WO2024063053A1 - Information processing device, system, program, and presentation method - Google Patents

Information processing device, system, program, and presentation method Download PDF

Info

Publication number
WO2024063053A1
WO2024063053A1 PCT/JP2023/033939 JP2023033939W WO2024063053A1 WO 2024063053 A1 WO2024063053 A1 WO 2024063053A1 JP 2023033939 W JP2023033939 W JP 2023033939W WO 2024063053 A1 WO2024063053 A1 WO 2024063053A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration mode
estimated
contour diagram
information processing
elastic
Prior art date
Application number
PCT/JP2023/033939
Other languages
French (fr)
Japanese (ja)
Inventor
剛 山本
秀麻 結城
祐人 作田
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2024063053A1 publication Critical patent/WO2024063053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to an information processing device and the like.
  • the purpose of the present invention is to propose a new method for easily determining (presenting) the elastic constants of objects with complex shapes.
  • An information processing device, a system, a program, and a presentation method using the information processing device according to the present invention include an acquisition unit that acquires measurement results of measuring a resonant frequency of an object and a vibration mode at the resonant frequency, and a plurality of input elastic and a determining unit that presents an elastic constant based on the measured value and the measurement result, the determining unit using the plurality of input elastic values to determine the first contour in each estimated vibration mode at the estimated resonant frequency of the object.
  • a second contour diagram is created for each measured vibration mode at a measured resonance frequency corresponding to the estimated resonance frequency based on the measurement results, and based on the degree of similarity between the first contour diagram and the second contour diagram.
  • the input elasticity value is updated by a genetic algorithm, and the elasticity constant is presented based on the input elasticity value that satisfies a set condition.
  • FIG. 1 is a block diagram showing an example of the configuration of an information processing system.
  • 5 is a flowchart showing an example of the flow of information processing.
  • FIG. 7 is a diagram showing a specific example of a measured vibration mode of a sample and an estimated vibration mode of a sample.
  • FIG. 7 is a diagram showing a specific example of processing results in a vibration mode comparison section.
  • FIG. 3 is a diagram illustrating an example of a comparison result between an elastic constant output by an information processing device and an elastic constant obtained by another method. The figure which shows the specific example of the projection of the measured and estimated vibration mode to the orthogonal plane.
  • 7 is a flowchart showing an example of the flow of information processing in a modified example.
  • FIG. 1 is a diagram illustrating an example of a system configuration of an information processing system 1 according to an aspect of the present embodiment.
  • an information processing device 100 for example, an information processing device 100, a sample vibration mode measuring device 200, and a sample shape measuring device 300 are connected.
  • the information processing system 1 may also be called a material analysis system or an elastic constant determination system.
  • the following items can be analyzed without restriction as objects to be analyzed (measured), for example.
  • ⁇ Material type e.g. metal, ceramic, composite material, etc.
  • ⁇ Material form e.g. three-dimensional shape of material
  • ⁇ Measurement environment e.g. measurement temperature environment
  • the sample vibration mode measuring device 200 has a function of measuring resonance frequencies of an object whose elastic constants are to be determined and vibration modes (resonance modes) corresponding to the respective resonance frequencies.
  • the sample vibration mode measuring device 200 may measure the vibration mode and resonance frequency of the object by, for example, a laser Doppler method.
  • the sample shape measuring device 300 has a function of measuring the three-dimensional shape of a target object.
  • the sample shape measuring device 300 measures the shape (size and its shape) of a target object by, for example, contact-type 3D scanning that acquires a three-dimensional shape by contacting a probe, or non-contact 3D scanning that uses LiDAR (Light Detection And Ranging) or the like. It may also be possible to obtain the shape (size and its shape) of a target object by, for example, contact-type 3D scanning that acquires a three-dimensional shape by contacting a probe, or non-contact 3D scanning that uses LiDAR (Light Detection And Ranging) or the like. It may also be possible to obtain the
  • the information processing device 100 determines the target object based on the vibration mode and resonance frequency of the object measured by the sample vibration mode measurement device 200 and the three-dimensional shape of the object measured by the sample shape measurement device 300. It has the function of determining the elastic constant of .
  • the information processing device 100 may also be referred to as a material analysis device or an elastic constant presentation device.
  • the information processing device 100 may include a measurement result acquisition unit 110, an elastic constant determination unit 120, and a processing program of the present invention stored in a storage unit (not shown).
  • the elastic constant determining unit 120 includes an elastic parameter setting unit 130 , an analyzing unit 140 , a vibration mode comparing unit 150 , and an elastic parameter updating unit 160 .
  • These can be, for example, functional units (functional blocks) possessed by a processing unit (processing unit) or control unit (control device) of the information processing device 100 (not shown), and are configured with processing circuits such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable Gate Array).
  • the measurement result acquisition unit 110 when the measurement result acquisition unit 110 receives as input the resonant frequency and vibration mode of the object measured by the sample vibration mode measurement device 200, the measurement result acquisition unit 110 transmits the resonant frequency and vibration mode of the object to the elastic constant determination unit 120. It has a function to output.
  • the resonance frequency of the object acquired by the measurement result acquisition unit 110 will be referred to as a “measurement resonance frequency”, and the resonance mode will be referred to as a "measurement vibration mode”.
  • the measurement result acquisition section 110 has a function of, for example, receiving as input the three-dimensional shape data of the object measured by the sample shape measuring device 200, and outputting the three-dimensional shape data of the object to the elastic constant determining section 120. It may be made to have. Further, the three-dimensional shape data of the target object may be obtained by receiving CAD data of the target object from a CAD data storage server (not shown), for example, without depending on the measurement result of the sample shape measuring device 300.
  • the elasticity parameter setting unit 130 has a function of setting initial values of elasticity parameters used in the mathematical analysis in the analysis unit 140, for example.
  • the analysis unit 140 uses, for example, the finite element method, based on the three-dimensional shape data and the elastic parameters set in the elastic parameter setting unit 130, to determine whether the three-dimensional object has elastic parameters set. It has a function to calculate the resonant frequency and vibration mode when assuming that.
  • the analysis section 140 may also be referred to as a mathematical analysis section 140.
  • the resonant frequency of the object model calculated by mathematical analysis will be referred to as "estimated resonant frequency” and the resonant mode will be referred to as "estimated vibration mode”.
  • the vibration mode comparison unit 150 compares, for example, the measured vibration mode at each measurement resonance frequency acquired by the measurement result acquisition unit 110 and the estimated vibration at each resonance frequency corresponding to each measurement resonance frequency calculated by the analysis unit 140. It has a function of comparing the estimated vibration mode and the measured vibration mode to determine whether or not the estimated vibration mode is far different from the measured vibration mode.
  • the elasticity parameter updating unit 160 has a function of determining whether or not to update the elasticity parameter, for example, based on the determination result in the vibration mode comparison unit 150. Further, the elastic parameter updating unit 160 has a function of updating the elastic parameter using, for example, an evaluation function based on the estimated resonance frequency and the measured resonance frequency, when it is determined that the elastic parameter should be updated.
  • the elasticity parameter updating unit 160 has a function of outputting the elasticity parameter as an elasticity constant (determination result), for example, when the evaluation function satisfies a setting condition described later.
  • the "output" of the elastic constant (determination result) includes not only the display of the judgment result on the own device (display output), but also the output of the judgment result on the own device to other functional parts (internal output). ), output (external output), and transmission (external transmission) of the determination result to a device other than the own device (external device).
  • FIG. 2 is a flowchart showing an example of the procedure of information processing in this embodiment.
  • the processing in the flowchart of FIG. 2 is realized, for example, by the processing unit of the information processing device 100 reading out a program code stored in a storage unit (not shown) into a RAM (not shown) or the like and executing it.
  • Each symbol S in the flowchart of FIG. 2 means a step. Note that the flowchart described below merely shows an example of the procedure of information processing in this embodiment, and other steps may be added or some steps may be deleted. Further, some of the steps in the flowchart may be replaced and executed.
  • the measurement result acquisition unit 110 executes a sample vibration mode measurement result acquisition process (S110).
  • the measurement result acquisition unit 110 acquires, for example, the measured resonant frequencies of the object and the measured vibration modes corresponding to each measured resonant frequency from the sample vibration mode measurement device 200, and stores them in a memory unit such as a RAM (not shown).
  • the elastic constant determination unit 120 executes a sample shape acquisition process using the sample shape measurement device 300 (S120).
  • the elastic constant determination unit 120 acquires three-dimensional shape data of the object from the sample shape measurement device 300 and outputs it as an input value for the analysis unit 140 .
  • the sample shape measuring device 300 captures images of the target object from multiple directions to obtain the shape of the target object.
  • the acquired data may be projected images viewed from each direction. When capturing projected images, it is preferable to capture the images from a direction in which the target object has a characteristic shape such as a flat surface, as this makes analysis easier.
  • the elastic constant determination unit 120 when the elastic constant determination unit 120 receives CAD data of the target object from a CAD data storage server (not shown), it may convert the data into three-dimensional shape data and output it as an input value for the analysis unit 140. Furthermore, the elastic constant determination unit 120 may obtain the density of the object from a sample density measurement device (not shown) or from input via an input unit (not shown), and input the density to the analysis unit 140 .
  • part or all of the processing in the elastic constant determination unit 120 may be executed in the measurement result acquisition unit 110.
  • the elasticity parameter setting unit 130 executes initial elasticity parameter setting processing (S130).
  • the elastic parameter setting unit 130 randomly sets elastic constants (elastic parameters) used in the finite element model, and outputs them as input values to the analysis unit 140.
  • the analysis unit 140 executes an analysis process using, for example, the finite element method based on the input value (S140).
  • the analysis unit 140 calculates estimated resonance frequencies and estimates corresponding to the respective estimated resonance frequencies based on the input three-dimensional shape data and elastic parameters, for example, using the finite element method. Calculate the vibration mode.
  • the analysis unit 140 calculates the estimated resonant frequency using a boundary element method (BEM), a finite difference method (FDM), a generalized transfer stiffness coefficient method (GTSCM), or the like. and the estimated vibration mode corresponding to each estimated resonance frequency may be calculated.
  • BEM boundary element method
  • FDM finite difference method
  • GTSCM generalized transfer stiffness coefficient method
  • the vibration mode comparison unit 150 executes a vibration mode comparison process (S150).
  • the vibration mode comparison unit 150 determines, for example, a combination of an estimated resonant frequency that is closest to each measured resonant frequency. Then, the vibration mode comparison unit 150 compares the similarity between each measured vibration mode and the estimated vibration mode to calculate the vibration mode similarity.
  • the vibration mode comparison unit 150 calculates, for example, peak amplitude values at each position of the object for the measured vibration mode and the estimated vibration mode, and generates a spatial distribution representation of the amplitude peak values. .
  • a contour diagram used for visualization is used as a spatial distribution expression.
  • conventional techniques such as Non-Patent Documents 1 to 4, researchers' experts often visually determined whether or not they were similar.
  • the resonance frequency must be 4 to 5 times the number of unknown elastic constants, for example, 9 independent elastic constants for orthotropic materials. (vibration mode), that is, it was necessary to compare experiments and analysis at 36 to 45 resonance frequencies (vibration mode). This is very difficult and time consuming to visually inspect.
  • This evaluation can be quickly performed by automating this evaluation using a contour diagram and determining the degree of similarity using cosine similarity, etc., which will be described later.
  • the vibration mode measured by the measuring device and the vibration mode obtained by finite element analysis do not truly match. This is due to experimental errors such as differences in density between the object and the finite element model, heterogeneity of the object, and slight errors in shape measurement.
  • the gradations of the RGB values are not limited to the above-mentioned 255 gradations, but can be changed as appropriate, such as 16 gradations, depending on the purpose.
  • the RGB values associated with the amplitude peak value are not limited to the above values.
  • the color space used in the contour diagram is not limited to the RGB color system.
  • it may be an HSV (hexagonal pyramid model) color system, an HLS (bihexagonal pyramid model) color system, an L*a*b* color system, or a gray scale.
  • the vibration mode comparison unit 150 divides the contour diagram into the set meshes, and calculates a three-dimensional vector whose value is the average value of the RGB values in each mesh.
  • the number of meshes to be divided and the width of each mesh may be set, for example, to correspond to the measurement points in the sample vibration mode measuring device 200, or to correspond to the divided regions used in analysis processing. or you can set it manually.
  • the mesh may be in a form that is analyzed in pixel units by converting the figure into an image.
  • FIG. 3 is a diagram showing a specific example of a method of comparing the contour diagram of the measured vibration mode and the contour diagram of the estimated vibration mode.
  • the upper left side shows a contour diagram of each measured vibration mode at the measured resonance frequency
  • the lower left side shows a contour diagram of each estimated vibration mode at the estimated resonance frequency corresponding to the measured resonance frequency on the upper left side.
