WO2024065237A1 - Last dci determination for tci indication dci - Google Patents

Last dci determination for tci indication dci Download PDF

Info

Publication number
WO2024065237A1
WO2024065237A1 PCT/CN2022/121964 CN2022121964W WO2024065237A1 WO 2024065237 A1 WO2024065237 A1 WO 2024065237A1 CN 2022121964 W CN2022121964 W CN 2022121964W WO 2024065237 A1 WO2024065237 A1 WO 2024065237A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
dci
dcis
codepoint
processor
Prior art date
Application number
PCT/CN2022/121964
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/121964 priority Critical patent/WO2024065237A1/en
Publication of WO2024065237A1 publication Critical patent/WO2024065237A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a configuration for determining a last downlink control information (DCI) for a transmission configuration indicator (TCI) indication.
  • DCI downlink control information
  • TCI transmission configuration indicator
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • the apparatus may be a device at a UE.
  • the device may be a processor and/or a modem at a UE or the UE itself.
  • the apparatus receives one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers.
  • DCIs downlink control indicators
  • TCI transmission configuration indicator
  • the apparatus transmits a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs.
  • PUCCH physical uplink control channel
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the apparatus determines at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers.
  • the apparatus applies the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
  • the apparatus may be a device at a network entity.
  • the device may be a processor and/or a modem at a network entity or the network entity itself.
  • the apparatus outputs one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers.
  • DCIs downlink control indicators
  • TCI transmission configuration indicator
  • the apparatus obtains a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
  • PUCCH physical uplink control channel
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of downlink (DL) channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of uplink (UL) channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIGs. 4A-4B are diagrams that illustrate examples of applying a TCI.
  • FIG. 5 is a call flow diagram of signaling between a UE and a base station.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus and/or network entity.
  • FIG. 9 is a flowchart of a method of wireless communication.
  • FIG. 10 is a diagram illustrating an example of a hardware implementation for an example network entity.
  • a DCI comprising a TCI indication needs to be acknowledged prior to the application of the TCI.
  • the UE needs to determine which DCI of the multiple DCIs comprises the valid TCI indication.
  • the UE may transmit a PUCCH comprising multiple ACKs that correspond to multiple DCIs, where the UE may determine a DCI from the multiple DCIs that comprises the valid TCI indication.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, or any combination thereof.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • aspects, implementations, and/or use cases are described in this application by illustration to some examples, additional or different aspects, implementations and/or use cases may come about in many different arrangements and scenarios. Aspects, implementations, and/or use cases described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, and packaging arrangements. For example, aspects, implementations, and/or use cases may come about via integrated chip implementations and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) .
  • non-module-component based devices e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc.
  • OFEM original equipment manufacturer
  • Deployment of communication systems may be arranged in multiple manners with various components or constituent parts.
  • a network node, a network entity, a mobility element of a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station (BS) , or one or more units (or one or more components) performing base station functionality may be implemented in an aggregated or disaggregated architecture.
  • a BS such as a Node B (NB) , evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a transmit receive point (TRP) , or a cell, etc.
  • NB Node B
  • eNB evolved NB
  • NR BS 5G NB
  • AP access point
  • TRP transmit receive point
  • a cell etc.
  • a BS may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or a disaggregated base station.
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node.
  • a disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more central or centralized units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) .
  • a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CU, DU and RU can be implemented as virtual units, i.e., a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
  • VCU virtual central unit
  • VDU virtual distributed unit
  • Base station operation or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an integrated access backhaul (IAB) network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) .
  • Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station, or disaggregated RAN architecture can be configured for wired or wireless communication with at least one other unit.
  • FIG. 1 is a diagram 100 illustrating an example of a wireless communications system and an access network.
  • the illustrated wireless communications system includes a disaggregated base station architecture.
  • the disaggregated base station architecture may include one or more CUs 110 that can communicate directly with a core network 120 via a backhaul link, or indirectly with the core network 120 through one or more disaggregated base station units (such as a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) 125 via an E2 link, or a Non-Real Time (Non-RT) RIC 115 associated with a Service Management and Orchestration (SMO) Framework 105, or both) .
  • a CU 110 may communicate with one or more DUs 130 via respective midhaul links, such as an F1 interface.
  • the DUs 130 may communicate with one or more RUs 140 via respective fronthaul links.
  • the RUs 140 may communicate with respective UEs 104 via one or more radio frequency (RF) access links.
  • RF radio frequency
  • the UE 104 may be simultaneously served by multiple RUs 140.
  • Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or to transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units can be configured to communicate with one or more of the other units via the transmission medium.
  • the units can include a wired interface configured to receive or to transmit signals over a wired transmission medium to one or more of the other units.
  • the units can include a wireless interface, which may include a receiver, a transmitter, or a transceiver (such as an RF transceiver) , configured to receive or to transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter, or a transceiver (such as an RF transceiver) , configured to receive or to transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • the CU 110 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 110.
  • the CU 110 may be configured to handle user plane functionality (i.e., Central Unit –User Plane (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof.
  • the CU 110 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as an E1 interface when implemented in an O-RAN configuration.
  • the CU 110 can be implemented to communicate with
  • the DU 130 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 140.
  • the DU 130 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation, demodulation, or the like) depending, at least in part, on a functional split, such as those defined by 3GPP.
  • RLC radio link control
  • MAC medium access control
  • PHY high physical layers
  • the DU 130 may further host one or more low PHY layers.
  • Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 130, or with the control functions hosted by the CU 110.
  • Lower-layer functionality can be implemented by one or more RUs 140.
  • an RU 140 controlled by a DU 130, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split.
  • the RU (s) 140 can be implemented to handle over the air (OTA) communication with one or more UEs 104.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 140 can be controlled by the corresponding DU 130.
  • this configuration can enable the DU (s) 130 and the CU 110 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 105 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 105 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements that may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 105 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 190) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) 190
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 110, DUs 130, RUs 140 and Near-RT RICs 125.
  • the SMO Framework 105 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 111, via an O1 interface. Additionally, in some implementations, the SMO Framework 105 can communicate directly with one or more RUs 140 via an O1 interface.
  • the SMO Framework 105 also may include a Non-RT RIC 115 configured to support functionality of the SMO Framework 105.
  • the Non-RT RIC 115 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, artificial intelligence (AI) /machine learning (ML) (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 125.
  • the Non-RT RIC 115 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 125.
  • the Near-RT RIC 125 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 110, one or more DUs 130, or both, as well as an O-eNB, with the Near-RT RIC 125.
  • the Non-RT RIC 115 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 125 and may be received at the SMO Framework 105 or the Non-RT RIC 115 from non-network data sources or from network functions. In some examples, the Non-RT RIC 115 or the Near-RT RIC 125 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 115 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 105 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
  • SMO Framework 105 such as reconfiguration via O1
  • A1 policies such as A1 policies
  • a base station 102 may include one or more of the CU 110, the DU 130, and the RU 140 (each component indicated with dotted lines to signify that each component may or may not be included in the base station 102) .
  • the base station 102 provides an access point to the core network 120 for a UE 104.
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the small cells include femtocells, picocells, and microcells.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • the communication links between the RUs 140 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to an RU 140 and/or downlink (DL) (also referred to as forward link) transmissions from an RU 140 to a UE 104.
  • the communication links may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction.
  • the carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) .
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • PCell primary cell
  • SCell secondary cell
  • D2D communication link 158 may use the DL/UL wireless wide area network (WWAN) spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, Bluetooth, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
  • IEEE Institute of Electrical and Electronics Engineers
  • the wireless communications system may further include a Wi-Fi AP 150 in communication with UEs 104 (also referred to as Wi-Fi stations (STAs) ) via communication link 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • UEs 104 also referred to as Wi-Fi stations (STAs)
  • communication link 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the UEs 104 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • FR1 frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR2-2 52.6 GHz –71 GHz
  • FR4 71 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR2-2, and/or FR5, or may be within the EHF band.
  • the base station 102 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate beamforming.
  • the base station 102 may transmit a beamformed signal 182 to the UE 104 in one or more transmit directions.
  • the UE 104 may receive the beamformed signal from the base station 102 in one or more receive directions.
  • the UE 104 may also transmit a beamformed signal 184 to the base station 102 in one or more transmit directions.
  • the base station 102 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 102 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 102 /UE 104.
  • the transmit and receive directions for the base station 102 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the base station 102 may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , network node, network entity, network equipment, or some other suitable terminology.
  • the base station 102 can be implemented as an integrated access and backhaul (IAB) node, a relay node, a sidelink node, an aggregated (monolithic) base station with a baseband unit (BBU) (including a CU and a DU) and an RU, or as a disaggregated base station including one or more of a CU, a DU, and/or an RU.
  • the set of base stations which may include disaggregated base stations and/or aggregated base stations, may be referred to as next generation (NG) RAN (NG-RAN) .
  • NG next generation
  • NG-RAN next generation
  • the core network 120 may include an Access and Mobility Management Function (AMF) 161, a Session Management Function (SMF) 162, a User Plane Function (UPF) 163, a Unified Data Management (UDM) 164, one or more location servers 168, and other functional entities.
  • the AMF 161 is the control node that processes the signaling between the UEs 104 and the core network 120.
  • the AMF 161 supports registration management, connection management, mobility management, and other functions.
  • the SMF 162 supports session management and other functions.
  • the UPF 163 supports packet routing, packet forwarding, and other functions.
