WO2024063267A1 - Single-flow vortex tube having improved gas separation performance, and gas separation system using same - Google Patents

Single-flow vortex tube having improved gas separation performance, and gas separation system using same Download PDF

Info

Publication number
WO2024063267A1
WO2024063267A1 PCT/KR2023/008992 KR2023008992W WO2024063267A1 WO 2024063267 A1 WO2024063267 A1 WO 2024063267A1 KR 2023008992 W KR2023008992 W KR 2023008992W WO 2024063267 A1 WO2024063267 A1 WO 2024063267A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
vortex tube
main housing
vortex
gas separation
Prior art date
Application number
PCT/KR2023/008992
Other languages
French (fr)
Korean (ko)
Inventor
임석연
유상석
김병재
박승환
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Publication of WO2024063267A1 publication Critical patent/WO2024063267A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation

Definitions

  • the present invention relates to a single-flow vortex tube that separates and discharges gas according to temperature and a gas separation system using the same. More specifically, the vortex effect is created by allowing the transfer speed of gas inside to be rapidly accelerated instantaneously. It relates to a single-flow vortex tube that can significantly improve gas separation performance and a gas separation system using the same.
  • a vortex tube is a device that separates high-pressure gas introduced into the inside according to temperature by the vortex effect within it and discharges it into high-temperature gas and low-temperature gas.
  • Such vortex tubes are mainly used for cooling in various industrial sites due to various advantages such as not requiring a separate power source for gas separation, separation reaction occurring quickly, and being compact.
  • the “vortex tube” of the Republic of Korea Patent Publication No. 10-0880276 is configured to cool the heat dissipation body by the Coanda effect in the process in which part of the air injected into the device is discharged through another path, so that it is different from the existing device.
  • a vortex tube that can be configured to completely block the path through which hot air is discharged, thereby improving the efficiency of blowing cold air to the outside.
  • a rotation groove connecting the inlet and the vortex chamber is integrated into the cold air discharge trap to maximize the rotational force of the compressed air, and a cooling device with multiple heat dissipation fins is arranged.
  • An invention has been proposed regarding a vortex tube that enables sufficient air cooling of the vortex chamber and ultimately improves the efficiency of spraying cold air to the outside.
  • the above-mentioned prior inventions are all inventions targeting a counter-flow type vortex tube, and even in other inventions proposed for the purpose of improving cooling performance, the structure for a single-flow type vortex tube has not been confirmed.
  • Vortex tubes which have various advantages such as not requiring a separate power source for gas separation, rapid separation reaction, and compact design, are widely used as cooling devices in industrial fields, etc. due to their various advantages.
  • the cooling performance itself is not superior to that of existing coolers, which inevitably limits its use in environments that require excellent cooling performance. Therefore, the present invention proposes a solution to this problem. It has one purpose.
  • the present invention aims to achieve the above object,
  • An inlet is formed on one side, an outlet is formed on the other side, and the entire volume, including the internal transport path connecting the inlet and outlet, is composed of a contraction section where the volume is contracted and a diffusion section where the diffusion is continuous along the longitudinal direction.
  • the main housing A vortex generator that causes gas transported at high pressure and flowing into the inlet of the main housing to form a vortex and be transported along an internal transport path;
  • a control valve installed on the outlet side of the main housing to separate the gas transported along the internal transfer path according to temperature and discharge it to the outside.
  • the main housing is characterized by an asymmetric configuration in which the length of the diffusion section is more than twice as long as the length of the contraction section.
  • the main housing is characterized in that one or more discharge pipes are formed to protrude in an inclined direction on the outer peripheral surface of the diffusion section.
  • the present invention includes a compressor that compresses gas and transfers it at high speed through a transfer pipe; It is composed of a single inlet pipe, a single main discharge pipe connected to the inlet 101, and one or more auxiliary discharge pipes opened and closed by a valve, so that the high-pressure gas transferred from the compressor is routed through one or more paths according to the flow rate.
  • Distributor that discharges; Auxiliary vortex tubes connected to the plurality of auxiliary discharge pipes one by one to separate and discharge the supplied gas according to temperature;
  • a control unit that automatically opens and closes the valve of the auxiliary discharge pipe according to the inflow amount of gas flowing into the distributor;
  • the main housing which is composed of a contraction section in which the entire volume including the internal transfer path contracts and a diffusion section in which the diffusion section is continuous along the longitudinal direction
  • the transfer speed at which the gas is transferred within the housing suddenly increases rapidly.
  • the gas separation performance due to the vortex effect can be further improved, and as a result, the temperature of the gas discharged to the outside can be lowered further.
  • the present invention consists of a single-flow type vortex tube in which the entire structure, including the main housing, is formed in the same direction as the outlet through which high-temperature gas is discharged and the outlet through which low-temperature gas is discharged, so that those skilled in the art, etc. This may have the effect of increasing interest and use.
  • Figure 1 is a cross-sectional view of a general counter-flow type vortex tube.
  • Figure 2 is a cross-sectional view of a single-flow vortex tube with improved gas separation performance according to the present invention.
  • Figure 3 is an example diagram showing the flow of gas generated inside a single-flow vortex tube with improved gas separation performance according to the present invention and the flow of dry particles generated inside being discharged.
  • Figure 4 is a block diagram of a gas separation system using a single-flow vortex tube with improved gas separation performance according to the present invention.
  • a uni-flow vortex tube that separates and discharges gas according to temperature
  • an inlet is formed on one side
  • an outlet is formed on the other side
  • an internal transfer path connecting the inlet and outlet is included.
  • a main housing composed of a contraction section in which the overall volume is contracted and a diffusion section in which the overall volume is diffused, being continuous along the longitudinal direction;
  • a vortex generator that causes gas transported at high pressure and flowing into the inlet of the main housing to form a vortex and be transported along an internal transport path;
  • a control valve installed on the outlet side of the main housing to separate the gas transported along the internal transfer path according to temperature and discharge it to the outside. It is characterized by being composed of a.
  • the present invention relates to a single-flow vortex tube (10) that separates gases according to temperature and discharges them,
  • An inlet 101 is formed on one side, an outlet 102 is formed on the other side, and a contraction section 103 in which the entire volume, including the internal transport path connecting the inlet 101 and the outlet 102, is contracted.
  • a main housing (100) in which an over-diffusing diffusion section (104) is continuous along the longitudinal direction;
  • a vortex generator 110 that causes the gas transported at high pressure and flowing into the inlet 101 of the main housing 100 to form a vortex and be transported along the internal transport path;
  • a control valve 120 installed on the outlet 102 side of the main housing 100 to separate the gas transported along the internal transfer path according to temperature and discharge it to the outside; It is characterized by being composed of a.
  • the present invention is a single-flow type vortex tube, which is one of the vortex tubes, which are non-powered devices that separate gas supplied at high pressure into high-temperature gas and low-temperature gas depending on the temperature by the internal vortex effect and discharge them.
  • the gas that is compressed and transferred from the external compressor 200 and introduced into the interior through the inlet 101 forms an ultra-high-speed vortex and is transferred to a single outlet and then separated into high-temperature gas and low-temperature gas. It has a structure that allows it to be discharged to the outside, and has a structural difference from the counter-flow type vortex tube in that it has a single discharge port as described above.
  • the counter flow type vortex tube is compressed and transferred from an external compressor 200, and the gas flowing inside through the inlet forms an ultra-high-speed vortex and flows through an outlet on one side. It is transferred to one side, and the high-temperature gas is discharged to the outside by a valve installed on the outlet side, but the low-temperature gas is returned and discharged to the outside through another outlet on the other side, and is formed in opposite directions. It can be clearly distinguished from a single-flow type vortex tube by its external feature of having an outlet.
  • an inlet 101 is formed on one side, an outlet 102 is formed on the other side, and the overall volume including the internal transfer path connecting the inlet 101 and the outlet 102 is It is characterized in that it includes a main housing 100 in which a shrinking section 103 and a spreading diffusion section 104 are continuous along the longitudinal direction.
  • the main housing 100 is a major component that constitutes the overall shape of the present invention, and as shown in Figure 2, the inlet 101 through which gas transported at high pressure flows in the same way as a known single-flow vortex tube. is formed on one side, a transfer path through which the introduced gas is transferred is formed inside, and an outlet 102 through which the gas separated according to temperature is discharged to the outside is formed on the other side.
  • the main housing 100 is characterized in that one or more discharge pipes 105 are formed to protrude in an inclined direction on the outer peripheral surface of the diffusion section 104.
  • the main housing 100 is characterized in that a vortex generator 110 is installed adjacent to the inlet 101, whereby the high-pressure gas flowing into the inlet 101 immediately forms a strong vortex. It can be transported at high speed along the transport path.
  • the vortex generator 110 is an essential device in the construction of all vortex tubes, including the present invention, and can be configured in various forms so that the gas transported in a form penetrating the inside can form a vortex. .
  • the vortex generator 110 can use any one of those used in existing vortex tubes, and a new one can be applied if performance or cost-effectiveness can be improved.
  • the high-pressure gas that is compressed and transported from the external compressor 200 and flows into the inlet 101 of the main housing 100 rotates at a high speed of about 1,000,000 RPM or more as it passes through the vortex generator 110, creating a vortex. can be formed, and in that state can be transported at high speed toward the discharge port 102 along the internal transport path.
  • a spiral movement of the gas occurs by the vortex generator 110 in the transfer path inside the main housing 100, and a separation phenomenon according to the temperature of the gas occurs along with the transfer.
  • One airflow is formed that is transported along the inner wall of the path, and another airflow is formed that is transported to the center of the transport path.
  • the main housing 100 is a contraction-diffusion type in which the volume shrinks along the longitudinal direction and then spreads again to a volume equal to or similar to the original volume. Not only the external shape but also the internal transport path is formed, thereby forming the internal transport path. A rapid change occurs in the transport speed of the gas being transported along.
  • the main housing 100 is not only configured as a contraction-diffusion type, but the diffusion section 104, where the volume spreads, is formed to be more than twice as long compared to the length of the contraction section 103, where the volume is contracted.
  • the amount of shrinkage per unit area where the volume shrinks along the length direction is formed to be greater than the amount of diffusion per unit area where the volume spreads.
  • the transport speed of the gas transported along the transport path inside the main housing 100 rapidly increases in the contraction section 103 where the inner diameter of the transport path is rapidly reduced, and as a result, The temperature of the gas transported to the center of the transport path may drop rapidly.
  • the temperature of the gas transported inside the main housing 100 may rapidly drop to a maximum of 45°C or less at the end of the contraction section 103 or the beginning of the diffusion section 104, as shown in Figure 3. As shown, this causes condensation of the gas, resulting in a large amount of dry particles being generated and included in the gas.
  • the movement of dry particles due to centrifugal force can be further accelerated because it occurs in the diffusion section 104 of the main housing 100, where the cross-sectional area of the transfer path continues to expand, and as a result, all dry particles move to the inner wall side. movement occurs.
  • the main housing 100 is characterized in that one or more discharge pipes 105 are formed to protrude in an oblique direction on the outer peripheral surface of the diffusion section 104, so that the main housing 100 is configured to protrude in an oblique direction, so that the main housing 100 is configured to protrude in an inclined direction. Dry particle emissions occur.
  • the gas discharged through the outlet 102 of the main housing 100 does not contain dry particles, and as a result, compared to the existing vortex tube, high temperature gas with a higher temperature and low temperature gas with a lower temperature are produced. The effect of being able to separate and discharge the gas to the outside occurs.
  • the present invention can realize a significant improvement in cooling performance by rapidly increasing the speed at which gas is transferred through the asymmetric contraction and diffusion configuration of the main housing 100, and a large amount of by-products are generated in the process. All dry particles can be removed through one or more discharge pipes 105.
  • a large amount of dry particles discharged through the one or more discharge pipes 105 may be transferred to an external collection device for processing through a hose or other pipe connected to the discharge pipe 105.
  • the gas transported along the internal transfer path is separated according to temperature and discharged to the outside for the purpose of controlling the discharge amount. It is characterized in that a control valve 120 is installed for this purpose.
  • control valve 120 has a path for discharging high-temperature gas in the same path as the valve used in the counter-flow type vortex tube, but the low-temperature outlet 121 for discharging low-temperature gas is formed through the center. In that it differs from the valve used in a counter-flow type vortex tube.
  • the control valve 120 controls the high-temperature gas transported along the inner wall of the main housing 100 and the low-temperature gas transported along the center of the transport path. It can be discharged through different routes, and emissions can also be controlled.
  • the present invention relates to a gas separation system using a single-flow vortex tube (10) with improved gas separation performance, comprising: a compressor (200) that compresses gas and transfers it at high speed through a transfer pipe; It is configured to include a single inlet pipe 211, a single main discharge pipe 212, and one or more auxiliary discharge pipes 213 that are opened and closed by a valve, so that the high-pressure gas transferred from the compressor 200 is adjusted according to the flow rate.
  • a compressor (200) that compresses gas and transfers it at high speed through a transfer pipe
  • It is configured to include a single inlet pipe 211, a single main discharge pipe 212, and one or more auxiliary discharge pipes 213 that are opened and closed by a valve, so that the high-pressure gas transferred from the compressor 200 is adjusted according to the flow rate.
  • Distributor 210 for discharging through one or more paths; Auxiliary vortex tubes 220 connected to the one or more auxiliary discharge pipes 213 one by one to separate and discharge the supplied gas according to temperature; And, a control unit that automatically opens and closes the valve of the auxiliary discharge pipe 213 according to the amount of gas flowing into the distributor 210; It is characterized by being composed of a.
  • the compressor 200 shown in FIG. 4 is a device that compresses gas and delivers high-pressure gas. It compresses the exhaust gas generated by combustion of fuel and transfers it at high speed through a transfer pipe or through reforming. It can be configured to compress the mixed gas discharged in the process of producing hydrogen and transfer it at high pressure through a transfer pipe.
  • the compressor 200 may be configured to prioritize the exhaust gas emitted from engines such as industrial engines or ship engines, or to preferentially process the mixed gas emitted in the process of producing hydrogen through reforming. It may be possible, but this is not necessarily the case.
  • the distributor 210 shown in FIG. 4 is configured to include a single inlet pipe 211, a single main discharge pipe 212, and one or more auxiliary discharge pipes 213 that are opened and closed by a valve, so that the compressor It is a device that quantitatively separates gases such as exhaust gas compressed and transferred from (200) as needed.
  • the single-flow vortex tube 10 of the present invention is connected to the main discharge pipe 212 of the distributor 210, and in addition, one or more auxiliary discharge pipes 213 are connected to the opposing discharge pipe 213.
  • the auxiliary vortex tube 220 which is composed of a flow-type vortex tube or a single-flow vortex tube 10, is connected so that gases such as exhaust gas discharged from the distributor 210 can be separated and processed according to temperature.
  • control unit automatically opens and closes the valve of the auxiliary discharge pipe 213 according to the amount of gas flowing into the distributor 210, thereby preventing overload of the single-flow type vortex tube 10 and simultaneously controlling the single-flow type vortex tube ( 10)
  • the separation efficiency for gases such as exhaust gas can be improved compared to when used alone.
  • one or more measurement sensors 214 may be provided on the inlet pipe 211 side of the distributor 210 for the purpose of measuring the flow rate of gas flowing into the inside, and the auxiliary discharge pipe 213 may be provided with automatic opening and closing of the valve.
  • a device such as an actuator or a motor may be provided for the purpose, and the control unit may control the device such as an actuator or a motor by selecting whether to use the auxiliary vortex tube 220 according to the flow rate of the measured gas. .
  • control unit operates the valve so that the main discharge pipe 212 of the distributor 210 is opened independently when the gas flow rate measured by the measurement sensor 214 is below the first set value, which is a preset minimum value. It is possible to control or maintain the current state so that all gas flowing into the distributor 210 is transferred only to the single-flow type vortex tube 10.
  • control unit controls the main discharge pipe 212 of the distributor 210 when the gas flow rate measured by the measurement sensor 214 is between the first set value, which is a preset minimum value, and the second set value, which is a preset intermediate value. ) and some of the auxiliary discharge pipes 213 are controlled to be in an open state or the current state is maintained so that part of the gas flowing into the distributor 210 is transferred to the single-flow vortex tube 10, and other Some may be transferred to the auxiliary vortex tube (220).
  • the section between the first set value and the second set value may be further divided into multiple sections, and the gas flow rate corresponding to each section As this is detected, the number of auxiliary discharge pipes 213 opened by the control unit may change.
  • control unit opens the main discharge pipe 212 and all auxiliary discharge pipes 213 of the distributor 210 when the gas flow rate measured by the measurement sensor 214 is greater than the second set value, which is a preset intermediate value.
  • the second set value which is a preset intermediate value.
  • the present invention is a gas such as exhaust gas generated by combustion or mixed gas discharged in the process of producing hydrogen by using the single-flow type vortex tube (10) alone or the single-flow type vortex tube (10) and the auxiliary vortex tube (220).
  • the purification efficiency of fine dust, etc. in the subsequent process can be greatly improved.
  • a single-flow vortex tube with improved gas separation performance and a gas separation system using the same can further improve the gas separation performance by the vortex effect, and as a result, the temperature of the gas discharged to the outside can be lowered. Because the effect occurs, it has sufficient industrial applicability.