  • Both contour diagrams are actually color diagrams of RGB values, but here the RGB values are converted to gray scale and shown.
  • the feature vector calculated from the contour diagram of the measured vibration mode will be referred to as a "measured vibration vector”
  • the feature vector calculated from the contour diagram of the estimated vibration mode will be referred to as an "estimated vibration vector”.
  • the vibration mode comparison unit 150 calculates the degree of similarity between the measured vibration vector and the estimated vibration vector, preferably by cosine similarity. Calculate using degrees. Then, when the cosine similarity is greater than or equal to a threshold value (for example, "0.6"), the vibration mode comparison unit 150 determines that the measured vibration vector and the estimated vibration vector at a predetermined resonance frequency are similar. Note that the vibration mode comparison unit 150 may determine that the measured vibration vector and the estimated vibration vector at a predetermined measured resonance frequency are similar when the cosine similarity is greater than a threshold value.
  • a threshold value for example, "0.6
  • the present invention by determining a vector representation based on a contour diagram using a cosine similarity, it is possible to rationally and quickly evaluate the similarity.
  • the timing at which the same vibration mode is observed is defined as one cycle, the timing at which the amplitude peak reaches its maximum occurs twice in one cycle because vibration is symmetrical.
  • two vibration modes are stored at one resonant frequency of interest and compared with the results of the measurement device.
  • one of the two is very similar and the other is not. Therefore, if one of them reasonably exceeds the threshold determined by the cosine similarity, it can be determined that they match exactly.
  • the vibration mode comparison unit 150 When the similarity between the measured vibration vector and the estimated vibration vector at a certain measured resonance frequency is determined, the vibration mode comparison unit 150 similarly determines whether the measured vibration mode at another measurement resonance frequency and the corresponding estimated vibration mode are similar. Determine gender. Then, the vibration mode comparison unit 150 calculates, for example, the proportion of the measured vibration vector and the estimated vibration vector determined to be similar (hereinafter referred to as "vibration mode similarity rate") at all measured resonance frequencies. calculate.
  • the vibration mode comparison unit 150 is not limited to determining the similarity between the measured vibration vector and the estimated vibration vector for each measured resonance frequency. For example, when "M (M is a natural number)" measurement vibration modes are measured and each measurement vibration mode and the contour diagram corresponding to that measurement vibration mode are separated by "C" (C is a natural number) meshes.
  • the vibration mode comparison unit 150 may generate "M ⁇ C ⁇ 3" dimensional feature vectors as the measured vibration vector and the estimated vibration vector. Then, the degree of similarity (for example, cosine similarity or reciprocal of L2 norm) between the generated “M ⁇ C ⁇ 3” dimension measured vibration vector and the “M ⁇ C ⁇ 3” dimension estimated vibration vector is determined as the vibration mode. It may be calculated as a similarity rate.
  • the elastic parameter updating unit 160 determines whether the estimated vibration mode is similar to the measured vibration mode based on the calculated vibration mode similarity rate. It is determined whether or not (S160). For example, if the vibration mode similarity rate is greater than or equal to a predetermined percentage (for example, "70%"), the elastic parameter update unit 160 determines that the estimated vibration mode is similar to the measured vibration mode. (S160: YES), and elasticity parameter update processing is executed (S170).
  • a predetermined percentage for example, "70%”
  • the elasticity parameter updating unit 160 updates the elasticity parameters using, for example, a genetic algorithm (GA) so as to minimize the elasticity parameter evaluation function. Then, the elasticity parameter updating section 160 outputs the updated elasticity parameter to the analysis section 140.
  • the elastic parameter evaluation function (also referred to as "fitting function") is, for example, the sum of squared errors (Mean Squared Error (MSE)) between the measured resonance frequency and the estimated resonance frequency in each vibration mode. good.
  • the elastic parameter evaluation function is not limited to the sum of square errors between the measured resonance frequency and the estimated resonance frequency.
  • the elastic parameter evaluation function may be the sum of average absolute errors between the measured resonant frequency and the estimated resonant frequency, or the sum of the coefficients of determination between the measured resonant frequency and the estimated resonant frequency.
  • the elastic parameter evaluation function may be a reciprocal of the vibration mode similarity rate described above.
  • the elastic parameter updating method based on the elastic parameter evaluation function is not limited to the genetic algorithm.
  • it may be updated using simulated annealing (SA), particle swarm optimization (PSO), or any combination of GA, SA, and PSO. It's okay.
  • SA simulated annealing
  • PSO particle swarm optimization
  • the input values of the elastic constants used in the finite element method model are random, and depending on the values, the similarity rate may be extremely low. If the vibration mode similarity rate is less than or equal to the predetermined ratio, the elasticity parameter updating unit 160 determines that the estimated vibration mode is not similar to the measured vibration mode (S160: NO), and performs the elasticity parameter resetting process. Execute (S170).
  • step 160 if the elasticity parameter updating unit 160 determines that the estimated vibration mode is not similar to the measured vibration mode, the present invention adds, for example, the estimated resonance frequency of the elasticity parameter evaluation function to the The elasticity parameter evaluation function intentionally outputs a large value by introducing a large value, so that the set input value does not become the gene for the next generation input elasticity constant in the genetic algorithm. This makes it possible to quickly determine the elastic constants.
  • the elasticity parameter setting unit 130 randomly resets the elasticity parameters, for example, and outputs them to the finite element analysis unit 140.
  • the elastic parameter is set to a state closer to the true value than repeating the elastic parameter update process from the current elastic parameter.
  • the time required to determine the elastic constants can be shortened.
  • the elasticity constant determination unit 120 may return to the elasticity parameter before executing the elasticity parameter update process (for example, the elasticity parameter of one generation ago in the case of GA).
  • the elastic constant determination unit 120 may perform a process of constantly updating the elastic parameters by comparing resonance frequencies without executing the vibration mode comparison process.
  • the elasticity constant determination unit 120 executes the elasticity parameter evaluation value calculation process (S190).
  • the elasticity constant determining unit 120 calculates, for example, the number of GA generations in the elasticity parameter update process as the elasticity parameter evaluation value.
  • the elastic constant determination unit 120 may, for example, calculate the value of the elastic parameter evaluation function as the elastic parameter evaluation value.
  • the elastic constant determining unit 120 determines whether the calculated elastic parameter evaluation value satisfies the setting conditions (S200).
  • the setting condition may be, for example, that the number of generations is equal to or greater than "X (for example, "100")” generations, or larger than "X” generations.
  • the setting condition is, for example, that the elasticity parameter evaluation value is less than or equal to the end threshold (for example, "0.1") or smaller than the end threshold. Good too.
  • the elastic constant determining unit 120 executes elastic constant output processing (S210).
  • the elastic constant determining unit 120 outputs, for example, the elastic parameter at that point in time as an elastic constant.
  • the information processing device 100 ends the process.
  • the elastic constant determining unit 120 If it is determined that the elastic parameter evaluation value does not satisfy the setting conditions (S200: NO), the elastic constant determining unit 120 returns the process to step S140, for example.
  • the information processing apparatus 100 when determining that the steps from S140 to S200 have been repeated a set number of times (for example, "10000" times), the information processing apparatus 100 outputs information indicating that the elastic constant could not be determined, and continues the process. It may be configured to end. In this case, information (for example, a contour diagram) regarding the elastic parameters, estimated resonant frequency, and its estimated vibration mode at the end of the process may be output.
  • the information processing device 100 calculates the updated elasticity parameters in each loop, and the estimated resonance frequency and estimated vibration mode based on the updated elasticity parameters. It's okay. Then, the output unit (not shown) of the information processing device 100 compares the elastic parameters updated for each processing loop and the estimated resonance frequency and estimated vibration mode based on the updated elastic parameters with the measured resonance frequency and the measured vibration mode. It may be possible to output the vibration modes in any possible manner (as an example and not a limitation, vibration modes having close resonance frequencies may be contoured and output in line with each other). In this case, the elasticity parameter for each loop may not be output. Further, the output unit may output, for example, the estimated resonance frequency and estimated vibration mode (for example, a contour diagram) in each loop of the processing process in an animation format, for example, when the processing ends.
  • the estimated resonance frequency and estimated vibration mode for example, a contour diagram
  • the elastic parameters used in the mathematical analysis can have a maximum of 21 degrees of freedom (21 variables), but here, assuming that the object is an orthotropic material, the experiment was conducted with nine variables.
  • the maximum number of elastic constants that can be determined using this method is 21 variables, but if the properties of the object are predictable, reducing the number of elastic parameter variables to the minimum necessary will reduce the time required for the elastic parameter update process and reduce the elasticity This is because the parameter evaluation function can converge quickly.
  • the elastic constants in the case of nine variables are Young's modulus (longitudinal elastic constant): E 11 , E 22 , E 33 , Poisson's ratio: v 12 , v 23 , v 31 , and shear stiffness (transverse elastic constant): G 12 , G 23 , G 31.
  • Young's modulus longitudinal elastic constant
  • E 22 longitudinal elastic constant
  • E 33 Poisson's ratio
  • shear stiffness transverse elastic constant
  • FIG. 4 shows the elastic constant determined by this method, the elastic constant calculated by the uniaxial tensile test, and the catalog value of the SUS304 test piece.
  • this method is considered to be able to appropriately determine the elastic constants, as it is possible to obtain values that are almost the same as those obtained for objects for which independent elastic constants in some directions can be obtained in a tensile test. It will be done. Furthermore, it can be assumed that the independent elastic constants, which are difficult to obtain using other tensile tests, have high validity.
  • FIG. 5 shows an example of a contour diagram representation of the measured vibration mode measured in the SUS304 test piece used in the experiment and the calculated estimated vibration mode.
  • the measured resonant frequencies that are actually measured values and the measured vibration modes that correspond to each measured resonant frequency are shown at the top, and the estimated resonant frequencies that are analysis values (simulation values) and the measured vibrations that correspond to each estimated resonant frequency.
  • the modes are shown below.
  • each vibration mode is actually visualized and output as RGB values, but in this figure, the RGB values are shown in grayscale.
  • the elastic parameters used in calculating the estimated resonance frequency and estimated vibration mode shown in the figure are values obtained when it is determined that the elastic parameter evaluation value satisfies the setting conditions.
  • the information processing device 100 (for example, an example of an information processing device) in this embodiment has a measurement resonance frequency (for example, an example of a resonance frequency of an object) and a measurement vibration mode (for example, an example of a vibration mode at the resonance frequency).
  • a measurement result acquisition unit 110 (for example, an example of an acquisition unit) that acquires the measurement results obtained by measuring the a constant determining unit 120 (for example, an example of a determining unit), and the determining unit is configured to determine the estimated resonant frequency and estimated vibration mode of the object estimated based on a plurality of input elasticity values.
  • the estimated vibration mode at the estimated resonant frequency estimated based on multiple input elasticity values and the vibration mode at the resonant frequency based on the measurement results can be compared using a contour diagram. be able to. Then, the input value is repeatedly updated based on the similarity of the contour diagram and the elastic parameter evaluation function (the sum of square errors between the measured resonance frequency and the estimated resonance frequency in each vibration mode), and the elastic constant can be determined.
  • the elastic constants can be more easily presented even for objects whose vibration modes are complex and for which elastic constants are difficult to determine or require complicated measurements using conventional methods.
  • the vibration mode comparison unit 150 meshes the first contour diagram and the second contour diagram, and uses the RGB values of the mesh (for example, an example of the color of the mesh).
  • RGB values of the mesh for example, an example of the color of the mesh.
  • An example of a configuration is shown in which a measured vibration vector and an estimated vibration vector (for example, an example of a vector) are obtained based on the vectors, and a degree of similarity is calculated based on the vectors.
  • the degree of similarity can be calculated from a vector based on the color of the mesh of the contour diagram, and the degree of similarity can be calculated more appropriately.
  • this embodiment shows an example of a configuration in which the degree of similarity (for example, an example of degree of similarity) between the first contour diagram and the second contour diagram is a degree of cosine similarity.
  • the degree of similarity for example, an example of degree of similarity
  • the elastic parameter setting unit 130 when the vibration mode similarity rate (for example, an example of similarity) is smaller than a predetermined rate (for example, an example of a set value) or is less than or equal to the set value, the elastic parameter setting unit 130 An example of a configuration is shown in which error processing is performed on the elasticity parameter evaluation function that evaluated the similarity rate, and the input elasticity value is reset. With such a configuration, the input elasticity value can be reset based on the degree of similarity, and the processing speed can be increased.
  • a predetermined rate for example, an example of a set value
  • the output unit is provided with an output unit that outputs the first contour diagram and the second contour diagram in parallel for each vibration mode having a similar resonance frequency (for example, an example of output that can be compared).