  • the UDM 164 supports the generation of authentication and key agreement (AKA) credentials, user identification handling, access authorization, and subscription management.
  • AKA authentication and key agreement
  • the one or more location servers 168 are illustrated as including a Gateway Mobile Location Center (GMLC) 165 and a Location Management Function (LMF) 166.
  • the one or more location servers 168 may include one or more location/positioning servers, which may include one or more of the GMLC 165, the LMF 166, a position determination entity (PDE) , a serving mobile location center (SMLC) , a mobile positioning center (MPC) , or the like.
  • the GMLC 165 and the LMF 166 support UE location services.
  • the GMLC 165 provides an interface for clients/applications (e.g., emergency services) for accessing UE positioning information.
  • the LMF 166 receives measurements and assistance information from the NG-RAN and the UE 104 via the AMF 161 to compute the position of the UE 104.
  • the NG-RAN may utilize one or more positioning methods in order to determine the position of the UE 104. Positioning the UE 104 may involve signal measurements, a position estimate, and an optional velocity computation based on the measurements. The signal measurements may be made by the UE 104 and/or the serving base station 102.
  • the signals measured may be based on one or more of a satellite positioning system (SPS) 170 (e.g., one or more of a Global Navigation Satellite System (GNSS) , global position system (GPS) , non-terrestrial network (NTN) , or other satellite position/location system) , LTE signals, wireless local area network (WLAN) signals, Bluetooth signals, a terrestrial beacon system (TBS) , sensor-based information (e.g., barometric pressure sensor, motion sensor) , NR enhanced cell ID (NR E-CID) methods, NR signals (e.g., multi-round trip time (Multi-RTT) , DL angle-of-departure (DL-AoD) , DL time difference of arrival (DL-TDOA) , UL time difference of arrival (UL-TDOA) , and UL angle-of-arrival (UL-AoA) positioning) , and/or other systems/signals/sensors.
  • SPS satellite positioning system
  • GNSS Global Navigation Satellite
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the term UE may also apply to one or more companion devices such as in a device constellation arrangement. One or more of these devices may collectively access the network and/or individually access the network.
  • the UE 104 may comprise a TCI component 198 configured to receive one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers; transmit a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs; determine at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and apply the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
  • DCIs downlink control indicators
  • TCI transmission configuration indicator
  • PUCCH physical uplink control channel
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the base station 102 may comprise a TCI component 199 configured to output one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers; and obtain a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
  • DCIs downlink control indicators
  • TCI transmission configuration indicator
  • PUCCH physical uplink control channel
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • FIGs. 2A-2D illustrate a frame structure, and the aspects of the present disclosure may be applicable to other wireless communication technologies, which may have a different frame structure and/or different channels.
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 14 or 12 symbols, depending on whether the cyclic prefix (CP) is normal or extended.
  • CP cyclic prefix
  • the symbols on DL may be CP orthogonal frequency division multiplexing (OFDM) (CP-OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the CP and the numerology.
  • the numerology defines the subcarrier spacing (SCS) (see Table 1) .
  • the symbol length/duration may scale with 1/SCS.
  • the numerology 2 allows for 4 slots per subframe. Accordingly, for normal CP and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • BWPs bandwidth parts
  • Each BWP may have a particular numerology and CP (normal or extended) .
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgment (ACK) (HARQ-ACK) feedback (i.e., one or more HARQ ACK bits indicating one or more ACK and/or negative ACK (NACK) ) .
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP Internet protocol
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318Tx.
  • Each transmitter 318Tx may modulate a radio frequency (RF) carrier with a respective spatial stream for transmission.
  • RF radio frequency
  • each receiver 354Rx receives a signal through its respective antenna 352.
  • Each receiver 354Rx recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354Tx. Each transmitter 354Tx may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318Rx receives a signal through its respective antenna 320.
  • Each receiver 318Rx recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with the TCI component 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with the TCI component 199 of FIG. 1.
  • a DCI comprising a TCI indication needs to be acknowledged prior to the application of the TCI.
  • a base station may update the TCI indication from time to time, such that different DCIs may comprise different TCI indications. The UE needs to determine which DCI of the multiple DCIs comprises the valid TCI indication.
  • the UE may transmit a PUCCH comprising multiple ACKs that correspond to multiple DCIs, where the UE may determine a DCI from the multiple DCIs that comprises the valid TCI indication.
  • a UE may be configured to determine which DCI from one or more DCIs that comprises a valid TCI indication in instances where a PUCCH comprises multiple ACKs for multiple TCI indications.
  • a UE when a UE transmits a PUCCH comprising one or more ACKs/NACKs for multiple DCIs, where each DCI comprises a TCI codepoint.
  • the UE may be configured to apply the TCI based on at least one of a last DCI in time per component carrier or a last DCI in time per direction per component carrier.
  • the UE may identify the last DCI in time per component carrier. The UE may then apply the indicated TCI codepoint in the identified last DCI for each component carrier.
  • the TCI in the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  • the UE may receive multiple DCIs (e.g., DCI1 402, DCI2 404, DCI3 406, DCI4 408) and may transmit a PUCCH (e.g., 410) corresponding to the multiple DCIs.
  • the UE may apply the TCI based on the last DCI, in time, for each component carrier.
  • the UE may apply the TCI3 corresponding to DCI3 for a first CC, and may apply the TCI4 corresponding to DCI4 for a second CC.
  • TCI3 and TCI4 may be applied because they are associated with the last DCI in time for the respective component carrier.
  • the UE may identify the last DCI in time for downlink applicable TCI per component carrier, if any, and a last DCI in time for uplink applicable TCI per component carrier, if any. The UE may then apply the indicated TCI (s) in the identified last DCI (s) for each component carrier.
  • the downlink applicable TCI may comprise a joint TCI or a downlink TCI.
  • the uplink applicable TCI may comprise a joint TCI or a downlink TCI.
  • the UE may receive multiple DCIs (e.g., DCI1 422, DCI2 424, DCI3 426, DCI4 428, DCI5 430, DCI6 432) and may transmit a PUCCH (e.g., 434) corresponding to the multiple DCIs.
  • the UE may apply the TCI based on the last DCI, in time, for each direction (e.g., uplink or downlink) for each component carrier.
  • the UE may apply TCI1 for uplink for a first component carrier that corresponds to DCI1.
  • the UE may apply TCI6 for uplink for a second component carrier that corresponds to DCI6.
  • the UE may apply TCI5 for downlink for the first component carrier that corresponds to DCI5.
  • the UE may apply TCI2 for downlink for the second component carrier that corresponds to DCI2.
  • TCI1 and TCI6 may be applied for uplink because they are associated with the last DCI in time for uplink for their respective component carrier.
  • TCI2 and TCI5 may be applied for downlink because they are associated with the last DCI in time for downlink for their respective component carrirer.
  • the indicated DLorJointTCIState or UL-TCIstate should be applied starting from the first slot that is at least a number of symbols (e.g., determined by BeamAppTime_r17) after the last symbol of the PUCCH.
  • the first slot and the number of BeamAppTime_r17 symbols are both determined on the carrier with the smallest SCS among the carrier (s) applying the beam indication.
  • FIG. 5 is a call flow diagram 500 of signaling between a UE 502 and a base station 504.
  • the base station 504 may be configured to provide at least one cell.
  • the UE 502 may be configured to communicate with the base station 504.
  • the base station 504 may correspond to base station 102 and.
  • a UE 502 may correspond to at least UE 104.
  • the base station 504 may correspond to base station 310 and the UE 502 may correspond to UE 350.
  • the base station 504 may output one or more DCIs comprising a TCI codepoint for one or more component carriers.
  • the base station 504 may output the one or more DCIs to the UE 502.
  • the UE 502 may receive the one or more DCIs comprising the TCI codepoint for the one or more component carriers from the base station 504.
  • the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  • the UE 502 may transmit a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs.
  • the UE 502 may transmit the PUCCH comprising the ACK or the NACK to the base station 504.
  • the base station 504 may obtain the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs from the UE 502.
  • the UE 502 may determine at least one DCI comprising a valid TCI indication.
  • the UE may determine at least one DCI from the one or more DCIs comprising the valid TCI indication for each component carrier of the one or more component carriers.
  • the UE 502 to determine the at least one DCI from the one or more DCIs comprising the valid DCI, may identify a last DCI in time for each of the one or more component carriers.
  • the TCI codepoint associated with the last DCI may be applied for each component carrier.
  • the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  • the UE 502 to determine the at least one DCI from the one or more DCIs comprising the valid DCI, may identify a last DCI in time for each direction for each of the one or more component carriers.
  • the TCI codepoint associated with the last DCI may be applied for each component carrier.
  • the last DCI in time may comprise the last DCI for a downlink applicable TCI for each component carrier.
  • the downlink applicable TCI may comprise at least one of a joint TCI or a downlink TCI.
  • the last DCI in time may comprise the last DCI for an uplink applicable TCI for each component carrier.
  • the uplink applicable TCI may comprise at least one of a joint TCI or an uplink TCI.
  • the UE 502 may apply the TCI codepoint for the one or more component carriers.
  • the UE may apply the TCI codepoint for the one or more component carriers based at least one the at least one DCI comprising the valid TCI indication.
  • the UE 502 may communicate with the base station 504 based on the applied TCI codepoint for the one or more component carriers.
  • FIG. 6 is a flowchart 600 of a method of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104; the apparatus 804) .
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • the method may allow a UE to determine at least one DCI comprising a valid TCI indication.
  • the UE may receive one or more DCIs.
  • 602 may be performed by TCI component 198 of apparatus 804.
  • the UE may receive one or more DCIs from a network entity.
  • the one or more DCIs may comprise a TCI codepoint for one or more component carriers.
  • the UE may transmit a PUCCH comprising an ACK or a NACK.
  • 604 may be performed by TCI component 198 of apparatus 804.
  • the UE may transmit the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs.
  • the UE may determine at least one DCI comprising a valid TCI indication. For example, 606 may be performed by TCI component 198 of apparatus 804. The UE may determine at least one DCI from the one or more DCIs comprising the valid TCI indication for each component carrier of the one or more component carriers.
  • the UE may apply the TCI codepoint for the one or more component carriers.
  • 608 may be performed by TCI component 198 of apparatus 804.
  • the UE may apply the TCI codepoint for the one or more component carriers based at least one the at least one DCI comprising the valid TCI indication.
  • FIG. 7 is a flowchart 700 of a method of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104; the apparatus 804) .
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • the method may allow a UE to determine at least one DCI comprising a valid TCI indication.
  • the UE may receive one or more DCIs.
  • 702 may be performed by TCI component 198 of apparatus 804.
  • the UE may receive one or more DCIs from a network entity.
  • the one or more DCIs may comprise a TCI codepoint for one or more component carriers.
  • the UE may transmit a PUCCH comprising an ACK or a NACK.
  • 704 may be performed by TCI component 198 of apparatus 804.
  • the UE may transmit the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs.
  • the UE may determine at least one DCI comprising a valid TCI indication. For example, 606 may be performed by TCI component 198 of apparatus 804. The UE may determine at least one DCI from the one or more DCIs comprising the valid TCI indication for each component carrier of the one or more component carriers.
  • the UE may identify a last DCI in time for each of the one or more component carriers. For example, 708 may be performed by TCI component 198 of apparatus 804.
  • the TCI codepoint associated with the last DCI may be applied for each component carrier.
  • the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  • the UE may identify a last DCI in time for each direction for each of the one or more component carriers. For example, 710 may be performed by TCI component 198 of apparatus 804.