Abstract

The present invention relates to a single-flow vortex tube that allows the transport speed of gas inside to be rapidly accelerated instantaneously, thereby significantly improving gas separation performance by means of a vortex effect. In addition, the vortex tube comprises: a main housing which has an inlet formed on one side thereof and an outlet formed on the other side thereof, and is formed to have, continuously along the longitudinal direction, a contraction section in which the entire volume, including an internal transport path connecting the inlet and outlet, is contracted, and an expansion section in which the entire volume is expanded; a vortex generator which causes gas transported at high pressure and introduced into the inlet of the main housing to form a vortex and be transported along the internal transport path; and a control valve which is installed on an outlet side of the main housing to separate the gas transported along the internal transport path according to temperature and discharge the separated gas to the outside.

Description

기체의 분리 성능이 향상된 단류형 볼텍스 튜브 및 이를 이용한 기체 분리 시스템Single-flow vortex tube with improved gas separation performance and gas separation system using the same
본 발명은 기체를 온도에 따라 분리하여 배출하는 단류형 볼텍스 튜브 및 이를 이용한 기체 분리 시스템에 관한 것으로써, 보다 상세하게는 내부에서의 기체의 이송 속도가 순간적으로 급격하게 가속화될 수 있도록 하여 볼텍스 효과에 의한 기체의 분리 성능이 대폭 향상될 수 있도록 하는 단류형 볼텍스 튜브 및 이를 이용한 기체 분리 시스템에 관한 것이다.The present invention relates to a single-flow vortex tube that separates and discharges gas according to temperature and a gas separation system using the same. More specifically, the vortex effect is created by allowing the transfer speed of gas inside to be rapidly accelerated instantaneously. It relates to a single-flow vortex tube that can significantly improve gas separation performance and a gas separation system using the same.
일반적으로, 볼텍스 튜브는 내부로 유입된 고압의 기체를 그 내부에서의 볼텍스 효과에 의해 온도에 따라 분리하여 고온의 기체와 저온의 기체로 배출하는 장치이다.In general, a vortex tube is a device that separates high-pressure gas introduced into the inside according to temperature by the vortex effect within it and discharges it into high-temperature gas and low-temperature gas.
이러한 볼텍스 튜브는 기체의 분리에 별도의 동력원을 필요로 하지 않고, 분리 반응이 신속하게 발생하며, 소형으로 구성할 수 있는 등의 다양한 장점으로 인해 여러 산업 현장 등에서 주로 냉각용으로 이용되고 있다.Such vortex tubes are mainly used for cooling in various industrial sites due to various advantages such as not requiring a separate power source for gas separation, separation reaction occurring quickly, and being compact.
다만, 볼텍스 튜브의 냉각 성능 자체가 기존의 냉각기들에 비해 우수한 것은 아니므로 뛰어난 냉각 성능이 요구되는 환경에서는 이용이 제한될 수 밖에 없는 한계를 가지고 있다.However, the cooling performance of the vortex tube itself is not superior to existing coolers, so its use is inevitably limited in environments that require excellent cooling performance.
따라서, 볼텍스 튜브의 냉각 성능 향상을 도모하기 위한 목적으로 대한민국 등록특허공보 제10-0880276호의 “볼텍스 튜브”와 대한민국 등록특허공보 제10-1151341호의 “볼텍스 튜브”와 같은 다수의 발명들이 제안되어 일반에 공개된 바 있다.Accordingly, for the purpose of improving the cooling performance of the vortex tube, a number of inventions such as the “vortex tube” in Korean Patent Publication No. 10-0880276 and the “vortex tube” in Korean Patent Publication No. 10-1151341 have been proposed to provide general information. It has been revealed.
즉, 상기 대한민국 등록특허공보 제10-0880276호의 “볼텍스 튜브”에는 장치의 내부로 주입되는 공기의 일부가 다른 경로로 배출되는 과정에서 코안다 효과에 의해 방열바디를 냉각시키도록 구성됨으로써 기존의 장치들과는 다르게 열기가 배출되는 경로를 완전히 차단시키는 형태로 구성이 가능하여 결과적으로는 외부로의 냉기의 분사 효율을 향상시킬 수 있는 볼텍스 튜브에 관한 발명이 제안되어 있다.In other words, the “vortex tube” of the Republic of Korea Patent Publication No. 10-0880276 is configured to cool the heat dissipation body by the Coanda effect in the process in which part of the air injected into the device is discharged through another path, so that it is different from the existing device. Unlike others, an invention has been proposed regarding a vortex tube that can be configured to completely block the path through which hot air is discharged, thereby improving the efficiency of blowing cold air to the outside.
그리고 상기 대한민국 등록특허공보 제10-1151341호의 “볼텍스 튜브”에는 주입구와 와류실을 연통하는 회전홈을 냉기배출트랩에 일체로 구성하여 압축공기의 회전력이 극대화되도록 하고, 다수의 방열핀이 배치된 냉각부로 와류실의 충분한 공랭이 가능하도록 하여 결과적으로는 외부로의 냉기의 분사 효율을 향상시킬 수 있는 볼텍스 튜브에 관한 발명이 제안되어 있다.In addition, in the “vortex tube” of the Republic of Korea Patent Publication No. 10-1151341, a rotation groove connecting the inlet and the vortex chamber is integrated into the cold air discharge trap to maximize the rotational force of the compressed air, and a cooling device with multiple heat dissipation fins is arranged. An invention has been proposed regarding a vortex tube that enables sufficient air cooling of the vortex chamber and ultimately improves the efficiency of spraying cold air to the outside.
그러나 상기한 선행 발명들에 공통적으로 제안되어 있는 공랭의 효과만으로는 실제로 구현할 수 있는 냉각 성능 향상의 효과가 제한적일 수 밖에 없으며, 이 정도의 성능 개선만으로는 뛰어난 냉각 성능이 요구되는 환경에서의 이용이 여전히 제한적일 수 밖에 없다.However, the effect of improving cooling performance that can actually be realized simply by the effect of air cooling, which is commonly proposed in the above-mentioned prior inventions, is inevitably limited, and the use of this level of performance improvement alone in environments that require excellent cooling performance is still limited. There is no choice but to do so.
따라서, 볼텍스 튜브의 냉각 성능 향상을 도모하기 위한 다른 해결 방안이 요구되고 있는 실정이라 할 수 있다.Therefore, it can be said that another solution is required to improve the cooling performance of the vortex tube.
한편, 산업 현장 등에서 이용되고 있는 볼텍스 튜브의 전체나 대부분인 대향류형 볼텍스 튜브에 비해 단류형 볼텍스 튜브는 이용이 전무하거나 이용 사례를 찾아보기 어려운 실정이며, 이러한 실정은 상기한 선행 발명들에서도 확인할 수 있다.On the other hand, compared to the counter-flow type vortex tube, which is all or most of the vortex tubes used in industrial sites, etc., single-flow type vortex tubes are either not used at all or are difficult to find use cases, and this situation can also be confirmed in the preceding inventions mentioned above. .
즉, 상기한 선행 발명들은 모두 대향류형 볼텍스 튜브를 대상으로 하고 있는 발명들이며, 냉각 성능 개선을 위한 목적으로 제안되어 있는 그 외의 발명들에서도 단류형 볼텍스 튜브에 대한 구조는 확인되지 않고 있다.In other words, the above-mentioned prior inventions are all inventions targeting a counter-flow type vortex tube, and even in other inventions proposed for the purpose of improving cooling performance, the structure for a single-flow type vortex tube has not been confirmed.
그렇기 때문에 단류형 볼텍스 튜브에 대한 정확한 냉각 성능의 확인이나 개선의 가능성은 확인이 어려운 상태이며, 이러한 문제는 산업 발전을 위한 측면에 있어서도 바람직하다고 할 수 없다.Therefore, it is difficult to confirm the exact cooling performance of the single-flow vortex tube or the possibility of improvement, and this problem cannot be said to be desirable from the perspective of industrial development.
기체의 분리에 별도의 동력원을 필요로 하지 않고, 분리 반응이 신속하게 발생하며, 소형으로 구성할 수 있는 등의 다양한 장점을 가진 볼텍스 튜브는 그 다양한 장점으로 인해 산업 현장 등에서 냉각용의 장치로 널리 이용되고 있으나, 냉각 성능 자체가 기존의 냉각기들에 비해 우수한 것은 아니어서 뛰어난 냉각 성능이 요구되는 환경에서는 이용이 제한될 수 밖에 없는 한계가 발생하고 있기 때문에, 본 발명은 이에 대한 해결 방안을 제시하는 것을 하나의 목적으로 한다.Vortex tubes, which have various advantages such as not requiring a separate power source for gas separation, rapid separation reaction, and compact design, are widely used as cooling devices in industrial fields, etc. due to their various advantages. However, the cooling performance itself is not superior to that of existing coolers, which inevitably limits its use in environments that require excellent cooling performance. Therefore, the present invention proposes a solution to this problem. It has one purpose.
또한, 산업 현장 등에서 이용되고 있는 볼텍스 튜브의 전체나 대부분인 대향류형 볼텍스 튜브에 비해 단류형 볼텍스 튜브는 이용이 전무하거나 이용 사례를 찾아보기 어려운 실정이므로 본 발명은 이에 대한 해결 방안을 제시하는 것을 또 하나의 목적으로 한다.In addition, compared to counter-flow type vortex tubes, which are all or most of the vortex tubes used in industrial sites, etc., single-flow type vortex tubes are not used at all or it is difficult to find use cases, so the present invention proposes a solution to this problem. For the purpose of
