WO2024063071A1 - Flow-path switching device - Google Patents

Flow-path switching device Download PDF

Info

Publication number
WO2024063071A1
WO2024063071A1 PCT/JP2023/034017 JP2023034017W WO2024063071A1 WO 2024063071 A1 WO2024063071 A1 WO 2024063071A1 JP 2023034017 W JP2023034017 W JP 2023034017W WO 2024063071 A1 WO2024063071 A1 WO 2024063071A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
flow path
communication path
rotating
switching device
Prior art date
Application number
PCT/JP2023/034017
Other languages
French (fr)
Japanese (ja)
Inventor
衛 吉岡
伸二 河井
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023030847A external-priority patent/JP2024044974A/en
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2024063071A1 publication Critical patent/WO2024063071A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces

Definitions

  • the present disclosure relates to a flow path switching device that switches a flow path through which a fluid flows.
  • Patent Document 1 discloses a flow path switching valve that switches flow paths by rotating a main valve body having a plurality of communication paths and switching the combination of ports communicated by the communication paths.
  • Patent Document 1 when the rotational position of the main valve body is set to the second rotational position, the shape of the communication passage that connects the two ports is U-shaped, and the fluid flows by bending at a substantially right angle, resulting in large pressure loss of the fluid. Furthermore, Patent Document 1 does not disclose any measures to reduce this pressure loss of the fluid.
  • an object of the present disclosure is to provide a flow path switching device that can reduce fluid pressure loss.
  • One form of the present disclosure made to solve the above problems includes a first member, a rotating member that rotates around a rotating shaft, and a second member, and the direction of the rotating shaft is set in the direction of the rotating shaft.
  • 1 member, the rotating member, and the second member are arranged in this order, the first member includes at least one port, the second member includes a plurality of ports, and the rotating member
  • a communication path is provided for communicating a port of the member with a port of the second member, and the rotary member rotates to establish a combination of the port of the first member and the port of the second member that are communicated by the communication path.
  • the communicating path includes an R-shaped portion having an inner wall formed in an R-shape, and the R-shaped portion
  • the port of the first member and the port of the second member which are arranged at different positions in the circumferential direction around the rotation axis, communicate with each other through the communication path, the port of the first member It is characterized in that it is formed at a position facing each of the opening and the opening of the port of the second member.
  • the fluid flows into the R-shaped portion. It will flow easier along the way. Therefore, the fluid flows smoothly in the communication path, so that the pressure loss of the fluid can be reduced.
  • one port of the second member is arranged at the same position in the circumferential direction relative to one port of the first member, and that the communication passage communicates the port of the first member with the port of the second member arranged at the same position in the circumferential direction relative to the port of the first member when the rotational position of the rotating member is at a first position, and communicates the port of the first member with the port of the second member arranged at a different position in the circumferential direction relative to the port of the first member when the rotational position of the rotating member is at a second position rotated a predetermined angle from the first position.
  • the fluid when the rotating member is in the first position in the rotational direction, the fluid flows in a straight line, so the pressure loss of the fluid can be greatly reduced. Further, when the rotating member is at the second position in the rotational direction, the fluid flows obliquely from the port of the first member to the port of the second member, so that pressure loss of the fluid can be reduced.
  • Another form of the present disclosure made to solve the above problem includes a first member, a rotating member that rotates around a rotational axis, and a second member, and the direction of the rotational axis is set in the direction of the rotational axis.
  • a first member, the rotating member, and the second member are arranged in this order, the first member includes at least one port, the second member includes a plurality of ports, and the rotating member A combination of a communication path that communicates a port of one member with a port of the second member, and a port of the first member and a port of the second member that communicate with each other through the communication path when the rotating member rotates.
  • one port of the second member has the same number of ports in the circumferential direction centering on the rotation axis for one port of the first member.
  • the communication path is arranged at a position in which the communication path is connected to the port of the first member and the circumference relative to the port of the first member when the rotational direction position of the rotary member is a first position.
  • the It is characterized in that a port of the first member and a port of the second member disposed at a different position in the circumferential direction with respect to the port of the first member are communicated with each other.
  • the fluid when the rotating member is in the first position in the rotational direction, the fluid flows in a straight line, so the pressure loss of the fluid can be greatly reduced. Further, when the rotating member is at the second position in the rotational direction, the fluid flows obliquely from the port of the first member to the port of the second member, so that the pressure loss of the fluid can be reduced.
  • Another form of the present disclosure made to solve the above problem includes a first member, a rotating member that rotates around a rotational axis, and a second member, and the direction of the rotational axis is set in the direction of the rotational axis.
  • a first member, the rotating member, and the second member are arranged in this order, and each of the first member and the second member is provided with three or more ports, and the ports are connected to each other by rotating the rotating member.
  • the first member side The communication path and the second member side communication path each include an R-shaped portion having an R-shaped inner wall, and the R-shaped portion of the first member side communication path connects to the port of the adjacent first member.
  • the rounded portions of the second member side communication passages are formed at positions facing the openings of the ports of the first member, and the rounded portions of the second member side communication passages are When the ports of the two members are communicated with each other through the second member side communication path, the second member is formed at a position facing the opening of the port of the second member.
  • the fluid when the ports of adjacent first members are communicated with each other through the first member side communication path and the ports of adjacent second members are communicated with each other through the second member side communication path, the fluid is It becomes easier to flow along the R-shaped portion. Therefore, the fluid flows smoothly in the first member-side communication path and the second member-side communication path, so that the pressure loss of the fluid can be reduced.
  • the rotating member includes a through-communication passage that allows communication between the port of the first member and the port of the second member.
  • one port of the second member is arranged at the same position in a circumferential direction centering on the rotation axis with respect to one port of the first member.
  • the through communication passage can be formed in a straight line. Therefore, the fluid flows more effectively and smoothly in the through-communicating passage, so that the pressure loss of the fluid can be reduced.
  • all the ports of the first member and/or all the ports of the second member are arranged within a range of 180° in a circumferential direction around the rotation axis; is preferred.
  • all the ports of the first member and/or the ports of all the second members are arranged in a concentrated manner in the circumferential direction. Therefore, it is possible to expand the location where the drive unit that drives the drive member can be placed without interfering with the port. Therefore, the degree of freedom in where the drive section is arranged is improved. Therefore, the drive unit can be arranged while suppressing the increase in size of the flow path switching device.
  • the rotating member includes a plurality of through passages that can communicate the ports of the first member and the ports of the second member.
  • fluid pressure loss can be reduced.
  • FIG. 2 is an external perspective view of the flow path switching device (in the case of a hexagonal valve) of the first embodiment. It is an exploded perspective view of the flow path switching device of a 1st embodiment (illustration of a drive part is omitted). It is a sectional view of the flow path switching device of a 1st embodiment (illustration of a drive part is omitted).
  • FIG. 3 is a top view of the rotating disk.
  • FIG. 3 is a top view of the fixed disk. It is a figure which shows typically the 1st flow path pattern in 1st Embodiment, and is a figure imaged when it sees from the upper part of a housing.
  • FIG. 5 is a diagram showing a first flow path pattern in the first embodiment, and is a cross section of the housing, rotating disk, and fixed disk in the axial direction (vertical direction in FIG. 3) (corresponding to the position shown by the dashed-dotted line in FIGS. 4 and 5).
  • FIG. 3 is a plan view showing a circumferential direction of a rotating disk or a stationary disk (a cross section when viewed radially outward of the rotating disk or fixed disk at a position where the rotating disk or the stationary disk is located).
  • 9 is a sectional view taken along line AA in FIG. 8.
  • FIG. 9 is a sectional view taken along line BB in FIG. 8.
  • FIG. 9 is a sectional view taken along line CC in FIG. 8.
  • FIG. This is a cross-sectional view taken along the line D-D of FIG. 8.
  • FIG. 7 is a diagram showing the second flow path pattern in the first embodiment, and is a diagram showing a circumferential cross section of the housing, the rotary disk, and the fixed disk in the axial direction expanded into a planar shape. It is a figure which shows the 1st flow-path pattern in 2nd Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk.
  • FIG. 17 is a sectional view taken along line EE in FIG. 16; 17 is a sectional view taken along line FF in FIG. 16.
  • FIG. 7 is a schematic diagram of switchable flow path patterns in the third embodiment.
  • FIG. 13 is a diagram showing a flow path pattern B in the third embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane.
  • 21 is a sectional view taken along line GG in FIG. 20.
  • FIG. 21 is a sectional view taken along line HH in FIG. 20.
  • FIG. FIG. 13 is a diagram showing a flow path pattern A in a fourth embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane.
  • 24 is a sectional view taken along line II in FIG. 23.
  • FIG. 24 is a sectional view taken along line JJ in FIG. 23.
  • FIGS. 13A to 13C are schematic diagrams of switchable flow path patterns in a fourth embodiment. It is a figure which shows the flow path pattern B in 4th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotary disk, and a stationary disk. 28 is a sectional view taken along line KK in FIG. 27. FIG. FIG. 27 is a sectional view taken along line LL in FIG. 27. It is a figure which shows the flow path pattern D in 5th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial direction cross section of a housing, a rotary disk, and a stationary disk in plane form.
  • FIG. 31 is a sectional view taken along line MM in FIG. 30.
  • FIG. This is a cross-sectional view taken along line N-N of Figure 30.
  • It is a schematic diagram of the flow path pattern which can be switched in 5th Embodiment. It is a figure which shows the flow path pattern A in 6th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial direction cross section of a housing, a rotary disk, and a stationary disk in plan form. This is a cross-sectional view taken along line O-O of Figure 34. 35 is a sectional view taken along line PP in FIG. 34.
  • FIG. It is a schematic diagram of the flow path pattern which can be switched in 6th Embodiment.
  • FIG. 39 is a sectional view taken along the line QQ in FIG. 38.
  • FIG. 39 is a sectional view taken along line RR in FIG. 38.
  • FIG. 42 is a sectional view taken along line SS in FIG. 41.
  • FIG. 42 is a cross-sectional view taken along the line TT in FIG. 41.
  • FIG. It is a schematic diagram of the flow path pattern which can be switched in 7th Embodiment.
  • FIG. 13 is a diagram showing a flow path pattern C in the seventh embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane.
  • 46 is a sectional view taken along the line U-U in FIG. 45.
  • FIG. 46 is a sectional view taken along line VV in FIG. 45.
  • FIG. 48 is a sectional view taken along the line WW in FIG. 48.
  • FIG. 48 is a sectional view taken along line XX in FIG. 48.
  • FIG. 23 is a diagram showing a flow path pattern C in the eighth embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane.
  • 52 is a sectional view taken along YY line in FIG. 51.
  • FIG. 52 is a sectional view taken along the Z-Z line in FIG. 51.
  • FIG. 56 is a sectional view taken along line AA in FIG. 55.
  • FIG. 56 is a BB-BB cross-sectional view in FIG. 55.
  • FIG. It is a figure which shows the flow path pattern B in 8th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial direction cross section of a housing, a rotary disk, and a stationary disk in a planar shape.
  • FIG. 59 is a sectional view taken along line CC-CC in FIG. 58; 59 is a cross-sectional view taken along the line DD-DD in FIG. 58.
  • FIG. It is a figure which shows the flow path pattern A in 8th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. This is a cross-sectional view taken along the line EE-EE in Figure 61.
  • 62 is a cross-sectional view taken along FF-FF in FIG. 61.
  • FIG. 65 is a cross-sectional view taken along line GG-GG in FIG. 64.
  • FIG. 65 is a sectional view taken along line HH in FIG. 64.
  • FIG. 68 is a sectional view taken along line II-II in FIG. 67.
  • FIG. 68 is a sectional view taken along the line JJ-JJ in FIG. 67.
  • it is a diagram showing the circumferential direction of the axial cross section of the housing, the rotating disk, and the fixed disk expanded into a planar shape.
  • FIG. 10 is a plan view showing the circumferential direction of the axial cross section of the housing, rotating disk, and fixed disk in the tenth embodiment.
  • FIG. 23 is a diagram showing an axial cross section of a housing, a rotating disk, and a fixed disk in an eleventh embodiment, the circumferential direction of which is developed into a planar shape.
  • FIG. 23 is a diagram showing a third flow path pattern in the twelfth embodiment, and is an image of the pattern as viewed from above the housing.
  • FIG. 23 is a diagram showing a fourth flow path pattern in the twelfth embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded into a planar shape in the circumferential direction. It is a figure which shows the 4th flow path pattern in 12th Embodiment, and is a figure imaged when it sees from the upper part of a housing. It is a figure which shows the 1st temperature control pattern of the fluid system using the flow-path switching device of 12th Embodiment. It is a figure which shows the 2nd temperature control pattern of the fluid system using the flow-path switching device of 12th Embodiment.
  • This section describes a flow path switching device that is an embodiment of the present disclosure.
  • the flow path switching device 1 includes a housing 11, a valve body portion 12, and a drive portion 13.
  • the housing 11 includes an inflow channel 20 through which fluid flows, and an outflow channel 30 through which fluid flows out.
  • the flow path switching device 1 is a hexagonal valve as an example, and the housing 11 includes three inlet flow paths 20 and three outflow flow paths 30.
  • the housing 11 includes three inlet flow paths 20 and three outflow flow paths 30.
  • a first inflow channel 21, a second inflow channel 22, and a third inflow channel 23 are provided.
  • a first outflow channel 31, a second outflow channel 32, and a third outflow channel 33 are provided.
  • the housing 11 is made of resin, for example.
  • the housing 11 is an example of the "first member" of the present disclosure.
  • the housing 11 also has a plurality of inlet ports 20a as flow path openings (i.e., ports) on the valve body portion 12 side of the plurality of inflow flow paths 20, as shown in FIGS. 2, 3, and 8, which will be described later.
  • the housing 11 includes a first inlet port 21a as a channel port on the valve body portion 12 side of the first inflow channel 21, and a second inlet port 21a as a channel port on the valve body portion 12 side of the second inflow channel 22.
  • a port 22a is provided, and a third inlet port 23a is provided as a flow path opening of the third inlet flow path 23 on the valve body portion 12 side.
  • the valve body portion 12 is provided inside the housing 11. As shown in FIGS. 2 and 3, the valve body portion 12 includes a plate-shaped rotating disk 40 that is rotationally driven and a plate-shaped fixed disk 50.
  • the rotating disk 40 and the fixed disk 50 are stacked in the direction of the central axis L (hereinafter simply referred to as the "axial direction") of the disk portion 41 of the rotating disk 40 and the disk portion 51 of the fixed disk 50, which will be described later. It is arranged as follows. That is, the housing 11, the rotating disk 40, and the fixed disk 50 are arranged in this order from above in the axial direction.
  • the central axis L is an example of a "rotation axis" in the present disclosure.
  • rotating disk 40 and the fixed disk 50 are made of resin, for example. Further, the rotating disk 40 is an example of the “rotating member” of the present disclosure, and the fixed disk 50 is an example of the "second member” of the present disclosure.
  • the rotating disk 40 includes a disk portion 41 and a rotating shaft portion .
  • the disk portion 41 is formed into a disk shape and includes a rotating disk communication path 60 that penetrates in the axial direction.
  • the rotating disk communication path 60 is a communication path that allows the inlet port 20a of the housing 11 to communicate with the outlet port 70a of the fixed disk 50, which will be described later.
  • the disk portion 41 includes three rotating disk communication paths 60. As shown in FIGS. 2 and 4, the three rotating disk communicating paths 60 include a first rotating disk communicating path 61, a second rotating disk communicating path 62, and a third rotating disk communicating path 63. Note that the rotating disk communication path 60 is an example of a "communication path" in the present disclosure.
  • the rotating shaft section 42 is connected to the disk section 41 at one end in the direction of its central axis, and connected to the drive section 13 at the other end.
  • the rotating shaft portion 42 is provided at the center of the disk portion 41 so that its central axis coincides with the center axis L of the disk portion 41.
  • the fixed disk 50 has a disk portion 51 and a cylindrical portion 52.
  • the disk portion 51 is formed into a disk shape and includes a fixed disk communication path 70 that penetrates in the axial direction.
  • the disc portion 51 includes three fixed disc communication paths 70.
  • the three fixed disk communication paths 70 include a first fixed disk communication path 71, a second fixed disk communication path 72, and a third fixed disk communication path 73.
  • the cylindrical portion 52 is connected to the disk portion 51 and is formed to extend axially from the disk portion 51 so as to surround the fixed disk communication passage 70.
  • three cylindrical portions 52 are formed to correspond to the three fixed disk communication passages 70, respectively.
  • the disk portion 51 of the fixed disk 50 has multiple outlet ports 70a as flow path openings on the valve body portion 12 side of the multiple fixed disk communication passages 70.
  • the disk portion 51 has a first outlet port 71a as a flow path opening on the valve body portion 12 side of the first fixed disk communication passage 71, a second outlet port 72a as a flow path opening on the valve body portion 12 side of the second fixed disk communication passage 72, and a third outlet port 73a as a flow path opening on the valve body portion 12 side of the third fixed disk communication passage 73.
  • the drive section 13 includes a motor (not shown) for providing rotational power to the rotating shaft section 42 of the rotating disk 40.
  • the flow path switching device 1 configured as described above forms a flow path through which fluid flows by combining the inflow flow path 20, the rotating disk communication path 60, and the fixed disk communication path 70 (outflow flow path 30).
  • the flow path switching device 1 is configured by rotating the rotary disk 40 by the drive unit 13 and switching the combination of the inlet port 20a of the housing 11 and the outlet port 70a of the fixed disk 50 which are communicated through the rotary disk communication path 60. , switch the flow path through which the fluid flows.
  • the rotational direction of the rotating disk 40 is at the first position, as shown in FIGS. 21a and the first outlet port 71a to connect the first inflow passage 21 and the first fixed disk communication passage 71 (specifically, the first outflow passage 31 via the first fixed disk communication passage 71). communicate.
  • the second inlet port 22a and the second outlet port 72a are communicated by the second rotating disk communication path 62, and the second inlet flow path 22 and the second fixed disk communication path 72 (more specifically, the second fixed disk communication path 72 is connected to the second inlet port 22a and the second outlet port 72a). It communicates with the second outflow channel 32) via the passage 72.
  • the third rotating disk communication path 63 communicates the third inlet port 23a and the third outlet port 73a, so that the third inlet flow path 23 and the third fixed disk communication path 73 (more specifically, the third fixed disk communication path 73 It communicates with the third outflow channel 33) via the passage 73.
  • the sealing member 81 is omitted for convenience of explanation.
  • a flow path can be formed.
  • the state of the first flow path pattern shown in FIG. 6 can be switched to the second flow path pattern shown in FIG. 7 by rotationally driving the rotary disk 40 by the drive unit 13.
  • the first flow path pattern is The first inlet port 21a and the second outlet port 72a are communicated with each other through the rotating disk communication path 61, and the first inlet flow path 21 and the second fixed disk communication path 72 (more specifically, via the second fixed disk communication path 72) are connected. and the second outflow channel 32). Further, the second inlet port 22a and the third outlet port 73a are communicated by the second rotating disk communication path 62, and the second inlet flow path 22 and the third fixed disk communication path 73 (specifically, the third fixed disk communication path 73) are connected to each other.
  • the third inlet port 23a and the first outlet port 71a are communicated with each other by the third rotating disk communication path 63, and the third inlet flow path 23 and the first fixed disk communication path 71 (specifically, the first fixed disk communication path 71) are connected to each other. It can be communicated with the first outflow channel 31) via the passage 71.
  • the flow path switching device 1 is not limited to a six-way valve, but can also be other multi-way valves such as a three-way valve or a four-way valve. Therefore, the housing 11 only needs to have at least one inlet port 20a (that is, the inflow passage 20), and the fixed disk 50 has a plurality of outlet ports 70a (that is, the housing 11 has a plurality of outflow passages 30). That's fine. Furthermore, the rotating disk 40 only needs to have at least one rotating disk communication path 60, and the fixed disk 50 only needs to have a plurality of fixed disk communication paths 70.
  • an elastic member is provided between the housing 11 and the disk portion 41 of the rotating disk 40 and between the disk portion 41 of the rotating disk 40 and the fixed disk 50.
  • a seal member 81 is provided.
  • this sealing member 81 is formed in a circumferential shape in the disc portion 41 of the rotating disk 40 so as to surround the periphery of the rotating disk communication passage 60 formed in the shape of a long hole. There is.
  • the sealing member 81 seals the flow path and prevents fluid from leaking from the rotating disk communication path 60 forming a part of the flow path.
  • the sealing member 81 is formed of, for example, a fluororesin (eg, Teflon (registered trademark)), rubber to which a fluororesin is attached, or a material other than fluororesin or rubber.
  • a fluororesin eg, Teflon (registered trademark)
  • rubber to which a fluororesin is attached or a material other than fluororesin or rubber.
  • a disk holding spring 82 is provided as an elastic member between the disk portion 51 of the fixed disk 50 and the housing 11.
  • a total of three disc retaining springs 82 are provided, each being disposed on each of the three cylindrical portions 52 of the fixed disc 50.
  • a lip seal 83 is provided between the cylindrical portion 52 of the fixed disk 50 and the housing 11 to ensure the sealing performance of the fixed disk communication path 70.
  • the inlet port 20a of the housing 11 and the outlet port 70a of the fixed disk 50 are arranged in a circumferential direction centered on the central axis L (circumferential direction shown by a dashed line in FIGS. 4 and 5, and as follows) , simply referred to as the "circumferential direction"). That is, the inlet port 20a and the outlet port 70a are arranged coaxially in the axial direction, and one outlet port 70a is arranged at the same position in the circumferential direction for one inlet port 20a.
  • the first inlet port 21a and the first outlet port 71a, the second inlet port 22a and the second outlet port 72a, and the third inlet port 23a and the third outlet port 73a are provided at the same position in the circumferential direction.
  • the rotating disk communication passage 60 has an inlet port 20a and an outlet port 70a disposed at the same position in the circumferential direction with respect to the inlet port 20a in the first flow path pattern. It communicates with.
  • the first rotating disk communication path 61 includes the first inlet port 21a and the first outlet port disposed at the same position in the circumferential direction with respect to the first inlet port 21a. 71a.
  • the second rotating disk communication path 62 communicates the second inlet port 22a with a second outlet port 72a disposed at the same position in the circumferential direction with respect to the second inlet port 22a.
  • the third rotating disk communication path 63 communicates the third inlet port 23a with a third outlet port 73a disposed at the same position in the circumferential direction with respect to the third inlet port 23a.
  • the flow path is configured in a straight shape, and the pressure loss of the fluid can be greatly reduced. That is, as shown by the arrow in FIG. 8, the fluid flows linearly from the inlet port 20a to the outlet port 70a via the rotary disk communication path 60, so that the pressure loss of the fluid can be greatly reduced.
  • the rotating disk communication passage 60 includes an inlet port 20a and an outlet port 70a disposed at a position different from the circumferential direction with respect to the inlet port 20a. It communicates with.
  • the first rotating disk communication path 61 has a first inlet port 21a and a second outlet port disposed at a different position in the circumferential direction with respect to the first inlet port 21a. 72a.
  • the second rotating disk communication path 62 communicates the second inlet port 22a with a third outlet port 73a disposed at a different position in the circumferential direction with respect to the second inlet port 22a.
  • the third rotating disk communication path 63 communicates the third inlet port 23a with a first outlet port 71a that is disposed at a different position in the circumferential direction with respect to the third inlet port 23a.
  • the flow path is configured at an angle, which reduces the pressure loss of the fluid. That is, as shown by the arrow in FIG. 13, the fluid flows at an angle from the inlet port 20a through the rotating disk connecting passage 60 toward the outlet port 70a, thereby reducing the pressure loss of the fluid.
  • the rotating disk communication path 60 is configured with two stages, including an upper communication path 60a and a lower communication path 60b. has been done.
  • the rotary disk communication passage 60 includes an inlet side R-shaped part 91 and an outlet side R-shaped part 101, each of which has an R-shaped inner wall.
  • the inlet side R-shaped portion 91 is formed at a position facing the opening 20b of the inlet port 20a in the second flow path pattern. That is, the inlet side R-shaped portion 91 is formed at a position facing each of the opening 21b of the first inlet port 21a, the opening 22b of the second inlet port 22a, and the opening 23b of the third inlet port 23a. ing.
  • the outlet side R-shaped portion 101 is formed at a position facing the opening 70b of the outlet port 70a in the second flow path pattern. That is, the outlet side R-shaped portion 101 is formed at a position facing each of the opening 71b of the first outlet port 71a, the opening 72b of the second outlet port 72a, and the opening 73b of the third outlet port 73a. ing.
  • the rotating disk communication path 60 includes the inlet side R-shaped portion 91 and the outlet side R-shaped portion 101.
  • the fluid flowing into the rotating disk communication path 60 from the inlet port 20a and the fluid flowing out from the rotating disk communication path 60 to the outlet port 70a are transferred to the inlet side R-shaped portion. 91 and the R-shape of the outlet-side R-shape portion 101 . Therefore, the fluid flows smoothly in the rotating disk communication path 60, so that the pressure loss of the fluid can be reduced.
  • the rotating disk communication passage 60 has an R-shaped portion 110 whose inner wall is formed in an R-shape.
  • the inlet side R-shaped portion 91 and the outlet side R-shaped portion 101 can be formed by a molding die that forms the upper stage communication passage 60a and a molding die that forms the lower stage communication passage 60b. Each molding die can be demolded from above and below.
  • the inlet port 20a and the outlet port 70a are provided at different positions in the circumferential direction. That is, the inlet port 20a and the outlet port 70a are not arranged coaxially in the axial direction. Note that FIGS. 14 and 15 only illustrate the first inlet port 21a of the three inlet ports 20a, and only the first outlet port 71a and the second outlet port 72a of the three outlet ports 70a. .
  • the first inlet port 21a and the first outlet port 71a are connected by the first rotating disk connection path 61, and the first inflow flow path 21 and the first fixed disk connection path 71 (more specifically, the first outflow flow path 31 via the first fixed disk connection path 71).
  • the second inlet port 22a and the second outlet port 72a are connected by the second rotating disk connection path 62, and the second inflow flow path 22 and the second fixed disk connection path 72 (more specifically, the second outflow flow path 32 via the second fixed disk connection path 72).
  • the third inlet port 23a and the third outlet port 73a are connected by the third rotating disk connection path 63, and the third inflow flow path 23 and the third fixed disk connection path 73 (more specifically, the third outflow flow path 33 via the third fixed disk connection path 73).
  • the first inlet port 21a and the second outlet port 72a are communicated with each other by the first rotating disk communication path 61, and the first inlet port 21 and the second outlet port 72a are connected to each other.
  • the two fixed disk communication passages 72 (more specifically, the second outflow passage 32 via the second fixed disk communication passages 72) are communicated with each other.
  • the second inlet port 22a and the third outlet port 73a are communicated with each other by the second rotating disk communication path 62, so that the second inlet flow path 22 and the third fixed disk communication path 73 ( Specifically, it is communicated with the third outflow flow path 33) via the third fixed disk communication path 73.
  • the third inlet port 23a and the first outlet port 71a are communicated with each other by the third rotating disk communication path 63, and the third inlet flow path 23 and the first fixed disk communication path 71 (specifically, the first fixed disk communication path 71) are connected to each other. It communicates with the first outflow channel 31) via the passage 71.
  • the rotating disk communication path 60 is constituted by two stages of communication paths, including an upper communication path 60a and a lower communication path 60b. ing.
  • the rotary disk communication path 60 includes an inlet side R-shaped portion 92 and an outlet side R-shaped portion 102, each of which has an R-shaped inner wall.
  • the inlet side R-shaped portion 92 is formed at a position facing the opening 20b of the inlet port 20a in the first flow path pattern and the second flow path pattern. There is. That is, the inlet side R-shaped portion 92 is formed at a position facing each of the opening 21b of the first inlet port 21a, the opening 22b of the second inlet port 22a, and the opening 23b of the third inlet port 23a. ing.
  • the outlet side R-shaped portion 102 is formed at a position facing the opening 70b of the outlet port 70a in the first flow path pattern and the second flow path pattern. There is. That is, the outlet side R-shaped portion 102 is formed at a position facing each of the opening 71b of the first outlet port 71a, the opening 72b of the second outlet port 72a, and the opening 73b of the third outlet port 73a. ing.
  • the rotating disk communication path 60 includes the inlet side R-shaped part 92 and the outlet side R-shaped part 102, both in the first flow path pattern and in the second flow path pattern,
  • the fluid flowing into the rotating disk communication path 60 from the inlet port 20a and the fluid flowing out from the rotating disk communication path 60 to the outlet port 70a flow along the R shapes of the inlet side R-shaped portion 92 and the outlet side R-shaped portion 102. It becomes easier. Therefore, the fluid flows smoothly in the rotating disk communication path 60, so that the pressure loss of the fluid can be reduced.
  • FIG. 16 shows an example in which the housing 11 is provided with three inlet ports 20a, and the fixed disk 50 is provided with three outlet ports 70a.
  • the rotating disk 40 includes a housing side communication path 111 and a fixed disk side communication path 112.
  • the housing-side communication path 111 is a communication path that is provided on the housing 11 side and allows the inlet ports 20a of adjacent housings 11 to communicate with each other.
  • the fixed disk side communication path 112 is a communication path that is provided on the fixed disk 50 side and allows the outlet ports 70a of adjacent fixed disks 50 to communicate with each other.
  • housing side communication path 111 is an example of the "first member side communication path" of the present disclosure.
  • fixed disk side communication path 112 is an example of the "second member side communication path” of the present disclosure.
  • housing side communication path 111 is formed along the circumferential direction of the rotating disk 40, as shown in FIG.
  • fixed disk side communication path 112 is formed along the circumferential direction of the rotating disk 40, as shown in FIG.
  • the housing-side communication passage 111 includes an R-shaped portion 121 whose inner wall is formed in an R-shape.
  • the fixed disk side communication path 112 includes an R-shaped portion 122 having an inner wall formed in an R-shape.
  • the R-shaped portion 121 of the housing-side communication path 111 is formed at a position facing the opening 20b of the inlet port 20a when the adjacent inlet ports 20a are communicated with each other through the housing-side communication path 111.
  • the R-shaped portion 122 of the fixed disk side communication path 112 is formed at a position opposite to the opening 70b of the outlet port 70a when the adjacent outlet ports 70a are communicated with each other through the fixed disk side communication path 112. .
  • the housing-side communication path 111 and the fixed disk-side communication path 112 are formed into flow paths that allow the fluid to make a U-turn so that it is easy to flow. curved shape). Therefore, when the inlet ports 20a of adjacent housings 11 are communicated with each other through the housing side communication passage 111, and the outlet ports 70a of adjacent fixed disks 50 are communicated with each other through the fixed disk side communication passage 112, the fluid has an R shape. It becomes easier to flow along the portion 121 and the rounded portion 122. Therefore, the fluid flows smoothly in the housing-side communication path 111 and the fixed disk-side communication path 112, so that the pressure loss of the fluid can be reduced.
  • the rotating disk 40 includes an upper and lower straight communication path 131 that allows communication between the inlet port 20a and the outlet port 70a.
  • the vertical straight communication path 131 is an example of a "through communication path" in the present disclosure.
  • the vertical straight communication path 131 is formed in a straight line in the direction of the central axis L of the rotating disk 40 (vertical direction in FIG. 16). Therefore, the fluid flows more effectively and smoothly in the vertical straight communication path 131, so that the pressure loss of the fluid can be reduced.
  • a seal member 81 is formed in a circumferential shape so as to surround the. Therefore, the housing side communication path 111, the fixed disk side communication path 112, and the vertical straight communication path 131 are sealed with each other by the seal member 81 and do not communicate with each other. Note that in FIG. 16 and the like, the sealing member 81 is omitted for convenience of explanation.
  • the first inlet port 21a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the vertical straight communication passage 131.
  • the housing side communication path 111 allows the second inlet port 22a and the third inlet port 23a to communicate with each other. Further, the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the vertical straight communication passage 131.
  • all the inlet ports 20a and all the outlet ports 70a are arranged in a concentrated manner in the circumferential direction. Therefore, the location where the drive unit 13 can be placed without interfering with the port can be expanded.
  • the drive unit 13 can be arranged within the area ⁇ as shown in FIG. Therefore, the degree of freedom in where the drive unit 13 is arranged is improved. Therefore, the drive unit 13 can be arranged while suppressing the increase in size of the flow path switching device 1.
  • the rotating disk 40 also has two housing side communication passages 111. These two housing side communication passages 111 are a first housing side communication passage 111-1 and a second housing side communication passage 111-2.
  • the rotating disk 40 includes two fixed disk side communication passages 112. These two fixed disk side communication paths 112 are a first fixed disk side communication path 112-1 and a second fixed disk side communication path 112-2.
  • flow path pattern A As shown in FIG. 26, it is possible to switch between two flow path patterns, that is, flow path pattern A and flow path pattern B.
  • the first inlet port 21a and the third inlet port 23a are communicated with each other by the first housing side communication path 111-1. Further, the first fixed disk side communication passage 112-1 allows the first outlet port 71a and the third outlet port 73a to communicate with each other. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the vertical straight communication passage 131.
  • the second inlet port 22a and the third inlet port 23a are communicated through the second housing side communication path 111-2. Further, the second fixed disk side communication passage 112-2 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the vertical straight communication passage 131.
  • all the inlet ports 20a or all the outlet ports 70a that is, only one of all the inlet ports 20a and all the outlet ports 70a is arranged within a range of 180° in the circumferential direction. may have been done.
  • This embodiment differs from the fourth embodiment in that by rotating the rotary disk 40, three flow path patterns, that is, flow path pattern A and flow path pattern B, are created by rotating the rotating disk 40. , it is possible to switch to flow path pattern D.
  • the rotating disk 40 includes a rotating disk communication path 60 that allows communication between the inlet port 20a and the outlet port 70a, similar to the first embodiment.
  • the rotating disk communication path 60 includes an inlet side R-shaped portion 91 and an outlet side R-shaped portion 101.
  • the housing side communication path 111 and the fixed disk side communication path 112 are arranged with their positions shifted in the circumferential direction (left and right direction in FIG. 34).
  • flow path pattern A As shown in FIG. 37, it is possible to switch between two flow path patterns, that is, flow path pattern A and flow path pattern B.
  • the first inlet port 21a and the second outlet port 72a are communicated with each other by the rotating disk communication path 60. Furthermore, the housing-side communication passage 111 allows the second inlet port 22a and the third inlet port 23a to communicate with each other. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112.
  • the third inlet port 23a and the first outlet port 71a are communicated with each other by the rotating disk communication path 60.
  • the housing-side communication passage 111 allows the first inlet port 21a and the second inlet port 22a to communicate with each other.
  • the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other.
  • the rotating disk 40 is provided with three vertical straight communication passages 131.
  • These three vertical straight communication passages 131 are a first vertical straight communication passage 131-1, a second vertical straight communication passage 131-2, and a third vertical straight communication passage 131-3.
  • the first inlet port 21a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112. Further, the second vertical straight communication passage 131-2 communicates the second inlet port 22a with the second outlet port 72a.
  • the first inlet port 21a and the first outlet port 71a are communicated with each other by the first vertical straight communication path 131-1. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the third vertical straight communication path 131-3. Note that the third inlet port 23a and the third outlet port 73a do not communicate with any port.
  • the second inlet port 22a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Further, the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the second vertical straight communication path 131-2.
  • the rotating disk 40 is provided with four vertical straight communication passages 131.
  • These four vertical straight communication passages 131 include a first vertical straight communication passage 131-1, a second vertical straight communication passage 131-2, a third vertical straight communication passage 131-3, and a fourth vertical straight communication passage 131. -4.
  • the first inlet port 21a and the first outlet port 71a are communicated with each other by the third vertical straight communication path 131-3. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by a fourth vertical straight communication path 131-4. Note that the third inlet port 23a and the third outlet port 73a do not communicate with any port.
  • the second inlet port 22a and the third inlet port 23a are communicated through the housing side communication path 111. Further, the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by a fourth vertical straight communication path 131-4.
  • the first inlet port 21a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the first vertical straight communication path 131-1.
  • the third inlet port 23a and the third outlet port 73a are communicated with each other by the first vertical straight communication path 131-1. Further, the second vertical straight communication passage 131-2 communicates the second inlet port 22a with the second outlet port 72a. Note that the first inlet port 21a and the first outlet port 71a do not communicate with any port.
  • the first inlet port 21a and the first outlet port 71a are communicated with each other by the first vertical straight communication path 131-1. Further, the third inlet port 23a and the third outlet port 73a are communicated with each other by the second vertical straight communication path 131-2. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the third vertical straight communication path 131-3.
  • the housing side communication passage 111 has a large round shape (curved shape) formed on its outer periphery (that is, the inner wall on the fixed disk 50 side) as a whole. 141.
  • the fixed disk side communication passage 112 includes a large R-shaped portion 142 formed in a large R shape (curved shape) as a whole on its outer periphery (that is, the inner wall on the housing 11 side). This allows the fluid to make a gentle U-turn and flow easily in the housing-side communication path 111 and the fixed disk-side communication path 112, so that the pressure loss of the fluid can be reduced.
  • a flow path adapter 151 is provided as a lid that covers the disk 50 side.
  • the outer periphery of the flow path adapter 151 is formed into a large round shape (curved shape). This makes it difficult for fluid flow to stagnate in the housing-side communication path 111 and the fixed disk-side communication path 112, thereby reducing fluid pressure loss.
  • a flow path adapter 151 is provided as a lid that covers the disk 50 side.
  • the corner portion of the flow path adapter 151 is formed into a small rounded shape (curved shape). This makes it difficult for fluid flow to stagnate in the housing-side communication path 111 and the fixed disk-side communication path 112, thereby reducing fluid pressure loss.
  • the flow path switching device 1 of this embodiment is an eight-way valve, and the housing 11 includes four inflow paths 20 and four outflow paths 30.
  • the four inflow channels 20 are a first inflow channel 21 , a second inflow channel 22 , a third inflow channel 23 , and a fourth inflow channel 24 .
  • the four outflow channels 30 are a first outflow channel 31 , a second outflow channel 32 , a third outflow channel 33 , and a fourth outflow channel 34 .
  • the housing 11 has four inlet ports 20a, a first inlet port 21a, a second inlet port 22a, and a third inlet port 23a, as well as a valve body of a fourth inflow channel 24.
  • a fourth inlet port 24a which is a flow path opening on the side of the section 12 (that is, the rotating disk 40), is provided.
  • the rotating disk 40 (specifically, the disk portion 41) includes four rotating disk communication paths 160.
  • the four rotating disk communicating paths 160 are a first rotating disk communicating path 161 , a second rotating disk communicating path 162 , a third rotating disk communicating path 163 , and a fourth rotating disk communicating path 164 .
  • the rotating disk communication path 160 is a communication path that allows the inlet port 20a of the housing 11 and the outlet port 70a of the fixed disk 50 to communicate with each other.
  • the fixed disk 50 (specifically, the disk portion 51) includes four fixed disk communication paths 70.
  • the four fixed disk communication paths 70 are a first fixed disk communication path 71 , a second fixed disk communication path 72 , a third fixed disk communication path 73 , and a fourth fixed disk communication path 74 .
  • the fixed disk 50 has four outlet ports 70a, including the first outlet port 71a, the second outlet port 72a, and the third outlet port 73a, as well as a fourth outlet port 74a, which is a flow path opening on the valve body portion 12 (i.e., the rotating disk 40) side of the fourth fixed disk communication passage 74.
  • the first outlet port 71a, the second outlet port 72a, the third outlet port 73a, and the fourth outlet port 74a are respectively connected to the first outlet flow path 31, the second outlet flow path 32, the third outlet flow path 33, and the fourth outlet flow path 34 provided in the housing 11.
  • a sealing member 81 is formed in a circumferential shape on the rotating disk 40 (specifically, the surface of the disk portion 41 on the housing 11 side and the surface on the fixed disk 50 side) so as to surround the periphery of the rotating disk communication path 160. There is. Therefore, the four rotating disk communication paths 160 are sealed with each other by the seal member 81 and do not communicate with each other. Note that in FIG. 73 and the like, the sealing member 81 is omitted for convenience of explanation.
  • the first rotary disk communication path 161 connects the first inlet port 21a and the fourth outlet. It communicates with the port 74a.
  • the second rotating disk communication path 162 allows the second inlet port 22a and the second outlet port 72a to communicate with each other.
  • the third rotating disk communication path 163 allows the third inlet port 23a and the third outlet port 73a to communicate with each other.
  • the fourth rotary disk communication path 164 allows the fourth inlet port 24a and the first outlet port 71a to communicate with each other.
  • FIG. 73 and FIGS. 75, 77, and 79 which will be described later, communication paths that communicate in the axial direction are shown by solid lines, and other communication paths that pass through the interior of the rotating disk 40 (for example, communication paths that communicate in the radial direction) are shown by solid lines.
  • the passages only the communication passages that actually communicate with each passage pattern are shown by broken lines.
  • the fourth inlet port 24a and the fourth outlet port 74a are communicated by the first rotating disk communication path 161.
  • the second rotating disk communication path 162 allows the second inlet port 22a and the second outlet port 72a to communicate with each other.
  • the third rotating disk communication path 163 allows the third inlet port 23a and the third outlet port 73a to communicate with each other.
  • the first inlet port 21a and the first outlet port 71a are communicated with each other by the fourth rotating disk communication path 164.
  • the third inlet port 23a and the second outlet port 72a are communicated by the first rotating disk communication path 161.
  • the second rotary disk communication path 162 allows the first inlet port 21a and the first outlet port 71a to communicate with each other.
  • the fourth inlet port 24a and the fourth outlet port 74a are communicated with each other by the third rotating disk communication path 163.
  • the second inlet port 22a and the third outlet port 73a are communicated with each other by the fourth rotating disk communication path 164.
  • the second rotating disk communication path 162 communicates the second inlet port 22a and the second outlet port 72a. Further, the third rotating disk communication path 163 allows the third inlet port 23a and the fourth outlet port 74a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the fourth rotating disk communication path 164. Note that the fourth inlet port 24a and the third outlet port 73a do not communicate with any port.
  • the rotating disk communication path 160 includes an R-shaped portion 171. This allows the fluid to easily flow along the R-shaped portion 171, similar to the inlet-side R-shaped portion 91 and the outlet-side R-shaped portion 101 of the first embodiment. Therefore, the fluid flows smoothly in the rotating disk communication path 160, so that the pressure loss of the fluid can be reduced.
  • the fluid system 201 using such a flow path switching device 1 is, for example, a system mounted on a vehicle, which adjusts the temperature of the battery 221 and the PCU 223. can be constructed.
  • This fluid system 201 can be switched to four temperature control patterns, as shown in FIGS. 81 to 84.
  • the fluid system 201 includes a first flow path 211, a second flow path 212, a third flow path 213, and a fourth flow path 214.
  • a battery 221 is provided in the first channel 211
  • a chiller 222 is provided in the second channel 212
  • a PCU 223 is provided in the third channel 213, and a radiator 224 is provided in the fourth channel 214.
  • a pump 231 is provided in the second flow path 212
  • a pump 232 is provided in the third flow path 213.
  • the flow path switching device 1 is set to the first flow path pattern shown in FIGS. 73 and 74.
  • fluid for example, water
  • the first temperature control pattern is used, for example, to warm up the battery 221 and heat the room temperature inside the vehicle during extremely low temperatures in winter.
  • the flow path switching device 1 is set to the second flow path pattern shown in FIGS. 75 and 76. This allows the fluid to be transferred to the first flow path 211 where the battery 221 is provided, the second flow path 212 where the chiller 222 is provided, the third flow path 213 where the PCU 223 is provided, and the fourth flow path where the radiator 224 is provided.
  • the water is circulated at 214.
  • Such a second temperature control pattern is used, for example, when heating the room temperature inside the vehicle in winter, or when dissipating heat from the radiator 224 in summer.
  • the flow path switching device 1 is set to the third flow path pattern shown in FIGS. 77 and 78.
  • the fluid is circulated through the first channel 211 where the battery 221 is provided and the second channel 212 where the chiller 222 is provided.
  • the fluid is circulated through the third flow path 213 where the PCU 223 is provided and the fourth flow path 214 where the radiator 224 is provided.
  • Such a third temperature control pattern is used, for example, when cooling the battery 221 or dissipating heat from the PCU during high temperatures in summer or when rapidly charging the battery 221.
  • the flow path switching device 1 is set to the fourth flow path pattern shown in FIGS. 79 and 80.
  • the fluid is circulated through the first channel 211 where the battery 221 is provided, the second channel 212 where the chiller 222 is provided, and the third channel 213 where the PCU 223 is provided.
  • Such a fourth temperature control pattern prevents overcooling by bypassing the radiator 224 and adjusts the temperature of the battery 221 and PCU 223 to an appropriate temperature, for example, when heating and cooling is not required in spring or autumn. sometimes used.
  • the housing 11 may be an example of the "second member” of the present disclosure
  • the fixed disk 50 may be an example of the "first member” of the present disclosure.
  • the housing 11 has three or four inlet ports 20a and the fixed disk 50 has three or four outlet ports 70a, the housing 11 has five or more inlet ports 20a.
  • the fixed disk 50 may include more than five exit ports 70a.
  • Flow path switching device 11 Housing 12 Valve body 13 Drive unit 20 Inflow path 20a Inlet port 20b Opening 21 First inflow path 21a First inlet port 21b Opening 22 Second inflow path 22a Second inlet port 22b Opening 23 Third inflow channel 23a Third inlet port 23b Opening 24 Fourth inflow channel 24a Fourth inlet port 30 Outflow channel 31 First outflow channel 32 Second outflow channel 33 Third outflow channel 34 Fourth outflow channel 40 Rotating disk 41 Disk portion 50 Fixed disk 51 Disk portion 60 Rotating disk communication path 61 First rotating disk communication path 62 Second rotating disk communication path 63 Third rotating disk communication path 70 Fixed disk communication path 70a Outlet port 70b Opening 71 First fixed disk communication path 71a First outlet port 71b Opening 72 Second fixed disk communication path 72a Second outlet port 72b Opening 73 Third fixed disk communication path 73a Third outlet port 73b Opening Part 74 Fourth fixed disk communication passage 74a Fourth outlet port 81 Seal members 91, 92 Inlet side R-shaped parts 101, 102 Outlet side R-shaped part 111 Housing side communication passage 111-1

