RIC and the E2 Nodes, here the E2 Node is a logical node terminating E2 interface, which may be at least one of the following: a gNB or an eNB or a CU or a DU or a combination of CU and DU. In the example embodiments relating to the FIG. 1, the network controller 130 may be the Near-RT RIC and the network device 110 and/or the network device 120 may be an E2 Node, and the network controller 130 may communicate with the network device 110 and/or the network device 120 via the E2 interface in the O-RAN architecture.
The network controller 130 may subscribe to the network devices 110 and 120 a report of an incoming next generation application protocol (NGAP) request for a packet data unit (PDU) session setup or modification request that contains TSC information which may correspond to e.g. a TSC QoS flow. Such NGAP request may be termed as a TSC related event which may correspond to e.g. a TSC QoS flow.
Taking the network device 120 as an example, in a case where the CN-CP 150 provides to the network device 120 TSCAI 152 without a BAT parameter for an incoming TSC related event, e.g. an incoming TSC traffic, and an indication that an application function (AF) supports burst timing adaptation capabilities, the network device 120 may report to the network controller 130 the incoming TSC related event 122.
In response to the report of the incoming TSC related event 122, the network controller 130 may determine an initial value 134 for the local BAT, determine a radio resource reservation instruction 132 based on the initial value 134 for the local BAT, and transmit to the network device 120 the determined radio resource reservation instruction 132 comprising the initial value 134 for the local BAT such that the network device 120 may configure a radio resource according to the radio resource reservation instruction 132. The network device 120 may also transmit to the CN-CP 150 the initial value 134 for the local BAT.
No matter the TSCAI 152 provided by the CN-CP 150 comprises the initial value 134  for the local BAT or the network controller 130 determines the initial value 134 for the local BAT, during the TSC traffic lifetime, the network controller 130 may update the value for the local BAT. For example, the network device 120 may subscribe to the network device 120 a report of a TSC related event monitoring result. The network device 120 may perform a TSC related event monitoring and report to the network controller 130 the TSC related event monitoring result such that the network controller 130 may update the value for the local BAT and the radio resource reservation instruction.
FIG. 2 shows exemplary sequence diagrams for radio resource reservation according to various example embodiments of the present disclosure. Referring to the FIG. 2, a network device 210 may be the network device 110 or the network device 120 and may function as any BS, e.g. gNB, in the RAN, and a network controller 260 may be the network controller 130 and may control one or more network devices including the network device 210.
The example embodiments relating to the FIG. 2 may apply in an O-RAN architecture, in which the network controller 260 may be a Near-RT RIC and may communicate the BSs e.g. gNBs such as the network device 210 via an E2 interface in the O-RAN architecture. The network device 210 may be e.g. an E2 Node, which may be at least one of the following: a gNB or an eNB or a CU or a DU or a combination of CU and DU.
In an operation 212, a PDU session is established. In addition to the network device 210 and the network controller 260, other devices, not shown, for example, terminal devices such as a user equipment (UE) and/or a device-side TSN translator (DS-TT) , core network functions, for example, 5GC network functions such as an access and mobility management function (AMF) , a session management function (SMF) , a user plane function (UPF) , a policy control function (PCF) , a TSN AF in case of the TSN bridge, e.g. a 5GS bridge, and/or a TSC and time synchronization function (TSCTSF) in case of the generic TSC, etc. may involve in the PDU session establishment and the following PDU session modification procedure.
The network controller 260 may subscribe RAN status and RAN performance information from the network devices controlled by the network controller 260. Thus, the controlled network devices, e.g. the network device 210, may report the RAN status 214 and/or the RAN performance information 216 to the network controller 260. The report of the RAN status 214 and/or the RAN performance information 216 may be triggered by an event or  periodical. The RAN performance information 216 may comprise instant RAN performance information of the network device 210. The RAN status 214 and/or the RAN performance information 216 may include, for example, at least one of the following factors of the network device 210: cell load, inter-cell interference, available resources, mobility data of one or more terminal devices, on-going and incoming traffic requirements or any other factors that may impact a resource configuration of the network device 210.
In an embodiment, the network controller 260 may subscribe a report of an incoming TSC related event from one or more network devices controlled by the network controller 260. For example, the network controller 260 may transmit to the network device 210, a subscription 262 for a report of the incoming TSC related event. In an embodiment, the incoming TSC related event may correspond to a TSC QoS flow.
On the other hand, in the case of the TSN bridge, a centralized network configuration (CNC) may perform a TSN stream scheduling and provide bridge configuration information to the TSN AF.
Then, during an operation 220 of a PDU session modification, in the case of the TSN bridge the TSN AF or in the case of generic TSC the TSCTSF may provide to the SMF via the PCF a TSC assistance container (TSCAC) . Then, the SMF may build the TSCAI for the incoming TSC related event depending on the received TSCAC. If the BAT parameter is missing in the TSCAC, the TSCAI would be also without the BAT parameter. The TSCAC may be transmitted with an indication indicating that the TSN AF or the TSCTSF supports burst timing adaptation capabilities. And the SMF may transmit the TSCAI without the BAT parameter and the indication of burst timing adaptation capabilities to the network devices controlled by the network controller 260.
The burst timing adaptation capabilities may be e.g. defined in the 3GPP technical report 23.700-25, solution#13, and may be used for the CN-CP, e.g. the CN-CP 150 to request RAN BAT preference information.
Receiving the TSCAI from the SMF, if the network device 210 detects that the TSCAI does not include the BAT parameter, the network device 210 may transmit to the network controller 260, a report 222 of the incoming TSC related event.
In an embodiment, the report 222 of the incoming TSC related event may comprise at  least one of the following: a PDU session identifier (ID) , a QoS flow identifier (QFI) , the TSCAI, or one or more QoS parameters. The PDU session ID may indicate the specific PDU session for the network controller 260. The QFI may indicate the specific QoS flow for the network controller 260 such that the network controller 260 may be aware of e.g. the specific event. The TSCAI may be the TSCAI received from SMF. The one or more QoS parameters may involve QoS requirements regarding the specific TSC QoS flow, such as priority level, CN packet delay budget (PDB) , guaranteed flow bitrate (GFBR) , maximum data burst volume (MDBV) , packet error rate (PER) , etc.