본 발명은 상기와 같은 목적을 실현하고자,The present invention aims to achieve the above object,
일측에 유입구가 형성되고, 타측에 배출구가 형성되며, 유입구와 배출구를 연결하는 내부의 이송경로를 포함하는 전체의 부피가 수축하는 수축 구간과 확산하는 확산 구간이 길이방향을 따라 연속되는 형태로 구성되는 메인 하우징; 고압으로 이송되어 상기 메인 하우징의 유입구로 유입되는 기체가 와류를 형성하며 내부의 이송경로를 따라 이송되게 하는 와류 발생기; 및, 상기 메인 하우징의 배출구 측에 설치되어, 내부의 이송경로를 따라 이송되는 기체를 온도에 따라 분리하여 외부로 배출시키는 조절 밸브; 를 포함하여 구성되는 것을 특징으로 하는 기체의 분리 성능이 향상된 단류형 볼텍스 튜브를 제시한다.An inlet is formed on one side, an outlet is formed on the other side, and the entire volume, including the internal transport path connecting the inlet and outlet, is composed of a contraction section where the volume is contracted and a diffusion section where the diffusion is continuous along the longitudinal direction. the main housing; A vortex generator that causes gas transported at high pressure and flowing into the inlet of the main housing to form a vortex and be transported along an internal transport path; And, a control valve installed on the outlet side of the main housing to separate the gas transported along the internal transfer path according to temperature and discharge it to the outside. We present a single-flow vortex tube with improved gas separation performance, comprising:
이때, 상기 메인 하우징은 수축 구간의 길이와 비교하여 확산 구간의 길이가 배 이상 더 길게 형성되는 비대칭형으로 구성되는 것을 특징으로 한다.At this time, the main housing is characterized by an asymmetric configuration in which the length of the diffusion section is more than twice as long as the length of the contraction section.
또한, 상기 메인 하우징은 확산 구간의 외주면에 하나 이상의 배출관이 경사 방향으로 돌출 형성되는 형태로 구성되는 것을 특징으로 한다.In addition, the main housing is characterized in that one or more discharge pipes are formed to protrude in an inclined direction on the outer peripheral surface of the diffusion section.
이에 더하여, 본 발명은 기체를 압축하여 이송관을 통해 고속으로 이송시키는 압축기; 단일의 유입관과 상기 유입구(101)와 연결되는 단일의 메인 배출관 그리고 밸브로 개폐되는 하나 이상의 보조 배출관을 포함하는 형태로 구성되어, 상기 압축기로부터 이송되는 고압의 기체를 유량에 따라 하나 이상의 경로로 배출시키는 분배기; 상기 다수의 보조 배출관에 하나씩 연결되어 공급되는 기체를 온도에 따라 분리하여 배출하는 보조 볼텍스 튜브; 및, 상기 분배기로 유입되는 기체의 유입량에 따라 상기 보조 배출관의 밸브를 자동으로 개폐하는 제어부; 를 포함하여 구성되는 것을 특징으로 하는 기체의 분리 성능이 향상된 단류형 볼텍스 튜브를 이용한 기체 분리 시스템을 제시한다.In addition, the present invention includes a compressor that compresses gas and transfers it at high speed through a transfer pipe; It is composed of a single inlet pipe, a single main discharge pipe connected to the inlet 101, and one or more auxiliary discharge pipes opened and closed by a valve, so that the high-pressure gas transferred from the compressor is routed through one or more paths according to the flow rate. Distributor that discharges; Auxiliary vortex tubes connected to the plurality of auxiliary discharge pipes one by one to separate and discharge the supplied gas according to temperature; And, a control unit that automatically opens and closes the valve of the auxiliary discharge pipe according to the inflow amount of gas flowing into the distributor; We present a gas separation system using a single-flow vortex tube with improved gas separation performance, characterized by comprising:
본 발명에 의한 기체의 분리 성능이 향상된 단류형 볼텍스 튜브 및 이를 이용한 기체 분리 시스템은,The single-flow vortex tube with improved gas separation performance according to the present invention and the gas separation system using the same,
내부의 이송경로를 포함하는 전체의 부피가 수축하는 수축 구간과 확산하는 확산 구간이 길이방향을 따라 연속되는 형태로 구성되는 메인 하우징을 이용하여 그 내부에서 기체가 이송되는 이송 속도가 순간적으로 급격하게 가속화될 수 있도록 함으로써 볼텍스 효과에 의한 기체의 분리 성능이 더욱 향상될 수 있도록 하고, 그 결과로 외부로 배출되는 기체의 온도가 더욱 낮게 형성될 수 있도록 하는 효과가 발생하게 된다.By using the main housing, which is composed of a contraction section in which the entire volume including the internal transfer path contracts and a diffusion section in which the diffusion section is continuous along the longitudinal direction, the transfer speed at which the gas is transferred within the housing suddenly increases rapidly. By allowing acceleration, the gas separation performance due to the vortex effect can be further improved, and as a result, the temperature of the gas discharged to the outside can be lowered further.
또한, 본 발명은 메인 하우징을 포함하는 전체의 구성을 고온의 기체가 배출되는 배출구와 저온의 기체가 배출되는 배출구가 동일한 방향에서 형성되는 단류형 볼텍스 튜브로 구성함으로써 단류형 볼텍스 튜브에 대한 당업자 등의 관심과 이용이 증가하도록 하는 효과가 발생하게 될 수 있다.In addition, the present invention consists of a single-flow type vortex tube in which the entire structure, including the main housing, is formed in the same direction as the outlet through which high-temperature gas is discharged and the outlet through which low-temperature gas is discharged, so that those skilled in the art, etc. This may have the effect of increasing interest and use.
도 1은 일반적인 대향류형 볼텍스 튜브의 단면도.Figure 1 is a cross-sectional view of a general counter-flow type vortex tube.
도 2는 본 발명에 의한 기체의 분리 성능이 향상된 단류형 볼텍스 튜브의 단면도.Figure 2 is a cross-sectional view of a single-flow vortex tube with improved gas separation performance according to the present invention.
도 3은 본 발명에 의한 기체의 분리 성능이 향상된 단류형 볼텍스 튜브의 내부에서 발생하는 기체의 흐름과 내부에서 생성되는 건식 입자가 배출되는 흐름을 나타낸 예시도.Figure 3 is an example diagram showing the flow of gas generated inside a single-flow vortex tube with improved gas separation performance according to the present invention and the flow of dry particles generated inside being discharged.
도 4는 본 발명에 의한 기체의 분리 성능이 향상된 단류형 볼텍스 튜브를 이용한 기체 분리 시스템의 구성도.Figure 4 is a block diagram of a gas separation system using a single-flow vortex tube with improved gas separation performance according to the present invention.
본 발명에 의한 기체의 분리 성능이 향상된 단류형 볼텍스 튜브 및 이를 이용한 기체 분리 시스템은,The single-flow vortex tube with improved gas separation performance according to the present invention and the gas separation system using the same,
기체를 온도에 따라 분리하여 배출하는 단류형 볼텍스 튜브(Uni-flow Vortex Tube)에 있어서, 일측에 유입구가 형성되고, 타측에 배출구가 형성되며, 유입구와 배출구를 연결하는 내부의 이송경로를 포함하는 전체의 부피가 수축하는 수축 구간과 확산하는 확산 구간이 길이방향을 따라 연속되는 형태로 구성되는 메인 하우징; 고압으로 이송되어 상기 메인 하우징의 유입구로 유입되는 기체가 와류를 형성하며 내부의 이송경로를 따라 이송되게 하는 와류 발생기; 및, 상기 메인 하우징의 배출구 측에 설치되어, 내부의 이송경로를 따라 이송되는 기체를 온도에 따라 분리하여 외부로 배출시키는 조절 밸브; 를 포함하여 구성되는 것을 특징으로 한다.In a uni-flow vortex tube that separates and discharges gas according to temperature, an inlet is formed on one side, an outlet is formed on the other side, and an internal transfer path connecting the inlet and outlet is included. A main housing composed of a contraction section in which the overall volume is contracted and a diffusion section in which the overall volume is diffused, being continuous along the longitudinal direction; A vortex generator that causes gas transported at high pressure and flowing into the inlet of the main housing to form a vortex and be transported along an internal transport path; And, a control valve installed on the outlet side of the main housing to separate the gas transported along the internal transfer path according to temperature and discharge it to the outside. It is characterized by being composed of a.
본 발명은 기체를 온도에 따라 분리하여 배출하는 단류형 볼텍스 튜브(10)에 관한 것으로써,The present invention relates to a single-flow vortex tube (10) that separates gases according to temperature and discharges them,
일측에 유입구(101)가 형성되고, 타측에 배출구(102)가 형성되며, 유입구(101)와 배출구(102)를 연결하는 내부의 이송경로를 포함하는 전체의 부피가 수축하는 수축 구간(103)과 확산하는 확산 구간(104)이 길이방향을 따라 연속되는 형태로 구성되는 메인 하우징(100); 고압으로 이송되어 상기 메인 하우징(100)의 유입구(101)로 유입되는 기체가 와류를 형성하며 내부의 이송경로를 따라 이송되게 하는 와류 발생기(110); 및, 상기 메인 하우징(100)의 배출구(102) 측에 설치되어, 내부의 이송경로를 따라 이송되는 기체를 온도에 따라 분리하여 외부로 배출시키는 조절 밸브(120); 를 포함하여 구성되는 것을 특징으로 한다.An inlet 101 is formed on one side, an outlet 102 is formed on the other side, and a contraction section 103 in which the entire volume, including the internal transport path connecting the inlet 101 and the outlet 102, is contracted. A main housing (100) in which an over-diffusing diffusion section (104) is continuous along the longitudinal direction; A vortex generator 110 that causes the gas transported at high pressure and flowing into the inlet 101 of the main housing 100 to form a vortex and be transported along the internal transport path; And, a control valve 120 installed on the outlet 102 side of the main housing 100 to separate the gas transported along the internal transfer path according to temperature and discharge it to the outside; It is characterized by being composed of a.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예들을 상세히 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
