WO2024063150A1 - Method for inspecting additively manufactured product and method for manufacturing additively manufactured product - Google Patents

Method for inspecting additively manufactured product and method for manufacturing additively manufactured product Download PDF

Info

Publication number
WO2024063150A1
WO2024063150A1 PCT/JP2023/034367 JP2023034367W WO2024063150A1 WO 2024063150 A1 WO2024063150 A1 WO 2024063150A1 JP 2023034367 W JP2023034367 W JP 2023034367W WO 2024063150 A1 WO2024063150 A1 WO 2024063150A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
average value
evaluation
data
value
Prior art date
Application number
PCT/JP2023/034367
Other languages
French (fr)
Japanese (ja)
Inventor
晶 牛
孝介 桑原
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2024063150A1 publication Critical patent/WO2024063150A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to an additive product inspection method and an additive product manufacturing method.
  • a heat source such as a laser beam or an electron beam is supplied to the raw material powder on a substrate to melt and solidify the raw material powder to form a solidified layer, and this process is repeated to obtain a three-dimensional additive product.
  • a heat source such as a laser beam or an electron beam is supplied to the raw material powder on a substrate to melt and solidify the raw material powder to form a solidified layer, and this process is repeated to obtain a three-dimensional additive product.
  • this additive manufacturing method it is possible to obtain a three-dimensional additive product with a net shape or near net shape.
  • Methods for determining whether there are defects in manufactured parts include, for example, non-destructive inspection methods such as internal defect detection using X-ray CT scanning and density measurement using Archimedes' method.
  • non-destructive inspection methods such as internal defect detection using X-ray CT scanning and density measurement using Archimedes' method.
  • the X-ray CT scanning method has a limited resolution for large parts.
  • the Archimedes method cannot detect individual defects and has low detection accuracy for a small number of defects.
  • Patent Document 2 discloses that the presence or absence of defects in an additive product is estimated using brightness data of light emitted from a molten pool formed when metal powder is melted.
  • Patent Document 1 WO2018/043349 WO2022/097651 publication
  • Patent Document 1 only determines whether fume or spatter has occurred by monitoring the external appearance. Furthermore, Patent Document 2 estimates defects in an additive product by using local signal abnormalities of the brightness average value and standard deviation for each layer of the additive product, and estimates the mechanical properties of the additive product, etc. No consideration had been given to how to estimate and evaluate this.
  • the present invention provides an additive product inspection method and an additive product manufacturing method that can estimate the mechanical properties of the additive product.
  • the method for inspecting an additive product of the present invention is a method for inspecting an additive product manufactured by melting and solidifying metal powder, and includes detecting light emitted from a molten pool formed when the metal powder is melted.
  • This is a method for inspecting an additive product, which is characterized by evaluating whether or not.
  • the variation range is a variation rate, and the variation rate is 18.0% or less.
  • the present invention includes a powder supply step of supplying metal powder, a modeling step of irradiating the metal powder with a heat source to melt and solidify the metal powder to shape an additive product, and forming the additive product when the metal powder is melted.
  • an evaluation step for estimating the mechanical properties of the additive product using the method and in the evaluation step, the evaluation data includes an average brightness value, a standard deviation of the average brightness value, and an inspection step comprising:
  • the evaluation data includes at least one of these moving average values, evaluates whether or not the evaluation data is within a predetermined variation range, and if it is within the variation range, continues the modeling process, and thereafter each process It is preferable to further include a selection step of repeating the steps and determining whether or not to continue the modeling process if it is outside the variation range.
  • the variation range is a variation rate, and the variation rate is 18.0% or less.
  • FIG. 1 is a schematic diagram illustrating a configuration of a powder bed fusion bonding (PBF) type additive manufacturing apparatus and an example of an additive manufacturing method.
  • FIG. 2 is a flowchart showing the flow of a method for manufacturing an additive product.
  • PPF powder bed fusion bonding
  • manufacturing of the additive product is started by melting and solidifying metal powder. Thereafter, a brightness data acquisition step (S101) of acquiring brightness data of light emitted from a molten pool formed when the metal powder is melted, and an evaluation data extraction step of extracting evaluation data from the brightness data. (S103), and an evaluation step (S105) of estimating the mechanical properties (hereinafter sometimes simply referred to as properties) of the additive product using the evaluation data.
  • S101 to S105 will be explained in detail below.
  • Brightness data acquisition step (S101) First, when a metal powder is irradiated with a heat source or the like to melt the metal powder and form a molten pool, brightness data of the light emitted from the molten pool (sometimes simply referred to as brightness data) is obtained.
  • the heat source can be a laser beam or the like.
  • the light used in this embodiment may be at least one of the following: reflected light when a laser beam is irradiated; light generated by a temperature rise in the molten pool or heat-affected zone; and plasma light generated when a metal vapor is irradiated with a laser beam and turned into plasma when melted. It is preferable to detect a luminance with high detection sensitivity. Specifically, it is preferable to detect light emitted from the molten pool and its vicinity, in other words, light with a wavelength of 600 nm or more and 1100 nm or less, and it is even more preferable to detect light with a wavelength of 800 nm or more and 1000 nm or less.
  • an sCMOS camera can be used as a method for acquiring (detecting) brightness data.
  • the number of pixels may be 50,000 or more, preferably 500,000 or more, and more preferably 4,000,000 or more.
  • the shooting speed may be about 1 frame per second, preferably 10 frames or more per second.
  • EOSTATE Exposure OT manufactured by EOS
  • the brightness acquired by the sCMOS camera (also referred to as OT brightness) may be the brightness in the near-infrared region during the modeling process.
  • the sCMOS camera may be provided with a bandpass filter that passes only frequencies in the near-infrared region.
  • EOSTATE Exposure OT photographs the area around the molten pool using an sCMOS camera installed obliquely above the modeling surface to obtain light brightness data.
  • the sCMOS camera is installed diagonally above the modeling surface, it can be converted into an observation image taken from above the modeling surface by correcting the shooting distance and shooting angle using software.
  • evaluation data extraction step (S103) Next, evaluation data is extracted from the luminance data acquired in the luminance data acquisition step (S101).
  • the evaluation data includes an average luminance value and a standard deviation of the average luminance value.
  • the average brightness value indicates the brightness unit in Gv, and the brightness is displayed in stages in blue for zero and red for the maximum value of 4.5 x 104 , and the brightness (color degree ) is the average value of the integrated values. That is, the average brightness value is the average value of the brightness values of each pixel of the brightness image (the average value of the brightnesses acquired in one pixel of the image). Further, the standard deviation of the brightness average value (sometimes referred to as the brightness standard deviation) indicates an evaluation of the variation in the brightness average value calculated for each layer. For example, when manufacturing an additive product using a powder bed fusion (PBF) method, the average brightness value of each layer may be obtained, and the standard deviation may be calculated from the average brightness value. Then, until the modeling process is completed, the average brightness value and the standard deviation of the average brightness value for each layer may be saved and recorded.
  • PPF powder bed fusion
  • the average brightness value of section B is higher than that of section A. If the average brightness value obtained when forming section A is Gv 0 and the average brightness value obtained when forming section B is Gv n , the difference between the average brightness values of section A and section B (Gv n -Gv 0 ) can be expressed as ⁇ Gv (unit: Gv). It can be said that ⁇ Gv indicates the fluctuation range (fluctuation width). In addition, when moving from section A to section B, the fluctuation range can be observed in a step-like manner, and this step difference can be said to be the fluctuation range, and the higher the step, the larger the fluctuation range.
  • the average brightness value of section A and section B used to calculate ⁇ Gv may be the difference between the average value of the brightness average values of the entire area A and the average value of the average brightness values of the entire area B, The difference between a part of the average brightness value of section A and a part of the average brightness value of section B may be used.
  • the upper limit of the fluctuation range can be, for example, 4170 Gv or less. This is because if it exceeds 4170 Gv, there is a possibility that the additive product will have reduced mechanical properties such as tensile strength and elongation. Preferably it is 3500 Gv or less, more preferably 3000 Gv or less, still more preferably 2500 Gv or less.
  • the variation range when using the standard deviation of the luminance average value will be explained.
  • the interval before the fluctuation is defined as interval A
  • the standard deviation of the luminance average value in interval A is Gv ⁇ 0
  • the interval after the fluctuation is defined as interval B.
  • the variation range is the difference (Gv ⁇ n - Gv ⁇ 0 ) between the standard deviation of the luminance average value of section A and section B as ⁇ Gv ⁇ (unit: Gv).
  • the transition from section A to section B is expressed in a step shape (step shape), and this step difference can also be said to be a fluctuation range.
  • the standard deviation of the luminance average values of section A and section B used for calculation is the standard deviation of the luminance average value of the entire section A and the luminance of the entire section B. It may be the difference between the standard deviations of the average values, or it may be the difference between the standard deviations of the average luminance values of part of section A and the standard deviations of the average luminance values of part of section B.
  • the variation range is preferably small, but the upper limit can be 1100 Gv or less. This is because if it exceeds 1100 Gv, there is a possibility that the additive product will have reduced mechanical properties such as tensile strength and elongation. Preferably it is 800 Gv or less, more preferably 500 Gv or less.
  • a moving average value (unit: Gv) calculated from the average brightness value or the standard deviation of the average brightness value can also be used.
  • a moving average value is an average value obtained for each certain interval in time-series data while shifting the interval. Evaluation using moving average values provides a smooth curve that represents long-term trends, making it easier to detect sudden changes.
  • it may be obtained by calculating a simple arithmetic mean of data.
  • the average brightness value or the standard deviation of the average brightness value can be calculated by adding up several pieces of data before and after the central data to be calculated.
  • the fluctuation range is small.
  • the upper limit can be 3800 Gv or less. This is because if it exceeds 3,800 Gv, the resulting additive product will have reduced mechanical properties, such as tensile strength and elongation. Preferably it is 3500 Gv or less, more preferably 3000 Gv or less, even more preferably 2000 Gv or less.
  • the upper limit is 970 Gv or less. This is because if it exceeds 970 Gv, it may result in an additive product with reduced mechanical properties, such as tensile strength and elongation.
  • it is 800 Gv or less, more preferably 600 Gv or less, even more preferably 500 Gv or less.
  • the standard deviation of the brightness average value, or their moving average value for example, a fluctuation rate (%) can also be used instead of the fluctuation range.
  • the fluctuation rate will be explained using FIG. 2.
  • the average brightness value Gv n when the average brightness value changes the average brightness value Gv 0 before the average brightness value changes to Gv n
  • the average brightness value Gv n minus Gv 0 the difference is ⁇ Gv
  • the fluctuation rate can be a value obtained by dividing ⁇ Gv by Gv 0 ( ⁇ Gv/Gv 0 ).
  • the variation rate is calculated by using luminance data such as the luminance average value acquired during the modeling process and using the amount of change in the luminance data observed during the modeling process as a slope.
  • luminance data such as the luminance average value acquired during the modeling process
  • the amount of change in the luminance data observed during the modeling process as a slope.
  • the fluctuation rate if there is a change in the average brightness value or the standard deviation of the average brightness value, for example, if there is a step-like change, the amount of change can be calculated as the slope, making evaluation easier. preferable.
  • the average brightness value changes temporarily and the rate of fluctuation becomes high, this may not affect the mechanical properties of the additive product depending on the subsequent change in the average brightness value. For example, if the average brightness value shows a peak top due to a sudden increase or decrease in value, the rate of fluctuation will become large due to a large change in the average brightness value, but the mechanical properties of the additive product may not be affected even if the average brightness value momentarily moves up and down. Therefore, additive manufacturing may continue even if a momentary peak top occurs in the average brightness value.
  • the fluctuation rate can be the value obtained by dividing ⁇ Gv ⁇ by Gv ⁇ 0 ( ⁇ Gv ⁇ /Gv ⁇ 0 ). It is preferable that the fluctuation rate is small, but the upper limit can be set to 18.0%. This is because if it exceeds 18.0%, the mechanical properties, such as tensile strength and elongation, of the additive product will be reduced. It is preferably 15.0% or less, more preferably 11.0% or less, and even more preferably 10.5% or less.
  • the fluctuation range and fluctuation rate may be set in advance.
  • a method for setting the variation range and variation rate in advance for example, the variation range and variation rate of brightness data acquired for an additive product (hereinafter referred to as a sample) produced in advance can be used as a threshold value. Specifically, if the evaluation result of the mechanical properties of the sample is good, the variation range or variation rate of the luminance data acquired when producing the sample can be used as the threshold value.
  • brightness data such as the average brightness value and the standard deviation of the average brightness value may change depending on the shape of the additive product, the modeling conditions (output, scanning speed, scanning pitch (scanning interval), layer thickness), etc. Therefore, it is sufficient to create an additive product with the same shape and under the same modeling conditions, obtain brightness data for the additive product or sample, and make appropriate changes based on this data.
  • the alloy powder that can be used in this embodiment is not particularly limited, but includes, for example, Ni-based alloy, Fe-based alloy, Co-based alloy, Ti-based alloy, Al-based alloy, W-based alloy, Mo-based alloy, and WC alloy.
  • a multi-component alloy (high entropy alloy) or the like can be used.
  • the alloy powder of this embodiment can be manufactured using, for example, a gas atomization method, a water atomization method, a jet atomization method, etc., but it is preferable to manufacture the alloy powder by a gas atomization method that facilitates obtaining spherical powder. .
  • the size (particle size) of the alloy powder is preferably such that the average particle size (D50) is 5 to 200 ⁇ m, and 10 to The thickness is more preferably 100 ⁇ m, and even more preferably 20 to 80 ⁇ m.
  • One embodiment of the method for manufacturing an additive product includes a powder supply step of supplying metal powder, a modeling step of irradiating the metal powder with a heat source to melt and solidify the metal powder to shape an additive product, and a step of supplying the metal powder.
  • a modeling process comprising: a brightness data acquisition step of acquiring brightness data of light emitted from a molten pool formed when the powder is melted; and an evaluation data extraction step of extracting evaluation data from the brightness data.
  • the evaluation data includes a brightness average value, It includes at least one of the standard deviation of the average luminance value and their moving average value, evaluates whether the evaluation data is within a variation range, and if it is within the variation range, continues the modeling process. , one of the characteristics is that each of the above steps is repeated thereafter. Each step will be explained in detail below using FIGS. 7 and 8.
  • a powder bed fusion bonding (PBF) method can be used for the additive manufacturing method of this embodiment.
  • the PBF method is an additive manufacturing method in which a powder bed is prepared by spreading metal powder, and only the part to be shaped is melted, solidified, or sintered by irradiation with a laser beam or electron beam that provides thermal energy.
  • SLM method selective laser melting
  • SLS method selective laser sintering
  • additive manufacturing can usually be performed in an inert atmosphere such as nitrogen.