  • An example of a configuration that outputs a second contour diagram that is updated in accordance with updating of values is shown. With this configuration, it is possible to compare and check the second contour diagram and the first contour diagram, which change according to the update of the input elasticity value, and to check whether the input elasticity value update is progressing appropriately. You can check if there are any.
  • the vibration mode comparison unit 150 determines that the measured vibration vector and the estimated vibration vector at a predetermined resonance frequency are similar. It may be determined. Note that the vibration mode comparison unit 150 determines that the measured vibration vector and the estimated vibration vector at a predetermined resonance frequency are similar when the distance between the measured vibration vector and the estimated vibration vector is less than or equal to a threshold value. Good too.
  • a contour diagram is generated using the spatial distribution expression of the amplitude peak value of each vibration mode, but the present invention is not limited to this.
  • the vibration mode comparison unit 150 may calculate the phase of the vibration mode at each position of the object, and generate a contour diagram based on the phase.
  • the vibration mode comparison unit 150 may generate a contour diagram based on the amplitude and phase of the vibration mode, for example.
  • the similarity is calculated so that the spatial distribution expression of the estimated vibration mode coincides with the measured vibration mode measured by the sample vibration mode measurement device 200, but is not limited to this.
  • the measurement result acquisition unit 110 may map the three-dimensional measured vibration mode measured by the sample vibration mode measurement device 200 onto, for example, an x-y plane, a y-z plane, and an x-z plane.
  • the elastic constant determination unit 120 maps the estimated vibration mode calculated in the finite element method analysis process onto the same plane (in this example, the x-y plane, the y-z plane, and the x-z plane) as the one mapped by the measurement result acquisition unit 110.
  • the vibration mode comparison unit 150 may compare the spatial distribution expression (contour diagram) of the mapped measured vibration mode with the spatial distribution expression (contour diagram) of the estimated vibration mode on each plane.
  • FIG. 6 illustrates an example of mapping between the measured vibration mode and the estimated vibration mode.
  • the object data that visualizes the three-dimensional measurement vibration mode of the object in the center, and the measurement vibration modes mapped on the xy plane, yz plane, and xz plane, respectively, are shown around it.
  • a contour diagram of the figure is shown.
  • the object data that visualizes the three-dimensional estimated vibration mode in the center, and the measured vibration modes mapped on the xy plane, yz plane, and xz plane, respectively are shown around it.
  • a contour diagram is illustrated.
  • the vibration mode comparison unit 150 calculates the vibration mode in the xy plane based on the contour diagram of the measured vibration mode on the xy plane and the contour diagram of the estimated vibration mode on the xy plane. Calculate the vibration mode similarity rate. When it is determined that the measured vibration mode and the estimated vibration mode are not similar based on the xy plane vibration mode similarity rate, the elastic parameter updating unit 160 determines that the measured vibration mode and the estimated vibration mode are similar. It is determined that there is no. The vibration mode comparison unit 150 then omits calculation of vibration mode similarity rates on other planes. When it is determined that the measured vibration mode and the estimated vibration mode are similar on all planes, the elastic parameter updating unit 160 determines that the measured vibration mode and the estimated vibration mode are similar.
  • mapping destination plane is not limited to the xy plane, yz plane, and xz plane. Any three planes may be used as long as they are three-dimensionally orthogonal to each other.
  • the spatial distribution expression of the vibration mode viewed from the direction in which the sample vibration mode measuring device 200 observed the object was used as the comparison target, but in this modification, even when it is difficult to compare from the observation direction.
  • mapping onto an appropriate plane it is possible to change the observation viewpoint and perform comparisons.
  • the orthogonal plane to be mapped may be determined so that the plane area of the three-dimensional shape of the target portion after mapping is maximized. This makes it possible to more appropriately and quickly determine the similarity between the measured vibration mode and the estimated vibration mode for an object having a complex three-dimensional shape.
  • the measurement result acquisition unit 110 selects the measurement vibration mode (for example, an example of three-dimensional deformation of the object) on the xy plane, the yz plane, and the xz plane. (for example, an example of three planes perpendicular to each other), and the elastic constant determination unit 120 (for example, an example of a determination unit) estimates the measured vibration mode (for example, an example of a vibration mode) in each of the three planes.
  • the measurement vibration mode for example, an example of three-dimensional deformation of the object
  • the elastic constant determination unit 120 for example, an example of a determination unit
  • estimates the measured vibration mode for example, an example of a vibration mode in each of the three planes.
  • a configuration is shown in which an elastic constant is determined based on a vibration mode (for example, an example of an estimated vibration mode).
  • a contour diagram is used as an example of the spatial distribution representation representing the measured vibration mode and the estimated vibration mode, but the present invention is not limited to this.
  • a heat map may be generated without drawing three-dimensional position boundaries.
  • a flow map may be generated in order to express the temporal change in amplitude in the measured vibration mode and the estimated vibration mode.
  • the heat map or flow map may be divided into meshes, and based on the color information within each mesh, the measured vibration vector and the estimated vibration vector may be calculated, and the degree of similarity may be calculated.
  • the elasticity parameter setting unit 130 randomly sets the elasticity parameters, but the present invention is not limited to this.
  • the elastic constant determination unit 120 may store the material, three-dimensional shape, and elastic constant of the object in a storage unit (not shown). Then, for example, when the same or similar material and the same or similar three-dimensional shape are input as an object for a new analysis, the elastic parameter setting unit 130 may set the elastic parameters by referring to the past elastic constant determination results stored in the storage unit.
  • the elastic constant determination unit 120 determines the elasticity based on, for example, an elasticity parameter whose elasticity parameter evaluation value satisfies a setting condition and an elasticity constant of the same or similar object determined in the past.
  • a constant may also be output.
  • the information processing apparatus 100 terminates the process after determining the elastic constant, but the present invention is not limited thereto.
  • the information processing apparatus 100 may have a determination unit (not shown) evaluate each coefficient of the determined elastic constant and determine the material properties of the object.
  • the degree of freedom of the elasticity parameter is 9 (for example, an example in which a plurality of input elasticity values are 9 variables), and the determination unit orthogonally determines the object based on the elastic constant determined by the determination unit.
  • An example of a configuration is shown in which it is determined whether the material is an orthotropic material, an in-plane isotropic material, or an isotropic material, and the output unit outputs the determination result. With such a configuration, the properties of the object (whether it is an isotropic material or an orthotropic material containing an isotropic material) can be appropriately determined.
  • materials with low viscoelasticity such as metals and ceramics are exemplified as the material type of the object, but the material is not limited thereto.
  • the material has viscoelastic properties and is composed of a composition that is a perfectly elastic body (for example, carbon fiber) and a composition that has viscoelastic properties (for example, a matrix resin).
  • the object may be a material type (for example, CFRP (Carbon Fiber Reinforced Plastics)).
  • CFRP Carbon Fiber Reinforced Plastics
  • FIG. 7 is a flowchart illustrating an example of the procedure of information processing in this modification. Note that the flowchart described below merely shows an example of the procedure of information processing in this modification, and other steps may be added or some steps may be deleted. Further, some of the steps in the flowchart may be replaced and executed. In addition, steps that are the same as those described above may be given the same reference numerals and explanations may be omitted.
  • the elastic constant determination unit 120 executes the viscoelastic property acquisition process (S310).
  • the elastic constant determination unit 120 uses a viscoelasticity measuring device (dynamic viscoelasticity tester) not shown to measure a component having viscoelasticity (for example, in the case of CFRP, a matrix) out of the target object.
  • a test piece consisting only of resin is created, and the dynamic viscoelasticity test results of the composition are obtained.
  • the elastic constant determination unit 120 calculates the viscoelastic properties in a wide converted frequency band based on the dynamic viscoelasticity test results at a plurality of frequencies, for example, using a time-temperature conversion law. This makes it possible to obtain the viscoelastic properties of a material that has viscoelasticity among the materials constituting the object to be measured at a frequency that corresponds to the measurement resonance frequency of the object obtained in the sample vibration mode measurement result acquisition process. .
  • the elastic constant determining unit 120 executes the initial elastic parameter setting process (S130), it executes the complex equivalent stiffness calculation process (S320).
  • the elastic constant determination unit 120 In the complex equivalent stiffness calculation process, the elastic constant determination unit 120 generates a representative volume element model (e.g., an example of an analytical model) of an object having viscoelastic properties based on, for example, a component (e.g., matrix resin) whose viscoelastic properties have been acquired in the viscoelastic property acquisition process, and a component (e.g., carbon fiber) that is a perfect elastic body whose elastic parameters have been set in the initial elastic parameter setting process.
  • a component e.g., matrix resin
  • a component e.g., carbon fiber
  • the elastic constant determination unit 120 analyzes, for example, the strain caused by applying loads in different directions and at various frequencies to the created representative volume element model using the finite element method. Then, the elastic constant determining unit 120 calculates the complex equivalent stiffness, for example, based on the analysis results for the representative volume element model.
  • the elastic constant determination unit 120 executes the generalized Maxwell model coefficient identification process (S330).
  • the generalized Maxwell model may be abbreviated as "GMM”.
  • GMM generalized Maxwell model
  • Zener model a model in which a single spring element is added in parallel to the generalized Maxwell model
  • the elastic constant determining unit 120 identifies each coefficient of the GMM using, for example, a genetic algorithm (GA) based on, for example, the complex equivalent stiffness.
  • GA genetic algorithm
  • the storage modulus C' is assumed to be the following equation (1), and the loss elastic modulus C'' is assumed to be the equation (2) below.
  • is each frequency
  • C 0 is the elastic coefficient.
  • i represents each Maxwell element
  • each coefficient C i is determined by a genetic algorithm or the like so that the error function defined by the following equation is less than or equal to a threshold value.
  • y'model is the storage modulus of GMM
  • y'exp is the storage modulus of RVE
  • y''model is the loss elastic modulus of GMM
  • y''exp is the loss elastic modulus of RVE.
  • the analysis unit 140 calculates, for example, a finite Analysis processing using the element method is executed (S140).
  • the elastic constant determination unit 120 returns the process to step S320, for example. Then, for example, based on the updated elastic parameters, the representative volume element model is recreated and the complex equivalent stiffness is calculated. Then, in the generalized Maxwell model coefficient identification process, each coefficient of the GMM is also updated based on the updated complex equivalent stiffness.
  • the elastic constant determining unit 120 executes elastic constant output processing (S210).
  • the elastic constant determining unit 120 outputs, for example, the elastic parameter at that point, the storage elastic modulus of the GMM, and the loss elastic modulus of the GMM as elastic constants.
  • the storage modulus and loss modulus are not limited to being identified by GMM.
  • the storage modulus and the loss modulus may be simultaneously optimized as elastic parameters using the Williams-Landel-Ferry formula (Williams-Landel-Ferry formula, WLF formula).
  • the elastic constant determination unit 120 (for example, an example of a calculation unit) of the information processing device performs an RVE (for example, an analysis model A configuration that calculates the storage elastic modulus and loss elastic modulus (for example, an example of elastic parameter values) in GMM based on the above data (for example), and presents an elastic constant based on a plurality of input elastic values, elastic parameter values, and measurement results.
  • an RVE for example, an analysis model A configuration that calculates the storage elastic modulus and loss elastic modulus (for example, an example of elastic parameter values) in GMM based on the above data (for example)
  • an elastic constant can be determined by updating the input elastic value and the elastic parameter value. Can be done.
  • the target object is a matrix resin (for example, an example of a first composition having viscoelasticity) and carbon fibers (for example, an example of a second composition different from the first composition). configured.
  • An example of a configuration is shown in which the plurality of input elasticity values are the input elasticity values of the second component.
  • the information processing device includes a measurement result acquisition unit 110 that acquires dynamic viscoelasticity test results and viscoelastic properties in a wide converted frequency band (for example, an example of the viscoelastic properties of the first component). (for example, an example of a viscoelastic property acquisition unit), and calculates an elastic parameter value based on an analytical model based on viscoelastic properties and a plurality of input elastic values.
  • a measurement result acquisition unit 110 that acquires dynamic viscoelasticity test results and viscoelastic properties in a wide converted frequency band (for example, an example of the viscoelastic properties of the first component).
  • a viscoelastic property acquisition unit for example, an example of a viscoelastic property acquisition unit
  • the information processing device includes an acquisition unit that acquires measurement results obtained by measuring a resonant frequency of an object and a vibration mode at the resonant frequency; , a determining unit that determines an elastic constant, and the determining unit is configured to express a spatial distribution based on an estimated resonance frequency and an estimated vibration mode of the object estimated based on a plurality of input elastic values, and a resonant frequency based on a measurement result.
  • the input elasticity value may be updated based on the input elasticity value and the spatial distribution expression based on the vibration mode, and the elastic constant may be determined based on the input elasticity value that satisfies the setting conditions.
