WO2024065539A1 - 一种上行波形的配置方法、装置、设备及存储介质 - Google Patents

一种上行波形的配置方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024065539A1
WO2024065539A1 PCT/CN2022/122932 CN2022122932W WO2024065539A1 WO 2024065539 A1 WO2024065539 A1 WO 2024065539A1 CN 2022122932 W CN2022122932 W CN 2022122932W WO 2024065539 A1 WO2024065539 A1 WO 2024065539A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
waveform
dci
indication field
uplink transmission
Prior art date
Application number
PCT/CN2022/122932
Other languages
English (en)
French (fr)
Inventor
高雪媛
江小威
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/122932 priority Critical patent/WO2024065539A1/zh
Publication of WO2024065539A1 publication Critical patent/WO2024065539A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a configuration method, device, equipment and storage medium for an uplink waveform.
  • uplink coverage has always been one of the bottlenecks of system performance, which will affect signal quality and user experience. Operators, including, have a strong demand for uplink coverage enhancement.
  • CP-OFDM Cyclic Prefix Orthogonal Frequency-Division Multiplexing
  • DFTS-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the CP-OFDM waveform or DFTS-OFDM waveform used in the terminal uplink transmission is semi-statically configured through Radio Resource Control (RRC) signaling. Therefore, if switching between the CP-OFDM waveform and the DFTS-OFDM waveform is performed, RRC reconfiguration is required, and the communication performance is low.
  • RRC Radio Resource Control
  • the present disclosure provides a configuration method, device, equipment and storage medium for an uplink waveform.
  • a method for configuring an uplink waveform is provided, which is applied to a network device, comprising: sending first downlink control information DCI, the first DCI including waveform indication information, the waveform indication information being used to indicate an uplink transmission waveform used by a terminal for physical uplink shared channel PUSCH transmission; sending a second DCI, the second DCI being scheduled using an uplink transmission waveform indicated by the waveform indication information.
  • a method for configuring an uplink waveform is provided.
  • the method is applied to a terminal, comprising: receiving first downlink control information DCI, the first DCI including waveform indication information, the waveform indication information being used to indicate an uplink transmission waveform used by the terminal for physical uplink shared channel PUSCH transmission; receiving a second DCI, the second DCI using the uplink transmission waveform indicated by the waveform indication information for scheduling.
  • a device for configuring an uplink waveform which is configured in a network device and includes: a sending module, used to send a first downlink control information DCI, the first DCI including waveform indication information, the waveform indication information is used to indicate an uplink sending waveform used by a terminal for physical uplink shared channel PUSCH transmission; the sending module is also used to send a second DCI, and the second DCI is scheduled using the uplink sending waveform indicated by the waveform indication information.
  • a device for configuring an uplink waveform which is configured in a terminal and includes: a receiving module, used to receive first downlink control information DCI, the first DCI including waveform indication information, the waveform indication information is used to indicate an uplink sending waveform used by the terminal for physical uplink shared channel PUSCH transmission; the receiving module is also used to receive a second DCI, and the second DCI uses the uplink sending waveform indicated by the waveform indication information for scheduling.
  • an uplink waveform configuration device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute any one of the methods in the first aspect.
  • an uplink waveform configuration device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute any one of the methods in the second aspect.
  • a non-temporary computer-readable storage medium is provided.
  • the network device When instructions in the storage medium are executed by a processor of a network device, the network device is enabled to execute any one of the methods in the first aspect.
  • a non-temporary computer-readable storage medium When instructions in the storage medium are executed by a processor of a terminal, the terminal is enabled to execute any one of the methods in the second aspect.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: by sending a first DCI to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram showing a PAPR with different waveforms according to an exemplary embodiment.
  • Fig. 3 is a flow chart of a method for configuring an uplink waveform according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram of a DCI structure for data scheduling according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram of a DCI structure without data scheduling according to an exemplary embodiment.
  • Figure 6 is a schematic diagram of a GC DCI structure according to an exemplary embodiment.
  • Figure 7 is a schematic diagram of another GC DCI structure according to an exemplary embodiment.
  • Figure 8 is a schematic diagram of another GC DCI structure according to an exemplary embodiment.
  • Fig. 9 is a flow chart of another method for configuring an uplink waveform according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram of a device for configuring an uplink waveform according to an exemplary embodiment.
  • Fig. 11 is a schematic diagram of another device for configuring an uplink waveform according to an exemplary embodiment.
  • Fig. 12 is a schematic diagram of a device for configuring an uplink waveform according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram of another device for configuring an uplink waveform according to an exemplary embodiment.
  • the communication method involved in the present disclosure can be applied to the wireless communication system 100 shown in Figure 1.
  • the network system may include a network device 110 and a terminal 120.
  • the wireless communication system shown in Figure 1 is only for schematic illustration, and the wireless communication system may also include other network devices, for example, core network devices, wireless relay devices, and wireless backhaul devices, which are not shown in Figure 1.
  • the embodiment of the present disclosure does not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system of the embodiment of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can adopt different communication technologies, such as Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency-Division Multiple Access (OFDMA), Single Carrier FDMA (SC-FDMA), and Carrier Sense Multiple Access with Collision Avoidance.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • Carrier Sense Multiple Access with Collision Avoidance According to the capacity, rate, delay and other factors of different networks, networks can be divided into 2G (English: Generation) networks, 3G networks, 4G networks or future evolution networks, such as the 5th Generation Wireless Communication System (5G) network. 5G
  • the network device 110 involved in the present disclosure may also be referred to as a wireless access network device.
  • the wireless access network device may be: a base station, an evolved Node B (eNB), a home base station, an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay node, a wireless backhaul node or a transmission point (TP), etc. It may also be a gNB in an NR system, or it may also be a component or part of a device constituting a base station, etc.
  • the network device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the terminal 120 involved in the present disclosure may also be referred to as a terminal device, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., which is a device that provides voice and/or data connectivity to users.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals are: a smart phone (Mobile Phone), a pocket computer (Pocket Personal Computer, PPC), a handheld computer, a personal digital assistant (Personal Digital Assistant, PDA), a laptop computer, a tablet computer, a wearable device, or a vehicle-mounted device, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • the network device 110 and the terminal 120 may use any feasible wireless communication technology to achieve mutual data transmission.
  • the transmission channel corresponding to the data sent by the network device 110 to the terminal 120 is called a downlink channel (DL)
  • the transmission channel corresponding to the data sent by the terminal 120 to the network device 110 is called an uplink channel (UL).
  • DL downlink channel
  • UL uplink channel
  • the network device involved in the embodiments of the present disclosure may be a base station.
  • the network device may also be any other possible network device
  • the terminal may be any possible terminal, which is not limited by the present disclosure.
  • PUSCH physical uplink shared channel
  • the configuration parameter is configured to be enabled, the DFTS-OFDM waveform is configured; when the configuration parameter is configured to be disabled, the CP-OFDM waveform is configured.
  • the DFTS-OFDM waveform has a lower peak to average power ratio (PAPR). Therefore, the DFTS-OFDM waveform is more suitable for scenarios with limited uplink coverage due to its lower PAPR characteristics. For example, in the same frequency range (FR) 2, the uplink coverage problem of cell edge users is more prominent.
  • PAPR peak to average power ratio
  • the PAPR under the DFTS-OFDM waveform is about 3 decibels (dB) lower than the PAPR of the CP-OFDM waveform.
  • OFDM in the figure refers to the above-mentioned CP-OFDM waveform.
  • the realization indicates that quadrature phase shift keying (QPSK) is used for modulation, and the dotted line indicates that 16 quadrature amplitude modulation (QAM) is used for modulation.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • the PAPR is almost the same.
  • the difference is about 0.8dB.
  • the CP-OFDM waveform is about 3.4dB
  • the DFTS-OFDM waveform QPSK modulation is about 1.0dB
  • the DFTS-OFDM waveform 16QAM modulation is about 1.8dB. It can be understood that since the PAPR is almost the same when the CP-OFDM waveform is modulated using QPSK or 16QAM, the modulation method used by the CP-OFDM waveform does not need to be distinguished.
  • the present disclosure provides a method for configuring an uplink waveform, by sending a first downlink control information (DCI) to instruct a terminal to use an uplink transmission waveform for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • DCI downlink control information
  • FIG3 is a flow chart of a method for configuring an uplink waveform according to an exemplary embodiment. As shown in FIG3 , the method is applied to a network device and may include the following steps:
  • step S11 a first DCI is sent.
  • the network device may send a first DCI, wherein the first DCI includes waveform indication information, wherein the waveform indication information is used to indicate an uplink transmission waveform used by a terminal for PUSCH transmission.
  • the waveform indication information indicates an uplink transmission waveform used by the terminal for PUSCH transmission, which may be a CP-OFDM waveform or a DFTS-OFDM waveform.
  • step S12 a second DCI is sent.
  • the network device may send a second DCI.
  • the second DCI is scheduled using an uplink transmission waveform indicated by the waveform indication information.
  • the second DCI sent by the network device may include multiple information fields or indication fields.
  • the payloads corresponding to different information fields or indication fields may be different based on different waveforms.
  • some information fields or indication fields may be scheduled using the payload corresponding to the waveform indicated by the waveform indication information. This reduces the overhead of the second DCI.
  • the present disclosure sends a first DCI to indicate an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing uplink coverage.
  • the first DCI may be a DCI for data scheduling, and the waveform indication information is carried in a first newly added information indication field and/or a first redefined information indication field in the first DCI.
  • the network device sending the first DCI may be the network device sending DCI for data scheduling.
  • the DCI for data scheduling may include a first new information indication field and/or a first redefined information indication field.
  • the first new information indication field and/or the first redefined information indication field may be used to carry waveform indication information.
  • Figure 4 shows a possible schematic diagram of the structure of a DCI for data scheduling.
  • the DCI for data scheduling includes a first newly added information indication field and/or a first redefined information indication field.
  • the DCI for data scheduling can carry waveform indication information through the first newly added information indication field and/or the first redefined information indication field.
  • the present disclosure carries waveform indication information in the DCI for data scheduling to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first newly added information indication field is an information indication field newly added in the DCI for data scheduling and used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first newly added information indication field may be an indication field newly added to the DCI for data scheduling.
  • the indication field is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the DCI for data scheduling involved in the present disclosure may include N+1 indication fields. That is, compared with the original DCI for data scheduling, the DCI for data scheduling disclosed in the present disclosure adds a first newly added information indication field.
  • the newly added first newly added information indication field can be used to carry waveform indication information.
  • the first newly added information indication field can be a 1-bit indication field, which is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the first newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the first newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform. It can be understood that the present disclosure does not limit the correspondence between the specific numerical values in the first newly added information indication field and the corresponding waveform. It can be adjusted arbitrarily according to actual conditions.
  • the present disclosure adds an information indication field for an uplink transmission waveform used to indicate the terminal to use for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the first redefined information indication field is also used to indicate first other information, and there is a predefined explicit or implicit correspondence between the first other information and the uplink transmission waveform, and the first other information is information other than indicating the uplink transmission waveform.
  • the first redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the indication field may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first redefined information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first redefined information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the first redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the existing indication field may be extended so that the existing indication field carries waveform indication information.
  • the existing indication field in the DCI for data scheduling may be extended, and the extended existing indication field may be used as the first redefined information indication field.
  • the DCI for data scheduling may include an indication field for indicating the A information.
  • the indication field of the A information may be used to indicate the first other information, for example, to indicate the A information.
  • the A information indication field may be extended so that different parts of the A information may correspond to different waveforms. For example, a part of the A information may correspond to a CP-OFDM waveform, and another part of the A information may correspond to a DFTS-OFDM waveform.
  • Table 1 shows a schematic table of a first redefined information indication field indicating an uplink transmission waveform.
  • First redefinition information indication field Uplink sending waveform A1 CP-OFDM Waveform A2 CP-OFDM Waveform A3 CP-OFDM Waveform A4 DFTS-OFDM Waveform A5 DFTS-OFDM Waveform A6 DFTS-OFDM Waveform
  • A1, A2 and A3 can be the existing A information in the first redefined information indication field.
  • A1, A2 and A3 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information can be extended, such as A4, A5 and A6, and A4, A5 and A6 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information can be A information that is reserved in advance but not used.
  • Table 2 shows another schematic table of an uplink transmission waveform indicated by a first redefined information indication field.
  • A1, A2 and A3 can be the existing A information in the first redefined information indication field.
  • A1, A2 and A3 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information can be extended, such as A4 and A5, and A4 and A5 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information can be A information that is reserved in advance but not used.
  • Table 3 shows another schematic table of an uplink transmission waveform indicated by a first redefined information indication field.
  • A1, A2 and A3 can be the existing A information in the first redefined information indication field.
  • A1 and A2 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information can be extended, such as A4, and A3 and A4 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information can be A information that is reserved in advance but not used.
  • Table 4 shows a schematic table of another first redefined information indication field indicating an uplink transmission waveform.
  • A1, A2 and A3 can be the existing A information in the first redefined information indication field.
  • A1 and A2 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information can be extended, such as A4 and A5, and A3, A4 and A5 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information can be A information that is reserved in advance but not used.
  • the number of A information corresponding to different waveforms in the first redefined information indication field may be the same or different.
  • the uplink transmission waveform used by the terminal for PUSCH transmission indicated in the above Tables 1, 2, 3 and 4 may be an explicit indication or an implicit indication.
  • the explicit indication means that when configuring the first redefined information indication field, that is, configuring the A information, the indication information corresponding to the A information and the different waveforms is added.
  • the uplink transmission waveform used by the terminal for PUSCH transmission is directly indicated by the waveform indication information.
  • the value in the first redefined information indication field may correspond to transform precoding, and indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on the transform precoding in RRC being enable or disable.
  • the correspondence between the A information and the waveform can be preset, and the specific A information carried in the first redefined information indication field, combined with the pre-set correspondence between the A information and the waveform, can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first redefined information indication field can carry A3 information.
  • the waveform corresponding to the A3 information is pre-configured as a CP-OFDM waveform.
  • it can be implicitly indicated that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the corresponding information may have been configured to correspond to different waveforms.
  • Such information may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the DCI for data scheduling may include an indication field for indicating B information.
  • the indication field of the B information may be used to indicate the first other information, for example, to indicate the B information. It is assumed that the B information has been previously related to the waveform, that is, different parts of the B information may correspond to different waveforms. For example, a part of the B information may correspond to a CP-OFDM waveform, and another part of the B information may correspond to a DFTS-OFDM waveform.
  • Table 5 shows another schematic table of an uplink transmission waveform indicated by a first redefined information indication field.
  • B1, B2, B3, B4, B5 and B6 can be the B information already in the first redefined information indication field.
  • B1, B2 and B3 have a pre-established relationship with a certain waveform, such as a CP-OFDM waveform.
  • B4, B5 and B6 have a pre-established relationship with another waveform, such as a DFTS-OFDM waveform.
  • the existing B information in the first redefined information indication field and the pre-established relationship between the B information and the waveform can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is an indication field corresponding to the first other information.
  • the information corresponding to the first redefined information indication field may be a code point (code points), such as 0, 1, 2, 3, 4, etc.
  • the code point may be the code point corresponding to the first other information.
  • Different code point values may correspond to different information in the corresponding indication field. For example, assuming that the first redefined information indication field corresponds to information A, code point 0 may correspond to A1, code point 1 may correspond to A2, and so on. Different code point values may then correspond to different uplink transmission waveforms used by the indication terminal for PUSCH transmission.
  • the information corresponding to the first redefined information indication field may be first other information, wherein the first other information is any information other than the waveform.
  • the first redefined information indication field may directly carry the corresponding A information to correspond to the uplink transmission waveform used by the terminal for PUSCH transmission.
  • Table 1, Table 2, Table 3, Table 4, or Table 5 is used for indication.
  • the present disclosure can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information or code point contained in the indication field of the first other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first other information is bandwidth part (BWP) indication information or a code point corresponding to BWP; and/or, the first other information is demodulation reference signal (DMRS) port indication information or a code point corresponding to the DMRS port.
  • BWP bandwidth part
  • DMRS demodulation reference signal
  • the first other information may be BWP indication information, or may be a code point corresponding to BWP, so that the DCI for data scheduling may indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on the BWP indication information or the code point corresponding to BWP.
  • the first other information may be DMRS port indication information, or may be a code point corresponding to a DMRS port, so that the DCI for data scheduling may indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on the DMRS port indication information or the code point corresponding to the DMRS port.
  • the present invention can explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the BWP or DMRS port, so that the DCI for data scheduling can use the indication field corresponding to the first other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is a DCI without data scheduling
  • the waveform indication information is carried in the second newly added information indication field and/or the second redefined information indication field in the first DCI.
  • the network device sending the first DCI may be the network device sending DCI without data scheduling.
  • the DCI without data scheduling may include a second newly added information indication field and/or a second redefined information indication field.
  • the second newly added information indication field and/or the second redefined information indication field may be used to carry waveform indication information.
  • the DCI without data scheduling is a DCI for semi-persistent scheduling (SPS) release and a DCI for beam indication.
  • SPS semi-persistent scheduling
  • the DCI without data scheduling may include DCI 1_1 and DCI 1_2.
  • FIG5 shows a possible schematic diagram of the structure of a DCI without data scheduling.
  • the DCI without data scheduling includes a second newly added information indication field and/or a second redefined information indication field.
  • the DCI without data scheduling can carry waveform indication information through the second newly added information indication field and/or the second redefined information indication field.
  • R17 introduced a DCI method for beam indication, using DCI without data scheduling to indicate beam information.
  • a hybrid automatic repeat request-ack (HARQ-ACK) feedback mechanism is also considered for DCI.
  • HARQ-ACK hybrid automatic repeat request-ack
  • the ACK/NACK feedback information of whether the beam indication information is successfully decoded will be carried in the ACK/NACK feedback of the physical downlink shared channel (PDSCH) scheduled by it.
  • PDSCH physical downlink shared channel
  • the ACK/NACK feedback mechanism during SPS PDSCH release is reused.
  • the cyclic redundancy check (CRC) of DCI 1_1/1_2 without scheduling information also needs to be scrambled with the configured scheduling radio network temporary identifier (CS-RNTI).
  • CS-RNTI configured scheduling radio network temporary identifier
  • the information field of the DCI used for SPS release can be set with a special number value for beam indication.
  • Table 6 shows a configuration table of the indication field in the beam indication DCI.
  • NDI is a new data indicator. It can be understood that the specific configuration in Table 6 can refer to the relevant technology, and this disclosure will not repeat it.
  • the present disclosure uses a DCI without data scheduling to carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the second newly added information indication field is an information indication field newly added in the DCI without data scheduling and used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second newly added information indication field may be an indication field newly added to the DCI for data scheduling.
  • the indication field is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the DCI without data scheduling involved in the present disclosure may include N+1 indication fields. That is, compared with the original DCI without data scheduling, the DCI without data scheduling in the present disclosure has a new second new information indication field.
  • the new second new information indication field can be used to carry waveform indication information.
  • the second newly added information indication field can be a 1-bit indication field, which is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the second newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the second newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform. It can be understood that the present disclosure does not limit the correspondence between the specific numerical values in the second newly added information indication field and the corresponding waveform. It can be adjusted arbitrarily according to actual conditions.
  • the present disclosure adds an information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the second redefined information indication field is also used to indicate second other information, and the second other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the second other information is information other than indicating the uplink transmission waveform.
  • the second redefined information indication field may be an existing indication field in a DCI without data scheduling.
  • the indication field may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second redefined information indication field in a DCI without data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second redefined information indication field in a DCI without data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the second redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the existing indication field may be extended so that the existing indication field carries waveform indication information.
  • the existing indication field in the DCI without data scheduling may be extended, and the extended existing indication field may be used as the second redefined information indication field.
  • a DCI without data scheduling may include an indication field for indicating C information.
  • the indication field of C information may be used to indicate second other information, such as indicating C information.
  • the C information indication field may be extended so that different parts of C information may correspond to different waveforms. For example, a part of C information may correspond to a CP-OFDM waveform, and another part of C information may correspond to a DFTS-OFDM waveform.
  • Table 7 shows a schematic table of a second redefined information indication field indicating an uplink transmission waveform.
  • Second redefinition information indication field Uplink sending waveform C1 CP-OFDM Waveform C2 CP-OFDM Waveform C3 CP-OFDM Waveform C4 DFTS-OFDM Waveform C5 DFTS-OFDM Waveform C6 DFTS-OFDM Waveform
  • C1, C2 and C3 can be the existing C information in the second redefined information indication field.
  • C1, C2 and C3 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information can be extended, such as C4, C5 and C6, and C4, C5 and C6 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information can be C information that is reserved in advance but not used. Or it can be undefined C information.
  • Table 8 shows another schematic table of an uplink transmission waveform indicated by a second redefined information indication field.