  • the powder bed fusion bonding method can also use an electron beam as a heat source, and is called selective electron beam melting (SEBM method) or electron beam melting (EBM method). .
  • SEBM method selective electron beam melting
  • EBM method electron beam melting
  • a method using an electron beam as a heat source allows additive manufacturing under high vacuum.
  • Conditions for shaping (manufacturing) the additive product include, for example, layer thickness: 10 to 300 ⁇ m, laser output: 50 to 1000 W, scan speed: 100 to 5000 mm/s, scan interval: 0.05 to 0.5 mm.
  • the conditions may be selected as appropriate.
  • the thickness is preferably 0.05 to 0.12 mm.
  • FIG. 7 is a diagram showing an outline of an additive manufacturing apparatus 100 using a powder bed fusion bonding method as an example.
  • the additive manufacturing apparatus 100 includes a stage 102, a base plate 103, a powder supply container 104 for supplying metal powder 105 to the base plate 103, and a recoater 160 for forming a powder bed 107 on the base plate 103. It has an unmelted powder recovery container 111 for recovering metal powder, a laser oscillator 108, and a galvanometer mirror 110, metal powder 105 is supplied onto a base plate 103, and a powder bed 107 of a constant thickness is formed by a recoater 160. be done.
  • this device includes an sCMOS camera 113 that detects light emitted from a molten pool formed when the metal powder 105 is melted, and a device that converts the light detected by the sCMOS camera into brightness data and obtains the brightness data.
  • this is provided in a form that is shared with the evaluation data extraction device 114 that extracts evaluation data.
  • the stage 102 is lowered by a further thickness (for example, about 10 to 100 ⁇ m) of the additive product 101 to be additively manufactured.
  • metal (raw material) powder 105 is supplied from the powder supply container 104 to the base plate 103 on the upper surface of the stage 102, and the metal powder 105 is flattened by the recoater 160 to form a powder bed 107 (powder layer).
  • the additive product 101 to be manufactured is shaped into a desired shape based on shape information, for example, 2D slice data converted from 3D-CAD data.
  • shape information for example, 2D slice data converted from 3D-CAD data.
  • a heat source emitted from a laser oscillator 108 for example, a laser beam 109 emitted from the laser oscillator 108 through a galvanometer mirror 110, is irradiated onto the metal powder 105 on the powder bed 107 spread on the base plate 103. A small molten pool is formed.
  • the metal powder 105 is melted and solidified to form a 2D slice-shaped solidified layer 112. Note that the unmelted metal powder 105 may be collected in the unmelted powder collection container 111 and reused.
  • evaluation data extraction step: S207 From the luminance data acquired by the luminance data acquisition device and the evaluation data extraction device 114, at least one of the evaluation data, that is, the luminance average value, the standard deviation of the luminance average value, and their moving average value is extracted (output )do.
  • the evaluation data extraction step (S103) in the additive product inspection method of the present embodiment described above can be applied.
  • evaluation step: S209 the characteristics of the additive product are estimated and evaluated using at least one of the extracted average brightness value, standard deviation of the average brightness value, and moving average value thereof. Note that the evaluation step (S105) in the method for inspecting an additive product according to the present embodiment described above can be applied. If the result is satisfactory, each step (S201 to S207) is repeated until an additive product of the desired shape is obtained. Furthermore, if it can be determined that the properties of the additional product up to the nth solidified layer are good, each step (S201 to S207) may be continued.
  • the brightness average value, the standard deviation of the brightness average value, and their moving average value acquired in the brightness data acquisition step (S207) is within the above-mentioned fluctuation range. However, if it is within the variation range, it can be estimated that the mechanical properties of the additive product are good.
  • each step (S201 to S207) may be continued. Furthermore, the printing process is temporarily interrupted, the printing conditions and slice data are corrected, and from the n+1 layer, the printing process is restarted by reflecting the changed printing conditions and corrected slice data. , each step (S201 to S207) may be repeated to produce an additive product. Further, in each of the above steps, the fluctuation rate can be used as a comparison target instead of the fluctuation range.
  • selection step: S210 In addition, if there is a possibility that the abnormality level is outside the variation range and cannot be resolved by performing subsequent processing or heat treatment, or by correcting the modeling conditions or slice data, perform each of the above steps (S201 to S207).
  • a selection step S210 may be further provided as a step for determining whether to continue. In the selection step S210, it is determined whether or not to stop the modeling process when an abnormality is determined from the evaluation step.
  • the stage 102 When one layer of lamination (modeling) is completed, the stage 102 is lowered and new metal powder 105 is supplied onto the solidified layer 112 to form a new powder bed 107. This newly formed powder bed 107 is irradiated with a laser beam 109 to melt and solidify it, thereby forming a new solidified layer.
  • the desired additive product 101 can be manufactured by repeating the powder supply step (S201) and the modeling step (S203) and stacking the solidified layers 112.
  • the powder supply step (S201), the modeling step (S203), the brightness data acquisition step (S205), the evaluation data extraction step (S207), and the evaluation step (S209) are repeated to create the final additive product.
  • the inspection process may be performed after obtaining the information.
  • the characteristics of the additive product can be estimated (inspected) from the obtained luminance data even while the additive product is being shaped. ), that is, it is possible to manufacture additive products while estimating their properties in-process (in real time).
  • the additive product 101 is laminated on the base plate 103 and manufactured as one piece, so it is covered with the unmelted metal powder 105, so when it is taken out, the metal powder 105 and the additive product 101 are separated. After cooling, the unmelted metal powder 105 may be collected, and the additive product 101 and the base plate 103 may be taken out from the powder additive manufacturing apparatus 100. Thereafter, an additive product can be obtained by separating (cutting, etc.) the additive product 101 from the base plate 103.
  • the variation range in advance.
  • the brightness data obtained when an additive product with good characteristics was additively manufactured is obtained in advance, and from that brightness data, the brightness average value, the standard deviation of the brightness average value, and at least the moving average value of the brightness average value, Extract any one of the brightness average value, the standard deviation of the brightness average value, the difference between the brightness average values before and after the moving average value fluctuated greatly, the difference between the standard deviation of the brightness average value, and their moving average value. At least one of these can be used as a threshold value.
  • the average brightness value and the standard deviation of the average brightness value vary depending on the shape and modeling conditions of the additive product (laser output, scanning speed, scanning pitch (scanning interval), thickness, etc.), so the average brightness value set in advance
  • the range and the standard deviation range of the brightness average value may be changed as appropriate depending on the desired additive product.
  • the characteristics of the additive product can be estimated in-process, and the evaluation results can be newly updated.
  • Additive products can be used for manufacturing by applying additive manufacturing conditions. Since the characteristics of additive products can be estimated in-process, it is particularly effective in that it is possible to detect defective products early and take prompt action to prevent the recurrence of defects.
  • the additive manufacturing conditions can be applied in real time to modify the properties of the additive product during manufacturing, it can be expected to have the effect of suppressing the defect rate of the additive product. Further, for example, it is possible to simplify the inspection process in the post-process, thereby reducing manufacturing costs.
  • prismatic additive products F1 to F8 were produced in accordance with the order of the flowchart shown in FIG.
  • the brightness data acquisition (measurement) conditions were an sCMOS camera with a pixel count of 4 million pixels, a shooting speed of 10 frames per second (shooting speed: 100 msec, shooting frequency: 10 Hz), and the light to be detected was an alloy
  • the radiation was emitted from a molten pool formed by melting powder, and the detection wavelength band was 900 ⁇ 12.5 nm.
  • a Ni-Cr-Mo alloy having the alloy composition (unit: mass %) shown in Table 1 was used as the metal powder serving as the raw material.
  • This metal powder was prepared by preparing the raw materials of Ni, Cr, Mo, and Ta to have the alloy composition shown in Table 1, and granulating the powder by vacuum gas atomization. Thereafter, the granulated powder was sieved to have a particle size of 10 ⁇ m to 53 ⁇ m and an average particle size (d50) of about 35 ⁇ m.
  • Additive products F1 and F2 of 10 mm x 10 mm x height 40 mm were produced according to the flow shown in FIG. 8 .
  • the additive manufacturing conditions were a lamination (single layer) thickness of 0.06 mm, a laser output of 300 W, a laser scanning speed of 1200 mm/sec, and a scanning pitch of 0.09 mm.
  • Additive products F3 and F4 of 10 mm x 10 mm x 40 mm height (prism shape) were produced according to the flow of Fig. 8.
  • the additive manufacturing conditions were a layer (single layer) thickness of 0.08 mm, a laser output of 350 W, a laser scanning speed of 1150 mm/sec, and a scanning pitch of 0.09 mm.
  • Addition products F5 and F6 of 10 mm x 10 mm x height 40 mm were produced according to the flow shown in FIG. 8 .
  • the modeling conditions during additive manufacturing were the same as those for additive products F1 and F2.
  • Additive products F7 and F8 of 10 mm x 10 mm x height 40 mm (prismatic shape) were produced according to the flow shown in FIG. 8 .
  • the modeling conditions during additive manufacturing were the same as those for additive products F3 and F4.
  • Table 2 shows, for additive products F1 to F8, the average brightness value (hereinafter referred to as average brightness value (i)) from 22 to 24 mm and the average brightness value (hereinafter referred to as average brightness value (ii)) from 26 to 28 mm. )), the luminance average value difference (luminance average value (ii) - luminance average value (i), ⁇ Gv), and fluctuation rate (luminance average value difference/luminance average value (i)) are shown.
  • the luminance average value difference will be referred to as the variation range of the luminance average value.
  • Table 3 shows the standard deviation of the average brightness value from stacking heights of 22 to 24 mm (hereinafter referred to as the standard deviation (i) of the average brightness value) for the additive products F1 to F8, and the standard deviation of the average brightness value from 26 to 28 mm.
  • deviation hereinafter referred to as standard deviation of average brightness value (ii)
  • difference in standard deviation of average brightness value standard deviation of average brightness value (ii) - standard deviation of average brightness value (i), ⁇ Gv ⁇ )
  • fluctuation rate Difference in standard deviation of average brightness value/standard deviation of average brightness value (i)
  • the difference in the standard deviation of the brightness average value will be referred to as the variation range of the standard deviation of the brightness average value.
  • FIGS. 3 to 6 show changes in the average brightness values and the standard deviations of the average brightness values obtained when additively manufacturing the additive products F1 to F8.
  • the fluctuation range of the average brightness value was a maximum of 1927 Gv, which was less than 4100 Gv, and the fluctuation rate was a maximum of 0.2%, which was less than 18%.
  • the fluctuation range using the average brightness value exceeded 4000 Gv, and the fluctuation range of the standard deviation of the average brightness value also exceeded 18%.
  • the additive products F1 to F8 were evaluated for tensile strength, yield strength, and elongation at break.
  • each of the additive products F1 to F8 was cut into tensile test pieces (parallel part diameter: 3 mm, length between gauges: 7 mm) in accordance with the standard test (ASTM E8). were used as test pieces FT1 to FT8.
  • a tensile test (INSTRON 5982, Instron Corporation) was conducted on test pieces FT1 to FT8 at room temperature (22° C.) to determine the average value of tensile strength and 0.2% proof stress. Further, the elongation was determined as a percentage by comparing the test pieces after the test, measuring the gauge length, and dividing by the original gauge length. The results are shown in Table 4.
  • the break position A refers to the case where the break position is within 1/4 of the gauge distance from the center between the gauge marks
  • the break position C refers to the case where the break position is outside the gauge mark.
  • test pieces FT1, FT2, FT5 and FT6 which were made using additive products F1, F2, F5 and F6 under the same additive manufacturing conditions, it was confirmed that FT5 and FT6 had lower 0.2% yield strength, tensile strength and elongation than FT1 and FT2. In particular, elongation was significantly lower.
  • test pieces FT3, FT4, FT7 and FT8, which were made using additive products F3, F4, F7 and F8 under the same additive manufacturing conditions, it was confirmed that FT7 and FT8 had lower 0.2% yield strength, tensile strength and elongation than FT3 and FT4. In particular, elongation was significantly lower.
  • FT1 to FT6 were 900 MPa or more, and especially FT1 to FT4 were 930 MPa or more. Furthermore, it was confirmed that FT1 to FT6 had an elongation of 40% or more, and in particular, FT1 to FT4 had an elongation of 59% or more. These mechanical property values can be said to be excellent values.
  • F7 and F8 as shown in Figure 6, the transition of the luminance average value in the section where the fluctuation range of the luminance average value fluctuated by 4000 Gv or more is 200, and the fluctuation range of the standard deviation of the luminance average value exceeds 1100 Gv.
  • the transition of the standard deviation of the luminance average value in the fluctuated section is illustrated as 210.
  • F7 and F8 include sections in which the variation range of the average luminance value obtained in the modeling process fluctuated by 4170 Gv or more, and the variation range of the standard deviation of the luminance average value exceeds 1107 Gv.
  • the fluctuation rate using the average brightness value is 18.0% at F7 and 21.7% at F8, and the fluctuation rate using the standard deviation of the average brightness value is also 18.0% at F7. .2%, and 20.4% at F8. Therefore, it can be inferred that the mechanical properties of F7 and F8 deteriorate when the modeling process and inspection process are repeated based on the variation range and variation rate.
  • moving average values and moving average value differences were also calculated using the luminance average values obtained when F6 and F7 were additively manufactured.
  • Moving average value from stacking height 22 to 24 mm hereinafter referred to as moving average value (i)
  • moving average value from 26 to 28 mm hereinafter referred to as moving average value (ii)
  • moving average value from moving average value (ii) When the moving average value difference (i) is the value obtained by subtracting the value (i), the moving average value (i) in the case of F6 is 18347Gv, the moving average value (ii) is 20262Gv, and the moving average value difference (i) is It was 1915Gv.
  • the moving average value (i) was 23178 Gv
  • the moving average value (ii) was 26984 Gv
  • the moving average value difference (i), that is, the fluctuation range using the moving average value was 3806 Gv. Therefore, it was confirmed that the mechanical properties of additive products can be estimated from the variation range of the moving average value using the brightness average value, as well as when using the brightness average value or the standard deviation of the brightness average value.
  • the moving average value and the moving average value difference were calculated using the standard deviation of the average brightness value obtained when additively manufacturing F6 and F7.
  • the moving average value from 22 to 24 mm in the stacking height was the moving average value (iii)
  • the moving average value from 26 to 28 mm was the moving average value (iv)
  • the value obtained by subtracting the moving average value (iii) from the moving average value (iv) was the moving average value difference (ii).
  • the moving average value (iii) was 4432 Gv
  • the moving average value (iv) was 4864 Gv
  • the moving average value difference (ii) was 432 Gv.
  • the moving average value (iii) was 6109 Gv
  • the moving average value (iv) was 7088 Gv
  • the moving average value difference (ii) that is, the fluctuation range of the moving average value using the standard deviation of the average brightness value, was 979 Gv. Therefore, it was confirmed that the mechanical properties of the additively manufactured product can be estimated from the fluctuation range of the moving average value using the standard deviation of the average brightness value, just like the fluctuation range using the standard deviation of the average brightness value.
  • Additive manufacturing device 101 Additive product 102: Stage 103: Base plate 104: Powder supply container 105: Metal powder 107: Powder bed (powder layer) 108: Laser oscillator 109: Laser beam 110: Galvanometer mirror 111: Unmelted powder recovery container 112: 2D slice-shaped solidified layer 113: sCMOS camera 114: Luminance data acquisition device and evaluation data extraction device 160: Recoater 200: Change in brightness average value 210: Change in standard deviation of brightness average value