  • the spatial distribution expression is a contour diagram
  • the determination unit calculates the degree of similarity based on the vector calculated based on the contour diagram, and if the degree of similarity is smaller than the set value or less than the set value, , the input elasticity value may be reset.
  • the determining unit may calculate the vector based on the color of each predetermined mesh of the contour diagram.
  • the determining unit may update the input elasticity value based on a genetic algorithm.
  • the type of material to be measured is not limited to materials with low viscoelasticity such as metals and ceramics, but also materials with high viscoelasticity that are accompanied by vibration damping phenomena such as polymeric materials can be measured.
  • the dynamic elastic modulus of the object is measured, and the storage modulus and loss modulus obtained from the dynamic elastic modulus are calculated using the loading frequency and reference temperature. This becomes possible by obtaining the relationship experimentally and applying the finite element analysis of the present invention.
  • Information processing system 100 Information processing device 110 Measurement result acquisition unit 120 Elastic constant determination unit 200 Sample vibration mode measurement device 300 Sample shape measurement device

Abstract

The present invention provides a new technique for easily determining the elastic constant of an object having a complex shape. This information processing device comprises: an acquisition unit that acquires measurement results obtained by measuring the resonance frequency of an object and a vibrational mode at the resonance frequency; and a determination unit that presents an elastic constant on the basis of a plurality of inputted elasticity values and the measurement results. The determination unit creates, by using the plurality of inputted elasticity values, a first contour diagram of the object in each estimated vibrational mode at an estimated resonance frequency, creates a second contour diagram in each measured vibrational mode at a measured resonance frequency which corresponds to the estimated resonance frequency and which is based on the measurement results, updates the inputted elasticity values by using a genetic algorithm on the basis of the similarity degree between the first contour diagram and the second contour diagram, and presents the elastic constant on the basis of inputted elasticity values that satisfy setting conditions.

Description

情報処理装置、システム、プログラム、提示方法Information processing device, system, program, presentation method
 本発明は、情報処理装置等に関する。 The present invention relates to an information processing device and the like.
 材料選定や材料加工の分野等において、対象物の弾性定数を同定する社会的ニーズが存在する。
 棒状材料など、シンプルな直線形状の対象物では、引張試験など用いることで、弾性定数を得ることができる。
 一方、複雑な形状の対象物は、測定を行うために対象物を規格に沿った形状に成形する必要がある。さらに、力学的異方性を持つ対象物の場合は、いろいろな方向から引張荷重やせん断荷重を複数の異なる試験法を用いて測定を行う必要があり弾性定数の決定は容易ではない。
There is a social need to identify the elastic constants of objects in the fields of material selection and material processing.
For objects with simple linear shapes, such as rod-shaped materials, elastic constants can be obtained by using a tensile test or the like.
On the other hand, in order to measure a complex-shaped object, it is necessary to mold the object into a shape that conforms to a standard. Furthermore, in the case of objects with mechanical anisotropy, it is necessary to measure tensile loads and shear loads from various directions using several different test methods, making it difficult to determine the elastic constants.
 そのような対象物の弾性定数の求め方として、従来、固体を振動させ、共振周波数の共振モードを演算する超音波共鳴法(Resonant Ultrasound Spectroscopy(以下、「RUS法」という場合もある。)及び有限要素法(FEM:Finite Element Method)などの数値解析手法を用いて逆解析的に弾性定数を求める手法が知られている(例えば、特許文献1、非特許文献1~4参照。)。
 しかし、上記の手法は、精度の向上等において、改良の余地がある。
Conventionally, methods for determining the elastic constants of such objects include ultrasonic resonance spectroscopy (hereinafter sometimes referred to as the "RUS method"), which vibrates a solid body and calculates the resonance mode of the resonant frequency. A method is known in which an elastic constant is determined by inverse analysis using a numerical analysis method such as the finite element method (FEM) (see, for example, Patent Document 1 and Non-Patent Documents 1 to 4).
However, the above method has room for improvement in terms of improving accuracy and the like.
特開2003-207390号広報JP2003-207390 Publication
 本発明は、簡易に複雑な形状の対象物の弾性定数を決定(提示)するための新たな手法を提案することにある。 The purpose of the present invention is to propose a new method for easily determining (presenting) the elastic constants of objects with complex shapes.
 本発明の情報処理装置、情報処理装置を用いたシステム、プログラム及び提示方法は、対象物の共鳴周波数と共鳴周波数での振動モードとを計測した計測結果を取得する取得部と、複数の入力弾性値と前記計測結果とに基づいて、弾性定数を提示する決定部とを備え、決定部は、複数の入力弾性値を用いて、対象物の推定共鳴周波数における各推定振動モードでの第1コンター図を作成し、前記計測結果に基づく前記推定共鳴周波数に対応した計測共鳴周波数における各計測振動モードでの第2コンター図を作成し、第1コンター図と第2コンター図との類似度に基づいて、遺伝的アルゴリズムによって入力弾性値を更新し、設定条件を満たす入力弾性値に基づいて、前記弾性定数を提示することを特徴とする。 An information processing device, a system, a program, and a presentation method using the information processing device according to the present invention include an acquisition unit that acquires measurement results of measuring a resonant frequency of an object and a vibration mode at the resonant frequency, and a plurality of input elastic and a determining unit that presents an elastic constant based on the measured value and the measurement result, the determining unit using the plurality of input elastic values to determine the first contour in each estimated vibration mode at the estimated resonant frequency of the object. A second contour diagram is created for each measured vibration mode at a measured resonance frequency corresponding to the estimated resonance frequency based on the measurement results, and based on the degree of similarity between the first contour diagram and the second contour diagram. The input elasticity value is updated by a genetic algorithm, and the elasticity constant is presented based on the input elasticity value that satisfies a set condition.
 本発明によれば、従来手法では弾性定数の決定が困難、あるいは煩雑な計測が必要であった対象物に対しても、より簡易に弾性定数を決定することができることができる。 According to the present invention, it is possible to more easily determine the elastic constant even for objects for which determining the elastic constant is difficult or requires complicated measurement using conventional methods.
情報処理システムの構成の一例を示すブロック図。FIG. 1 is a block diagram showing an example of the configuration of an information processing system. 情報処理の流れの一例を示すフローチャート。5 is a flowchart showing an example of the flow of information processing. 計測された試料の振動モードと推定された試料の振動モードとの具体例を示す図。FIG. 7 is a diagram showing a specific example of a measured vibration mode of a sample and an estimated vibration mode of a sample. 振動モード比較部における処理結果の具体例を示す図。FIG. 7 is a diagram showing a specific example of processing results in a vibration mode comparison section. 情報処理装置によって出力された弾性定数と、他の手法によって得られた弾性定数との比較結果の一例を示す図。FIG. 3 is a diagram illustrating an example of a comparison result between an elastic constant output by an information processing device and an elastic constant obtained by another method. 計測・推定された振動モードの直交平面への射影の具体例を示す図。The figure which shows the specific example of the projection of the measured and estimated vibration mode to the orthogonal plane. 変形例における情報処理の流れの一例を示すフローチャート。7 is a flowchart showing an example of the flow of information processing in a modified example.
 以下、本発明を実施するための形態の一例について図面を参照して説明する。
 なお、図面の説明において同一の要素には同一の符号を付して、重複する説明を省略する場合がある。
 また、この実施形態に記載されている構成要素はあくまで例示であり、本発明の範囲をそれらに限定する趣旨のものではない。
EMBODIMENT OF THE INVENTION Hereinafter, an example of the form for implementing this invention is demonstrated with reference to drawings.
In addition, in the description of the drawings, the same elements may be denoted by the same reference numerals, and redundant description may be omitted.
Further, the components described in this embodiment are merely examples, and the scope of the present invention is not intended to be limited thereto.
 [実施形態]
 以下、本発明の情報処理技術を実現するための実施形態の一例について説明する。
[Embodiment]
An example of an embodiment for realizing the information processing technology of the present invention will be described below.
 図1は、本実施形態の一態様に係る情報処理システム1のシステム構成の一例を示す図である。
 情報処理システム1では、例えば、情報処理装置100と、試料振動モード計測装置200と、資料形状測定装置300とが接続される。
 情報処理システム1は、材料解析システムや弾性定数決定システムと言う場合もある。
FIG. 1 is a diagram illustrating an example of a system configuration of an information processing system 1 according to an aspect of the present embodiment.
In the information processing system 1, for example, an information processing device 100, a sample vibration mode measuring device 200, and a sample shape measuring device 300 are connected.
The information processing system 1 may also be called a material analysis system or an elastic constant determination system.
 本発明における情報処理システム1および情報処理装置100では、解析対象(計測対象)となる対象物として、例えば、以下の項目において制限を伴わずに解析を行うことができる。
・材料種(例えば、金属やセラミック、複合材料等)
・材料形態(例えば、材料の三次元的形状)
・計測環境(例えば、計測温度環境)
 すなわち、情報処理装置100は、対象物の三次元形状に制限されずに、その対象物の弾性定数を算出することが可能性である。
In the information processing system 1 and the information processing apparatus 100 according to the present invention, the following items can be analyzed without restriction as objects to be analyzed (measured), for example.
・Material type (e.g. metal, ceramic, composite material, etc.)
・Material form (e.g. three-dimensional shape of material)
・Measurement environment (e.g. measurement temperature environment)
That is, the information processing apparatus 100 can calculate the elastic constant of the object without being limited to the three-dimensional shape of the object.
 試料振動モード計測装置200は、弾性定数の決定対象である対象物の共振周波数と、それぞれの共振周波数に対応する振動モード(共振モード)とを計測する機能を有する。
 試料振動モード計測装置200は、例えば、レーザドップラ法によって、対象物の振動モードと共振周波数とを計測するようにしてもよい。
The sample vibration mode measuring device 200 has a function of measuring resonance frequencies of an object whose elastic constants are to be determined and vibration modes (resonance modes) corresponding to the respective resonance frequencies.
The sample vibration mode measuring device 200 may measure the vibration mode and resonance frequency of the object by, for example, a laser Doppler method.
 試料形状計測装置300は、対象物の三次元形状を計測する機能を有する。
 試料形状計測装置300は、例えば、プローブを接触させ三次元形状を取得する接触式3Dスキャンや、LiDAR(Light Detection And Ranging)等を用いる非接触型3Dスキャンによって、対象物の形状(大きさとその形)を取得するようにしてもよい。
The sample shape measuring device 300 has a function of measuring the three-dimensional shape of a target object.
The sample shape measuring device 300 measures the shape (size and its shape) of a target object by, for example, contact-type 3D scanning that acquires a three-dimensional shape by contacting a probe, or non-contact 3D scanning that uses LiDAR (Light Detection And Ranging) or the like. It may also be possible to obtain the
 情報処理装置100は、例えば、試料振動モード計測装置200によって計測された対象物の振動モードおよび共振周波数と、試料形状計測装置300によって計測された対象物の三次元形状とに基づいて、対象物の弾性定数を決定する機能を有する。
 情報処理装置100は、材料解析装置や弾性定数提示装置と言う場合もある。
For example, the information processing device 100 determines the target object based on the vibration mode and resonance frequency of the object measured by the sample vibration mode measurement device 200 and the three-dimensional shape of the object measured by the sample shape measurement device 300. It has the function of determining the elastic constant of .
The information processing device 100 may also be referred to as a material analysis device or an elastic constant presentation device.
 情報処理装置100は、計測結果取得部110と、弾性定数決定部120と、不図示の記憶部に格納された本発明の処理プログラムとを含んでもよい。
 弾性定数決定部120は、弾性パラメータ設定部130と、解析部140と、振動モード比較部150と、弾性パラメータ更新部160とを備える。
 これらは、例えば、情報処理装置100の不図示の処理部(処理装置)や制御部(制御装置)が有する機能部(機能ブロック)とすることができ、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等の処理回路を有して構成される。
The information processing device 100 may include a measurement result acquisition unit 110, an elastic constant determination unit 120, and a processing program of the present invention stored in a storage unit (not shown).
The elastic constant determining unit 120 includes an elastic parameter setting unit 130 , an analyzing unit 140 , a vibration mode comparing unit 150 , and an elastic parameter updating unit 160 .
These can be, for example, functional units (functional blocks) possessed by a processing unit (processing unit) or control unit (control device) of the information processing device 100 (not shown), and are configured with processing circuits such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable Gate Array).
 計測結果取得部110は、例えば、試料振動モード計測装置200によって計測された対象物の共振周波数と振動モードとを入力として受け付けると、弾性定数決定部120に対象物の共振周波数と振動モードとを出力する機能を有する。
 以下では、計測結果取得部110によって取得された対象物の共振周波数を「計測共振周波数」、共振モードを「計測振動モード」とそれぞれ呼称する。
For example, when the measurement result acquisition unit 110 receives as input the resonant frequency and vibration mode of the object measured by the sample vibration mode measurement device 200, the measurement result acquisition unit 110 transmits the resonant frequency and vibration mode of the object to the elastic constant determination unit 120. It has a function to output.