Receiving from the network device 210 the report 222 of the incoming time sensitive communication related event, in an operation 264, the network controller 260 may determine an initial value 226 for the local BAT in response to the report 222. In an embodiment, the network controller 260 may determine the initial value 226 for the local BAT based on at least one of the following: the report 222 of the incoming TSC related event which may corresponds to e.g. the TSC QoS flow, the RAN status 214, or RAN performance information 216.
The network controller 260 may take a role of a central coordinator of the TSC, based on the above-mentioned relevant factors which may impact the resource configuration, by e.g. an artificial intelligence (AI) and/or machine learning (ML) approach, the network controller 260 may determine a proper initial value 226 for a TSC traffic, for example, CG and/or SPS. In a case where the incoming TSC related event corresponds the TSC QoS flow, the initial value 226 for the local BAT may be used for an establishment of the TSC QoS flow.
Then, in an operation 266, the network controller 260 may determine a radio resource reservation instruction 268 based on the initial value 226 for the local BAT. The radio resource reservation instruction 268 may comprise the initial value 226 for the local BAT. In an embodiment, the determined radio resource reservation instruction 268 may further comprise one or more cross-layer resource configuration parameters, such as bandwidth part (BWP) for resource reservation, K-repetition values for medium access control (MAC) layer hybrid automatic repeat request (HARQ) transmission, packet data convergence protocol (PDCP) duplication parameters, and layer 1 (L1) frequency hopping pattern, etc.
Then, the network controller 260 may transmit to the network device 210, the determined radio resource reservation instruction 268 which comprises at least the initial value  226 for the local BAT. In an embodiment, the determined radio resource reservation instruction 268 comprising the initial value 226 for the local BAT may be transmitted via an E2 interface in the O-RAN architecture, which may support near real time data exchange between the network controller 260 and the network device 210.
Receiving from the network controller 260, the radio resource reservation instruction 268 which comprises the initial value 226 for the local BAT, in an operation 224, the network device 210 may configure the radio resource according to the determined radio resource reservation instruction 268.
After the radio resource is reserved successfully, the network device 210 may transmit to the CN, the initial value 226 for the local BAT. For example, the network device 210 may forward the initial value 226 for the local BAT as the RAN BAT preference information to the CN-CP 150. In an embodiment, the SMF may convert the initial value 226 for the local BAT in 5GS clock to the TSCAC BAT in a TSN clock based on a clock drift which is known via the input from the UPF. The SMF transmits the converted TSCAC BAT to the TSN AF (in case of the TSN bridge) or TSCTSF (in case of the generic TSC) via PCF.
The TSN AF or the TSCTSF may derive a recommended transmission offset parameter for a source end station and therefore impact on the transmission behavior of the source end station to utilize the TSC feature of the 5GS at the most.
In the above example embodiments, the CN does not provide the value for the local BAT to the network device 210, and the network controller 260 determines and provides to the network device 210 the initial value 226 for the local BAT. Alternatively or additionally, in some embodiments, the initial value 226 for the local BAT may also be provided by the CN. No matter the initial value 226 for the local BAT is provided from the CN or determined by the network controller 260, according to the example embodiments of the present disclosure, during the TSC traffic lifetime, the network controller 260 may update the value for the local BAT.
In an embodiment, the network controller 260 may subscribe to the network device 210 for a report of a TSC related event monitoring result, which may correspond to the TSC QoS flow. For example, the network controller 260 may transmit to the network device 210, a subscription 270 for the report of the TSC related event monitoring result. In an embodiment, the subscription 270 may indicate at least one monitoring parameter for the network device 210  to perform a TSC related event monitoring, e.g., a measurement and reporting. In a case where the TSC related event corresponds to the TSC QoS flow, the monitoring parameters may be for example QoS monitoring as defined in the 3GPP specification TS 23.502. The subscription 270 may also indicate a QoS parameter to be measured, a report frequency and a threshold for the network device 210. The QoS parameter to be measured may indicate UL packet delay, DL packet delay or both. The report frequency may indicate the frequency for the reporting e.g., a time gap between two consecutive reports. The threshold may be used in a way that if the TSC related event monitoring result measured on the TSC related event exceeds the threshold, the network device 210 will report the TSC related event monitoring result. Additionally, the subscription 270 may also indicate a measurement frequency and a threshold.
Receiving from the network controller 260, the subscription 270 for the report of the TSC related event monitoring result, which corresponds to a TSC QoS flow, in an operation 228, the network device 210 may perform a TSC related event monitoring. For example, in a case where the at least one monitoring parameter indicated in the subscription 270 is for a RAN part of uplink/downlink packet delay, the network device 210 may perform the RAN part of UL/DL packet delay measurement. If, for example, the measured RAN part of UL/DL packet delay exceeds the threshold, the network device 210 may report to the network controller 260, the measured RAN part of UL/DL packet delay as the TSC related event monitoring result. For example, the network device 210 may transmit to the network controller 260 a report 230 of the TSC related event monitoring result.
In an operation 272, the network controller 260 may update the value for the local BAT in response to the report 230 of the TSC related event monitoring result. In an embodiment, the updating of the value for the local BAT may comprise: calculating the value for the local burst arrival time, by e.g. an AI and/or ML approach, based on at least one of the following: the reported TSC related event monitoring result, the RAN status 214, data buffer length, received downlink data packet age, received uplink packet access request age, or the RAN performance information 216. Thus, an updated value 234 for the local BAT may be calculated. The RAN status 214 and/or the RAN performance information 216 used in the operation 272 may be different from those used in the operation 264, because the RAN status 214 and/or the RAN performance information 216 may probably be updated after the operation 264.
Then, in an operation 274, the network controller 260 may update the radio resource reservation instruction based on the updated value 234 for the local BAT. The updated radio resource reservation instruction 276 may comprise at least the updated value 234 for the local BAT.
In an embodiment, the updated radio resource reservation instruction 276 may further comprise at least one of the following: a time range of a distribution of values for the local BAT or one or more cross-layer resource configuration parameters.
The time range of the distribution of the values for the local BAT may be predicted by the network controller 260. For example, if the TSC related event corresponds to the TSC QoS flow, the network controller 260 may predict the time range of the distribution of the values for the local BAT based on the reported TSC QoS flow monitoring results.