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention provides a method for inspecting an additively manufactured product and a method for manufacturing an additively manufactured product that are capable of estimating mechanical properties of an additively manufactured product. Provided is a method for inspecting an additively manufactured product that is manufactured by melting and solidifying metal powder, the method being characterized by comprising: a luminance data acquisition step for acquiring luminance data pertaining to light emitted from a molten pool formed when the metal powder has been melted; an evaluation data extraction step for extracting evaluation data from the luminance data; and an evaluation step for using the evaluation data to estimate mechanical properties of the additively manufactured product, wherein in the evaluation step, the evaluation data includes at least one among the luminance average value, the standard deviation of the luminance average value, and the moving average values of these values, and whether or not the evaluation data is within a variation range is evaluated.

Description

付加製造物の検査方法及び付加製造物の製造方法Additive product inspection method and additive product manufacturing method
 本発明は、付加製造物の検査方法及び付加製造物の製造方法に関する。 The present invention relates to an additive product inspection method and an additive product manufacturing method.
 付加製造法は、基板上の原料粉末にレーザビームや電子ビーム等の熱源を供給して原料粉末を溶融し凝固させて凝固層を形成し、これを繰り返して三次元形状の付加製造物を得る。この付加製造法によれば、ネットシェイプまたはニアネットシェイプで三次元形状の付加製造物を得ることができる。 In the additive manufacturing method, a heat source such as a laser beam or an electron beam is supplied to the raw material powder on a substrate to melt and solidify the raw material powder to form a solidified layer, and this process is repeated to obtain a three-dimensional additive product. . According to this additive manufacturing method, it is possible to obtain a three-dimensional additive product with a net shape or near net shape.
 製造された部品に欠陥があるかどうかの判断方法は、例えば非破壊検査手段として、X線CTスキャン法による内部欠陥の検出や、アルキメデス法による密度測定がある。X線CTスキャン法は、計測に時間を要することに加えて、大型部品に対しては分解能に限界がある。また、アルキメデス法は、個別の欠陥を検出することはできず、少量の欠陥に対する検出精度が低かった。そこで例えば、特許文献1によれば、光ビームが照射される被照射スポットの外観性状をモニタリングし、それに基づき、より高精度な付加製造物を得ることが提案されている。 Methods for determining whether there are defects in manufactured parts include, for example, non-destructive inspection methods such as internal defect detection using X-ray CT scanning and density measurement using Archimedes' method. In addition to requiring time for measurement, the X-ray CT scanning method has a limited resolution for large parts. Furthermore, the Archimedes method cannot detect individual defects and has low detection accuracy for a small number of defects. For example, according to Patent Document 1, it is proposed to monitor the external appearance of an irradiated spot irradiated with a light beam and obtain a more highly accurate additive product based on the external appearance.
また、特許文献2には、金属粉末が溶融した際に形成された溶融池から発せられた光の輝度データを用いて、付加製造物の欠陥の有無を推定することが開示されている。 Further, Patent Document 2 discloses that the presence or absence of defects in an additive product is estimated using brightness data of light emitted from a molten pool formed when metal powder is melted.
WO2018/043349号公報Patent Document 1: WO2018/043349 WO2022/097651号公報WO2022/097651 publication
 しかしながら、特許文献1は、外観性状をモニタリングすることでヒュームやスパッターが発生したどうかを判別するにとどまっている。また、特許文献2は、付加製造物の層ごとにおける輝度平均値及び標準偏差の局所的な信号異常を用いることで付加製造物の欠陥を推定するものであり、付加製造物の機械的特性等をいかにして推定評価するかは検討されていなかった。 However, Patent Document 1 only determines whether fume or spatter has occurred by monitoring the external appearance. Furthermore, Patent Document 2 estimates defects in an additive product by using local signal abnormalities of the brightness average value and standard deviation for each layer of the additive product, and estimates the mechanical properties of the additive product, etc. No consideration had been given to how to estimate and evaluate this.
 そこで本発明では、付加製造物の機械的特性を推定することができる付加製造物の検査方法及び付加製造物の製造方法を提供する。 Therefore, the present invention provides an additive product inspection method and an additive product manufacturing method that can estimate the mechanical properties of the additive product.
 本発明の付加製造物の検査方法は、金属粉末を溶融凝固させて製造される付加製造物の検査方法であって、前記金属粉末が溶融した際に形成された溶融池から発せられた光の輝度データを取得する輝度データ取得ステップと、前記輝度データから評価用データを抽出する評価用データ抽出ステップと、前記評価用データを用いて前記付加製造物の機械的特性を推定する評価ステップとを有し、前記評価ステップにおいて、前記評価データが、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを含み、前記評価用データが所定の変動範囲以内であるか否かを評価することを特徴とする付加製造物の検査方法である。 The method for inspecting an additive product of the present invention is a method for inspecting an additive product manufactured by melting and solidifying metal powder, and includes detecting light emitted from a molten pool formed when the metal powder is melted. A brightness data acquisition step of acquiring brightness data, an evaluation data extraction step of extracting evaluation data from the brightness data, and an evaluation step of estimating mechanical properties of the additive product using the evaluation data. and in the evaluation step, the evaluation data includes at least one of a brightness average value, a standard deviation of the brightness average value, and a moving average value thereof, and the evaluation data is within a predetermined variation range. This is a method for inspecting an additive product, which is characterized by evaluating whether or not.
 また、前記変動範囲が変動率であり、前記変動率が18.0%以下であることが好ましい。 Further, it is preferable that the variation range is a variation rate, and the variation rate is 18.0% or less.
 また本発明は、金属粉末を供給する粉末供給ステップと、金属粉末に熱源を照射し、前記金属粉末を溶融凝固させて付加製造物を造形する造形ステップと、前記金属粉末が溶融する際に形成された溶融池から発せられた光の輝度データを取得する輝度データ取得ステップと、を備えた造形工程と、前記輝度データから評価用データを抽出する評価用データ抽出ステップと、前記評価用データを用いて前記付加製造物の機械的特性を推定する評価ステップと、を備えた検査工程と、を有し、前記評価ステップにおいて、前記評価用データが、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを含み、前記評価用データが所定の変動範囲以内であるか否かを評価し、変動範囲以内であれば前記造形工程を継続し、以後前記各工程を繰り返し、変動範囲外であれば前記造形工程を継続するか否かを決定する選択ステップと、をさらに備えることが好ましい。
ことを特徴とする付加製造物の製造方法である。
Further, the present invention includes a powder supply step of supplying metal powder, a modeling step of irradiating the metal powder with a heat source to melt and solidify the metal powder to shape an additive product, and forming the additive product when the metal powder is melted. a brightness data acquisition step of acquiring brightness data of light emitted from the molten pool; an evaluation data extraction step of extracting evaluation data from the brightness data; and an evaluation data extraction step of extracting evaluation data from the brightness data. an evaluation step for estimating the mechanical properties of the additive product using the method, and in the evaluation step, the evaluation data includes an average brightness value, a standard deviation of the average brightness value, and an inspection step comprising: The evaluation data includes at least one of these moving average values, evaluates whether or not the evaluation data is within a predetermined variation range, and if it is within the variation range, continues the modeling process, and thereafter each process It is preferable to further include a selection step of repeating the steps and determining whether or not to continue the modeling process if it is outside the variation range.
This is a method for manufacturing an additive product characterized by the following.
 また、前記変動範囲が変動率であり、前記変動率が18.0%以下であることが好ましい。 Further, it is preferable that the variation range is a variation rate, and the variation rate is 18.0% or less.
 本発明によれば、付加製造物の機械的特性を推定することができる付加製造物の検査方法及び付加製造物の製造方法を提供することができる。 According to the present invention, it is possible to provide an additive product inspection method and an additive product manufacturing method that can estimate the mechanical properties of the additive product.
付加製造物を検査する検査方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the inspection method which inspects an additive product. 変動範囲を説明する図である。It is a figure explaining a fluctuation range. 付加製造物F1及びF2を付加製造したときの輝度平均値及び輝度平均値の標準偏差の推移を示す図である。It is a figure which shows the transition of the brightness|luminance average value and the standard deviation of a brightness|luminance average value when additively manufactured additive products F1 and F2. 付加製造物F3及びF4を付加製造したときの輝度平均値及び輝度平均値の標準偏差の推移を示す図である。It is a figure which shows the transition of the brightness|luminance average value and the standard deviation of a brightness|luminance average value when additive manufacturing of additive products F3 and F4 was carried out. 付加製造物F5及びF6を付加製造したときの輝度平均値及び輝度平均値の標準偏差の推移を示す図である。It is a figure which shows the transition of the brightness|luminance average value and the standard deviation of a brightness|luminance average value when additively manufactured additive products F5 and F6. 付加製造物F7及びF8を付加製造したときの輝度平均値及び輝度平均値の標準偏差の推移を示す図である。It is a figure which shows the transition of the brightness|luminance average value and the standard deviation of a brightness|luminance average value when additively manufactured additive products F7 and F8. 粉末床溶融結合(PBF)方式の付加製造装置の構成及び付加製造方法の例を示す模式図である。1 is a schematic diagram illustrating a configuration of a powder bed fusion bonding (PBF) type additive manufacturing apparatus and an example of an additive manufacturing method. 付加製造物の製造方法の流れを示すフローチャート図である。FIG. 2 is a flowchart showing the flow of a method for manufacturing an additive product.
 以下、図面を参照しながら本発明の実施形態を説明する。まず、付加製造物の検査方法(換言すれば、機械的特性の推定評価方法とも言える。)について、図1と図2を用いて説明し、その次に、図7~8を用いて付加製造物の製造方法について説明する。なお、本明細書中において、付加製造物の機械的特性を推定評価することを、単に特性を推定する、と称する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the method for inspecting additive products (in other words, it can be said to be a method for estimating mechanical properties) will be explained using Figures 1 and 2, and then the additive manufacturing method will be explained using Figures 7 and 8. We will explain how to manufacture things. Note that in this specification, estimating and evaluating the mechanical properties of an additive product may be simply referred to as estimating the properties.
<付加製造物の検査方法>
 付加製造物の検査方法の実施形態としては、図1に示すように、金属粉末を溶融凝固させて付加製造物の製造をスタートする。その後、前記金属粉末が溶融した際に形成された溶融池から発せられた光の輝度データを取得する輝度データ取得ステップ(S101)と、前記輝度データから評価用データを抽出する評価用データ抽出ステップ(S103)と、前記評価用データを用いて前記付加製造物の機械的特性(以下、単に特性という場合がある)を推定する評価ステップ(S105)の順に検査を実施する。以下、各ステップ(S101~S105)について詳細に説明する。
<Inspection method for additive products>
As an embodiment of the method for inspecting an additive product, as shown in FIG. 1, manufacturing of the additive product is started by melting and solidifying metal powder. Thereafter, a brightness data acquisition step (S101) of acquiring brightness data of light emitted from a molten pool formed when the metal powder is melted, and an evaluation data extraction step of extracting evaluation data from the brightness data. (S103), and an evaluation step (S105) of estimating the mechanical properties (hereinafter sometimes simply referred to as properties) of the additive product using the evaluation data. Each step (S101 to S105) will be explained in detail below.
[輝度データ取得ステップ(S101)]
 まず、金属粉末に熱源等を照射し、金属粉末を溶融させることで溶融池が形成される際、溶融池から発せられる光の輝度データ(単に輝度データという場合がある)を取得する。熱源としては、レーザビームなどを用いることができる。
[Brightness data acquisition step (S101)]
First, when a metal powder is irradiated with a heat source or the like to melt the metal powder and form a molten pool, brightness data of the light emitted from the molten pool (sometimes simply referred to as brightness data) is obtained. The heat source can be a laser beam or the like.
 本実施形態に用いる光は、例えば、レーザビームを照射した際の反射光や、溶融池や熱影響部の温度上昇により生じた光、金属が溶融されて生じた金属蒸気にレーザビームが照射されてプラズマ化したプラズマ光などのうち少なくともいずれか1つ以上を用いることができる。好ましくは、検出感度の高い輝度を検出することが良い。具体的には、溶融池及びその近傍から発せられる光、言い換えれば、波長が600nm以上1100nm以下の光を検出するのが好ましく、800nm以上1000nm以下の光を検出するのがより好ましい。 The light used in this embodiment may be at least one of the following: reflected light when a laser beam is irradiated; light generated by a temperature rise in the molten pool or heat-affected zone; and plasma light generated when a metal vapor is irradiated with a laser beam and turned into plasma when melted. It is preferable to detect a luminance with high detection sensitivity. Specifically, it is preferable to detect light emitted from the molten pool and its vicinity, in other words, light with a wavelength of 600 nm or more and 1100 nm or less, and it is even more preferable to detect light with a wavelength of 800 nm or more and 1000 nm or less.
 取得した輝度データに著しい変動が発生する場合がある。著しい変動の発生要因としては、合金粉末を溶融させるレーザの照射面積に差が生じると、レーザ照射で形成された溶融池やその周辺の熱拡散速度に差異が生じて溶融池から発せられた光の輝度データが変化することにより発生するものと推測できる。そして、熱拡散速度差が生じた箇所は、例えば金属組織の結晶粒の大きさが異なった状態で凝固する。付加製造物に圧縮応力や引張応力などの外力が加わった場合に、付加製造物中に内在した結晶粒径の大きさが異なる金属組織が一因となって機械的特性を低下させることに繋がる。すなわち、付加製造物を製造する際に取得した輝度データを用いて、所定の変動範囲以内または変動範囲外なのかを評価することで付加製造物の機械的特性を推定することができる。 Significant fluctuations may occur in the acquired luminance data. The cause of significant fluctuations is that if there is a difference in the irradiation area of the laser that melts the alloy powder, there will be a difference in the rate of heat diffusion in and around the molten pool formed by laser irradiation, and the light emitted from the molten pool will be different. It can be inferred that this occurs due to changes in the luminance data. Then, locations where a difference in thermal diffusion rate occurs are solidified in a state where, for example, the sizes of crystal grains of the metal structure are different. When an external force such as compressive stress or tensile stress is applied to an additive product, the metal structure with different crystal grain sizes within the additive product causes a decrease in mechanical properties. . That is, the mechanical properties of the additive product can be estimated by using the luminance data acquired when manufacturing the additive product and evaluating whether the luminance data is within a predetermined variation range or outside the variation range.