  • Second redefinition information indication field Uplink sending waveform C1 CP-OFDM Waveform C2 CP-OFDM Waveform C3 CP-OFDM Waveform C4 DFTS-OFDM Waveform C5 DFTS-OFDM Waveform
  • C1, C2 and C3 can be the existing C information in the second redefined information indication field.
  • C1, C2 and C3 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information can be extended, such as C4 and C5, and C4 and C5 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information can be C information that is reserved in advance but not used. Or it can be undefined C information.
  • Table 9 shows a schematic table of another second redefined information indication field indicating an uplink transmission waveform.
  • Second redefinition information indication field Uplink sending waveform C1 CP-OFDM Waveform C2 CP-OFDM Waveform C3 DFTS-OFDM Waveform C4 DFTS-OFDM Waveform
  • C1, C2 and C3 can be the existing C information in the second redefined information indication field.
  • C1 and C2 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information can be extended, such as C4, and C3 and C4 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information can be C information that is reserved in advance but not used. Or it can be undefined C information.
  • Table 10 shows a schematic table of another second redefined information indication field indicating an uplink transmission waveform.
  • Second redefinition information indication field Uplink sending waveform C1 CP-OFDM Waveform C2 CP-OFDM Waveform C3 DFTS-OFDM Waveform C4 DFTS-OFDM Waveform C5 DFTS-OFDM Waveform
  • C1, C2 and C3 can be the existing C information in the second redefined information indication field.
  • C1 and C2 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information can be extended, such as C4 and C5, and C3, C4 and C5 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information can be C information that is reserved in advance but not used. Or it can be undefined C information.
  • the number of C information corresponding to different waveforms in the second redefined information indication field can be the same or different.
  • the uplink transmission waveform used by the terminal for PUSCH transmission indicated in the above Tables 7, 8, 9 and 10 may be an explicit indication or an implicit indication.
  • the explicit indication means that when configuring the second redefined information indication field, that is, when configuring the C information, the indication information corresponding to the C information and different waveforms is added.
  • the uplink transmission waveform used by the terminal for PUSCH transmission is directly indicated by the waveform indication information.
  • the value in the second redefined information indication field may correspond to transform precoding, and indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on whether the transform precoding in RRC is enable or disable.
  • the correspondence between the C information and the waveform can be preset, and the specific C information carried in the second redefined information indication field, combined with the pre-set correspondence between the C information and the waveform, can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second redefined information indication field can carry C3 information.
  • the waveform corresponding to the C3 information is pre-configured as a CP-OFDM waveform. Based on the C3 information carried in the second redefined information indication field, it is possible to implicitly indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second redefined information indication field may be an existing indication field in a DCI without data scheduling.
  • corresponding information may have been configured corresponding to different waveforms. Such information may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • Such a second redefined information indication field may be an indication field that has been defined or used.
  • a DCI without data scheduling may include an indication field for indicating D information.
  • the indication field of the D information may be used to indicate the first other information, for example, to indicate the D information. It is assumed that the D information has been previously related to the waveform, that is, different parts of the D information may correspond to different waveforms. For example, a part of the D information may correspond to a CP-OFDM waveform, and another part of the D information may correspond to a DFTS-OFDM waveform.
  • Table 11 shows another schematic table of an uplink transmission waveform indicated by a second redefined information indication field.
  • Second redefinition information indication field Uplink sending waveform D1 CP-OFDM Waveform D2 CP-OFDM Waveform D3 CP-OFDM Waveform D4 DFTS-OFDM Waveform D5 DFTS-OFDM Waveform D6 DFTS-OFDM Waveform
  • D1, D2, D3, D4, D5 and D6 can be the existing D information in the second redefined information indication field.
  • D1, D2 and D3 have a pre-established relationship with a certain waveform, such as a CP-OFDM waveform.
  • D4, D5 and D6 have a pre-established relationship with another waveform, such as a DFTS-OFDM waveform.
  • the existing D information in the second redefined information indication field and the pre-established relationship between D information and the waveform can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is an indication field corresponding to the second other information.
  • the information corresponding to the second redefined information indication field may be a code point, such as 0, 1, 2, 3, 4, etc.
  • the code point may be a code point corresponding to the second other information.
  • Different code point values may correspond to different information in the corresponding indication field. For example, assuming that the second redefined information indication field corresponds to C information, code point 0 may correspond to C1, code point 1 may correspond to C2, and so on. Different code point values may then correspond to different uplink transmission waveforms used by the indication terminal for PUSCH transmission.
  • the information corresponding to the second redefined information indication field may be second other information, wherein the second other information is any information other than the waveform.
  • the second other information is C information
  • the second redefined information indication field may directly carry the corresponding C information to correspond to the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the waveform correspondence shown in Table 7, Table 8, Table 9, Table 10 or Table 11 is used for indication.
  • the present disclosure can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information or code point contained in the indication field of the second other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second other information is DMRS sequence initialization information (sequence initialization) or a code point corresponding to the DMRS sequence initialization information; and/or, the second other information is time domain resource allocation (time domain resource allocation, TDRA) indication information or a code point corresponding to TDRA.
  • DMRS sequence initialization information sequence initialization
  • TDRA time domain resource allocation
  • the second other information may be DMRS sequence initialization information or a code point corresponding to the DMRS sequence initialization information
  • the indication field corresponding to the second other information may be DMRS sequence initialization.
  • the indication field of DMRS sequence initialization uses 1 bit to carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second other information may be TDRA indication information or a code point corresponding to TDRA.
  • TDRA may be pre-configured with a corresponding relationship with a waveform, and then based on the TDRA indication information or the code point corresponding to TDRA, the terminal is instructed to use an uplink transmission waveform for PUSCH transmission.
  • the present invention can use DMRS sequence initialization information or TDRA to explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can use the indication field corresponding to the second other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is a group common (GC) DCI
  • the waveform indication information is carried in the GC DCI.
  • the first DCI sent by the network device may be a GC DCI sent by the network device.
  • the waveform indication information may be carried in the GC DCI sent by the network device.
  • the GC DCI includes an indication field that carries waveform indication information.
  • the present invention uses GC DCI to carry waveform indication information to instruct the terminal to use an uplink transmission waveform for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI is the group control indication information of the uplink transmission waveform used by the carrying terminal to perform PUSCH transmission.
  • the GC DCI sent by the network device may be a GC DCI dedicated to an uplink transmission waveform used by a carrying terminal for PUSCH transmission.
  • this type of GC DCI is a new GC DCI different from the existing GC DCI.
  • the existing GC DCI is mainly used to indicate the downlink control information of multiple different terminals in a specific group.
  • the existing GC DCI does not contain waveform indication information for indicating the uplink transmission waveform used by the terminal for PUSCH transmission. Therefore, a GC DCI can be constructed that can be used to indicate the uplink transmission waveform used by multiple different terminals in a specific group for PUSCH transmission. Compared with the existing GC DCI, this type of GC DCI can indicate the uplink transmission waveform used by multiple different terminals in a specific group for PUSCH transmission.
  • the present invention constructs a GC DCI for carrying an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI includes a third newly added information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission; GC DCI is also used to indicate that multiple terminals in a specific group jointly indicate or separately indicate corresponding waveform indication information.
  • the GC DCI sent by the network device may include a newly added third new information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the GC DCI can be used to indicate that multiple terminals in a specific group jointly or separately indicate corresponding waveform indication information.
  • the GC DCI can be an existing GC DCI.
  • the existing GC DCI should include the newly added third new information indication field so that the existing GC DCI including the third new information indication field can indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third newly added information indication field may be an indication field newly added to the GC DCI.
  • the indication field is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third newly added information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first newly added information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the GC DCI involved in the present disclosure may include M+1 indication fields.
  • the GC DCI of the present disclosure adds a third additional information indication field.
  • the newly added third additional information indication field can be used to carry waveform indication information.
  • the third newly added information indication field can be a 1-bit indication field, which is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the third newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the third newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the third newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform. It can be understood that the present disclosure does not limit the correspondence between the specific numerical values in the third newly added information indication field and the corresponding waveform. It can be adjusted arbitrarily according to actual conditions.
  • the GC DCI may be DCI2-3, and a 1-bit third additional information indication field may be added to DCI2-3 to independently indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure adds an information indication field in the GC DCI for indicating the uplink transmission waveform used by the terminal for PUSCH transmission, so that the GC DCI can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the GC DCI includes a third redefined information indication field for jointly indicating the uplink transmission waveform used by the terminal for PUSCH transmission; the third redefined information indication field is also used to indicate third other information, and the third other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the third other information is information other than indicating the uplink transmission waveform.
  • the GC DCI sent by the network device may include a third redefined information indication field for jointly indicating the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the GC DCI can also be used to indicate a third other information.
  • the GC DCI can be an existing GC DCI.
  • the existing GC DCI should include a third redefined information indication field so that the existing GC DCI including the third redefined information indication field can indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • Figure 8 another GC DCI structure schematic diagram is shown in Figure 8. It can be seen that the GC DCI includes a third redefined information indication field, and the third redefined information indication field carries waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third redefined information indication field may be an existing indication field in the GC DCI.
  • the indication field may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third redefined information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the third redefined information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the third redefined information indication field may be an existing indication field in the GC DCI.
  • the existing indication field may be extended so that the existing indication field carries the waveform indication information.
  • the existing indication field in the GC DCI may be extended, and the extended existing indication field may be used as the third redefined information indication field.
  • the GC DCI may include an indication field for indicating E information.
  • the indication field of the E information may be used to indicate third other information, such as indicating E information.
  • the E information indication field may be extended so that different parts of the E information may correspond to different waveforms. For example, a part of the E information may correspond to a CP-OFDM waveform, and another part of the E information may correspond to a DFTS-OFDM waveform.
  • Table 12 shows a schematic table of a third redefined information indication field indicating an uplink transmission waveform.
  • the third redefines the information indication field Uplink sending waveform E1 CP-OFDM Waveform E2 CP-OFDM Waveform E3 CP-OFDM Waveform E4 DFTS-OFDM Waveform E5 DFTS-OFDM Waveform E6 DFTS-OFDM Waveform
  • E1, E2 and E3 can be the existing E information in the third redefined information indication field.
  • E1, E2 and E3 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information can be extended, such as E4, E5 and E6, and E4, E5 and E6 can be associated with another waveform, such as a DFTS-OFDM waveform. It can be understood that the extended new E information can be E information that is reserved in advance but not used.
  • Table 13 shows another schematic table of an uplink transmission waveform indicated by a third redefined information indication field.
  • the third redefines the information indication field Uplink sending waveform E1 CP-OFDM Waveform E2 CP-OFDM Waveform E3 CP-OFDM Waveform E4 DFTS-OFDM Waveform E5 DFTS-OFDM Waveform
  • E1, E2 and E3 can be the existing E information in the third redefined information indication field.
  • E1, E2 and E3 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information can be extended, such as E4 and E5, and E4 and E5 can be associated with another waveform, such as a DFTS-OFDM waveform. It can be understood that the extended new E information can be E information that is reserved in advance but not used.
  • Table 14 shows a schematic table of another third redefined information indication field indicating an uplink transmission waveform.
  • the third redefines the information indication field Uplink sending waveform E1 CP-OFDM Waveform E2 CP-OFDM Waveform E3 DFTS-OFDM Waveform E4 DFTS-OFDM Waveform
  • E1, E2 and E3 can be the existing E information in the third redefined information indication field.
  • E1 and E2 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information can be extended, such as E4, and E3 and E4 can be associated with another waveform, such as a DFTS-OFDM waveform. It can be understood that the extended new E information can be E information that is reserved in advance but not used.
  • Table 15 shows a schematic table of another third redefined information indication field indicating an uplink transmission waveform.
  • the third redefines the information indication field Uplink sending waveform E1 CP-OFDM Waveform E2 CP-OFDM Waveform E3 DFTS-OFDM Waveform E4 DFTS-OFDM Waveform E5 DFTS-OFDM Waveform
  • E1, E2 and E3 can be the existing E information in the third redefined information indication field.
  • E1 and E2 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information can be extended, such as E4 and E5, and E3, E4 and E5 can be associated with another waveform, such as a DFTS-OFDM waveform. It can be understood that the extended new E information can be E information that is reserved in advance but not used.
  • the number of E information corresponding to different waveforms in the third redefined information indication field can be the same or different.
  • the uplink transmission waveform used by the terminal for PUSCH transmission indicated in the above Tables 12, 13, 14 and 15 may be an explicit indication or an implicit indication.
  • the explicit indication means that when configuring the third redefined information indication field, that is, configuring the E information, the indication information corresponding to the different waveforms is added.
  • the uplink transmission waveform used by the terminal for PUSCH transmission is directly indicated by the waveform indication information.
  • the value in the third redefined information indication field may correspond to transform precoding, and indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on whether the transform precoding in the RRC is enable or disable.
  • the correspondence between the E information and the waveform can be preset, and the specific E information carried in the third redefined information indication field, combined with the pre-set correspondence between the E information and the waveform, can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third redefined information indication field can carry E3 information.
  • the waveform corresponding to the E3 information is pre-configured as a CP-OFDM waveform. Based on the E3 information carried in the third redefined information indication field, it is possible to implicitly indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the third redefined information indication field may be an existing indication field in the GC DCI.
  • the corresponding information may have been configured to correspond to different waveforms.
  • Such information may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the GC DCI may include an indication field for indicating F information.
  • the indication field of F information may be used to indicate third other information, such as indicating F information. It is assumed that the F information has been previously related to the waveform, that is, different parts of the F information may correspond to different waveforms. For example, a part of the F information may correspond to the CP-OFDM waveform, and another part of the F information may correspond to the DFTS-OFDM waveform.
  • Table 16 shows another schematic table of an uplink transmission waveform indicated by a third redefined information indication field.
  • the third redefines the information indication field Uplink sending waveform F1 CP-OFDM Waveform F2 CP-OFDM Waveform F3 CP-OFDM Waveform F4 DFTS-OFDM Waveform F5 DFTS-OFDM Waveform F6 DFTS-OFDM Waveform
  • F1, F2, F3, F4, F5 and F6 can be the existing F information in the third redefined information indication field.
  • F1, F2 and F3 have a pre-established relationship with a certain waveform, such as a CP-OFDM waveform.
  • F4, F5 and F6 have a pre-established relationship with another waveform, such as a DFTS-OFDM waveform.
  • the existing F information in the third redefined information indication field and the pre-established relationship between the F information and the waveform can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the information corresponding to the third redefined information indication field may be a code point, such as 0, 1, 2, 3, 4, etc. Different code point values may correspond to different information in the corresponding indication field. For example, assuming that the third redefined information indication field corresponds to E information, code point 0 may correspond to E1, code point 1 may correspond to E2, etc. In turn, different code point values may correspond to different uplink transmission waveforms used by the terminal for PUSCH transmission.
  • the information corresponding to the third redefined information indication field may be third other information, wherein the third other information is any information other than the waveform.
  • the third other information is E information
  • the third redefined information indication field may directly carry the corresponding E information to correspond to the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the waveform correspondence shown in Table 12, Table 13, Table 14, Table 15 or Table 16 is used for indication.
  • the present invention discloses an uplink transmission waveform used by the terminal for PUSCH transmission in conjunction with the existing indication field in the GC DCI, so that the GC DCI can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • PUSCH includes at least one of the following: configuring PUSCH of authorization type 1; configuring PUSCH of authorization type 2; dynamically authorizing DG PUSCH.
  • the PUSCH may be a PUSCH of configured grant (CG) type 1, such as CG PUSCH Type 1.
  • CG configured grant
  • CG PUSCH represents the PUSCH without authorization
  • Type 1 is a scheduling-free scheme for CG PUSCH.
  • uplink authorization is provided by RRC, including authorization activation.
  • RRC resource control
  • the terminal configures all transmission parameters through RRC signaling, including period, time offset and frequency resources, as well as the modulation and coding method used for uplink transmission.
  • the terminal receives the RRC configuration, at the time given by the period and offset, the terminal starts to transmit using the configured authorization.
  • the offset is to control at which time the terminal is allowed to transmit.
  • the PUSCH may be a PUSCH configured with grant type 2, such as CG PUSCH Type 2.
  • the transmission cycle is provided by RRC, and the base station realizes resource activation and configuration of some transmission parameters through DCI, thereby realizing the activation transmission of the authorization configuration.
  • the terminal receives the activation command, if there is data to be sent in the cache, it will be transmitted according to the pre-configured cycle; if there is no data, the terminal will not transmit any data.
  • the PDCCH sending time specifies the activation time.
  • the terminal confirms the activation/deactivation configuration authorization type 2 by sending media access control layer (MAC) control signaling in the uplink.
  • MAC media access control layer
  • PUSCH can be a dynamic grant (DG) PUSCH.
  • DG dynamic grant
  • the present disclosure can be applied in different types of PUSCH scenarios, so that in the case of different PUSCH configurations, by sending a first DCI to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first DCI includes DCI 0_1, DCI 0_2, DCI 1_1 and/or downlink DCI 1_2.
  • uplink DCI may be indicated only in DCI 0_1 and/or DCI 0_2.
  • the present disclosure can be applied in scenarios of different types of DCI, so that in scenarios of different types of DCI, a first DCI can be sent to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the difference between the DCI for data scheduling and the DCI without data scheduling involved in the present disclosure is whether the DCI is used for data scheduling.
  • the difference between the GC DCI and the DCI for data scheduling and the DCI without data scheduling is that it can be used to carry out common knowledge downlink control information for multiple terminals in a specific group, or can indicate the downlink control information of different terminals based on one GC DCI.
  • the structures can be similar or different.
  • FIG. 9 is a flow chart of another method for configuring an uplink waveform according to an exemplary embodiment. As shown in FIG. 9 , the method is applied to a terminal and may include the following steps:
  • step S21 a first DCI is received.
  • a terminal may receive a first DCI, wherein the first DCI includes waveform indication information, wherein the waveform indication information is used to indicate an uplink transmission waveform used by the terminal for PUSCH transmission.
  • the waveform indication information indicates an uplink transmission waveform used by the terminal for PUSCH transmission, which may be a CP-OFDM waveform or a DFTS-OFDM waveform.
  • step S22 a second DCI is received.
  • the terminal may receive a second DCI.
  • the second DCI is scheduled using an uplink transmission waveform indicated by the waveform indication information.
  • the second DCI received by the terminal may include multiple information fields or indication fields.
  • the payloads corresponding to different information fields or indication fields may be different based on different waveforms.
  • some information fields or indication fields may be scheduled using the payload corresponding to the waveform indicated by the waveform indication information. This reduces the overhead of the second DCI.
  • the present disclosure receives a first DCI to indicate an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing uplink coverage.
  • the first DCI may be a DCI for data scheduling, and the waveform indication information is carried in the first newly added information indication field and/or the first redefined information indication field in the first DCI.
  • the terminal receiving and sending the first DCI may be the terminal receiving DCI for data scheduling.
  • the DCI for data scheduling may include a first new information indication field and/or a first redefined information indication field.
  • the first new information indication field and/or the first redefined information indication field may be used to carry waveform indication information.
  • the DCI for data scheduling includes a first newly added information indication field and/or a first redefined information indication field.
  • the DCI for data scheduling can carry waveform indication information through the first newly added information indication field and/or the first redefined information indication field.
  • the present disclosure carries waveform indication information in the DCI for data scheduling to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first newly added information indication field is an information indication field newly added in the DCI for data scheduling and used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first newly added information indication field may be an indication field newly added to the DCI for data scheduling.
  • the indication field is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the DCI for data scheduling involved in the present disclosure may include N+1 indication fields. That is, compared with the original DCI for data scheduling, the DCI for data scheduling disclosed in the present disclosure adds a first newly added information indication field.
  • the newly added first newly added information indication field can be used to carry waveform indication information.
  • the first newly added information indication field can be a 1-bit indication field, which is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the first newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the first newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform. It can be understood that the present disclosure does not limit the correspondence between the specific numerical values in the first newly added information indication field and the corresponding waveform. It can be adjusted arbitrarily according to actual conditions.
  • the present disclosure adds an information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the first redefined information indication field is also used to indicate first other information, and there is a predefined explicit or implicit correspondence between the first other information and the uplink transmission waveform, and the first other information is information other than indicating the uplink transmission waveform.
  • the first redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the indication field may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first redefined information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first redefined information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the first redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the existing indication field may be extended so that the existing indication field carries waveform indication information.
  • the existing indication field in the DCI for data scheduling may be extended, and the extended existing indication field may be used as the first redefined information indication field.
  • the DCI for data scheduling may include an indication field for indicating the A information.
  • the indication field of the A information may be used to indicate the first other information, for example, to indicate the A information.
  • the A information indication field may be extended so that different parts of the A information may correspond to different waveforms. For example, a part of the A information may correspond to a CP-OFDM waveform, and another part of the A information may correspond to a DFTS-OFDM waveform.
  • A1, A2 and A3 may be the existing A information in the first redefined information indication field.
  • A1, A2 and A3 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information may be extended, such as A4, A5 and A6, and A4, A5 and A6 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information may be A information that is reserved in advance but not used.