Hereinafter, the resonance frequency of the object acquired by the measurement result acquisition unit 110 will be referred to as a "measurement resonance frequency", and the resonance mode will be referred to as a "measurement vibration mode".
 なお、計測結果取得部110は、例えば、試料形状計測装置200によって計測された対象物の三次元形状データを入力として受け付けると、弾性定数決定部120に対象物の三次元形状データを出力する機能を有するようにしてもよい。また、対象物の三次元形状データは、試料形状計測装置300における計測結果によらず、例えば、対象物のCADデータを不図示のCADデータストレージサーバから受信するようにしてもよい。 Note that the measurement result acquisition section 110 has a function of, for example, receiving as input the three-dimensional shape data of the object measured by the sample shape measuring device 200, and outputting the three-dimensional shape data of the object to the elastic constant determining section 120. It may be made to have. Further, the three-dimensional shape data of the target object may be obtained by receiving CAD data of the target object from a CAD data storage server (not shown), for example, without depending on the measurement result of the sample shape measuring device 300.
 弾性パラメータ設定部130は、例えば、解析部140における数理解析で用いられる弾性パラメータ初期値を設定する機能を有する。 The elasticity parameter setting unit 130 has a function of setting initial values of elasticity parameters used in the mathematical analysis in the analysis unit 140, for example.
 解析部140は、例えば、三次元形状データと弾性パラメータ設定部130において設定された弾性パラメータとに基づいて、例えば、有限要素法によって、その三次元形状の対象物が設定された弾性パラメータを持つと仮定した場合における、共振周波数と振動モードとを算出する機能を有する。解析部140は、数理解析部140と言ってもよい。
 以下では、数理解析によって算出された対象物モデルの共振周波数を「推定共振周波数」、共振モードを「推定振動モード」とそれぞれ呼称する。
The analysis unit 140 uses, for example, the finite element method, based on the three-dimensional shape data and the elastic parameters set in the elastic parameter setting unit 130, to determine whether the three-dimensional object has elastic parameters set. It has a function to calculate the resonant frequency and vibration mode when assuming that. The analysis section 140 may also be referred to as a mathematical analysis section 140.
In the following, the resonant frequency of the object model calculated by mathematical analysis will be referred to as "estimated resonant frequency" and the resonant mode will be referred to as "estimated vibration mode".
 振動モード比較部150は、例えば、計測結果取得部110によって取得された各計測共振周波数での計測振動モードと、解析部140で算出された各計測共振周波数に対応する各共振周波数での推定振動モードとを比較し、推定振動モードが計測振動モードとかけ離れているか否かを判定する機能を有する。 The vibration mode comparison unit 150 compares, for example, the measured vibration mode at each measurement resonance frequency acquired by the measurement result acquisition unit 110 and the estimated vibration at each resonance frequency corresponding to each measurement resonance frequency calculated by the analysis unit 140. It has a function of comparing the estimated vibration mode and the measured vibration mode to determine whether or not the estimated vibration mode is far different from the measured vibration mode.
 弾性パラメータ更新部160は、例えば、振動モード比較部150における判定結果に基づいて、弾性パラメータを更新するか否かを判定する機能を有する。また、弾性パラメータ更新部160は、例えば、弾性パラメータを更新すると判定された場合、例えば、推定共振周波数と計測共振周波数とに基づく評価関数を用いて、弾性パラメータを更新する機能を有する。 The elasticity parameter updating unit 160 has a function of determining whether or not to update the elasticity parameter, for example, based on the determination result in the vibration mode comparison unit 150. Further, the elastic parameter updating unit 160 has a function of updating the elastic parameter using, for example, an evaluation function based on the estimated resonance frequency and the measured resonance frequency, when it is determined that the elastic parameter should be updated.
 また、弾性パラメータ更新部160は、例えば、評価関数が後述する設定条件を満たす場合、その弾性パラメータを弾性定数(決定結果)として出力する機能を有する。 Furthermore, the elasticity parameter updating unit 160 has a function of outputting the elasticity parameter as an elasticity constant (determination result), for example, when the evaluation function satisfies a setting condition described later.
 ここで、弾性定数(決定結果)の「出力」には、自装置での判定結果の表示(表示出力)の他、例えば、自装置での他の機能部への判定結果の出力(内部出力)や、自装置以外の装置(外部装置)への判定結果の出力(外部出力)や送信(外部送信)等を含めるようにしてもよい。 Here, the "output" of the elastic constant (determination result) includes not only the display of the judgment result on the own device (display output), but also the output of the judgment result on the own device to other functional parts (internal output). ), output (external output), and transmission (external transmission) of the determination result to a device other than the own device (external device).
 [情報処理の手順]
 図2は、本実施形態における情報処理の手順例を示すフローチャートである。
 図2のフローチャートにおける処理は、例えば、情報処理装置100の処理部が、不図示の記憶部に格納されたプログラムのコードを不図示のRAM等に読み出して実行することにより実現される。
[Information processing procedure]
FIG. 2 is a flowchart showing an example of the procedure of information processing in this embodiment.
The processing in the flowchart of FIG. 2 is realized, for example, by the processing unit of the information processing device 100 reading out a program code stored in a storage unit (not shown) into a RAM (not shown) or the like and executing it.
 図2のフローチャートにおける各記号Sは、ステップを意味する。
 なお、以下説明するフローチャートは、本実施形態における情報処理の手順の一例を示すものに過ぎず、他のステップを追加したり、一部のステップを削除したりしてもよい。また、フローチャートにおけるステップの一部を入れ替えて実行してもよい。
Each symbol S in the flowchart of FIG. 2 means a step.
Note that the flowchart described below merely shows an example of the procedure of information processing in this embodiment, and other steps may be added or some steps may be deleted. Further, some of the steps in the flowchart may be replaced and executed.
 まず、計測結果取得部110は、試料振動モード計測結果取得処理を実行する(S110)。
 試料振動モード計測結果取得処理において、計測結果取得部110は、例えば、試料振動モード計測装置200から対象物の計測共振周波数と、それぞれの計測共振周波数に対応する計測振動モードとを取得し、不図示のRAM等の記憶部に記憶させる。
First, the measurement result acquisition unit 110 executes a sample vibration mode measurement result acquisition process (S110).
In the sample vibration mode measurement result acquisition process, the measurement result acquisition unit 110 acquires, for example, the measured resonant frequencies of the object and the measured vibration modes corresponding to each measured resonant frequency from the sample vibration mode measurement device 200, and stores them in a memory unit such as a RAM (not shown).
 また、弾性定数決定部120は、試料形状計測装置300を用いて試料形状取得処理を実行する(S120)。
 試料形状取得処理において、弾性定数決定部120は、試料形状計測装置300から対象物の三次元形状データを取得し、解析部140の入力値として出力する。
 このとき、試料形状計測装置300は、対象物を複数の方向から撮像して、試料の形状を取得する。なお、複数の方向から撮像した方が好ましいが、一方向からの撮像であっても、弾性定数計測をすることは可能である。また、後述するように、取得したデータは、それぞれの方向からみた投影像としてもよい。また、投影画像とする際には、対象物に平面などの特徴的な形状がある方向から取得すると解析等が容易になるので好ましい。
Furthermore, the elastic constant determination unit 120 executes a sample shape acquisition process using the sample shape measurement device 300 (S120).
In the sample shape acquisition process, the elastic constant determination unit 120 acquires three-dimensional shape data of the object from the sample shape measurement device 300 and outputs it as an input value for the analysis unit 140 .
At this time, the sample shape measuring device 300 captures images of the target object from multiple directions to obtain the shape of the target object. Although it is preferable to capture images from multiple directions, it is possible to measure the elastic constant even when capturing images from one direction. As will be described later, the acquired data may be projected images viewed from each direction. When capturing projected images, it is preferable to capture the images from a direction in which the target object has a characteristic shape such as a flat surface, as this makes analysis easier.
 なお、試料形状取得処理において、弾性定数決定部120は、対象物のCADデータを不図示のCADデータストレージサーバから受信すると、三次元形状データに変換し、解析部140の入力値として出力するようにしてもよい。
 また、弾性定数決定部120は、対象物の密度を不図示の試料密度計測装置や不図示の入力部による入力等から取得し、解析部140に入力するようにしてもよい。
In addition, in the sample shape acquisition process, when the elastic constant determination unit 120 receives CAD data of the target object from a CAD data storage server (not shown), it may convert the data into three-dimensional shape data and output it as an input value for the analysis unit 140.
Furthermore, the elastic constant determination unit 120 may obtain the density of the object from a sample density measurement device (not shown) or from input via an input unit (not shown), and input the density to the analysis unit 140 .
 なお、試料形状取得処理において、弾性定数決定部120における一部または全部の処理を計測結果取得部110において実行するようにしてもよい。 Note that in the sample shape acquisition process, part or all of the processing in the elastic constant determination unit 120 may be executed in the measurement result acquisition unit 110.
 次に、弾性パラメータ設定部130は、初期弾性パラメータ設定処理を実行する(S130)。
 初期弾性パラメータ設定処理において、弾性パラメータ設定部130は、例えば、有限要素法モデルで用いられる弾性定数(弾性パラメータ)を、例えば、ランダムに設定し、解析部140の入力値として出力する。
Next, the elasticity parameter setting unit 130 executes initial elasticity parameter setting processing (S130).
In the initial elastic parameter setting process, the elastic parameter setting unit 130 randomly sets elastic constants (elastic parameters) used in the finite element model, and outputs them as input values to the analysis unit 140.
 その後、解析部140は、入力値に基づき、例えば、有限要素法による解析処理を実行する(S140)。
 有限要素法による解析処理において、解析部140は、入力された三次元形状データと、弾性パラメータとに基づいて、例えば、有限要素法によって、推定共振周波数と、それぞれの推定共振周波数と対応する推定振動モードとを算出する。
After that, the analysis unit 140 executes an analysis process using, for example, the finite element method based on the input value (S140).
In the analysis process using the finite element method, the analysis unit 140 calculates estimated resonance frequencies and estimates corresponding to the respective estimated resonance frequencies based on the input three-dimensional shape data and elastic parameters, for example, using the finite element method. Calculate the vibration mode.
 なお、解析部140は、境界要素法(BEM:Boundary Element Method)や有限差分法(FDM:Finite Difference Method)、一般化伝達剛性係数法(GTSCM:Generalized Transfer Stiffness Coefficient Method)等によって、推定共振周波数と、それぞれの推定共振周波数と対応する推定振動モードとを算出するようにしてもよい。 The analysis unit 140 calculates the estimated resonant frequency using a boundary element method (BEM), a finite difference method (FDM), a generalized transfer stiffness coefficient method (GTSCM), or the like. and the estimated vibration mode corresponding to each estimated resonance frequency may be calculated.
 推定共振周波数と推定振動モードとが算出されると、振動モード比較部150は、振動モード比較処理を実行する(S150)。
 振動モード比較処理において、振動モード比較部150は、例えば、各計測共振周波数において最も近しい推定共振周波数の組み合わせを判定する。そして、振動モード比較部150は、各計測振動モードと推定振動モードとの類似性を比較し、振動モード類似度を算出する。
When the estimated resonant frequency and the estimated vibration mode are calculated, the vibration mode comparison unit 150 executes a vibration mode comparison process (S150).
In the vibration mode comparison process, the vibration mode comparison unit 150 determines, for example, a combination of an estimated resonant frequency that is closest to each measured resonant frequency. Then, the vibration mode comparison unit 150 compares the similarity between each measured vibration mode and the estimated vibration mode to calculate the vibration mode similarity.
 具体的には、まず、振動モード比較部150は、計測振動モードと推定振動モードとについて、例えば、振幅のピーク値を対象物の各位置において算出し、振幅ピーク値の空間分布表現を生成する。 Specifically, first, the vibration mode comparison unit 150 calculates, for example, peak amplitude values at each position of the object for the measured vibration mode and the estimated vibration mode, and generates a spatial distribution representation of the amplitude peak values. .
 本発明では、空間分布表現として、可視化に用いられるコンター図を用いる。
 非特許文献1~4のような従来技術においては、研究者の専門家が目視により類似か否かを決定することが多かった。一般的に、RUS法で精度良く弾性定数を計測するためには、未知の弾性定数の個数、例えば直交異方性材料であれば9つの独立弾性定数に対して、4~5倍の共鳴周波数(振動モード)、つまり36~45個の共鳴周波数(振動モード)において実験と解析との比較をする必要があった。これは、目視では非常に困難であり時間を要する。この評価を、コンター図を用いて自動化し、後述のコサイン類似度等を用いて類似度を判定することで迅速に評価を行うことができる。
In the present invention, a contour diagram used for visualization is used as a spatial distribution expression.