우선, 상기한 바와 같이, 본 발명은 고압으로 공급되는 기체를 내부에서의 볼텍스 효과에 의해 온도에 따라 고온의 기체와 저온의 기체로 분리하여 배출하는 무동력 장치인 볼텍스 튜브 중 하나인 단류형 볼텍스 튜브(Uniflow type vortex tube)(10)에 관한 것이다.First, as mentioned above, the present invention is a single-flow type vortex tube, which is one of the vortex tubes, which are non-powered devices that separate gas supplied at high pressure into high-temperature gas and low-temperature gas depending on the temperature by the internal vortex effect and discharge them. (Uniflow type vortex tube) (10).
즉, 본 발명은 외부의 압축기(200)로부터 압축 이송되어 유입구(101)를 통해 내부로 유입되는 기체가 초고속의 와류를 형성하며 단독의 배출구 측으로 이송된 후 고온의 기체와 저온의 기체로 분리되어 외부로 배출될 수 있도록 하는 구성을 가지며, 상기한 바와 같이 단독의 배출구를 가지는 점에 있어 대향류형 볼텍스 튜브와의 구조적인 차이를 가지게 된다.That is, in the present invention, the gas that is compressed and transferred from the external compressor 200 and introduced into the interior through the inlet 101 forms an ultra-high-speed vortex and is transferred to a single outlet and then separated into high-temperature gas and low-temperature gas. It has a structure that allows it to be discharged to the outside, and has a structural difference from the counter-flow type vortex tube in that it has a single discharge port as described above.
참고로 도 1에 도시된 바와 같이, 대향류형 볼텍스 튜브(Counter flow type vortex tube)는 외부의 압축기(200)로부터 압축 이송되어 유입구를 통해 내부로 유입되는 기체가 초고속의 와류를 형성하며 일측의 배출구 측으로 이송되고, 그 배출구 측에 설치된 밸브에 의해 고온의 기체는 외부로 배출되나 저온의 기체는 회송되어 타측의 다른 배출구를 통해 외부로 배출될 수 있도록 하는 구성을 가지며, 서로 반대되는 방향으로 형성되는 배출구를 가지는 외형상의 특징으로 단류형 볼텍스 튜브와 명확하게 구분할 수 있다.For reference, as shown in FIG. 1, the counter flow type vortex tube is compressed and transferred from an external compressor 200, and the gas flowing inside through the inlet forms an ultra-high-speed vortex and flows through an outlet on one side. It is transferred to one side, and the high-temperature gas is discharged to the outside by a valve installed on the outlet side, but the low-temperature gas is returned and discharged to the outside through another outlet on the other side, and is formed in opposite directions. It can be clearly distinguished from a single-flow type vortex tube by its external feature of having an outlet.
보다 구체적으로, 본 발명은 일측에 유입구(101)가 형성되고, 타측에 배출구(102)가 형성되며, 유입구(101)와 배출구(102)를 연결하는 내부의 이송경로를 포함하는 전체의 부피가 수축하는 수축 구간(103)과 확산하는 확산 구간(104)이 길이방향을 따라 연속되는 형태로 구성되는 메인 하우징(100)을 포함하여 구성되는 것을 특징으로 한다.More specifically, in the present invention, an inlet 101 is formed on one side, an outlet 102 is formed on the other side, and the overall volume including the internal transfer path connecting the inlet 101 and the outlet 102 is It is characterized in that it includes a main housing 100 in which a shrinking section 103 and a spreading diffusion section 104 are continuous along the longitudinal direction.
즉, 상기 메인 하우징(100)은 본 발명의 전체 형상을 구성하는 주요 구성물이며, 도 2에 도시된 바와 같이, 공지의 단류형 볼텍스 튜브와 동일하게 고압으로 이송되는 기체가 유입되는 유입구(101)가 일측에 형성되고, 유입된 기체가 이송되는 이송경로가 내부에 형성되며, 온도에 따라 분리된 기체가 외부로 배출되는 배출구(102)가 타측에 형성되는 형상으로 구성된다.That is, the main housing 100 is a major component that constitutes the overall shape of the present invention, and as shown in Figure 2, the inlet 101 through which gas transported at high pressure flows in the same way as a known single-flow vortex tube. is formed on one side, a transfer path through which the introduced gas is transferred is formed inside, and an outlet 102 through which the gas separated according to temperature is discharged to the outside is formed on the other side.
이에 더하여, 상기 메인 하우징(100)은 확산 구간(104)의 외주면에 하나 이상의 배출관(105)이 경사 방향으로 돌출 형성되는 형태로 구성되는 것을 특징으로 한다.In addition, the main housing 100 is characterized in that one or more discharge pipes 105 are formed to protrude in an inclined direction on the outer peripheral surface of the diffusion section 104.
그리고 상기 메인 하우징(100)의 내부에는 유입구(101)와 인접하게 와류 발생기(110)가 설치되는 것을 특징으로 하며, 이로 인해 그 유입구(101)로 유입되는 고압의 기체는 즉시 강한 와류를 형성하며 이송경로를 따라 고속으로 이송될 수 있게 된다.In addition, the main housing 100 is characterized in that a vortex generator 110 is installed adjacent to the inlet 101, whereby the high-pressure gas flowing into the inlet 101 immediately forms a strong vortex. It can be transported at high speed along the transport path.
이때, 상기 와류 발생기(110)는 본 발명을 포함하여 모든 볼텍스 튜브의 구성에 있어 필수적인 장치이며, 내부를 관통하는 형태로 이송되는 기체가 와류를 형성할 수 있도록 하는 다양한 형태로의 구성이 가능하다.At this time, the vortex generator 110 is an essential device in the construction of all vortex tubes, including the present invention, and can be configured in various forms so that the gas transported in a form penetrating the inside can form a vortex. .
즉, 상기 와류 발생기(110)는 기존의 볼텍스 튜브에 이용되는 것들 중 어느 하나를 이용할 수 있으며, 성능의 개선이나 가성비의 개선이 가능하다면 새로운 것을 적용할 수도 있다.In other words, the vortex generator 110 can use any one of those used in existing vortex tubes, and a new one can be applied if performance or cost-effectiveness can be improved.
따라서, 외부의 압축기(200)로부터 압축 이송되어 상기 메인 하우징(100)의 유입구(101)로 유입되는 고압의 기체는 상기 와류 발생기(110)를 통과함에 따라 약 1,000,000RPM 이상으로 고속으로 회전하여 와류를 형성할 수 있게 되며, 그 상태로 내부의 이송경로를 따라 배출구(102)를 향해 고속으로 이송될 수 있다.Therefore, the high-pressure gas that is compressed and transported from the external compressor 200 and flows into the inlet 101 of the main housing 100 rotates at a high speed of about 1,000,000 RPM or more as it passes through the vortex generator 110, creating a vortex. can be formed, and in that state can be transported at high speed toward the discharge port 102 along the internal transport path.
즉, 도 3에 도시된 바와 같이, 상기 메인 하우징(100) 내부의 이송경로에서는 와류 발생기(110)에 의한 기체의 나선 운동이 발생하게 되며, 기체의 온도에 따른 분리 현상이 수반되어 발생하여 이송경로의 내벽면을 따라 이송되는 하나의 기류와 이송경로의 중심부로 이송되는 다른 하나의 기류가 형성되게 된다.(이러한 현상에 대한 학술적인 정의가 되어 있는 것은 아니나 수많은 실험 등을 통해 결과로 입증되어 있다.)That is, as shown in FIG. 3, a spiral movement of the gas occurs by the vortex generator 110 in the transfer path inside the main housing 100, and a separation phenomenon according to the temperature of the gas occurs along with the transfer. One airflow is formed that is transported along the inner wall of the path, and another airflow is formed that is transported to the center of the transport path. (There is no academic definition for this phenomenon, but it has been proven through numerous experiments, etc. there is.)
이때, 상기 메인 하우징(100)은 길이 방향을 따라 부피가 수축하다 다시 원래의 부피와 동일하거나 유사한 정도의 부피까지 확산하는 수축확산형으로 외형뿐 아니라 내부의 이송경로까지 형성됨으로써 그 내부의 이송경로를 따라 이송되는 기체의 이송 속도에 급격한 변화가 발생하도록 하고 있다.At this time, the main housing 100 is a contraction-diffusion type in which the volume shrinks along the longitudinal direction and then spreads again to a volume equal to or similar to the original volume. Not only the external shape but also the internal transport path is formed, thereby forming the internal transport path. A rapid change occurs in the transport speed of the gas being transported along.
또한, 상기 메인 하우징(100)은 수축확산형으로 구성될 뿐만 아니라 부피가 수축하는 수축 구간(103)의 길이와 비교하여 부피가 확산하는 확산 구간(104)의 길이가 2배 이상 더 길게 형성되는 비대칭형으로 구성됨으로써 길이 방향을 따라 부피가 수축하는 단위 면적당 수축량이 부피가 확산하는 단위 면적당 확산량보다 크게 형성되도록 하고 있다.In addition, the main housing 100 is not only configured as a contraction-diffusion type, but the diffusion section 104, where the volume spreads, is formed to be more than twice as long compared to the length of the contraction section 103, where the volume is contracted. By being configured in an asymmetrical manner, the amount of shrinkage per unit area where the volume shrinks along the length direction is formed to be greater than the amount of diffusion per unit area where the volume spreads.