  • A1, A2 and A3 may be the existing A information in the first redefined information indication field.
  • A1, A2 and A3 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information may be extended, such as A4 and A5, and A4 and A5 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information may be A information that is reserved in advance but not used.
  • A1, A2 and A3 may be the existing A information in the first redefined information indication field.
  • A1 and A2 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information may be extended, such as A4, and A3 and A4 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information may be A information that is reserved in advance but not used.
  • A1, A2 and A3 may be the existing A information in the first redefined information indication field.
  • A1 and A2 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New A information may be extended, such as A4 and A5, and A3, A4 and A5 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new A information may be A information that is reserved in advance but not used.
  • the number of A information corresponding to different waveforms in the first redefined information indication field may be the same or different.
  • the uplink transmission waveform used by the terminal for PUSCH transmission indicated in the above Tables 1, 2, 3 and 4 may be an explicit indication or an implicit indication.
  • the explicit indication means that when configuring the first redefined information indication field, that is, configuring the A information, the indication information corresponding to the A information and the different waveforms is added.
  • the uplink transmission waveform used by the terminal for PUSCH transmission is directly indicated by the waveform indication information.
  • the value in the first redefined information indication field may correspond to transform precoding, and indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on whether the transform precoding in the RRC is enable or disable.
  • the correspondence between the A information and the waveform can be preset, and the specific A information carried in the first redefined information indication field, combined with the pre-set correspondence between the A information and the waveform, can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the first redefined information indication field can carry A3 information.
  • the waveform corresponding to the A3 information is pre-configured as a CP-OFDM waveform.
  • it can be implicitly indicated that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the corresponding information may have been configured to correspond to different waveforms.
  • Such information may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the DCI for data scheduling may include an indication field for indicating B information.
  • the indication field of the B information may be used to indicate the first other information, for example, to indicate the B information. It is assumed that the B information has been previously related to the waveform, that is, different parts of the B information may correspond to different waveforms. For example, a part of the B information may correspond to a CP-OFDM waveform, and another part of the B information may correspond to a DFTS-OFDM waveform.
  • B1, B2, B3, B4, B5 and B6 can be the B information already in the first redefined information indication field.
  • B1, B2 and B3 have a pre-established relationship with a certain waveform, such as a CP-OFDM waveform.
  • B4, B5 and B6 have a pre-established relationship with another waveform, such as a DFTS-OFDM waveform.
  • the existing B information in the first redefined information indication field and the pre-established relationship between the B information and the waveform can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is an indication field corresponding to the first other information.
  • the information corresponding to the first redefined information indication field may be a code point, such as 0, 1, 2, 3, 4, etc.
  • the code point may be a code point corresponding to the first other information.
  • Different code point values may correspond to different information in the corresponding indication field. For example, assuming that the first redefined information indication field corresponds to A information, code point 0 may correspond to A1, code point 1 may correspond to A2, and so on. Different code point values may then correspond to different uplink transmission waveforms used by the indication terminal for PUSCH transmission.
  • the information corresponding to the first redefined information indication field may be first other information, wherein the first other information is any information other than the waveform.
  • the first redefined information indication field may directly carry the corresponding A information to correspond to the uplink transmission waveform used by the terminal for PUSCH transmission.
  • Table 1, Table 2, Table 3, Table 4 or Table 5 is used for indication.
  • the present disclosure can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information contained in the code point or the indication field of the first other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first other information is BWP indication information or a code point corresponding to the BWP; and/or, the first other information is DMRS port indication information or a code point corresponding to the DMRS port.
  • the first other information may be BWP indication information, or may be a code point corresponding to BWP, so that the DCI for data scheduling may indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on the BWP indication information or the code point corresponding to BWP.
  • the first other information may be DMRS port indication information, or may be a code point corresponding to a DMRS port, so that the DCI for data scheduling may indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on the DMRS port indication information or the code point corresponding to the DMRS port.
  • the present invention can explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the BWP or DMRS port, so that the DCI for data scheduling can use the indication field corresponding to the first other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is a DCI without data scheduling
  • the waveform indication information is carried in the second newly added information indication field and/or the second redefined information indication field in the first DCI.
  • the network device sending the first DCI may be the network device sending DCI without data scheduling.
  • the DCI without data scheduling may include a second newly added information indication field and/or a second redefined information indication field.
  • the second newly added information indication field and/or the second redefined information indication field may be used to carry waveform indication information.
  • the DCI without data scheduling is the DCI for SPS release and the DCI for beam indication.
  • the DCI without data scheduling may include DCI 1_1 and DCI 1_2.
  • FIG5 shows a possible schematic diagram of the structure of a DCI without data scheduling.
  • the DCI without data scheduling includes a second newly added information indication field and/or a second redefined information indication field.
  • the DCI without data scheduling can carry waveform indication information through the second newly added information indication field and/or the second redefined information indication field.
  • the present disclosure uses a DCI without data scheduling to carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the second newly added information indication field is an information indication field newly added in the DCI without data scheduling and used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second newly added information indication field may be an indication field newly added to the DCI for data scheduling.
  • the indication field is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second newly added information indication field in the DCI for data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the DCI without data scheduling involved in the present disclosure may include N+1 indication fields. That is, compared with the original DCI without data scheduling, the DCI without data scheduling in the present disclosure has a new second new information indication field.
  • the new second new information indication field can be used to carry waveform indication information.
  • the second newly added information indication field can be a 1-bit indication field, which is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the second newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the second newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform. It can be understood that the present disclosure does not limit the correspondence between the specific numerical values in the second newly added information indication field and the corresponding waveform. It can be adjusted arbitrarily according to actual conditions.
  • the present disclosure adds an information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the second redefined information indication field is also used to indicate second other information, and the second other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the second other information is information other than indicating the uplink transmission waveform.
  • the second redefined information indication field may be an existing indication field in a DCI without data scheduling.
  • the indication field may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second redefined information indication field in a DCI without data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second redefined information indication field in a DCI without data scheduling indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the second redefined information indication field may be an existing indication field in the DCI for data scheduling.
  • the existing indication field may be extended so that the existing indication field carries waveform indication information.
  • the existing indication field in the DCI without data scheduling may be extended, and the extended existing indication field may be used as the second redefined information indication field.
  • a DCI without data scheduling may include an indication field for indicating C information.
  • the indication field of C information may be used to indicate second other information, such as indicating C information.
  • the C information indication field may be extended so that different parts of C information may correspond to different waveforms. For example, a part of C information may correspond to a CP-OFDM waveform, and another part of C information may correspond to a DFTS-OFDM waveform.
  • C1, C2 and C3 can be the existing C information in the second redefined information indication field.
  • C1, C2 and C3 can be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information can be extended, such as C4, C5 and C6, and C4, C5 and C6 can be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information can be C information that is reserved in advance but not used. Or it can be undefined C information.
  • C1, C2 and C3 may be the existing C information in the second redefined information indication field.
  • C1, C2 and C3 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information may be extended, such as C4 and C5, and C4 and C5 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information may be C information that is reserved in advance but not used. Or it may be undefined C information.
  • C1, C2 and C3 may be the existing C information in the second redefined information indication field.
  • C1 and C2 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information may be extended, such as C4, and C3 and C4 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information may be C information that is reserved in advance but not used. Or it may be undefined C information.
  • C1, C2 and C3 may be the existing C information in the second redefined information indication field.
  • C1 and C2 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New C information may be extended, such as C4 and C5, and C3, C4 and C5 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new C information may be C information that is reserved in advance but not used. Or it may be undefined C information.
  • the number of C information corresponding to different waveforms in the second redefined information indication field can be the same or different.
  • the uplink transmission waveform used by the terminal for PUSCH transmission indicated in the above Tables 7, 8, 9 and 10 may be an explicit indication or an implicit indication.
  • the explicit indication means that when configuring the second redefined information indication field, that is, when configuring the C information, the indication information corresponding to the C information and different waveforms is added.
  • the uplink transmission waveform used by the terminal for PUSCH transmission is directly indicated by the waveform indication information.
  • the value in the second redefined information indication field may correspond to transform precoding, and indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on whether the transform precoding in RRC is enable or disable.
  • the correspondence between the C information and the waveform can be preset, and the specific C information carried in the second redefined information indication field, combined with the pre-set correspondence between the C information and the waveform, can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second redefined information indication field can carry C3 information.
  • the waveform corresponding to the C3 information is pre-configured as a CP-OFDM waveform. Based on the C3 information carried in the second redefined information indication field, it is possible to implicitly indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the second redefined information indication field may be an existing indication field in a DCI without data scheduling.
  • corresponding information may have been configured corresponding to different waveforms. Such information may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • Such a second redefined information indication field may be an indication field that has been defined or used.
  • a DCI without data scheduling may include an indication field for indicating D information.
  • the indication field of the D information may be used to indicate the first other information, for example, to indicate the D information. It is assumed that the D information has been previously related to the waveform, that is, different parts of the D information may correspond to different waveforms. For example, a part of the D information may correspond to a CP-OFDM waveform, and another part of the D information may correspond to a DFTS-OFDM waveform.
  • D1, D2, D3, D4, D5 and D6 can be the existing D information in the second redefined information indication field.
  • D1, D2 and D3 have a pre-established relationship with a certain waveform, such as a CP-OFDM waveform.
  • D4, D5 and D6 have a pre-established relationship with another waveform, such as a DFTS-OFDM waveform.
  • the existing D information in the second redefined information indication field and the pre-established relationship between the D information and the waveform can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is an indication field corresponding to the second other information.
  • the information corresponding to the second redefined information indication field may be a code point, such as 0, 1, 2, 3, 4, etc.
  • the code point may be a code point corresponding to the second other information.
  • Different code point values may correspond to different information in the corresponding indication field. For example, assuming that the second redefined information indication field corresponds to C information, code point 0 may correspond to C1, code point 1 may correspond to C2, and so on. Different code point values may then correspond to different uplink transmission waveforms used by the indication terminal for PUSCH transmission.
  • the information corresponding to the second redefined information indication field may be second other information, wherein the second other information is any information other than the waveform.
  • the second other information is C information
  • the second redefined information indication field may directly carry the corresponding C information to correspond to the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the waveform correspondence shown in Table 7, Table 8, Table 9, Table 10 or Table 11 is used for indication.
  • the present disclosure can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information or code point contained in the indication field of the second other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second other information is DMRS sequence initialization information or a code point corresponding to the DMRS sequence initialization information; and/or, the second other information is TDRA indication information or a code point corresponding to TDRA.
  • the second other information may be DMRS sequence initialization information or a code point corresponding to the DMRS sequence initialization information
  • the indication field corresponding to the second other information may be DMRS sequence initialization.
  • the indication field of DMRS sequence initialization uses 1 bit to carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the second other information may be TDRA indication information or a code point corresponding to TDRA.
  • TDRA may be pre-configured with a corresponding relationship with a waveform, and then based on the TDRA indication information or the code point corresponding to TDRA, the terminal is instructed to use an uplink transmission waveform for PUSCH transmission.
  • the present invention can use DMRS sequence initialization information or TDRA to explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can use the indication field corresponding to the second other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is GC DCI
  • the waveform indication information is carried in the GC DCI.
  • the terminal receiving the first DCI may be the terminal receiving GC DCI.
  • the waveform indication information may be carried in the GC DCI received by the terminal.
  • the GC DCI includes an indication field carrying the waveform indication information.
  • the present invention uses GC DCI to carry waveform indication information to instruct the terminal to use an uplink transmission waveform for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI is the group control indication information of the uplink transmission waveform used by the carrying terminal to perform PUSCH transmission.
  • the GC DCI received by the terminal may be a GC DCI dedicated to carrying an uplink transmission waveform used by the terminal for PUSCH transmission.
  • this type of GC DCI is a new GC DCI different from the existing GC DCI.
  • the existing GC DCI is mainly used to indicate the downlink control information of multiple different terminals in a specific group.
  • the existing GC DCI does not contain waveform indication information for indicating the uplink transmission waveform used by the terminal for PUSCH transmission. Therefore, a GC DCI can be constructed that can be used to indicate the uplink transmission waveform used by multiple different terminals in a specific group for PUSCH transmission. Compared with the existing GC DCI, this type of GC DCI can indicate the uplink transmission waveform used by multiple different terminals in a specific group for PUSCH transmission.
  • the present invention constructs a GC DCI for carrying an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI includes a third newly added information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission; GC DCI is also used to indicate waveform indication information corresponding to multiple terminals in a specific group.
  • the GC DCI received by the terminal may include a newly added third new information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the GC DCI can be used to indicate waveform indication information corresponding to multiple terminals in a specific group.
  • the GC DCI can be an existing GC DCI.
  • the existing GC DCI should include the newly added third new information indication field so that the existing GC DCI including the third new information indication field can indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third newly added information indication field may be an indication field newly added to the GC DCI.
  • the indication field is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third newly added information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the first newly added information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the GC DCI involved in the present disclosure may include M+1 indication fields.
  • the GC DCI of the present disclosure adds a third additional information indication field.
  • the newly added third additional information indication field can be used to carry waveform indication information.
  • the third newly added information indication field can be a 1-bit indication field, which is used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the third newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the third newly added information indication field is 0, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the third newly added information indication field is 1, which can be used to indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform. It can be understood that the present disclosure does not limit the correspondence between the specific numerical values in the third newly added information indication field and the corresponding waveform. It can be adjusted arbitrarily according to actual conditions.
  • the GC DCI may be DCI2-3, and a 1-bit third additional information indication field may be added to DCI2-3 to independently indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure adds an information indication field in the GC DCI for indicating the uplink transmission waveform used by the terminal for PUSCH transmission, so that the GC DCI can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the GC DCI includes a third redefined information indication field for jointly indicating the uplink transmission waveform used by the terminal for PUSCH transmission; the third redefined information indication field is also used to indicate third other information, and the third other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the third other information is information other than indicating the uplink transmission waveform.
  • the GC DCI received by the terminal may include a third redefined information indication field for jointly indicating the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the GC DCI may also be used to indicate a third other information.
  • the GC DCI may be an existing GC DCI.
  • the existing GC DCI should include a third redefined information indication field so that the existing GC DCI including the third redefined information indication field can indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the GC DCI includes a third redefined information indication field, and the third redefined information indication field carries waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third redefined information indication field may be an existing indication field in the GC DCI.
  • the indication field may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third redefined information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the third redefined information indication field in the GC DCI indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the third redefined information indication field may be an existing indication field in the GC DCI.
  • the existing indication field may be extended so that the existing indication field carries the waveform indication information.
  • the existing indication field in the GC DCI may be extended, and the extended existing indication field may be used as the third redefined information indication field.
  • the GC DCI may include an indication field for indicating E information.
  • the indication field of the E information may be used to indicate third other information, such as indicating E information.
  • the E information indication field may be extended so that different parts of the E information may correspond to different waveforms. For example, a part of the E information may correspond to a CP-OFDM waveform, and another part of the E information may correspond to a DFTS-OFDM waveform.
  • E1, E2 and E3 may be the existing E information in the third redefined information indication field.
  • E1, E2 and E3 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information may be extended, such as E4, E5 and E6, and E4, E5 and E6 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the extended new E information may be E information that is reserved in advance but not used.
  • E1, E2 and E3 may be the existing E information in the third redefined information indication field.
  • E1, E2 and E3 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information may be added, such as E4 and E5, and E4 and E5 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understandable that the new E information added by the extension may be E information that is reserved in advance but not used.
  • E1, E2 and E3 may be the existing E information in the third redefined information indication field.
  • E1 and E2 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information may be added, such as E4, and E3 and E4 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understood that the new E information added by the extension may be E information that is reserved in advance but not used.
  • E1, E2 and E3 may be the existing E information in the third redefined information indication field.
  • E1 and E2 may be associated with a certain waveform, such as a CP-OFDM waveform.
  • New E information may be extended, such as E4 and E5, and E3, E4 and E5 may be associated with another waveform, such as a DFTS-OFDM waveform. It is understood that the extended new E information may be E information that is reserved in advance but not used.
  • the number of E information corresponding to different waveforms in the third redefined information indication field can be the same or different.
  • the uplink transmission waveform used by the terminal for PUSCH transmission indicated in the above Tables 12, 13, 14 and 15 may be an explicit indication or an implicit indication.
  • the explicit indication means that when configuring the third redefined information indication field, that is, configuring the E information, the indication information corresponding to different waveforms is added.
  • the uplink transmission waveform used by the terminal for PUSCH transmission is directly indicated by the waveform indication information in the third redefined information indication field.
  • the value in the third redefined information indication field is 0, indicating that the waveform indication information indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform, or the value in the third redefined information indication field is 1, indicating that the waveform indication information indicates that the uplink transmission waveform used by the terminal for PUSCH transmission is a DFTS-OFDM waveform.
  • the value in the third redefined information indication field may correspond to transform precoding, and indicate the uplink transmission waveform used by the terminal for PUSCH transmission based on whether the transform precoding in the RRC is enable or disable.
  • the correspondence between the E information and the waveform can be preset, and the specific E information carried in the third redefined information indication field, combined with the pre-set correspondence between the E information and the waveform, can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the third redefined information indication field can carry E3 information.
  • the waveform corresponding to the E3 information is pre-configured as a CP-OFDM waveform. Based on the E3 information carried in the third redefined information indication field, it is possible to implicitly indicate that the uplink transmission waveform used by the terminal for PUSCH transmission is a CP-OFDM waveform.
  • the third redefined information indication field may be an existing indication field in the GC DCI.
  • the corresponding information may have been configured to correspond to different waveforms.
  • Such information may be used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the GC DCI may include an indication field for indicating F information.
  • the indication field of F information may be used to indicate third other information, such as indicating F information. It is assumed that the F information has been previously related to the waveform, that is, different parts of the F information may correspond to different waveforms. For example, a part of the F information may correspond to a CP-OFDM waveform, and another part of the F information may correspond to a DFTS-OFDM waveform.
  • F1, F2, F3, F4, F5 and F6 can be the existing F information in the third redefined information indication field.
  • F1, F2 and F3 have a pre-established relationship with a certain waveform, such as a CP-OFDM waveform.
  • F4, F5 and F6 have a pre-established relationship with another waveform, such as a DFTS-OFDM waveform.
  • the existing F information in the third redefined information indication field and the pre-established relationship between the F information and the waveform can be used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the information corresponding to the third redefined information indication field may be a code point, such as 0, 1, 2, 3, 4, etc. Different code point values may correspond to different information in the corresponding indication field. For example, assuming that the third redefined information indication field corresponds to E information, code point 0 may correspond to E1, code point 1 may correspond to E2, etc. In turn, different code point values may correspond to different uplink transmission waveforms used by the terminal for PUSCH transmission.
  • the information corresponding to the third redefined information indication field may be third other information, wherein the third other information is any information other than the waveform.
  • the third other information is E information
  • the third redefined information indication field may directly carry the corresponding E information to correspond to the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the waveform correspondence shown in Table 12, Table 13, Table 14, Table 15 or Table 16 is used for indication.
  • the present invention discloses an uplink transmission waveform used by the terminal for PUSCH transmission in conjunction with the existing indication field in the GC DCI, so that the GC DCI can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • PUSCH includes at least one of the following: configuring PUSCH of authorization type 1; configuring PUSCH of authorization type 2; dynamically authorizing DG PUSCH.
  • the PUSCH may be a PUSCH configured with grant type 1, such as CG PUSCH Type 1.
  • CG PUSCH represents the PUSCH without authorization
  • Type 1 is a scheduling-free scheme for CG PUSCH.
  • uplink authorization is provided by RRC, including authorization activation.
  • RRC resource control
  • the terminal configures all transmission parameters through RRC signaling, including period, time offset and frequency resources, as well as the modulation and coding method used for uplink transmission.
  • the terminal receives the RRC configuration, at the time given by the period and offset, the terminal starts to transmit using the configured authorization.
  • the offset is to control at which time the terminal is allowed to transmit.
  • the PUSCH may be a PUSCH configured with grant type 2, such as CG PUSCH Type 2.
  • the transmission cycle is provided by RRC, and the base station realizes resource activation and configuration of some transmission parameters through DCI, thereby realizing the activation transmission of the authorization configuration.
  • the terminal receives the activation command, if there is data to be sent in the cache, it will be transmitted according to the pre-configured cycle; if there is no data, the terminal will not transmit any data.
  • the PDCCH sending time specifies the activation time.
  • the terminal confirms the activation/deactivation configuration authorization type 2 by sending MAC control signaling in the uplink.
  • the PUSCH may be a DG PUSCH.
  • the present disclosure can be applied in different types of PUSCH scenarios, so that in the case of different PUSCH configurations, by receiving the first DCI to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first DCI includes DCI 0_1, DCI 0_2, DCI 1_1 and/or downlink DCI 1_2.
  • the first DCI may be DCI 0_1, DCI 0_2, DCI 1_1 and/or downlink DCI 1_2.