Abstract

Provided is a flow-path switching device in which, in a cross-section in the rotational axis direction, a communication path comprises an R-shaped section in which an inner wall is formed in an R-shape. A first-member port and a second-member port are disposed at different locations in the circumferential direction with the center thereof being the rotational axis, and when said ports are communicated using the communication path, the R-shaped section is formed at a location that faces an opening of the first-member port and an opening of the second-member port.

Description

流路切替装置Flow path switching device
 本開示は、流体が流れる流路を切り替える流路切替装置に関する。 The present disclosure relates to a flow path switching device that switches a flow path through which a fluid flows.
 特許文献1には、複数の連通路を備える主弁体を回転させて、連通路により連通させるポートの組み合わせを切り換えることにより、流路を切り換える流路切換弁が開示されている。 Patent Document 1 discloses a flow path switching valve that switches flow paths by rotating a main valve body having a plurality of communication paths and switching the combination of ports communicated by the communication paths.
特開2019-49364号公報JP2019-49364A
 特許文献1に開示される流路切換弁において、主弁体の回転方向の位置を第2の回転位置にしたときに、2つのポートを連通させる連通路の形状がUの字型となっており、流体は略直角方向に曲がって流れるので、流体の圧損が大きくなってしまう。そして、特許文献1には、このような流体の圧損を低減しようとする対策は何ら開示されていない。 In the flow path switching valve disclosed in Patent Document 1, when the rotational position of the main valve body is set to the second rotational position, the shape of the communication passage that connects the two ports is U-shaped, and the fluid flows by bending at a substantially right angle, resulting in large pressure loss of the fluid. Furthermore, Patent Document 1 does not disclose any measures to reduce this pressure loss of the fluid.
 そこで、本開示は上記した課題を解決するためになされたものであり、流体の圧損を低減できる流路切替装置を提供することを目的とする。 Therefore, the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a flow path switching device that can reduce fluid pressure loss.
 上記課題を解決するためになされた本開示の一形態は、第1部材と、回転軸を中心に回転する回転部材と、第2部材と、を有し、前記回転軸の方向について、前記第1部材、前記回転部材、前記第2部材の順に配置されており、前記第1部材は、ポートを少なくとも1つ備え、前記第2部材は、ポートを複数備え、前記回転部材は、前記第1部材のポートと前記第2部材のポートとを連通させる連通路を備え、前記回転部材が回転して、前記連通路により連通させる前記第1部材のポートと前記第2部材のポートとの組み合わせを切り替えることにより、流体が流れる流路を切り替える流路切替装置において、前記回転軸の方向の断面にて、前記連通路は、内壁がR形状に形成されるR形状部を備え、前記R形状部は、前記連通路により前記回転軸を中心とする円周方向の異なる位置に配置される前記第1部材のポートと前記第2部材のポートとを連通させるときに、前記第1部材のポートの開口部と前記第2部材のポートの開口部のそれぞれに対向する位置に形成されていること、を特徴とする。 One form of the present disclosure made to solve the above problems includes a first member, a rotating member that rotates around a rotating shaft, and a second member, and the direction of the rotating shaft is set in the direction of the rotating shaft. 1 member, the rotating member, and the second member are arranged in this order, the first member includes at least one port, the second member includes a plurality of ports, and the rotating member A communication path is provided for communicating a port of the member with a port of the second member, and the rotary member rotates to establish a combination of the port of the first member and the port of the second member that are communicated by the communication path. In the flow path switching device that switches a flow path through which fluid flows by switching, in a cross section in the direction of the rotation axis, the communicating path includes an R-shaped portion having an inner wall formed in an R-shape, and the R-shaped portion When the port of the first member and the port of the second member, which are arranged at different positions in the circumferential direction around the rotation axis, communicate with each other through the communication path, the port of the first member It is characterized in that it is formed at a position facing each of the opening and the opening of the port of the second member.
 この態様によれば、連通路により回転軸を中心とする円周方向の異なる位置に配置される第1部材のポートと第2部材のポートとを連通させるときに、流体が、R形状部に沿って流れやすくなる。そのため、連通路において、流体が滑らかに流れるので、流体の圧損を低減できる。 According to this aspect, when the port of the first member and the port of the second member, which are arranged at different positions in the circumferential direction around the rotation axis, communicate with each other through the communication path, the fluid flows into the R-shaped portion. It will flow easier along the way. Therefore, the fluid flows smoothly in the communication path, so that the pressure loss of the fluid can be reduced.
 上記の態様においては、1つの前記第1部材のポートに対して1つの前記第2部材のポートが前記円周方向の同じ位置に配置されており、前記連通路は、前記回転部材の回転方向の位置が第1の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の同じ位置に配置される前記第2部材のポートと、を連通させ、前記回転部材の回転方向の位置が前記第1の位置から所定の角度回転した第2の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の異なる位置に配置される前記第2部材のポートと、を連通させること、が好ましい。 In the above aspect, it is preferable that one port of the second member is arranged at the same position in the circumferential direction relative to one port of the first member, and that the communication passage communicates the port of the first member with the port of the second member arranged at the same position in the circumferential direction relative to the port of the first member when the rotational position of the rotating member is at a first position, and communicates the port of the first member with the port of the second member arranged at a different position in the circumferential direction relative to the port of the first member when the rotational position of the rotating member is at a second position rotated a predetermined angle from the first position.
 この態様によれば、回転部材の回転方向の位置が第1の位置であるときに、流体は直線状に流れるので、流体の圧損を非常に低減できる。また、回転部材の回転方向の位置が第2の位置であるときに、流体は第1部材のポートから第2部材のポートへ向かって斜めに流れるので、流体の圧損を低減できる。 According to this aspect, when the rotating member is in the first position in the rotational direction, the fluid flows in a straight line, so the pressure loss of the fluid can be greatly reduced. Further, when the rotating member is at the second position in the rotational direction, the fluid flows obliquely from the port of the first member to the port of the second member, so that pressure loss of the fluid can be reduced.
 上記課題を解決するためになされた本開示の他の形態は、第1部材と、回転軸を中心に回転する回転部材と、第2部材と、を有し、前記回転軸の方向について、前記第1部材、前記回転部材、前記第2部材の順に配置されており、前記第1部材は、ポートを少なくとも1つ備え、前記第2部材は、ポートを複数備え、前記回転部材は、前記第1部材のポートと前記第2部材のポートとを連通させる連通路を備え、前記回転部材が回転して、前記連通路により連通させる前記第1部材のポートと前記第2部材のポートとの組み合わせを切り替えることにより、流体が流れる流路を切り替える流路切替装置において、1つの前記第1部材のポートに対して1つの前記第2部材のポートが前記回転軸を中心とする円周方向の同じ位置に配置されており、前記連通路は、前記回転部材の回転方向の位置が第1の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の同じ位置に配置される前記第2部材のポートと、を連通させ、前記回転部材の回転方向の位置が前記第1の位置から所定の角度回転した第2の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の異なる位置に配置される前記第2部材のポートと、を連通させること、を特徴とする。 Another form of the present disclosure made to solve the above problem includes a first member, a rotating member that rotates around a rotational axis, and a second member, and the direction of the rotational axis is set in the direction of the rotational axis. A first member, the rotating member, and the second member are arranged in this order, the first member includes at least one port, the second member includes a plurality of ports, and the rotating member A combination of a communication path that communicates a port of one member with a port of the second member, and a port of the first member and a port of the second member that communicate with each other through the communication path when the rotating member rotates. In a flow path switching device that switches a flow path through which a fluid flows, one port of the second member has the same number of ports in the circumferential direction centering on the rotation axis for one port of the first member. The communication path is arranged at a position in which the communication path is connected to the port of the first member and the circumference relative to the port of the first member when the rotational direction position of the rotary member is a first position. and a port of the second member disposed at the same position in the direction, and when the position of the rotational member in the rotational direction is a second position rotated by a predetermined angle from the first position, the It is characterized in that a port of the first member and a port of the second member disposed at a different position in the circumferential direction with respect to the port of the first member are communicated with each other.
 この態様によれば、回転部材の回転方向の位置が第1の位置であるときに、流体は直線状に流れるので、流体の圧損を非常に低減できる。また、回転部材の回転方向の位置が第2の位置であるときに、流体は第1部材のポートから第2部材のポートへ向かって斜めに流れるので、流体の圧損を低減できる。 According to this aspect, when the rotating member is in the first position in the rotational direction, the fluid flows in a straight line, so the pressure loss of the fluid can be greatly reduced. Further, when the rotating member is at the second position in the rotational direction, the fluid flows obliquely from the port of the first member to the port of the second member, so that the pressure loss of the fluid can be reduced.
 上記課題を解決するためになされた本開示の他の形態は、第1部材と、回転軸を中心に回転する回転部材と、第2部材と、を有し、前記回転軸の方向について、前記第1部材、前記回転部材、前記第2部材の順に配置されており、前記第1部材と前記第2部材は、それぞれ、ポートを3つ以上備え、前記回転部材を回転させて、連通させるポートの組み合わせを切り替えることにより、流路を切り替える流路切替装置において、前記回転軸の方向の断面にて、前記回転部材は、前記第1部材側に設けられ、隣接する前記第1部材のポート同士を連通可能な第1部材側連通路と、前記第2部材側に設けられ、隣接する前記第2部材のポート同士を連通可能な第2部材側連通路と、を備え、前記第1部材側連通路と前記第2部材側連通路は、それぞれ、内壁がR形状に形成されるR形状部を備え、前記第1部材側連通路の前記R形状部は、隣接する前記第1部材のポート同士を前記第1部材側連通路により連通させるときに、前記第1部材のポートの開口部に対向する位置に形成され、前記第2部材側連通路の前記R形状部は、隣接する前記第2部材のポート同士を前記第2部材側連通路により連通させるときに、前記第2部材のポートの開口部に対向する位置に形成されていること、を特徴とする。 Another form of the present disclosure made to solve the above problem includes a first member, a rotating member that rotates around a rotational axis, and a second member, and the direction of the rotational axis is set in the direction of the rotational axis. A first member, the rotating member, and the second member are arranged in this order, and each of the first member and the second member is provided with three or more ports, and the ports are connected to each other by rotating the rotating member. In a flow path switching device that switches a flow path by switching a combination of and a second member side communication path provided on the second member side and capable of communicating ports of adjacent second members, the first member side The communication path and the second member side communication path each include an R-shaped portion having an R-shaped inner wall, and the R-shaped portion of the first member side communication path connects to the port of the adjacent first member. When the first member side communication passages communicate with each other, the rounded portions of the second member side communication passages are formed at positions facing the openings of the ports of the first member, and the rounded portions of the second member side communication passages are When the ports of the two members are communicated with each other through the second member side communication path, the second member is formed at a position facing the opening of the port of the second member.
 この態様によれば、隣接する第1部材のポート同士を第1部材側連通路により連通させ、かつ、隣接する第2部材のポート同士を第2部材側連通路により連通させるときに、流体がR形状部に沿って流れやすくなる。したがって、第1部材側連通路や第2部材側連通路において、流体が滑らかに流れるので、流体の圧損を低減できる。 According to this aspect, when the ports of adjacent first members are communicated with each other through the first member side communication path and the ports of adjacent second members are communicated with each other through the second member side communication path, the fluid is It becomes easier to flow along the R-shaped portion. Therefore, the fluid flows smoothly in the first member-side communication path and the second member-side communication path, so that the pressure loss of the fluid can be reduced.
 上記の態様においては、前記回転部材は、前記第1部材のポートと前記第2部材のポートを連通可能な貫通連通路を備えていること、が好ましい。 In the above aspect, it is preferable that the rotating member includes a through-communication passage that allows communication between the port of the first member and the port of the second member.
 この態様によれば、第1部材側連通路や第2部材側連通路に加えて貫通連通路を備えていることにより、様々な仕様の流路を形成できる。 According to this aspect, by providing the through communication passage in addition to the first member side communication passage and the second member side communication passage, flow passages with various specifications can be formed.
 上記の態様においては、1つの前記第1部材のポートに対して1つの前記第2部材のポートが前記回転軸を中心とする円周方向の同じ位置に配置されていること、が好ましい。 In the above aspect, it is preferable that one port of the second member is arranged at the same position in a circumferential direction centering on the rotation axis with respect to one port of the first member.
 この態様によれば、貫通連通路を直線状に形成することができる。そのため、貫通連通路において、より効果的に、流体が滑らかに流れるので、流体の圧損を低減できる。 According to this aspect, the through communication passage can be formed in a straight line. Therefore, the fluid flows more effectively and smoothly in the through-communicating passage, so that the pressure loss of the fluid can be reduced.
 上記の態様においては、全ての前記第1部材のポートおよび/または全ての前記第2部材のポートは、前記回転軸を中心とする円周方向の180°の範囲内に配置されていること、が好ましい。 In the above aspect, all the ports of the first member and/or all the ports of the second member are arranged within a range of 180° in a circumferential direction around the rotation axis; is preferred.
 この態様によれば、全ての第1部材のポートおよび/または全ての第2部材のポートを、円周方向について、集約して配置している。そのため、駆動部材を駆動させる駆動部をポートに干渉しないようにして配置できる場所を広げることができる。したがって、駆動部が配置される場所の自由度が向上する。ゆえに、流路切替装置の体格の大型化を抑制しつつ、駆動部を配置できる。 According to this aspect, all the ports of the first member and/or the ports of all the second members are arranged in a concentrated manner in the circumferential direction. Therefore, it is possible to expand the location where the drive unit that drives the drive member can be placed without interfering with the port. Therefore, the degree of freedom in where the drive section is arranged is improved. Therefore, the drive unit can be arranged while suppressing the increase in size of the flow path switching device.
 上記の態様においては、前記回転部材は、前記第1部材のポートと前記第2部材のポートを連通可能な貫通連通路を複数備えていること、が好ましい。 In the above aspect, it is preferable that the rotating member includes a plurality of through passages that can communicate the ports of the first member and the ports of the second member.
 この態様によれば、第1部材のポートと第2部材のポートを連通させる流路パターンをより多く形成することができるので、様々な仕様の流路を形成できる。 According to this aspect, it is possible to form more flow path patterns that communicate the ports of the first member and the ports of the second member, so flow paths with various specifications can be formed.
 本開示の流路切替装置によれば、流体の圧損を低減できる。 According to the flow path switching device of the present disclosure, fluid pressure loss can be reduced.
第1実施形態の流路切替装置(六方弁である場合)の外観斜視図である。FIG. 2 is an external perspective view of the flow path switching device (in the case of a hexagonal valve) of the first embodiment. 第1実施形態の流路切替装置の分解斜視図である(駆動部は図示を省略している)。It is an exploded perspective view of the flow path switching device of a 1st embodiment (illustration of a drive part is omitted). 第1実施形態の流路切替装置の断面図である(駆動部は図示を省略している)。It is a sectional view of the flow path switching device of a 1st embodiment (illustration of a drive part is omitted). 回転ディスクの上面図である。FIG. 3 is a top view of the rotating disk. 固定ディスクの上面図である。FIG. 3 is a top view of the fixed disk. 第1実施形態における第1の流路パターンを模式的に示す図であり、ハウジングの上方から見たときをイメージした図である。It is a figure which shows typically the 1st flow path pattern in 1st Embodiment, and is a figure imaged when it sees from the upper part of a housing. 第1実施形態における第2の流路パターンを模式的に示す図であり、ハウジングの上方から見たときをイメージした図である。It is a figure which shows typically the 2nd flow path pattern in 1st Embodiment, and is a figure imaged when it sees from the upper part of a housing. 第1実施形態における第1の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向(図3の上下方向)の断面(図4と図5における一点鎖線で示す位置に相当する位置で回転ディスクや固定ディスクの径方向の外側に向かって見たときの断面)について、その円周方向を平面状に展開して示した図である。FIG. 5 is a diagram showing a first flow path pattern in the first embodiment, and is a cross section of the housing, rotating disk, and fixed disk in the axial direction (vertical direction in FIG. 3) (corresponding to the position shown by the dashed-dotted line in FIGS. 4 and 5). FIG. 3 is a plan view showing a circumferential direction of a rotating disk or a stationary disk (a cross section when viewed radially outward of the rotating disk or fixed disk at a position where the rotating disk or the stationary disk is located). 図8のA-A断面図である。9 is a sectional view taken along line AA in FIG. 8. FIG. 図8のB-B断面図である。9 is a sectional view taken along line BB in FIG. 8. FIG. 図8のC-C断面図である。9 is a sectional view taken along line CC in FIG. 8. FIG. 図8のD-D断面図である。This is a cross-sectional view taken along the line D-D of FIG. 8. 第1実施形態における第2の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向の断面を平面状に展開して示した図である。FIG. 7 is a diagram showing the second flow path pattern in the first embodiment, and is a diagram showing a circumferential cross section of the housing, the rotary disk, and the fixed disk in the axial direction expanded into a planar shape. 第2実施形態における第1の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the 1st flow-path pattern in 2nd Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 第2実施形態における第2の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the 2nd flow path pattern in 2nd Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 第3実施形態における流路パターンAを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern A in 3rd Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 図16のE-E断面図である。FIG. 17 is a sectional view taken along line EE in FIG. 16; 図16のF-F断面図である。17 is a sectional view taken along line FF in FIG. 16. 第3実施形態にて切替え可能な流路パターンの模式図である。FIG. 7 is a schematic diagram of switchable flow path patterns in the third embodiment. 第3実施形態における流路パターンBを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。FIG. 13 is a diagram showing a flow path pattern B in the third embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane. 図20のG-G断面図である。21 is a sectional view taken along line GG in FIG. 20. FIG. 図20のH―H断面図である。21 is a sectional view taken along line HH in FIG. 20. FIG. 第4実施形態における流路パターンAを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。FIG. 13 is a diagram showing a flow path pattern A in a fourth embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane. 図23のI-I断面図である。24 is a sectional view taken along line II in FIG. 23. FIG. 図23のJ-J断面図である。24 is a sectional view taken along line JJ in FIG. 23. FIG. 第4実施形態にて切替え可能な流路パターンの模式図である。13A to 13C are schematic diagrams of switchable flow path patterns in a fourth embodiment. 第4実施形態における流路パターンBを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern B in 4th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotary disk, and a stationary disk. 図27のK-K断面図である。28 is a sectional view taken along line KK in FIG. 27. FIG. 図27のL-L断面図である。FIG. 27 is a sectional view taken along line LL in FIG. 27. 第5実施形態における流路パターンDを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern D in 5th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial direction cross section of a housing, a rotary disk, and a stationary disk in plane form. 図30のM-M断面図である。31 is a sectional view taken along line MM in FIG. 30. FIG. 図30のN-N断面図である。This is a cross-sectional view taken along line N-N of Figure 30. 第5実施形態にて切替え可能な流路パターンの模式図である。It is a schematic diagram of the flow path pattern which can be switched in 5th Embodiment. 第6実施形態における流路パターンAを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern A in 6th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial direction cross section of a housing, a rotary disk, and a stationary disk in plan form. 図34のO-O断面図である。This is a cross-sectional view taken along line O-O of Figure 34. 図34のP-P断面図である。35 is a sectional view taken along line PP in FIG. 34. FIG. 第6実施形態にて切替え可能な流路パターンの模式図である。It is a schematic diagram of the flow path pattern which can be switched in 6th Embodiment. 第6実施形態における流路パターンBを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern B in 6th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 図38のQ-Q断面図である。39 is a sectional view taken along the line QQ in FIG. 38. FIG. 図38のR-R断面図である。39 is a sectional view taken along line RR in FIG. 38. FIG. 