 輝度データの取得(検出)方法としては、例えば、sCMOSカメラを用いることができる。sCMOSカメラの仕様としては、例えば、画素数は5万ピクセル以上であれば良く、好ましく50万ピクセル以上であり、より好ましくは400万ピクセル以上である。撮影速度は1秒間当たり1フレーム程度であれば良く、好ましくは1秒当たり10フレーム以上である。具体例としては、EOSTATE Exposure OT(EOS社製)を用いることができる。sCMOSカメラで取得する輝度(OT輝度ともいう)は、造形工程中の近赤外領域の輝度であれば良い。近赤外領域の輝度を取得するには、例えば、sCMOSカメラに近赤外領域の周波数のみを通すバンドパスフィルターを設ければよい。 As a method for acquiring (detecting) brightness data, for example, an sCMOS camera can be used. As for the specifications of the sCMOS camera, for example, the number of pixels may be 50,000 or more, preferably 500,000 or more, and more preferably 4,000,000 or more. The shooting speed may be about 1 frame per second, preferably 10 frames or more per second. As a specific example, EOSTATE Exposure OT (manufactured by EOS) can be used. The brightness acquired by the sCMOS camera (also referred to as OT brightness) may be the brightness in the near-infrared region during the modeling process. To obtain the brightness in the near-infrared region, for example, the sCMOS camera may be provided with a bandpass filter that passes only frequencies in the near-infrared region.
 sCMOSカメラを用いた輝度データの取得方法の一例として、EOSTATE Exposure OT(EOS社製)がある。EOSTATE Exposure OTは、造形面に対して斜め上方に設置されたsCMOSカメラを用いて溶融池周辺を撮影し、光の輝度データを取得する。sCMOSカメラは、造形面に対して斜め上方に設置されているが、ソフトウェアを用いて撮影距離、撮影角度を補正し、造形面上方からの撮影した観察像に変換することができる。 An example of a method for acquiring luminance data using an sCMOS camera is EOSTATE Exposure OT (manufactured by EOS). EOSTATE Exposure OT photographs the area around the molten pool using an sCMOS camera installed obliquely above the modeling surface to obtain light brightness data. Although the sCMOS camera is installed diagonally above the modeling surface, it can be converted into an observation image taken from above the modeling surface by correcting the shooting distance and shooting angle using software.
[評価用データ抽出ステップ(S103)]
 次に、輝度データ取得ステップ(S101)で取得した輝度データから評価用データを抽出する。評価用データは、輝度平均値と輝度平均値の標準偏差とを含む。
[Evaluation data extraction step (S103)]
Next, evaluation data is extracted from the luminance data acquired in the luminance data acquisition step (S101). The evaluation data includes an average luminance value and a standard deviation of the average luminance value.
 輝度平均値とは、輝度の単位をGvで示し、ゼロの場合を青色、最大値4.5×10を赤色で段階的に色表示させ、造形中の撮影速度100msecごとの輝度(色度合い)を積算した値を平均した平均値である。すなわち、輝度平均値は、輝度画像の各ピクセル輝度値の平均値である(画像1pixel中に取得される輝度の平均値)。また、輝度平均値の標準偏差(輝度標準偏差と称する場合がある)とは、一層毎に算出した輝度平均値のばらつきの評価を示すものである。例えば、粉末床溶融結合(Powder Bed Fushion:PBF)方式を用いて付加製造物を製造する場合、一層毎の輝度平均値を取得し、輝度平均値から準偏差を算出すればよい。そして、造形工程が完了するまでの間、一層毎の輝度平均値及び輝度平均値の標準偏差の値を保存、記録しておければよい。 The average brightness value indicates the brightness unit in Gv, and the brightness is displayed in stages in blue for zero and red for the maximum value of 4.5 x 104 , and the brightness (color degree ) is the average value of the integrated values. That is, the average brightness value is the average value of the brightness values of each pixel of the brightness image (the average value of the brightnesses acquired in one pixel of the image). Further, the standard deviation of the brightness average value (sometimes referred to as the brightness standard deviation) indicates an evaluation of the variation in the brightness average value calculated for each layer. For example, when manufacturing an additive product using a powder bed fusion (PBF) method, the average brightness value of each layer may be obtained, and the standard deviation may be calculated from the average brightness value. Then, until the modeling process is completed, the average brightness value and the standard deviation of the average brightness value for each layer may be saved and recorded.
[評価ステップ(S105)]
 次に、輝度データ取得ステップ(S103)で抽出した輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つが、許容されるべきものかどうか評価する。例えば、輝度平均値の変動幅または輝度平均値の標準偏差の変動幅、言い換えれば変動範囲が許容されるか否かを照合し、許容される範囲、変動範囲以内である場合には付加製造物の機械的特性が良好であると推定できる。なお、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを用いれば良いが、輝度平均値が簡易的で使いやすい。
[Evaluation step (S105)]
Next, it is evaluated whether at least one of the brightness average value, the standard deviation of the brightness average value, and their moving average value extracted in the brightness data acquisition step (S103) should be allowed. For example, it is checked whether the fluctuation range of the average brightness value or the standard deviation of the average brightness value, in other words, the fluctuation range is allowed, and if it is within the permissible range or within the fluctuation range, the additive product is It can be estimated that the mechanical properties of the material are good. Note that at least one of the brightness average value, the standard deviation of the brightness average value, and their moving average value may be used, but the brightness average value is simple and easy to use.
[変動範囲]
 輝度平均値の変動範囲または輝度平均値の標準偏差の変動範囲について、輝度平均値を用いた場合を例に説明する。図2に付加製造物を造形した際に取得した一層毎の輝度平均値の推移を示し、横軸を付加製造物の積層高さ(mm)、縦軸を輝度平均値(単位:Gv)としたものである。尚、付加製造物の積層高さは造形工程が進むとともに増加していく。
[Variation range]
The variation range of the luminance average value or the variation range of the standard deviation of the luminance average value will be explained using an example where the luminance average value is used. Figure 2 shows the transition of the average brightness value for each layer obtained when modeling an additive product, where the horizontal axis represents the stacking height (mm) of the additive product, and the vertical axis represents the average brightness value (unit: Gv). This is what I did. Note that the stacked height of the additive product increases as the modeling process progresses.
 図2に示す通り、輝度平均値が大きく増加して変動している箇所がある。変動する前の区間を区間A、変動した後の区間を区間Bとしたとき、区間Aに比べて区間Bの輝度平均値が高くなっている。区間Aを造形する際に得られた輝度平均値をGv、区間Bを造形する際に得らえた輝度平均値をGvとしたとき、区間Aと区間Bの輝度平均値の差分(Gv-Gv)をΔGv(単位:Gv)と表すことができる。ΔGvは変動範囲(変動幅)を示すものといえる。また、区間Aから区間Bに推移する際、変動範囲は段差状に観測でき、この段差分が変動範囲ともいえ、段差が高いほど変動範囲が大きいことを意味する。 As shown in FIG. 2, there are some points where the average brightness value has increased significantly and fluctuated. If the section before the fluctuation is section A and the section after the fluctuation is section B, the average brightness value of section B is higher than that of section A. If the average brightness value obtained when forming section A is Gv 0 and the average brightness value obtained when forming section B is Gv n , the difference between the average brightness values of section A and section B (Gv n -Gv 0 ) can be expressed as ΔGv (unit: Gv). It can be said that ΔGv indicates the fluctuation range (fluctuation width). In addition, when moving from section A to section B, the fluctuation range can be observed in a step-like manner, and this step difference can be said to be the fluctuation range, and the higher the step, the larger the fluctuation range.
 なお、ΔGvを算出するために用いる区間Aおよび区間Bの輝度平均値は、区間A全体の輝度平均値を平均した値と区間B全体の輝度平均値を平均した値との差分でも良いし、区間Aの一部の輝度平均値と区間Bの一部の輝度平均値との差分でも良い。 Note that the average brightness value of section A and section B used to calculate ΔGv may be the difference between the average value of the brightness average values of the entire area A and the average value of the average brightness values of the entire area B, The difference between a part of the average brightness value of section A and a part of the average brightness value of section B may be used.
 また、輝度平均値Gvを用いた場合の変動範囲ΔGvは小さいほど、付加製造物を製造する際に輝度平均値の変動が少ないため好ましい。変動範囲の上限は、例えば4170Gv以下とすることができる。4170Gvを超えると機械的特性、例えば引張強度や伸びが低下した付加製造物の可能性があるためである。好ましくは3500Gv以下であり、より好ましくは3000Gv以下、さらに好ましくは2500Gv以下である。 Furthermore, the smaller the variation range ΔGv when using the luminance average value Gv, the less variation in the luminance average value when manufacturing the additive product, so it is preferable. The upper limit of the fluctuation range can be, for example, 4170 Gv or less. This is because if it exceeds 4170 Gv, there is a possibility that the additive product will have reduced mechanical properties such as tensile strength and elongation. Preferably it is 3500 Gv or less, more preferably 3000 Gv or less, still more preferably 2500 Gv or less.
 次に、輝度平均値の標準偏差を用いた場合の変動範囲について説明する。
 輝度平均値の標準偏差が変動した区間があったとき、変動する前の区間を区間Aとしたときの区間Aの輝度平均値の標準偏差をGvσ、変動した後の区間を区間Bとしたときの区間Bの輝度平均値の標準偏差をGvσとしたとき、変動範囲は区間Aと区間Bの輝度平均値の標準偏差の差分(Gvσ-Gvσ)をΔGvσ(単位:Gv)と表すことができる。また、輝度平均値の場合同様、区間Aから区間Bに推移する際に段状(段差状)で表現され、この段差分が変動範囲ともいえる。
Next, the variation range when using the standard deviation of the luminance average value will be explained.
When there is an interval in which the standard deviation of the luminance average value fluctuates, the interval before the fluctuation is defined as interval A, the standard deviation of the luminance average value in interval A is Gvσ 0 , and the interval after the fluctuation is defined as interval B. When the standard deviation of the luminance average value of section B is Gvσ n , the variation range is the difference (Gvσ n - Gvσ 0 ) between the standard deviation of the luminance average value of section A and section B as ΔGvσ (unit: Gv). can be expressed. Further, as in the case of the luminance average value, the transition from section A to section B is expressed in a step shape (step shape), and this step difference can also be said to be a fluctuation range.
 上述した輝度平均値を用いた場合の変動範囲と同様、算出するために用いる区間Aおよび区間Bの輝度平均値の標準偏差は、区間A全体の輝度平均値の標準偏差と区間B全体の輝度平均値の標準偏差の差分としても良いし、区間Aの一部の輝度平均値の標準偏差と区間Bの一部の輝度平均値の標準偏差の差分としても良い。 Similar to the range of variation when using the luminance average value described above, the standard deviation of the luminance average values of section A and section B used for calculation is the standard deviation of the luminance average value of the entire section A and the luminance of the entire section B. It may be the difference between the standard deviations of the average values, or it may be the difference between the standard deviations of the average luminance values of part of section A and the standard deviations of the average luminance values of part of section B.
 また、輝度平均値の標準偏差(単位:Gvσ)を用いる場合も変動範囲は小さいことが好ましいが、その上限は1100Gv以下とすることができる。1100Gvを超えると機械的特性、例えば引張強度や伸びが低下した付加製造物の可能性があるためである。好ましくは800Gv以下であり、より好ましくは500Gv以下である。 Also, when using the standard deviation of the average brightness value (unit: Gvσ), the variation range is preferably small, but the upper limit can be 1100 Gv or less. This is because if it exceeds 1100 Gv, there is a possibility that the additive product will have reduced mechanical properties such as tensile strength and elongation. Preferably it is 800 Gv or less, more preferably 500 Gv or less.
 また、輝度平均値または輝度平均値の標準偏差から算出した移動平均値(単位:Gv)を用いることもできる。移動平均値とは、時系列データにおいて、ある一定区間ごとの平均値を区間をずらしながら求めたものである。移動平均値を用いた評価は、長期的な傾向を表す滑らかな曲線が得られるので突発的な変化をとらえやすい。具体的な算出方法としては、例えば、データの単純相加平均を計算することによって求めればよい。具体的には、輝度平均値や輝度平均値の標準偏差を、求めたい中心となるデータから前後のいくつかのデータを足して平均をとればよい。 Additionally, a moving average value (unit: Gv) calculated from the average brightness value or the standard deviation of the average brightness value can also be used. A moving average value is an average value obtained for each certain interval in time-series data while shifting the interval. Evaluation using moving average values provides a smooth curve that represents long-term trends, making it easier to detect sudden changes. As a specific calculation method, for example, it may be obtained by calculating a simple arithmetic mean of data. Specifically, the average brightness value or the standard deviation of the average brightness value can be calculated by adding up several pieces of data before and after the central data to be calculated.
 移動平均値を用いる場合も変動範囲は小さいことが好ましい。輝度平均値から算出した移動平均値を用いる場合、その上限は3800Gv以下とすることできる。3800Gvを超えると機械的特性、例えば、引張強度や伸びが低下した付加製造物となるためである。好ましくは3500Gv以下、より好ましくは3000Gv以下、よりさらに好ましくは2000Gv以下である。 Even when using a moving average value, it is preferable that the fluctuation range is small. When using the moving average value calculated from the luminance average value, the upper limit can be 3800 Gv or less. This is because if it exceeds 3,800 Gv, the resulting additive product will have reduced mechanical properties, such as tensile strength and elongation. Preferably it is 3500 Gv or less, more preferably 3000 Gv or less, even more preferably 2000 Gv or less.
 また、輝度平均値の標準偏差から算出した移動平均値を用いる場合、その上限は970Gv以下とするのが好ましい。970Gvを超えると機械的特性、例えば、引張強度や伸びが低下した付加製造物となる可能性があるためである。好ましくは800Gv以下、より好ましくは600Gv以下、さらに好ましくは500Gv以下である。 Furthermore, when using a moving average value calculated from the standard deviation of the average luminance value, it is preferable that the upper limit is 970 Gv or less. This is because if it exceeds 970 Gv, it may result in an additive product with reduced mechanical properties, such as tensile strength and elongation. Preferably it is 800 Gv or less, more preferably 600 Gv or less, even more preferably 500 Gv or less.
[変動率]
 また、輝度平均値、輝度平均値の標準偏差またはそれらの移動平均値を用いる場合、変動範囲に代えて、例えば変動率(%)を用いることもできる。図2を用いて変動率について説明する。輝度平均値を用いる場合には、輝度平均値が変化したときの輝度平均値Gv、輝度平均値がGvに変化する前の輝度平均値Gv、輝度平均値GvからGvを引いた差分をΔGvとしたとき、変動率は、ΔGvをGvで割った値(ΔGv/Gv)とすることができる。
[Rate of change]
Further, when using the brightness average value, the standard deviation of the brightness average value, or their moving average value, for example, a fluctuation rate (%) can also be used instead of the fluctuation range. The fluctuation rate will be explained using FIG. 2. When using the average brightness value, the average brightness value Gv n when the average brightness value changes, the average brightness value Gv 0 before the average brightness value changes to Gv n , and the average brightness value Gv n minus Gv 0 . When the difference is ΔGv, the fluctuation rate can be a value obtained by dividing ΔGv by Gv 0 (ΔGv/Gv 0 ).