  • uplink DCI may be indicated only in DCI 0_1 and/or DCI 0_2.
  • the present disclosure can be applied in scenarios of different types of DCI, so that in scenarios of different types of DCI, a first DCI can be received to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the present disclosure provides a method for DMRS port expansion to achieve joint indication of the indication field of other information in the DCI or GC DCI for data scheduling.
  • Table 17 shows a DMRS port indication extension table.
  • each row can be considered as a code point.
  • Different code points can correspond to different DMRS ports.
  • Code points 0 to 5 can be set to correspond to CP-OFDM waveforms, and code points 6-9 can correspond to DFT-S-OFDM waveforms. It can be understood that 10-15 can be reserved bits that are pre-set but not activated. Obviously, Table 11 provides a way of implicit indication.
  • code points 6-9 may be newly added extensions, that is, the DMRS port indication may originally be configured with code points 0-5 only, and is not associated with the waveform.
  • the present disclosure provides another method for DMRS port expansion to achieve joint indication of the indication field of other information in the DCI or GC DCI for data scheduling.
  • each row can be considered as a code point. Different code points can correspond to different DMRS ports.
  • the indication information of the corresponding waveform can be directly added in the table. For example, setting the code point to 0 to 5 corresponds to the CP-OFDM waveform, and the code point to 6-9 corresponds to transform precoding.
  • the uplink transmission waveform used by the terminal for PUSCH transmission can be indicated based on the transform precoding in RRC to enable or disable. It can be understood that 10-15 can be a reserved bit that is pre-set but not activated. Obviously, Table 12 provides an explicit indication method.
  • the present disclosure provides a method for extending the BWP indication field to achieve joint indication of the indication field of other information in the DCI or GC DCI for data scheduling.
  • Table 19 shows a table of an extended BWP indication field.
  • the value of the BWP indicator field in each row can be considered as a code point.
  • Different code points can correspond to different BWP indications. For example, there is already a relationship between different waveforms and different BWP indications in the table, so the BWP indication can be directly used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the embodiments of the present disclosure also provide an uplink waveform configuration device and equipment.
  • the configuration device and equipment of the uplink waveform provided by the embodiment of the present disclosure includes hardware structures and/or software modules corresponding to the execution of each function in order to realize the above functions.
  • the embodiment of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of a configuration device for an uplink waveform according to an exemplary embodiment.
  • a device 200 is configured in a network device, and includes: a sending module 201, configured to send a first downlink control information DCI, the first DCI includes waveform indication information, the waveform indication information is used to indicate the uplink transmission waveform used by the terminal for physical uplink shared channel PUSCH transmission; the sending module 201 is also used to send a second DCI, and the second DCI uses the uplink transmission waveform indicated by the waveform indication information for scheduling.
  • a sending module 201 configured to send a first downlink control information DCI
  • the first DCI includes waveform indication information
  • the waveform indication information is used to indicate the uplink transmission waveform used by the terminal for physical uplink shared channel PUSCH transmission
  • the sending module 201 is also used to send a second DCI, and the second DCI uses the uplink transmission waveform indicated by the waveform indication information for scheduling.
  • the present disclosure sends a first DCI to indicate an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing uplink coverage.
  • the first DCI is a DCI for data scheduling
  • the waveform indication information is carried in a first newly added information indication field and/or a first redefined information indication field in the first DCI.
  • the present disclosure carries waveform indication information in the DCI for data scheduling to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first newly added information indication field is an information indication field newly added in the DCI for data scheduling and used to indicate an uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure adds an information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the first redefined information indication field is also used to indicate first other information, and there is a predefined explicit or implicit correspondence between the first other information and the uplink transmission waveform, and the first other information is information other than indicating the uplink transmission waveform.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is an indication field corresponding to the first other information.
  • the present disclosure can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information contained in the indication field of the code point or other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first other information is partial bandwidth BWP indication information or a code point corresponding to the BWP; and/or, the first other information is demodulation reference signal DMRS port indication information or a code point corresponding to the DMRS port.
  • the present invention can explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the BWP or DMRS port, so that the DCI for data scheduling can use the indication field corresponding to other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is a DCI without data scheduling
  • the waveform indication information is carried in the second newly added information indication field and/or the second redefined information indication field in the first DCI.
  • the present disclosure uses a DCI without data scheduling to carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the second newly added information indication field is an information indication field newly added in the DCI without data scheduling and used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure adds an information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the second redefined information indication field is also used to indicate second other information, and the second other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the second other information is information other than indicating the uplink transmission waveform.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is an indication field corresponding to the second other information.
  • the present disclosure can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information or code point contained in the indication field of the second other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second other information is DMRS sequence initialization information or a code point corresponding to the DMRS sequence initialization information; and/or, the second other information is time domain resource allocation TDRA indication information or a code point corresponding to TDRA.
  • the present invention can use DMRS sequence initialization information or TDRA to explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can use the indication field corresponding to the second other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is a grouped GC DCI
  • the waveform indication information is carried in the GC DCI.
  • the present invention uses GC DCI to carry waveform indication information to instruct the terminal to use an uplink transmission waveform for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI is packet control indication information for an uplink transmission waveform used by a carrying terminal to perform PUSCH transmission.
  • the present invention constructs a GC DCI for carrying an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI includes a third newly added information indication field for indicating an uplink transmission waveform used by a terminal for PUSCH transmission; GC DCI is also used to jointly or separately indicate corresponding waveform indication information for multiple terminals in a specific group.
  • the present disclosure adds an information indication field in the GC DCI for indicating the uplink transmission waveform used by the terminal for PUSCH transmission, so that the GC DCI can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the GC DCI includes a third redefined information indication field for jointly indicating an uplink transmission waveform used by a terminal for PUSCH transmission; the third redefined information indication field is also used to indicate third other information, and the third other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the third other information is information other than indicating the uplink transmission waveform.
  • the present invention discloses an uplink transmission waveform used by the terminal for PUSCH transmission in conjunction with the existing indication field in the GC DCI, so that the GC DCI can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • PUSCH includes at least one of the following: configuring PUSCH of authorization type 1; configuring PUSCH of authorization type 2; and dynamically authorizing DG PUSCH.
  • the present disclosure can be applied in different types of PUSCH scenarios, so that in the case of different PUSCH configurations, by sending a first DCI to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first DCI includes DCI 0_1, DCI 0_2, DCI 1_1 and/or DCI 1_2.
  • the present disclosure can be applied in scenarios of different types of DCI, so that in scenarios of different types of DCI, a first DCI can be sent to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • Fig. 11 is a schematic diagram of another uplink waveform configuration device according to an exemplary embodiment.
  • the device 300 is configured in the terminal, and includes: a receiving module 301, which is used to receive a first downlink control information DCI, the first DCI includes waveform indication information, and the waveform indication information is used to indicate the uplink transmission waveform used by the terminal for physical uplink shared channel PUSCH transmission; the receiving module 301 is also used to receive a second DCI, and the second DCI uses the uplink transmission waveform indicated by the waveform indication information for scheduling.
  • a receiving module 301 which is used to receive a first downlink control information DCI, the first DCI includes waveform indication information, and the waveform indication information is used to indicate the uplink transmission waveform used by the terminal for physical uplink shared channel PUSCH transmission
  • the receiving module 301 is also used to receive a second DCI, and the second DCI uses the uplink transmission waveform indicated by the waveform indication information for scheduling.
  • the present disclosure receives a first DCI to indicate an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing uplink coverage.
  • the first DCI is a DCI for data scheduling
  • the waveform indication information is carried in a first newly added information indication field and/or a first redefined information indication field in the first DCI.
  • the present disclosure carries waveform indication information in the DCI for data scheduling to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first newly added information indication field is an information indication field newly added in the DCI for data scheduling and used to indicate an uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure adds an information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the first redefined information indication field is also used to indicate first other information, and there is a predefined explicit or implicit correspondence between the first other information and the uplink transmission waveform, and the first other information is information other than indicating the uplink transmission waveform.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first redefined information indication field is an indication field corresponding to the first other information.
  • the present invention can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information contained in the indication field of the code point or other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first other information is partial bandwidth BWP indication information or a code point corresponding to the BWP; and/or, the first other information is demodulation reference signal DMRS port indication information or a code point corresponding to the DMRS port.
  • the present invention can explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the BWP or DMRS port, so that the DCI for data scheduling can use the indication field corresponding to other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is a DCI without data scheduling
  • the waveform indication information is carried in the second newly added information indication field and/or the second redefined information indication field in the first DCI.
  • the present disclosure uses a DCI without data scheduling to carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the second newly added information indication field is an information indication field newly added in the DCI without data scheduling and used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission.
  • the present disclosure adds an information indication field for indicating the uplink transmission waveform used by the terminal for PUSCH transmission in the DCI for data scheduling, so that the DCI for data scheduling can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is used to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission; the second redefined information indication field is also used to indicate second other information, and the second other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the second other information is information other than indicating the uplink transmission waveform.
  • the present disclosure uses the existing indication field in the DCI for data scheduling to jointly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second redefined information indication field is an indication field corresponding to the second other information.
  • the present disclosure can indicate the uplink transmission waveform used by the terminal for PUSCH transmission through the indication information or code point contained in the indication field of the second other information, so that the DCI for data scheduling can carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the second other information is DMRS sequence initialization information or a code point corresponding to the DMRS sequence initialization information; and/or, the second other information is time domain resource allocation TDRA indication information or a code point corresponding to TDRA.
  • the present invention can use DMRS sequence initialization information or TDRA to explicitly or implicitly indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the DCI for data scheduling can use the indication field corresponding to the second other information to carry the waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the first DCI is a grouped GC DCI
  • the waveform indication information is carried in the GC DCI.
  • the present invention uses GC DCI to carry waveform indication information to instruct the terminal to use an uplink transmission waveform for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI is packet control indication information for an uplink transmission waveform used by a carrying terminal to perform PUSCH transmission.
  • the present invention constructs a GC DCI for carrying an uplink transmission waveform used by a terminal for PUSCH transmission, so that a second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • GC DCI includes a newly added third information indication field specifically used to indicate the uplink transmission waveform used by the terminal for PUSCH transmission; GC DCI is also used to jointly or separately indicate corresponding waveform indication information for multiple terminals in a specific group.
  • the present disclosure adds an information indication field in the GC DCI for indicating the uplink transmission waveform used by the terminal for PUSCH transmission, so that the GC DCI can carry waveform indication information to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, and then the second DCI can be scheduled based on the same uplink transmission waveform to reduce the overhead of the second DCI and enhance the uplink coverage.
  • the GC DCI includes a third redefined information indication field for jointly indicating an uplink transmission waveform used by a terminal for PUSCH transmission; the third redefined information indication field is also used to indicate third other information, and the third other information has a predefined explicit or implicit correspondence with the uplink transmission waveform, and the third other information is information other than indicating the uplink transmission waveform.
  • the present invention discloses an uplink transmission waveform used by the terminal for PUSCH transmission in conjunction with the existing indication field in the GC DCI, so that the GC DCI can carry waveform indication information, and then the second DCI can be scheduled based on the same uplink transmission waveform, so as to reduce the overhead of the second DCI and enhance the uplink coverage.
  • PUSCH includes at least one of the following: configuring PUSCH of authorization type 1; configuring PUSCH of authorization type 2; and dynamically authorizing DG PUSCH.
  • the present disclosure can be applied in different types of PUSCH scenarios, so that in the case of different PUSCH configurations, by receiving the first DCI to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the first DCI includes DCI 0_1, DCI 0_2, DCI 1_1 and/or DCI 1_2.
  • the present disclosure can be applied in scenarios of different types of DCI, so that in scenarios of different types of DCI, a first DCI can be received to indicate the uplink transmission waveform used by the terminal for PUSCH transmission, so that the second DCI is scheduled based on the same uplink transmission waveform, thereby reducing the overhead of the second DCI and enhancing the uplink coverage.
  • the various modules/units involved in the uplink waveform configuration device 200 and the uplink waveform configuration device 300 involved in the embodiment of the present disclosure are only for illustrative purposes and are not intended to be limiting.
  • the uplink waveform configuration device 200 in the embodiment of the present disclosure may also include a receiving module and/or a processing module.
  • the uplink waveform configuration device 300 may also include a sending module and/or a processing module.
  • the various modules included in the uplink waveform configuration device 200 and the uplink waveform configuration device 300 may interact with each other and may also interact with other network element devices.
  • FIG12 is a schematic diagram of a configuration device for an uplink waveform according to an exemplary embodiment.
  • device 400 may be provided as a base station, or a server.
  • device 400 includes a processing component 422, which further includes one or more processors, and a memory resource represented by a memory 432 for storing instructions executable by the processing component 422, such as an application.
  • the application stored in the memory 432 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • the device 400 may also include a power supply component 426 configured to perform power management of the device 400, a wired or wireless network interface 450 configured to connect the device 400 to a network, and an input/output (I/O) interface 458.
  • the device 400 may operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • Fig. 13 is a schematic diagram of another configuration device of an uplink waveform according to an exemplary embodiment.
  • the device 500 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • device 500 may include one or more of the following components: a processing component 502 , a memory 504 , a power component 506 , a multimedia component 508 , an audio component 510 , an input/output (I/O) interface 512 , a sensor component 514 , and a communication component 516 .
  • a processing component 502 may include one or more of the following components: a processing component 502 , a memory 504 , a power component 506 , a multimedia component 508 , an audio component 510 , an input/output (I/O) interface 512 , a sensor component 514 , and a communication component 516 .
  • a processing component 502 may include one or more of the following components: a processing component 502 , a memory 504 , a power component 506 , a multimedia component 508 , an audio component 510 , an input/output (I/O) interface 512 , a sensor component 514 , and a communication component
  • the processing component 502 generally controls the overall operation of the device 500, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 502 may include one or more processors 520 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 502 may include one or more modules to facilitate the interaction between the processing component 502 and other components.
  • the processing component 502 may include a multimedia module to facilitate the interaction between the multimedia component 508 and the processing component 502.
  • the memory 504 is configured to store various types of data to support operations on the device 500. Examples of such data include instructions for any application or method operating on the device 500, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 504 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • Power component 506 provides power to various components of device 500.
  • Power component 506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 500.
  • the multimedia component 508 includes a screen that provides an output interface between the device 500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 508 includes a front camera and/or a rear camera. When the device 500 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and the rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 510 is configured to output and/or input audio signals.
  • the audio component 510 includes a microphone (MIC), and when the device 500 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 504 or sent via the communication component 516.
  • the audio component 510 also includes a speaker for outputting audio signals.
  • I/O interface 512 provides an interface between processing component 502 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 514 includes one or more sensors for providing various aspects of status assessment for the device 500.
  • the sensor assembly 514 can detect the open/closed state of the device 500, the relative positioning of components, such as the display and keypad of the device 500, and the sensor assembly 514 can also detect the position change of the device 500 or a component of the device 500, the presence or absence of user contact with the device 500, the orientation or acceleration/deceleration of the device 500, and the temperature change of the device 500.
  • the sensor assembly 514 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 514 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 514 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 516 is configured to facilitate wired or wireless communication between the device 500 and other devices.
  • the device 500 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 516 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 516 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 500 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 504 including instructions, and the instructions can be executed by the processor 520 of the device 500 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the present disclosure provides a base station configuration method supporting dynamic uplink waveform switching, the DCI overhead corresponding to the solution is small, and can be used to enhance uplink coverage. It supports more flexible uplink waveform switching, and is used to support more dynamic waveform switching of cell edge users, thereby obtaining better performance.
  • plural refers to two or more than two, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “the” and “the” are also intended to include plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, the expressions “first”, “second”, etc. can be used interchangeably.
  • the first information can also be referred to as the second information, and similarly, the second information can also be referred to as the first information.