第7実施形態における流路パターンAを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern A in 7th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial cross section of a housing, a rotary disk, and a stationary disk in a planar shape. 図41のS-S断面図である。42 is a sectional view taken along line SS in FIG. 41. FIG. 図41のT-T断面図である。42 is a cross-sectional view taken along the line TT in FIG. 41. FIG. 第7実施形態にて切替え可能な流路パターンの模式図である。It is a schematic diagram of the flow path pattern which can be switched in 7th Embodiment. 第7実施形態における流路パターンCを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。FIG. 13 is a diagram showing a flow path pattern C in the seventh embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane. 図45のU-U断面図である。46 is a sectional view taken along the line U-U in FIG. 45. FIG. 図45のV-V断面図である。46 is a sectional view taken along line VV in FIG. 45. FIG. 第7実施形態における流路パターンBを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern B in 7th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 図48のW-W断面図である。FIG. 48 is a sectional view taken along the line WW in FIG. 48. 図48のX-X断面図である。FIG. 48 is a sectional view taken along line XX in FIG. 48. 第8実施形態における流路パターンCを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。FIG. 23 is a diagram showing a flow path pattern C in the eighth embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded in the circumferential direction onto a plane. 図51のY-Y断面図である。52 is a sectional view taken along YY line in FIG. 51. FIG. 図51のZ-Z断面図である。52 is a sectional view taken along the Z-Z line in FIG. 51. FIG. 第8実施形態にて切替え可能な流路パターンの模式図である。It is a schematic diagram of the flow path pattern which can be switched in 8th Embodiment. 第8実施形態における流路パターンDを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern D in 8th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial cross section of a housing, a rotary disk, and a stationary disk in plane form. 図55のAA-AA断面図である。56 is a sectional view taken along line AA in FIG. 55. FIG. 図55のBB-BB断面図である。56 is a BB-BB cross-sectional view in FIG. 55. FIG. 第8実施形態における流路パターンBを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern B in 8th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial direction cross section of a housing, a rotary disk, and a stationary disk in a planar shape. 図58のCC-CC断面図である。FIG. 59 is a sectional view taken along line CC-CC in FIG. 58; 図58のDD-DD断面図である。59 is a cross-sectional view taken along the line DD-DD in FIG. 58. FIG. 第8実施形態における流路パターンAを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern A in 8th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 図61のEE-EE断面図である。This is a cross-sectional view taken along the line EE-EE in Figure 61. 図61のFF-FF断面図である。62 is a cross-sectional view taken along FF-FF in FIG. 61. FIG. 第8実施形態における流路パターンEを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern E in 8th Embodiment, and is the figure which expanded and showed the circumferential direction about the axial direction cross section of a housing, a rotating disk, and a stationary disk in planar form. 図64のGG-GG断面図である。65 is a cross-sectional view taken along line GG-GG in FIG. 64. FIG. 図64のHH-HH断面図である。65 is a sectional view taken along line HH in FIG. 64. FIG. 第8実施形態における流路パターンFを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the flow path pattern F in 8th Embodiment, and is the figure which expanded the circumferential direction in the plane shape about the axial cross section of a housing, a rotary disk, and a stationary disk. 図67のII-II断面図である。68 is a sectional view taken along line II-II in FIG. 67. FIG. 図67のJJ-JJ断面図である。68 is a sectional view taken along the line JJ-JJ in FIG. 67. 第9実施形態において、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。In the ninth embodiment, it is a diagram showing the circumferential direction of the axial cross section of the housing, the rotating disk, and the fixed disk expanded into a planar shape. 第10実施形態において、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。FIG. 10 is a plan view showing the circumferential direction of the axial cross section of the housing, rotating disk, and fixed disk in the tenth embodiment. 第11実施形態において、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。FIG. 23 is a diagram showing an axial cross section of a housing, a rotating disk, and a fixed disk in an eleventh embodiment, the circumferential direction of which is developed into a planar shape. 第12実施形態における第1の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the 1st flow-path pattern in 12th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotary disk, and a stationary disk. 第12実施形態における第1の流路パターンを示す図であり、ハウジングの上方から見たときをイメージした図である。It is a figure which shows the 1st flow path pattern in 12th Embodiment, and is a figure imaged when it sees from the upper part of a housing. 第12実施形態における第2の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the 2nd flow path pattern in 12th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 第12実施形態における第2の流路パターンを示す図であり、ハウジングの上方から見たときをイメージした図である。It is a figure which shows the 2nd flow path pattern in 12th Embodiment, and is a figure imaged when it sees from the upper part of a housing. 第12実施形態における第3の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。It is a figure which shows the 3rd flow path pattern in 12th Embodiment, and is the figure which expanded the circumferential direction in the planar shape about the axial cross section of a housing, a rotating disk, and a stationary disk. 第12実施形態における第3の流路パターンを示す図であり、ハウジングの上方から見たときをイメージした図である。FIG. 23 is a diagram showing a third flow path pattern in the twelfth embodiment, and is an image of the pattern as viewed from above the housing. 第12実施形態における第4の流路パターンを示す図であり、ハウジングと回転ディスクと固定ディスクの軸方向の断面について、その円周方向を平面状に展開して示した図である。FIG. 23 is a diagram showing a fourth flow path pattern in the twelfth embodiment, in which the axial cross section of the housing, the rotating disk, and the fixed disk is expanded into a planar shape in the circumferential direction. 第12実施形態における第4の流路パターンを示す図であり、ハウジングの上方から見たときをイメージした図である。It is a figure which shows the 4th flow path pattern in 12th Embodiment, and is a figure imaged when it sees from the upper part of a housing. 第12実施形態の流路切替装置を用いた流体システムの第1の温調パターンを示す図である。It is a figure which shows the 1st temperature control pattern of the fluid system using the flow-path switching device of 12th Embodiment. 第12実施形態の流路切替装置を用いた流体システムの第2の温調パターンを示す図である。It is a figure which shows the 2nd temperature control pattern of the fluid system using the flow-path switching device of 12th Embodiment. 第12実施形態の流路切替装置を用いた流体システムの第3の温調パターンを示す図である。It is a figure which shows the 3rd temperature control pattern of the fluid system using the flow-path switching device of 12th Embodiment. 第12実施形態の流路切替装置を用いた流体システムの第4の温調パターンを示す図である。It is a figure which shows the 4th temperature control pattern of the fluid system using the flow-path switching device of 12th Embodiment.
 本開示の実施形態である流路切替装置について説明する。 This section describes a flow path switching device that is an embodiment of the present disclosure.
<第1実施形態>
 まず、第1実施形態について説明する。
First Embodiment
First, the first embodiment will be described.
(流路切替装置の全体の概要説明)
 まず、本実施形態の流路切替装置1の全体の概要について説明する。
(Explanation of the overall outline of the flow path switching device)
First, the overall outline of the flow path switching device 1 of this embodiment will be explained.
 図1~図3に示すように、流路切替装置1は、ハウジング11と、弁体部12と、駆動部13を有する。 As shown in FIGS. 1 to 3, the flow path switching device 1 includes a housing 11, a valve body portion 12, and a drive portion 13.
 ハウジング11は、流体が流入する流入流路20と、流体が流出する流出流路30と、を備えている。ここでは、流路切替装置1は、一例として六方弁であり、ハウジング11は、3つの流入流路20と3つの流出流路30とを備えている。そして、3つの流入流路20として、第1流入流路21と第2流入流路22と第3流入流路23とが設けられている。また、3つの流出流路30として、第1流出流路31と第2流出流路32と第3流出流路33とが設けられている。なお、ハウジング11は、例えば樹脂により形成されている。また、ハウジング11は、本開示の「第1部材」の一例である。 The housing 11 includes an inflow channel 20 through which fluid flows, and an outflow channel 30 through which fluid flows out. Here, the flow path switching device 1 is a hexagonal valve as an example, and the housing 11 includes three inlet flow paths 20 and three outflow flow paths 30. As the three inflow channels 20, a first inflow channel 21, a second inflow channel 22, and a third inflow channel 23 are provided. Further, as the three outflow channels 30, a first outflow channel 31, a second outflow channel 32, and a third outflow channel 33 are provided. Note that the housing 11 is made of resin, for example. Moreover, the housing 11 is an example of the "first member" of the present disclosure.
 また、ハウジング11は、図2や図3や後述する図8などに示すように、複数の流入流路20の弁体部12側の流路口(すなわち、ポート)として、複数の入口ポート20aを備えている。詳しくは、ハウジング11は、第1流入流路21の弁体部12側の流路口として第1入口ポート21aを備え、第2流入流路22の弁体部12側の流路口として第2入口ポート22aを備え、第3流入流路23の弁体部12側の流路口として第3入口ポート23aを備えている。 The housing 11 also has a plurality of inlet ports 20a as flow path openings (i.e., ports) on the valve body portion 12 side of the plurality of inflow flow paths 20, as shown in FIGS. 2, 3, and 8, which will be described later. We are prepared. Specifically, the housing 11 includes a first inlet port 21a as a channel port on the valve body portion 12 side of the first inflow channel 21, and a second inlet port 21a as a channel port on the valve body portion 12 side of the second inflow channel 22. A port 22a is provided, and a third inlet port 23a is provided as a flow path opening of the third inlet flow path 23 on the valve body portion 12 side.
 弁体部12は、ハウジング11の内部に設けられている。この弁体部12は、図2と図3に示すように、回転駆動する板状の回転ディスク40と、板状の固定ディスク50と、を備えている。そして、回転ディスク40と固定ディスク50は、後述する回転ディスク40の円板部41や固定ディスク50の円板部51の中心軸Lの方向(以下、単に「軸方向」という。)に積層して配置されている。すなわち、軸方向について、上方から、ハウジング11、回転ディスク40、固定ディスク50の順に配置されている。なお、中心軸Lは、本開示の「回転軸」の一例である。 The valve body portion 12 is provided inside the housing 11. As shown in FIGS. 2 and 3, the valve body portion 12 includes a plate-shaped rotating disk 40 that is rotationally driven and a plate-shaped fixed disk 50. The rotating disk 40 and the fixed disk 50 are stacked in the direction of the central axis L (hereinafter simply referred to as the "axial direction") of the disk portion 41 of the rotating disk 40 and the disk portion 51 of the fixed disk 50, which will be described later. It is arranged as follows. That is, the housing 11, the rotating disk 40, and the fixed disk 50 are arranged in this order from above in the axial direction. Note that the central axis L is an example of a "rotation axis" in the present disclosure.
 なお、回転ディスク40と固定ディスク50は、例えば樹脂により形成されている。また、回転ディスク40は本開示の「回転部材」の一例であり、固定ディスク50は本開示の「第2部材」の一例である。 Note that the rotating disk 40 and the fixed disk 50 are made of resin, for example. Further, the rotating disk 40 is an example of the "rotating member" of the present disclosure, and the fixed disk 50 is an example of the "second member" of the present disclosure.
 図2~図4に示すように、回転ディスク40は、円板部41と回転軸部42を備えている。 As shown in FIGS. 2 to 4, the rotating disk 40 includes a disk portion 41 and a rotating shaft portion .
 円板部41は、円板状に形成されており、軸方向に貫通する回転ディスク連通路60を備えている。この回転ディスク連通路60は、ハウジング11の入口ポート20aと、後述する固定ディスク50の出口ポート70aとを連通させる連通路である。ここでは、円板部41は、3つの回転ディスク連通路60を備えている。そして、図2や図4に示すように、3つの回転ディスク連通路60として、第1回転ディスク連通路61と第2回転ディスク連通路62と第3回転ディスク連通路63を備えている。なお、回転ディスク連通路60は、本開示の「連通路」の一例である。 The disk portion 41 is formed into a disk shape and includes a rotating disk communication path 60 that penetrates in the axial direction. The rotating disk communication path 60 is a communication path that allows the inlet port 20a of the housing 11 to communicate with the outlet port 70a of the fixed disk 50, which will be described later. Here, the disk portion 41 includes three rotating disk communication paths 60. As shown in FIGS. 2 and 4, the three rotating disk communicating paths 60 include a first rotating disk communicating path 61, a second rotating disk communicating path 62, and a third rotating disk communicating path 63. Note that the rotating disk communication path 60 is an example of a "communication path" in the present disclosure.
 回転軸部42は、その中心軸方向について、一端側にて円板部41と接続しており、他端側にて駆動部13に接続している。この回転軸部42は、その中心軸が円板部41の中心軸Lと一致するようにして、円板部41の中央の位置に設けられている。そして、回転軸部42が駆動部13から回転する動力を得て中心軸を中心に回転することにより、回転軸部42に接続する円板部41がその中心軸Lを中心に回転する。このようにして、回転ディスク40は、駆動部13から回転する動力を得ることにより、中心軸Lを中心に回転する。 The rotating shaft section 42 is connected to the disk section 41 at one end in the direction of its central axis, and connected to the drive section 13 at the other end. The rotating shaft portion 42 is provided at the center of the disk portion 41 so that its central axis coincides with the center axis L of the disk portion 41. When the rotating shaft section 42 obtains rotational power from the drive section 13 and rotates around the central axis, the disk section 41 connected to the rotating shaft section 42 rotates around the central axis L thereof. In this way, the rotating disk 40 rotates about the central axis L by receiving rotational power from the drive unit 13.
 図2と図3と図5に示すように、固定ディスク50は、円板部51と円筒部52とを備えている。 As shown in Figures 2, 3, and 5, the fixed disk 50 has a disk portion 51 and a cylindrical portion 52.
 円板部51は、円板状に形成されており、軸方向に貫通する固定ディスク連通路70を備えている。ここでは、円板部51は、3つの固定ディスク連通路70を備えている。そして、図2や図5に示すように、3つの固定ディスク連通路70として、第1固定ディスク連通路71と第2固定ディスク連通路72と第3固定ディスク連通路73を備えている。 The disk portion 51 is formed into a disk shape and includes a fixed disk communication path 70 that penetrates in the axial direction. Here, the disc portion 51 includes three fixed disc communication paths 70. As shown in FIGS. 2 and 5, the three fixed disk communication paths 70 include a first fixed disk communication path 71, a second fixed disk communication path 72, and a third fixed disk communication path 73.
 円筒部52は、円板部51に接続しており、固定ディスク連通路70を囲うようにして円板部51から軸方向に延びるようにして形成されている。ここでは、円筒部52は、3つの固定ディスク連通路70のそれぞれに対応するようにして、3つ形成されている。 The cylindrical portion 52 is connected to the disk portion 51 and is formed to extend axially from the disk portion 51 so as to surround the fixed disk communication passage 70. Here, three cylindrical portions 52 are formed to correspond to the three fixed disk communication passages 70, respectively.
 また、固定ディスク50の円板部51は、図2や図3や後述する図8などに示すように、複数の固定ディスク連通路70の弁体部12側の流路口として、複数の出口ポート70aを備えている。詳しくは、円板部51は、第1固定ディスク連通路71の弁体部12側の流路口として第1出口ポート71aを備え、第2固定ディスク連通路72の弁体部12側の流路口として第2出口ポート72aを備え、第3固定ディスク連通路73の弁体部12側の流路口として第3出口ポート73aを備えている。 Furthermore, as shown in Figures 2, 3, and Figure 8 described later, the disk portion 51 of the fixed disk 50 has multiple outlet ports 70a as flow path openings on the valve body portion 12 side of the multiple fixed disk communication passages 70. In detail, the disk portion 51 has a first outlet port 71a as a flow path opening on the valve body portion 12 side of the first fixed disk communication passage 71, a second outlet port 72a as a flow path opening on the valve body portion 12 side of the second fixed disk communication passage 72, and a third outlet port 73a as a flow path opening on the valve body portion 12 side of the third fixed disk communication passage 73.
 駆動部13は、回転ディスク40の回転軸部42に回転する動力を与えるためのモータ(不図示)を備えている。 The drive section 13 includes a motor (not shown) for providing rotational power to the rotating shaft section 42 of the rotating disk 40.
 以上のような構成の流路切替装置1は、流入流路20と回転ディスク連通路60と固定ディスク連通路70(流出流路30)とを組み合わせることで、流体が流れる流路を形成する。そして、流路切替装置1は、駆動部13により回転ディスク40が回転して、回転ディスク連通路60により連通させるハウジング11の入口ポート20aと固定ディスク50の出口ポート70aとの組み合わせを切り替えることにより、流体が流れる流路を切り替える。 The flow path switching device 1 configured as described above forms a flow path through which fluid flows by combining the inflow flow path 20, the rotating disk communication path 60, and the fixed disk communication path 70 (outflow flow path 30). The flow path switching device 1 is configured by rotating the rotary disk 40 by the drive unit 13 and switching the combination of the inlet port 20a of the housing 11 and the outlet port 70a of the fixed disk 50 which are communicated through the rotary disk communication path 60. , switch the flow path through which the fluid flows.
 例えば、回転ディスク40の回転方向の位置が第1の位置であるときに、図6と図8に示すように、第1の流路パターンとして、第1回転ディスク連通路61により第1入口ポート21aと第1出口ポート71aとを連通させて、第1流入流路21と第1固定ディスク連通路71(詳しくは、第1固定ディスク連通路71を介して第1流出流路31)とを連通させる。また、第2回転ディスク連通路62により第2入口ポート22aと第2出口ポート72aとを連通させて、第2流入流路22と第2固定ディスク連通路72(詳しくは、第2固定ディスク連通路72を介して第2流出流路32)とを連通させる。また、第3回転ディスク連通路63により第3入口ポート23aと第3出口ポート73aとを連通させて、第3流入流路23と第3固定ディスク連通路73(詳しくは、第3固定ディスク連通路73を介して第3流出流路33)とを連通させる。なお、図8(および、後述する図13と図14と図15)においては、説明の便宜上、シール部材81を省略して図示している。 For example, when the rotational direction of the rotating disk 40 is at the first position, as shown in FIGS. 21a and the first outlet port 71a to connect the first inflow passage 21 and the first fixed disk communication passage 71 (specifically, the first outflow passage 31 via the first fixed disk communication passage 71). communicate. Further, the second inlet port 22a and the second outlet port 72a are communicated by the second rotating disk communication path 62, and the second inlet flow path 22 and the second fixed disk communication path 72 (more specifically, the second fixed disk communication path 72 is connected to the second inlet port 22a and the second outlet port 72a). It communicates with the second outflow channel 32) via the passage 72. Further, the third rotating disk communication path 63 communicates the third inlet port 23a and the third outlet port 73a, so that the third inlet flow path 23 and the third fixed disk communication path 73 (more specifically, the third fixed disk communication path 73 It communicates with the third outflow channel 33) via the passage 73. Note that in FIG. 8 (and FIGS. 13, 14, and 15 described later), the sealing member 81 is omitted for convenience of explanation.
 そして、これにより、第1流入流路21と(第1固定ディスク連通路71に連通する)第1流出流路31とを連通させる流路と、第2流入流路22と(第2固定ディスク連通路72に連通する)第2流出流路32とを連通させる流路と、第3流入流路23と(第3固定ディスク連通路73に連通する)第3流出流路33とを連通させる流路とを形成することができる。 This creates a flow path that communicates the first inflow path 21 with the first outflow path 31 (which communicates with the first fixed disk communication path 71), and a flow path that communicates with the second inflow path 22 (which communicates with the second fixed disk communication path 71). A flow path that communicates with the second outflow flow path 32 (which communicates with the communication path 72) and a flow path that communicates with the third inflow flow path 23 and the third outflow flow path 33 (which communicates with the third fixed disk communication path 73). A flow path can be formed.
 また、図6に示す第1の流路パターンの状態から、駆動部13により回転ディスク40を回転駆動させて、図7に示す第2の流路パターンに切り替えることができる。 Furthermore, the state of the first flow path pattern shown in FIG. 6 can be switched to the second flow path pattern shown in FIG. 7 by rotationally driving the rotary disk 40 by the drive unit 13.
 すなわち、回転ディスク40の回転方向の位置が第1の位置から所定の角度回転した第2の位置であるときに、図7と図13に示すように、第2の流路パターンとして、第1回転ディスク連通路61により第1入口ポート21aと第2出口ポート72aとを連通させて、第1流入流路21と第2固定ディスク連通路72(詳しくは、第2固定ディスク連通路72を介して第2流出流路32)とを連通させる。また、第2回転ディスク連通路62により第2入口ポート22aと第3出口ポート73aとを連通させて、第2流入流路22と第3固定ディスク連通路73(詳しくは、第3固定ディスク連通路73を介して第3流出流路33)とを連通させる。また、第3回転ディスク連通路63により第3入口ポート23aと第1出口ポート71aとを連通させて、第3流入流路23と第1固定ディスク連通路71(詳しくは、第1固定ディスク連通路71を介して第1流出流路31)とを連通させることができる。 That is, when the position of the rotating disk 40 in the rotational direction is a second position rotated by a predetermined angle from the first position, as shown in FIGS. 7 and 13, the first flow path pattern is The first inlet port 21a and the second outlet port 72a are communicated with each other through the rotating disk communication path 61, and the first inlet flow path 21 and the second fixed disk communication path 72 (more specifically, via the second fixed disk communication path 72) are connected. and the second outflow channel 32). Further, the second inlet port 22a and the third outlet port 73a are communicated by the second rotating disk communication path 62, and the second inlet flow path 22 and the third fixed disk communication path 73 (specifically, the third fixed disk communication path 73) are connected to each other. It communicates with the third outflow channel 33) via the passage 73. Further, the third inlet port 23a and the first outlet port 71a are communicated with each other by the third rotating disk communication path 63, and the third inlet flow path 23 and the first fixed disk communication path 71 (specifically, the first fixed disk communication path 71) are connected to each other. It can be communicated with the first outflow channel 31) via the passage 71.