The one or more cross-layer resource configuration parameters may be different from those in the radio resource reservation instruction 268, for example, including at least one of the following: the number of CG/SPS configurations to cover the time range of the distribution of the values for the local BAT, the K-repetition values for the MAC layer HARQ transmission to speed up the scheduling, the PDCP duplication parameters, the L1 frequency hopping pattern, or dual/multi-connectivity activation/release indication.
Then, the network controller 260 may transmit to the network device 210, the updated radio resource reservation instruction 276 which at least comprises the updated value 234 for the local BAT. In an embodiment, the updated radio resource reservation instruction 276 comprising the updated value 234 for the local BAT may be transmitted via an E2 interface in the O-RAN architecture, which may support near real time data exchange between the network controller 260 and the network device 210.
Receiving from the network controller 260, the updated radio resource reservation instruction 276 which comprises the updated value 234 for the local BAT, in an operation 232, the network device 210 may reconfigure the radio resource according to the updated radio resource reservation instruction 276.
Similar to the transmission of the initial value 226 for the local BAT to the CN, after the radio resource is reserved according to the updated radio resource reservation instruction 276 successfully, the network device 210 may transmit to the CN, the updated value 234 for the local  BAT.
It may be appreciated that the updated value 234 for the local BAT and/or the updated radio resource reservation instruction 276 may be further updated in a way similar to obtain the updated value 234 for the local BAT and/or the updated radio resource reservation instruction 276.
In an embodiment, the network controller 260 may be for example, a Near-RT RIC. In an embodiment, the Near-RT RIC may not be deployed, and/or the E2 interface in the O-RAN architecture or appropriate E2 service model (E2SM) e.g. for the O-RAN architecture may not be supported on the network device such as the network device 210, and in this case the network controller 260, e.g. the Near-RT RIC, may be located within a network device such as the network device 210. In an embodiment, the network controller 260 may be located within another network device, different from the network device 210, functioning as a BS. Alternatively, the network controller 260 may located within the network device 210, and in this case, the network controller 260 may located within and function as the CU of the BS, and the network device 210 may function as the DU of the BS.
The example embodiments of the present disclosure allow the RAN to perform an estimate of a suitable value for the local BAT when this the BAT parameter is not present in the TSCAI provided by the CN over the NGAP interface, such that in such case an efficient and effective radio resource reservation mechanism in the RAN is achieved. The example embodiments of the present disclosure can treat coordination for multiple TSC traffics because the network controller, e.g. the Near-RT RIC, has relevant information for multiple RAN BSs. Together with computing power of algorithms, including AI/ML algorithms, the network controller can be the role of the central coordinator of the ongoing TSC traffics, incoming TSC traffics and non-TSC traffics. Therefore, the example embodiments of the present disclosure can determine more efficient radio resource reservation for the TSC related event and reduce the radio resource reservation failure. In additional, according to the example embodiments of the present disclosure, it is feasible to utilize the BAT preference to adapt application transmission schedule in order to meet the bounded latency requirement.
FIG. 3 shows a flow chart illustrating an example method 300 for radio resource reservation according to the example embodiments of the present disclosure. The example  method 300 may be performed for example by a network controller such as the network controller 260.
Referring to the FIG. 3, the example method 300 may include an operation 310 of updating a value for a local BAT in response to a report of a TSC related event monitoring result from at least one network device of one or more network devices controlled by the network controller; an operation 320 of updating a radio resource reservation instruction based on the updated value for the local BAT; and an operation 330 of transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local BAT.
Details of the operation 310 have been described in the above descriptions with respect to at least the operation 272, and repetitive descriptions thereof are omitted here.
Details of the operation 320 have been described in the above descriptions with respect to at least the operation 274, and repetitive descriptions thereof are omitted here.
Details of the operation 330 have been described in the above descriptions with respect to at least the updated radio resource reservation instruction 276 and the updated value 234 for the local BAT, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 300 may further include an operation of subscribing to at least one network device for the report of the TSC related event monitoring result, which may correspond to a TSC QoS flow, the updating of the value for the local BAT comprising: calculating the value for the local BAT based on at least one of the following: the reported TSC related event monitoring result, RAN status, data buffer length, received downlink data packet age, received uplink packet access request age, or RAN performance information. The more details have been described in the above descriptions with respect to at least the subscription 230 for the report of the TSC related event monitoring result and the operation 232, and repetitive descriptions thereof are omitted here.
In an embodiment, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters. The more details have been described in the above descriptions with respect to at least the updated radio resource reservation instruction 276, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 300 may further include an operation of subscribing a report of an incoming TSC related event from the one or more network devices; and an operation of receiving from the at least one network device the report of the incoming TSC related event. The more details have been described in the above descriptions with respect to at least the subscription 262 for the report of the incoming TSC related event and the report 222 of the incoming TSC related event, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 300 may further include an operation of determining an initial value for the local BAT in response to a report of an incoming TSC related event from the at least one network device of the one or more network devices controlled by the network controller; an operation of determining the radio resource reservation instruction based on the initial value for the local BAT; and an operation of transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local BAT. The more details have been described in the above descriptions with respect to at least the operation 264, the operation 266, the determined radio resource reservation instruction 268 and the initial value 226 for the local BAT, and repetitive descriptions thereof are omitted here.
In an embodiment, the initial value for the local BAT may be determined based on at least one of the following: the report of the incoming TSC related event which may correspond to a TSC QoS flow, RAN status, or RAN performance information. The more details have been described in the above descriptions with respect to at least he determined radio resource reservation instruction 268, and repetitive descriptions thereof are omitted here.
In an embodiment, the determined radio resource reservation instruction may be transmitted via an E2 interface.
In an embodiment, the updated radio resource reservation instruction may be transmitted via an E2 interface.
In an embodiment, the network controller may be a Near-RT RIC.
In an embodiment, the network controller may be within one of the one or more network devices.
FIG. 4 shows a flow chart illustrating an example method 400 for radio resource reservation according to the example embodiments of the present disclosure. The example  method 400 may be performed for example by a network device such as the network device 210.