상기와 같은 구성에 따라, 상기 메인 하우징(100) 내부의 이송경로를 따라 이송되는 기체의 이송 속도는 그 이송경로의 내경이 급격하게 축소하는 수축 구간(103)에서 급격하게 증가하게 되며, 그 결과로 이송경로의 중심부로 이송되는 기체의 온도가 급격하게 하강하게 될 수 있다.According to the above configuration, the transport speed of the gas transported along the transport path inside the main housing 100 rapidly increases in the contraction section 103 where the inner diameter of the transport path is rapidly reduced, and as a result, The temperature of the gas transported to the center of the transport path may drop rapidly.
이때, 상기 이송경로의 내벽면을 따라 이송되는 기체의 급격한 온도 상승은 즉시 발생하지 않으므로 그 이송경로의 중심부로 이송되는 기체의 온도 하강이 선행되게 된다.At this time, since the rapid temperature rise of the gas transported along the inner wall of the transport path does not occur immediately, the temperature of the gas transported to the center of the transport path is preceded by a decrease in temperature.
따라서, 상기 메인 하우징(100)의 내부에서 이송되는 기체의 온도는 수축 구간(103)의 말단부나 확산 구간(104)의 초입부에서 최대 45℃ 이하로 급격하게 하강하게 될 수 있으며, 도 3에 도시된 바와 같이, 이로 인한 기체의 응결 현상이 발생하게 됨으로써 다량의 건식 입자가 생성되어 기체 중에 포함될 수 있다.Therefore, the temperature of the gas transported inside the main housing 100 may rapidly drop to a maximum of 45°C or less at the end of the contraction section 103 or the beginning of the diffusion section 104, as shown in Figure 3. As shown, this causes condensation of the gas, resulting in a large amount of dry particles being generated and included in the gas.
이때, 초기에는 다량의 건식 입자 전체나 대부분이 이송경로의 중심부로 이송되는 기체에 포함되나 이후에는 원심력에 의해 이송경로의 내벽면을 따라 이송되는 기체로 이동하게 된다.At this time, initially, all or most of the large amount of dry particles are included in the gas transported to the center of the transport path, but later, they move to the gas transported along the inner wall of the transport path by centrifugal force.
또한, 이와 같은 원심력에 의한 건식 입자의 이동은 이송경로의 단면적이 계속 확장하는 메인 하우징(100)의 확산 구간(104)에서 발생하게 되므로 더욱 가속화될 수 있으며 결과적으로는 모든 건식 입자의 내벽면 측으로의 이동이 발생하게 된다.In addition, the movement of dry particles due to centrifugal force can be further accelerated because it occurs in the diffusion section 104 of the main housing 100, where the cross-sectional area of the transfer path continues to expand, and as a result, all dry particles move to the inner wall side. movement occurs.
그리고 상기한 바와 같이 상기 메인 하우징(100)은 확산 구간(104)의 외주면에 하나 이상의 배출관(105)이 경사 방향으로 돌출 형성되는 형태로 구성되는 것을 특징으로 하므로 이송경로의 내벽면을 따라 이송되는 건식 입자의 배출이 발생하게 된다.And, as described above, the main housing 100 is characterized in that one or more discharge pipes 105 are formed to protrude in an oblique direction on the outer peripheral surface of the diffusion section 104, so that the main housing 100 is configured to protrude in an oblique direction, so that the main housing 100 is configured to protrude in an inclined direction. Dry particle emissions occur.
따라서, 상기 메인 하우징(100)의 배출구(102)로 배출되는 기체에는 건식 입자가 포함되지 않으며, 결과적으로는 기존의 볼텍스 튜브와 비교하여 더 높은 온도를 가진 고온의 기체와 더 낮은 온도를 가진 저온의 기체를 외부로 분리 배출할 수 있게 되는 효과가 발생하게 된다.Therefore, the gas discharged through the outlet 102 of the main housing 100 does not contain dry particles, and as a result, compared to the existing vortex tube, high temperature gas with a higher temperature and low temperature gas with a lower temperature are produced. The effect of being able to separate and discharge the gas to the outside occurs.
즉, 본 발명은 상기 메인 하우징(100)의 비대칭 수축확산형으로의 구성을 통해 기체가 이송되는 속도를 급격하게 증가시킴으로써 냉각 성능의 대폭적인 향상을 실현할 수 있으며, 그 과정에서 부산물로 발생하는 다량의 건식 입자는 하나 이상의 배출관(105)을 통해 모두 제거될 수 있도록 하고 있다.In other words, the present invention can realize a significant improvement in cooling performance by rapidly increasing the speed at which gas is transferred through the asymmetric contraction and diffusion configuration of the main housing 100, and a large amount of by-products are generated in the process. All dry particles can be removed through one or more discharge pipes 105.
이때, 상기 하나 이상의 배출관(105)을 통해 배출되는 다량의 건식 입자는 배출관(105)에 연결되는 호스나 다른관을 통해 외부의 포집 장치로 이송되어 처리될 수 있다.At this time, a large amount of dry particles discharged through the one or more discharge pipes 105 may be transferred to an external collection device for processing through a hose or other pipe connected to the discharge pipe 105.
한편, 도 2 및 도 3에 도시된 바와 같이, 상기 메인 하우징(100)의 배출구(102) 측에는 내부의 이송경로를 따라 이송되는 기체를 온도에 따라 분리하여 외부로 배출하기 위한 목적과 배출량을 조절하기 위한 목적으로 조절 밸브(120)가 설치되는 것을 특징으로 한다.Meanwhile, as shown in Figures 2 and 3, on the outlet 102 side of the main housing 100, the gas transported along the internal transfer path is separated according to temperature and discharged to the outside for the purpose of controlling the discharge amount. It is characterized in that a control valve 120 is installed for this purpose.
이때, 상기 조절 밸브(120)는 고온의 기체를 배출하는 경로는 대향류형 볼텍스 튜브에 이용되는 밸브와 동일한 경로로 형성하나 저온의 기체를 배출하는 저온 배출구(121)가 중심을 관통하는 형태로 형성되어 있는 점에서는 대향류형 볼텍스 튜브에 이용되는 밸브와의 차이를 가진다.At this time, the control valve 120 has a path for discharging high-temperature gas in the same path as the valve used in the counter-flow type vortex tube, but the low-temperature outlet 121 for discharging low-temperature gas is formed through the center. In that it differs from the valve used in a counter-flow type vortex tube.
따라서, 상기 메인 하우징(100) 내부의 이송경로를 따라 이송되되 그 이송경로의 내벽면을 따라 이송되는 고온의 기체와 이송경로의 중심부를 따라 이송되는 저온의 기체는 조절 밸브(120)에 의해 서로 다른 경로로 배출될 수 있으며, 배출량도 조절될 수 있다.Therefore, the high-temperature gas transported along the inner wall of the main housing 100 and the low-temperature gas transported along the center of the transport path are controlled by the control valve 120. It can be discharged through different routes, and emissions can also be controlled.
또한, 본 발명은 기체의 분리 성능이 향상된 단류형 볼텍스 튜브(10)를 이용한 기체 분리 시스템에 관한 것으로써, 기체를 압축하여 이송관을 통해 고속으로 이송시키는 압축기(200); 단일의 유입관(211)과 단일의 메인 배출관(212) 그리고 밸브로 개폐되는 하나 이상의 보조 배출관(213)을 포함하는 형태로 구성되어, 상기 압축기(200)로부터 이송되는 고압의 기체를 유량에 따라 하나 이상의 경로로 배출시키는 분배기(210); 상기 하나 이상의 보조 배출관(213)에 하나씩 연결되어 공급되는 기체를 온도에 따라 분리하여 배출하는 보조 볼텍스 튜브(220); 및, 상기 분배기(210)로 유입되는 기체의 유입량에 따라 상기 보조 배출관(213)의 밸브를 자동으로 개폐하는 제어부; 를 포함하여 구성되는 것을 특징으로 한다.In addition, the present invention relates to a gas separation system using a single-flow vortex tube (10) with improved gas separation performance, comprising: a compressor (200) that compresses gas and transfers it at high speed through a transfer pipe; It is configured to include a single inlet pipe 211, a single main discharge pipe 212, and one or more auxiliary discharge pipes 213 that are opened and closed by a valve, so that the high-pressure gas transferred from the compressor 200 is adjusted according to the flow rate. Distributor 210 for discharging through one or more paths; Auxiliary vortex tubes 220 connected to the one or more auxiliary discharge pipes 213 one by one to separate and discharge the supplied gas according to temperature; And, a control unit that automatically opens and closes the valve of the auxiliary discharge pipe 213 according to the amount of gas flowing into the distributor 210; It is characterized by being composed of a.
우선, 도 4에 도시된 상기 압축기(200)는 기체를 압축하여 고압의 기체를 송출하는 장치이며, 연료의 연소에 의해 발생하는 배기가스를 압축하여 이송관을 통해 고속으로 이송시키거나 개질을 통해 수소를 생산하는 과정에서 배출되는 혼합가스를 압축하여 이송관을 통해 고압으로 이송시키도록 구성될 수 있다.First, the compressor 200 shown in FIG. 4 is a device that compresses gas and delivers high-pressure gas. It compresses the exhaust gas generated by combustion of fuel and transfers it at high speed through a transfer pipe or through reforming. It can be configured to compress the mixed gas discharged in the process of producing hydrogen and transfer it at high pressure through a transfer pipe.