 そして、これにより、第1流入流路21と(第2固定ディスク連通路72に連通する)第2流出流路32とを連通させる流路と、第2流入流路22と(第3固定ディスク連通路73に連通する)第3流出流路33とを連通させる流路と、第3流入流路23と(第1固定ディスク連通路71に連通する)第1流出流路31とを連通させる流路とを形成することができる。 This makes it possible to form a flow path that connects the first inflow flow path 21 to the second outflow flow path 32 (connected to the second fixed disk communication path 72), a flow path that connects the second inflow flow path 22 to the third outflow flow path 33 (connected to the third fixed disk communication path 73), and a flow path that connects the third inflow flow path 23 to the first outflow flow path 31 (connected to the first fixed disk communication path 71).
 なお、流路切替装置1は、六方弁に限らず、三方弁や四方弁などのその他の多方弁にすることもできる。そのため、ハウジング11は入口ポート20aを(すなわち、流入流路20を)少なくとも1つ備えていればよく、固定ディスク50は出口ポート70aを(すなわち、ハウジング11は流出流路30を)複数備えていればよい。また、回転ディスク40は回転ディスク連通路60を少なくとも1つ備えていればよく、固定ディスク50は固定ディスク連通路70を複数備えていればよい。 Note that the flow path switching device 1 is not limited to a six-way valve, but can also be other multi-way valves such as a three-way valve or a four-way valve. Therefore, the housing 11 only needs to have at least one inlet port 20a (that is, the inflow passage 20), and the fixed disk 50 has a plurality of outlet ports 70a (that is, the housing 11 has a plurality of outflow passages 30). That's fine. Furthermore, the rotating disk 40 only needs to have at least one rotating disk communication path 60, and the fixed disk 50 only needs to have a plurality of fixed disk communication paths 70.
 また、本実施形態では、軸方向について、ハウジング11と回転ディスク40との間、および、回転ディスク40と固定ディスク50との間、および、固定ディスク50とハウジング11との間に、それぞれ、弾性部材を設けている。 In addition, in the present embodiment, in the axial direction, there is elasticity between the housing 11 and the rotating disk 40, between the rotating disk 40 and the fixed disk 50, and between the fixed disk 50 and the housing 11. A member is provided.
 具体的には、図3に示すように、ハウジング11と回転ディスク40の円板部41との間、および、回転ディスク40の円板部41と固定ディスク50との間には、弾性部材としてシール部材81が設けられている。 Specifically, as shown in FIG. 3, an elastic member is provided between the housing 11 and the disk portion 41 of the rotating disk 40 and between the disk portion 41 of the rotating disk 40 and the fixed disk 50. A seal member 81 is provided.
 このシール部材81は、図2や図4に示すように、回転ディスク40における円板部41にて、長孔状に形成される回転ディスク連通路60の周囲を囲むようにして周状に形成されている。そして、シール部材81は、流路をシールするものであり、流路の一部を形成する回転ディスク連通路60からの流体の漏れを防止する。 As shown in FIGS. 2 and 4, this sealing member 81 is formed in a circumferential shape in the disc portion 41 of the rotating disk 40 so as to surround the periphery of the rotating disk communication passage 60 formed in the shape of a long hole. There is. The sealing member 81 seals the flow path and prevents fluid from leaking from the rotating disk communication path 60 forming a part of the flow path.
 なお、シール部材81は、例えばフッ素樹脂(例えば、テフロン(登録商標))により、または、フッ素樹脂を貼付したゴムにより、あるいは、フッ素樹脂やゴム以外の材料により形成されている。 Note that the sealing member 81 is formed of, for example, a fluororesin (eg, Teflon (registered trademark)), rubber to which a fluororesin is attached, or a material other than fluororesin or rubber.
 また、固定ディスク50の円板部51とハウジング11との間に、弾性部材としてディスク保持スプリング82が設けられている。このディスク保持スプリング82は、固定ディスク50の3つの円筒部52のそれぞれに配置されるようにして、合計3つ設けられている。 Furthermore, a disk holding spring 82 is provided as an elastic member between the disk portion 51 of the fixed disk 50 and the housing 11. A total of three disc retaining springs 82 are provided, each being disposed on each of the three cylindrical portions 52 of the fixed disc 50.
 また、固定ディスク50の円筒部52とハウジング11との間に、固定ディスク連通路70のシール性を確保するためのリップシール83が設けられている。 Furthermore, a lip seal 83 is provided between the cylindrical portion 52 of the fixed disk 50 and the housing 11 to ensure the sealing performance of the fixed disk communication path 70.
 このようにして、軸方向について、ハウジング11と回転ディスク40と固定ディスク50のそれぞれの間に弾性部材を設けることにより、当該弾性部材で回転ディスク40と固定ディスク50を支持している。 In this way, by providing an elastic member between the housing 11, the rotating disk 40, and the fixed disk 50 in the axial direction, the rotating disk 40 and the fixed disk 50 are supported by the elastic member.
(流体の圧損を低減する対策について)
 本実施形態では、ハウジング11の入口ポート20aと固定ディスク50の出口ポート70aは、中心軸Lを中心とする円周方向(図4や図5にて一点鎖線で示す円周方向であり、以下、単に「円周方向」という。)の同じ位置に配置されている。すなわち、入口ポート20aと出口ポート70aとが軸方向について同軸上に配置されており、1つの入口ポート20aに対して1つの出口ポート70aが円周方向の同じ位置に配置されている。
(Regarding measures to reduce fluid pressure loss)
In this embodiment, the inlet port 20a of the housing 11 and the outlet port 70a of the fixed disk 50 are arranged in a circumferential direction centered on the central axis L (circumferential direction shown by a dashed line in FIGS. 4 and 5, and as follows) , simply referred to as the "circumferential direction"). That is, the inlet port 20a and the outlet port 70a are arranged coaxially in the axial direction, and one outlet port 70a is arranged at the same position in the circumferential direction for one inlet port 20a.
 具体的には、図8に示すように、第1入口ポート21aと第1出口ポート71a、および、第2入口ポート22aと第2出口ポート72a、および、第3入口ポート23aと第3出口ポート73aは、それぞれ、円周方向の同じ位置に設けられている。 Specifically, as shown in FIG. 8, the first inlet port 21a and the first outlet port 71a, the second inlet port 22a and the second outlet port 72a, and the third inlet port 23a and the third outlet port 73a are provided at the same position in the circumferential direction.
 そして、回転ディスク連通路60は、図8に示すように、第1の流路パターンのときに、入口ポート20aと、入口ポート20aに対して円周方向の同じ位置に配置される出口ポート70aと、を連通させている。 As shown in FIG. 8, the rotating disk communication passage 60 has an inlet port 20a and an outlet port 70a disposed at the same position in the circumferential direction with respect to the inlet port 20a in the first flow path pattern. It communicates with.
 すなわち、第1の流路パターンのときに、第1回転ディスク連通路61は、第1入口ポート21aと当該第1入口ポート21aに対して円周方向の同じ位置に配置される第1出口ポート71aとを連通させている。また、第2回転ディスク連通路62は、第2入口ポート22aと当該第2入口ポート22aに対して円周方向の同じ位置に配置される第2出口ポート72aとを連通させている。また、第3回転ディスク連通路63は、第3入口ポート23aと当該第3入口ポート23aに対して円周方向の同じ位置に配置される第3出口ポート73aとを連通させている。 That is, in the first flow path pattern, the first rotating disk communication path 61 includes the first inlet port 21a and the first outlet port disposed at the same position in the circumferential direction with respect to the first inlet port 21a. 71a. Further, the second rotating disk communication path 62 communicates the second inlet port 22a with a second outlet port 72a disposed at the same position in the circumferential direction with respect to the second inlet port 22a. Further, the third rotating disk communication path 63 communicates the third inlet port 23a with a third outlet port 73a disposed at the same position in the circumferential direction with respect to the third inlet port 23a.
 そして、これにより、第1の流路パターンのときに、流路がストレート状に構成され、流体の圧損を非常に低減できる。すなわち、図8にて矢印で示すように、流体は入口ポート20aから回転ディスク連通路60を介して出口ポート70aへ向かって直線状に流れるので、流体の圧損を非常に低減できる。 Accordingly, in the case of the first flow path pattern, the flow path is configured in a straight shape, and the pressure loss of the fluid can be greatly reduced. That is, as shown by the arrow in FIG. 8, the fluid flows linearly from the inlet port 20a to the outlet port 70a via the rotary disk communication path 60, so that the pressure loss of the fluid can be greatly reduced.
 また、回転ディスク連通路60は、図13に示すように、第2の流路パターンのときに、入口ポート20aと、入口ポート20aに対して円周方向と異なる位置に配置される出口ポート70aと、を連通させている。 Further, as shown in FIG. 13, in the second flow path pattern, the rotating disk communication passage 60 includes an inlet port 20a and an outlet port 70a disposed at a position different from the circumferential direction with respect to the inlet port 20a. It communicates with.
 すなわち、第2の流路パターンのときに、第1回転ディスク連通路61は、第1入口ポート21aと当該第1入口ポート21aに対して円周方向に異なる位置に配置される第2出口ポート72aとを連通させている。また、第2回転ディスク連通路62は、第2入口ポート22aと当該第2入口ポート22aに対して円周方向に異なる位置に配置される第3出口ポート73aとを連通させている。また、第3回転ディスク連通路63は、第3入口ポート23aと当該第3入口ポート23aに対して円周方向に異なる位置に配置される第1出口ポート71aとを連通させている。 That is, in the second flow path pattern, the first rotating disk communication path 61 has a first inlet port 21a and a second outlet port disposed at a different position in the circumferential direction with respect to the first inlet port 21a. 72a. Further, the second rotating disk communication path 62 communicates the second inlet port 22a with a third outlet port 73a disposed at a different position in the circumferential direction with respect to the second inlet port 22a. Further, the third rotating disk communication path 63 communicates the third inlet port 23a with a first outlet port 71a that is disposed at a different position in the circumferential direction with respect to the third inlet port 23a.
 そして、これにより、第2の流路パターンのときに、流路が斜めに構成され、流体の圧損を低減できる。すなわち、図13にて矢印で示すように、流体は入口ポート20aから回転ディスク連通路60を介して出口ポート70aへ向かって斜めに流れるので、流体の圧損を低減できる。 As a result, when the second flow path pattern is used, the flow path is configured at an angle, which reduces the pressure loss of the fluid. That is, as shown by the arrow in FIG. 13, the fluid flows at an angle from the inlet port 20a through the rotating disk connecting passage 60 toward the outlet port 70a, thereby reducing the pressure loss of the fluid.
 ここで、本実施形態では、図8~図13に示すように、回転ディスク連通路60は、上段部連通路60aと下段部連通路60bとを備えるようにして、2段の連通路により構成されている。そして、軸方向の断面にて、回転ディスク連通路60は、その内壁がR形状に形成される入口側R形状部91と出口側R形状部101を備えている。 Here, in this embodiment, as shown in FIGS. 8 to 13, the rotating disk communication path 60 is configured with two stages, including an upper communication path 60a and a lower communication path 60b. has been done. In the axial cross section, the rotary disk communication passage 60 includes an inlet side R-shaped part 91 and an outlet side R-shaped part 101, each of which has an R-shaped inner wall.
 入口側R形状部91は、図13に示すように、第2の流路パターンのときに、入口ポート20aの開口部20bに対向する位置に形成されている。すなわち、入口側R形状部91は、第1入口ポート21aの開口部21bと、第2入口ポート22aの開口部22bと、第3入口ポート23aの開口部23bのそれぞれに対向する位置に形成されている。 As shown in FIG. 13, the inlet side R-shaped portion 91 is formed at a position facing the opening 20b of the inlet port 20a in the second flow path pattern. That is, the inlet side R-shaped portion 91 is formed at a position facing each of the opening 21b of the first inlet port 21a, the opening 22b of the second inlet port 22a, and the opening 23b of the third inlet port 23a. ing.
 出口側R形状部101は、図13に示すように、第2の流路パターンのときに、出口ポート70aの開口部70bに対向する位置に形成されている。すなわち、出口側R形状部101は、第1出口ポート71aの開口部71bと、第2出口ポート72aの開口部72bと、第3出口ポート73aの開口部73bのそれぞれに対向する位置に形成されている。 As shown in FIG. 13, the outlet side R-shaped portion 101 is formed at a position facing the opening 70b of the outlet port 70a in the second flow path pattern. That is, the outlet side R-shaped portion 101 is formed at a position facing each of the opening 71b of the first outlet port 71a, the opening 72b of the second outlet port 72a, and the opening 73b of the third outlet port 73a. ing.
 このようにして、本実施形態では、回転ディスク連通路60は、入口側R形状部91と出口側R形状部101を備えている。そして、これにより、第2の流路パターンのときに、入口ポート20aから回転ディスク連通路60に流入する流体や、回転ディスク連通路60から出口ポート70aに流出する流体が、入口側R形状部91と出口側R形状部101のR形状に沿って流れやすくなる。そのため、回転ディスク連通路60において、流体が滑らかに流れるので、流体の圧損を低減できる。 In this manner, in this embodiment, the rotating disk communication path 60 includes the inlet side R-shaped portion 91 and the outlet side R-shaped portion 101. As a result, in the second flow path pattern, the fluid flowing into the rotating disk communication path 60 from the inlet port 20a and the fluid flowing out from the rotating disk communication path 60 to the outlet port 70a are transferred to the inlet side R-shaped portion. 91 and the R-shape of the outlet-side R-shape portion 101 . Therefore, the fluid flows smoothly in the rotating disk communication path 60, so that the pressure loss of the fluid can be reduced.
 なお、回転ディスク連通路60は、その内壁がR形状に形成されるR形状部110を備えている。また、入口側R形状部91と出口側R形状部101は、上段部連通路60aを成形する成形型と下段部連通路60bを成形する成形型により成形できる。そして、それぞれの成形型は、上方からおよび下方から型抜きできる。 The rotating disk communication passage 60 has an R-shaped portion 110 whose inner wall is formed in an R-shape. The inlet side R-shaped portion 91 and the outlet side R-shaped portion 101 can be formed by a molding die that forms the upper stage communication passage 60a and a molding die that forms the lower stage communication passage 60b. Each molding die can be demolded from above and below.
<第2実施形態>
 次に、第2実施形態について説明するが、第1実施形態と異なる点を説明し、第1実施形態と共通する点の説明は省略する。
<Second embodiment>
Next, a second embodiment will be described, but the points that are different from the first embodiment will be explained, and the explanation of the points that are common to the first embodiment will be omitted.
 本実施形態では、図14と図15に示すように、入口ポート20aと出口ポート70aは、円周方向の異なる位置に設けられている。すなわち、入口ポート20aと、出口ポート70aとが、軸方向について同軸上に配置されていない。なお、図14と図15は、3つの入口ポート20aのうちの第1入口ポート21aのみと、3つの出口ポート70aのうちの第1出口ポート71aと第2出口ポート72aのみを図示している。 In this embodiment, as shown in FIGS. 14 and 15, the inlet port 20a and the outlet port 70a are provided at different positions in the circumferential direction. That is, the inlet port 20a and the outlet port 70a are not arranged coaxially in the axial direction. Note that FIGS. 14 and 15 only illustrate the first inlet port 21a of the three inlet ports 20a, and only the first outlet port 71a and the second outlet port 72a of the three outlet ports 70a. .
 そして、例えば、図14に示すように、第1の流路パターンとして、第1回転ディスク連通路61により第1入口ポート21aと第1出口ポート71aとを連通させて、第1流入流路21と第1固定ディスク連通路71(詳しくは、第1固定ディスク連通路71を介して第1流出流路31)とを連通させる。また、図14に示していないが、第2回転ディスク連通路62により第2入口ポート22aと第2出口ポート72aとを連通させて、第2流入流路22と第2固定ディスク連通路72(詳しくは、第2固定ディスク連通路72を介して第2流出流路32)とを連通させる。また、第3回転ディスク連通路63により第3入口ポート23aと第3出口ポート73aとを連通させて、第3流入流路23と第3固定ディスク連通路73(詳しくは、第3固定ディスク連通路73を介して第3流出流路33)とを連通させる。 For example, as shown in FIG. 14, as a first flow path pattern, the first inlet port 21a and the first outlet port 71a are connected by the first rotating disk connection path 61, and the first inflow flow path 21 and the first fixed disk connection path 71 (more specifically, the first outflow flow path 31 via the first fixed disk connection path 71). Also, although not shown in FIG. 14, the second inlet port 22a and the second outlet port 72a are connected by the second rotating disk connection path 62, and the second inflow flow path 22 and the second fixed disk connection path 72 (more specifically, the second outflow flow path 32 via the second fixed disk connection path 72). Also, the third inlet port 23a and the third outlet port 73a are connected by the third rotating disk connection path 63, and the third inflow flow path 23 and the third fixed disk connection path 73 (more specifically, the third outflow flow path 33 via the third fixed disk connection path 73).
 また、図15に示すように、第2の流路パターンとして、第1回転ディスク連通路61により第1入口ポート21aと第2出口ポート72aとを連通させて、第1流入流路21と第2固定ディスク連通路72(詳しくは、第2固定ディスク連通路72を介して第2流出流路32)とを連通させる。また、図15に示していないが、第2回転ディスク連通路62により第2入口ポート22aと第3出口ポート73aとを連通させて、第2流入流路22と第3固定ディスク連通路73(詳しくは、第3固定ディスク連通路73を介して第3流出流路33)とを連通させる。また、第3回転ディスク連通路63により第3入口ポート23aと第1出口ポート71aとを連通させて、第3流入流路23と第1固定ディスク連通路71(詳しくは、第1固定ディスク連通路71を介して第1流出流路31)とを連通させる。 Further, as shown in FIG. 15, as a second flow path pattern, the first inlet port 21a and the second outlet port 72a are communicated with each other by the first rotating disk communication path 61, and the first inlet port 21 and the second outlet port 72a are connected to each other. The two fixed disk communication passages 72 (more specifically, the second outflow passage 32 via the second fixed disk communication passages 72) are communicated with each other. Although not shown in FIG. 15, the second inlet port 22a and the third outlet port 73a are communicated with each other by the second rotating disk communication path 62, so that the second inlet flow path 22 and the third fixed disk communication path 73 ( Specifically, it is communicated with the third outflow flow path 33) via the third fixed disk communication path 73. Further, the third inlet port 23a and the first outlet port 71a are communicated with each other by the third rotating disk communication path 63, and the third inlet flow path 23 and the first fixed disk communication path 71 (specifically, the first fixed disk communication path 71) are connected to each other. It communicates with the first outflow channel 31) via the passage 71.
 そして、本実施形態でも、図14と図15に示すように、回転ディスク連通路60は、上段部連通路60aと下段部連通路60bとを備えるようにして、2段の連通路により構成されている。そして、回転ディスク連通路60は、その内壁がR形状に形成される入口側R形状部92と出口側R形状部102を備えている。 Also in this embodiment, as shown in FIGS. 14 and 15, the rotating disk communication path 60 is constituted by two stages of communication paths, including an upper communication path 60a and a lower communication path 60b. ing. The rotary disk communication path 60 includes an inlet side R-shaped portion 92 and an outlet side R-shaped portion 102, each of which has an R-shaped inner wall.
 入口側R形状部92は、図14と図15に示すように、第1の流路パターンと第2の流路パターンのときに、入口ポート20aの開口部20bに対向する位置に形成されている。すなわち、入口側R形状部92は、第1入口ポート21aの開口部21bと、第2入口ポート22aの開口部22bと、第3入口ポート23aの開口部23bのそれぞれに対向する位置に形成されている。 As shown in FIGS. 14 and 15, the inlet side R-shaped portion 92 is formed at a position facing the opening 20b of the inlet port 20a in the first flow path pattern and the second flow path pattern. There is. That is, the inlet side R-shaped portion 92 is formed at a position facing each of the opening 21b of the first inlet port 21a, the opening 22b of the second inlet port 22a, and the opening 23b of the third inlet port 23a. ing.
 出口側R形状部102は、図14と図15に示すように、第1の流路パターンと第2の流路パターンのときに、出口ポート70aの開口部70bに対向する位置に形成されている。すなわち、出口側R形状部102は、第1出口ポート71aの開口部71bと、第2出口ポート72aの開口部72bと、第3出口ポート73aの開口部73bのそれぞれに対向する位置に形成されている。 As shown in FIGS. 14 and 15, the outlet side R-shaped portion 102 is formed at a position facing the opening 70b of the outlet port 70a in the first flow path pattern and the second flow path pattern. There is. That is, the outlet side R-shaped portion 102 is formed at a position facing each of the opening 71b of the first outlet port 71a, the opening 72b of the second outlet port 72a, and the opening 73b of the third outlet port 73a. ing.
 このようにして、回転ディスク連通路60は入口側R形状部92と出口側R形状部102を備えているので、第1の流路パターンのときも、第2の流路パターンのときも、入口ポート20aから回転ディスク連通路60に流入する流体や、回転ディスク連通路60から出口ポート70aに流出する流体が、入口側R形状部92と出口側R形状部102のR形状に沿って流れやすくなる。そのため、回転ディスク連通路60において、流体が滑らかに流れるので、流体の圧損を低減できる。 In this way, since the rotating disk communication path 60 includes the inlet side R-shaped part 92 and the outlet side R-shaped part 102, both in the first flow path pattern and in the second flow path pattern, The fluid flowing into the rotating disk communication path 60 from the inlet port 20a and the fluid flowing out from the rotating disk communication path 60 to the outlet port 70a flow along the R shapes of the inlet side R-shaped portion 92 and the outlet side R-shaped portion 102. It becomes easier. Therefore, the fluid flows smoothly in the rotating disk communication path 60, so that the pressure loss of the fluid can be reduced.
<第3実施形態>
 本実施形態では、図16に示すように、1つのハウジング11の流入流路20の入口ポート20aに対して1つの固定ディスク50の固定ディスク連通路70の出口ポート70aが、円周方向(図16の左右方向)の同じ位置に配置されている。なお、図16では、ハウジング11は3つの入口ポート20aを備え、固定ディスク50は3つの出口ポート70aを備えた例を示している。
<Third embodiment>
In this embodiment, as shown in FIG. 16 in the left-right direction). Note that FIG. 16 shows an example in which the housing 11 is provided with three inlet ports 20a, and the fixed disk 50 is provided with three outlet ports 70a.
 また、流路切替装置1の中心軸Lの方向の断面にて、図16に示すように、回転ディスク40は、ハウジング側連通路111と固定ディスク側連通路112を備えている。ハウジング側連通路111は、ハウジング11側に設けられ、隣接するハウジング11の入口ポート20a同士を連通可能な連通路である。固定ディスク側連通路112は、固定ディスク50側に設けられ、隣接する固定ディスク50の出口ポート70a同士を連通可能な連通路である。 Further, as shown in FIG. 16 in a cross section in the direction of the central axis L of the flow path switching device 1, the rotating disk 40 includes a housing side communication path 111 and a fixed disk side communication path 112. The housing-side communication path 111 is a communication path that is provided on the housing 11 side and allows the inlet ports 20a of adjacent housings 11 to communicate with each other. The fixed disk side communication path 112 is a communication path that is provided on the fixed disk 50 side and allows the outlet ports 70a of adjacent fixed disks 50 to communicate with each other.