Referring to the FIG. 4, the example method 400 may include an operation 410 of receiving from a network controller, an updated radio resource reservation instruction which may comprise an updated value for a local BAT; and an operation 420 of reconfiguring a radio resource according to the updated radio resource reservation instruction.
Details of the operation 410 have been described in the above descriptions with respect to at least the updated radio resource reservation instruction 276 and the updated value 234 for the local BAT, and repetitive descriptions thereof are omitted here.
Details of the operation 420 have been described in the above descriptions with respect to at least the operation 232, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 400 may further include an operation of receiving from the network controller, a subscription for a report of a TSC related event monitoring result, which may correspond to a TSC QoS flow; an operation of performing a TSC related event monitoring; and an operation of reporting to the network controller, the TSC related event monitoring result. The more details have been described in the above descriptions with respect to at least subscription 270 for the report of the TSC related event monitoring result, operation 228 and the report 230 of the TSC related event monitoring result, and repetitive descriptions thereof are omitted here.
In an embodiment, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters. The more details have been described in the above descriptions with respect to at least the updated radio resource reservation instruction 276, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 400 may further include an operation of transmitting to a CN, the updated value for the local BAT. The more details have been described in the above descriptions with respect to at least the updated value 234 for the local BAT, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 400 may further include an operation of receiving from the network controller, a subscription for a report of an incoming TSC related event which may correspond to a TSC QoS flow; and an operation of transmitting to the network  controller, the report of the incoming TSC related event. The more details have been described in the above descriptions with respect to at least the subscription 262 for the report of the incoming TSC related event and the report 222 of the incoming TSC related event, and repetitive descriptions thereof are omitted here.
In an embodiment, the report of the incoming TSC related event may comprise at least one of the following: a PDU session ID; a QFI; TSCAI; or one or more QoS parameters. The more details have been described in the above descriptions with respect to at least the report 222 of the incoming TSC related event, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 400 may further include an operation of receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local BAT; and an operation of configuring the radio resource according to the radio resource reservation instruction. The more details have been described in the above descriptions with respect to at least the radio resource reservation instruction 268, the initial value 226 for the local BAT and the operation 224, and repetitive descriptions thereof are omitted here.
In an embodiment, the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters. The more details have been described in the above descriptions with respect to at least the radio resource reservation instruction 268, and repetitive descriptions thereof are omitted here.
In an embodiment, the example method 400 may further include an operation of transmitting to a CN, the initial value for the local BAT. The more details have been described in the above descriptions with respect to at least the initial value 226 for the local BAT, and repetitive descriptions thereof are omitted here.
In an embodiment, the radio resource reservation instruction may be received via an E2 interface.
In an embodiment, the updated radio resource reservation instruction may be received via an E2 interface.
In an embodiment, the network controller may be a Near-RT RIC.
In an embodiment, the network controller may be within the network device.
In an embodiment, the network controller may be within another network device  controlled by the network controller.
FIG. 5 shows a block diagram illustrating an example device 500 for radio resource reservation according to the example embodiments of the present disclosure. The device, for example, may be at least part of a network controller such as the network controller 260 in the above examples.
As shown in the FIG. 5, the example device 500 may include at least one processor 510 and at least one memory 520 that may store instructions 530. The instructions 530, when executed by the at least one processor 510, may cause the device 500 at least to perform the example method 300 described above.
In various example embodiments, the at least one processor 510 in the example device 500 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 510 may also include at least one other circuitry or element not shown in the FIG. 5.
In various example embodiments, the at least one memory 520 in the example device 500 may include at least one storage medium in various forms, such as a transitory memory and/or a non-transitory memory. The transitory memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on. The non-transitory memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on. The term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) . Further, the at least memory 520 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
Further, in various example embodiments, the example device 500 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
In various example embodiments, the circuitries, parts, elements, and interfaces in the  example device 500, including the at least one processor 510 and the at least one memory 520, may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
It is appreciated that the structure of the device on the side of the network controller 260 is not limited to the above example device 500.
FIG. 6 shows a block diagram illustrating an example device 600 for radio resource reservation according to the example embodiments of the present disclosure. The device, for example, may be at least part of a network device such as the network device 210 in the above examples.
As shown in the FIG. 6, the example device 600 may include at least one processor 610 and at least one memory 620 that may store instructions 630. The instructions 630, when executed by the at least one processor 610, may cause the device 600 at least to perform the example method 400 described above.
In various example embodiments, the at least one processor 610 in the example device 600 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 610 may also include at least one other circuitry or element not shown in the FIG. 6.
In various example embodiments, the at least one memory 620 in the example device 600 may include at least one storage medium in various forms, such as a transitory memory and/or a non-transitory memory. The transitory memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on. The non-transitory memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on. The term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) . Further, the at least memory 620 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any  combination of the above.
Further, in various example embodiments, the example device 600 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
In various example embodiments, the circuitries, parts, elements, and interfaces in the example device 600, including the at least one processor 610 and the at least one memory 620, may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
It is appreciated that the structure of the device on the side of the network device 210 is not limited to the above example device 600.
FIG. 7 shows a block diagram illustrating an example apparatus 700 for radio resource reservation according to the example embodiments of the present disclosure. The apparatus, for example, may be at least part of a network controller such as the network controller 260 in the above examples.
As shown in FIG. 7, the example apparatus 700 may include means 710 for performing the operation 310 of the example method 300, means 720 for performing the operation 320 of the example method 300, and means 730 for performing the operation 330 of the example method 300. In one or more another example embodiments, at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 700.
In an embodiment, the example apparatus 700 may further include means for subscribing to at least one network device for the report of the TSC related event monitoring result, which may correspond to a TSC QoS flow, the updating of the value for the local BAT comprising: calculating the value for the local BAT based on at least one of the following: the reported TSC related event monitoring result, RAN status, data buffer length, received downlink data packet age, received uplink packet access request age, or RAN performance information.
In an embodiment, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
In an embodiment, the example apparatus 700 may further include means for  subscribing a report of an incoming TSC related event from the one or more network devices; and means for receiving from the at least one network device the report of the incoming TSC related event.
In an embodiment, the example apparatus 700 may further include means for determining an initial value for the local BAT in response to a report of an incoming TSC related event from the at least one network device of the one or more network devices controlled by the network controller; means for determining the radio resource reservation instruction based on the initial value for the local BAT; and means for transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local BAT.