즉, 상기 압축기(200)는 산업용 엔진이나 선박의 엔진 등 엔진으로부터 배출되는 배기가스를 선순위로 처리하는 형태나 개질을 통해 수소를 생산하는 과정에서 배출되는 혼합가스를 선순위로 처리하는 형태로 구성될 수 있으나, 반드시 그러한 것은 아니다.That is, the compressor 200 may be configured to prioritize the exhaust gas emitted from engines such as industrial engines or ship engines, or to preferentially process the mixed gas emitted in the process of producing hydrogen through reforming. It may be possible, but this is not necessarily the case.
또한, 도 4에 도시된 상기 분배기(210)는 단일의 유입관(211)과 단일의 메인 배출관(212) 그리고 밸브로 개폐되는 하나 이상의 보조 배출관(213)을 포함하는 형태로 구성되어, 상기 압축기(200)로부터 압축 이송되는 배기가스 등의 기체를 필요에 따라 양적으로 분리하는 장치이다.In addition, the distributor 210 shown in FIG. 4 is configured to include a single inlet pipe 211, a single main discharge pipe 212, and one or more auxiliary discharge pipes 213 that are opened and closed by a valve, so that the compressor It is a device that quantitatively separates gases such as exhaust gas compressed and transferred from (200) as needed.
즉, 도 4에 도시된 바와 같이, 상기 분배기(210)의 메인 배출관(212)에는 본 발명의 단류형 볼텍스 튜브(10)가 연결되는 구성이며, 추가로 하나 이상의 보조 배출관(213)에는 상기 대향류형 볼텍스 튜브나 단류형 볼텍스 튜브(10)로 구성되는 보조 볼텍스 튜브(220)가 연결됨으로써 분배기(210)로부터 배출되는 배기가스 등의 기체를 온도에 따라 분리 처리할 수 있도록 한다.That is, as shown in FIG. 4, the single-flow vortex tube 10 of the present invention is connected to the main discharge pipe 212 of the distributor 210, and in addition, one or more auxiliary discharge pipes 213 are connected to the opposing discharge pipe 213. The auxiliary vortex tube 220, which is composed of a flow-type vortex tube or a single-flow vortex tube 10, is connected so that gases such as exhaust gas discharged from the distributor 210 can be separated and processed according to temperature.
그리고 상기 제어부는 상기 분배기(210)로 유입되는 기체의 유입량에 따라 상기 보조 배출관(213)의 밸브를 자동으로 개폐함으로써 상기 단류형 볼텍스 튜브(10)의 과부하를 방지함과 동시에 단류형 볼텍스 튜브(10)를 단독으로 이용할 때보다 배기가스 등의 기체에 대한 분리 효율이 향상될 수 있도록 한다.And the control unit automatically opens and closes the valve of the auxiliary discharge pipe 213 according to the amount of gas flowing into the distributor 210, thereby preventing overload of the single-flow type vortex tube 10 and simultaneously controlling the single-flow type vortex tube ( 10) The separation efficiency for gases such as exhaust gas can be improved compared to when used alone.
따라서, 상기 분배기(210)의 유입관(211) 측에는 내부로 유입되는 기체의 유량을 측정하기 위한 목적으로 하나 이상의 측정 센서(214)가 구비될 수 있고, 보조 배출관(213)에는 밸브의 자동 개폐를 위한 목적으로 액츄에이터나 모터 등의 장치가 구비될 수 있으며, 상기 제어부는 측정되는 기체의 유량에 따라 상기 보조 볼텍스 튜브(220)의 이용 여부를 선택하여 액츄에이터나 모터 등의 장치를 제어할 수 있다.Accordingly, one or more measurement sensors 214 may be provided on the inlet pipe 211 side of the distributor 210 for the purpose of measuring the flow rate of gas flowing into the inside, and the auxiliary discharge pipe 213 may be provided with automatic opening and closing of the valve. A device such as an actuator or a motor may be provided for the purpose, and the control unit may control the device such as an actuator or a motor by selecting whether to use the auxiliary vortex tube 220 according to the flow rate of the measured gas. .
이때, 상기 제어부는 상기 측정 센서(214)에서 측정되는 기체의 유량이 기설정된 최소값인 제1 설정값 이하인 상태에서는 상기 분배기(210)의 메인 배출관(212)이 단독으로 개방된 상태가 되도록 밸브를 제어하거나 현재 상태가 유지되도록 하여 분배기(210)로 유입된 모든 기체가 상기 단류형 볼텍스 튜브(10)로만 이송되도록 할 수 있다.At this time, the control unit operates the valve so that the main discharge pipe 212 of the distributor 210 is opened independently when the gas flow rate measured by the measurement sensor 214 is below the first set value, which is a preset minimum value. It is possible to control or maintain the current state so that all gas flowing into the distributor 210 is transferred only to the single-flow type vortex tube 10.
또한, 상기 제어부는 상기 측정 센서(214)에서 측정되는 기체의 유량이 기설정된 최소값인 제1 설정값과 기설정된 중간값인 제2 설정값 사이인 상태에서는 상기 분배기(210)의 메인 배출관(212)과 일부의 보조 배출관(213)이 개방된 상태가 되도록 밸브를 제어하거나 현재 상태가 유지되도록 하여 분배기(210)로 유입된 기체의 일부는 상기 단류형 볼텍스 튜브(10)로 이송되도록 하고, 다른 일부는 보조 볼텍스 튜브(220)로 이송되도록 할 수 있다.In addition, the control unit controls the main discharge pipe 212 of the distributor 210 when the gas flow rate measured by the measurement sensor 214 is between the first set value, which is a preset minimum value, and the second set value, which is a preset intermediate value. ) and some of the auxiliary discharge pipes 213 are controlled to be in an open state or the current state is maintained so that part of the gas flowing into the distributor 210 is transferred to the single-flow vortex tube 10, and other Some may be transferred to the auxiliary vortex tube (220).
이때, 상기 분배기(210)에 구비되는 보조 배출관(213)의 수에 따라 제1 설정값과 제2 설정값 사이의 구간은 다수의 구간으로 더 세분화 될 수 있으며, 각 구간에 대응하는 기체의 유량이 감지됨에 따라 제어부에 의해 개방되는 보조 배출관(213)의 수가 변화할 수 있다.At this time, depending on the number of auxiliary discharge pipes 213 provided in the distributor 210, the section between the first set value and the second set value may be further divided into multiple sections, and the gas flow rate corresponding to each section As this is detected, the number of auxiliary discharge pipes 213 opened by the control unit may change.
또한, 상기 제어부는 상기 측정 센서(214)에서 측정되는 기체의 유량이 기설정된 중간값인 제2 설정값 이상인 상태에서는 상기 분배기(210)의 메인 배출관(212)과 모든 보조 배출관(213)이 개방된 상태가 되도록 밸브를 제어하거나 현재 상태가 유지되도록 하여 분배기(210)로 유입된 기체가 상기 단류형 볼텍스 튜브(10)와 상기 보조 볼텍스 튜브(220) 전체로 골고루 분배되어 이송되도록 할 수 있다.In addition, the control unit opens the main discharge pipe 212 and all auxiliary discharge pipes 213 of the distributor 210 when the gas flow rate measured by the measurement sensor 214 is greater than the second set value, which is a preset intermediate value. By controlling the valve to maintain the current state or maintaining the current state, the gas flowing into the distributor 210 can be evenly distributed and transferred throughout the single-flow type vortex tube 10 and the auxiliary vortex tube 220.
이와 같이 본 발명은 연소에 의해 발생하는 배기가스나 수소를 생산하는 과정에서 배출되는 혼합가스 등의 기체가 단류형 볼텍스 튜브(10) 단독 또는 단류형 볼텍스 튜브(10)와 보조 볼텍스 튜브(220)에서 전처리될 수 있도록 함으로써 이후 과정에서의 미세먼지 등의 정화 효율이 대폭 향상될 수 있도록 한다.In this way, the present invention is a gas such as exhaust gas generated by combustion or mixed gas discharged in the process of producing hydrogen by using the single-flow type vortex tube (10) alone or the single-flow type vortex tube (10) and the auxiliary vortex tube (220). By allowing pretreatment in the process, the purification efficiency of fine dust, etc. in the subsequent process can be greatly improved.
위에서 소개된 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 하기 위해, 예로써 제공되는 것이며, 본 발명은 위에서 설명된 실시예들에 한정되지 않고, 다른 형태로 구체화 될 수도 있다.The embodiments introduced above are provided as examples so that the technical idea of the present invention can be sufficiently conveyed to those skilled in the art to which the present invention pertains, and the present invention is limited to the embodiments described above. It is not limited and may be embodied in other forms.
본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 도면에서 생략하였으며 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장 또는 축소되어 표현될 수 있다. In order to clearly explain the present invention, parts not related to the description are omitted from the drawings, and in the drawings, the width, length, thickness, etc. of components may be exaggerated or reduced for convenience.
또한, 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.Additionally, like reference numerals refer to like elements throughout the specification.
기체의 분리 성능이 향상된 단류형 볼텍스 튜브 및 이를 이용한 기체 분리 시스템은 볼텍스 효과에 의한 기체의 분리 성능이 더욱 향상될 수 있도록 하고, 그 결과로 외부로 배출되는 기체의 온도가 더욱 낮게 형성될 수 있도록 하는 효과가 발생하게 되므로 산업상 이용가능성이 충분하다.A single-flow vortex tube with improved gas separation performance and a gas separation system using the same can further improve the gas separation performance by the vortex effect, and as a result, the temperature of the gas discharged to the outside can be lowered. Because the effect occurs, it has sufficient industrial applicability.