 なお、ハウジング側連通路111は、本開示の「第1部材側連通路」の一例である。また、固定ディスク側連通路112は、本開示の「第2部材側連通路」の一例である。 Note that the housing side communication path 111 is an example of the "first member side communication path" of the present disclosure. Further, the fixed disk side communication path 112 is an example of the "second member side communication path" of the present disclosure.
 また、ハウジング側連通路111は、図17に示すように、回転ディスク40の円周方向に沿って形成されている。また、固定ディスク側連通路112は、図18に示すように、回転ディスク40の円周方向に沿って形成されている。 Further, the housing side communication path 111 is formed along the circumferential direction of the rotating disk 40, as shown in FIG. Furthermore, the fixed disk side communication path 112 is formed along the circumferential direction of the rotating disk 40, as shown in FIG.
 そして、図16に示すように、ハウジング側連通路111は、内壁がR形状に形成されるR形状部121を備えている。また、固定ディスク側連通路112は、内壁がR形状に形成されるR形状部122を備えている。そして、ハウジング側連通路111のR形状部121は、隣接する入口ポート20a同士をハウジング側連通路111により連通させるときに、入口ポート20aの開口部20bに対向する位置に形成されている。また、固定ディスク側連通路112のR形状部122は、隣接する出口ポート70a同士を固定ディスク側連通路112により連通させるときに、出口ポート70aの開口部70bに対向する位置に形成されている。 As shown in FIG. 16, the housing-side communication passage 111 includes an R-shaped portion 121 whose inner wall is formed in an R-shape. Further, the fixed disk side communication path 112 includes an R-shaped portion 122 having an inner wall formed in an R-shape. The R-shaped portion 121 of the housing-side communication path 111 is formed at a position facing the opening 20b of the inlet port 20a when the adjacent inlet ports 20a are communicated with each other through the housing-side communication path 111. Further, the R-shaped portion 122 of the fixed disk side communication path 112 is formed at a position opposite to the opening 70b of the outlet port 70a when the adjacent outlet ports 70a are communicated with each other through the fixed disk side communication path 112. .
 このようにして、ハウジング側連通路111と固定ディスク側連通路112は、流体がUターンするようにして流れやすい流路に形成されており、流体がUターンする隅部にR処理(すなわち、曲線状にする処理)がなされている。そのため、隣接するハウジング11の入口ポート20a同士をハウジング側連通路111により連通させ、かつ、隣接する固定ディスク50の出口ポート70a同士を固定ディスク側連通路112により連通させるときに、流体がR形状部121やR形状部122に沿って流れやすくなる。したがって、ハウジング側連通路111や固定ディスク側連通路112において、流体が滑らかに流れるので、流体の圧損を低減できる。 In this way, the housing-side communication path 111 and the fixed disk-side communication path 112 are formed into flow paths that allow the fluid to make a U-turn so that it is easy to flow. curved shape). Therefore, when the inlet ports 20a of adjacent housings 11 are communicated with each other through the housing side communication passage 111, and the outlet ports 70a of adjacent fixed disks 50 are communicated with each other through the fixed disk side communication passage 112, the fluid has an R shape. It becomes easier to flow along the portion 121 and the rounded portion 122. Therefore, the fluid flows smoothly in the housing-side communication path 111 and the fixed disk-side communication path 112, so that the pressure loss of the fluid can be reduced.
 また、図16に示すように、回転ディスク40は、入口ポート20aと出口ポート70aを連通可能な上下ストレート連通路131を備えている。なお、上下ストレート連通路131は、本開示の「貫通連通路」の一例である。 Further, as shown in FIG. 16, the rotating disk 40 includes an upper and lower straight communication path 131 that allows communication between the inlet port 20a and the outlet port 70a. Note that the vertical straight communication path 131 is an example of a "through communication path" in the present disclosure.
 このようにして、ハウジング側連通路111や固定ディスク側連通路112に加えて上下ストレート連通路131を備えていることにより、様々な仕様の流路を形成できる。 In this way, by providing the vertical straight communication path 131 in addition to the housing side communication path 111 and the fixed disk side communication path 112, flow paths with various specifications can be formed.
 そして、上下ストレート連通路131は、回転ディスク40の中心軸Lの方向(図16の上下方向)について、直線状に形成されている。そのため、上下ストレート連通路131において、より効果的に、流体が滑らかに流れるので、流体の圧損を低減できる。 The vertical straight communication path 131 is formed in a straight line in the direction of the central axis L of the rotating disk 40 (vertical direction in FIG. 16). Therefore, the fluid flows more effectively and smoothly in the vertical straight communication path 131, so that the pressure loss of the fluid can be reduced.
 なお、回転ディスク40(詳しくは、円板部41のハウジング11側の面や固定ディスク50側の面)にて、ハウジング側連通路111や固定ディスク側連通路112や上下ストレート連通路131の周囲を囲むようにしてシール部材81が周状に形成されている。そのため、ハウジング側連通路111と固定ディスク側連通路112と上下ストレート連通路131は、互いにシール部材81によりシールされており連通していない。なお、図16などにおいては、説明の便宜上、シール部材81を省略して図示している。 Note that the surroundings of the housing-side communication path 111, the fixed-disk side communication path 112, and the vertical straight communication path 131 on the rotating disk 40 (specifically, the surface of the disk portion 41 on the housing 11 side and the surface on the fixed disk 50 side) A seal member 81 is formed in a circumferential shape so as to surround the. Therefore, the housing side communication path 111, the fixed disk side communication path 112, and the vertical straight communication path 131 are sealed with each other by the seal member 81 and do not communicate with each other. Note that in FIG. 16 and the like, the sealing member 81 is omitted for convenience of explanation.
 本実施形態では、回転ディスク40を回転させることにより、図19に示すように、2つの流路パターン、すなわち、流路パターンAと流路パターンBに切り替えることができる。なお、図16や図19などにて矢印の示す方向は、流体の流れ方向の一例を示している。 In this embodiment, by rotating the rotary disk 40, it is possible to switch between two flow path patterns, that is, flow path pattern A and flow path pattern B, as shown in FIG. Note that the direction indicated by the arrow in FIGS. 16, 19, etc. indicates an example of the flow direction of the fluid.
 流路パターンAでは、図16~図19に示すように、ハウジング側連通路111により、第1入口ポート21aと第3入口ポート23aを連通させている。また、固定ディスク側連通路112により、第1出口ポート71aと第3出口ポート73aを連通させている。また、上下ストレート連通路131により、第2入口ポート22aと第2出口ポート72aを連通させている。 In the flow path pattern A, as shown in FIGS. 16 to 19, the first inlet port 21a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the vertical straight communication passage 131.
 流路パターンBでは、図19~図22に示すように、ハウジング側連通路111により、第2入口ポート22aと第3入口ポート23aを連通させている。また、固定ディスク側連通路112により、第2出口ポート72aと第3出口ポート73aを連通させている。また、上下ストレート連通路131により、第1入口ポート21aと第1出口ポート71aを連通させている。 In flow path pattern B, as shown in FIGS. 19 to 22, the housing side communication path 111 allows the second inlet port 22a and the third inlet port 23a to communicate with each other. Further, the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the vertical straight communication passage 131.
<第4実施形態>
 本実施形態では、図23~図25に示すように、全ての入口ポート20aおよび全ての出口ポート70aは、円周方向(図23の左右方向)の180°の範囲内に配置されている。
<Fourth embodiment>
In this embodiment, as shown in FIGS. 23 to 25, all the inlet ports 20a and all the outlet ports 70a are arranged within a range of 180° in the circumferential direction (left-right direction in FIG. 23).
 このようにして、本実施形態では、全ての入口ポート20aや全ての出口ポート70aを、円周方向について、集約して配置している。そのため、駆動部13をポートに干渉しないようにして配置できる場所を広げることができる。例えば、図24に示すような領域αの範囲内に駆動部13を配置することができる。したがって、駆動部13が配置される場所の自由度が向上する。ゆえに、流路切替装置1の体格の大型化を抑制しつつ、駆動部13を配置できる。 In this way, in this embodiment, all the inlet ports 20a and all the outlet ports 70a are arranged in a concentrated manner in the circumferential direction. Therefore, the location where the drive unit 13 can be placed without interfering with the port can be expanded. For example, the drive unit 13 can be arranged within the area α as shown in FIG. Therefore, the degree of freedom in where the drive unit 13 is arranged is improved. Therefore, the drive unit 13 can be arranged while suppressing the increase in size of the flow path switching device 1.
 また、回転ディスク40は、2つのハウジング側連通路111を備えている。この2つのハウジング側連通路111は、第1ハウジング側連通路111-1と第2ハウジング側連通路111-2である。 The rotating disk 40 also has two housing side communication passages 111. These two housing side communication passages 111 are a first housing side communication passage 111-1 and a second housing side communication passage 111-2.
 また、回転ディスク40は、2つの固定ディスク側連通路112を備えている。この2つの固定ディスク側連通路112は、第1固定ディスク側連通路112-1と第2固定ディスク側連通路112-2である。 Furthermore, the rotating disk 40 includes two fixed disk side communication passages 112. These two fixed disk side communication paths 112 are a first fixed disk side communication path 112-1 and a second fixed disk side communication path 112-2.
 そして、本実施形態では、図26に示すように、2つの流路パターン、すなわち、流路パターンAと流路パターンBに切り替えることができる。 In this embodiment, as shown in FIG. 26, it is possible to switch between two flow path patterns, that is, flow path pattern A and flow path pattern B.
 流路パターンAでは、図23~図26に示すように、第1ハウジング側連通路111-1により、第1入口ポート21aと第3入口ポート23aを連通させている。また、第1固定ディスク側連通路112-1により、第1出口ポート71aと第3出口ポート73aを連通させている。また、上下ストレート連通路131により、第2入口ポート22aと第2出口ポート72aを連通させている。 In flow path pattern A, as shown in FIGS. 23 to 26, the first inlet port 21a and the third inlet port 23a are communicated with each other by the first housing side communication path 111-1. Further, the first fixed disk side communication passage 112-1 allows the first outlet port 71a and the third outlet port 73a to communicate with each other. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the vertical straight communication passage 131.
 流路パターンBでは、図26~図29に示すように、第2ハウジング側連通路111-2により、第2入口ポート22aと第3入口ポート23aを連通させている。また、第2固定ディスク側連通路112-2により、第2出口ポート72aと第3出口ポート73aを連通させている。また、上下ストレート連通路131により、第1入口ポート21aと第1出口ポート71aを連通させている。 In flow path pattern B, as shown in FIGS. 26 to 29, the second inlet port 22a and the third inlet port 23a are communicated through the second housing side communication path 111-2. Further, the second fixed disk side communication passage 112-2 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the vertical straight communication passage 131.
 なお、変形例として、全ての入口ポート20aまたは全ての出口ポート70aが、すなわち、全ての入口ポート20aと全ての出口ポート70aのいずれか一方のみが、円周方向の180°の範囲内に配置されていてもよい。 In addition, as a modified example, all the inlet ports 20a or all the outlet ports 70a, that is, only one of all the inlet ports 20a and all the outlet ports 70a is arranged within a range of 180° in the circumferential direction. may have been done.
<第5実施形態>
 本実施形態では、第4実施形態と異なる点として、回転ディスク40を回転させることにより、図33に示すように、3つの流路パターン、すなわち、流路パターンAと流路パターンBの他に、流路パターンDに切り替えることができる。
<Fifth embodiment>
This embodiment differs from the fourth embodiment in that by rotating the rotary disk 40, three flow path patterns, that is, flow path pattern A and flow path pattern B, are created by rotating the rotating disk 40. , it is possible to switch to flow path pattern D.
 流路パターンDでは、図30~図33に示すように、上下ストレート連通路131により、第3入口ポート23aと第3出口ポート73aを連通させている。なお、その他のポートは、いずれのポートにも連通していない。 In flow path pattern D, as shown in FIGS. 30 to 33, the third inlet port 23a and the third outlet port 73a are communicated with each other by the vertical straight communication path 131. Note that the other ports are not connected to any port.
<第6実施形態>
 本実施形態では、図34に示すように、回転ディスク40は、第1実施形態と同様に、入口ポート20aと出口ポート70aを連通可能な回転ディスク連通路60を備えている。
<Sixth embodiment>
In this embodiment, as shown in FIG. 34, the rotating disk 40 includes a rotating disk communication path 60 that allows communication between the inlet port 20a and the outlet port 70a, similar to the first embodiment.
 そして、第1実施形態と同様に、回転ディスク連通路60は、入口側R形状部91と出口側R形状部101を備えている。 Similarly to the first embodiment, the rotating disk communication path 60 includes an inlet side R-shaped portion 91 and an outlet side R-shaped portion 101.
 また、図34~図36に示すように、ハウジング側連通路111と固定ディスク側連通路112は、円周方向(図34の左右方向)について位置をずらして配置されている。 Furthermore, as shown in FIGS. 34 to 36, the housing side communication path 111 and the fixed disk side communication path 112 are arranged with their positions shifted in the circumferential direction (left and right direction in FIG. 34).
 そして、本実施形態では、図37に示すように、2つの流路パターン、すなわち、流路パターンAと流路パターンBに切り替えることができる。 In this embodiment, as shown in FIG. 37, it is possible to switch between two flow path patterns, that is, flow path pattern A and flow path pattern B.
 流路パターンAでは、図34~図37に示すように、回転ディスク連通路60により、第1入口ポート21aと第2出口ポート72aを連通させている。また、ハウジング側連通路111により、第2入口ポート22aと第3入口ポート23aを連通させている。また、固定ディスク側連通路112により、第1出口ポート71aと第3出口ポート73aを連通させている。 In the flow path pattern A, as shown in FIGS. 34 to 37, the first inlet port 21a and the second outlet port 72a are communicated with each other by the rotating disk communication path 60. Furthermore, the housing-side communication passage 111 allows the second inlet port 22a and the third inlet port 23a to communicate with each other. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112.
 流路パターンBでは、図37~図40に示すように、回転ディスク連通路60により、第3入口ポート23aと第1出口ポート71aを連通させている。また、ハウジング側連通路111により、第1入口ポート21aと第2入口ポート22aを連通させている。また、固定ディスク側連通路112により、第2出口ポート72aと第3出口ポート73aを連通させている。 In the flow path pattern B, as shown in FIGS. 37 to 40, the third inlet port 23a and the first outlet port 71a are communicated with each other by the rotating disk communication path 60. Further, the housing-side communication passage 111 allows the first inlet port 21a and the second inlet port 22a to communicate with each other. Further, the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other.
<第7実施形態>
 本実施形態では、図41~図43に示すように、回転ディスク40は、3つの上下ストレート連通路131を備えている。この3つの上下ストレート連通路131は、第1上下ストレート連通路131-1と、第2上下ストレート連通路131-2と、第3上下ストレート連通路131-3である。
<Seventh embodiment>
In this embodiment, as shown in FIGS. 41 to 43, the rotating disk 40 is provided with three vertical straight communication passages 131. These three vertical straight communication passages 131 are a first vertical straight communication passage 131-1, a second vertical straight communication passage 131-2, and a third vertical straight communication passage 131-3.
 本実施形態では、回転ディスク40を回転させることにより、図44に示すように、3つの流路パターン、すなわち、流路パターンAと流路パターンCと流路パターンBに切り替えることができる。 In this embodiment, by rotating the rotating disk 40, it is possible to switch between three flow path patterns, namely, flow path pattern A, flow path pattern C, and flow path pattern B, as shown in FIG. 44.
 流路パターンAでは、図41~図44に示すように、ハウジング側連通路111により、第1入口ポート21aと第3入口ポート23aを連通させている。また、固定ディスク側連通路112により、第1出口ポート71aと第3出口ポート73aを連通させている。また、第2上下ストレート連通路131-2により、第2入口ポート22aと第2出口ポート72aを連通させている。 In flow path pattern A, as shown in FIGS. 41 to 44, the first inlet port 21a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112. Further, the second vertical straight communication passage 131-2 communicates the second inlet port 22a with the second outlet port 72a.
 流路パターンCでは、図44~図47に示すように、第1上下ストレート連通路131-1により、第1入口ポート21aと第1出口ポート71aを連通させている。また、第3上下ストレート連通路131-3により、第2入口ポート22aと第2出口ポート72aを連通させている。なお、第3入口ポート23aと第3出口ポート73aは、いずれのポートにも連通していない。 In flow path pattern C, as shown in FIGS. 44 to 47, the first inlet port 21a and the first outlet port 71a are communicated with each other by the first vertical straight communication path 131-1. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the third vertical straight communication path 131-3. Note that the third inlet port 23a and the third outlet port 73a do not communicate with any port.
 流路パターンBでは、図44と図48~図50に示すように、ハウジング側連通路111により、第2入口ポート22aと第3入口ポート23aを連通させている。また、固定ディスク側連通路112により、第2出口ポート72aと第3出口ポート73aを連通させている。また、第2上下ストレート連通路131-2により、第1入口ポート21aと第1出口ポート71aを連通させている。 In the flow path pattern B, as shown in FIG. 44 and FIGS. 48 to 50, the second inlet port 22a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Further, the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the second vertical straight communication path 131-2.
<第8実施形態>
 本実施形態では、図51~図53に示すように、ポートを集約したうえで、空きスペースに新たな上下ストレート連通路131を形成する。このようにして、回転ディスク40は、上下ストレート連通路131を複数備えている。これにより、入口ポート20aと出口ポート70aを連通させる流路パターンをより多く形成することができるので、様々な仕様の流路を形成できる。
<Eighth embodiment>
In this embodiment, as shown in FIGS. 51 to 53, ports are consolidated and a new vertical straight communication path 131 is formed in the empty space. In this way, the rotating disk 40 is provided with a plurality of upper and lower straight communication passages 131. As a result, it is possible to form more flow path patterns that communicate the inlet port 20a and the outlet port 70a, and therefore flow paths with various specifications can be formed.
 具体的には、図51~図53に示すように、回転ディスク40は、4つの上下ストレート連通路131を備えている。この4つの上下ストレート連通路131は、第1上下ストレート連通路131-1と、第2上下ストレート連通路131-2と、第3上下ストレート連通路131-3と、第4上下ストレート連通路131-4である。 Specifically, as shown in FIGS. 51 to 53, the rotating disk 40 is provided with four vertical straight communication passages 131. These four vertical straight communication passages 131 include a first vertical straight communication passage 131-1, a second vertical straight communication passage 131-2, a third vertical straight communication passage 131-3, and a fourth vertical straight communication passage 131. -4.
 そして、回転ディスク40を回転させることにより、図54に示すように、6つの流路パターン、すなわち、流路パターンA~流路パターンFに切り替えることができる。 Then, by rotating the rotating disk 40, it is possible to switch between six flow path patterns, namely, flow path pattern A to flow path pattern F, as shown in FIG. 54.
 流路パターンCでは、図51~図54に示すように、第3上下ストレート連通路131-3により、第1入口ポート21aと第1出口ポート71aを連通させている。また、第4上下ストレート連通路131-4により、第2入口ポート22aと第2出口ポート72aを連通させている。なお、第3入口ポート23aと第3出口ポート73aは、いずれのポートにも連通していない。 In flow path pattern C, as shown in FIGS. 51 to 54, the first inlet port 21a and the first outlet port 71a are communicated with each other by the third vertical straight communication path 131-3. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by a fourth vertical straight communication path 131-4. Note that the third inlet port 23a and the third outlet port 73a do not communicate with any port.
 流路パターンDでは、図54~図57に示すように、第4上下ストレート連通路131-4により、第3入口ポート23aと第3出口ポート73aを連通させている。なお、その他のポートは、いずれのポートにも連通していない。 In flow path pattern D, as shown in FIGS. 54 to 57, the third inlet port 23a and the third outlet port 73a are communicated with each other by the fourth vertical straight communication path 131-4. Note that the other ports are not connected to any port.
 流路パターンBでは、図54と図58~図60に示すように、ハウジング側連通路111により、第2入口ポート22aと第3入口ポート23aを連通させている。また、固定ディスク側連通路112により、第2出口ポート72aと第3出口ポート73aを連通させている。また、第4上下ストレート連通路131-4により、第1入口ポート21aと第1出口ポート71aを連通させている。 In flow path pattern B, as shown in FIG. 54 and FIGS. 58 to 60, the second inlet port 22a and the third inlet port 23a are communicated through the housing side communication path 111. Further, the fixed disk side communication passage 112 allows the second outlet port 72a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by a fourth vertical straight communication path 131-4.
 流路パターンAでは、図54と図61~図63に示すように、ハウジング側連通路111により、第1入口ポート21aと第3入口ポート23aを連通させている。また、固定ディスク側連通路112により、第1出口ポート71aと第3出口ポート73aを連通させている。また、第1上下ストレート連通路131-1により、第2入口ポート22aと第2出口ポート72aを連通させている。 In flow path pattern A, as shown in FIG. 54 and FIGS. 61 to 63, the first inlet port 21a and the third inlet port 23a are communicated with each other by the housing side communication path 111. Furthermore, the first outlet port 71a and the third outlet port 73a are communicated with each other by the fixed disk side communication passage 112. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the first vertical straight communication path 131-1.
 流路パターンEでは、図54と図64~図66に示すように、第1上下ストレート連通路131-1により、第3入口ポート23aと第3出口ポート73aを連通させている。また、第2上下ストレート連通路131-2により、第2入口ポート22aと第2出口ポート72aを連通させている。なお、第1入口ポート21aと第1出口ポート71aは、いずれのポートにも連通していない。 In the flow path pattern E, as shown in FIG. 54 and FIGS. 64 to 66, the third inlet port 23a and the third outlet port 73a are communicated with each other by the first vertical straight communication path 131-1. Further, the second vertical straight communication passage 131-2 communicates the second inlet port 22a with the second outlet port 72a. Note that the first inlet port 21a and the first outlet port 71a do not communicate with any port.
 流路パターンFでは、図54と図67~図69に示すように、第1上下ストレート連通路131-1により、第1入口ポート21aと第1出口ポート71aを連通させている。また、第2上下ストレート連通路131-2により、第3入口ポート23aと第3出口ポート73aを連通させている。また、第3上下ストレート連通路131-3により、第2入口ポート22aと第2出口ポート72aを連通させている。 In the flow path pattern F, as shown in FIG. 54 and FIGS. 67 to 69, the first inlet port 21a and the first outlet port 71a are communicated with each other by the first vertical straight communication path 131-1. Further, the third inlet port 23a and the third outlet port 73a are communicated with each other by the second vertical straight communication path 131-2. Further, the second inlet port 22a and the second outlet port 72a are communicated with each other by the third vertical straight communication path 131-3.