 すなわち、変動率は、造形工程中に取得した輝度平均値などの輝度データを用いて、造形工程中に観察された輝度データの変化量を傾きとして算出するものである。造形工程における輝度平均値の変化が少ないほど変動率も小さくなるため、変動率が小さいほど作製した付加製造物の機械的特性のばらつきの抑制に寄与する。変動率を算出することにより、取得した輝度平均値や輝度平均値の標準偏差の変化、例えば段差状の変化があればその変化量を傾きとして算出することができ、評価が簡便となるのでより好ましい。 That is, the variation rate is calculated by using luminance data such as the luminance average value acquired during the modeling process and using the amount of change in the luminance data observed during the modeling process as a slope. The smaller the change in the average brightness value in the modeling process, the smaller the variation rate. Therefore, the smaller the variation rate, the more it contributes to suppressing variations in the mechanical properties of the manufactured additive product. By calculating the fluctuation rate, if there is a change in the average brightness value or the standard deviation of the average brightness value, for example, if there is a step-like change, the amount of change can be calculated as the slope, making evaluation easier. preferable.
 なお、一時的に輝度平均値が変化して変動率が高くなった場合は、その後の輝度平均値の推移によっては、付加製造物の機械的特性に影響を及ぼさない場合がある。例えば、輝度平均値が急激に上下することでピークトップを示した場合、輝度平均値が大きく変化したことで変動率が大きくなるが、瞬間的に輝度平均値が上下動しても付加製造物の機械的特性に影響がないことがある。そのため、輝度平均値に瞬時的なピークトップが生じても付加製造を継続しても良い。 In addition, if the average brightness value changes temporarily and the rate of fluctuation becomes high, this may not affect the mechanical properties of the additive product depending on the subsequent change in the average brightness value. For example, if the average brightness value shows a peak top due to a sudden increase or decrease in value, the rate of fluctuation will become large due to a large change in the average brightness value, but the mechanical properties of the additive product may not be affected even if the average brightness value momentarily moves up and down. Therefore, additive manufacturing may continue even if a momentary peak top occurs in the average brightness value.
 また、輝度平均値の標準偏差を用いる場合は、輝度平均値の標準偏差が変化したときの輝度平均値の標準偏差Gvσ、輝度平均値の標準偏差がGvσに変化する前の輝度平均値の標準偏差をGvσ、輝度平均値の標準偏差GvσからGvσを引いた差分をΔGvσとしたとき、変動率はΔGvσをGvσで割った値(ΔGvσ/Gvσ)とすることができる。変動率は小さいことが好ましいが、その上限は18.0%とすることができる。18.0%超えでは機械的特性、例えば引張強度や伸びが低下した付加製造物となるためである。好ましくは15.0%以下であり、より好ましくは11.0%以下であり、さらに好ましくは10.5%以下である。 In addition, when the standard deviation of the luminance average value is used, the standard deviation of the luminance average value when the standard deviation of the luminance average value changes is Gvσ n , the standard deviation of the luminance average value before the standard deviation of the luminance average value changes to Gvσ n is Gvσ 0 , and the difference obtained by subtracting Gvσ 0 from the standard deviation of the luminance average value Gvσ n is ΔGvσ , the fluctuation rate can be the value obtained by dividing ΔGvσ by Gvσ 0 (ΔGvσ/Gvσ 0 ). It is preferable that the fluctuation rate is small, but the upper limit can be set to 18.0%. This is because if it exceeds 18.0%, the mechanical properties, such as tensile strength and elongation, of the additive product will be reduced. It is preferably 15.0% or less, more preferably 11.0% or less, and even more preferably 10.5% or less.
 変動範囲や変動率を予め設定しておいても良い。変動範囲や変動率を予め設定する方法としては、例えば、事前に作製した付加製造物(以下、サンプルと称する)について取得した輝度データの変動範囲や変動率を閾値として用いることができる。具体的には、サンプルの機械的特性の評価結果が良好である場合には、サンプルを作製する際に取得した輝度データの変動範囲や変動率を閾値とすることができる。 The fluctuation range and fluctuation rate may be set in advance. As a method for setting the variation range and variation rate in advance, for example, the variation range and variation rate of brightness data acquired for an additive product (hereinafter referred to as a sample) produced in advance can be used as a threshold value. Specifically, if the evaluation result of the mechanical properties of the sample is good, the variation range or variation rate of the luminance data acquired when producing the sample can be used as the threshold value.
 なお、輝度平均値や輝度平均値の標準偏差などの輝度データは、付加製造物の形状、造形条件(出力、走査速度、走査ピッチ(走査間隔)、積層厚み)などによって変化する場合がある。そのため、同形状でかつ同造形条件で付加製造物を作製し、その付加製造物やサンプルについて輝度データを取得し、このデータに応じて適宜変更すればよい。 Note that brightness data such as the average brightness value and the standard deviation of the average brightness value may change depending on the shape of the additive product, the modeling conditions (output, scanning speed, scanning pitch (scanning interval), layer thickness), etc. Therefore, it is sufficient to create an additive product with the same shape and under the same modeling conditions, obtain brightness data for the additive product or sample, and make appropriate changes based on this data.
[合金粉末]
 本実施形態に用いることができる合金粉末について、特に限定しないが、例えば、Ni基合金、Fe基合金、Co基合金、Ti基合金、Al基合金、W基合金、Mo基合金およびWC合金、多元系合金(ハイエントロピー合金)などを用いることができる。また、本実施形態の合金粉末は、例えば、ガスアトマイズ法、水アトマイズ法、ジェットアトマイズ法などを用いて製造することができるが、球状の粉末を得やすいガスアトマイズ法で合金粉末を作製することが好ましい。
[Alloy powder]
The alloy powder that can be used in this embodiment is not particularly limited, but includes, for example, Ni-based alloy, Fe-based alloy, Co-based alloy, Ti-based alloy, Al-based alloy, W-based alloy, Mo-based alloy, and WC alloy. A multi-component alloy (high entropy alloy) or the like can be used. Further, the alloy powder of this embodiment can be manufactured using, for example, a gas atomization method, a water atomization method, a jet atomization method, etc., but it is preferable to manufacture the alloy powder by a gas atomization method that facilitates obtaining spherical powder. .
 また、合金粉末の大きさ(粒径)は、流動性や付加製造物の形状制御や欠陥率を抑制できる点で、例えば平均粒径(D50)が5~200μmであることが好ましく、10~100μmがより好ましく、20~80μmがさらに好ましい。 In addition, the size (particle size) of the alloy powder is preferably such that the average particle size (D50) is 5 to 200 μm, and 10 to The thickness is more preferably 100 μm, and even more preferably 20 to 80 μm.
<付加製造物の製造方法>
 付加製造物の製造方法の一実施形態は、金属粉末を供給する粉末供給ステップと、金属粉末に熱源を照射し、前記金属粉末を溶融凝固させて付加製造物を造形する造形ステップと、前記金属粉末が溶融する際に形成された溶融池から発せられた光の輝度データを取得する輝度データ取得ステップと、を備えた造形工程と、前記輝度データから評価用データを抽出する評価用データ抽出ステップと、前記評価用データを用いて前記付加製造物の機械的特性を推定する評価ステップと、を備えた検査工程と、を有し、前記評価ステップにおいて、前記評価用データが、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを含み、前記評価用データが変動範囲以内であるか否かを評価し、変動範囲以内であれば前記造形工程を継続し、以後前記各工程を繰り返すことを特徴の一つとするものである。以下に各ステップを図7と図8を用いて詳細に説明する。
<Method for manufacturing additive products>
One embodiment of the method for manufacturing an additive product includes a powder supply step of supplying metal powder, a modeling step of irradiating the metal powder with a heat source to melt and solidify the metal powder to shape an additive product, and a step of supplying the metal powder. a modeling process comprising: a brightness data acquisition step of acquiring brightness data of light emitted from a molten pool formed when the powder is melted; and an evaluation data extraction step of extracting evaluation data from the brightness data. and an evaluation step of estimating mechanical properties of the additive product using the evaluation data, and in the evaluation step, the evaluation data includes a brightness average value, It includes at least one of the standard deviation of the average luminance value and their moving average value, evaluates whether the evaluation data is within a variation range, and if it is within the variation range, continues the modeling process. , one of the characteristics is that each of the above steps is repeated thereafter. Each step will be explained in detail below using FIGS. 7 and 8.
 本実施形態の付加製造方法には、粉末床溶融結合(PBF)方式を用いることができる。PBF方式は、金属粉末を敷き詰めて粉末床を準備し、熱エネルギーとなるレーザビームや電子ビームを照射して造形する部分のみを溶融凝固または焼結する付加製造方法である。レーザビームを熱源とし粉末床の造形する部分を溶融凝固する場合は、選択的レーザ溶融法(Selective Laser Melting:SLM法)と称され、粉末床の造形する部分を溶融まではせずに焼結させる方法は、選択的レーザ焼結法(Selective Laser Sintering:SLS法)と称される。 A powder bed fusion bonding (PBF) method can be used for the additive manufacturing method of this embodiment. The PBF method is an additive manufacturing method in which a powder bed is prepared by spreading metal powder, and only the part to be shaped is melted, solidified, or sintered by irradiation with a laser beam or electron beam that provides thermal energy. When the part of the powder bed to be modeled is melted and solidified using a laser beam as a heat source, it is called selective laser melting (SLM method), and the part of the powder bed to be modeled is sintered without melting. This method is called selective laser sintering (SLS method).
 また、レーザビームを熱源とする方法では、通常、窒素などの不活性雰囲気下で付加製造することができる。また、粉末床溶融結合方式は電子ビームを熱源とすることもでき、選択的電子ビーム溶融法(Selective Electron Beam Melting:SEBM法)や電子ビーム溶融法(Electron Beam Melting:EBM法)と称される。電子ビームを熱源とする方法では、高真空下で付加製造することができる。 Furthermore, in the method using a laser beam as a heat source, additive manufacturing can usually be performed in an inert atmosphere such as nitrogen. The powder bed fusion bonding method can also use an electron beam as a heat source, and is called selective electron beam melting (SEBM method) or electron beam melting (EBM method). . A method using an electron beam as a heat source allows additive manufacturing under high vacuum.
 付加製造物の造形(製造)条件としては、例えば、積層厚さ:10~300μm、レーザ出力:50~1000W、スキャン速度:100~5000mm/s、スキャン間隔:0.05~0.5mm、これらの条件の中から適宜選定すればよい。特に、造形精度の向上や合金粉末の溶融残りを防ぎたい場合は、積層(一層)厚さ:20~100μm、レーザ出力:100~400W、スキャン速度:600~1500mm/s、スキャン間隔:0.05~0.12mmとするのが好ましい。 Conditions for shaping (manufacturing) the additive product include, for example, layer thickness: 10 to 300 μm, laser output: 50 to 1000 W, scan speed: 100 to 5000 mm/s, scan interval: 0.05 to 0.5 mm. The conditions may be selected as appropriate. In particular, if you want to improve the modeling accuracy or prevent the alloy powder from remaining melted, set the lamination (single layer) thickness: 20 to 100 μm, laser output: 100 to 400 W, scan speed: 600 to 1500 mm/s, scan interval: 0. The thickness is preferably 0.05 to 0.12 mm.
 図7は、粉末床溶融結合方式を例とした付加製造装置100の概要を示した図である。付加製造装置100は、ステージ102と、ベースプレート103と、金属粉末105をベースプレート103に供給するパウダー供給用コンテナ104と、ベースプレート103上に粉末床107を形成するためのリコータ160と、溶融されなかった金属粉末を回収する未溶融粉末回収用コンテナ111と、レーザ発振器108と、ガルバノメーターミラー110とを有し、金属粉末105がベースプレート103上に供給され、リコータ160により一定厚みの粉末床107が形成される。 FIG. 7 is a diagram showing an outline of an additive manufacturing apparatus 100 using a powder bed fusion bonding method as an example. The additive manufacturing apparatus 100 includes a stage 102, a base plate 103, a powder supply container 104 for supplying metal powder 105 to the base plate 103, and a recoater 160 for forming a powder bed 107 on the base plate 103. It has an unmelted powder recovery container 111 for recovering metal powder, a laser oscillator 108, and a galvanometer mirror 110, metal powder 105 is supplied onto a base plate 103, and a powder bed 107 of a constant thickness is formed by a recoater 160. be done.
 次に、レーザ発振器108からガルバノメータミラー110を介して照射されたレーザビーム109によって粉末床107の金属粉末105が溶融凝固して凝固層112が得られる。さらに本装置では、金属粉末105が溶融した際に形成した溶融池から発せられる光を検出するsCMOSカメラ113と、sCMOSカメラで検出した光を輝度データに変換し、輝度データを取得する装置を有し、これは評価用データを抽出する評価用データ抽出装置114と共用する形で備えている。 Next, the metal powder 105 in the powder bed 107 is melted and solidified by the laser beam 109 irradiated from the laser oscillator 108 via the galvanometer mirror 110, and a solidified layer 112 is obtained. Furthermore, this device includes an sCMOS camera 113 that detects light emitted from a molten pool formed when the metal powder 105 is melted, and a device that converts the light detected by the sCMOS camera into brightness data and obtains the brightness data. However, this is provided in a form that is shared with the evaluation data extraction device 114 that extracts evaluation data.
(造形工程)
[粉末供給ステップ:S201]
 まず、付加製造しようとする付加製造物101の一層厚さ分(例えば、約10~100μm)だけステージ102を下降させる。次に、ステージ102の上面のベースプレート103に対し、パウダー供給用コンテナ104から金属(原料)粉末105を供給し、リコータ160により金属粉末105を平坦化して粉末床107(粉末層)を形成する。
(modeling process)
[Powder supply step: S201]
First, the stage 102 is lowered by a further thickness (for example, about 10 to 100 μm) of the additive product 101 to be additively manufactured. Next, metal (raw material) powder 105 is supplied from the powder supply container 104 to the base plate 103 on the upper surface of the stage 102, and the metal powder 105 is flattened by the recoater 160 to form a powder bed 107 (powder layer).
[造形ステップ:S203]
 次に、作製しようとする付加製造物101の形状情報、例えば、3D-CADデータから変換された2Dスライスデータに基づいて所望の形状に造形していく。具体的には、レーザ発振器108から照射された熱源、例えばレーザ発振器108からガルバノメーターミラー110を通して照射されたレーザビーム109をベースプレート103上に敷き詰められた粉末床107上の金属粉末105へ照射することで微小な溶融池が形成される。そして、レーザビーム109を照射しながら走査していくことで、金属粉末105を溶融凝固させて、2Dスライス形状の凝固層112を形成する。なお、未溶融の金属粉末105は、未溶融粉末回収用コンテナ111に回収して再利用するなどしてもよい。
[Building step: S203]
Next, the additive product 101 to be manufactured is shaped into a desired shape based on shape information, for example, 2D slice data converted from 3D-CAD data. Specifically, a heat source emitted from a laser oscillator 108, for example, a laser beam 109 emitted from the laser oscillator 108 through a galvanometer mirror 110, is irradiated onto the metal powder 105 on the powder bed 107 spread on the base plate 103. A small molten pool is formed. Then, by scanning while irradiating the laser beam 109, the metal powder 105 is melted and solidified to form a 2D slice-shaped solidified layer 112. Note that the unmelted metal powder 105 may be collected in the unmelted powder collection container 111 and reused.
[輝度データ取得ステップ:S205]
 上記造形ステップ(S203)にて、付加製造物のn+1層の粉末の溶融凝固が進むと同時に、凝固層n層までの粉末溶融時の輝度データを、sCMOSカメラ113と輝度データ取得装置及び評価用データ抽出装置114とを用いて取得する。なお、上述した本実施形態の付加製造物の検査方法における輝度データ取得ステップ(S101)を適用することができる。
[Brightness data acquisition step: S205]