Claims (4)

  1. 기체를 온도에 따라 분리하여 배출하는 단류형 볼텍스 튜브(Uni-flow Vortex Tube)에 있어서,In a uni-flow vortex tube that separates and discharges gas according to temperature,
    일측에 유입구(101)가 형성되고, 타측에 배출구(102)가 형성되며, 유입구(101)와 배출구(102)를 연결하는 내부의 이송경로를 포함하는 전체의 부피가 수축하는 수축 구간(103)과 확산하는 확산 구간(104)이 길이방향을 따라 연속되는 형태로 구성되는 메인 하우징(100);An inlet 101 is formed on one side, an outlet 102 is formed on the other side, and a contraction section 103 in which the entire volume, including the internal transport path connecting the inlet 101 and the outlet 102, is contracted. A main housing (100) in which an over-diffusing diffusion section (104) is continuous along the longitudinal direction;
    고압으로 이송되어 상기 메인 하우징(100)의 유입구(101)로 유입되는 기체가 와류를 형성하며 내부의 이송경로를 따라 이송되게 하는 와류 발생기(110); 및,A vortex generator 110 that causes the gas transported at high pressure and flowing into the inlet 101 of the main housing 100 to form a vortex and be transported along the internal transport path; and,
    상기 메인 하우징(100)의 배출구(102) 측에 설치되어, 내부의 이송경로를 따라 이송되는 기체를 온도에 따라 분리하여 외부로 배출시키는 조절 밸브(120); 를 포함하여 구성되는 것을 특징으로 하는 기체의 분리 성능이 향상된 단류형 볼텍스 튜브.A control valve 120 installed on the outlet 102 side of the main housing 100 to separate the gas transported along the internal transfer path according to temperature and discharge it to the outside; A single-flow vortex tube with improved gas separation performance, comprising:
  2. 제1항에 있어서,According to paragraph 1,
    상기 메인 하우징(100)은,The main housing 100 is,
    수축 구간(103)의 길이와 비교하여 확산 구간(104)의 길이가 배 이상 더 길게 형성되는 비대칭형으로 구성되는 것을 특징으로 하는 기체의 분리 성능이 향상된 단류형 볼텍스 튜브.A single-flow vortex tube with improved gas separation performance, characterized in that it is asymmetrical in that the length of the diffusion section (104) is more than twice as long as the length of the contraction section (103).
  3. 제1항에 있어서,According to paragraph 1,
    상기 메인 하우징(100)은,The main housing 100 is,
    확산 구간(104)의 외주면에 하나 이상의 배출관(105)이 경사 방향으로 돌출 형성되는 형태로 구성되는 것을 특징으로 하는 기체의 분리 성능이 향상된 단류형 볼텍스 튜브.A single-flow vortex tube with improved gas separation performance, characterized in that one or more discharge pipes (105) are formed to protrude in an inclined direction on the outer peripheral surface of the diffusion section (104).
  4. 기체를 압축하여 이송관을 통해 고속으로 이송시키는 압축기(200);A compressor (200) that compresses gas and transfers it at high speed through a transfer pipe;
    단일의 유입관(211)과 단일의 메인 배출관(212) 그리고 밸브로 개폐되는 하나 이상의 보조 배출관(213)을 포함하는 형태로 구성되어, 상기 압축기(200)로부터 이송되는 고압의 기체를 유량에 따라 하나 이상의 경로로 배출시키는 분배기(210);It is configured to include a single inlet pipe 211, a single main discharge pipe 212, and one or more auxiliary discharge pipes 213 that are opened and closed by a valve, so that the high-pressure gas transferred from the compressor 200 is adjusted according to the flow rate. Distributor 210 for discharging through one or more paths;
    상기 하나 이상의 보조 배출관(213)에 하나씩 연결되어 공급되는 기체를 온도에 따라 분리하여 배출하는 보조 볼텍스 튜브(220); 및,Auxiliary vortex tubes 220 connected to the one or more auxiliary discharge pipes 213 one by one to separate and discharge the supplied gas according to temperature; and,
    상기 분배기(210)로 유입되는 기체의 유입량에 따라 상기 보조 배출관(213)의 밸브를 자동으로 개폐하는 제어부(미도시); 를 포함하여 구성되는 것을 특징으로 하는 기체의 분리 성능이 향상된 단류형 볼텍스 튜브를 이용한 기체 분리 시스템.a control unit (not shown) that automatically opens and closes the valve of the auxiliary discharge pipe 213 according to the amount of gas flowing into the distributor 210; A gas separation system using a single-flow vortex tube with improved gas separation performance, comprising:
PCT/KR2023/008992 2022-09-20 2023-06-28 Single-flow vortex tube having improved gas separation performance, and gas separation system using same WO2024063267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0118606 2022-09-20
KR20220118606 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024063267A1 true WO2024063267A1 (en) 2024-03-28