<第9実施形態>
 本実施形態では、図70に示すように、ハウジング側連通路111は、その外周(すなわち、固定ディスク50側の内壁)にて、全体で大きなR形状(曲線状)に形成される大R形状部141を備えている。また、固定ディスク側連通路112は、その外周(すなわち、ハウジング11側の内壁)にて、全体で大きなR形状(曲線状)に形成される大R形状部142を備えている。これにより、ハウジング側連通路111や固定ディスク側連通路112において、流体が緩やかにUターンして流れやすくなるので、流体の圧損を低減できる。
<Ninth embodiment>
In this embodiment, as shown in FIG. 70, the housing side communication passage 111 has a large round shape (curved shape) formed on its outer periphery (that is, the inner wall on the fixed disk 50 side) as a whole. 141. Furthermore, the fixed disk side communication passage 112 includes a large R-shaped portion 142 formed in a large R shape (curved shape) as a whole on its outer periphery (that is, the inner wall on the housing 11 side). This allows the fluid to make a gentle U-turn and flow easily in the housing-side communication path 111 and the fixed disk-side communication path 112, so that the pressure loss of the fluid can be reduced.
<第10実施形態>
 本実施形態では、第9実施形態の仕様に対して、図71に示すように、回転ディスク40は、ハウジング側連通路111のハウジング11側を覆う蓋、および、固定ディスク側連通路112の固定ディスク50側を覆う蓋として、流路アダプタ151を設けている。そして、流路アダプタ151の外周が、大きなR形状(曲線状)に形成されている。これにより、ハウジング側連通路111や固定ディスク側連通路112において、流体の流れの淀みが生じ難くなり、流体の圧損を低減できる。
<Tenth embodiment>
In this embodiment, in contrast to the specifications of the ninth embodiment, as shown in FIG. A flow path adapter 151 is provided as a lid that covers the disk 50 side. The outer periphery of the flow path adapter 151 is formed into a large round shape (curved shape). This makes it difficult for fluid flow to stagnate in the housing-side communication path 111 and the fixed disk-side communication path 112, thereby reducing fluid pressure loss.
<第11実施形態>
 本実施形態では、第3実施形態の仕様に対して、図72に示すように、回転ディスク40は、ハウジング側連通路111のハウジング11側を覆う蓋、および、固定ディスク側連通路112の固定ディスク50側を覆う蓋として、流路アダプタ151を設けている。そして、流路アダプタ151の角部が、小さなR形状(曲線状)に形成されている。これにより、ハウジング側連通路111や固定ディスク側連通路112において、流体の流れの淀みが生じ難くなり、流体の圧損を低減できる。
<Eleventh embodiment>
In this embodiment, in contrast to the specifications of the third embodiment, as shown in FIG. A flow path adapter 151 is provided as a lid that covers the disk 50 side. The corner portion of the flow path adapter 151 is formed into a small rounded shape (curved shape). This makes it difficult for fluid flow to stagnate in the housing-side communication path 111 and the fixed disk-side communication path 112, thereby reducing fluid pressure loss.
<第12実施形態>
 本実施形態の流路切替装置1は、八方弁であり、ハウジング11は、4つの流入流路20と4つの流出流路30を備えている。4つの流入流路20は、第1流入流路21と第2流入流路22と第3流入流路23と第4流入流路24である。4つの流出流路30は、第1流出流路31と第2流出流路32と第3流出流路33と第4流出流路34である。
<Twelfth embodiment>
The flow path switching device 1 of this embodiment is an eight-way valve, and the housing 11 includes four inflow paths 20 and four outflow paths 30. The four inflow channels 20 are a first inflow channel 21 , a second inflow channel 22 , a third inflow channel 23 , and a fourth inflow channel 24 . The four outflow channels 30 are a first outflow channel 31 , a second outflow channel 32 , a third outflow channel 33 , and a fourth outflow channel 34 .
 そして、図73に示すように、ハウジング11は、4つの入口ポート20aとして、第1入口ポート21aと第2入口ポート22aと第3入口ポート23aの他に、第4流入流路24の弁体部12(すなわち、回転ディスク40)側の流路口である第4入口ポート24aを備えている。 As shown in FIG. 73, the housing 11 has four inlet ports 20a, a first inlet port 21a, a second inlet port 22a, and a third inlet port 23a, as well as a valve body of a fourth inflow channel 24. A fourth inlet port 24a, which is a flow path opening on the side of the section 12 (that is, the rotating disk 40), is provided.
 回転ディスク40(詳しくは、円板部41)は、4つの回転ディスク連通路160を備えている。この4つの回転ディスク連通路160は、第1回転ディスク連通路161と第2回転ディスク連通路162と第3回転ディスク連通路163と第4回転ディスク連通路164である。なお、回転ディスク連通路160は、ハウジング11の入口ポート20aと、固定ディスク50の出口ポート70aとを連通させる連通路である。 The rotating disk 40 (specifically, the disk portion 41) includes four rotating disk communication paths 160. The four rotating disk communicating paths 160 are a first rotating disk communicating path 161 , a second rotating disk communicating path 162 , a third rotating disk communicating path 163 , and a fourth rotating disk communicating path 164 . Note that the rotating disk communication path 160 is a communication path that allows the inlet port 20a of the housing 11 and the outlet port 70a of the fixed disk 50 to communicate with each other.
 また、固定ディスク50(詳しくは、円板部51)は、4つの固定ディスク連通路70を備えている。この4つの固定ディスク連通路70は、第1固定ディスク連通路71と第2固定ディスク連通路72と第3固定ディスク連通路73と第4固定ディスク連通路74である。 Furthermore, the fixed disk 50 (specifically, the disk portion 51) includes four fixed disk communication paths 70. The four fixed disk communication paths 70 are a first fixed disk communication path 71 , a second fixed disk communication path 72 , a third fixed disk communication path 73 , and a fourth fixed disk communication path 74 .
 そして、図73に示すように、固定ディスク50は、4つの出口ポート70aとして、第1出口ポート71aと第2出口ポート72aと第3出口ポート73aの他に、第4固定ディスク連通路74の弁体部12(すなわち、回転ディスク40)側の流路口である第4出口ポート74aを備えている。そして、第1出口ポート71aと第2出口ポート72aと第3出口ポート73aと第4出口ポート74aは、それぞれ、ハウジング11に備わる第1流出流路31と第2流出流路32と第3流出流路33と第4流出流路34に連通している。 As shown in FIG. 73, the fixed disk 50 has four outlet ports 70a, including the first outlet port 71a, the second outlet port 72a, and the third outlet port 73a, as well as a fourth outlet port 74a, which is a flow path opening on the valve body portion 12 (i.e., the rotating disk 40) side of the fourth fixed disk communication passage 74. The first outlet port 71a, the second outlet port 72a, the third outlet port 73a, and the fourth outlet port 74a are respectively connected to the first outlet flow path 31, the second outlet flow path 32, the third outlet flow path 33, and the fourth outlet flow path 34 provided in the housing 11.
 なお、回転ディスク40(詳しくは、円板部41のハウジング11側の面や固定ディスク50側の面)にて、回転ディスク連通路160の周囲を囲むようにしてシール部材81が周状に形成されている。そのため、4つの回転ディスク連通路160は、互いにシール部材81によりシールされており連通していない。なお、図73などにおいては、説明の便宜上、シール部材81を省略して図示している。 Note that a sealing member 81 is formed in a circumferential shape on the rotating disk 40 (specifically, the surface of the disk portion 41 on the housing 11 side and the surface on the fixed disk 50 side) so as to surround the periphery of the rotating disk communication path 160. There is. Therefore, the four rotating disk communication paths 160 are sealed with each other by the seal member 81 and do not communicate with each other. Note that in FIG. 73 and the like, the sealing member 81 is omitted for convenience of explanation.
 このような本実施形態の流路切替装置1において、図73と図74に示すように、第1の流路パターンとして、第1回転ディスク連通路161により、第1入口ポート21aと第4出口ポート74aとを連通させている。また、第2回転ディスク連通路162により、第2入口ポート22aと第2出口ポート72aとを連通させている。また、第3回転ディスク連通路163により、第3入口ポート23aと第3出口ポート73aとを連通させている。また、第4回転ディスク連通路164により、第4入口ポート24aと第1出口ポート71aとを連通させている。 In the flow path switching device 1 of this embodiment, as shown in FIGS. 73 and 74, as the first flow path pattern, the first rotary disk communication path 161 connects the first inlet port 21a and the fourth outlet. It communicates with the port 74a. Further, the second rotating disk communication path 162 allows the second inlet port 22a and the second outlet port 72a to communicate with each other. Further, the third rotating disk communication path 163 allows the third inlet port 23a and the third outlet port 73a to communicate with each other. Further, the fourth rotary disk communication path 164 allows the fourth inlet port 24a and the first outlet port 71a to communicate with each other.
 なお、図73と後述する図75と図77と図79において、軸方向に連通する連通路を実線で示し、それ以外の回転ディスク40の内部を通る連通路(例えば、径方向に連通する連通路)のうち各流路パターンで実際に連通する連通路のみを破線で示している。 Note that in FIG. 73 and FIGS. 75, 77, and 79, which will be described later, communication paths that communicate in the axial direction are shown by solid lines, and other communication paths that pass through the interior of the rotating disk 40 (for example, communication paths that communicate in the radial direction) are shown by solid lines. Among the passages), only the communication passages that actually communicate with each passage pattern are shown by broken lines.
 図75と図76に示すように、第2の流路パターンとして、第1回転ディスク連通路161により、第4入口ポート24aと第4出口ポート74aとを連通させている。また、第2回転ディスク連通路162により、第2入口ポート22aと第2出口ポート72aとを連通させている。また、第3回転ディスク連通路163により、第3入口ポート23aと第3出口ポート73aとを連通させている。また、第4回転ディスク連通路164により、第1入口ポート21aと第1出口ポート71aとを連通させている。 As shown in FIGS. 75 and 76, as a second flow path pattern, the fourth inlet port 24a and the fourth outlet port 74a are communicated by the first rotating disk communication path 161. Further, the second rotating disk communication path 162 allows the second inlet port 22a and the second outlet port 72a to communicate with each other. Further, the third rotating disk communication path 163 allows the third inlet port 23a and the third outlet port 73a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the fourth rotating disk communication path 164.
 図77と図78に示すように、第3の流路パターンとして、第1回転ディスク連通路161により、第3入口ポート23aと第2出口ポート72aとを連通させている。また、第2回転ディスク連通路162により、第1入口ポート21aと第1出口ポート71aとを連通させている。また、第3回転ディスク連通路163により、第4入口ポート24aと第4出口ポート74aとを連通させている。また、第4回転ディスク連通路164により、第2入口ポート22aと第3出口ポート73aとを連通させている。 As shown in FIGS. 77 and 78, as a third flow path pattern, the third inlet port 23a and the second outlet port 72a are communicated by the first rotating disk communication path 161. Further, the second rotary disk communication path 162 allows the first inlet port 21a and the first outlet port 71a to communicate with each other. Further, the fourth inlet port 24a and the fourth outlet port 74a are communicated with each other by the third rotating disk communication path 163. Further, the second inlet port 22a and the third outlet port 73a are communicated with each other by the fourth rotating disk communication path 164.
 図79と図80に示すように、第4の流路パターンとして、第2回転ディスク連通路162により、第2入口ポート22aと第2出口ポート72aとを連通させている。また、第3回転ディスク連通路163により、第3入口ポート23aと第4出口ポート74aとを連通させている。また、第4回転ディスク連通路164により、第1入口ポート21aと第1出口ポート71aとを連通させている。なお、第4入口ポート24aと第3出口ポート73aは、いずれのポートにも連通していない。 As shown in FIGS. 79 and 80, as a fourth flow path pattern, the second rotating disk communication path 162 communicates the second inlet port 22a and the second outlet port 72a. Further, the third rotating disk communication path 163 allows the third inlet port 23a and the fourth outlet port 74a to communicate with each other. Further, the first inlet port 21a and the first outlet port 71a are communicated with each other by the fourth rotating disk communication path 164. Note that the fourth inlet port 24a and the third outlet port 73a do not communicate with any port.
 なお、図73などに示すように、回転ディスク連通路160は、R形状部171を備えている。これにより、第1実施形態の入口側R形状部91や出口側R形状部101と同様に、流体が、R形状部171に沿って流れやすくなる。そのため、回転ディスク連通路160において、流体が滑らかに流れるので、流体の圧損を低減できる。 Note that, as shown in FIG. 73 and the like, the rotating disk communication path 160 includes an R-shaped portion 171. This allows the fluid to easily flow along the R-shaped portion 171, similar to the inlet-side R-shaped portion 91 and the outlet-side R-shaped portion 101 of the first embodiment. Therefore, the fluid flows smoothly in the rotating disk communication path 160, so that the pressure loss of the fluid can be reduced.
 そして、このような流路切替装置1を用いた流体システム201として、図81~図84に示すように、例えば、車両に搭載されるシステムであって、バッテリ221やPCU223の温度を調節するシステムを構築することができる。この流体システム201においては、図81~図84に示すように、4つの温調パターンに切り替えることができる。 As shown in FIGS. 81 to 84, the fluid system 201 using such a flow path switching device 1 is, for example, a system mounted on a vehicle, which adjusts the temperature of the battery 221 and the PCU 223. can be constructed. This fluid system 201 can be switched to four temperature control patterns, as shown in FIGS. 81 to 84.
 流体システム201は、流路切替装置1の他に、第1流路211、第2流路212、第3流路213、第4流路214を有する。そして、第1流路211にバッテリ221が設けられ、第2流路212にチラー222が設けられ、第3流路213にPCU223が設けられ、第4流路214にラジエータ224が設けられている。また、第2流路212にポンプ231が設けられ、第3流路213にポンプ232が設けられている。 In addition to the flow path switching device 1, the fluid system 201 includes a first flow path 211, a second flow path 212, a third flow path 213, and a fourth flow path 214. A battery 221 is provided in the first channel 211, a chiller 222 is provided in the second channel 212, a PCU 223 is provided in the third channel 213, and a radiator 224 is provided in the fourth channel 214. . Further, a pump 231 is provided in the second flow path 212, and a pump 232 is provided in the third flow path 213.
 そして、図81に示すように、第1の温調パターンとして、流路切替装置1を図73や図74に示す第1の流路パターンとする。これにより、流体(例えば、水)を、バッテリ221が設けられる第1流路211と、PCU223が設けられる第3流路213にて循環させるように流す。また、流体を、チラー222が設けられる第2流路212と、ラジエータ224が設けられる第4流路214にて循環させるように流す。そして、このような第1の温調パターンは、例えば、冬季の極低温時において、バッテリ221の暖機と、車内の室温の暖房を行うときに使用される。 Then, as shown in FIG. 81, as the first temperature control pattern, the flow path switching device 1 is set to the first flow path pattern shown in FIGS. 73 and 74. As a result, fluid (for example, water) is circulated through the first channel 211 where the battery 221 is provided and the third channel 213 where the PCU 223 is provided. Further, the fluid is circulated through the second flow path 212 where the chiller 222 is provided and the fourth flow path 214 where the radiator 224 is provided. Such a first temperature control pattern is used, for example, to warm up the battery 221 and heat the room temperature inside the vehicle during extremely low temperatures in winter.
 また、図82に示すように、第2の温調パターンとして、流路切替装置1を図75や図76に示す第2の流路パターンとする。これにより、流体を、バッテリ221が設けられる第1流路211と、チラー222が設けられる第2流路212と、PCU223が設けられる第3流路213と、ラジエータ224が設けられる第4流路214にて循環させるように流す。そして、このような第2の温調パターンは、例えば、冬季において車内の室温の暖房を行うときや、夏季においてラジエータ224の放熱を行うときに使用される。 Furthermore, as shown in FIG. 82, as the second temperature control pattern, the flow path switching device 1 is set to the second flow path pattern shown in FIGS. 75 and 76. This allows the fluid to be transferred to the first flow path 211 where the battery 221 is provided, the second flow path 212 where the chiller 222 is provided, the third flow path 213 where the PCU 223 is provided, and the fourth flow path where the radiator 224 is provided. The water is circulated at 214. Such a second temperature control pattern is used, for example, when heating the room temperature inside the vehicle in winter, or when dissipating heat from the radiator 224 in summer.
 図83に示すように、第3の温調パターンとして、流路切替装置1を図77や図78に示す第3の流路パターンとする。これにより、流体を、バッテリ221が設けられる第1流路211と、チラー222が設けられる第2流路212にて循環させるように流す。また、流体を、PCU223が設けられる第3流路213と、ラジエータ224が設けられる第4流路214にて循環させるように流す。そして、このような第3の温調パターンは、例えば、夏季の高温時やバッテリ221の急速充電時において、バッテリ221の冷却やPCUの放熱を行うときに使用される。 As shown in FIG. 83, as the third temperature control pattern, the flow path switching device 1 is set to the third flow path pattern shown in FIGS. 77 and 78. Thereby, the fluid is circulated through the first channel 211 where the battery 221 is provided and the second channel 212 where the chiller 222 is provided. Further, the fluid is circulated through the third flow path 213 where the PCU 223 is provided and the fourth flow path 214 where the radiator 224 is provided. Such a third temperature control pattern is used, for example, when cooling the battery 221 or dissipating heat from the PCU during high temperatures in summer or when rapidly charging the battery 221.
 図84に示すように、第4の温調パターンとして、流路切替装置1を図79や図80に示す第4の流路パターンとする。これにより、流体を、バッテリ221が設けられる第1流路211と、チラー222が設けられる第2流路212と、PCU223が設けられる第3流路213にて循環させるように流す。そして、このような第4の温調パターンは、例えば、春や秋の冷暖房を必要としない時に、ラジエータ224をバイパスすることで過冷却を防止し、バッテリ221及びPCU223の温度を適温に調整するときに使用される。 As shown in FIG. 84, as the fourth temperature control pattern, the flow path switching device 1 is set to the fourth flow path pattern shown in FIGS. 79 and 80. Thereby, the fluid is circulated through the first channel 211 where the battery 221 is provided, the second channel 212 where the chiller 222 is provided, and the third channel 213 where the PCU 223 is provided. Such a fourth temperature control pattern prevents overcooling by bypassing the radiator 224 and adjusts the temperature of the battery 221 and PCU 223 to an appropriate temperature, for example, when heating and cooling is not required in spring or autumn. sometimes used.
 なお、上記した実施の形態は単なる例示にすぎず、本開示を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。 Note that the above-described embodiments are merely illustrative and do not limit the present disclosure in any way, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the disclosure.
 例えば、ハウジング11は本開示の「第2部材」の一例であり、固定ディスク50は本開示の「第1部材」の一例であるとしてもよい。 For example, the housing 11 may be an example of the "second member" of the present disclosure, and the fixed disk 50 may be an example of the "first member" of the present disclosure.
 また、上記ではハウジング11は3つまたは4つの入口ポート20aを備え、固定ディスク50は3つまたは4つの出口ポート70aを備えた例を示したが、ハウジング11は5つ以上の入口ポート20aを備え、固定ディスク50は5つ以上の出口ポート70aを備えていてもよい。 Further, although the housing 11 has three or four inlet ports 20a and the fixed disk 50 has three or four outlet ports 70a, the housing 11 has five or more inlet ports 20a. However, the fixed disk 50 may include more than five exit ports 70a.
1  流路切替装置
11 ハウジング
12 弁体部
13 駆動部
20 流入流路
20a 入口ポート
20b 開口部
21 第1流入流路
21a 第1入口ポート
21b 開口部
22 第2流入流路
22a 第2入口ポート
22b 開口部
23 第3流入流路
23a 第3入口ポート
23b 開口部
24 第4流入流路
24a 第4入口ポート
30 流出流路
31 第1流出流路
32 第2流出流路
33 第3流出流路
34 第4流出流路
40 回転ディスク
41 円板部
50 固定ディスク
51 円板部
60 回転ディスク連通路
61 第1回転ディスク連通路
62 第2回転ディスク連通路
63 第3回転ディスク連通路
70 固定ディスク連通路
70a 出口ポート
70b 開口部
71 第1固定ディスク連通路
71a 第1出口ポート
71b 開口部
72 第2固定ディスク連通路
72a 第2出口ポート
72b 開口部
73 第3固定ディスク連通路
73a 第3出口ポート
73b 開口部
74 第4固定ディスク連通路
74a 第4出口ポート
81 シール部材
91,92 入口側R形状部
101,102 出口側R形状部
111 ハウジング側連通路
111-1 第1ハウジング側連通路
111-2 第2ハウジング側連通路
112 固定ディスク側連通路
112-1 第1固定ディスク側連通路
112-2 第2固定ディスク側連通路
121 (ハウジング側連通路の)R形状部
122 (固定ディスク側連通路の)R形状部
131 上下ストレート連通路
131-1 第1上下ストレート連通路
131-2 第2上下ストレート連通路
131-3 第3上下ストレート連通路
131-4 第4上下ストレート連通路
141 (ハウジング側連通路の)大R形状部
142 (固定ディスク側連通路の)大R形状部
151 流路アダプタ
160 回転ディスク連通路
161 第1回転ディスク連通路
162 第2回転ディスク連通路
163 第3回転ディスク連通路
164 第4回転ディスク連通路
171 R形状部
201 流体システム
221 バッテリ
222 チラー
223 PCU
224 ラジエータ
L 中心軸
1 Flow path switching device 11 Housing 12 Valve body 13 Drive unit 20 Inflow path 20a Inlet port 20b Opening 21 First inflow path 21a First inlet port 21b Opening 22 Second inflow path 22a Second inlet port 22b Opening 23 Third inflow channel 23a Third inlet port 23b Opening 24 Fourth inflow channel 24a Fourth inlet port 30 Outflow channel 31 First outflow channel 32 Second outflow channel 33 Third outflow channel 34 Fourth outflow channel 40 Rotating disk 41 Disk portion 50 Fixed disk 51 Disk portion 60 Rotating disk communication path 61 First rotating disk communication path 62 Second rotating disk communication path 63 Third rotating disk communication path 70 Fixed disk communication path 70a Outlet port 70b Opening 71 First fixed disk communication path 71a First outlet port 71b Opening 72 Second fixed disk communication path 72a Second outlet port 72b Opening 73 Third fixed disk communication path 73a Third outlet port 73b Opening Part 74 Fourth fixed disk communication passage 74a Fourth outlet port 81 Seal members 91, 92 Inlet side R-shaped parts 101, 102 Outlet side R-shaped part 111 Housing side communication passage 111-1 First housing side communication passage 111-2 2 housing side communication passage 112 Fixed disk side communication passage 112-1 1st fixed disk side communication passage 112-2 2nd fixed disk side communication passage 121 (of the housing side communication passage) R-shaped portion 122 (of the fixed disk side communication passage ) R-shaped portion 131 Vertical straight communication path 131-1 First vertical straight communication path 131-2 Second vertical straight communication path 131-3 Third vertical straight communication path 131-4 Fourth vertical straight communication path 141 (Housing side communication Large R-shaped portion 142 (of the passageway) Large R-shaped portion 151 (of the fixed disk side communication path) Channel adapter 160 Rotating disk communication path 161 First rotating disk communication path 162 Second rotating disk communication path 163 Third rotating disk communication path 164 4th rotating disk communication path 171 R-shaped part 201 Fluid system 221 Battery 222 Chiller 223 PCU
224 Radiator L center axis