In the above modeling step (S203), as the melting and solidification of the powder in the n+1 layer of the additive product progresses, the brightness data at the time of powder melting up to the solidified layer n layer is collected using the sCMOS camera 113, a brightness data acquisition device, and an evaluation device. The data is acquired using the data extraction device 114. Note that the brightness data acquisition step (S101) in the method for inspecting an additive product according to the present embodiment described above can be applied.
(検査工程)
[評価用データ抽出ステップ:S207]
 輝度データ取得装置及び評価用データ抽出装置114にて取得した輝度データから、評価用データ、すなわち輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを抽出(出力)する。上述した本実施形態の付加製造物の検査方法における評価用データ抽出ステップ(S103)を適用することができる。
(Inspection process)
[Evaluation data extraction step: S207]
From the luminance data acquired by the luminance data acquisition device and the evaluation data extraction device 114, at least one of the evaluation data, that is, the luminance average value, the standard deviation of the luminance average value, and their moving average value is extracted (output )do. The evaluation data extraction step (S103) in the additive product inspection method of the present embodiment described above can be applied.
[評価ステップ:S209]
 次に、抽出した輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを用いて、付加製造物の特性を推定評価する。なお、上述した本実施形態の付加製造物の検査方法における評価ステップ(S105)を適用することができる。良好であれば所望形状の付加製造物を得るまで各ステップ(S201~S207)を繰り返す。また、凝固層n層までの付加製造物の特性が良好と判断できる場合には、各ステップ(S201~S207)を継続すればよい。
[Evaluation step: S209]
Next, the characteristics of the additive product are estimated and evaluated using at least one of the extracted average brightness value, standard deviation of the average brightness value, and moving average value thereof. Note that the evaluation step (S105) in the method for inspecting an additive product according to the present embodiment described above can be applied. If the result is satisfactory, each step (S201 to S207) is repeated until an additive product of the desired shape is obtained. Furthermore, if it can be determined that the properties of the additional product up to the nth solidified layer are good, each step (S201 to S207) may be continued.
 特性の推定方法としては、輝度データ取得ステップ(S207)で取得した輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つが、上述した変動範囲以内であるかを照合し、変動範囲以内である場合には付加製造物の機械的特性が良好であると推定できる。 As a characteristic estimation method, it is checked whether at least one of the brightness average value, the standard deviation of the brightness average value, and their moving average value acquired in the brightness data acquisition step (S207) is within the above-mentioned fluctuation range. However, if it is within the variation range, it can be estimated that the mechanical properties of the additive product are good.
 また、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つが変動範囲を超える場合であっても、後の加工処理や熱処理等により対処できると判断した場合には、各ステップ(S201~S207)を継続すれば良い。またさらに、造形工程を一時的に中断し、造形条件やスライスデータの補正などを行い、n+1層からは、それら変更後の造形条件や補正後のスライスデータを反映して造形工程を再スタートし、各ステップ(S201~S207)を繰り返し行い、付加製造物を製造すればよい。
 また、上記各ステップにおいて変動範囲に代えて変動率を照合対象として用いることもできる。
In addition, even if at least one of the average brightness value, the standard deviation of the average brightness value, and the moving average value thereof exceeds the fluctuation range, if it is determined that this can be addressed by subsequent processing, heat treatment, etc. , each step (S201 to S207) may be continued. Furthermore, the printing process is temporarily interrupted, the printing conditions and slice data are corrected, and from the n+1 layer, the printing process is restarted by reflecting the changed printing conditions and corrected slice data. , each step (S201 to S207) may be repeated to produce an additive product.
Further, in each of the above steps, the fluctuation rate can be used as a comparison target instead of the fluctuation range.
[選択ステップ:S210]
 なお、変動範囲外であり、かつ後の加工処理や熱処理の実施、造形条件やスライスデータの補正などによっても対処できない異常レベルの可能性がある場合には、上記各ステップ(S201~S207)を継続するか否か決定するステップとして選択ステップS210をさらに設けても良い。選択ステップS210では、評価ステップから異常の判定が出た場合に造形工程を中止するか否かを判断する。
[Selection step: S210]
In addition, if there is a possibility that the abnormality level is outside the variation range and cannot be resolved by performing subsequent processing or heat treatment, or by correcting the modeling conditions or slice data, perform each of the above steps (S201 to S207). A selection step S210 may be further provided as a step for determining whether to continue. In the selection step S210, it is determined whether or not to stop the modeling process when an abnormality is determined from the evaluation step.
 一層分の積層(造形)が完了すると、ステージ102を降下させ、新たな金属粉末105を凝固層112の上に供給して、新たな粉末床107を形成する。この新たに形成した粉末床107に対し、レーザビーム109を照射して溶融凝固させることにより新たな凝固層を形成する。以後、粉末供給ステップ(S201)と造形ステップ(S203)とを繰り返し、凝固層112が積層されていくことにより、所望の付加製造物101を製造することができる。また、粉末供給ステップ(S201)と造形ステップ(S203)と輝度データ取得ステップ(S205)と評価用データ抽出ステップ(S207)及び評価ステップ(S209)とを繰り返して造形し、最終的な付加製造物を得た後に検査工程を実行してもよい。 When one layer of lamination (modeling) is completed, the stage 102 is lowered and new metal powder 105 is supplied onto the solidified layer 112 to form a new powder bed 107. This newly formed powder bed 107 is irradiated with a laser beam 109 to melt and solidify it, thereby forming a new solidified layer. Thereafter, the desired additive product 101 can be manufactured by repeating the powder supply step (S201) and the modeling step (S203) and stacking the solidified layers 112. In addition, the powder supply step (S201), the modeling step (S203), the brightness data acquisition step (S205), the evaluation data extraction step (S207), and the evaluation step (S209) are repeated to create the final additive product. The inspection process may be performed after obtaining the information.
 本発明の付加製造物の検査方法及び付加製造物の製造方法によれば、付加製造物を造形している最中であっても、得られた輝度データから付加製造物の特性を推定(検査)できる、すなわちインプロセス(リアルタイム)で付加製造物の特性を推定しながら付加製造物を製造することが可能である。 According to the method for inspecting an additive product and the method for manufacturing an additive product of the present invention, the characteristics of the additive product can be estimated (inspected) from the obtained luminance data even while the additive product is being shaped. ), that is, it is possible to manufacture additive products while estimating their properties in-process (in real time).
 付加製造物101は、ベースプレート103上に積層され、一体となって製作されるため、未溶融の金属粉末105に覆われた状態となっているので、取出し時には、金属粉末105と付加製造物101とを冷却後、未溶融の金属粉末105を回収し、付加製造物101とベースプレート103とを粉末付加製造装置100から取り出せばよい。その後、付加製造物101をベースプレート103から分離(切断等)することで付加製造物を得ることができる。 The additive product 101 is laminated on the base plate 103 and manufactured as one piece, so it is covered with the unmelted metal powder 105, so when it is taken out, the metal powder 105 and the additive product 101 are separated. After cooling, the unmelted metal powder 105 may be collected, and the additive product 101 and the base plate 103 may be taken out from the powder additive manufacturing apparatus 100. Thereafter, an additive product can be obtained by separating (cutting, etc.) the additive product 101 from the base plate 103.
 なお、変動範囲を予め設定しておくことも可能である。その場合、例えば、特性が良好であった付加製造物を付加製造した際の輝度データを予め取得しておき、その輝度データから輝度平均値、輝度平均値の標準偏差及びそれら移動平均値の少なくともいずれか1つを抽出し、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値が大きく変動した前後の輝度平均値の差分、輝度平均値の標準偏差の差分及びそれらの移動平均値の少なくともいずれか1つを閾値とすることができる。 Note that it is also possible to set the variation range in advance. In that case, for example, the brightness data obtained when an additive product with good characteristics was additively manufactured is obtained in advance, and from that brightness data, the brightness average value, the standard deviation of the brightness average value, and at least the moving average value of the brightness average value, Extract any one of the brightness average value, the standard deviation of the brightness average value, the difference between the brightness average values before and after the moving average value fluctuated greatly, the difference between the standard deviation of the brightness average value, and their moving average value. At least one of these can be used as a threshold value.
 また、輝度平均値や輝度平均値の標準偏差は、付加製造物の形状及び造形条件(レーザ出力、走査速度、走査ピッチ(走査間隔)、一層厚みなどにより変化するので、予め設定する輝度平均値範囲と輝度平均値の標準偏差範囲は所望の付加製造物に応じて適宜変更すればよい。 In addition, the average brightness value and the standard deviation of the average brightness value vary depending on the shape and modeling conditions of the additive product (laser output, scanning speed, scanning pitch (scanning interval), thickness, etc.), so the average brightness value set in advance The range and the standard deviation range of the brightness average value may be changed as appropriate depending on the desired additive product.
 以上、付加製造物の製造方法の一実施形態を説明してきたが、本実施形態の付加製造物の製造方法によれば、インプロセスで付加製造物の特性を推定でき、かつその評価結果を新たな付加製造条件を適用して付加製造物を製造に活用することができる。インプロセスで付加製造物の特性を推定できるため、不良品発生を早期に発見して迅速に対応することで不良の再発を防ぐ事ができる点で特に有効である。また、リアルタイムで新たな付加製造条件を適用して付加製造物の特性を修正しながら製造できるため、付加製造物の欠陥率を抑制する効果も期待できる。また、例えば、後工程の検査工程を簡略化できるなどして製造コスト低減も期待できる。 One embodiment of the method for manufacturing an additive product has been described above. According to the method for manufacturing an additive product of this embodiment, the characteristics of the additive product can be estimated in-process, and the evaluation results can be newly updated. Additive products can be used for manufacturing by applying additive manufacturing conditions. Since the characteristics of additive products can be estimated in-process, it is particularly effective in that it is possible to detect defective products early and take prompt action to prevent the recurrence of defects. In addition, since the additive manufacturing conditions can be applied in real time to modify the properties of the additive product during manufacturing, it can be expected to have the effect of suppressing the defect rate of the additive product. Further, for example, it is possible to simplify the inspection process in the post-process, thereby reducing manufacturing costs.
 以下、実施例について説明する。実施例においては、図8に示すフローチャートの順番に沿って、角柱形状の付加製造物F1~F8を作製した。付加製造物F1~F8を付加製造する際には、層毎の輝度データとして輝度平均値と輝度平均値の標準偏差を取得した。
輝度データの取得(測定)条件は、画素数:400万ピクセルのsCMOSカメラで、撮影速度:1秒間当たり10フレーム(撮影速度:100msec、撮影周波数:10Hz)とし、検出対象とする光は、合金粉末溶融させて形成された溶融池から発せられた放射光とし、検出波長帯は900±12.5nmとした。
Examples will be described below. In the example, prismatic additive products F1 to F8 were produced in accordance with the order of the flowchart shown in FIG. When additively manufacturing the additive products F1 to F8, the average brightness value and the standard deviation of the average brightness value were obtained as brightness data for each layer.
The brightness data acquisition (measurement) conditions were an sCMOS camera with a pixel count of 4 million pixels, a shooting speed of 10 frames per second (shooting speed: 100 msec, shooting frequency: 10 Hz), and the light to be detected was an alloy The radiation was emitted from a molten pool formed by melting powder, and the detection wavelength band was 900±12.5 nm.
 付加製造物F1~F8について、以下で詳細に説明する。原料となる金属粉末には、表1に示す合金組成(単位:質量%)であるNi-Cr-Mo系合金を用いた。この金属粉末は、原料となるNi、Cr、Mo及びTaのそれぞれの原料を表1の合金組成となるよう調製し、真空ガスアトマイズ法により造粒粉末化した。その後造粒粉末をふるい分けして、粒径が10μm~53μm、平均粒径(d50)が約35μmとした。
Figure JPOXMLDOC01-appb-T000001
Additional products F1 to F8 are explained in detail below. A Ni-Cr-Mo alloy having the alloy composition (unit: mass %) shown in Table 1 was used as the metal powder serving as the raw material. This metal powder was prepared by preparing the raw materials of Ni, Cr, Mo, and Ta to have the alloy composition shown in Table 1, and granulating the powder by vacuum gas atomization. Thereafter, the granulated powder was sieved to have a particle size of 10 μm to 53 μm and an average particle size (d50) of about 35 μm.
Figure JPOXMLDOC01-appb-T000001
[付加製造物F1及びF2]
 図8のフローに従って、10mm×10mm×高さ40mm(角柱形状)の付加製造物F1及びF2を作製した。付加製造条件は、積層(一層)厚み0.06mm、レーザ出力300Wとし、レーザ走査速度1200mm/秒、走査ピッチ0.09mmとした。
[Additive products F1 and F2]
Additive products F1 and F2 of 10 mm x 10 mm x height 40 mm (prismatic shape) were produced according to the flow shown in FIG. 8 . The additive manufacturing conditions were a lamination (single layer) thickness of 0.06 mm, a laser output of 300 W, a laser scanning speed of 1200 mm/sec, and a scanning pitch of 0.09 mm.
[付加製造物F3及びF4]
 図8のフローに従って、10mm×10mm×高さ40mm(角柱形状)の付加製造物F3及びF4を作製した。付加製造条件は、積層(一層)厚み0.08mm、レーザ出力350W、レーザ走査速度は1150mm/秒、走査ピッチを0.09mmとした。
[Additive products F3 and F4]
Additive products F3 and F4 of 10 mm x 10 mm x 40 mm height (prism shape) were produced according to the flow of Fig. 8. The additive manufacturing conditions were a layer (single layer) thickness of 0.08 mm, a laser output of 350 W, a laser scanning speed of 1150 mm/sec, and a scanning pitch of 0.09 mm.
[付加製造物F5及びF6]
 図8のフローに従って、10mm×10mm×高さ40mm(角柱形状)の付加製造物F5及びF6を作製した。付加製造時の造形条件は、付加製造物F1及びF2と同様とした。
[Additive products F5 and F6]
Addition products F5 and F6 of 10 mm x 10 mm x height 40 mm (prismatic shape) were produced according to the flow shown in FIG. 8 . The modeling conditions during additive manufacturing were the same as those for additive products F1 and F2.
[付加製造物F7及びF8]
 図8のフローに従って、10mm×10mm×高さ40mm(角柱形状)の付加製造物F7及びF8を作製した。付加製造時の造形条件は、付加製造物F3及びF4と同様とした。
[Additive products F7 and F8]
Additive products F7 and F8 of 10 mm x 10 mm x height 40 mm (prismatic shape) were produced according to the flow shown in FIG. 8 . The modeling conditions during additive manufacturing were the same as those for additive products F3 and F4.
(輝度平均値及び輝度平均値の標準偏差)
 表2に、付加製造物F1~F8について、積層高さ22~24mmまでの輝度平均値(以下、輝度平均値(i))、26~28mmまでの輝度平均値(以下、輝度平均値(ii))、輝度平均値差(輝度平均値(ii)-輝度平均値(i)、ΔGv)及び変動率(輝度平均値差/輝度平均値(i))を示す。以下、輝度平均値差を輝度平均値の変動範囲という。
 表3に、付加製造物F1~F8について、積層高さ22~24mmまでの輝度平均値の標準偏差(以下、輝度平均値の標準偏差(i))、26~28mmまでの輝度平均値の標準偏差(以下、輝度平均値の標準偏差(ii))、輝度平均値の標準偏差の差(輝度平均値の標準偏差(ii)-輝度平均値の標準偏差(i)、ΔGvσ)及び変動率(輝度平均値の標準偏差の差/輝度平均値の標準偏差(i))を示す。以下、輝度平均値の標準偏差の差を輝度平均値の標準偏差の変動範囲という。
(Brightness average value and standard deviation of brightness average value)