Abstract

本公开是关于一种上行波形的配置方法、装置、设备及存储介质,包括:发送第一下行控制信息DCI,第一DCI中包括波形指示信息,波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;发送第二DCI,第二DCI使用波形指示信息所指示的上行发送波形进行调度。通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。

Description

一种上行波形的配置方法、装置、设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种上行波形的配置方法、装置、设备及存储介质。
背景技术
在R18的研究需求中,上行覆盖一直是系统性能的瓶颈之一,会影响到信号质量和用户体验,包括运营商在内有较强的上行覆盖增强需求。目前在NR中,支持两种上行的波形:循环前缀正交频分复用(Cyclic Prefix Orthogonal Frequency-Division Multiplexing,CP-OFDM)和离散傅里叶变换的正交频分复用(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,DFTS-OFDM)。
相关技术中,终端上行传输时使用的CP-OFDM波形或DFTS-OFDM波形通过无线资源控制(Radio Resource Control,RRC)信令半静态配置。故,若进行CP-OFDM波形和DFTS-OFDM波形之间的切换,需要进行RRC重配置,通信性能较低。
发明内容
为克服相关技术中存在的问题,本公开提供一种上行波形的配置方法、装置、设备及存储介质。
根据本公开实施例的第一方面,提供一种上行波形的配置方法,方法应用于网络设备,包括:发送第一下行控制信息DCI,第一DCI中包括波形指示信息,波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;发送第二DCI,第二DCI使用波形指示信息所指示的上行发送波形进行调度。
根据本公开实施例的第二方面,提供一种上行波形的配置方法,方法应用于终端,包括:接收第一下行控制信息DCI,第一DCI中包括波形指示信息,波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;接收第二DCI,第二DCI使用波形指示信息所指示的上行发送波形进行调度。
根据本公开实施例的第三方面,提供一种上行波形的配置装置,装置配置于网络设备,包括:发送模块,用于发送第一下行控制信息DCI,第一DCI中包括波形指示信息,波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;发送模 块还用于,发送第二DCI,第二DCI使用波形指示信息所指示的上行发送波形进行调度。
根据本公开实施例的第四方面,提供一种上行波形的配置装置,装置配置于终端,包括:接收模块,用于接收第一下行控制信息DCI,第一DCI中包括波形指示信息,波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;接收模块还用于,接收第二DCI,第二DCI使用波形指示信息所指示的上行发送波形进行调度。
根据本公开实施例的第五方面,提供一种上行波形的配置设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行第一方面中的任意一项方法。
根据本公开实施例的第六方面,提供一种上行波形的配置设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行第二方面中的任意一项方法。
根据本公开实施例的第七方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第一方面中的任意一项方法。
根据本公开实施例的第八方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行第二方面中的任意一项方法。
本公开的实施例提供的技术方案可以包括以下有益效果:通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2是根据一示例性实施例示出的一种不同波形PAPR示意图。
图3是根据一示例性实施例示出的一种上行波形的配置方法流程图。
图4是根据一示例性实施例示出的一种进行数据调度的DCI结构示意图。
图5是根据一示例性实施例示出的一种没有数据调度的DCI结构示意图。
图6是根据一示例性实施例示出的一种GC DCI结构示意图。
图7是根据一示例性实施例示出的另一种GC DCI结构示意图。
图8是根据一示例性实施例示出的又一种GC DCI结构示意图。
图9是根据一示例性实施例示出的另一种上行波形的配置方法流程图。
图10是根据一示例性实施例示出的一种上行波形的配置装置示意图。
图11是根据一示例性实施例示出的另一种上行波形的配置装置示意图。
图12是根据一示例性实施例示出的一种上行波形的配置设备示意图。
图13是根据一示例性实施例示出的另一种上行波形的配置设备示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开所涉及的通信方法可以应用于图1所示的无线通信系统100中。该网络系统可以包括网络设备110和终端120。可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网络设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)、单载波频分多址(Single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:Generation)网络、3G网络、4G网络或者未来演进网络,如第五代无线通信系统(The 5th Generation Wireless Communication System,5G)网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备110也可以称为无线接入网络设备。该无线接入网络设备可以是:基站、演进型基站(evolved Node B,eNB)、家庭基站、无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点或者 传输点(Transmission Point,TP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端120,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开实施例中,网络设备110与终端120可以采用任意可行的无线通信技术以实现相互传输数据。其中,网络设备110向终端120发送数据所对应的传输通道称为下行信道(downlink,DL),终端120向网络设备110发送数据所对应的传输通道称为上行信道(uplink,UL)。可以理解的是,本公开实施例中所涉及的网络设备可以是基站。当然网络设备还可以是其它任意可能的网络设备,终端可以是任意可能的终端,本公开不作限定。
在R18的研究需求中,上行覆盖一直是系统性能的瓶颈之一,会影响到信号质量和用户体验,包括运营商在内均有较强的上行覆盖需求。在NR中,可以支持两种上行的波形,例如CP-OFDM和DFTS-OFDM。目前通过RRC信令可以进行半静态配置。其中,配置物理上行共享信道(physical uplink shared channel,PUSCH)的参数可以如下:
transformPrecoder ENUMERATED{enabled,disabled}OPTIONAL
可以表示为当配置参数配置为启用(enabled)时,配置DFTS-OFDM波形;当配置参数配置为禁用(disabled)时,配置CP-OFDM波形。
然而,相比于CP-OFDM波形,DFTS-OFDM波形具有更低的峰值平均功率比(peak to average power ratio,PAPR)。因此,DFTS-OFDM波形因为较低的PAPR特性更适用于上行覆盖受限场景。例如同样在频率范围(frequency range,FR)2,小区边缘用户的上行覆盖问题更加突出。
例如图2所示出的一种不同波形PAPR示意图中,可以看出,DFTS-OFDM波形下的PAPR会比CP-OFDM波形的PAPR低大约3分贝(dB)左右。其中,图中的OFDM即指代上述的CP-OFDM波形。实现表示采用正交相移键控(quadrature phase shift keying,QPSK)进行调制,虚线表示采用16正交幅度调制(quadrature amplitude modulation,QAM) 进行调制。图2中的CP-OFDM波形采用QPSK或16QAM进行调制时,PAPR几乎相同。DFTS-OFDM波形采用QPSK或16QAM进行调制时,大约会相差0.8dB左右。例如,针对不同调制方式不同波形的立方度量,CP-OFDM波形大约为3.4dB,DFTS-OFDM波形QPSK调制大约为1.0dB,DFTS-OFDM波形16QAM调制大约为1.8dB。可以理解,由于CP-OFDM波形采用QPSK或16QAM进行调制时PAPR几乎相同,因此可以不区分CP-OFDM波形采用的调制方式。
但是,若进行CP-OFDM波形和DFTS-OFDM波形之间的切换,需要进行RRC重配置,这使得目前的通信性能较低。
因此,本公开提供一种上行波形的配置方法,通过发送第一下行控制信息(downlink control information,DCI)以指示终端进行PUSCH传输使用的上行发送波形,以使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
图3是根据一示例性实施例示出的一种上行波形的配置方法流程图,如图3所示,方法应用于网络设备,可以包括以下步骤:
在步骤S11中,发送第一DCI。
在一些实施例中,网络设备可以发送第一DCI。该第一DCI中包括波形指示信息。其中,波形指示信息用于指示终端进行PUSCH传输使用的上行发送波形。
例如,波形指示信息指示终端进行PUSCH传输使用的上行发送波形,可以是CP-OFDM波形或DFTS-OFDM波形。
在步骤S12中,发送第二DCI。
在一些实施例中,网络设备可以发送第二DCI。第二DCI使用波形指示信息所指示的上行发送波形进行调度。
例如,网络设备发送的第二DCI中可以包括多个信息域或指示域。不同的信息域或指示域对应的有效载荷(payload)可以基于波形的不同而不同。网络设备发送的第二DCI中,一些信息域或指示域可以采用波形指示信息所指示的波形对应的payload进行调度。从而实现减小第二DCI的开销。
可以理解,本公开中指示域、信息域可以具有相同含义。
本公开通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI可以为进行数据调度的DCI, 波形指示信息承载在第一DCI中的第一新增信息指示域和/或第一重定义信息指示域。
在一些实施例中,网络设备发送第一DCI可以是网络设备发送进行数据调度的DCI。其中,进行数据调度的DCI中可以包括第一新增信息指示域和/或第一重定义信息指示域。该第一新增信息指示域和/或第一重定义信息指示域可以用于承载波形指示信息。
例如,图4示出了一种可能的进行数据调度的DCI的结构示意图。在进行数据调度的DCI中包括第一新增信息指示域和/或第一重定义信息指示域。进行数据调度的DCI通过该第一新增信息指示域和/或第一重定义信息指示域可以承载波形指示信息。
本公开通过进行数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一新增信息指示域为进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
在一些实施例中,第一新增信息指示域可以是进行数据调度的DCI新增的指示域。该指示域用于指示终端进行PUSCH传输使用的上行发送波形。例如,进行数据调度的DCI中的第一新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,进行数据调度的DCI中的第一新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
例如,假设原始的进行数据调度的DCI包括N个指示域,则本公开所涉及的进行数据调度的DCI则可以包括N+1个指示域。也就是相比于原始的进行数据调度的DCI,本公开的进行数据调度的DCI新增了一个第一新增信息指示域。该新增的第一新增信息指示域可以用于承载波形指示信息。
在一些实施例中,第一新增信息指示域可以为1比特(bit)的指示域,以用于指示终端进行PUSCH传输使用的上行发送波形。例如,第一新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。第一新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又例如,第一新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。第一新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。可以理解,本公开对于第一新增信息指示域中具体数值与相应波形的对应关系不作限定。具体可以根据实际情况进行任意调整。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行 PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第一重定义信息指示域还用于指示第一其它信息,第一其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第一其它信息为除指示上行发送波形以外的信息。
在一些实施例中,第一重定义信息指示域可以是进行数据调度的DCI中已有的指示域。该指示域可以用于联合指示终端进行PUSCH传输使用的上行发送波形。例如,进行数据调度的DCI中的第一重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,进行数据调度的DCI中的第一重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
在一些实施例中,第一重定义信息指示域可以是进行数据调度的DCI中已有的指示域。例如,可以扩展已有的指示域,以便该已有的指示域承载波形指示信息。如,可以对进行数据调度的DCI中已有的指示域进行扩展,并将扩展后已有的指示域作为第一重定义信息指示域。
例如,进行数据调度的DCI中可以包括用于指示A信息的指示域。其中,A信息的指示域可以用于指示第一其它信息,例如指示A信息。可以对A信息指示域进行扩展,以使得不同部分的A信息可以分别对应不同的波形。如一部分A信息可以对应CP-OFDM波形,另一部分A信息可以对应DFTS-OFDM波形。
例如表1所示出的一种第一重定义信息指示域指示上行发送波形的示意表格。
第一重定义信息指示域 上行发送波形
A1 CP-OFDM波形
A2 CP-OFDM波形
A3 CP-OFDM波形
A4 DFTS-OFDM波形
A5 DFTS-OFDM波形
A6 DFTS-OFDM波形
表1
其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1、A2和A3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4、 A5和A6,并将A4、A5和A6与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
例如表2所示出的另一种第一重定义信息指示域指示上行发送波形的示意表格。
第一重定义信息指示域 上行发送波形
A1 CP-OFDM波形
A2 CP-OFDM波形
A3 CP-OFDM波形
A4 DFTS-OFDM波形
A5 DFTS-OFDM波形
表2
其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1、A2和A3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4和A5,并将A4和A5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
例如表3所示出的又一种第一重定义信息指示域指示上行发送波形的示意表格。
第一重定义信息指示域 上行发送波形
A1 CP-OFDM波形
A2 CP-OFDM波形
A3 DFTS-OFDM波形
A4 DFTS-OFDM波形
表3
其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1和A2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4,并将A3和A4与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
例如表4所示出的再一种第一重定义信息指示域指示上行发送波形的示意表格。
第一重定义信息指示域 上行发送波形
A1 CP-OFDM波形
A2 CP-OFDM波形
A3 DFTS-OFDM波形
A4 DFTS-OFDM波形
A5 DFTS-OFDM波形
表4
其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1和A2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4和A5,并将A3、A4和A5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
可以理解,第一重定义信息指示域中与不同波形对应的A信息数量可以相同或者不同。
在一些实施例中,上述表1、表2、表3和表4中指示终端进行PUSCH传输使用的上行发送波形可以是显式指示或是隐式指示。例如,显示指示则表示在配置第一重定义信息指示域,即对A信息进行配置时,增加A信息与不同波形对应的指示信息。例如,在第一重定义信息指示域中直接通过波形指示信息指示终端进行PUSCH传输使用的上行发送波形,如第一重定义信息指示域中的值为0表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形,或者第一重定义信息指示域中的值为1表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又或者,第一重定义信息指示域中的值可以对应变换预编码(transform precoding),并基于RRC中的transform precoding为enable或disable来指示终端进行PUSCH传输使用的上行发送波形。
又例如,可以预先设定A信息与波形的对应关系,通过第一重定义信息指示域中承载的具体A信息,结合预先设定的A信息与波形的对应关系,以指示终端进行PUSCH传输使用的上行发送波形。例如以表1为例,第一重定义信息指示域中可以承载A3信息。预先配置有A3信息对应的波形为CP-OFDM波形。则可以基于第一重定义信息指示域中承载的A3信息,隐式指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。
可以理解,上述具体数值对应波形仅为一种示例性描述,本公开并不限定。
在一些实施例中,第一重定义信息指示域可以是进行数据调度的DCI中已有的指示域。例如,在已有的指示域中,相应的信息可能已经配置对应不同的波形。则可以利用此类信息联合指示终端进行PUSCH传输使用的上行发送波形。
例如,进行数据调度的DCI中可以包括用于指示B信息的指示域。其中,B信息的指 示域可以用于指示第一其它信息,例如指示B信息。假设B信息预先已经与波形建立了关系,即不同部分的B信息可以分别对应不同的波形。如一部分B信息可以对应CP-OFDM波形,另一部分B信息可以对应DFTS-OFDM波形。
例如表5所示出的另一种第一重定义信息指示域指示上行发送波形的示意表格。
第一重定义信息指示域 上行发送波形
B1 CP-OFDM波形
B2 CP-OFDM波形
B3 CP-OFDM波形
B4 DFTS-OFDM波形
B5 DFTS-OFDM波形
B6 DFTS-OFDM波形
表5
其中,B1、B2、B3、B4、B5和B6可以是第一重定义信息指示域中已有的B信息。B1、B2和B3与某一个波形预先建立了关系,例如CP-OFDM波形。B4、B5和B6与另一个波形预先建立了关系,例如DFTS-OFDM波形。可以通过第一重定义信息指示域中已有的B信息和预先建立的B信息与波形关系,进而指示终端进行PUSCH传输使用的上行发送波形。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一重定义信息指示域为第一其它信息对应的指示域。
在一些实施例中,第一重定义信息指示域对应的信息可以是某个码点(code points),例如0、1、2、3、4等等。该码点可以是第一其它信息对应的码点。不同的码点值可以对应相应指示域中不同的信息。例如,假设第一重定义信息指示域对应A信息,码点0可以对应A1,码点1可以对应A2等等。进而可以通过不同的码点值对应到指示终端进行PUSCH传输使用的不同的上行发送波形。
在一些实施例中,第一重定义信息指示域对应的信息可以是第一其它信息,其中,第一其它信息为除了波形以外的任意信息。例如,假设第一其它信息为A信息,则第一重定义信息指示域可以直接承载相应的A信息,以对应到指示终端进行PUSCH传输使用的上 行发送波形。例如通过上述表1、表2、表3、表4或表5中示出的波形对应关系进行指示。
本公开可以通过第一其它信息的指示域包含的指示信息或码点对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一其它信息为部分带宽(bandwidth part,BWP)指示信息或BWP对应的码点;和/或,第一其它信息为解调参考信号(demodulation reference signal,DMRS)端口指示信息或DMRS端口对应的码点。
在一些实施例中,第一其它信息可以是BWP指示信息,或者可以是BWP对应的码点。以使得进行数据调度的DCI可以基于BWP指示信息或者BWP对应的码点,指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第一其它信息可以是DMRS端口指示信息,或者可以是DMRS端口对应的码点。以使得进行数据调度的DCI可以基于DMRS端口指示信息或者DMRS端口对应的码点,指示终端进行PUSCH传输使用的上行发送波形。
本公开可以通过BWP或DMRS端口显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用第一其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI为没有数据调度的DCI,波形指示信息承载在第一DCI中的第二新增信息指示域和/或第二重定义信息指示域。
在一些实施例中,网络设备发送第一DCI可以是网络设备发送没有数据调度的DCI。其中,没有数据调度的DCI中可以包括第二新增信息指示域和/或第二重定义信息指示域。该第二新增信息指示域和/或第二重定义信息指示域可以用于承载波形指示信息。
在一些实施例中,没有数据调度的DCI是用于半静态调度(semi-persistent scheduling,SPS)release的DCI和进行波束指示的DCI。例如,在R17中没有数据调度的DCI可以包括DCI 1_1、DCI 1_2。
例如,图5示出了一种可能的没有数据调度的DCI的结构示意图。在没有数据调度的DCI中包括第二新增信息指示域和/或第二重定义信息指示域。没有数据调度的DCI通过该第二新增信息指示域和/或第二重定义信息指示域可以承载波形指示信息。
在相关技术中,R17引入了用于波束指示的DCI方法,使用没有数据调度的DCI来指示波束信息。为了提高DCI波束指示的可靠性,同时考虑了为DCI设计混合自动重传请求 -应答(hybrid automatic repeat request-ack,HARQ-ACK)反馈机制。在采用有下行调度信息的DCI 1_1/1_2进行波束指示时,是否成功解码波束指示信息的ACK/NACK反馈信息将携带在其调度的物理下行共享信道(physical downlink shared channel,PDSCH)的ACK/NACK反馈中。
采用没有下行调度信息的DCI格式(format)1_1/1_2进行波束指示时,为了简化反馈机制的设计,复用了SPS PDSCH释放时的ACK/NACK反馈机制。在波束指示时,没有调度信息的DCI 1_1/1_2的循环冗余校验(cyclic redundancy check,CRC)同样需要用配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)进行加扰。另外,为了区分该DCI是用于波束指示还是SPS PDSCH释放,可以将用于SPS release的DCI的信息域设置了特数取值用于波束指示。
例如表6示出了一种波束指示DCI中指示域配置表
Figure PCTCN2022122932-appb-000001
表6
其中,NDI为新数据指标(New data indicator)。可以理解,表6中的具体配置可以参考相关技术,本公开不再赘述。
本公开通过没有数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二新增信息指示域为没有数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
在一些实施例中,第二新增信息指示域可以是进行数据调度的DCI新增的指示域。该指示域用于指示终端进行PUSCH传输使用的上行发送波形。例如,进行数据调度的DCI中的第二新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波 形。或是,进行数据调度的DCI中的第二新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
例如,假设原始的没有数据调度的DCI包括N个指示域,则本公开所涉及的没有数据调度的DCI则可以包括N+1个指示域。也就是相比于原始的没有数据调度的DCI,本公开的没有数据调度的DCI新增了一个第二新增信息指示域。该新增的第二新增信息指示域可以用于承载波形指示信息。
在一些实施例中,第二新增信息指示域可以为1比特(bit)的指示域,以用于指示终端进行PUSCH传输使用的上行发送波形。例如,第二新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。第二新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又例如,第二新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。第二新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。可以理解,本公开对于第二新增信息指示域中具体数值与相应波形的对应关系不作限定。具体可以根据实际情况进行任意调整。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第二重定义信息指示域还用于指示第二其它信息,第二其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第二其它信息为除指示上行发送波形以外的信息。
在一些实施例中,第二重定义信息指示域可以是没有数据调度的DCI中已有的指示域。该指示域可以用于联合指示终端进行PUSCH传输使用的上行发送波形。例如,没有数据调度的DCI中的第二重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,没有数据调度的DCI中的第二重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
在一些实施例中,第二重定义信息指示域可以是进行数据调度的DCI中已有的指示域。例如,可以扩展已有的指示域,以便该已有的指示域承载波形指示信息。如,可以对没有数据调度的DCI中已有的指示域进行扩展,并将扩展后已有的指示域作为第二重定义信息指示域。
可以立即的是,扩展第二重定义信息指示域,可以是使用未定义或未使用的已有的指示域。
例如,没有数据调度的DCI中可以包括用于指示C信息的指示域。其中,C信息的指示域可以用于指示第二其它信息,例如指示C信息。可以对C信息指示域进行扩展,以使得不同部分的C信息可以分别对应不同的波形。如一部分C信息可以对应CP-OFDM波形,另一部分C信息可以对应DFTS-OFDM波形。
例如表7所示出的一种第二重定义信息指示域指示上行发送波形的示意表格。
第二重定义信息指示域 上行发送波形
C1 CP-OFDM波形
C2 CP-OFDM波形
C3 CP-OFDM波形
C4 DFTS-OFDM波形
C5 DFTS-OFDM波形
C6 DFTS-OFDM波形
表7
其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1、C2和C3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4、C5和C6,并将C4、C5和C6与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
例如表8所示出的另一种第二重定义信息指示域指示上行发送波形的示意表格。
第二重定义信息指示域 上行发送波形
C1 CP-OFDM波形
C2 CP-OFDM波形
C3 CP-OFDM波形
C4 DFTS-OFDM波形
C5 DFTS-OFDM波形
表8
其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1、C2 和C3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4和C5,并将C4和C5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
例如表9所示出的又一种第二重定义信息指示域指示上行发送波形的示意表格。
第二重定义信息指示域 上行发送波形
C1 CP-OFDM波形
C2 CP-OFDM波形
C3 DFTS-OFDM波形
C4 DFTS-OFDM波形
表9
其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1和C2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4,并将C3和C4与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
例如表10所示出的再一种第二重定义信息指示域指示上行发送波形的示意表格。
第二重定义信息指示域 上行发送波形
C1 CP-OFDM波形
C2 CP-OFDM波形
C3 DFTS-OFDM波形
C4 DFTS-OFDM波形
C5 DFTS-OFDM波形
表10