In an embodiment, the initial value for the local BAT may be determined based on at least one of the following: the report of the incoming TSC related event which may correspond to a TSC QoS flow, RAN status, or RAN performance information.
In an embodiment, the determined radio resource reservation instruction may be transmitted via an E2 interface.
In an embodiment, the updated radio resource reservation instruction may be transmitted via an E2 interface.
In an embodiment, the network controller may be a Near-RT RIC.
In an embodiment, the network controller may be within one of the one or more network devices.
In some example embodiments, examples of means in the example apparatus 700 may include circuitries. For example, an example of means 710 may include a circuitry configured to perform the operation 310 of the example method 300, an example of means 720 may include a circuitry configured to perform the operation 320 of the example method 300, and an example of means 730 may include a circuitry configured to perform the operation 330 of the example method 300.
The example apparatus 700 may further include means comprising circuitry configured to perform the example method 300. In some example embodiments, examples of means may also include software modules and any other suitable function entities.
FIG. 8 shows a block diagram illustrating an example apparatus 800 for radio resource  reservation according to the example embodiments of the present disclosure. The apparatus, for example, may be at least part of a network device such as the network device 210 in the above examples.
As shown in FIG. 8, the example apparatus 800 may include means 810 for performing the operation 410 of the example method 400, and means 820 for performing the operation 420 of the example method 400. In one or more another example embodiments, at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 800.
In an embodiment, the example apparatus 800 may further include means for receiving from the network controller, a subscription for a report of a TSC related event monitoring result, which may correspond to a TSC QoS flow; an operation of performing a TSC related event monitoring; and means for reporting to the network controller, the TSC related event monitoring result.
In an embodiment, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
In an embodiment, the example apparatus 800 may further include means for transmitting to a CN, the updated value for the local BAT.
In an embodiment, the example apparatus 800 may further include means for receiving from the network controller, a subscription for a report of an incoming TSC related event which may correspond to a TSC QoS flow; and means for transmitting to the network controller, the report of the incoming TSC related event.
In an embodiment, the report of the incoming TSC related event may comprise at least one of the following: a PDU session ID; a QFI; TSCAI; or one or more QoS parameters.
In an embodiment, the example apparatus 800 may further include means for receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local BAT; and means for configuring the radio resource according to the radio resource reservation instruction.
In an embodiment, the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In an embodiment, the example apparatus 800 may further include means for transmitting to a CN, the initial value for the local BAT.
In an embodiment, the radio resource reservation instruction may be received via an E2 interface.
In an embodiment, the updated radio resource reservation instruction may be received via an E2 interface.
In an embodiment, the network controller may be a Near-RT RIC.
In an embodiment, the network controller may be within the network device.
In an embodiment, the network controller may be within another network device controlled by the network controller.
In some example embodiments, examples of means in the example apparatus 800 may include circuitries. For example, an example of means 810 may include a circuitry configured to perform the operation 410 of the example method 400, and an example of means 820 may include a circuitry configured to perform the operation 420 of the example method 400.
The example apparatus 800 may further include means comprising circuitry configured to perform the example method 400. In some example embodiments, examples of means may also include software modules and any other suitable function entities.
The example embodiments of the present disclosure also provide a computer readable medium comprising program instructions that, when executed by a network controller such as the network controller 260 in the above examples, may cause the network controller at least to perform: updating a value for a local BAT in response to a report of a TSC related event monitoring result from at least one network device of one or more network devices controlled by the network controller; updating a radio resource reservation instruction based on the updated value for the local BAT; and transmitting to the at least one network device, the updated radio resource reservation instruction which may comprise the updated value for the local BAT.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing to at least one network device for the report of the TSC related event monitoring result, which may correspond to a TSC QoS flow, the updating of the value for the local BAT comprising: calculating the value for the local BAT based on at least one of the following: the  reported TSC related event monitoring result, RAN status, data buffer length, received downlink data packet age, received uplink packet access request age, or RAN performance information.
In an embodiment, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network controller, may cause the network controller to further perform: subscribing a report of an incoming TSC related event from the one or more network devices; and receiving from the at least one network device the report of the incoming TSC related event.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network controller, may cause the network controller to further perform: determining an initial value for the local BAT in response to a report of an incoming TSC related event from the at least one network device of the one or more network devices controlled by the network controller; determining the radio resource reservation instruction based on the initial value for the local BAT; and transmitting to the at least one network device, the determined radio resource reservation instruction which may comprise the initial value for the local BAT.
In an embodiment, the initial value for the local BAT may be determined based on at least one of the following: the report of the incoming TSC related event which may correspond to a TSC QoS flow, RAN status, or RAN performance information.
In an embodiment, the determined radio resource reservation instruction may be transmitted via an E2 interface.
In an embodiment, the updated radio resource reservation instruction may be transmitted via an E2 interface.
In an embodiment, the network controller may be a Near-RT RIC.
In an embodiment, the network controller may be within one of the one or more network devices.
The example embodiments of the present disclosure also provide a computer readable medium comprising program instructions that, when executed by a network device such as the network device 210 in the above examples, may cause the network device at least to perform: receiving from a network controller, an updated radio resource reservation instruction which may  comprise an updated value for a local BAT; and reconfiguring a radio resource according to the updated radio resource reservation instruction.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of a TSC related event monitoring result, which may correspond to a TSC QoS flow; an operation of performing a TSC related event monitoring; and reporting to the network controller, the TSC related event monitoring result.
In an embodiment, the updated radio resource reservation instruction may further comprise at least one of the following: a time range of a distribution of values for the local BAT; or one or more cross-layer resource configuration parameters.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: transmitting to a CN, the updated value for the local BAT.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a subscription for a report of an incoming TSC related event which may correspond to a TSC QoS flow; and transmitting to the network controller, the report of the incoming TSC related event.
In an embodiment, the report of the incoming TSC related event may comprise at least one of the following: a PDU session ID; a QFI; TSCAI; or one or more QoS parameters.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform: receiving from the network controller, a radio resource reservation instruction which may comprise an initial value for a local BAT; and configuring the radio resource according to the radio resource reservation instruction.