Table 2 shows, for additive products F1 to F8, the average brightness value (hereinafter referred to as average brightness value (i)) from 22 to 24 mm and the average brightness value (hereinafter referred to as average brightness value (ii)) from 26 to 28 mm. )), the luminance average value difference (luminance average value (ii) - luminance average value (i), ΔGv), and fluctuation rate (luminance average value difference/luminance average value (i)) are shown. Hereinafter, the luminance average value difference will be referred to as the variation range of the luminance average value.
Table 3 shows the standard deviation of the average brightness value from stacking heights of 22 to 24 mm (hereinafter referred to as the standard deviation (i) of the average brightness value) for the additive products F1 to F8, and the standard deviation of the average brightness value from 26 to 28 mm. deviation (hereinafter referred to as standard deviation of average brightness value (ii)), difference in standard deviation of average brightness value (standard deviation of average brightness value (ii) - standard deviation of average brightness value (i), ΔGvσ), and fluctuation rate ( Difference in standard deviation of average brightness value/standard deviation of average brightness value (i)) is shown. Hereinafter, the difference in the standard deviation of the brightness average value will be referred to as the variation range of the standard deviation of the brightness average value.
 また、図3~図6に、付加製造物F1~F8を付加製造する際に取得した輝度平均値及び輝度平均値の標準偏差の推移を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Further, FIGS. 3 to 6 show changes in the average brightness values and the standard deviations of the average brightness values obtained when additively manufacturing the additive products F1 to F8.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示す通り、F1~F6の場合、輝度平均値の変動範囲は最大でも1927Gvであることから4100Gv以下であり、変動率も最大で0.2%であることから18%以下であることを確認した。一方、F7およびF8は、輝度平均値を用いた変動範囲が4000Gvを超えており、輝度平均値の標準偏差の変動範囲も18%を超えた。 As shown in Tables 2 and 3, for F1 to F6, the fluctuation range of the average brightness value was a maximum of 1927 Gv, which was less than 4100 Gv, and the fluctuation rate was a maximum of 0.2%, which was less than 18%. On the other hand, for F7 and F8, the fluctuation range using the average brightness value exceeded 4000 Gv, and the fluctuation range of the standard deviation of the average brightness value also exceeded 18%.
(機械的特性評価)
 付加製造物F1~F8について、引張強さ、耐力、破断伸びを評価した。引張強さの評価は、規格試験(ASTM E8)に準拠する引張試験片(平行部直径:3mm、標点間長さ:7mm)となるように付加製造物F1~F8のそれぞれから切断したものを試験片FT1~FT8として用いた。
(Mechanical property evaluation)
The additive products F1 to F8 were evaluated for tensile strength, yield strength, and elongation at break. For evaluation of tensile strength, each of the additive products F1 to F8 was cut into tensile test pieces (parallel part diameter: 3 mm, length between gauges: 7 mm) in accordance with the standard test (ASTM E8). were used as test pieces FT1 to FT8.
 試験片FT1~FT8に対して室温(22℃)での引張試験(INSTRON5982、インストロン社)を実施して引張強さと0.2%耐力の平均値を求めた。また、伸びは、試験後の試験片を突き合わせて、標点距離を測定し、原標点で割って百分率で求めた。結果を表4に示す。ここで、破断位置Aは破断位置が標点間中心から標点距離の1/4以内の場合を指し、破断位置Cは破断位置が標点外の場合を指す。
Figure JPOXMLDOC01-appb-T000004
A tensile test (INSTRON 5982, Instron Corporation) was conducted on test pieces FT1 to FT8 at room temperature (22° C.) to determine the average value of tensile strength and 0.2% proof stress. Further, the elongation was determined as a percentage by comparing the test pieces after the test, measuring the gauge length, and dividing by the original gauge length. The results are shown in Table 4. Here, the break position A refers to the case where the break position is within 1/4 of the gauge distance from the center between the gauge marks, and the break position C refers to the case where the break position is outside the gauge mark.
Figure JPOXMLDOC01-appb-T000004
 表4に示す通り、付加製造条件が同じである付加製造物F1、F2、F5及びF6を用いた試験片FT1、FT2、FT5及びFT6について、FT1とFT2に比べて、FT5及びFT6は、0.2%耐力、引張強さ及び伸びが低下していることを確認した。特に伸びが著しく低下していた。同様に、付加製造条件が同じである付加製造物F3、F4、F7及びF8を用いた試験片FT3、FT4、FT7及びFT8についてもFT3とFT4に比べて、FT7及びFT8は、0.2%耐力、引張強さ及び伸びが低下していることを確認した。特に伸びが著しく低下していた。 As shown in Table 4, for test pieces FT1, FT2, FT5 and FT6, which were made using additive products F1, F2, F5 and F6 under the same additive manufacturing conditions, it was confirmed that FT5 and FT6 had lower 0.2% yield strength, tensile strength and elongation than FT1 and FT2. In particular, elongation was significantly lower. Similarly, for test pieces FT3, FT4, FT7 and FT8, which were made using additive products F3, F4, F7 and F8 under the same additive manufacturing conditions, it was confirmed that FT7 and FT8 had lower 0.2% yield strength, tensile strength and elongation than FT3 and FT4. In particular, elongation was significantly lower.
 しかし、具体的な数値としては、0.2%耐力について、FT1~FT6は600MPa以上であり、特にFT1~FT4は610MPa以上であった。引張強さについても、FT1~FT6は900MPa以上であり、特にFT1~FT4は930MPa以上であった。また、伸びについてもFT1~FT6は40%以上であり、特にFT1~FT4は59%以上の伸びを有していることを確認した。これらの機械的特性値は優良な値であると言える。 However, in terms of specific numerical values, 0.2% proof stress was 600 MPa or more for FT1 to FT6, and especially 610 MPa or more for FT1 to FT4. As for the tensile strength, FT1 to FT6 were 900 MPa or more, and especially FT1 to FT4 were 930 MPa or more. Furthermore, it was confirmed that FT1 to FT6 had an elongation of 40% or more, and in particular, FT1 to FT4 had an elongation of 59% or more. These mechanical property values can be said to be excellent values.
 すなわち、付加製造物F1~F6を製造した際は、インラインで取得した輝度平均値や輝度平均値の標準偏差が上述した変動範囲以内であることを都度確認しながら製造していき、図8のフローは何事も無く完了した。そして、このとき製造した付加製造物F1~F6の機械的特性は実用に供せられる程度の優良な数値であり、インラインで付加製造物の良好な機械的特性を推定できることを確認した。 In other words, when additive products F1 to F6 were manufactured, the average brightness value and the standard deviation of the average brightness value obtained in-line were confirmed each time to be within the above-mentioned range of variation, and the flow in Figure 8 was completed without any problems. Furthermore, it was confirmed that the mechanical properties of the additive products F1 to F6 manufactured at this time were good enough for practical use, and that it was possible to estimate good mechanical properties of additive products in-line.
 一方、F7及びF8について、図6中に示す通り、輝度平均値の変動範囲が4000Gv以上に変動した区間の輝度平均値の推移を200、輝度平均値の標準偏差の変動範囲が1100Gvを超えて変動した区間の輝度平均値の標準偏差の推移を210として図示する。図6の200および210に示すように、F7及びF8は、造形工程で取得した輝度平均値の変動範囲が4170Gv以上変動した区間を含み、輝度平均値の標準偏差の変動範囲が1107Gvを超えて変動した区間を含んでおり、輝度平均値や輝度平均値の標準偏差が段差状に変動する区間を含んでいたが造形工程と検査工程とを継続させた付加製造物であった。また、表3に示す通り、輝度平均値を用いた変動率も、F7で18.0%、F8で21.7%であり、輝度平均値の標準偏差を用いた変動率も、F7で18.2%、F8で20.4%であった。したがって、F7及びF8は、変動範囲や変動率からも造形工程と検査工程とを繰り返す時点で機械的特性が低下していると推定できる。 On the other hand, for F7 and F8, as shown in Figure 6, the transition of the luminance average value in the section where the fluctuation range of the luminance average value fluctuated by 4000 Gv or more is 200, and the fluctuation range of the standard deviation of the luminance average value exceeds 1100 Gv. The transition of the standard deviation of the luminance average value in the fluctuated section is illustrated as 210. As shown at 200 and 210 in FIG. 6, F7 and F8 include sections in which the variation range of the average luminance value obtained in the modeling process fluctuated by 4170 Gv or more, and the variation range of the standard deviation of the luminance average value exceeds 1107 Gv. Although it included a section where the luminance average value and the standard deviation of the luminance average value fluctuated in a stepped manner, it was an additive product in which the modeling process and the inspection process were continued. Furthermore, as shown in Table 3, the fluctuation rate using the average brightness value is 18.0% at F7 and 21.7% at F8, and the fluctuation rate using the standard deviation of the average brightness value is also 18.0% at F7. .2%, and 20.4% at F8. Therefore, it can be inferred that the mechanical properties of F7 and F8 deteriorate when the modeling process and inspection process are repeated based on the variation range and variation rate.
 実際、表4に示すように、0.2%耐力、引張強さ、伸び率のいずれについてもFT1~FT6と比較して低下していることを確認した。 In fact, as shown in Table 4, it was confirmed that the 0.2% proof stress, tensile strength, and elongation rate were all lower than those of FT1 to FT6.
 表2や表3には示していないが、F6とF7を付加製造した際に取得した輝度平均値を用いた場合の移動平均値及び移動平均値差も算出した。積層高さ22~24mmまでの移動平均値(以下、移動平均値(i))、26~28mmまでの移動平均値(以下、移動平均値(ii))、移動平均値(ii)から移動平均値(i)を引いた値を移動平均値差(i)としたとき、F6の場合の移動平均値(i)は18347Gv、移動平均値(ii)は20262Gv、移動平均値差(i)が1915Gvであった。また、F7の場合の移動平均値(i)は23178Gv、移動平均値(ii)は26984Gvであり、移動平均値差(i)、すなわち移動平均値を用いた変動範囲は3806Gvであった。したがって、輝度平均値を用いた場合や輝度平均値の標準偏差を用いた場合同様、輝度平均値を用いた移動平均値の変動範囲からも付加製造物の機械的特性を推定できることを確認した。 Although not shown in Tables 2 and 3, moving average values and moving average value differences were also calculated using the luminance average values obtained when F6 and F7 were additively manufactured. Moving average value from stacking height 22 to 24 mm (hereinafter referred to as moving average value (i)), moving average value from 26 to 28 mm (hereinafter referred to as moving average value (ii)), moving average value from moving average value (ii) When the moving average value difference (i) is the value obtained by subtracting the value (i), the moving average value (i) in the case of F6 is 18347Gv, the moving average value (ii) is 20262Gv, and the moving average value difference (i) is It was 1915Gv. Further, in the case of F7, the moving average value (i) was 23178 Gv, the moving average value (ii) was 26984 Gv, and the moving average value difference (i), that is, the fluctuation range using the moving average value was 3806 Gv. Therefore, it was confirmed that the mechanical properties of additive products can be estimated from the variation range of the moving average value using the brightness average value, as well as when using the brightness average value or the standard deviation of the brightness average value.
 次に、F6とF7を付加製造した際に取得した輝度平均値の標準偏差を用いて、移動平均値及び移動平均値差を算出した。積層高さ22~24mmまでの移動平均値を移動平均値(iii)、26~28mmまでの移動平均値を移動平均値(iv)、移動平均値(iv)から移動平均値(iii)を引いた値を移動平均値差(ii)としたとき、F6の場合の移動平均値(iii)は4432Gv、移動平均値(iv)が4864Gv、移動平均値差(ii)が432Gvであった。F7の場合では、移動平均値(iii)が6109Gv、移動平均値(iv)が7088Gv、移動平均値差(ii)、すなわち輝度平均値の標準偏差を用いた移動平均値の変動範囲は979Gvであった。したがって、輝度平均値の標準偏差を用いた変動範囲の場合同様、輝度平均値の標準偏差を用いた移動平均値の変動範囲からも付加製造物の機械的特性を推定できることを確認した。 Next, the moving average value and the moving average value difference were calculated using the standard deviation of the average brightness value obtained when additively manufacturing F6 and F7. The moving average value from 22 to 24 mm in the stacking height was the moving average value (iii), the moving average value from 26 to 28 mm was the moving average value (iv), and the value obtained by subtracting the moving average value (iii) from the moving average value (iv) was the moving average value difference (ii). In the case of F6, the moving average value (iii) was 4432 Gv, the moving average value (iv) was 4864 Gv, and the moving average value difference (ii) was 432 Gv. In the case of F7, the moving average value (iii) was 6109 Gv, the moving average value (iv) was 7088 Gv, and the moving average value difference (ii), that is, the fluctuation range of the moving average value using the standard deviation of the average brightness value, was 979 Gv. Therefore, it was confirmed that the mechanical properties of the additively manufactured product can be estimated from the fluctuation range of the moving average value using the standard deviation of the average brightness value, just like the fluctuation range using the standard deviation of the average brightness value.
以上、輝度平均値または輝度平均値の標準偏差を用いて算出した移動平均値差(移動平均値を用いた場合の変動範囲)からF7の機械的特性が低いことが推定できることを確認した。 As described above, it has been confirmed that it can be estimated that the mechanical properties of F7 are low from the moving average value difference (variation range when using the moving average value) calculated using the brightness average value or the standard deviation of the brightness average value.
 また、図6中に示した200と210は、付加製造物の積層高さが26cm付近であるが、FT7及びFT8が破断した積層高さとほぼ一致していた。このことから、付加製造中に取得した輝度平均値、輝度平均値の標準偏差を用いた変動範囲や変動率が著しく変動する箇所、言い換えれば段差が高い(大きい)付近で破断しやすいという相関関係があることを確認した。 Further, in cases 200 and 210 shown in FIG. 6, the stacking height of the additive products was around 26 cm, which was almost the same as the stacking height at which FT7 and FT8 broke. From this, the correlation is that breakage is likely to occur in areas where the variation range and rate of variation using the average brightness value and standard deviation of the average brightness value obtained during additive manufacturing fluctuate significantly, in other words, near high (large) steps. I confirmed that there is.
 以上から、所望の付加製造物を付加製造する際に取得した輝度平均値、輝度平均値の標準偏差、それらの移動平均値を用いることで、付加製造物の機械的特性、例えば引張特性、0.2%耐力や伸びを推定して評価することできる。 From the above, by using the average brightness value, the standard deviation of the average brightness value, and their moving average value obtained when additively manufacturing a desired additive product, it is possible to improve the mechanical properties of the additive product, for example, the tensile properties. .2% proof stress and elongation can be estimated and evaluated.
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。 The embodiments and examples described above are described to help understand the present invention, and the present invention is not limited to the specific configurations described.
100:付加製造装置
101:付加製造物
102:ステージ
103:ベースプレート
104:パウダー供給用コンテナ
105:金属粉末
107:粉末床(粉末層)
108:レーザ発振器
109:レーザビーム
110:ガルバノメーターミラー
111:未溶融粉末回収用コンテナ
112:2Dスライス形状の凝固層
113:sCMOSカメラ
114:輝度データ取得装置及び評価用データ抽出装置
160:リコータ
200:輝度平均値の推移
210:輝度平均値の標準偏差の推移