  • the TCI codepoint associated with the last DCI may be applied for each component carrier.
  • the last DCI in time may comprise the last DCI for a downlink applicable TCI for each component carrier.
  • the downlink applicable TCI may comprise at least one of a joint TCI or a downlink TCI.
  • the last DCI in time may comprise the last DCI for an uplink applicable TCI for each component carrier.
  • the uplink applicable TCI may comprise at least one of a joint TCI or an uplink TCI.
  • the UE may apply the TCI codepoint for the one or more component carriers.
  • 712 may be performed by TCI component 198 of apparatus 804.
  • the UE may apply the TCI codepoint for the one or more component carriers based at least one the at least one DCI comprising the valid TCI indication.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 804.
  • the apparatus 804 may be a UE, a component of a UE, or may implement UE functionality.
  • the apparatus 804 may include a cellular baseband processor 824 (also referred to as a modem) coupled to one or more transceivers 822 (e.g., cellular RF transceiver) .
  • the cellular baseband processor 824 may include on-chip memory 824'.
  • the apparatus 804 may further include one or more subscriber identity modules (SIM) cards 820 and an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810.
  • SIM subscriber identity modules
  • SD secure digital
  • the application processor 806 may include on-chip memory 806'.
  • the apparatus 804 may further include a Bluetooth module 812, a WLAN module 814, an SPS module 816 (e.g., GNSS module) , one or more sensor modules 818 (e.g., barometric pressure sensor /altimeter; motion sensor such as inertial measurement unit (IMU) , gyroscope, and/or accelerometer (s) ; light detection and ranging (LIDAR) , radio assisted detection and ranging (RADAR) , sound navigation and ranging (SONAR) , magnetometer, audio and/or other technologies used for positioning) , additional memory modules 826, a power supply 830, and/or a camera 832.
  • a Bluetooth module 812 e.g., a WLAN module 814
  • SPS module 816 e.g., GNSS module
  • sensor modules 818 e.g., barometric pressure sensor /altimeter
  • motion sensor such as inertial measurement unit (IMU) , gyroscope, and/or
  • the Bluetooth module 812, the WLAN module 814, and the SPS module 816 may include an on-chip transceiver (TRX) (or in some cases, just a receiver (RX) ) .
  • TRX on-chip transceiver
  • the Bluetooth module 812, the WLAN module 814, and the SPS module 816 may include their own dedicated antennas and/or utilize the antennas 880 for communication.
  • the cellular baseband processor 824 communicates through the transceiver (s) 822 via one or more antennas 880 with the UE 104 and/or with an RU associated with a network entity 802.
  • the cellular baseband processor 824 and the application processor 806 may each include a computer-readable medium /memory 824', 806', respectively.
  • the additional memory modules 826 may also be considered a computer-readable medium /memory. Each computer-readable medium /memory 824', 806', 826 may be non-transitory.
  • the cellular baseband processor 824 and the application processor 806 are each responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 824 /application processor 806, causes the cellular baseband processor 824 /application processor 806 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 824 /application processor 806 when executing software.
  • the cellular baseband processor 824 /application processor 806 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 804 may be a processor chip (modem and/or application) and include just the cellular baseband processor 824 and/or the application processor 806, and in another configuration, the apparatus 804 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 804.
  • the component 198 is configured to receive one or more DCIs comprising a TCI codepoint for one or more component carriers; transmit a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs; determine at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and apply the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
  • the component 198 may be within the cellular baseband processor 824, the application processor 806, or both the cellular baseband processor 824 and the application processor 806.
  • the component 198 may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by one or more processors configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by one or more processors, or some combination thereof.
  • the apparatus 804 may include a variety of components configured for various functions.
  • the apparatus 804, and in particular the cellular baseband processor 824 and/or the application processor 806, includes means for receiving one or more DCIs comprising a TCI codepoint for one or more component carriers.
  • the apparatus includes means for transmitting a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs.
  • the apparatus includes means for determining at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers.
  • the apparatus includes means for applying the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
  • the apparatus further includes means for identifying a last DCI in time for each of the one or more component carriers.
  • the TCI codepoint associated with the last DCI is applied for each component carrier.
  • the apparatus further includes means for identifying a last DCI in time for each direction for each of the one or more component carriers.
  • the TCI codepoint associated with the last DCI is applied for each component carrier.
  • the means may be the component 198 of the apparatus 804 configured to perform the functions recited by the means.
  • the apparatus 804 may include the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the means may be the TX processor 368, the RX processor 356, and/or the controller/processor 359 configured to perform the functions recited by the means.
  • FIG. 9 is a flowchart 900 of a method of wireless communication.
  • the method may be performed by a base station (e.g., the base station 102; the network entity 1002.
  • a base station e.g., the base station 102; the network entity 1002.
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • the method may allow a network entity to receive an indication of an applied TCI codepoint based on at least one DCI comprising a valid TCI indication.
  • the network entity may output one or more DCIs.
  • 902 may be performed by TCI component 199 of network entity 1002.
  • the network entity may output one or more DCIs comprising a TCI codepoint for one or more component carriers.
  • the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  • the network entity may obtain a PUCCH comprising an ACK or a NACK.
  • 904 may be performed by TCI component 199 of network entity 1002.
  • the network entity may obtain the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs.
  • the PUCCH may indicate an applied TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising a valid TCI indication.
  • FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for a network entity 1002.
  • the network entity 1002 may be a BS, a component of a BS, or may implement BS functionality.
  • the network entity 1002 may include at least one of a CU 1010, a DU 1030, or an RU 1040.
  • the network entity 1002 may include the CU 1010; both the CU 1010 and the DU 1030; each of the CU 1010, the DU 1030, and the RU 1040; the DU 1030; both the DU 1030 and the RU 1040; or the RU 1040.
  • the CU 1010 may include a CU processor 1012.
  • the CU processor 1012 may include on-chip memory 1012'. In some aspects, the CU 1010 may further include additional memory modules 1014 and a communications interface 1018. The CU 1010 communicates with the DU 1030 through a midhaul link, such as an F1 interface.
  • the DU 1030 may include a DU processor 1032.
  • the DU processor 1032 may include on-chip memory 1032'.
  • the DU 1030 may further include additional memory modules 1034 and a communications interface 1038.
  • the DU 1030 communicates with the RU 1040 through a fronthaul link.
  • the RU 1040 may include an RU processor 1042.
  • the RU processor 1042 may include on-chip memory 1042'.
  • the RU 1040 may further include additional memory modules 1044, one or more transceivers 1046, antennas 1080, and a communications interface 1048.
  • the RU 1040 communicates with the UE 104.
  • the on-chip memory 1012', 1032', 1042' and the additional memory modules 1014, 1034, 1044 may each be considered a computer-readable medium /memory.
  • Each computer-readable medium /memory may be non-transitory.
  • Each of the processors 1012, 1032, 1042 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the corresponding processor (s) causes the processor (s) to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the processor (s) when executing software.
  • the component 199 is configured to output one or more DCIs comprising a TCI codepoint for one or more component carriers; and obtain a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
  • the component 199 may be within one or more processors of one or more of the CU 1010, DU 1030, and the RU 1040.
  • the component 199 may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by one or more processors configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by one or more processors, or some combination thereof.
  • the network entity 1002 may include a variety of components configured for various functions. In one configuration, the network entity 1002 includes means for outputting one or more DCIs comprising a TCI codepoint for one or more component carriers.
  • the network entity includes means for obtaining a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
  • the means may be the component 199 of the network entity 1002 configured to perform the functions recited by the means.
  • the network entity 1002 may include the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the means may be the TX processor 316, the RX processor 370, and/or the controller/processor 375 configured to perform the functions recited by the means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
  • Sets should be interpreted as a set of elements where the elements number one or more. Accordingly, for a set of X, X would include one or more elements.
  • a first apparatus receives data from or transmits data to a second apparatus
  • the data may be received/transmitted directly between the first and second apparatuses, or indirectly between the first and second apparatuses through a set of apparatuses.
  • All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are encompassed by the claims. Moreover, nothing disclosed herein is dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.
  • the words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
  • the phrase “based on” shall not be construed as a reference to a closed set of information, one or more conditions, one or more factors, or the like.
  • the phrase “based on A” (where “A” may be information, a condition, a factor, or the like) shall be construed as “based at least on A” unless specifically recited differently.
  • Aspect 1 is a method of wireless communication at a UE comprising receiving one or more DCIs comprising a TCI codepoint for one or more component carriers; transmitting a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs; determining at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and applying the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
  • Aspect 2 is the method of aspect 1, further includes that to determine the at least one DCI from the one or more DCIs comprising the valid TCI indication, further including identifying a last DCI in time for each of the one or more component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
  • Aspect 3 is the method of any of aspects 1 and 2, further includes that the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  • Aspect 4 is the method of any of aspects 1-3, further includes that to determine the at least one DCI from the one or more DCIs comprising the valid TCI indication, further including identifying a last DCI in time for each direction for each of the one or more component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
  • Aspect 5 is the method of any of aspects 1-4, further includes that the last DCI in time comprises the last DCI for a downlink applicable TCI for each component carrier.
  • Aspect 6 is the method of any of aspects 1-5, further includes that the downlink applicable TCI comprises at least one of a joint TCI or a downlink TCI.
  • Aspect 7 is the method of any of aspects 1-6, further includes that the last DCI in time comprises the last DCI for an uplink applicable TCI for each component carrier.
  • Aspect 8 is the method of any of aspects 1-7, further includes that the uplink applicable TCI comprises at least one of a joint TCI or an uplink TCI.
  • Aspect 9 is an apparatus for wireless communication at a network entity including at least one processor coupled to a memory and at least one transceiver, the at least one processor configured to implement any of Aspects 1-8.
  • Aspect 10 is an apparatus for wireless communication at a network entity including means for implementing any of Aspects 1-8.
  • Aspect 11 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement any of Aspects 1-8.
  • Aspect 12 is a method of wireless communication at a network entity comprising outputting one or more DCIs comprising a TCI codepoint for one or more component carriers; and obtaining a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
  • Aspect 13 is the method of aspect 12, further includes that the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  • Aspect 14 is an apparatus for wireless communication at a network entity including at least one processor coupled to a memory and at least one transceiver, the at least one processor configured to implement any of Aspects 12-13.
  • Aspect 15 is an apparatus for wireless communication at a network entity including means for implementing any of Aspects 12-13.
  • Aspect 16 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement any of Aspects 12-13.