In an embodiment, the radio resource reservation instruction may further comprise: one or more cross-layer resource configuration parameters.
In an embodiment, the computer readable medium may further include instructions that, when executed by the network device, may cause the network device to further perform:  transmitting to a CN, the initial value for the local BAT.
In an embodiment, the radio resource reservation instruction may be received via an E2 interface.
In an embodiment, the updated radio resource reservation instruction may be received via an E2 interface.
In an embodiment, the network controller may be a Near-RT RIC.
In an embodiment, the network controller may be within the network device.
In an embodiment, the network controller may be within another network device controlled by the network controller.
As used herein, “at least one of the following: <a list of two or more elements>” and “at least one of <a list of two or more elements>” and similar wording, where the list of two or more elements are joined by “and” or “or” , mean at least any one of the elements, or at least any two or more of the elements, or at least all the elements.
The term “circuitry” throughout this disclosure may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) ; (b) combinations of hardware circuits and software, such as (as applicable) (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) ; and (c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. This definition of circuitry applies to one or all uses of this term in this disclosure, including in any claims. As a further example, as used in this disclosure, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
Another example embodiment may relate to computer program or instructions which  may cause an apparatus to perform at least respective methods described above. Another example embodiment may be related to a computer readable medium having such computer program or instructions stored thereon. In some embodiments, such a computer readable medium may include at least one storage medium in various forms such as a volatile memory and/or a non-volatile memory. The volatile memory may include, but not limited to, for example, a RAM, a cache, and so on. The non-volatile memory may include, but not limited to, a ROM, a hard disk, a flash memory, and so on. The non-volatile memory may also include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise, ” “comprising, ” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to. ” The word “coupled” , as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected” , as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein, ” “above, ” “below, ” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
Moreover, conditional language used herein, such as, among others, “can, ” “could, ” “might, ” “may, ” “e.g., ” “for example, ” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any  particular embodiment.
As used herein, the term "determine/determining" (and grammatical variants thereof) can include, not least: calculating, computing, processing, deriving, measuring, investigating, looking up (for example, looking up in a table, a database or another data structure) , ascertaining and the like. Also, "determining" can include receiving (for example, receiving information) , accessing (for example, accessing data in a memory) , obtaining and the like. Also, "determine/determining" can include resolving, selecting, choosing, establishing, and the like.
While some embodiments have been described, these embodiments have been presented by way of example, and are not intended to limit the scope of the disclosure. Indeed, the apparatus, methods, and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. For example, while blocks are presented in a given arrangement, alternative embodiments may perform similar functionalities with different components and/or circuit topologies, and some blocks may be deleted, moved, added, subdivided, combined, and/or modified. At least one of these blocks may be implemented in a variety of different ways. The order of these blocks may also be changed. Any suitable combination of the elements and actions of the some embodiments described above can be combined to provide further embodiments. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
Abbreviations used in the description and/or in the figures are defined as follows:
3GPP   3rd Generation Partnership Project
5GC    fifth generation core
5GS    fifth generation system
AF     application function
AI     artificial intelligence
AMF    access and mobility management function
BAT    burst arrival time
BS     base station
BWP    bandwidth part
CG           configured grant
CN           core network
CNC          centralized network configuration
CN-CP        core network control plane
CU           centralized unit
DL           downlink
DU           distributed unit
E2SM         E2 service model
eNB          evolved node-B
GFBR         guaranteed flow bitrate
gNB          next generation node-B
HARQ         hybrid automatic repeat request
ID           identifier
IEEE         Institute of Electrical and Electronics Engineers
IP           internet protocol
L1           layer 1
MAC          medium access control
MDBV         maximum data burst volume
ML           machine learning
Near-RT RIC  near real time RAN intelligent controller
NGAP         next generation application protocol
NR           new radio
O-RAN        open RAN
PCF          policy control function
PDB          packet delay budget
PDCP         packet data convergence protocol
PDU          packet data unit
PER          packet error rate
PSFP         per-stream filtering and policing
QoS          quality of service
QFI      QoS flow identifier
RAN      radio access network
RRC      radio resource control
SMF      session management function
SPS      semi-persistent scheduling
SSB      synchronization signal block
TSC      time sensitive communications
TSCAC    TSC assistance container
TSCAI    TSC assistance information
TSN      time sensitive networking
TSCTSF   TSC time synchronization function
DS-TT    device-side TSN translator
UE       user equipment
UL       uplink
UPF      user plane function

Claims (58)

  1. A network controller, comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the network controller at least to perform:
    updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller;
    updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and
    transmitting to the at least one network device, the updated radio resource reservation instruction which comprises the updated value for the local burst arrival time.
  2. The network controller of claim 1, wherein the instructions, when executed by the at least one processor, cause the network controller to further perform:
    subscribing to at least one network device for the report of the time sensitive communication related event monitoring result, which corresponds to a time sensitive communication quality of service flow,
    the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
  3. The network controller of claim 1 or 2, wherein the updated radio resource reservation instruction further comprises at least one of the following:
    a time range of a distribution of values for the local burst arrival time; or
    one or more cross-layer resource configuration parameters.
  4. The network controller of any of claims 1 to 3, wherein the instructions, when executed by the at least one processor, cause the network controller to further perform:
    subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and
    receiving from the at least one network device the report of the incoming time sensitive communication related event.
  5. The network controller of claim 4, wherein the instructions, when executed by the at least one processor, cause the network controller to further perform:
    determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller;
    determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and
    transmitting to the at least one network device, the determined radio resource reservation instruction which comprises the initial value for the local burst arrival time.
  6. The network controller of claim 5, wherein the initial value for the local burst arrival time is determined based on at least one of the following: the report of the incoming time sensitive communication related event which corresponds to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
  7. The network controller of claim 5 or 6, wherein the determined radio resource reservation instruction further comprises:
    one or more cross-layer resource configuration parameters.
  8. The network controller of any of claims 5 to 7, wherein the determined radio resource reservation instruction is transmitted via an E2 interface.
  9. The network controller of any of claims 1 to 8, wherein the updated radio resource  reservation instruction is transmitted via an E2 interface.
  10. The network controller of any of claims 1 to 9, wherein the network controller is a near real time radio access network intelligent controller.