 
100: Additive manufacturing device 101: Additive product 102: Stage 103: Base plate 104: Powder supply container 105: Metal powder 107: Powder bed (powder layer)
108: Laser oscillator 109: Laser beam 110: Galvanometer mirror 111: Unmelted powder recovery container 112: 2D slice-shaped solidified layer 113: sCMOS camera 114: Luminance data acquisition device and evaluation data extraction device 160: Recoater 200: Change in brightness average value 210: Change in standard deviation of brightness average value

Claims (4)

  1.  金属粉末を溶融凝固させて製造される付加製造物の検査方法であって、
     前記金属粉末が溶融した際に形成された溶融池から発せられた光の輝度データを取得する輝度データ取得ステップと、
     前記輝度データから評価用データを抽出する評価用データ抽出ステップと、
     前記評価用データを用いて前記付加製造物の機械的特性を推定する評価ステップとを有し、
     前記評価ステップにおいて、前記評価用データが、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを含み、前記評価用データが所定の変動範囲以内であるか否かを評価することを特徴とする付加製造物の検査方法。
    A method for inspecting an additive product manufactured by melting and solidifying metal powder, the method comprising:
    a brightness data acquisition step of acquiring brightness data of light emitted from a molten pool formed when the metal powder is melted;
    an evaluation data extraction step of extracting evaluation data from the luminance data;
    an evaluation step of estimating mechanical properties of the additive product using the evaluation data,
    In the evaluation step, the evaluation data includes at least one of a brightness average value, a standard deviation of the brightness average value, and a moving average value thereof, and whether the evaluation data is within a predetermined variation range. 1. A method for inspecting additive products, characterized by evaluating whether
  2.  前記変動範囲が変動率であり、
    前記変動率が18.0%以下であることを特徴とする請求項1に記載の付加製造物の検査方法。
    The fluctuation range is a fluctuation rate,
    The method for inspecting an additive product according to claim 1, wherein the rate of variation is 18.0% or less.
  3.  金属粉末を供給する粉末供給ステップと、
     金属粉末に熱源を照射し、前記金属粉末を溶融凝固させて付加製造物を造形する造形ステップと、前記金属粉末が溶融する際に形成された溶融池から発せられた光の輝度データを取得する輝度データ取得ステップと、を備えた造形工程と、
     前記輝度データから評価用データを抽出する評価用データ抽出ステップと、前記評価用データを用いて前記付加製造物の機械的特性を推定する評価ステップと、を備えた検査工程と、を有し、
     前記評価ステップにおいて、前記評価用データが、輝度平均値、輝度平均値の標準偏差及びそれらの移動平均値の少なくともいずれか1つを含み、前記評価用データが所定の変動範囲以内であるか否かを評価し、
     変動範囲以内であれば前記造形工程を継続し、以後前記各工程を繰り返し、
     変動範囲外であれば前記造形工程を継続するか否かを決定する選択ステップと、をさらに備えること
    ことを特徴とする付加製造物の製造方法。
    A powder supplying step of supplying a metal powder;
    A manufacturing process including a manufacturing step of irradiating a metal powder with a heat source to melt and solidify the metal powder to manufacture an additive product, and a brightness data acquisition step of acquiring brightness data of light emitted from a molten pool formed when the metal powder is melted;
    An inspection process including an evaluation data extraction step of extracting evaluation data from the brightness data, and an evaluation step of estimating mechanical properties of the additive product using the evaluation data,
    In the evaluation step, the evaluation data includes at least one of an average brightness value, a standard deviation of the average brightness value, and a moving average value thereof, and the evaluation data is evaluated as to whether it is within a predetermined fluctuation range;
    If the variation is within the range, the modeling process is continued, and each of the steps is thereafter repeated.
    and if the variation is outside the variation range, determining whether to continue the modeling process.
  4.  前記変動範囲が変動率であり、
     前記変動率が18.0%以下であることを特徴とする請求項3に記載の付加製造物の製造方法。

     
    The fluctuation range is a fluctuation rate,
    4. The method for manufacturing an additive product according to claim 3, wherein the rate of variation is 18.0% or less.

PCT/JP2023/034367 2022-09-22 2023-09-21 Method for inspecting additively manufactured product and method for manufacturing additively manufactured product WO2024063150A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151835 2022-09-22
JP2022151835 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024063150A1 true WO2024063150A1 (en) 2024-03-28

Family

ID=90454760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034367 WO2024063150A1 (en) 2022-09-22 2023-09-21 Method for inspecting additively manufactured product and method for manufacturing additively manufactured product

Country Status (1)

Country Link
WO (1) WO2024063150A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536092A (en) * 2015-11-16 2018-12-06 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing method and apparatus
WO2020026306A1 (en) * 2018-07-30 2020-02-06 三菱電機株式会社 Layering condition control device
JP2021009126A (en) * 2019-07-03 2021-01-28 株式会社ジェイテクト Quality estimation apparatus of additional product
WO2022097651A1 (en) * 2020-11-04 2022-05-12 日立金属株式会社 Method for predicting defect of additive-manufactured product and method for manufacturing additive-manufactured product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536092A (en) * 2015-11-16 2018-12-06 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing method and apparatus
WO2020026306A1 (en) * 2018-07-30 2020-02-06 三菱電機株式会社 Layering condition control device
JP2021009126A (en) * 2019-07-03 2021-01-28 株式会社ジェイテクト Quality estimation apparatus of additional product
WO2022097651A1 (en) * 2020-11-04 2022-05-12 日立金属株式会社 Method for predicting defect of additive-manufactured product and method for manufacturing additive-manufactured product

Similar Documents

Publication Publication Date Title
JP7318825B2 (en) Laminate-molded article defect prediction method and laminate-molded article manufacturing method
Demir et al. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction
Grasso et al. Process defects and in situ monitoring methods in metal powder bed fusion: a review
US20190291345A1 (en) Sensor fusion for powder bed manufacturing process control
US10046412B2 (en) Method of manufacturing a component
Koester et al. Additive manufacturing metrology: State of the art and needs assessment
US9764517B2 (en) Object production using an additive manufacturing process and quality assessment of the object
Sharratt Non-destructive techniques and technologies for qualification of additive manufactured parts and processes
CN206794757U (en) Increasing material manufacturing device
WO2019097265A1 (en) Defect detection and correction in additive manufacturing
Rezaeifar et al. Porosity formation mitigation in laser powder bed fusion process using a control approach
EP3192598A1 (en) Method for determining a concentration of at least one material in a powder for an additive production method
WO2024063150A1 (en) Method for inspecting additively manufactured product and method for manufacturing additively manufactured product
US20190039314A1 (en) Three-Dimensional Shaping Method
Colosimo et al. On-machine measurement, monitoring and control
JP5611177B2 (en) Ablation abnormality detection device and anomaly detection method
CN113195130B (en) Method for operating a manufacturing device and manufacturing device for additive manufacturing of components from powder material
Sukal et al. The effect of recycling powder steel on porosity and surface roughness of slm parts
Muzangaza The effects of titanium Ti-6Al-4V powders manufactured using electron beam melting (EBM)-additive manufacturing on metallurgical evaluation
EP3434393A1 (en) Three-dimensional shaping method
Herzer et al. Detection of Defects in Solidified Layers within Laser-based Powder Bed Fusion using Active Thermography
Lough et al. Use of swir imaging to monitor layer-to-layer part quality during slm of 304l stainless steel
Yang et al. Analyzing Remelting Conditions based on In-Situ Melt Pool Data Fusion for Overhang Building in Powder Bed Fusion Process
Schnur Electron beam-powder bed fusion of alloy 718: Influences of contour parameters on surface and microstructural characteristics
Grasso et al. Statistical process monitoring and control methods for in-situ detection and localization of defects in laser powder bed fusion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868271

Country of ref document: EP

Kind code of ref document: A1