其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1和C2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4和C5,并将C3、C4和C5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
可以理解,第二重定义信息指示域中与不同波形对应的C信息数量可以相同或者不同。
在一些实施例中,上述表7、表8、表9和表10中指示终端进行PUSCH传输使用的上行发送波形可以是显式指示或是隐式指示。例如,显示指示则表示在配置第二重定义信 息指示域,即对C信息进行配置时,增加C信息与不同波形对应的指示信息。例如,在第二重定义信息指示域中直接通过波形指示信息指示终端进行PUSCH传输使用的上行发送波形,如第二重定义信息指示域中的值为0表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形,或者第二重定义信息指示域中的值为1表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又或者,第二重定义信息指示域中的值可以对应transform precoding,并基于RRC中的transform precoding为enable或disable来指示终端进行PUSCH传输使用的上行发送波形。
又例如,可以预先设定C信息与波形的对应关系,通过第二重定义信息指示域中承载的具体C信息,结合预先设定的C信息与波形的对应关系,以指示终端进行PUSCH传输使用的上行发送波形。例如以表7为例,第二重定义信息指示域中可以承载C3信息。预先配置有C3信息对应的波形为CP-OFDM波形。则可以基于第二重定义信息指示域中承载的C3信息,隐式指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。
可以理解,上述具体数值对应波形仅为一种示例性描述,本公开并不限定。
在一些实施例中,第二重定义信息指示域可以是没有数据调度的DCI中已有的指示域。例如,在已有的指示域中,相应的信息可能已经配置对应不同的波形。则可以利用此类信息联合指示终端进行PUSCH传输使用的上行发送波形。
可以理解的是,此类第二重定义信息指示域可以是已经定义或已使用的指示域。
例如,没有数据调度的DCI中可以包括用于指示D信息的指示域。其中,D信息的指示域可以用于指示第一其它信息,例如指示D信息。假设D信息预先已经与波形建立了关系,即不同部分的D信息可以分别对应不同的波形。如一部分D信息可以对应CP-OFDM波形,另一部分D信息可以对应DFTS-OFDM波形。
例如表11所示出的另一种第二重定义信息指示域指示上行发送波形的示意表格。
第二重定义信息指示域 上行发送波形
D1 CP-OFDM波形
D2 CP-OFDM波形
D3 CP-OFDM波形
D4 DFTS-OFDM波形
D5 DFTS-OFDM波形
D6 DFTS-OFDM波形
表11
其中,D1、D2、D3、D4、D5和D6可以是第二重定义信息指示域中已有的D信息。D1、D2和D3与某一个波形预先建立了关系,例如CP-OFDM波形。D4、D5和D6与另一个波形预先建立了关系,例如DFTS-OFDM波形。可以通过第二重定义信息指示域中已有的D信息和预先建立的D信息与波形关系,进而指示终端进行PUSCH传输使用的上行发送波形。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二重定义信息指示域为第二其它信息对应的指示域。
在一些实施例中,第二重定义信息指示域对应的信息可以是某个码点,例如0、1、2、3、4等等。该码点可以是第二其它信息对应的码点。不同的码点值可以对应相应指示域中不同的信息。例如,假设第二重定义信息指示域对应C信息,码点0可以对应C1,码点1可以对应C2等等。进而可以通过不同的码点值对应到指示终端进行PUSCH传输使用的不同的上行发送波形。
在一些实施例中,第二重定义信息指示域对应的信息可以是第二其它信息,其中,第二其它信息为除了波形以外的任意信息。例如,假设第二其它信息为C信息,则第二重定义信息指示域可以直接承载相应的C信息,以对应到指示终端进行PUSCH传输使用的上行发送波形。例如通过上述表7、表8、表9、表10或表11中示出的波形对应关系进行指示。
本公开可以通过第二其它信息的指示域包含的指示信息或码点对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二其它信息为DMRS序列初始化信息(sequence initialization)或DMRS序列初始化信息对应的码点;和/或,第二其它信息为时域资源分配(time domain resource allocation,TDRA)指示信息或TDRA对应的码点。
在一些实施例中,第二其它信息可以是DMRS序列初始化信息或DMRS序列初始化信息对应的码点,第二其它信息对应的指示域可以为DMRS sequence initialization。例如,DMRS sequence initialization的指示域中采用1bit承载波形指示信息,以指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第二其它信息可以是TDRA指示信息或TDRA对应的码点。例如TDRA可以预先配置有与波形的对应关系,进而基于TDRA指示信息或TDRA对应的码点,以指示终端进行PUSCH传输使用的上行发送波形。
本公开可以通过DMRS序列初始化信息或TDRA显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用第二其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI为分组(group common,GC)DCI,波形指示信息承载在GC DCI中。
在一些实施例中,网络设备发送第一DCI可以是网络设备发送GC DCI。波形指示信息可以承载在网络设备发送的GC DCI中。
例如,图6示出了一种可能的GC DCI的结构示意图。在GC DCI中包括承载波形指示信息的指示域。
本公开通过GC DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,GC DCI为用于承载终端进行PUSCH传输使用的上行发送波形的分组控制指示信息。
在一些实施例中,网络设备发送的GC DCI可以是专用于承载终端进行PUSCH传输使用的上行发送波形的GC DCI。可以理解,此类GC DCI为不同于现有GC DCI的新的GC DCI。在相关技术中,已有的GC DCI主要用于指示特定组内的多个不同终端的下行控制信息。而已有的GC DCI中并不包含用于指示终端进行PUSCH传输使用的上行发送波形的波形指示信息。因此,可以构建一个可以用于指示特定组内的多个不同终端进行PUSCH传输使用的上行发送波形的GC DCI。这类GC DCI相比于已有的GC DCI,可以指示特定组内的多个不同终端进行PUSCH传输使用的上行发送波形。
本公开通过构建用于承载终端进行PUSCH传输使用的上行发送波形的GC DCI,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,GC DCI包括新增用于指示终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域;GC DCI还用于指示特定组内的多个终端共同指示或分别指示对应的波形指示信息。
在一些实施例中,网络设备发送的GC DCI可以包括新增用于指示终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域。该GC DCI可以用于指示特定组内的多个终端共同指示或分别指示对应的波形指示信息。例如,该GC DCI可以是已有的GC DCI。该已有的GC DCI中应当包含新增的第三新增信息指示域,以使得包含第三新增信息指示域的已有的GC DCI可以指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第三新增信息指示域可以是GC DCI新增的指示域。该指示域用于指示终端进行PUSCH传输使用的上行发送波形。例如,GC DCI中的第三新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,GC DCI中的第一新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
例如,假设原始的GC DCI包括M个指示域,则本公开所涉及的GC DCI可以包括M+1个指示域。例如图7所示出的另一种GC DCI结构示意图,相比于原始的GC DCI,本公开的GC DCI新增了一个第三新增信息指示域。该新增的第三新增信息指示域可以用于承载波形指示信息。
在一些实施例中,第三新增信息指示域可以为1bit的指示域,以用于指示终端进行PUSCH传输使用的上行发送波形。例如,第三新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。第三新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又例如,第三新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。第三新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。可以理解,本公开对于第三新增信息指示域中具体数值与相应波形的对应关系不作限定。具体可以根据实际情况进行任意调整。
在一些实施例中,例如GC DCI可以为DCI2-3,可以在DCI2-3中新增1bit的第三新增信息指示域,以用于独立指示终端进行PUSCH传输使用的上行发送波形。
本公开通过在GC DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得GC DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,GC DCI包括用于联合指示终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域;第三重定义信息指示域还用于指示第三其它信息,第三其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第三其它信息为除指示上行发送波形以外的信息。
在一些实施例中,网络设备发送的GC DCI可以包括用于联合指示终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域。该GC DCI还可以用于指示第三其它信息。例如,该GC DCI可以是已有的GC DCI。该已有的GC DCI中应当包含第三重定义信息指示域,以使得包含第三重定义信息指示域的已有的GC DCI可以指示终端进行PUSCH传输使用的上行发送波形。例如图8所示出的又一种GC DCI结构示意图。可以看出,GC DCI中包括第三重定义信息指示域,该第三重定义信息指示域中承载波形指示信息,以指示终端进行PUSCH传输使用的上行发送波形
在一些实施例中,第三重定义信息指示域可以是GC DCI中已有的指示域。该指示域可以用于联合指示终端进行PUSCH传输使用的上行发送波形。例如,GC DCI中的第三重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,GC DCI中的第三重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
在一些实施例中,第三重定义信息指示域可以是GC DCI中已有的指示域。例如,可以扩展已有的指示域,以便该已有的指示域承载波形指示信息。如,可以对GC DCI中已有的指示域进行扩展,并将扩展后已有的指示域作为第三重定义信息指示域。
例如,GC DCI中可以包括用于指示E信息的指示域。其中,E信息的指示域可以用于指示第三其它信息,例如指示E信息。可以对E信息指示域进行扩展,以使得不同部分的E信息可以分别对应不同的波形。如一部分E信息可以对应CP-OFDM波形,另一部分E信息可以对应DFTS-OFDM波形。
例如表12所示出的一种第三重定义信息指示域指示上行发送波形的示意表格。
第三重定义信息指示域 上行发送波形
E1 CP-OFDM波形
E2 CP-OFDM波形
E3 CP-OFDM波形
E4 DFTS-OFDM波形
E5 DFTS-OFDM波形
E6 DFTS-OFDM波形
表12
其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1、E2和E3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4、E5 和E6,并将E4、E5和E6与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
例如表13所示出的另一种第三重定义信息指示域指示上行发送波形的示意表格。
第三重定义信息指示域 上行发送波形
E1 CP-OFDM波形
E2 CP-OFDM波形
E3 CP-OFDM波形
E4 DFTS-OFDM波形
E5 DFTS-OFDM波形
表13
其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1、E2和E3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4和E5,并将E4和E5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
例如表14所示出的又一种第三重定义信息指示域指示上行发送波形的示意表格。
第三重定义信息指示域 上行发送波形
E1 CP-OFDM波形
E2 CP-OFDM波形
E3 DFTS-OFDM波形
E4 DFTS-OFDM波形
表14
其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1和E2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4,并将E3和E4与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
例如表15所示出的再一种第三重定义信息指示域指示上行发送波形的示意表格。
第三重定义信息指示域 上行发送波形
E1 CP-OFDM波形
E2 CP-OFDM波形
E3 DFTS-OFDM波形
E4 DFTS-OFDM波形
E5 DFTS-OFDM波形
表15
其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1和E2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4和E5,并将E3、E4和E5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
可以理解,第三重定义信息指示域中与不同波形对应的E信息数量可以相同或者不同。
在一些实施例中,上述表12、表13、表14和表15中指示终端进行PUSCH传输使用的上行发送波形可以是显式指示或是隐式指示。例如,显示指示则表示在配置第三重定义信息指示域,即对E信息进行配置时,增加E信息与不同波形对应的指示信息。例如,在第三重定义信息指示域中直接通过波形指示信息指示终端进行PUSCH传输使用的上行发送波形,如第三重定义信息指示域中的值为0表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形,或者第三重定义信息指示域中的值为1表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又或者,第三重定义信息指示域中的值可以对应transform precoding,并基于RRC中的transform precoding为enable或disable来指示终端进行PUSCH传输使用的上行发送波形。
又例如,可以预先设定E信息与波形的对应关系,通过第三重定义信息指示域中承载的具体E信息,结合预先设定的E信息与波形的对应关系,以指示终端进行PUSCH传输使用的上行发送波形。例如以表6为例,第三重定义信息指示域中可以承载E3信息。预先配置有E3信息对应的波形为CP-OFDM波形。则可以基于第三重定义信息指示域中承载的E3信息,隐式指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。
可以理解,上述具体数值对应波形仅为一种示例性描述,本公开并不限定。
在一些实施例中,第三重定义信息指示域可以是GC DCI中已有的指示域。例如,在已有的指示域中,相应的信息可能已经配置对应不同的波形。则可以利用此类信息联合指示终端进行PUSCH传输使用的上行发送波形。
例如,GC DCI中可以包括用于指示F信息的指示域。其中,F信息的指示域可以用于 指示第三其它信息,例如指示F信息。假设F信息预先已经与波形建立了关系,即不同部分的F信息可以分别对应不同的波形。如一部分F信息可以对应CP-OFDM波形,另一部分F信息可以对应DFTS-OFDM波形。
例如表16所示出的另一种第三重定义信息指示域指示上行发送波形的示意表格。
第三重定义信息指示域 上行发送波形
F1 CP-OFDM波形
F2 CP-OFDM波形
F3 CP-OFDM波形
F4 DFTS-OFDM波形
F5 DFTS-OFDM波形
F6 DFTS-OFDM波形
表16
其中,F1、F2、F3、F4、F5和F6可以是第三重定义信息指示域中已有的F信息。F1、F2和F3与某一个波形预先建立了关系,例如CP-OFDM波形。F4、F5和F6与另一个波形预先建立了关系,例如DFTS-OFDM波形。可以通过第三重定义信息指示域中已有的F信息和预先建立的F信息与波形关系,进而指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第三重定义信息指示域对应的信息可以是某个码点,例如0、1、2、3、4等等。不同的码点值可以对应相应指示域中不同的信息。例如,假设第三重定义信息指示域对应E信息,码点0可以对应E1,码点1可以对应E2等等。进而可以通过不同的码点值对应到指示终端进行PUSCH传输使用的不同的上行发送波形。
在一些实施例中,第三重定义信息指示域对应的信息可以是第三其它信息,其中,第三其它信息为除了波形以外的任意信息。例如,假设第三其它信息为E信息,则第三重定义信息指示域可以直接承载相应的E信息,以对应到指示终端进行PUSCH传输使用的上行发送波形。例如通过上述表12、表13、表14、表15或表16中示出的波形对应关系进行指示。
本公开通过在GC DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得GC DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,PUSCH包括以下至少一项:配置授权类 型1的PUSCH;配置授权类型2的PUSCH;动态授权DG PUSCH。
在一些实施例中,PUSCH可以为配置授权(configured grant,CG)类型(type)1的PUSCH,例如CG PUSCH Type 1。
其中,CG PUSCH表示为免授权的PUSCH,Type 1为一种CG PUSCH的免调度方案。在CG PUSCH Type 1中,由RRC提供上行授权,包括授权的激活。终端一旦正确接收到RRC配置即立即生效。终端通过RRC信令配置所有的传输参数,包括周期、时间偏移和频率资源,以及上行传输所用的调制编码方式。当终端接收到RRC配置后,在由周期和偏移给定的时刻,终端开始采用配置的授权进行传输。偏移是为了控制在哪个时刻允许终端进行传输。
在一些实施例中,PUSCH可以为配置授权类型2的PUSCH,例如CG PUSCH Type 2。
其中,在CG PUSCH Type 2中,由RRC提供传输周期,基站通过DCI实现资源激活和部分传输参数的配置,从而实现该授权配置的激活传输。终端接收到激活命令后,如果缓存中有数据发送,会根据预先配置的周期进行传输;如果没有数据,终端不会传输任何数据。PDCCH发送时刻即明确了激活时间。终端通过在上行发送介质访问控制层(media access control,MAC)控制信令来确认激活/去激活配置授权类型2。
可以理解,CG PUSCH Type 1与CG PUSCH Type 2的区别在于激活的方式不同。
在一些实施例中,PUSCH可以为动态授权(dynamic grant,DG)PUSCH。
本公开可以应用在不同类型的PUSCH场景中,以使得在不同PUSCH配置的情况下,通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI包括DCI 0_1、DCI 0_2、DCI 1_1和/或下行DCI 1_2。
在一些实施例中,DCI 0_1、DCI 0_2、DCI 1_1和/或下行DCI 1_2。
在一些实施例中,可以只在DCI 0_1和/或DCI 0_2时指示上行DCI。
本公开可以应用在不同类型DCI的场景中,以使得在不同类型DCI的场景下,可以通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
可以理解的,本公开所涉及的进行数据调度的DCI、没有数据调度的DCI的区别在于DCI是否用于进行数据调度。GC DCI与进行数据调度的DCI、不进行数据调度的DCI区别在于可以用于针对特定组内的多个终端进行共同知识下行控制信息,或者可以基于一个GC DCI分别指示不同终端的下行控制信息。其结构可以相似或不同。
基于相同构思,图9是根据一示例性实施例示出的另一种上行波形的配置方法流程图,如图9所示,方法应用于终端,可以包括以下步骤:
在步骤S21中,接收第一DCI。
在一些实施例中,终端可以接收第一DCI。该第一DCI中包括波形指示信息。其中,波形指示信息用于指示终端进行PUSCH传输使用的上行发送波形。
例如,波形指示信息指示终端进行PUSCH传输使用的上行发送波形,可以是CP-OFDM波形或DFTS-OFDM波形。
在步骤S22中,接收第二DCI。
在一些实施例中,终端可以接收第二DCI。第二DCI使用波形指示信息所指示的上行发送波形进行调度。
例如,终端接收的第二DCI中可以包括多个信息域或指示域。不同的信息域或指示域对应的payload可以基于波形的不同而不同。终端接收的第二DCI中,一些信息域或指示域可以采用波形指示信息所指示的波形对应的payload进行调度。从而实现减小第二DCI的开销。
本公开通过接收第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI可以为进行数据调度的DCI,波形指示信息承载在第一DCI中的第一新增信息指示域和/或第一重定义信息指示域。
在一些实施例中,终端接收发送第一DCI可以是终端接收进行数据调度的DCI。其中,进行数据调度的DCI中可以包括第一新增信息指示域和/或第一重定义信息指示域。该第一新增信息指示域和/或第一重定义信息指示域可以用于承载波形指示信息。
例如图4所示,在进行数据调度的DCI中包括第一新增信息指示域和/或第一重定义信息指示域。进行数据调度的DCI通过该第一新增信息指示域和/或第一重定义信息指示域可以承载波形指示信息。
本公开通过进行数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一新增信息指示域为进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
在一些实施例中,第一新增信息指示域可以是进行数据调度的DCI新增的指示域。该 指示域用于指示终端进行PUSCH传输使用的上行发送波形。例如,进行数据调度的DCI中的第一新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,进行数据调度的DCI中的第一新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
例如,假设原始的进行数据调度的DCI包括N个指示域,则本公开所涉及的进行数据调度的DCI则可以包括N+1个指示域。也就是相比于原始的进行数据调度的DCI,本公开的进行数据调度的DCI新增了一个第一新增信息指示域。该新增的第一新增信息指示域可以用于承载波形指示信息。
在一些实施例中,第一新增信息指示域可以为1bit的指示域,以用于指示终端进行PUSCH传输使用的上行发送波形。例如,第一新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。第一新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又例如,第一新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。第一新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。可以理解,本公开对于第一新增信息指示域中具体数值与相应波形的对应关系不作限定。具体可以根据实际情况进行任意调整。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第一重定义信息指示域还用于指示第一其它信息,第一其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第一其它信息为除指示上行发送波形以外的信息。
在一些实施例中,第一重定义信息指示域可以是进行数据调度的DCI中已有的指示域。该指示域可以用于联合指示终端进行PUSCH传输使用的上行发送波形。例如,进行数据调度的DCI中的第一重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,进行数据调度的DCI中的第一重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
在一些实施例中,第一重定义信息指示域可以是进行数据调度的DCI中已有的指示域。例如,可以扩展已有的指示域,以便该已有的指示域承载波形指示信息。如,可以对进行 数据调度的DCI中已有的指示域进行扩展,并将扩展后已有的指示域作为第一重定义信息指示域。
例如,进行数据调度的DCI中可以包括用于指示A信息的指示域。其中,A信息的指示域可以用于指示第一其它信息,例如指示A信息。可以对A信息指示域进行扩展,以使得不同部分的A信息可以分别对应不同的波形。如一部分A信息可以对应CP-OFDM波形,另一部分A信息可以对应DFTS-OFDM波形。
例如以表1为例,其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1、A2和A3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4、A5和A6,并将A4、A5和A6与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
例如以表2为例,其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1、A2和A3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4和A5,并将A4和A5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
例如以表3为例,其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1和A2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4,并将A3和A4与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
例如以表4为例,其中,A1、A2和A3可以是第一重定义信息指示域中已有的A信息。可以将A1和A2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增A信息,例如A4和A5,并将A3、A4和A5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的A信息,可以是被预先预留但未被使用的A信息。
可以理解,第一重定义信息指示域中与不同波形对应的A信息数量可以相同或者不同。
在一些实施例中,上述表1、表2、表3和表4中指示终端进行PUSCH传输使用的上行发送波形可以是显式指示或是隐式指示。例如,显示指示则表示在配置第一重定义信息指示域,即对A信息进行配置时,增加A信息与不同波形对应的指示信息。例如,在第一重定义信息指示域中直接通过波形指示信息指示终端进行PUSCH传输使用的上行发送波形,如第一重定义信息指示域中的值为0表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形,或者第一重定义信息指示域中的值为1表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又或者,第一重定义信息指示域中的值可以对应transform precoding,并基于RRC中的transform  precoding为enable或disable来指示终端进行PUSCH传输使用的上行发送波形。
又例如,可以预先设定A信息与波形的对应关系,通过第一重定义信息指示域中承载的具体A信息,结合预先设定的A信息与波形的对应关系,以指示终端进行PUSCH传输使用的上行发送波形。例如以表1为例,第一重定义信息指示域中可以承载A3信息。预先配置有A3信息对应的波形为CP-OFDM波形。则可以基于第一重定义信息指示域中承载的A3信息,隐式指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。
可以理解,上述具体数值对应波形仅为一种示例性描述,本公开并不限定。
在一些实施例中,第一重定义信息指示域可以是进行数据调度的DCI中已有的指示域。例如,在已有的指示域中,相应的信息可能已经配置对应不同的波形。则可以利用此类信息联合指示终端进行PUSCH传输使用的上行发送波形。
例如,进行数据调度的DCI中可以包括用于指示B信息的指示域。其中,B信息的指示域可以用于指示第一其它信息,例如指示B信息。假设B信息预先已经与波形建立了关系,即不同部分的B信息可以分别对应不同的波形。如一部分B信息可以对应CP-OFDM波形,另一部分B信息可以对应DFTS-OFDM波形。
例如以表5为例,其中,B1、B2、B3、B4、B5和B6可以是第一重定义信息指示域中已有的B信息。B1、B2和B3与某一个波形预先建立了关系,例如CP-OFDM波形。B4、B5和B6与另一个波形预先建立了关系,例如DFTS-OFDM波形。可以通过第一重定义信息指示域中已有的B信息和预先建立的B信息与波形关系,进而指示终端进行PUSCH传输使用的上行发送波形。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一重定义信息指示域为第一其它信息对应的指示域。
在一些实施例中,第一重定义信息指示域对应的信息可以是某个码点,例如0、1、2、3、4等等。该码点可以是第一其它信息对应的码点。不同的码点值可以对应相应指示域中不同的信息。例如,假设第一重定义信息指示域对应A信息,码点0可以对应A1,码点1可以对应A2等等。进而可以通过不同的码点值对应到指示终端进行PUSCH传输使用的不同的上行发送波形。