Claims (8)

  1.  第1部材と、
     回転軸を中心に回転する回転部材と、
     第2部材と、を有し、
     前記回転軸の方向について、前記第1部材、前記回転部材、前記第2部材の順に配置されており、
     前記第1部材は、ポートを少なくとも1つ備え、
     前記第2部材は、ポートを複数備え、
     前記回転部材は、前記第1部材のポートと前記第2部材のポートとを連通させる連通路を備え、
     前記回転部材が回転して、前記連通路により連通させる前記第1部材のポートと前記第2部材のポートとの組み合わせを切り替えることにより、流体が流れる流路を切り替える流路切替装置において、
     前記回転軸の方向の断面にて、
     前記連通路は、内壁がR形状に形成されるR形状部を備え、
     前記R形状部は、前記連通路により前記回転軸を中心とする円周方向の異なる位置に配置される前記第1部材のポートと前記第2部材のポートとを連通させるときに、前記第1部材のポートの開口部と前記第2部材のポートの開口部のそれぞれに対向する位置に形成されていること、
     を特徴とする流路切替装置。
    a first member;
    A rotating member that rotates around a rotating shaft,
    a second member;
    The first member, the rotating member, and the second member are arranged in this order with respect to the direction of the rotating shaft,
    the first member includes at least one port;
    The second member includes a plurality of ports,
    The rotating member includes a communication path that communicates the port of the first member and the port of the second member,
    A flow path switching device in which the rotary member rotates to switch a combination of a port of the first member and a port of the second member that are communicated through the communication path, thereby switching a flow path through which a fluid flows.
    In the cross section in the direction of the rotation axis,
    The communicating path includes an R-shaped portion having an R-shaped inner wall,
    The R-shaped portion is configured to connect the port of the first member and the port of the second member, which are arranged at different positions in the circumferential direction around the rotation axis, through the communication path. being formed at positions facing each of the port opening of the member and the port opening of the second member;
    A flow path switching device characterized by:
  2.  請求項1の流路切替装置において、
     1つの前記第1部材のポートに対して1つの前記第2部材のポートが前記円周方向の同じ位置に配置されており、
     前記連通路は、
      前記回転部材の回転方向の位置が第1の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の同じ位置に配置される前記第2部材のポートと、を連通させ、
      前記回転部材の回転方向の位置が前記第1の位置から所定の角度回転した第2の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の異なる位置に配置される前記第2部材のポートと、を連通させること、
     を特徴とする流路切替装置。
    The flow path switching device according to claim 1,
    one port of the second member is arranged at the same position in the circumferential direction with respect to one port of the first member,
    The communication path is
    When the rotating member is at a first position in the rotational direction, the second member is arranged at the same position in the circumferential direction with respect to the port of the first member and the port of the first member. communicate with the port of
    When the rotational direction position of the rotating member is a second position rotated by a predetermined angle from the first position, the port of the first member and the circumferential direction relative to the port of the first member communicating with ports of the second member disposed at different positions;
    A flow path switching device characterized by:
  3.  第1部材と、
     回転軸を中心に回転する回転部材と、
     第2部材と、を有し、
     前記回転軸の方向について、前記第1部材、前記回転部材、前記第2部材の順に配置されており、
     前記第1部材は、ポートを少なくとも1つ備え、
     前記第2部材は、ポートを複数備え、
     前記回転部材は、前記第1部材のポートと前記第2部材のポートとを連通させる連通路を備え、
     前記回転部材が回転して、前記連通路により連通させる前記第1部材のポートと前記第2部材のポートとの組み合わせを切り替えることにより、流体が流れる流路を切り替える流路切替装置において、
     1つの前記第1部材のポートに対して1つの前記第2部材のポートが前記回転軸を中心とする円周方向の同じ位置に配置されており、
     前記連通路は、
      前記回転部材の回転方向の位置が第1の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の同じ位置に配置される前記第2部材のポートと、を連通させ、
      前記回転部材の回転方向の位置が前記第1の位置から所定の角度回転した第2の位置であるときに、前記第1部材のポートと、前記第1部材のポートに対して前記円周方向の異なる位置に配置される前記第2部材のポートと、を連通させること、
     を特徴とする流路切替装置。
    a first member;
    A rotating member that rotates around a rotating shaft,
    a second member;
    The first member, the rotating member, and the second member are arranged in this order with respect to the direction of the rotating shaft,
    the first member includes at least one port;
    The second member includes a plurality of ports,
    The rotating member includes a communication path that communicates the port of the first member and the port of the second member,
    A flow path switching device in which the rotary member rotates to switch a combination of a port of the first member and a port of the second member that are communicated through the communication path, thereby switching a flow path through which a fluid flows.
    one port of the second member is arranged at the same position in a circumferential direction centering on the rotation axis with respect to one port of the first member,
    The communication path is
    When the rotating member is at a first position in the rotational direction, the second member is arranged at the same position in the circumferential direction with respect to the port of the first member and the port of the first member. communicate with the port of
    When the rotational direction position of the rotating member is a second position rotated by a predetermined angle from the first position, the port of the first member and the circumferential direction relative to the port of the first member communicating with ports of the second member disposed at different positions;
    A flow path switching device characterized by:
  4.  第1部材と、
     回転軸を中心に回転する回転部材と、
     第2部材と、を有し、
     前記回転軸の方向について、前記第1部材、前記回転部材、前記第2部材の順に配置されており、
     前記第1部材と前記第2部材は、それぞれ、ポートを3つ以上備え、
     前記回転部材を回転させて、連通させるポートの組み合わせを切り替えることにより、流路を切り替える流路切替装置において、
     前記回転軸の方向の断面にて、
     前記回転部材は、
      前記第1部材側に設けられ、隣接する前記第1部材のポート同士を連通可能な第1部材側連通路と、
      前記第2部材側に設けられ、隣接する前記第2部材のポート同士を連通可能な第2部材側連通路と、を備え、
     前記第1部材側連通路と前記第2部材側連通路は、それぞれ、内壁がR形状に形成されるR形状部を備え、
     前記第1部材側連通路の前記R形状部は、隣接する前記第1部材のポート同士を前記第1部材側連通路により連通させるときに、前記第1部材のポートの開口部に対向する位置に形成され、
     前記第2部材側連通路の前記R形状部は、隣接する前記第2部材のポート同士を前記第2部材側連通路により連通させるときに、前記第2部材のポートの開口部に対向する位置に形成されていること、
     を特徴とする流路切替装置。
    a first member;
    A rotating member that rotates around a rotating shaft,
    a second member;
    The first member, the rotating member, and the second member are arranged in this order with respect to the direction of the rotating shaft,
    The first member and the second member each include three or more ports,
    A flow path switching device that switches a flow path by rotating the rotating member and switching a combination of ports to be communicated,
    In the cross section in the direction of the rotation axis,
    The rotating member is
    a first member side communication path provided on the first member side and capable of communicating ports of adjacent first members;
    a second member side communication path provided on the second member side and capable of communicating ports of adjacent second members;
    The first member side communication passage and the second member side communication passage each include an R-shaped portion having an inner wall formed in an R shape,
    The R-shaped portion of the first member side communication path is located at a position opposite to the opening of the port of the first member when the ports of adjacent first members are communicated with each other through the first member side communication path. formed in
    The R-shaped portion of the second member side communication path is located at a position opposite to the opening of the port of the second member when the ports of the adjacent second member are communicated with each other through the second member side communication path. that it is formed in
    A flow path switching device characterized by:
  5.  請求項4の流路切替装置において、
     前記回転部材は、前記第1部材のポートと前記第2部材のポートを連通可能な貫通連通路を備えていること、
     を特徴とする流路切替装置。
    In the flow path switching device according to claim 4,
    The rotating member is provided with a through communication path that allows communication between the port of the first member and the port of the second member;
    A flow path switching device characterized by:
  6.  請求項5の流路切替装置において、
     1つの前記第1部材のポートに対して1つの前記第2部材のポートが前記回転軸を中心とする円周方向の同じ位置に配置されていること、
     を特徴とする流路切替装置。
    The flow path switching device according to claim 5,
    one port of the second member is arranged at the same position in a circumferential direction centering on the rotation axis with respect to one port of the first member;
    A flow path switching device characterized by:
  7.  請求項4乃至6のいずれか1つの流路切替装置において、
     全ての前記第1部材のポートおよび/または全ての前記第2部材のポートは、前記回転軸を中心とする円周方向の180°の範囲内に配置されていること、
     を特徴とする流路切替装置。
    The flow path switching device according to any one of claims 4 to 6,
    All the ports of the first member and/or all the ports of the second member are arranged within a range of 180° in a circumferential direction around the rotation axis;
    A flow path switching device characterized by:
  8.  請求項7の流路切替装置において、
     前記回転部材は、前記第1部材のポートと前記第2部材のポートを連通可能な貫通連通路を複数備えていること、
     を特徴とする流路切替装置。
    The flow path switching device according to claim 7,
    The rotating member includes a plurality of through passages that can communicate the ports of the first member and the ports of the second member;
    A flow path switching device characterized by:
PCT/JP2023/034017 2022-09-21 2023-09-20 Flow-path switching device WO2024063071A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022150354 2022-09-21
JP2022-150354 2022-09-21
JP2023-030847 2023-03-01
JP2023030847A JP2024044974A (en) 2022-09-21 2023-03-01 Flow Switching Device