  11. The network controller of any of claims 1 to 10, wherein the network controller is within one of the one or more network devices.
  12. A network device, comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the network device at least to perform:
    receiving from a network controller, an updated radio resource reservation instruction which comprises an updated value for a local burst arrival time; and
    reconfiguring a radio resource according to the updated radio resource reservation instruction.
  13. The network device of claim 12, wherein the instructions, when executed by the at least one processor, cause the network device to further perform:
    receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which corresponds to a time sensitive communication quality of service flow;
    performing a time sensitive communication related event monitoring; and
    reporting to the network controller, the time sensitive communication related event monitoring result.
  14. The network device of claim 12 or 13, wherein the updated radio resource reservation instruction further comprises at least one of the following:
    a time range of a distribution of values for the local burst arrival time; or
    one or more cross-layer resource configuration parameters.
  15. The network device of claim 14, wherein the instructions, when executed by the at least one processor, cause the network device to further perform:
    transmitting to a core network, the updated value for the local burst arrival time.
  16. The network device of any of claims 12 to 15, wherein the instructions, when executed by the at least one processor, cause the network device to further perform:
    receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which corresponds to a time sensitive communication quality of service flow; and
    transmitting to the network controller, the report of the incoming time sensitive communication related event.
  17. The network device of claim 16, wherein the report of the incoming time sensitive communication related event comprises at least one of the following:
    a packet data unit session identifier;
    a quality of service flow identifier;
    time sensitive communication assistance information; or
    one or more quality of service parameters.
  18. The network device of any of claims 12 to 17, wherein the instructions, when executed by the at least one processor, cause the network device to further perform:
    receiving from the network controller, a radio resource reservation instruction which comprises an initial value for a local burst arrival time; and
    configuring the radio resource according to the radio resource reservation instruction.
  19. The network device of claim 18, wherein the radio resource reservation instruction further comprises:
    one or more cross-layer resource configuration parameters.
  20. The network device of claim 19, wherein the instructions, when executed by the at least one processor, cause the network device to further perform:
    transmitting to a core network, the initial value for the local burst arrival time.
  21. The network device of any of claims 18 to 21, wherein the radio resource reservation instruction is received via an E2 interface.
  22. The network device of any of claims 12 to 21, wherein the updated radio resource reservation instruction is received via an E2 interface.
  23. The network device of any of claims 12 to 22, wherein the network controller is a near real time radio access network intelligent controller.
  24. The network device of any of claims 12 to 23, wherein the network controller is within the network device.
  25. The network device of any of claims 12 to 23, wherein the network controller is within another network device controlled by the network controller.
  26. A method performed by a network controller, comprising:
    updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller;
    updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and
    transmitting to the at least one network device, the updated radio resource reservation instruction which comprises the updated value for the local burst arrival time.
  27. The method of claim 26, further comprising:
    subscribing to at least one network device for the report of the time sensitive communication  related event monitoring result, which corresponds to a time sensitive communication quality of service flow,
    the updating of the value for the local burst arrival time comprising: calculating the value for the local burst arrival time based on at least one of the following: the reported time sensitive communication related event monitoring result, radio access network status, data buffer length, received downlink data packet age, received uplink packet access request age, or radio access network performance information.
  28. The method of claim 26 or 27, wherein the updated radio resource reservation instruction further comprises at least one of the following:
    a time range of a distribution of values for the local burst arrival time; or
    one or more cross-layer resource configuration parameters.
  29. The method of any of claims 26 to 28, further comprising:
    subscribing a report of an incoming time sensitive communication related event from the one or more network devices; and
    receiving from the at least one network device the report of the incoming time sensitive communication related event.
  30. The method of claim 29, further comprising:
    determining an initial value for the local burst arrival time in response to a report of an incoming time sensitive communication related event from the at least one network device of the one or more network devices controlled by the network controller;
    determining the radio resource reservation instruction based on the initial value for the local burst arrival time; and
    transmitting to the at least one network device, the determined radio resource reservation instruction which comprises the initial value for the local burst arrival time.
  31. The method of claim 30, wherein the initial value for the local burst arrival time is determined based on at least one of the following: the report of the incoming time sensitive  communication related event which corresponds to a time sensitive communication quality of service flow, radio access network status, or radio access network performance information.
  32. The method of claim 30 or 31, wherein the determined radio resource reservation instruction further comprises:
    one or more cross-layer resource configuration parameters.
  33. The method of any of claims 30 to 32, wherein the determined radio resource reservation instruction is transmitted via an E2 interface.
  34. The method of any of claims 26 to 33, wherein the updated radio resource reservation instruction is transmitted via an E2 interface.
  35. The method of any of claims 26 to 34, wherein the network controller is a near real time radio access network intelligent controller.
  36. The method of any of claims 26 to 35, wherein the network controller is within one of the one or more network devices.
  37. A method performed by a network device, comprising:
    receiving from a network controller, an updated radio resource reservation instruction which comprises an updated value for a local burst arrival time; and
    reconfiguring a radio resource according to the updated radio resource reservation instruction.
  38. The method of claim 37, further comprising:
    receiving from the network controller, a subscription for a report of a time sensitive communication related event monitoring result, which corresponds to a time sensitive communication quality of service flow;
    performing a time sensitive communication related event monitoring; and
    reporting to the network controller, the time sensitive communication related event monitoring result.
  39. The method of claim 37 or 38, wherein the updated radio resource reservation instruction further comprises at least one of the following:
    a time range of a distribution of values for the local burst arrival time; or
    one or more cross-layer resource configuration parameters.
  40. The method of claim 39, further comprising:
    transmitting to a core network, the updated value for the local burst arrival time.
  41. The method of any of claims 37 to 40, further comprising:
    receiving from the network controller, a subscription for a report of an incoming time sensitive communication related event which corresponds to a time sensitive communication quality of service flow; and
    transmitting to the network controller, the report of the incoming time sensitive communication related event.
  42. The method of claim 41, wherein the report of the incoming time sensitive communication related event comprises at least one of the following:
    a packet data unit session identifier;
    a quality of service flow identifier;
    time sensitive communication assistance information; or
    one or more quality of service parameters.