在一些实施例中,第一重定义信息指示域对应的信息可以是第一其它信息,其中,第一其它信息为除了波形以外的任意信息。例如,假设第一其它信息为A信息,则第一重定 义信息指示域可以直接承载相应的A信息,以对应到指示终端进行PUSCH传输使用的上行发送波形。例如通过上述表1、表2、表3、表4或表5中示出的波形对应关系进行指示。
本公开可以通过码点或者第一其它信息的指示域包含的指示信息对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一其它信息为BWP指示信息或BWP对应的码点;和/或,第一其它信息为DMRS端口指示信息或DMRS端口对应的码点。
在一些实施例中,第一其它信息可以是BWP指示信息,或者可以是BWP对应的码点。以使得进行数据调度的DCI可以基于BWP指示信息或者BWP对应的码点,指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第一其它信息可以是DMRS端口指示信息,或者可以是DMRS端口对应的码点。以使得进行数据调度的DCI可以基于DMRS端口指示信息或者DMRS端口对应的码点,指示终端进行PUSCH传输使用的上行发送波形。
本公开可以通过BWP或DMRS端口显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用第一其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI为没有数据调度的DCI,波形指示信息承载在第一DCI中的第二新增信息指示域和/或第二重定义信息指示域。
在一些实施例中,网络设备发送第一DCI可以是网络设备发送没有数据调度的DCI。其中,没有数据调度的DCI中可以包括第二新增信息指示域和/或第二重定义信息指示域。该第二新增信息指示域和/或第二重定义信息指示域可以用于承载波形指示信息。
在一些实施例中,没有数据调度的DCI是用于SPS release的DCI和进行波束指示的DCI。例如,在R17中没有数据调度的DCI可以包括DCI 1_1、DCI 1_2。
例如,图5示出了一种可能的没有数据调度的DCI的结构示意图。在没有数据调度的DCI中包括第二新增信息指示域和/或第二重定义信息指示域。没有数据调度的DCI通过该第二新增信息指示域和/或第二重定义信息指示域可以承载波形指示信息。
本公开通过没有数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二新增信息指示域为没有数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
在一些实施例中,第二新增信息指示域可以是进行数据调度的DCI新增的指示域。该指示域用于指示终端进行PUSCH传输使用的上行发送波形。例如,进行数据调度的DCI中的第二新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,进行数据调度的DCI中的第二新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
例如,假设原始的没有数据调度的DCI包括N个指示域,则本公开所涉及的没有数据调度的DCI则可以包括N+1个指示域。也就是相比于原始的没有数据调度的DCI,本公开的没有数据调度的DCI新增了一个第二新增信息指示域。该新增的第二新增信息指示域可以用于承载波形指示信息。
在一些实施例中,第二新增信息指示域可以为1比特(bit)的指示域,以用于指示终端进行PUSCH传输使用的上行发送波形。例如,第二新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。第二新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又例如,第二新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。第二新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。可以理解,本公开对于第二新增信息指示域中具体数值与相应波形的对应关系不作限定。具体可以根据实际情况进行任意调整。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第二重定义信息指示域还用于指示第二其它信息,第二其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第二其它信息为除指示上行发送波形以外的信息。
在一些实施例中,第二重定义信息指示域可以是没有数据调度的DCI中已有的指示域。该指示域可以用于联合指示终端进行PUSCH传输使用的上行发送波形。例如,没有数据调度的DCI中的第二重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,没有数据调度的DCI中的第二重定义信息指示域指示终端进行 PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
在一些实施例中,第二重定义信息指示域可以是进行数据调度的DCI中已有的指示域。例如,可以扩展已有的指示域,以便该已有的指示域承载波形指示信息。如,可以对没有数据调度的DCI中已有的指示域进行扩展,并将扩展后已有的指示域作为第二重定义信息指示域。
可以立即的是,扩展第二重定义信息指示域,可以是使用未定义或未使用的已有的指示域。
例如,没有数据调度的DCI中可以包括用于指示C信息的指示域。其中,C信息的指示域可以用于指示第二其它信息,例如指示C信息。可以对C信息指示域进行扩展,以使得不同部分的C信息可以分别对应不同的波形。如一部分C信息可以对应CP-OFDM波形,另一部分C信息可以对应DFTS-OFDM波形。
例如以表7为例,其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1、C2和C3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4、C5和C6,并将C4、C5和C6与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
例如以表8为例,其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1、C2和C3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4和C5,并将C4和C5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
例如以表9为例,其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1和C2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4,并将C3和C4与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
例如以表10为例,其中,C1、C2和C3可以是第二重定义信息指示域中已有的C信息。可以将C1和C2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增C信息,例如C4和C5,并将C3、C4和C5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的C信息,可以是被预先预留但未被使用的C信息。或是未被定义的C信息。
可以理解,第二重定义信息指示域中与不同波形对应的C信息数量可以相同或者不同。
在一些实施例中,上述表7、表8、表9和表10中指示终端进行PUSCH传输使用的上行发送波形可以是显式指示或是隐式指示。例如,显示指示则表示在配置第二重定义信息指示域,即对C信息进行配置时,增加C信息与不同波形对应的指示信息。例如,在第二重定义信息指示域中直接通过波形指示信息指示终端进行PUSCH传输使用的上行发送波形,如第二重定义信息指示域中的值为0表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形,或者第二重定义信息指示域中的值为1表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又或者,第二重定义信息指示域中的值可以对应transform precoding,并基于RRC中的transform precoding为enable或disable来指示终端进行PUSCH传输使用的上行发送波形。
又例如,可以预先设定C信息与波形的对应关系,通过第二重定义信息指示域中承载的具体C信息,结合预先设定的C信息与波形的对应关系,以指示终端进行PUSCH传输使用的上行发送波形。例如以表7为例,第二重定义信息指示域中可以承载C3信息。预先配置有C3信息对应的波形为CP-OFDM波形。则可以基于第二重定义信息指示域中承载的C3信息,隐式指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。
可以理解,上述具体数值对应波形仅为一种示例性描述,本公开并不限定。
在一些实施例中,第二重定义信息指示域可以是没有数据调度的DCI中已有的指示域。例如,在已有的指示域中,相应的信息可能已经配置对应不同的波形。则可以利用此类信息联合指示终端进行PUSCH传输使用的上行发送波形。
可以理解的是,此类第二重定义信息指示域可以是已经定义或已使用的指示域。
例如,没有数据调度的DCI中可以包括用于指示D信息的指示域。其中,D信息的指示域可以用于指示第一其它信息,例如指示D信息。假设D信息预先已经与波形建立了关系,即不同部分的D信息可以分别对应不同的波形。如一部分D信息可以对应CP-OFDM波形,另一部分D信息可以对应DFTS-OFDM波形。
例如以表11为例,其中,D1、D2、D3、D4、D5和D6可以是第二重定义信息指示域中已有的D信息。D1、D2和D3与某一个波形预先建立了关系,例如CP-OFDM波形。D4、D5和D6与另一个波形预先建立了关系,例如DFTS-OFDM波形。可以通过第二重定义信息指示域中已有的D信息和预先建立的D信息与波形关系,进而指示终端进行PUSCH传输使用的上行发送波形。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二重定义信息指示域为第二其它信息对应的指示域。
在一些实施例中,第二重定义信息指示域对应的信息可以是某个码点,例如0、1、2、3、4等等。该码点可以是第二其它信息对应的码点。不同的码点值可以对应相应指示域中不同的信息。例如,假设第二重定义信息指示域对应C信息,码点0可以对应C1,码点1可以对应C2等等。进而可以通过不同的码点值对应到指示终端进行PUSCH传输使用的不同的上行发送波形。
在一些实施例中,第二重定义信息指示域对应的信息可以是第二其它信息,其中,第二其它信息为除了波形以外的任意信息。例如,假设第二其它信息为C信息,则第二重定义信息指示域可以直接承载相应的C信息,以对应到指示终端进行PUSCH传输使用的上行发送波形。例如通过上述表7、表8、表9、表10或表11中示出的波形对应关系进行指示。
本公开可以通过第二其它信息的指示域包含的指示信息或码点对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第二其它信息为DMRS序列初始化信息或DMRS序列初始化信息对应的码点;和/或,第二其它信息为TDRA指示信息或TDRA对应的码点。
在一些实施例中,第二其它信息可以是DMRS序列初始化信息或DMRS序列初始化信息对应的码点,第二其它信息对应的指示域可以为DMRS sequence initialization。例如,DMRS sequence initialization的指示域中采用1bit承载波形指示信息,以指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第二其它信息可以是TDRA指示信息或TDRA对应的码点。例如TDRA可以预先配置有与波形的对应关系,进而基于TDRA指示信息或TDRA对应的码点,以指示终端进行PUSCH传输使用的上行发送波形。
本公开可以通过DMRS序列初始化信息或TDRA显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用第二其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI为GC DCI,波形指示信息承 载在GC DCI中。
在一些实施例中,终端接收第一DCI可以是终端接收GC DCI。波形指示信息可以承载在终端接收的GC DCI中。例如图6所示,在GC DCI中包括承载波形指示信息的指示域。
本公开通过GC DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,GC DCI为用于承载终端进行PUSCH传输使用的上行发送波形的分组控制指示信息。
在一些实施例中,终端接收的GC DCI可以是专用于承载终端进行PUSCH传输使用的上行发送波形的GC DCI。可以理解,此类GC DCI为不同于现有GC DCI的新的GC DCI。在相关技术中,已有的GC DCI主要用于指示特定组内的多个不同终端的下行控制信息。而已有的GC DCI中并不包含用于指示终端进行PUSCH传输使用的上行发送波形的波形指示信息。因此,可以构建一个可以用于指示特定组内的多个不同终端进行PUSCH传输使用的上行发送波形的GC DCI。这类GC DCI相比于已有的GC DCI,可以指示特定组内的多个不同终端进行PUSCH传输使用的上行发送波形。
本公开通过构建用于承载终端进行PUSCH传输使用的上行发送波形的GC DCI,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,GC DCI包括新增用于指示终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域;GC DCI还用于指示特定组内的多个终端分别对应的波形指示信息。
在一些实施例中,终端接收的GC DCI可以包括新增用于指示终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域。该GC DCI可以用于指示特定组内的多个终端分别对应的波形指示信息。例如,该GC DCI可以是已有的GC DCI。该已有的GC DCI中应当包含新增的第三新增信息指示域,以使得包含第三新增信息指示域的已有的GC DCI可以指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第三新增信息指示域可以是GC DCI新增的指示域。该指示域用于指示终端进行PUSCH传输使用的上行发送波形。例如,GC DCI中的第三新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是,GC DCI中的第一新增信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
例如,假设原始的GC DCI包括M个指示域,则本公开所涉及的GC DCI可以包括M+1个指示域。例如图7所示,相比于原始的GC DCI,本公开的GC DCI新增了一个第三新增信息指示域。该新增的第三新增信息指示域可以用于承载波形指示信息。
在一些实施例中,第三新增信息指示域可以为1bit的指示域,以用于指示终端进行PUSCH传输使用的上行发送波形。例如,第三新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。第三新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又例如,第三新增信息指示域为0,可以用于指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。第三新增信息指示域为1,可以用于指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。可以理解,本公开对于第三新增信息指示域中具体数值与相应波形的对应关系不作限定。具体可以根据实际情况进行任意调整。
在一些实施例中,例如GC DCI可以为DCI2-3,可以在DCI2-3中新增1bit的第三新增信息指示域,以用于独立指示终端进行PUSCH传输使用的上行发送波形。
本公开通过在GC DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得GC DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,GC DCI包括用于联合指示终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域;第三重定义信息指示域还用于指示第三其它信息,第三其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第三其它信息为除指示上行发送波形以外的信息。
在一些实施例中,终端接收的GC DCI可以包括用于联合指示终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域。该GC DCI还可以用于指示第三其它信息。例如,该GC DCI可以是已有的GC DCI。该已有的GC DCI中应当包含第三重定义信息指示域,以使得包含第三重定义信息指示域的已有的GC DCI可以指示终端进行PUSCH传输使用的上行发送波形。例如图8所示,可以看出,GC DCI中包括第三重定义信息指示域,该第三重定义信息指示域中承载波形指示信息,以指示终端进行PUSCH传输使用的上行发送波形
在一些实施例中,第三重定义信息指示域可以是GC DCI中已有的指示域。该指示域可以用于联合指示终端进行PUSCH传输使用的上行发送波形。例如,GC DCI中的第三重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。或是, GC DCI中的第三重定义信息指示域指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。
在一些实施例中,第三重定义信息指示域可以是GC DCI中已有的指示域。例如,可以扩展已有的指示域,以便该已有的指示域承载波形指示信息。如,可以对GC DCI中已有的指示域进行扩展,并将扩展后已有的指示域作为第三重定义信息指示域。
例如,GC DCI中可以包括用于指示E信息的指示域。其中,E信息的指示域可以用于指示第三其它信息,例如指示E信息。可以对E信息指示域进行扩展,以使得不同部分的E信息可以分别对应不同的波形。如一部分E信息可以对应CP-OFDM波形,另一部分E信息可以对应DFTS-OFDM波形。
例如以表12为例,其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1、E2和E3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4、E5和E6,并将E4、E5和E6与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
例如以表13为例,其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1、E2和E3与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4和E5,并将E4和E5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
例如以表14为例,其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1和E2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4,并将E3和E4与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
例如以表15为例,其中,E1、E2和E3可以是第三重定义信息指示域中已有的E信息。可以将E1和E2与某一个波形建立关系,例如CP-OFDM波形。可以扩展新增E信息,例如E4和E5,并将E3、E4和E5与另一个波形建立关系,例如DFTS-OFDM波形。可以理解的是,扩展新增的E信息,可以是被预先预留但未被使用的E信息。
可以理解,第三重定义信息指示域中与不同波形对应的E信息数量可以相同或者不同。
在一些实施例中,上述表12、表13、表14和表15中指示终端进行PUSCH传输使用的上行发送波形可以是显式指示或是隐式指示。例如,显示指示则表示在配置第三重定义信息指示域,即对E信息进行配置时,增加E信息与不同波形对应的指示信息。例如,在第三重定义信息指示域中直接通过波形指示信息指示终端进行PUSCH传输使用的上行发送波形,如第三重定义信息指示域中的值为0表示波形指示信息指示终端进行PUSCH传 输使用的上行发送波形为CP-OFDM波形,或者第三重定义信息指示域中的值为1表示波形指示信息指示终端进行PUSCH传输使用的上行发送波形为DFTS-OFDM波形。又或者,第三重定义信息指示域中的值可以对应transform precoding,并基于RRC中的transform precoding为enable或disable来指示终端进行PUSCH传输使用的上行发送波形。
又例如,可以预先设定E信息与波形的对应关系,通过第三重定义信息指示域中承载的具体E信息,结合预先设定的E信息与波形的对应关系,以指示终端进行PUSCH传输使用的上行发送波形。例如以表12为例,第三重定义信息指示域中可以承载E3信息。预先配置有E3信息对应的波形为CP-OFDM波形。则可以基于第三重定义信息指示域中承载的E3信息,隐式指示终端进行PUSCH传输使用的上行发送波形为CP-OFDM波形。
可以理解,上述具体数值对应波形仅为一种示例性描述,本公开并不限定。
在一些实施例中,第三重定义信息指示域可以是GC DCI中已有的指示域。例如,在已有的指示域中,相应的信息可能已经配置对应不同的波形。则可以利用此类信息联合指示终端进行PUSCH传输使用的上行发送波形。
例如,GC DCI中可以包括用于指示F信息的指示域。其中,F信息的指示域可以用于指示第三其它信息,例如指示F信息。假设F信息预先已经与波形建立了关系,即不同部分的F信息可以分别对应不同的波形。如一部分F信息可以对应CP-OFDM波形,另一部分F信息可以对应DFTS-OFDM波形。
例如以表16为例,其中,F1、F2、F3、F4、F5和F6可以是第三重定义信息指示域中已有的F信息。F1、F2和F3与某一个波形预先建立了关系,例如CP-OFDM波形。F4、F5和F6与另一个波形预先建立了关系,例如DFTS-OFDM波形。可以通过第三重定义信息指示域中已有的F信息和预先建立的F信息与波形关系,进而指示终端进行PUSCH传输使用的上行发送波形。
在一些实施例中,第三重定义信息指示域对应的信息可以是某个码点,例如0、1、2、3、4等等。不同的码点值可以对应相应指示域中不同的信息。例如,假设第三重定义信息指示域对应E信息,码点0可以对应E1,码点1可以对应E2等等。进而可以通过不同的码点值对应到指示终端进行PUSCH传输使用的不同的上行发送波形。
在一些实施例中,第三重定义信息指示域对应的信息可以是第三其它信息,其中,第三其它信息为除了波形以外的任意信息。例如,假设第三其它信息为E信息,则第三重定义信息指示域可以直接承载相应的E信息,以对应到指示终端进行PUSCH传输使用的上行发送波形。例如通过上述表12、表13、表14、表15或表16中示出的波形对应关系进行指示。
本公开通过在GC DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得GC DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,PUSCH包括以下至少一项:配置授权类型1的PUSCH;配置授权类型2的PUSCH;动态授权DG PUSCH。
在一些实施例中,PUSCH可以为配置授权类型1的PUSCH,例如CG PUSCH Type 1。
其中,CG PUSCH表示为免授权的PUSCH,Type 1为一种CG PUSCH的免调度方案。在CG PUSCH Type 1中,由RRC提供上行授权,包括授权的激活。终端一旦正确接收到RRC配置即立即生效。终端通过RRC信令配置所有的传输参数,包括周期、时间偏移和频率资源,以及上行传输所用的调制编码方式。当终端接收到RRC配置后,在由周期和偏移给定的时刻,终端开始采用配置的授权进行传输。偏移是为了控制在哪个时刻允许终端进行传输。
在一些实施例中,PUSCH可以为配置授权类型2的PUSCH,例如CG PUSCH Type 2。
其中,在CG PUSCH Type 2中,由RRC提供传输周期,基站通过DCI实现资源激活和部分传输参数的配置,从而实现该授权配置的激活传输。终端接收到激活命令后,如果缓存中有数据发送,会根据预先配置的周期进行传输;如果没有数据,终端不会传输任何数据。PDCCH发送时刻即明确了激活时间。终端通过在上行发送MAC控制信令来确认激活/去激活配置授权类型2。
可以理解,CG PUSCH Type 1与CG PUSCH Type 2的区别在于激活的方式不同。
在一些实施例中,PUSCH可以为DG PUSCH。
本公开可以应用在不同类型的PUSCH场景中,以使得在不同PUSCH配置的情况下,通过接收第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
本公开实施例提供的上行波形的配置方法中,第一DCI包括DCI 0_1、DCI 0_2、DCI 1_1和/或下行DCI 1_2。
在一些实施例中,第一DCI可以为DCI 0_1、DCI 0_2、DCI 1_1和/或下行DCI 1_2。
在一些实施例中,可以只在DCI 0_1和/或DCI 0_2时指示上行DCI。
本公开可以应用在不同类型DCI的场景中,以使得在不同类型DCI的场景下,可以通过接收第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一些实施方式中,本公开提供了一种针对DMRS端口扩展的方式。以实现对进行数 据调度的DCI或GC DCI中其它信息的指示域进行联合指示。
例如表17所示出的一种DMRS端口指示扩展表格。
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 1 0
1 1 1
2 2 0
3 2 1
4 2 2
5 2 3
6 2 0
7 2 1
8 2 2
9 2 3
10-15 Reserved Reserved
表17
其中,每行的值(value)可以认为是码点。不同的码点可以对应不同的DMRS端口。可以设置码点为0到5对应CP-OFDM波形,码点为6-9对应DFT-S-OFDM波形。可以理解,10-15可以是预先设定但是未被启动的预留位。显然,表11给出了一种隐式指示的方式。
同时,码点为6-9可以是新增扩展的,也就是说,DMRS端口指示原本可能仅配置了码点0-5,并且并未与波形进行关联。
在一些实施方式中,本公开提供了另一种针对DMRS端口扩展的方式。以实现对进行数据调度的DCI或GC DCI中其它信息的指示域进行联合指示。
例如表18所示出的另一种DMRS端口指示扩展表格。
Figure PCTCN2022122932-appb-000002
表18
其中,每行的value可以认为是码点。不同的码点可以对应不同的DMRS端口。可以在表格中直接增加对应波形的指示信息。例如,设置码点为0到5对应CP-OFDM波形,码点为6-9对应transform precoding。可以基于RRC中的transform precoding为enable或disable来指示终端进行PUSCH传输使用的上行发送波形。可以理解,10-15可以是预先设 定但是未被启动的预留位。显然,表12给出了一种显式指示的方式。
在一些实施方式中,本公开提供了一种针对扩展BWP指示域的方式。以实现对进行数据调度的DCI或GC DCI中其它信息的指示域进行联合指示。
例如表19所示出的一种扩展BWP指示域的表格。
Figure PCTCN2022122932-appb-000003
表19
其中,每行的BWP指标字段的值可以认为是码点。不同的码点可以对应不同的BWP指示。例如,表格中已存在不同波形与不同BWP指示之间的关系,因此,可以直接利用BWP指示来指示终端进行PUSCH传输使用的上行发送波形。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种上行波形的配置装置、设备。
可以理解的是,本公开实施例提供的上行波形的配置装置、设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图10是根据一示例性实施例示出的一种上行波形的配置装置示意图。参照图10,装置200配置于网络设备,包括:发送模块201,用于发送第一下行控制信息DCI,第一DCI中包括波形指示信息,波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;发送模块201还用于,发送第二DCI,第二DCI使用波形指示信息所指示的上行发送波形进行调度。
本公开通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一DCI为进行数据调度的DCI,波形指示信息承载在第一DCI中的第一新增信息指示域和/或第一重定义信息指示域。
本公开通过进行数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一新增信息指示域为进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第一重定义信息指示域还用于指示第一其它信息,第一其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第一其它信息为除指示上行发送波形以外的信息。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一重定义信息指示域为第一其它信息对应的指示域。
本公开可以通过码点或者其它信息的指示域包含的指示信息对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一其它信息为部分带宽BWP指示信息或BWP对应的码点;和/或,第一其它信息为解调参考信号DMRS端口指示信息或DMRS端口对应的码点。
本公开可以通过BWP或DMRS端口显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对 上行覆盖实现增强。
在一种实施方式中,第一DCI为没有数据调度的DCI,波形指示信息承载在第一DCI中的第二新增信息指示域和/或第二重定义信息指示域。
本公开通过没有数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二新增信息指示域为没有数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第二重定义信息指示域还用于指示第二其它信息,第二其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第二其它信息为除指示上行发送波形以外的信息。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二重定义信息指示域为第二其它信息对应的指示域。