In conventional techniques such as Non-Patent Documents 1 to 4, researchers' experts often visually determined whether or not they were similar. Generally, in order to accurately measure elastic constants using the RUS method, the resonance frequency must be 4 to 5 times the number of unknown elastic constants, for example, 9 independent elastic constants for orthotropic materials. (vibration mode), that is, it was necessary to compare experiments and analysis at 36 to 45 resonance frequencies (vibration mode). This is very difficult and time consuming to visually inspect. This evaluation can be quickly performed by automating this evaluation using a contour diagram and determining the degree of similarity using cosine similarity, etc., which will be described later.
 また、RUS法においては、計測装置で計測した振動モードと有限要素解析により得られた振動モードは、真には一致していない。これは対象物と有限要素モデルとの密度の違い、対象物の不均質性、形状測定のわずかな誤差などの実験エラーに起因している。
 本発明では、本来、真に一致しない振動モードをコンター図化し、コサイン類似度等を用いて類似度を判定することで「一致」の程度を合理的に決めることで解決を図ることができる。
Furthermore, in the RUS method, the vibration mode measured by the measuring device and the vibration mode obtained by finite element analysis do not truly match. This is due to experimental errors such as differences in density between the object and the finite element model, heterogeneity of the object, and slight errors in shape measurement.
In the present invention, it is possible to solve the problem by drawing contours of vibration modes that do not originally match, and determining the degree of "match" rationally by determining the degree of similarity using cosine similarity or the like.
 コンター図の生成において、振動モード比較部150は、例えば、振幅ピーク値が最大となる位置における値をRGB値の(R,G,B)=(255,0,0)、振幅ピーク値が最小となる位置における値を(R,G,B)=(0,0,255)、振幅ピーク値が中間値をとる位置における値をRGB値の(R,G,B)=(0,255,0)とするRGB表色系で表現されるコンター図を生成する。 In generating the contour diagram, the vibration mode comparison unit 150 calculates, for example, the value at the position where the amplitude peak value is maximum, the RGB value (R, G, B) = (255, 0, 0), and the value at the position where the amplitude peak value is the minimum. The value at the position where (R, G, B) = (0, 0, 255) is the value, and the value at the position where the amplitude peak value takes the intermediate value is the RGB value (R, G, B) = (0, 255, 0) is generated using the RGB color system.
 なお、RGB値の階調は、上記255階調に限らず、16階調等、目的に応じて適宜変更可能である。
 また、振幅ピーク値と関連付けられるRGB値は上記の値に限定されない。例えば、振幅ピーク値が最大となる位置における値をRGB値の(R,G,B)=(0,255,0)、振幅ピーク値が最小となる位置における値を(R,G,B)=(255,0,0)、振幅ピーク値が中間値をとる位置における値をRGB値の(R,G,B)=(0,0,255)とするRGB表色系で表現してもよい。
 また、コンター図で用いられる色空間はRGB表色系に限定されない。例えば、HSV(六角錐モデル)表色系、HLS(双六角錐モデル)表色系や、L*a*b*表色系としてもよいし、グレースケールとしてもよい。
Note that the gradations of the RGB values are not limited to the above-mentioned 255 gradations, but can be changed as appropriate, such as 16 gradations, depending on the purpose.
Further, the RGB values associated with the amplitude peak value are not limited to the above values. For example, the value at the position where the amplitude peak value is the maximum is the RGB value (R, G, B) = (0,255,0), and the value at the position where the amplitude peak value is the minimum is (R, G, B). = (255, 0, 0), and the value at the position where the amplitude peak value takes the intermediate value is expressed in the RGB color system where the RGB value is (R, G, B) = (0, 0, 255). good.
Furthermore, the color space used in the contour diagram is not limited to the RGB color system. For example, it may be an HSV (hexagonal pyramid model) color system, an HLS (bihexagonal pyramid model) color system, an L*a*b* color system, or a gray scale.
 すると、振動モード比較部150は、コンター図を設定されたメッシュで分割し、各メッシュにおけるRGB値の平均値を値とする3次元ベクトルを算出する。分割するメッシュの数と各メッシュの幅については、例えば、試料振動モード計測装置200における計測点と対応するように設定してもよいし、解析処理において用いられる分割領域と対応するように設定してもよいし、手動で設定してもよい。また、メッシュは、図を画像化したピクセル単位として解析する形にしてもよい。 Then, the vibration mode comparison unit 150 divides the contour diagram into the set meshes, and calculates a three-dimensional vector whose value is the average value of the RGB values in each mesh. The number of meshes to be divided and the width of each mesh may be set, for example, to correspond to the measurement points in the sample vibration mode measuring device 200, or to correspond to the divided regions used in analysis processing. or you can set it manually. Furthermore, the mesh may be in a form that is analyzed in pixel units by converting the figure into an image.
 図3は、計測振動モードのコンター図と推定振動モードのコンター図との比較方法の具体例を示す図である。図3では、左上側に計測共鳴周波数における各計測振動モードのコンター図が、左下側に左上側の計測共振周波数に対応する推定共鳴周波数における各推定振動モードのコンター図が、それぞれ図示されている。両コンター図は実際にはRGB値のカラー図であるが、ここではRGB値をグレースケールに変換し示している。 FIG. 3 is a diagram showing a specific example of a method of comparing the contour diagram of the measured vibration mode and the contour diagram of the estimated vibration mode. In FIG. 3, the upper left side shows a contour diagram of each measured vibration mode at the measured resonance frequency, and the lower left side shows a contour diagram of each estimated vibration mode at the estimated resonance frequency corresponding to the measured resonance frequency on the upper left side. . Both contour diagrams are actually color diagrams of RGB values, but here the RGB values are converted to gray scale and shown.
 図3では、例えば、各コンター図は「12×10」のメッシュに区切られている。1つのメッシュから3次元ベクトルが得られるため、計測振動モードと推定振動モードとからはそれぞれ「360(=12×10×3)」個の特徴ベクトルが得られる。
 以下では、計測振動モードのコンター図から算出された特徴ベクトルを「計測振動ベクトル」、推定振動モードのコンター図から算出された特徴ベクトルを「推定振動ベクトル」と称する。
In FIG. 3, for example, each contour diagram is divided into 12×10 meshes. Since a three-dimensional vector is obtained from one mesh, "360 (=12×10×3)" feature vectors are obtained from each of the measured vibration mode and the estimated vibration mode.
Hereinafter, the feature vector calculated from the contour diagram of the measured vibration mode will be referred to as a "measured vibration vector", and the feature vector calculated from the contour diagram of the estimated vibration mode will be referred to as an "estimated vibration vector".
 所定の計測共振周波数(モード)に対応する計測振動ベクトルと推定振動ベクトルとが算出されると、振動モード比較部150は、計測振動ベクトルと推定振動ベクトルとの類似度を、好ましくは、コサイン類似度を用いて算出する。そして、振動モード比較部150は、コサイン類似度が閾値(例えば、「0.6」)以上である場合、所定の共振周波数における計測振動ベクトルと推定振動ベクトルとが類似していると判定する。なお、振動モード比較部150は、コサイン類似度が閾値より大きい場合、所定の計測共振周波数における計測振動ベクトルと推定振動ベクトルとが類似していると判定するようにしてもよい。 When the measured vibration vector and estimated vibration vector corresponding to a predetermined measured resonance frequency (mode) are calculated, the vibration mode comparison unit 150 calculates the degree of similarity between the measured vibration vector and the estimated vibration vector, preferably by cosine similarity. Calculate using degrees. Then, when the cosine similarity is greater than or equal to a threshold value (for example, "0.6"), the vibration mode comparison unit 150 determines that the measured vibration vector and the estimated vibration vector at a predetermined resonance frequency are similar. Note that the vibration mode comparison unit 150 may determine that the measured vibration vector and the estimated vibration vector at a predetermined measured resonance frequency are similar when the cosine similarity is greater than a threshold value.
 本発明では、コンター図に基づくベクトル表現をコサイン類似度で判定することで、合理的、かつ、迅速に類似度の評価を行うことができる。
 対して、RUS法では、同じ振動モードが観察されるタイミングを1周期とすると、振幅ピークが最大になるタイミングは、振動は対称性があるため、1周期に2回生じる。測定装置等での手法では、この2つ振動ピークの内、どちらが観察されているか判定できない。そのため、本発明の有限要素解析では、注目している1つの共鳴周波数において、2つの振動モードを保存し、測定装置の結果との比較を行う。コサイン類似度で比較した場合、2つの内、ひとつは良好に類似し、他方は類似しない。そのため、片方が合理的にコサイン類似度で定めた閾値を超えていれば、正確に一致すると判定することができる。
In the present invention, by determining a vector representation based on a contour diagram using a cosine similarity, it is possible to rationally and quickly evaluate the similarity.
On the other hand, in the RUS method, if the timing at which the same vibration mode is observed is defined as one cycle, the timing at which the amplitude peak reaches its maximum occurs twice in one cycle because vibration is symmetrical. Using a method using a measuring device or the like, it is not possible to determine which of these two vibration peaks is being observed. Therefore, in the finite element analysis of the present invention, two vibration modes are stored at one resonant frequency of interest and compared with the results of the measurement device. When compared based on cosine similarity, one of the two is very similar and the other is not. Therefore, if one of them reasonably exceeds the threshold determined by the cosine similarity, it can be determined that they match exactly.
 ある計測共振周波数における計測振動ベクトルと推定振動ベクトルの類似性が判定されると、振動モード比較部150は、他の計測共振周波数における計測振動モードと、対応する推定振動モードとについて、同様に類似性を判定する。すると、振動モード比較部150は、例えば、全ての計測共振周波数において、計測振動ベクトルと推定振動ベクトルとが類似していると判定された割合(以下、「振動モード類似率」と称する。)を算出する。 When the similarity between the measured vibration vector and the estimated vibration vector at a certain measured resonance frequency is determined, the vibration mode comparison unit 150 similarly determines whether the measured vibration mode at another measurement resonance frequency and the corresponding estimated vibration mode are similar. Determine gender. Then, the vibration mode comparison unit 150 calculates, for example, the proportion of the measured vibration vector and the estimated vibration vector determined to be similar (hereinafter referred to as "vibration mode similarity rate") at all measured resonance frequencies. calculate.
 例えば、対象物の計測振動モード数が「14」であり、計測振動ベクトルと推定振動ベクトルとが類似していると判定された個数が「7」である場合、振動モード類似率は「7÷14=0.5(50%)」と算出される。 For example, if the number of measured vibration modes of the object is "14" and the number of measured vibration vectors and estimated vibration vectors determined to be similar is "7", the vibration mode similarity rate is calculated as "7÷14=0.5 (50%)".
 なお、振動モード比較処理において、振動モード比較部150は、計測共振周波数ごとに計測振動ベクトルと推定振動ベクトルとの類似性を判定することに限定されない。例えば、「M(Mは自然数)」個の計測振動モードが計測され、各計測振動モードと、その計測振動モードに対応するコンター図とを「C(Cは自然数)」個のメッシュで区切る場合、振動モード比較部150は、計測振動ベクトルおよび推定振動ベクトルとして「M×C×3」次元の特徴ベクトルを生成するようにしてもよい。そして、生成された「M×C×3」次元の計測振動ベクトルと「M×C×3」次元の推定振動ベクトルとの類似度(例えば、コサイン類似度や、L2ノルムの逆数)を振動モード類似率として算出するようにしてもよい。 Note that in the vibration mode comparison process, the vibration mode comparison unit 150 is not limited to determining the similarity between the measured vibration vector and the estimated vibration vector for each measured resonance frequency. For example, when "M (M is a natural number)" measurement vibration modes are measured and each measurement vibration mode and the contour diagram corresponding to that measurement vibration mode are separated by "C" (C is a natural number) meshes. The vibration mode comparison unit 150 may generate "M×C×3" dimensional feature vectors as the measured vibration vector and the estimated vibration vector. Then, the degree of similarity (for example, cosine similarity or reciprocal of L2 norm) between the generated “M×C×3” dimension measured vibration vector and the “M×C×3” dimension estimated vibration vector is determined as the vibration mode. It may be calculated as a similarity rate.
 図2に戻り、振動モード比較処理において振動モード類似率が算出されると、弾性パラメータ更新部160は、算出された振動モード類似率に基づいて、推定振動モードが計測振動モードと類似しているか否かを判定する(S160)。
 例えば、振動モード類似率が所定割合(例えば、「70%」)よりも大きい、または所定割合以上である場合、弾性パラメータ更新部160は、推定振動モードが計測振動モードと類似していると判定し(S160:YES)、弾性パラメータ更新処理を実行する(S170)。
Returning to FIG. 2, when the vibration mode similarity rate is calculated in the vibration mode comparison process, the elastic parameter updating unit 160 determines whether the estimated vibration mode is similar to the measured vibration mode based on the calculated vibration mode similarity rate. It is determined whether or not (S160).