Abstract

Method and apparatus for determining a last DCI for a TCI indication. The apparatus receives one or more DCIs comprising a TCI codepoint for one or more component carriers. The apparatus transmits a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs. The apparatus determines at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers. The apparatus applies the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.

Description

LAST DCI DETERMINATION FOR TCI INDICATION DCI TECHNICAL FIELD
The present disclosure relates generally to communication systems, and more particularly, to a configuration for determining a last downlink control information (DCI) for a transmission configuration indicator (TCI) indication.
INTRODUCTION
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
BRIEF SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects. This summary neither identifies key or critical elements of all aspects nor delineates the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a device at a UE. The device may be a processor and/or a modem at a UE or the UE itself. The apparatus receives one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers. The apparatus transmits a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs. The apparatus determines at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers. The apparatus applies the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a device at a network entity. The device may be a processor and/or a modem at a network entity or the network entity itself. The apparatus outputs one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers. The apparatus obtains a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however,  of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of downlink (DL) channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of uplink (UL) channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIGs. 4A-4B are diagrams that illustrate examples of applying a TCI.
FIG. 5 is a call flow diagram of signaling between a UE and a base station.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a flowchart of a method of wireless communication.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus and/or network entity.
FIG. 9 is a flowchart of a method of wireless communication.
FIG. 10 is a diagram illustrating an example of a hardware implementation for an example network entity.
DETAILED DESCRIPTION
In wireless communications, a DCI comprising a TCI indication needs to be acknowledged prior to the application of the TCI. However, in some instances, there may be multiple ACKs in a PUCCH that may correspond to multiple DCIs, where each DCI may comprise a TCI indication. The UE needs to determine which DCI of the multiple DCIs comprises the valid TCI indication.
Aspects presented herein provide a configuration for determining a DCI that comprises a valid TCI indication. For example, the UE may transmit a PUCCH comprising multiple ACKs that correspond to multiple DCIs, where the UE may determine a DCI from the multiple DCIs that comprises the valid TCI indication.
The detailed description set forth below in connection with the drawings describes various configurations and does not represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems are presented with reference to various apparatus and methods. These apparatus and methods are described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages,  routines, subroutines, objects, executables, threads of execution, procedures, functions, or any combination thereof.
Accordingly, in one or more example aspects, implementations, and/or use cases, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
While aspects, implementations, and/or use cases are described in this application by illustration to some examples, additional or different aspects, implementations and/or use cases may come about in many different arrangements and scenarios. Aspects, implementations, and/or use cases described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, and packaging arrangements. For example, aspects, implementations, and/or use cases may come about via integrated chip implementations and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described examples may occur. Aspects, implementations, and/or use cases may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more techniques herein. In some practical settings, devices incorporating described aspects and features may also include additional components and features for implementation and practice of claimed and described aspect. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers,  modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . Techniques described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, aggregated or disaggregated components, end-user devices, etc. of varying sizes, shapes, and constitution.
Deployment of communication systems, such as 5G NR systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR system, or network, a network node, a network entity, a mobility element of a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station (BS) , or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture. For example, a BS (such as a Node B (NB) , evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a transmit receive point (TRP) , or a cell, etc. ) may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or a disaggregated base station.
An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node. A disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more central or centralized units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) . In some aspects, a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CU, DU and RU can be implemented as virtual units, i.e., a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
Base station operation or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an integrated access backhaul (IAB) network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) . Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design. The various units of the  disaggregated base station, or disaggregated RAN architecture, can be configured for wired or wireless communication with at least one other unit.
FIG. 1 is a diagram 100 illustrating an example of a wireless communications system and an access network. The illustrated wireless communications system includes a disaggregated base station architecture. The disaggregated base station architecture may include one or more CUs 110 that can communicate directly with a core network 120 via a backhaul link, or indirectly with the core network 120 through one or more disaggregated base station units (such as a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) 125 via an E2 link, or a Non-Real Time (Non-RT) RIC 115 associated with a Service Management and Orchestration (SMO) Framework 105, or both) . A CU 110 may communicate with one or more DUs 130 via respective midhaul links, such as an F1 interface. The DUs 130 may communicate with one or more RUs 140 via respective fronthaul links. The RUs 140 may communicate with respective UEs 104 via one or more radio frequency (RF) access links. In some implementations, the UE 104 may be simultaneously served by multiple RUs 140.
Each of the units, i.e., the CUs 110, the DUs 130, the RUs 140, as well as the Near-RT RICs 125, the Non-RT RICs 115, and the SMO Framework 105, may include one or more interfaces or be coupled to one or more interfaces configured to receive or to transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units, can be configured to communicate with one or more of the other units via the transmission medium. For example, the units can include a wired interface configured to receive or to transmit signals over a wired transmission medium to one or more of the other units. Additionally, the units can include a wireless interface, which may include a receiver, a transmitter, or a transceiver (such as an RF transceiver) , configured to receive or to transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 110 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 110. The CU 110 may be configured to handle user plane functionality (i.e., Central Unit –User Plane  (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof. In some implementations, the CU 110 can be logically split into one or more CU-UP units and one or more CU-CP units. The CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as an E1 interface when implemented in an O-RAN configuration. The CU 110 can be implemented to communicate with the DU 130, as necessary, for network control and signaling.
The DU 130 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 140. In some aspects, the DU 130 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation, demodulation, or the like) depending, at least in part, on a functional split, such as those defined by 3GPP. In some aspects, the DU 130 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 130, or with the control functions hosted by the CU 110.
Lower-layer functionality can be implemented by one or more RUs 140. In some deployments, an RU 140, controlled by a DU 130, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split. In such an architecture, the RU (s) 140 can be implemented to handle over the air (OTA) communication with one or more UEs 104. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 140 can be controlled by the corresponding DU 130. In some scenarios, this configuration can enable the DU (s) 130 and the CU 110 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 105 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 105 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements that may be managed via an operations and maintenance interface (such as an O1 interface) .  For virtualized network elements, the SMO Framework 105 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 190) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 110, DUs 130, RUs 140 and Near-RT RICs 125. In some implementations, the SMO Framework 105 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 111, via an O1 interface. Additionally, in some implementations, the SMO Framework 105 can communicate directly with one or more RUs 140 via an O1 interface. The SMO Framework 105 also may include a Non-RT RIC 115 configured to support functionality of the SMO Framework 105.
The Non-RT RIC 115 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, artificial intelligence (AI) /machine learning (ML) (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 125. The Non-RT RIC 115 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 125. The Near-RT RIC 125 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 110, one or more DUs 130, or both, as well as an O-eNB, with the Near-RT RIC 125.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 125, the Non-RT RIC 115 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 125 and may be received at the SMO Framework 105 or the Non-RT RIC 115 from non-network data sources or from network functions. In some examples, the Non-RT RIC 115 or the Near-RT RIC 125 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 115 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 105 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
At least one of the CU 110, the DU 130, and the RU 140 may be referred to as a base station 102. Accordingly, a base station 102 may include one or more of the CU 110, the DU 130, and the RU 140 (each component indicated with dotted lines to signify  that each component may or may not be included in the base station 102) . The base station 102 provides an access point to the core network 120 for a UE 104. The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The small cells include femtocells, picocells, and microcells. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links between the RUs 140 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to an RU 140 and/or downlink (DL) (also referred to as forward link) transmissions from an RU 140 to a UE 104. The communication links may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL wireless wide area network (WWAN) spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, Bluetooth, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi AP 150 in communication with UEs 104 (also referred to as Wi-Fi stations (STAs) ) via communication link 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.  When communicating in an unlicensed frequency spectrum, the UEs 104 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR2-2 (52.6 GHz –71 GHz) , FR4 (71 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above aspects in mind, unless specifically stated otherwise, the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR2-2, and/or FR5, or may be within the EHF band.
The base station 102 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate beamforming. The base station 102 may transmit a beamformed signal 182 to the UE 104 in one or more transmit directions. The UE 104 may receive the beamformed signal from the base station 102 in one or more receive directions. The UE 104 may also transmit a  beamformed signal 184 to the base station 102 in one or more transmit directions. The base station 102 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 102 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 102 /UE 104. The transmit and receive directions for the base station 102 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The base station 102 may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , network node, network entity, network equipment, or some other suitable terminology. The base station 102 can be implemented as an integrated access and backhaul (IAB) node, a relay node, a sidelink node, an aggregated (monolithic) base station with a baseband unit (BBU) (including a CU and a DU) and an RU, or as a disaggregated base station including one or more of a CU, a DU, and/or an RU. The set of base stations, which may include disaggregated base stations and/or aggregated base stations, may be referred to as next generation (NG) RAN (NG-RAN) .