Family

ID=90454463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008992 WO2024063267A1 (en) 2022-09-20 2023-06-28 Single-flow vortex tube having improved gas separation performance, and gas separation system using same

Country Status (1)

Country Link
WO (1) WO2024063267A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372019B1 (en) * 1998-10-16 2002-04-16 Translang Technologies, Ltd. Method of and apparatus for the separation of components of gas mixtures and liquefaction of a gas
KR20190075554A (en) * 2017-12-21 2019-07-01 동명대학교산학협력단 Vortex tube oil cooler temperature and capacity control system
CN110567181A (en) * 2019-08-29 2019-12-13 上海理工大学 Gas-liquid two-phase vortex tube
KR20200113707A (en) * 2019-03-26 2020-10-07 이동열 Cabinet cooler using voltex tube
KR102184979B1 (en) * 2020-07-15 2020-12-01 한국이미지시스템(주) Turbo-vortex expander

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372019B1 (en) * 1998-10-16 2002-04-16 Translang Technologies, Ltd. Method of and apparatus for the separation of components of gas mixtures and liquefaction of a gas
KR20190075554A (en) * 2017-12-21 2019-07-01 동명대학교산학협력단 Vortex tube oil cooler temperature and capacity control system
KR20200113707A (en) * 2019-03-26 2020-10-07 이동열 Cabinet cooler using voltex tube
CN110567181A (en) * 2019-08-29 2019-12-13 上海理工大学 Gas-liquid two-phase vortex tube
KR102184979B1 (en) * 2020-07-15 2020-12-01 한국이미지시스템(주) Turbo-vortex expander

Similar Documents

Publication Publication Date Title
WO2015009028A1 (en) Heat exchanger
WO2011108780A1 (en) Chiller
WO2017073895A1 (en) Exhaust gas cooler
WO2024063267A1 (en) Single-flow vortex tube having improved gas separation performance, and gas separation system using same
WO2022114618A1 (en) Valve device
WO2012169688A1 (en) Heat exchanger also used as vaporizer/condenser
WO2017010578A1 (en) Air blower and air conditioner having same
KR101653216B1 (en) Leakage reduction system in power plant operations
WO2016002998A1 (en) Counterflow control exhaust port of internal combustion engine
WO2013089484A1 (en) Air-conditioning apparatus and method for controlling same
WO2015108370A1 (en) Cooling screw, and cooling method for cooling screw using same
WO2021182749A1 (en) Vapor injection double reed valve
WO2024034845A1 (en) Gas separation system enabling active flow control
WO2020055185A1 (en) Outdoor unit of air conditioner
US2818935A (en) Combined centrifugal separator and heat exchanger
WO2021177612A1 (en) Plate-type heat exchanger
WO2021045587A1 (en) Rapid thermal processing equipment cooling system
WO2019004681A1 (en) Heat exchange apparatus
WO2021112570A1 (en) Gas furnace
CN1011540B (en) Device for exchange between recycle gas leaving nh3 converter and water
WO2016208891A1 (en) Air purifier
WO2019139199A1 (en) Compressor
WO2019151567A1 (en) Heat exchange device
WO2019240528A1 (en) Manifold for controlling flow of fluid including flue gas
TWI808678B (en) Condensing system and its condensing device