Publications (1)

Publication Number Publication Date
WO2024063071A1 true WO2024063071A1 (en) 2024-03-28

Family

ID=90454652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034017 WO2024063071A1 (en) 2022-09-21 2023-09-20 Flow-path switching device

Country Status (1)

Country Link
WO (1) WO2024063071A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514535A (en) * 1996-07-04 2000-10-31 ブロムグレン,ラルフ valve
CN2709740Y (en) * 2004-02-27 2005-07-13 克拉玛依金牛信泰工业控制有限公司 Metering gathering and transportation gating device
JP2013139833A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Rotary valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514535A (en) * 1996-07-04 2000-10-31 ブロムグレン,ラルフ valve
CN2709740Y (en) * 2004-02-27 2005-07-13 克拉玛依金牛信泰工业控制有限公司 Metering gathering and transportation gating device
JP2013139833A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Rotary valve

Similar Documents

Publication Publication Date Title
JP6429988B2 (en) Flow control valve
EP3550189B1 (en) Flow control device
CN113227620B (en) Multiport multi-plane valve
US10508748B2 (en) Control valve
CN108119672B (en) Flow rate control device
CN113154088A (en) Multi-way valve
US11773990B2 (en) Multi-port multi-mode valve
CN108119671B (en) Flow rate control device
KR20160079649A (en) Channel switch valve
JP2023528531A (en) Variable cylinder wall for sealing plug valve
US20240035581A1 (en) Multi-port valve, and thermal management system provided with same and application thereof
CN117450294A (en) Multi-way valve, fluid circuit and cooling fluid circuit
WO2022268727A1 (en) Multi-level rotary plug valve
WO2024063071A1 (en) Flow-path switching device
JP2024044974A (en) Flow Switching Device
CN214999563U (en) Multi-way valve
JP2019078392A (en) Fluid control valve device
KR20220028058A (en) Binary Mode Fluid Valve
JP2022059895A (en) Valve device
WO2024090055A1 (en) Flow path switching device
US11644112B2 (en) Seal for rotary plug valve
CN115507200B (en) Multi-way valve
WO2023176379A1 (en) Flow path switch valve
CN116265788A (en) Rotary disk valve
WO2024024399A1 (en) Flow path switching valve