The core network 120 may include an Access and Mobility Management Function (AMF) 161, a Session Management Function (SMF) 162, a User Plane Function (UPF) 163, a Unified Data Management (UDM) 164, one or more location servers 168, and other functional entities. The AMF 161 is the control node that processes the signaling between the UEs 104 and the core network 120. The AMF 161 supports registration management, connection management, mobility management, and other functions. The SMF 162 supports session management and other functions. The UPF 163 supports packet routing, packet forwarding, and other functions. The UDM 164 supports the generation of authentication and key agreement (AKA) credentials, user identification handling, access authorization, and subscription management. The one or more location servers 168 are illustrated as including a Gateway Mobile Location Center (GMLC) 165 and a Location Management Function (LMF) 166. However, generally, the one or more location servers 168 may include one or more location/positioning servers, which may include one or more of the GMLC 165, the LMF 166, a position determination entity (PDE) , a serving mobile location center (SMLC) , a mobile positioning center (MPC) , or the like. The GMLC 165 and the  LMF 166 support UE location services. The GMLC 165 provides an interface for clients/applications (e.g., emergency services) for accessing UE positioning information. The LMF 166 receives measurements and assistance information from the NG-RAN and the UE 104 via the AMF 161 to compute the position of the UE 104. The NG-RAN may utilize one or more positioning methods in order to determine the position of the UE 104. Positioning the UE 104 may involve signal measurements, a position estimate, and an optional velocity computation based on the measurements. The signal measurements may be made by the UE 104 and/or the serving base station 102. The signals measured may be based on one or more of a satellite positioning system (SPS) 170 (e.g., one or more of a Global Navigation Satellite System (GNSS) , global position system (GPS) , non-terrestrial network (NTN) , or other satellite position/location system) , LTE signals, wireless local area network (WLAN) signals, Bluetooth signals, a terrestrial beacon system (TBS) , sensor-based information (e.g., barometric pressure sensor, motion sensor) , NR enhanced cell ID (NR E-CID) methods, NR signals (e.g., multi-round trip time (Multi-RTT) , DL angle-of-departure (DL-AoD) , DL time difference of arrival (DL-TDOA) , UL time difference of arrival (UL-TDOA) , and UL angle-of-arrival (UL-AoA) positioning) , and/or other systems/signals/sensors.
Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology. In some scenarios, the term UE may also apply to one or more companion devices such as in a device constellation arrangement. One or more of these devices may collectively access the network and/or individually access the network.
Referring again to FIG. 1, in certain aspects, the UE 104 may comprise a TCI component 198 configured to receive one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers; transmit a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs; determine at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and apply the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
Referring again to FIG. 1, in certain aspects, the base station 102 may comprise a TCI component 199 configured to output one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers; and obtain a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While  subframes  3, 4 are shown with slot formats 1, 28, respectively,  any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
FIGs. 2A-2D illustrate a frame structure, and the aspects of the present disclosure may be applicable to other wireless communication technologies, which may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 14 or 12 symbols, depending on whether the cyclic prefix (CP) is normal or extended. For normal CP, each slot may include 14 symbols, and for extended CP, each slot may include 12 symbols. The symbols on DL may be CP orthogonal frequency division multiplexing (OFDM) (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the CP and the numerology. The numerology defines the subcarrier spacing (SCS) (see Table 1) . The symbol length/duration may scale with 1/SCS.
Figure PCTCN2022121964-appb-000001
Table 1: Numerology, SCS, and CP
For normal CP (14 symbols/slot) , different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For extended CP, the numerology 2 allows for 4 slots per subframe. Accordingly, for normal CP and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of normal CP with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology and CP (normal or extended) .
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . A UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a  frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgment (ACK) (HARQ-ACK) feedback (i.e., one or more HARQ ACK bits indicating one or more ACK and/or negative ACK (NACK) ) . The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, Internet protocol (IP) packets may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical  channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318Tx. Each transmitter 318Tx may modulate a radio frequency (RF) carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354Rx receives a signal through its respective antenna 352. Each receiver 354Rx recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354Tx. Each transmitter 354Tx may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318Rx receives a signal through its respective antenna 320. Each receiver 318Rx recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with the TCI component 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with the TCI component 199 of FIG. 1.
In wireless communications, a DCI comprising a TCI indication needs to be acknowledged prior to the application of the TCI. However, in some instances, there may be multiple ACKs in a PUCCH that may correspond to multiple DCIs, where each DCI may comprise a TCI indication. In some instances, a base station may update the TCI indication from time to time, such that different DCIs may comprise different TCI indications. The UE needs to determine which DCI of the multiple DCIs comprises the valid TCI indication.
Aspects presented herein provide a configuration for determining a DCI that comprises a valid TCI indication. For example, the UE may transmit a PUCCH comprising multiple ACKs that correspond to multiple DCIs, where the UE may determine a DCI from the multiple DCIs that comprises the valid TCI indication. At least one advantage of the disclosure is that a UE may be configured to determine which DCI from one or more DCIs that comprises a valid TCI indication in instances where a PUCCH comprises multiple ACKs for multiple TCI indications.
In some instances, when a UE transmits a PUCCH comprising one or more ACKs/NACKs for multiple DCIs, where each DCI comprises a TCI codepoint. The UE may be configured to apply the TCI based on at least one of a last DCI in time per component carrier or a last DCI in time per direction per component carrier.
In instances where the UE applies the TCI based on the last DCI in time per component carrier, the UE may identify the last DCI in time per component carrier. The UE may then apply the indicated TCI codepoint in the identified last DCI for each component carrier. In such instances, the TCI in the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI. With reference to diagram 400 of FIG. 4A, the UE may receive multiple DCIs (e.g., DCI1 402, DCI2 404, DCI3 406, DCI4 408) and may transmit a PUCCH (e.g., 410) corresponding to the multiple DCIs. The UE may apply the TCI based on the last DCI, in time, for each component carrier. In the example of FIG. 4A, the UE may apply the TCI3 corresponding to DCI3 for a first CC, and may apply the TCI4 corresponding to DCI4 for a second CC. TCI3 and TCI4 may be applied because they are associated with the last DCI in time for the respective component carrier.
In instances where the UE applies the TCI based on the last DCI in time per direction per component carrier, the UE may identify the last DCI in time for downlink applicable TCI per component carrier, if any, and a last DCI in time for uplink applicable TCI per component carrier, if any. The UE may then apply the indicated TCI (s) in the identified last DCI (s) for each component carrier. In some aspects, the downlink applicable TCI may comprise a joint TCI or a downlink TCI. In some aspects, the uplink applicable TCI may comprise a joint TCI or a downlink TCI. With reference to diagram 420 of FIG. 4B, the UE may receive multiple DCIs (e.g., DCI1 422, DCI2 424, DCI3 426, DCI4 428, DCI5 430, DCI6 432) and may transmit a PUCCH (e.g., 434) corresponding to the multiple DCIs. The UE may apply the TCI based on the last DCI, in time, for each direction (e.g., uplink or downlink) for each component carrier. In the example of FIG. 4B, the UE may apply TCI1 for uplink for a first component carrier that corresponds to DCI1. The UE may apply TCI6 for uplink for a second component carrier that corresponds to DCI6. The UE may apply TCI5 for downlink for the first component carrier that corresponds to DCI5. The UE may apply TCI2 for downlink for the second component carrier that corresponds to DCI2. TCI1 and TCI6 may be applied for uplink because they are associated with the last DCI in time for uplink for their respective component carrier. TCI2 and TCI5 may be applied for downlink because they are associated with the last DCI in time for downlink for their respective component carrirer.
When the the UE would transmit the last symbol of a PUCCH with HARQ-ACK information corresponding to the latest in time DCI carrying the TCI State indication and without DL assignment, or corresponding to the PDSCH scheduling by the DCI carrying the TCI State indication per component carrier, and if the indicated TCI State is different from the previously indicated one, the indicated DLorJointTCIState or UL-TCIstate should be applied starting from the first slot that is at least a number of symbols (e.g., determined by BeamAppTime_r17) after the last symbol of the PUCCH. The first slot and the number of BeamAppTime_r17 symbols are both determined on the carrier with the smallest SCS among the carrier (s) applying the beam indication.
FIG. 5 is a call flow diagram 500 of signaling between a UE 502 and a base station 504. The base station 504 may be configured to provide at least one cell. The UE 502 may be configured to communicate with the base station 504. For example, in the context of FIG. 1, the base station 504 may correspond to base station 102 and.  Further, a UE 502 may correspond to at least UE 104. In another example, in the context of FIG. 3, the base station 504 may correspond to base station 310 and the UE 502 may correspond to UE 350.
At 506, the base station 504 may output one or more DCIs comprising a TCI codepoint for one or more component carriers. The base station 504 may output the one or more DCIs to the UE 502. The UE 502 may receive the one or more DCIs comprising the TCI codepoint for the one or more component carriers from the base station 504. In some aspects, the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
At 508, the UE 502 may transmit a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs. The UE 502 may transmit the PUCCH comprising the ACK or the NACK to the base station 504. The base station 504 may obtain the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs from the UE 502.
At 510, the UE 502 may determine at least one DCI comprising a valid TCI indication. The UE may determine at least one DCI from the one or more DCIs comprising the valid TCI indication for each component carrier of the one or more component carriers.
In some aspects, for example at 512, the UE 502, to determine the at least one DCI from the one or more DCIs comprising the valid DCI, may identify a last DCI in time for each of the one or more component carriers. The TCI codepoint associated with the last DCI may be applied for each component carrier. In some aspects, the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
In some aspects, for example at 514, the UE 502, to determine the at least one DCI from the one or more DCIs comprising the valid DCI, may identify a last DCI in time for each direction for each of the one or more component carriers. The TCI codepoint associated with the last DCI may be applied for each component carrier. In some aspects, the last DCI in time may comprise the last DCI for a downlink applicable TCI for each component carrier. The downlink applicable TCI may comprise at least one of a joint TCI or a downlink TCI. In some aspects, the last DCI in time may comprise the last DCI for an uplink applicable TCI for each component carrier. The uplink applicable TCI may comprise at least one of a joint TCI or an uplink TCI.
At 516, the UE 502 may apply the TCI codepoint for the one or more component carriers. The UE may apply the TCI codepoint for the one or more component carriers based at least one the at least one DCI comprising the valid TCI indication.
At 518, the UE 502 may communicate with the base station 504 based on the applied TCI codepoint for the one or more component carriers.
FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a UE (e.g., the UE 104; the apparatus 804) . One or more of the illustrated operations may be omitted, transposed, or contemporaneous. The method may allow a UE to determine at least one DCI comprising a valid TCI indication.
At 602, the UE may receive one or more DCIs. For example, 602 may be performed by TCI component 198 of apparatus 804. The UE may receive one or more DCIs from a network entity. The one or more DCIs may comprise a TCI codepoint for one or more component carriers.
At 604, the UE may transmit a PUCCH comprising an ACK or a NACK. For example, 604 may be performed by TCI component 198 of apparatus 804. The UE may transmit the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs.
At 606, the UE may determine at least one DCI comprising a valid TCI indication. For example, 606 may be performed by TCI component 198 of apparatus 804. The UE may determine at least one DCI from the one or more DCIs comprising the valid TCI indication for each component carrier of the one or more component carriers.
At 608, the UE may apply the TCI codepoint for the one or more component carriers. For example, 608 may be performed by TCI component 198 of apparatus 804. The UE may apply the TCI codepoint for the one or more component carriers based at least one the at least one DCI comprising the valid TCI indication.
FIG. 7 is a flowchart 700 of a method of wireless communication. The method may be performed by a UE (e.g., the UE 104; the apparatus 804) . One or more of the illustrated operations may be omitted, transposed, or contemporaneous. The method may allow a UE to determine at least one DCI comprising a valid TCI indication.
At 702, the UE may receive one or more DCIs. For example, 702 may be performed by TCI component 198 of apparatus 804. The UE may receive one or more DCIs from a network entity. The one or more DCIs may comprise a TCI codepoint for one or more component carriers.
At 704, the UE may transmit a PUCCH comprising an ACK or a NACK. For example, 704 may be performed by TCI component 198 of apparatus 804. The UE may transmit the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs.
At 706, the UE may determine at least one DCI comprising a valid TCI indication. For example, 606 may be performed by TCI component 198 of apparatus 804. The UE may determine at least one DCI from the one or more DCIs comprising the valid TCI indication for each component carrier of the one or more component carriers.