  43. The method of any of claims 37 to 42, further comprising:
    receiving from the network controller, a radio resource reservation instruction which comprises an initial value for a local burst arrival time; and
    configuring the radio resource according to the radio resource reservation instruction.
  44. The method of claim 43, wherein the radio resource reservation instruction further comprises:
    one or more cross-layer resource configuration parameters.
  45. The method of claim 44, further comprising:
    transmitting to a core network, the initial value for the local burst arrival time.
  46. The method of any of claims 43 to 46, wherein the radio resource reservation instruction is received via an E2 interface.
  47. The method of any of claims 37 to 46, wherein the updated radio resource reservation instruction is received via an E2 interface.
  48. The method of any of claims 37 to 47, wherein the network controller is a near real time radio access network intelligent controller.
  49. The method of any of claims 37 to 48, wherein the network controller is within the network device.
  50. The method of any of claims 37 to 48, wherein the network controller is within another network device controlled by the network controller.
  51. An apparatus as a network controller, comprising:
    means for updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller;
    means for updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and
    means for transmitting to the at least one network device, the updated radio resource reservation instruction which comprises the updated value for the local burst arrival time.
  52. The apparatus of claim 51, further comprising means for performing the method of any of claims 27 to 36.
  53. An apparatus as a network device, comprising:
    means for receiving from a network controller, an updated radio resource reservation instruction which comprises an updated value for a local burst arrival time; and
    means for reconfiguring a radio resource according to the updated radio resource reservation instruction.
  54. The apparatus of claim 53, further comprising means for performing the method of any of claims 38 to 50.
  55. A computer readable medium comprising program instructions that, when executed by a network controller, cause the network controller to at least perform:
    updating a value for a local burst arrival time in response to a report of a time sensitive communication related event monitoring result from at least one network device of one or more network devices controlled by the network controller;
    updating a radio resource reservation instruction based on the updated value for the local burst arrival time; and
    transmitting to the at least one network device, the updated radio resource reservation instruction which comprises the updated value for the local burst arrival time.
  56. The computer readable medium of claim 55, further comprising instructions that, when executed by the network controller, cause the network controller to perform the method of any of claims 27 to 36.
  57. A computer readable medium comprising program instructions that, when executed by a network device, cause the network device to at least perform:
    receiving from a network controller, an updated radio resource reservation instruction which  comprises an updated value for a local burst arrival time; and
    reconfiguring a radio resource according to the updated radio resource reservation instruction.
  58. The computer readable medium of claim 57, further comprising instructions that, when executed by the network device, cause the network device to perform the method of any of claims 38 to 50.
PCT/CN2022/123227 2022-09-30 2022-09-30 Devices, methods, apparatuses, and computer readable media for radio resource reservation WO2024065661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123227 WO2024065661A1 (en) 2022-09-30 2022-09-30 Devices, methods, apparatuses, and computer readable media for radio resource reservation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123227 WO2024065661A1 (en) 2022-09-30 2022-09-30 Devices, methods, apparatuses, and computer readable media for radio resource reservation

Publications (1)

Publication Number Publication Date
WO2024065661A1 true WO2024065661A1 (en) 2024-04-04

Family

ID=90475621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123227 WO2024065661A1 (en) 2022-09-30 2022-09-30 Devices, methods, apparatuses, and computer readable media for radio resource reservation

Country Status (1)

Country Link
WO (1) WO2024065661A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046567A1 (en) * 2020-08-07 2022-02-10 Nokia Technologies Oy Synchronization of time sensitive communication hold-and-forward buffers with time sensitive communication assistance information
WO2022084419A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Providing burst end time in time sensitive communication assistance information
WO2022167364A1 (en) * 2021-02-08 2022-08-11 Nokia Solutions And Networks Oy Optimization of deterministic and non-deterministic traffic in radio-access network (ran)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046567A1 (en) * 2020-08-07 2022-02-10 Nokia Technologies Oy Synchronization of time sensitive communication hold-and-forward buffers with time sensitive communication assistance information
WO2022084419A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Providing burst end time in time sensitive communication assistance information
WO2022167364A1 (en) * 2021-02-08 2022-08-11 Nokia Solutions And Networks Oy Optimization of deterministic and non-deterministic traffic in radio-access network (ran)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on timing resiliency and TSC and URLLC enhancements (Release 18)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.700-25, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V0.4.0, 6 September 2022 (2022-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 93, XP052210672 *

Similar Documents

Publication Publication Date Title
CN111865830B (en) Processing method, device and system for time delay sensitive network service TSN
EP3925096A1 (en) 5g system support for virtual tsn bridge management, qos mapping and tsn qbv scheduling
EP3912322B1 (en) Tsn-cellular communication system qos mapping and ran optimization based on tsn traffic pattern related information
CN111034338A (en) Unified RLF detection, multi-beam RLM in NR and full diversity BFR mechanism
CN112997456B (en) Method, apparatus and system for meeting time control requirements in wireless communications
CN114009144B (en) Packet delay budget determination for TSN traffic forwarding
CN113950852A (en) TSN and 5GS QoS mapping-user plane based method
CN110876159B (en) Method and device for improving time delay certainty
US20210234648A1 (en) Method and apparatus for distribution and synchronization of radio resource assignments in a wireless communication system
US11997538B2 (en) Communication method and communications apparatus
JP2023113823A (en) Method, device, and system for time mapping in wireless communication
CN112087777B (en) MDBV (minimum drive buffer volume) determination method, device and system
CN111510945A (en) Method and device for reporting terminal capability
JP2023501555A (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
WO2024065661A1 (en) Devices, methods, apparatuses, and computer readable media for radio resource reservation
CN111526583B (en) Resource allocation method, resource acquisition method, network device and terminal
CN115836489A (en) Apparatus, method and computer program
CN113677005A (en) Communication method and device
CN114788401A (en) Communication method and device
US20220217564A1 (en) Relaxed inter-frequency measurements
WO2023216170A1 (en) Deterministic communication with dual-connectivity
US20230254859A1 (en) Downlink Transmission Method and Communication Apparatus
EP4381807A1 (en) User equipment trajectory-assisted handover
CN117560693A (en) Communication method and device
CN114731332A (en) Mitigation of inter-stream delay jitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960283

Country of ref document: EP

Kind code of ref document: A1