本公开可以通过第二其它信息的指示域包含的指示信息或码点对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二其它信息为DMRS序列初始化信息或DMRS序列初始化信息对应的码点;和/或,第二其它信息为时域资源分配TDRA指示信息或TDRA对应的码点。
本公开可以通过DMRS序列初始化信息或TDRA显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用第二其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一DCI为分组GC DCI,波形指示信息承载在GC DCI中。
本公开通过GC DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,GC DCI为用于承载终端进行PUSCH传输使用的上行发送波形的分组控制指示信息。
本公开通过构建用于承载终端进行PUSCH传输使用的上行发送波形的GC DCI,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,GC DCI包括新增用于指示终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域;GC DCI还用于为特定组内的多个终端共同指示或分别指示对应的波形指示信息。
本公开通过在GC DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得GC DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,GC DCI包括用于联合指示终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域;第三重定义信息指示域还用于指示第三其它信息,第三其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第三其它信息为除指示上行发送波形以外的信息。
本公开通过在GC DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得GC DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,PUSCH包括以下至少一项:配置授权类型1的PUSCH;配置授权类型2的PUSCH;动态授权DG PUSCH。
本公开可以应用在不同类型的PUSCH场景中,以使得在不同PUSCH配置的情况下,通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一DCI包括DCI 0_1、DCI 0_2、DCI 1_1和/或DCI 1_2。
本公开可以应用在不同类型DCI的场景中,以使得在不同类型DCI的场景下,可以通过发送第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相 同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
图11是根据一示例性实施例示出的另一种上行波形的配置装置示意图。参照图11,装置300配置于终端,包括:接收模块301,用于接收第一下行控制信息DCI,第一DCI中包括波形指示信息,波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;接收模块301还用于,接收第二DCI,第二DCI使用波形指示信息所指示的上行发送波形进行调度。
本公开通过接收第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一DCI为进行数据调度的DCI,波形指示信息承载在第一DCI中的第一新增信息指示域和/或第一重定义信息指示域。
本公开通过进行数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一新增信息指示域为进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第一重定义信息指示域还用于指示第一其它信息,第一其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第一其它信息为除指示上行发送波形以外的信息。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一重定义信息指示域为第一其它信息对应的指示域。
本公开可以通过码点或者其它信息的指示域包含的指示信息对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实 现增强。
在一种实施方式中,第一其它信息为部分带宽BWP指示信息或BWP对应的码点;和/或,第一其它信息为解调参考信号DMRS端口指示信息或DMRS端口对应的码点。
本公开可以通过BWP或DMRS端口显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一DCI为没有数据调度的DCI,波形指示信息承载在第一DCI中的第二新增信息指示域和/或第二重定义信息指示域。
本公开通过没有数据调度的DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二新增信息指示域为没有数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域。
本公开通过在进行数据调度的DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得进行数据调度的DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二重定义信息指示域用于联合指示终端进行PUSCH传输使用的上行发送波形;第二重定义信息指示域还用于指示第二其它信息,第二其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第二其它信息为除指示上行发送波形以外的信息。
本公开通过在进行数据调度的DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二重定义信息指示域为第二其它信息对应的指示域。
本公开可以通过第二其它信息的指示域包含的指示信息或码点对终端进行PUSCH传输使用的上行发送波形进行指示,使得进行数据调度的DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第二其它信息为DMRS序列初始化信息或DMRS序列初始化信 息对应的码点;和/或,第二其它信息为时域资源分配TDRA指示信息或TDRA对应的码点。
本公开可以通过DMRS序列初始化信息或TDRA显式或隐式的指示终端进行PUSCH传输使用的上行发送波形,使得进行数据调度的DCI可以利用第二其它信息对应的指示域承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一DCI为分组GC DCI,波形指示信息承载在GC DCI中。
本公开通过GC DCI承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,GC DCI为用于承载终端进行PUSCH传输使用的上行发送波形的分组控制指示信息。
本公开通过构建用于承载终端进行PUSCH传输使用的上行发送波形的GC DCI,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,GC DCI包括新增专用于指示终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域;GC DCI还用于为特定组内的多个终端共同指示或分别指示对应的波形指示信息。
本公开通过在GC DCI中新增用于指示终端进行PUSCH传输使用的上行发送波形的信息指示域,使得GC DCI可以承载波形指示信息以指示终端进行PUSCH传输使用的上行发送波形,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,GC DCI包括用于联合指示终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域;第三重定义信息指示域还用于指示第三其它信息,第三其它信息与上行发送波形之间具有预定义的显示或隐式对应关系,第三其它信息为除指示上行发送波形以外的信息。
本公开通过在GC DCI中已有的指示域联合指示终端进行PUSCH传输使用的上行发送波形,使得GC DCI可以承载波形指示信息,进而第二DCI可以基于相同的上行发送波形进行调度,以减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,PUSCH包括以下至少一项:配置授权类型1的PUSCH;配置授权类型2的PUSCH;动态授权DG PUSCH。
本公开可以应用在不同类型的PUSCH场景中,以使得在不同PUSCH配置的情况下,通过接收第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
在一种实施方式中,第一DCI包括DCI 0_1、DCI 0_2、DCI 1_1和/或DCI 1_2。
本公开可以应用在不同类型DCI的场景中,以使得在不同类型DCI的场景下,可以通过接收第一DCI以指示终端进行PUSCH传输使用的上行发送波形,使得第二DCI基于相同的上行发送波形进行调度,从而减小第二DCI的开销,并对上行覆盖实现增强。
其中,需要说明的是,本公开实施例涉及的上行波形的配置装置200和上行波形的配置装置300中涉及的各个模块/单元,仅是进行示例性说明,并不引以为限。例如,本公开实施例中的上行波形的配置装置200还可以包括接收模块和/或处理模块。上行波形的配置装置300还可以包括发送模块和/或处理模块。其中,上行波形的配置装置200和上行波形的配置装置300中所包括的各模块之间可以进行交互,也可以与其它网元设备进行交互。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图12是根据一示例性实施例示出的一种上行波形的配置设备示意图。例如,设备400可以被提供为一基站,或者是服务器。参照图12,设备400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
设备400还可以包括一个电源组件426被配置为执行设备400的电源管理,一个有线或无线网络接口450被配置为将设备400连接到网络,和一个输入输出(I/O)接口458。设备400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
图13是根据一示例性实施例示出的另一种上行波形的配置设备示意图。例如,设备500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,设备500可以包括以下一个或多个组件:处理组件502,存储器504,电力组件506,多媒体组件508,音频组件510,输入/输出(I/O)接口512,传感器组件514,以及通信组件516。
处理组件502通常控制设备500的整体操作,诸如与显示,电话呼叫,数据通信,相 机操作和记录操作相关联的操作。处理组件502可以包括一个或多个处理器520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件502可以包括一个或多个模块,便于处理组件502和其他组件之间的交互。例如,处理组件502可以包括多媒体模块,以方便多媒体组件508和处理组件502之间的交互。
存储器504被配置为存储各种类型的数据以支持在设备500的操作。这些数据的示例包括用于在设备500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件506为设备500的各种组件提供电力。电力组件506可以包括电源管理系统,一个或多个电源,及其他与为设备500生成、管理和分配电力相关联的组件。
多媒体组件508包括在所述设备500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件508包括一个前置摄像头和/或后置摄像头。当设备500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件510被配置为输出和/或输入音频信号。例如,音频组件510包括一个麦克风(MIC),当设备500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器504或经由通信组件516发送。在一些实施例中,音频组件510还包括一个扬声器,用于输出音频信号。
I/O接口512为处理组件502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件514包括一个或多个传感器,用于为设备500提供各个方面的状态评估。例如,传感器组件514可以检测到设备500的打开/关闭状态,组件的相对定位,例如所述组件为设备500的显示器和小键盘,传感器组件514还可以检测设备500或设备500一个组件的位置改变,用户与设备500接触的存在或不存在,设备500方位或加速/减速和设备 500的温度变化。传感器组件514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件516被配置为便于设备500和其他设备之间有线或无线方式的通信。设备500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,设备500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器504,上述指令可由设备500的处理器520执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开提供了支持上行波形动态切换的基站配置方法,方案对应的DCI开销小,可以用于上行覆盖的增强。支持了更为灵活的上行波形切换,用于支持小区边缘用户更为动态的切换波形,得到更好的性能。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不 应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (40)

  1. 一种上行波形的配置方法,其特征在于,所述方法应用于网络设备,包括:
    发送第一下行控制信息DCI,所述第一DCI中包括波形指示信息,所述波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;
    发送第二DCI,所述第二DCI使用所述波形指示信息所指示的上行发送波形进行调度。
  2. 根据权利要求1所述的方法,其特征在于,所述第一DCI为进行数据调度的DCI,所述波形指示信息承载在所述第一DCI中的第一新增信息指示域和/或第一重定义信息指示域。
  3. 根据权利要求2所述的方法,其特征在于,所述第一新增信息指示域为所述进行数据调度的DCI中新增用于指示所述终端进行PUSCH传输使用的上行发送波形的信息指示域。
  4. 根据权利要求2所述的方法,其特征在于,所述第一重定义信息指示域用于联合指示所述终端进行PUSCH传输使用的上行发送波形;
    所述第一重定义信息指示域还用于指示第一其它信息,所述第一其它信息与所述上行发送波形之间具有预定义的显示或隐式对应关系,所述第一其它信息为除指示所述上行发送波形以外的信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一重定义信息指示域为所述第一其它信息对应的指示域。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一其它信息为部分带宽BWP指示信息或BWP对应的码点;和/或,
    所述第一其它信息为解调参考信号DMRS端口指示信息或DMRS端口对应的码点。
  7. 根据权利要求1所述的方法,其特征在于,所述第一DCI为没有数据调度的DCI,所述波形指示信息承载在所述第一DCI中的第二新增信息指示域和/或第二重定义信息指示域。
  8. 根据权利要求7所述的方法,其特征在于,所述第二新增信息指示域为所述没有数据调度的DCI中新增用于指示所述终端进行PUSCH传输使用的上行发送波形的信息指示域。
  9. 根据权利要求7所述的方法,其特征在于,所述第二重定义信息指示域用于联合指示所述终端进行PUSCH传输使用的上行发送波形;
    所述第二重定义信息指示域还用于指示第二其它信息,所述第二其它信息与所述上行发送波形之间具有预定义的显示或隐式对应关系,所述第二其它信息为除指示所述上行发 送波形以外的信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第二重定义信息指示域为所述第二其它信息对应的指示域。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二其它信息为DMRS序列初始化信息或DMRS序列初始化信息对应的码点;和/或,
    所述第二其它信息为时域资源分配TDRA指示信息或TDRA对应的码点。
  12. 根据权利要求1所述的方法,其特征在于,所述第一DCI为分组GC DCI,所述波形指示信息承载在所述GC DCI中。
  13. 根据权利要求12所述的方法,其特征在于,所述GC DCI为用于承载所述终端进行PUSCH传输使用的上行发送波形的分组控制指示信息。
  14. 根据权利要求12所述的方法,其特征在于,所述GC DCI包括新增用于指示所述终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域;
    所述GC DCI还用于为特定组内的多个终端共同指示或分别指示对应的所述波形指示信息。
  15. 根据权利要求12所述的方法,其特征在于,所述GC DCI包括用于联合指示所述终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域;
    所述第三重定义信息指示域还用于指示第三其它信息,所述第三其它信息与所述上行发送波形之间具有预定义的显示或隐式对应关系,所述第三其它信息为除指示所述上行发送波形以外的信息。
  16. 根据权利要求1-15中任意一项所述的方法,其特征在于,所述PUSCH包括以下至少一项:
    配置授权类型1的PUSCH;
    配置授权类型2的PUSCH;
    动态授权DG PUSCH。
  17. 根据权利要求1-16中任意一项所述的方法,其特征在于,所述第一DCI包括DCI 0_1、DCI 0_2、DCI 1_1和/或DCI 1_2。
  18. 一种上行波形的配置方法,其特征在于,所述方法应用于终端,包括:
    接收第一下行控制信息DCI,所述第一DCI中包括波形指示信息,所述波形指示信息用于指示所述终端进行物理上行共享信道PUSCH传输使用的上行发送波形;
    接收第二DCI,所述第二DCI使用所述波形指示信息所指示的上行发送波形进行调度。
  19. 根据权利要求18所述的方法,其特征在于,所述第一DCI为进行数据调度的DCI,所述波形指示信息承载在所述第一DCI中的第一新增信息指示域和/或第一重定义信息指示域。
  20. 根据权利要求19所述的方法,其特征在于,所述第一新增信息指示域为所述进行数据调度的DCI中新增用于指示所述终端进行PUSCH传输使用的上行发送波形的信息指示域。
  21. 根据权利要求19所述的方法,其特征在于,所述第一重定义信息指示域用于联合指示所述终端进行PUSCH传输使用的上行发送波形;
    所述第一重定义信息指示域还用于指示第一其它信息,所述第一其它信息与所述上行发送波形之间具有预定义的显示或隐式对应关系,所述第一其它信息为除指示所述上行发送波形以外的信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第一重定义信息指示域为所述第一其它信息对应的指示域。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一其它信息为部分带宽BWP指示信息或BWP对应的码点;和/或,
    所述第一其它信息为解调参考信号DMRS端口指示信息或DMRS端口对应的码点。
  24. 根据权利要求18所述的方法,其特征在于,所述第一DCI为没有数据调度的DCI,所述波形指示信息承载在所述第一DCI中的第二新增信息指示域和/或第二重定义信息指示域。
  25. 根据权利要求24所述的方法,其特征在于,所述第二新增信息指示域为所述没有数据调度的DCI中新增用于指示所述终端进行PUSCH传输使用的上行发送波形的信息指示域。
  26. 根据权利要求24所述的方法,其特征在于,所述第二重定义信息指示域用于联合指示所述终端进行PUSCH传输使用的上行发送波形;
    所述第二重定义信息指示域还用于指示第二其它信息,所述第二其它信息与所述上行发送波形之间具有预定义的显示或隐式对应关系,所述第二其它信息为除指示所述上行发送波形以外的信息。
  27. 根据权利要求26所述的方法,其特征在于,所述第二重定义信息指示域为所述第二其它信息对应的指示域。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第二其它信息为DMRS序列初始化信息或DMRS序列初始化信息对应的码点;和/或,
    所述第二其它信息为时域资源分配TDRA指示信息或TDRA对应的码点。
  29. 根据权利要求18所述的方法,其特征在于,所述第一DCI为分组GC DCI,所述波形指示信息承载在所述GC DCI中。
  30. 根据权利要求29所述的方法,其特征在于,所述GC DCI为用于承载所述终端进行PUSCH传输使用的上行发送波形的分组控制指示信息。
  31. 根据权利要求29所述的方法,其特征在于,所述GC DCI包括新增专用于指示所述终端进行PUSCH传输使用的上行发送波形的第三新增信息指示域;
    所述GC DCI还用于为特定组内的多个终端共同指示或分别指示对应的所述波形指示信息。
  32. 根据权利要求29所述的方法,其特征在于,所述GC DCI包括用于联合指示所述终端进行PUSCH传输使用的上行发送波形的第三重定义信息指示域;
    所述第三重定义信息指示域还用于第三指示其它信息,所述第三其它信息与所述上行发送波形之间具有预定义的显示或隐式对应关系,所述第三其它信息为除指示所述上行发送波形以外的信息。
  33. 根据权利要求18-32中任意一项所述的方法,其特征在于,所述PUSCH包括以下至少一项:
    配置授权类型1的PUSCH;
    配置授权类型2的PUSCH;
    动态授权DG PUSCH。
  34. 根据权利要求18-33中任意一项所述的方法,其特征在于,所述第一DCI包括DCI 0_1、DCI 0_2、DCI 1_1和/或DCI 1_2。
  35. 一种上行波形的配置装置,其特征在于,所述装置配置于网络设备,包括:
    发送模块,用于发送第一下行控制信息DCI,所述第一DCI中包括波形指示信息,所述波形指示信息用于指示终端进行物理上行共享信道PUSCH传输使用的上行发送波形;
    所述发送模块还用于,发送第二DCI,所述第二DCI使用所述波形指示信息所指示的上行发送波形进行调度。
  36. 一种上行波形的配置装置,其特征在于,所述装置配置于终端,包括:
    接收模块,用于接收第一下行控制信息DCI,所述第一DCI中包括波形指示信息,所述波形指示信息用于指示所述终端进行物理上行共享信道PUSCH传输使用的上行发送波 形;
    所述接收模块还用于,接收第二DCI,所述第二DCI使用所述波形指示信息所指示的上行发送波形进行调度。
  37. 一种上行波形的配置设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至17中任意一项所述的方法。
  38. 一种上行波形的配置设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求18至34中任意一项所述的方法。
  39. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由网络设备的处理器执行时,使得所述网络设备能够执行权利要求1至17中任意一项所述的方法。
  40. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由终端的处理器执行时,使得所述终端能够执行权利要求18至34中任意一项所述的方法。
PCT/CN2022/122932 2022-09-29 2022-09-29 一种上行波形的配置方法、装置、设备及存储介质 WO2024065539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122932 WO2024065539A1 (zh) 2022-09-29 2022-09-29 一种上行波形的配置方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122932 WO2024065539A1 (zh) 2022-09-29 2022-09-29 一种上行波形的配置方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024065539A1 true WO2024065539A1 (zh) 2024-04-04

Family

ID=90475497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122932 WO2024065539A1 (zh) 2022-09-29 2022-09-29 一种上行波形的配置方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024065539A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108990166A (zh) * 2017-05-05 2018-12-11 华为技术有限公司 一种获取控制信息的方法及装置
US20190297619A1 (en) * 2016-11-04 2019-09-26 Sharp Kabushiki Kaisha Uplink transmission waveform configuration method, base station, and user equipment
US20200100241A1 (en) * 2017-04-27 2020-03-26 Ntt Docomo, Inc. User terminal and radio communication method
CN112398622A (zh) * 2019-08-16 2021-02-23 大唐移动通信设备有限公司 一种上行发送方法、终端及网络侧设备
CN113572587A (zh) * 2021-06-24 2021-10-29 杭州红岭通信息科技有限公司 一种上行物理共享信道的波形切换方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297619A1 (en) * 2016-11-04 2019-09-26 Sharp Kabushiki Kaisha Uplink transmission waveform configuration method, base station, and user equipment
US20200100241A1 (en) * 2017-04-27 2020-03-26 Ntt Docomo, Inc. User terminal and radio communication method
CN108990166A (zh) * 2017-05-05 2018-12-11 华为技术有限公司 一种获取控制信息的方法及装置
CN112398622A (zh) * 2019-08-16 2021-02-23 大唐移动通信设备有限公司 一种上行发送方法、终端及网络侧设备
CN113572587A (zh) * 2021-06-24 2021-10-29 杭州红岭通信息科技有限公司 一种上行物理共享信道的波形切换方法

Similar Documents

Publication Publication Date Title
CN108811149B (zh) 一种获取控制信息的方法及装置
JP2020010376A (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
CN110138531B (zh) 混合自动重传请求应答的传输方法及其装置
WO2019062998A1 (zh) 功率控制方法及装置
TWI710241B (zh) 聚合方法和用戶設備
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
WO2019128386A1 (zh) 一种上行控制信息的传输方法及装置
WO2018227636A1 (zh) 一种业务传输方法、设备及系统
WO2021203246A1 (zh) 非授权频段反馈信息传输方法、装置及存储介质
WO2019128706A1 (zh) 一种上行控制信息的传输方法及装置
WO2018195904A1 (zh) 用于信道载波配置的方法、装置、用户设备及基站
US20200229230A1 (en) Communication Method, Terminal Device, and Network Device
WO2018170845A1 (zh) 资源分配方法、装置及系统
WO2024065539A1 (zh) 一种上行波形的配置方法、装置、设备及存储介质
US20220183011A1 (en) Methods and devices for receiving data and controlling the same
WO2018228044A1 (zh) 一种上行控制信道传输方法、终端、基站及装置
WO2016045053A1 (zh) 半双工系统下的子帧调度方法、数据收发方法、装置和系统
WO2024065534A1 (zh) 一种上行波形配置方法、装置及存储介质
WO2023097698A1 (zh) 一种srs触发方法、装置及存储介质
WO2014179980A1 (zh) 混合自动重传请求harq反馈方法、用户设备及基站
WO2023122984A1 (zh) 一种srs触发方法、装置及存储介质
WO2024082313A1 (zh) 一种传输配置指示状态确定方法、装置、设备及存储介质
WO2022188008A1 (zh) 一种传输波形参数确定方法、装置及存储介质
WO2023272508A1 (zh) 用于pucch的通信方法、装置及存储介质
WO2024092853A1 (zh) 一种上行覆盖增强方法、装置及存储介质