At 708, the UE, to determine the at least one DCI from the one or more DCIs comprising the valid DCI, may identify a last DCI in time for each of the one or more component carriers. For example, 708 may be performed by TCI component 198 of apparatus 804. The TCI codepoint associated with the last DCI may be applied for each component carrier. In some aspects, the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
At 710, the UE, to determine the at least one DCI from the one or more DCIs comprising the valid DCI, may identify a last DCI in time for each direction for each of the one or more component carriers. For example, 710 may be performed by TCI component 198 of apparatus 804. The TCI codepoint associated with the last DCI may be applied for each component carrier. In some aspects, the last DCI in time may comprise the last DCI for a downlink applicable TCI for each component carrier. The downlink applicable TCI may comprise at least one of a joint TCI or a downlink TCI. In some aspects, the last DCI in time may comprise the last DCI for an uplink applicable TCI for each component carrier. The uplink applicable TCI may comprise at least one of a joint TCI or an uplink TCI.
At 712, the UE may apply the TCI codepoint for the one or more component carriers. For example, 712 may be performed by TCI component 198 of apparatus 804. The UE may apply the TCI codepoint for the one or more component carriers based at least one the at least one DCI comprising the valid TCI indication.
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 804. The apparatus 804 may be a UE, a component of a UE, or may implement UE functionality. In some aspects, the apparatus 804 may include a cellular baseband processor 824 (also referred to as a modem) coupled to one or more transceivers 822 (e.g., cellular RF transceiver) . The cellular baseband processor 824 may include on-chip memory 824'. In some aspects, the apparatus 804 may further  include one or more subscriber identity modules (SIM) cards 820 and an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810. The application processor 806 may include on-chip memory 806'. In some aspects, the apparatus 804 may further include a Bluetooth module 812, a WLAN module 814, an SPS module 816 (e.g., GNSS module) , one or more sensor modules 818 (e.g., barometric pressure sensor /altimeter; motion sensor such as inertial measurement unit (IMU) , gyroscope, and/or accelerometer (s) ; light detection and ranging (LIDAR) , radio assisted detection and ranging (RADAR) , sound navigation and ranging (SONAR) , magnetometer, audio and/or other technologies used for positioning) , additional memory modules 826, a power supply 830, and/or a camera 832. The Bluetooth module 812, the WLAN module 814, and the SPS module 816 may include an on-chip transceiver (TRX) (or in some cases, just a receiver (RX) ) . The Bluetooth module 812, the WLAN module 814, and the SPS module 816 may include their own dedicated antennas and/or utilize the antennas 880 for communication. The cellular baseband processor 824 communicates through the transceiver (s) 822 via one or more antennas 880 with the UE 104 and/or with an RU associated with a network entity 802. The cellular baseband processor 824 and the application processor 806 may each include a computer-readable medium /memory 824', 806', respectively. The additional memory modules 826 may also be considered a computer-readable medium /memory. Each computer-readable medium /memory 824', 806', 826 may be non-transitory. The cellular baseband processor 824 and the application processor 806 are each responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 824 /application processor 806, causes the cellular baseband processor 824 /application processor 806 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 824 /application processor 806 when executing software. The cellular baseband processor 824 /application processor 806 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 804 may be a processor chip (modem and/or application) and include just the cellular baseband processor 824 and/or the application processor 806, and in another configuration, the  apparatus 804 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 804.
As discussed supra, the component 198 is configured to receive one or more DCIs comprising a TCI codepoint for one or more component carriers; transmit a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs; determine at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and apply the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication. The component 198 may be within the cellular baseband processor 824, the application processor 806, or both the cellular baseband processor 824 and the application processor 806. The component 198 may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by one or more processors configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by one or more processors, or some combination thereof. As shown, the apparatus 804 may include a variety of components configured for various functions. In one configuration, the apparatus 804, and in particular the cellular baseband processor 824 and/or the application processor 806, includes means for receiving one or more DCIs comprising a TCI codepoint for one or more component carriers. The apparatus includes means for transmitting a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs. The apparatus includes means for determining at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers. The apparatus includes means for applying the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication. The apparatus further includes means for identifying a last DCI in time for each of the one or more component carriers. The TCI codepoint associated with the last DCI is applied for each component carrier. The apparatus further includes means for identifying a last DCI in time for each direction for each of the one or more component carriers. The TCI codepoint associated with the last DCI is applied for each component carrier. The means may be the component 198 of the apparatus 804 configured to perform the functions recited by the means. As described supra, the apparatus 804 may include the TX processor 368, the RX processor 356, and the controller/processor 359. As such, in one  configuration, the means may be the TX processor 368, the RX processor 356, and/or the controller/processor 359 configured to perform the functions recited by the means.
FIG. 9 is a flowchart 900 of a method of wireless communication. The method may be performed by a base station (e.g., the base station 102; the network entity 1002. One or more of the illustrated operations may be omitted, transposed, or contemporaneous. The method may allow a network entity to receive an indication of an applied TCI codepoint based on at least one DCI comprising a valid TCI indication.
At 902, the network entity may output one or more DCIs. For example, 902 may be performed by TCI component 199 of network entity 1002. The network entity may output one or more DCIs comprising a TCI codepoint for one or more component carriers. In some aspects, the TCI codepoint may comprise at least one of a joint TCI, an uplink TCI, or a downlink TCI.
At 904, the network entity may obtain a PUCCH comprising an ACK or a NACK. For example, 904 may be performed by TCI component 199 of network entity 1002. The network entity may obtain the PUCCH comprising the ACK or the NACK corresponding to each of the one or more DCIs. The PUCCH may indicate an applied TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising a valid TCI indication.
FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for a network entity 1002. The network entity 1002 may be a BS, a component of a BS, or may implement BS functionality. The network entity 1002 may include at least one of a CU 1010, a DU 1030, or an RU 1040. For example, depending on the layer functionality handled by the component 199, the network entity 1002 may include the CU 1010; both the CU 1010 and the DU 1030; each of the CU 1010, the DU 1030, and the RU 1040; the DU 1030; both the DU 1030 and the RU 1040; or the RU 1040. The CU 1010 may include a CU processor 1012. The CU processor 1012 may include on-chip memory 1012'. In some aspects, the CU 1010 may further include additional memory modules 1014 and a communications interface 1018. The CU 1010 communicates with the DU 1030 through a midhaul link, such as an F1 interface. The DU 1030 may include a DU processor 1032. The DU processor 1032 may include on-chip memory 1032'. In some aspects, the DU 1030 may further include additional memory modules 1034 and a communications interface 1038. The DU 1030 communicates with the RU 1040 through a fronthaul link. The RU 1040 may include  an RU processor 1042. The RU processor 1042 may include on-chip memory 1042'. In some aspects, the RU 1040 may further include additional memory modules 1044, one or more transceivers 1046, antennas 1080, and a communications interface 1048. The RU 1040 communicates with the UE 104. The on-chip memory 1012', 1032', 1042' and the  additional memory modules  1014, 1034, 1044 may each be considered a computer-readable medium /memory. Each computer-readable medium /memory may be non-transitory. Each of the  processors  1012, 1032, 1042 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the corresponding processor (s) causes the processor (s) to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the processor (s) when executing software.
As discussed supra, the component 199 is configured to output one or more DCIs comprising a TCI codepoint for one or more component carriers; and obtain a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication. The component 199 may be within one or more processors of one or more of the CU 1010, DU 1030, and the RU 1040. The component 199 may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by one or more processors configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by one or more processors, or some combination thereof. The network entity 1002 may include a variety of components configured for various functions. In one configuration, the network entity 1002 includes means for outputting one or more DCIs comprising a TCI codepoint for one or more component carriers. The network entity includes means for obtaining a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication. The means may be the component 199 of the network entity 1002 configured to perform the functions recited by the means. As described supra, the network entity 1002 may include the TX processor 316, the RX processor 370, and the controller/processor 375. As such, in one  configuration, the means may be the TX processor 316, the RX processor 370, and/or the controller/processor 375 configured to perform the functions recited by the means.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not limited to the aspects described herein, but are to be accorded the full scope consistent with the language claims. Reference to an element in the singular does not mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” do not imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. Sets should be interpreted as a set of elements where the elements number one or more. Accordingly, for a set of X, X would include one or more elements. If a first apparatus receives data from or transmits data to a second apparatus, the data may be received/transmitted directly  between the first and second apparatuses, or indirectly between the first and second apparatuses through a set of apparatuses. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are encompassed by the claims. Moreover, nothing disclosed herein is dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
As used herein, the phrase “based on” shall not be construed as a reference to a closed set of information, one or more conditions, one or more factors, or the like. In other words, the phrase “based on A” (where “A” may be information, a condition, a factor, or the like) shall be construed as “based at least on A” unless specifically recited differently.
The following aspects are illustrative only and may be combined with other aspects or teachings described herein, without limitation.
Aspect 1 is a method of wireless communication at a UE comprising receiving one or more DCIs comprising a TCI codepoint for one or more component carriers; transmitting a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs; determining at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and applying the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
Aspect 2 is the method of aspect 1, further includes that to determine the at least one DCI from the one or more DCIs comprising the valid TCI indication, further including identifying a last DCI in time for each of the one or more component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
Aspect 3 is the method of any of  aspects  1 and 2, further includes that the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
Aspect 4 is the method of any of aspects 1-3, further includes that to determine the at least one DCI from the one or more DCIs comprising the valid TCI indication, further including identifying a last DCI in time for each direction for each of the one or more  component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
Aspect 5 is the method of any of aspects 1-4, further includes that the last DCI in time comprises the last DCI for a downlink applicable TCI for each component carrier.
Aspect 6 is the method of any of aspects 1-5, further includes that the downlink applicable TCI comprises at least one of a joint TCI or a downlink TCI.
Aspect 7 is the method of any of aspects 1-6, further includes that the last DCI in time comprises the last DCI for an uplink applicable TCI for each component carrier.
Aspect 8 is the method of any of aspects 1-7, further includes that the uplink applicable TCI comprises at least one of a joint TCI or an uplink TCI.
Aspect 9 is an apparatus for wireless communication at a network entity including at least one processor coupled to a memory and at least one transceiver, the at least one processor configured to implement any of Aspects 1-8.
Aspect 10 is an apparatus for wireless communication at a network entity including means for implementing any of Aspects 1-8.
Aspect 11 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement any of Aspects 1-8.
Aspect 12 is a method of wireless communication at a network entity comprising outputting one or more DCIs comprising a TCI codepoint for one or more component carriers; and obtaining a PUCCH comprising an ACK or a NACK corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
Aspect 13 is the method of aspect 12, further includes that the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
Aspect 14 is an apparatus for wireless communication at a network entity including at least one processor coupled to a memory and at least one transceiver, the at least one processor configured to implement any of Aspects 12-13.
Aspect 15 is an apparatus for wireless communication at a network entity including means for implementing any of Aspects 12-13.
Aspect 16 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement any of Aspects 12-13.