For example, if the vibration mode similarity rate is greater than or equal to a predetermined percentage (for example, "70%"), the elastic parameter update unit 160 determines that the estimated vibration mode is similar to the measured vibration mode. (S160: YES), and elasticity parameter update processing is executed (S170).
 弾性パラメータ更新処理において、弾性パラメータ更新部160は、弾性パラメータ評価関数を最小化するように、例えば、遺伝的アルゴリズム(GA:Genetic Algorithm)によって、弾性パラメータを更新する。そして、弾性パラメータ更新部160は、更新した弾性パラメータを解析部140に出力する。
 ここで、弾性パラメータ評価関数(「適合関数」ともいう。)は、例えば、各振動モードにおける計測共振周波数と推定共振周波数との二乗誤差の総和(平均二乗誤差(MSE:Mean Squared Error)としてもよい。
In the elasticity parameter updating process, the elasticity parameter updating unit 160 updates the elasticity parameters using, for example, a genetic algorithm (GA) so as to minimize the elasticity parameter evaluation function. Then, the elasticity parameter updating section 160 outputs the updated elasticity parameter to the analysis section 140.
Here, the elastic parameter evaluation function (also referred to as "fitting function") is, for example, the sum of squared errors (Mean Squared Error (MSE)) between the measured resonance frequency and the estimated resonance frequency in each vibration mode. good.
 なお、弾性パラメータ評価関数は、計測共振周波数と推定共振周波数との二乗誤差の総和に限定されない。例えば、弾性パラメータ評価関数は、計測共振周波数と推定共振周波数との平均絶対誤差の総和や、計測共振周波数と推定共振周波数との決定係数の総和としてもよい。また、弾性パラメータ評価関数は、前述の振動モード類似率の逆数としてもよい。 Note that the elastic parameter evaluation function is not limited to the sum of square errors between the measured resonance frequency and the estimated resonance frequency. For example, the elastic parameter evaluation function may be the sum of average absolute errors between the measured resonant frequency and the estimated resonant frequency, or the sum of the coefficients of determination between the measured resonant frequency and the estimated resonant frequency. Further, the elastic parameter evaluation function may be a reciprocal of the vibration mode similarity rate described above.
 また、弾性パラメータ評価関数に基づく弾性パラメータの更新方法は、遺伝的アルゴリズムに限定されない。例えば、疑似焼きなまし法(SA:Simulated Annealing)や粒子群最適化法(PSO:Particle Swarm Optimization)によって更新するようにしてもよいし、GAとSAとPSOとの任意の組み合わせ手法によって更新するようにしてもよい。 Furthermore, the elastic parameter updating method based on the elastic parameter evaluation function is not limited to the genetic algorithm. For example, it may be updated using simulated annealing (SA), particle swarm optimization (PSO), or any combination of GA, SA, and PSO. It's okay.
 有限要素法モデルで用いられる弾性定数の入力値は前述のように、ランダムであり、値によっては、類似率が著しく低い場合がある。振動モード類似率が所定割合以下、または所定割合より小さい場合、弾性パラメータ更新部160は、推定振動モードが計測振動モードと類似していないと判定し(S160:NO)、弾性パラメータ再設定処理を実行する(S170)。 As mentioned above, the input values of the elastic constants used in the finite element method model are random, and depending on the values, the similarity rate may be extremely low. If the vibration mode similarity rate is less than or equal to the predetermined ratio, the elasticity parameter updating unit 160 determines that the estimated vibration mode is not similar to the measured vibration mode (S160: NO), and performs the elasticity parameter resetting process. Execute (S170).
 ステップ160において、弾性パラメータ更新部160が、推定振動モードが計測振動モードと類似していないと判定した場合には、本発明では、弾性パラメータ評価関数の推定共振周波数に、例えば、通常では考えられない大きな値を導入して、意図的に弾性パラメータ評価関数が大きな値を出力するようにし、設定した入力値が、遺伝的アルゴリズムにおいて、次世代の入力弾性定数の遺伝子となることがないようすることで迅速な弾性定数の決定を可能にしている。 In step 160, if the elasticity parameter updating unit 160 determines that the estimated vibration mode is not similar to the measured vibration mode, the present invention adds, for example, the estimated resonance frequency of the elasticity parameter evaluation function to the The elasticity parameter evaluation function intentionally outputs a large value by introducing a large value, so that the set input value does not become the gene for the next generation input elasticity constant in the genetic algorithm. This makes it possible to quickly determine the elastic constants.
 弾性パラメータ再設定処理において、弾性パラメータ設定部130は、弾性パラメータを、例えば、ランダムに再設定し、有限要素解析部140に出力する。
 これにより、現在の弾性パラメータが真値(計測振動モードを再現する弾性パラメータ)とかけ離れている場合、現在の弾性パラメータから弾性パラメータ更新処理を繰り返すよりも弾性パラメータをより真値に近い状態に設定できる可能性があり、結果的に、弾性定数の決定に要する時間を短縮する事ができる。
In the elasticity parameter resetting process, the elasticity parameter setting unit 130 randomly resets the elasticity parameters, for example, and outputs them to the finite element analysis unit 140.
As a result, if the current elastic parameter is far from the true value (elastic parameter that reproduces the measured vibration mode), the elastic parameter is set to a state closer to the true value than repeating the elastic parameter update process from the current elastic parameter. As a result, the time required to determine the elastic constants can be shortened.
 なお、弾性定数決定部120は、弾性パラメータ再設定処理において、弾性パラメータ更新処理実行前の弾性パラメータ(例えば、GAであれば一世代前の弾性パラメータ)に戻すようにしてもよい。 Note that, in the elasticity parameter resetting process, the elasticity constant determination unit 120 may return to the elasticity parameter before executing the elasticity parameter update process (for example, the elasticity parameter of one generation ago in the case of GA).
 また、弾性定数決定部120は、振動モード比較処理を実行せず、共鳴周波数を比較することで、常に弾性パラメータを更新する処理を実行するようにしてもよい。 Furthermore, the elastic constant determination unit 120 may perform a process of constantly updating the elastic parameters by comparing resonance frequencies without executing the vibration mode comparison process.
 弾性パラメータ更新処理または弾性パラメータ再設定処理が実行されると、弾性定数決定部120は、弾性パラメータ評価値算出処理を実行する(S190)。
 弾性パラメータ評価値算出処理において、弾性定数決定部120は、例えば、弾性パラメータ更新処理におけるGAの世代数を弾性パラメータ評価値として算出する。
 なお、弾性定数決定部120は、例えば、弾性パラメータ評価関数の値を弾性パラメータ評価値として算出するようにしてもよい。
When the elasticity parameter update process or the elasticity parameter reset process is executed, the elasticity constant determination unit 120 executes the elasticity parameter evaluation value calculation process (S190).
In the elasticity parameter evaluation value calculation process, the elasticity constant determining unit 120 calculates, for example, the number of GA generations in the elasticity parameter update process as the elasticity parameter evaluation value.
Note that the elastic constant determination unit 120 may, for example, calculate the value of the elastic parameter evaluation function as the elastic parameter evaluation value.
 そして、弾性定数決定部120は、算出された弾性パラメータ評価値が設定条件を満たすか否かを判定する(S200)。
 弾性パラメータ評価値がGAの世代数である場合、設定条件は、例えば、世代数が「X(例えば、「100」)」世代以上である、または「X」世代よりも大きいこととしてもよい。また、弾性パラメータ評価値が弾性パラメータ評価関数の値である場合、設定条件は、例えば、弾性パラメータ評価値が終了閾値(例えば、「0.1」)以下である、または終了閾値より小さいこととしてもよい。
Then, the elastic constant determining unit 120 determines whether the calculated elastic parameter evaluation value satisfies the setting conditions (S200).
When the elasticity parameter evaluation value is the number of generations of GA, the setting condition may be, for example, that the number of generations is equal to or greater than "X (for example, "100")" generations, or larger than "X" generations. In addition, when the elasticity parameter evaluation value is the value of the elasticity parameter evaluation function, the setting condition is, for example, that the elasticity parameter evaluation value is less than or equal to the end threshold (for example, "0.1") or smaller than the end threshold. Good too.
 弾性パラメータ評価値が設定条件を満たすと判定する場合(S200:YES)、弾性定数決定部120は、弾性定数出力処理を実行する(S210)。
 弾性定数出力処理において、弾性定数決定部120は、例えば、その時点における弾性パラメータを弾性定数として出力する。
When determining that the elastic parameter evaluation value satisfies the setting condition (S200: YES), the elastic constant determining unit 120 executes elastic constant output processing (S210).
In the elastic constant output process, the elastic constant determining unit 120 outputs, for example, the elastic parameter at that point in time as an elastic constant.
 そして、情報処理装置100は、処理を終了する。 Then, the information processing device 100 ends the process.
 弾性パラメータ評価値が設定条件を満さないと判定する場合(S200:NO)、弾性定数決定部120は、例えば、S140のステップに処理を戻す。 If it is determined that the elastic parameter evaluation value does not satisfy the setting conditions (S200: NO), the elastic constant determining unit 120 returns the process to step S140, for example.
 なお、情報処理装置100は、例えば、S140~S200までのステップを設定回数(例えば、「10000」回)繰り返したと判定する場合、弾性定数が決定できなかったことを示す情報を出力し、処理を終了するようにしてもよい。この場合、処理終了時点での弾性パラメータや、推定共鳴周波数とその推定振動モードに関する情報(例えば、コンター図)を出力するようにしてもよい。 Note that, for example, when determining that the steps from S140 to S200 have been repeated a set number of times (for example, "10000" times), the information processing apparatus 100 outputs information indicating that the elastic constant could not be determined, and continues the process. It may be configured to end. In this case, information (for example, a contour diagram) regarding the elastic parameters, estimated resonant frequency, and its estimated vibration mode at the end of the process may be output.
 また、情報処理装置100は、例えば、S140~S200までのステップを実行すると、各ループにおいて更新された弾性パラメータと、更新された弾性パラメータに基づく推定共振周波数と推定振動モードとを算出するようにしてもよい。そして、情報処理装置100の不図示の出力部は、処理ループごとに更新された弾性パラメータと、更新された弾性パラメータに基づく推定共振周波数および推定振動モードを、計測共振周波数および計測振動モードと比較可能な態様で出力(限定ではなく例として、共振周波数が近しい振動モードをコンター図化し、それぞれ並べて出力)するようにしてもよい。この場合、ループごとの弾性パラメータは出力しないようにしてもよい。また、出力部は、例えば、処理終了時に、処理過程の各ループにおける推定共振周波数および推定振動モード(例えば、コンター図)を、例えば、アニメーション形式で出力するようにしてもよい。 Furthermore, when the information processing device 100 executes steps S140 to S200, for example, the information processing device 100 calculates the updated elasticity parameters in each loop, and the estimated resonance frequency and estimated vibration mode based on the updated elasticity parameters. It's okay. Then, the output unit (not shown) of the information processing device 100 compares the elastic parameters updated for each processing loop and the estimated resonance frequency and estimated vibration mode based on the updated elastic parameters with the measured resonance frequency and the measured vibration mode. It may be possible to output the vibration modes in any possible manner (as an example and not a limitation, vibration modes having close resonance frequencies may be contoured and output in line with each other). In this case, the elasticity parameter for each loop may not be output. Further, the output unit may output, for example, the estimated resonance frequency and estimated vibration mode (for example, a contour diagram) in each loop of the processing process in an animation format, for example, when the processing ends.
 [実施例]
・既知の弾性定数を有する対象物の情報処理結果
 本発明の手法が、正確な弾性定数を決定しているか検討するため、一定方向で既知の弾性定数を有する対象物を用いて、検討を行った。
 等方性金属材料であるSUS304試験片を対象物とし、弾性定数を決定した実験結果を示す。
 実験条件は以下の通りである。
・試験片寸法:11.010(mm)×9.019(mm)×1.911(mm)
・試験片密度:7.824(Mg/m
・試料振動モード計測装置200での周波数走査範囲:50-300(kHz)
・試料振動モード計測装置200の分解能:0.156(kHz)
 なお、本実験において、対象物からは14の計測共振周波数が観測された。
[Example]
・Information processing results for objects with known elastic constants In order to examine whether the method of the present invention determines accurate elastic constants, we conducted a study using objects that have known elastic constants in a certain direction. Ta.
The experimental results are shown in which the elastic constants were determined using a SUS304 test piece, which is an isotropic metal material, as the object.
The experimental conditions are as follows.