Claims (22)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and, based at least in part on information stored in the memory, the at least one processor is configured to:
    receive one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers;
    transmit a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs;
    determine at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and
    apply the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
  2. The apparatus of claim 1, further comprising a transceiver coupled to the at least one processor.
  3. The apparatus of claim 1, wherein to determine the at least one DCI from the one or more DCIs comprising the valid TCI indication, the at least one processor is configured to:
    identify a last DCI in time for each of the one or more component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
  4. The apparatus of claim 3, wherein the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  5. The apparatus of claim 1, wherein to determine the at least one DCI from the one or more DCIs comprising the valid TCI indication, the at least one processor is configured to:
    identify a last DCI in time for each direction for each of the one or more component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
  6. The apparatus of claim 5, wherein the last DCI in time comprises the last DCI for a downlink applicable TCI for each component carrier.
  7. The apparatus of claim 6, wherein the downlink applicable TCI comprises at least one of a joint TCI or a downlink TCI.
  8. The apparatus of claim 5, wherein the last DCI in time comprises the last DCI for an uplink applicable TCI for each component carrier.
  9. The apparatus of claim 8, wherein the uplink applicable TCI comprises at least one of a joint TCI or an uplink TCI.
  10. A method of wireless communication at a user equipment (UE) , comprising:
    receiving one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers;
    transmitting a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs;
    determining at least one DCI from the one or more DCIs comprising a valid TCI indication for each component carrier of the one or more component carriers; and
    applying the TCI codepoint for the one or more component carriers based at least on the at least one DCI comprising the valid TCI indication.
  11. The method of claim 10, wherein the determining the at least one DCI from the one or more DCIs comprising the valid TCI indication, further comprising:
    identifying a last DCI in time for each of the one or more component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
  12. The method of claim 11, wherein the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  13. The method of claim 10, wherein the determining the at least one DCI from the one or more DCIs comprising the valid TCI indication, further comprising:
    identifying a last DCI in time for each direction for each of the one or more component carriers, wherein the TCI codepoint associated with the last DCI is applied for each component carrier.
  14. The method of claim 13, wherein the last DCI in time comprises the last DCI for a downlink applicable TCI for each component carrier.
  15. The method of claim 14, wherein the downlink applicable TCI comprises at least one of a joint TCI or a downlink TCI.
  16. The method of claim 13, wherein the last DCI in time comprises the last DCI for an uplink applicable TCI for each component carrier.
  17. The method of claim 16, wherein the uplink applicable TCI comprises at least one of a joint TCI or an uplink TCI.
  18. An apparatus for wireless communication at a network entity, comprising:
    a memory; and
    at least one processor coupled to the memory and, based at least in part on information stored in the memory, the at least one processor is configured to:
    output one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers; and
    obtain a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK)  corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
  19. The apparatus of claim 18, further comprising a transceiver coupled to the at least one processor.
  20. The apparatus of claim 18, wherein the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
  21. A method of wireless communication at a network entity, comprising:
    outputting one or more downlink control indicators (DCIs) comprising a transmission configuration indicator (TCI) codepoint for one or more component carriers; and
    obtaining a physical uplink control channel (PUCCH) comprising an acknowledgement (ACK) or a negative acknowledgement (NACK) corresponding to each of the one or more DCIs, wherein the PUCCH indicates an applied TCI codepoint for the one or more component carriers based at least on at least one DCI comprising a valid TCI indication.
  22. The method of claim 21, wherein the TCI codepoint comprises at least one of a joint TCI, an uplink TCI, or a downlink TCI.
PCT/CN2022/121964 2022-09-28 2022-09-28 Last dci determination for tci indication dci WO2024065237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121964 WO2024065237A1 (en) 2022-09-28 2022-09-28 Last dci determination for tci indication dci

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121964 WO2024065237A1 (en) 2022-09-28 2022-09-28 Last dci determination for tci indication dci

Publications (1)

Publication Number Publication Date
WO2024065237A1 true WO2024065237A1 (en) 2024-04-04

Family

ID=90475251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121964 WO2024065237A1 (en) 2022-09-28 2022-09-28 Last dci determination for tci indication dci

Country Status (1)

Country Link
WO (1) WO2024065237A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090204A1 (en) * 2019-11-08 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Updating active tci state for single-pdcch based multi-trp pdsch or multi-pdcch based multi-trp pdsch
WO2021142760A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Single dci updating operation parameters for multiple component carriers
WO2021146849A1 (en) * 2020-01-20 2021-07-29 Qualcomm Incorporated Multiple component carrier scheduling parameter for dci scheduling multiple component carriers
WO2022052935A1 (en) * 2020-09-09 2022-03-17 Qualcomm Incorporated Joint dl/ul tci state activation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090204A1 (en) * 2019-11-08 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Updating active tci state for single-pdcch based multi-trp pdsch or multi-pdcch based multi-trp pdsch
WO2021142760A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Single dci updating operation parameters for multiple component carriers
WO2021146849A1 (en) * 2020-01-20 2021-07-29 Qualcomm Incorporated Multiple component carrier scheduling parameter for dci scheduling multiple component carriers
WO2022052935A1 (en) * 2020-09-09 2022-03-17 Qualcomm Incorporated Joint dl/ul tci state activation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Maintenance on multi-TRP transmission", 3GPP TSG RAN WG1#105-E, R1-2104407, 11 May 2021 (2021-05-11), XP052006157 *
MODERATOR (MEDIATEK): "Moderator summary on extension of unified TCI framework for MTRP (Round 3)", 3GPP TSG RAN WG1 #109-E, R1-2205314, 20 May 2022 (2022-05-20), XP052191949 *

Similar Documents

Publication Publication Date Title
WO2024065237A1 (en) Last dci determination for tci indication dci
WO2024065652A1 (en) Dynamic unified tci sharing indication for coreset in mtrp operation
WO2024065602A1 (en) Default bwp and cell for an rs in a tci state
WO2023201608A1 (en) Csi refinement or adjustment and pucch repetition
US20240146379A1 (en) One-shot beam management
US20240137755A1 (en) Steering ue capability information based on network capability features
WO2024016105A1 (en) Time offset measurement gap configuration
WO2023230945A1 (en) Details of phr reporting for simultaneous transmission
US20230388043A1 (en) Channel oriented modulation selection for improved spectral efficiency
WO2024065590A1 (en) Multiple tag mapping
US20230328719A1 (en) Semi-persistent waveform switching for uplink
WO2023216228A1 (en) Inter-subscription dl interference cancelation
WO2024065676A1 (en) Combinatorial based beam index report and request for beam predictions
WO2023206516A1 (en) Uplink control information for coherent joint transmission channel state information with transmission reception point selection
WO2024016147A1 (en) Bsr based on traffic estimation
WO2024045151A1 (en) Bit to symbol mapping design for bit-level constellation shaping
US20240073705A1 (en) Mu-mimo assistance information
US20220369351A1 (en) Indication of scheduling delays for a shared channel with bwp switching in higher frequency bands
US20240107461A1 (en) Csi enhancement for sbfd configuration
WO2024020839A1 (en) Rar enhancement for inter-cell multi-trp systems
US20230412334A1 (en) Csi-rs resource multiplexing
US20240114421A1 (en) Multiple secondary cell group configuration
US20240049251A1 (en) Dynamic pdcch skipping for extended reality
WO2023240579A1 (en) Techniques to facilitate exploiting indication redundancy between transmission reception point selection and spatial domain basis selection
WO2024026806A1 (en) Implicitly updating timing advance in l1/l2 mobility