・Test piece size: 11.010 (mm) x 9.019 (mm) x 1.911 (mm)
・Test piece density: 7.824 (Mg/m 3 )
・Frequency scanning range of sample vibration mode measuring device 200: 50-300 (kHz)
・Resolution of sample vibration mode measuring device 200: 0.156 (kHz)
In addition, in this experiment, 14 measured resonance frequencies were observed from the object.
 数理解析で用いる弾性パラメータは、最大21自由度(21変数)を持ち得るが、ここでは、対象物を直交異方性材料と仮定し、9変数として実験を行った。
 本手法で決定可能な弾性定数は最大21変数であるが、対象物の性質が予想可能である場合、弾性パラメータの変数を必要最小限とすることで、弾性パラメータ更新処理に要する時間や、弾性パラメータ評価関数の収束を早くすることができるためである。
The elastic parameters used in the mathematical analysis can have a maximum of 21 degrees of freedom (21 variables), but here, assuming that the object is an orthotropic material, the experiment was conducted with nine variables.
The maximum number of elastic constants that can be determined using this method is 21 variables, but if the properties of the object are predictable, reducing the number of elastic parameter variables to the minimum necessary will reduce the time required for the elastic parameter update process and reduce the elasticity This is because the parameter evaluation function can converge quickly.
 なお、本発明において、9変数とした場合の弾性定数は、ヤング率(縦弾性定数):E11、E22、E33、ポアソン比:ν12、ν23、ν31、せん断剛力(横弾性定数):G12、G23、G31である。これら弾性定数の左の添え字は注目面を表し、右の添え字は力の作用している方向を表す。 In the present invention, the elastic constants in the case of nine variables are Young's modulus (longitudinal elastic constant): E 11 , E 22 , E 33 , Poisson's ratio: v 12 , v 23 , v 31 , and shear stiffness (transverse elastic constant): G 12 , G 23 , G 31. The subscripts to the left of these elastic constants indicate the surface of interest, and the subscripts to the right indicate the direction in which the force is acting.
 図4に、本手法で決定された弾性定数と、単軸引張試験で算出された弾性定数およびSUS304試験片のカタログ値とを示す。
 この結果より、単軸引張試験といった機械的試験法の結果と調和的な決定結果が得られたことがわかる。
 なお、対象物の厚みが十分ではないため、引張試験ではE11やν12といった厚み方向の弾性定数を求めることが困難であるが、本手法では対象物の三次元形状に影響されず決定することができている。その結果、計測した試験片では、若干の異方性が生じていることがわかる。
 以上から、本手法では、引張試験で一部の方向の独立弾性定数が得られる対象物で得られる数値と、ほぼ同じ値が得られることから、適切に弾性定数を決定することができると考えられる。また、他の引張試験で得るのが難しい独立弾性定数も、高い妥当性を有していると推測できる。
FIG. 4 shows the elastic constant determined by this method, the elastic constant calculated by the uniaxial tensile test, and the catalog value of the SUS304 test piece.
These results show that the determined results were consistent with the results of mechanical testing methods such as the uniaxial tensile test.
Furthermore, since the thickness of the target is not sufficient, it is difficult to determine the elastic constants in the thickness direction such as E11 and ν12 in a tensile test, but this method can determine them without being affected by the three-dimensional shape of the target. I am able to do that. As a result, it can be seen that some anisotropy has occurred in the measured test piece.
From the above, this method is considered to be able to appropriately determine the elastic constants, as it is possible to obtain values that are almost the same as those obtained for objects for which independent elastic constants in some directions can be obtained in a tensile test. It will be done. Furthermore, it can be assumed that the independent elastic constants, which are difficult to obtain using other tensile tests, have high validity.
 図5に、実験において用いたSUS304試験片において計測された計測振動モードと算出された推定振動モードとのコンター図表現の一例を示す。
 この図では、実測値である計測共振周波数と、各計測共振周波数に対応する計測振動モードとを上側に、解析値(シミュレーション値)である推定共振周波数と、各推定共振周波数に対応する計測振動モードとを下側に、それぞれ図示している。
 この図において、それぞれの振動モードは実際にはRGB値として可視化して出力されているが、本図では、RGB値をグレースケール化して示している。
 また、図示された推定共振周波数と推定振動モードの算出において使用された弾性パラメータは、弾性パラメータ評価値が設定条件を満たすと判定されたときの値を使用している。
FIG. 5 shows an example of a contour diagram representation of the measured vibration mode measured in the SUS304 test piece used in the experiment and the calculated estimated vibration mode.
In this figure, the measured resonant frequencies that are actually measured values and the measured vibration modes that correspond to each measured resonant frequency are shown at the top, and the estimated resonant frequencies that are analysis values (simulation values) and the measured vibrations that correspond to each estimated resonant frequency. The modes are shown below.
In this figure, each vibration mode is actually visualized and output as RGB values, but in this figure, the RGB values are shown in grayscale.
Further, the elastic parameters used in calculating the estimated resonance frequency and estimated vibration mode shown in the figure are values obtained when it is determined that the elastic parameter evaluation value satisfies the setting conditions.
 計測振動モードのコンター図と推定振動モードのコンター図とを比較すると、推定振動モードが計測振動モードを再現するように、弾性パラメータが更新されたことがわかる。 Comparing the contour diagram of the measured vibration mode and the contour diagram of the estimated vibration mode, it can be seen that the elastic parameters have been updated so that the estimated vibration mode reproduces the measured vibration mode.
 [実施形態の作用・効果]
 本実施形態における情報処理装置100(例えば、情報処理装置の一例)は、計測共振周波数(例えば、対象物の共鳴周波数の一例)と計測振動モード(例えば、共鳴周波数での振動モードの一例)とを計測した計測結果を取得する計測結果取得部110(例えば、取得部の一例)と、弾性パラメータ(例えば、複数の入力弾性値の一例)と計測結果とに基づいて、弾性定数を決定する弾性定数決定部120(例えば、決定部の一例)とを備え、決定部は、有限要素法解析処理結果(例えば、複数の入力弾性値に基づいて推定された対象物の推定共鳴周波数および推定振動モードの一例)に基づく推定振動モードのコンター図(例えば、第1コンター図の一例)を作成し、計測結果に基づく共鳴周波数および振動モードに基づく計測振動モードのコンター図(例えば、第2コンター図の一例)を作成し、第1コンター図と第2コンター図との距離(例えば、類似度の一例)に基づいて、GAを用いた弾性パラメータ更新処理(例えば、入力弾性値の更新の一例)を実行し、GAの世代数(例えば、設定条件の一例)を満たす入力弾性値に基づいて、弾性定数を提示する構成の一例を示している。
 このような構成にすることで、複数の入力弾性値に基づいて推定された推定共鳴周波数における推定振動モードと、計測結果に基づく共鳴周波数における振動モードとの比較を、コンター図を介して実行することができる。そして、コンター図の類似度と弾性パラメータ評価関数(各振動モードにおける計測共振周波数と推定共振周波数との二乗誤差の総和)に基づき入力値を繰り返し更新し、弾性定数を決定することができる。結果として、振動モードが複雑であり、従来手法では弾性定数の決定が困難あるいは煩雑な計測が必要であった対象物に対しても、より簡易に弾性定数を提示することができる。
[Actions and effects of embodiment]
The information processing device 100 (for example, an example of an information processing device) in this embodiment has a measurement resonance frequency (for example, an example of a resonance frequency of an object) and a measurement vibration mode (for example, an example of a vibration mode at the resonance frequency). a measurement result acquisition unit 110 (for example, an example of an acquisition unit) that acquires the measurement results obtained by measuring the a constant determining unit 120 (for example, an example of a determining unit), and the determining unit is configured to determine the estimated resonant frequency and estimated vibration mode of the object estimated based on a plurality of input elasticity values. Create a contour diagram (for example, an example of the first contour diagram) of the estimated vibration mode based on the measurement results (for example, an example of the first contour diagram), and create a contour diagram of the measured vibration mode based on the resonance frequency and vibration mode based on the measurement results (for example, the second contour diagram). example), and perform elasticity parameter update processing (e.g., an example of updating input elasticity values) using GA based on the distance (e.g., an example of similarity) between the first contour map and the second contour map. An example of a configuration is shown in which an elastic constant is presented based on an input elasticity value that is executed and satisfies the number of generations of GA (for example, an example of a setting condition).
With this configuration, the estimated vibration mode at the estimated resonant frequency estimated based on multiple input elasticity values and the vibration mode at the resonant frequency based on the measurement results can be compared using a contour diagram. be able to. Then, the input value is repeatedly updated based on the similarity of the contour diagram and the elastic parameter evaluation function (the sum of square errors between the measured resonance frequency and the estimated resonance frequency in each vibration mode), and the elastic constant can be determined. As a result, elastic constants can be more easily presented even for objects whose vibration modes are complex and for which elastic constants are difficult to determine or require complicated measurements using conventional methods.
 また、本実施形態は、振動モード比較部150(例えば、決定部の一例)は、第1コンター図と第2コンター図とをメッシュ化し、メッシュのRGB値(例えば、メッシュの色の一例)に基づく計測振動ベクトルと推定振動ベクトル(例えば、ベクトルの一例)を求め、ベクトルに基づいて、類似度を算出する構成の一例を示している。
 このような構成にすることで、コンター図のメッシュの色に基づくベクトルから類似度を算出することができ、より適切に類似度を算出することができる。
Further, in this embodiment, the vibration mode comparison unit 150 (for example, an example of a determining unit) meshes the first contour diagram and the second contour diagram, and uses the RGB values of the mesh (for example, an example of the color of the mesh). An example of a configuration is shown in which a measured vibration vector and an estimated vibration vector (for example, an example of a vector) are obtained based on the vectors, and a degree of similarity is calculated based on the vectors.
With such a configuration, the degree of similarity can be calculated from a vector based on the color of the mesh of the contour diagram, and the degree of similarity can be calculated more appropriately.
 また、本実施形態は、第1コンター図と第2コンター図との類似度(例えば、類似度の一例)は、コサイン類似度である構成の一例を示している。
 このような構成にすることで、コサイン類似度によって迅速かつ適切に類似度を算出することができる。
Moreover, this embodiment shows an example of a configuration in which the degree of similarity (for example, an example of degree of similarity) between the first contour diagram and the second contour diagram is a degree of cosine similarity.
With this configuration, it is possible to quickly and appropriately calculate the similarity using cosine similarity.
 また、本実施形態は、弾性パラメータ設定部130は、振動モード類似率(例えば、類似度の一例)が所定割合(例えば、設定値の一例)よりも小さい、または設定値以下である場合、当該類似率を評価した弾性パラメータ評価関数のエラー処理を行い、入力弾性値を設定しなおす構成の一例を示している。
 このような構成にすることで、類似度に基づいて入力弾性値を設定しなおすことができ、処理の高速化を図ることができる。
Further, in the present embodiment, when the vibration mode similarity rate (for example, an example of similarity) is smaller than a predetermined rate (for example, an example of a set value) or is less than or equal to the set value, the elastic parameter setting unit 130 An example of a configuration is shown in which error processing is performed on the elasticity parameter evaluation function that evaluated the similarity rate, and the input elasticity value is reset.
With such a configuration, the input elasticity value can be reset based on the degree of similarity, and the processing speed can be increased.
 また、本実施形態は、出力部は、第1コンター図と第2コンター図とを共振周波数が近しい振動モードごとに並べて出力する(例えば、対比可能に出力の一例)出力部を備え、入力弾性値の更新に応じて更新される第2コンター図を出力する構成の一例を示している。
 このような構成にすることで、入力弾性値の更新に応じて変化する第2コンター図と第1コンター図とを対比して確認することが可能となり、入力弾性値の更新が適切に進んでいるかを確認することができる。
Further, in this embodiment, the output unit is provided with an output unit that outputs the first contour diagram and the second contour diagram in parallel for each vibration mode having a similar resonance frequency (for example, an example of output that can be compared). An example of a configuration that outputs a second contour diagram that is updated in accordance with updating of values is shown.
With this configuration, it is possible to compare and check the second contour diagram and the first contour diagram, which change according to the update of the input elasticity value, and to check whether the input elasticity value update is progressing appropriately. You can check if there are any.
 [第1変形例]
 上記の実施形態では、振動モード比較処理において、計測振動ベクトルと推定振動ベクトルとの類似度をコサイン類似度で判定することとしたが、これに限定されない。例えば、振動モード比較部150は、計測振動ベクトルと推定振動ベクトルとの距離(例えば、L2ノルム)が閾値より小さい場合、所定の共振周波数における計測振動ベクトルと推定振動ベクトルとが類似していると判定するようにしてもよい。
 なお、振動モード比較部150は、計測振動ベクトルと推定振動ベクトルとの距離が閾値以下である場合、所定の共振周波数における計測振動ベクトルと推定振動ベクトルとが類似していると判定するようにしてもよい。
[First modification]
In the above embodiment, in the vibration mode comparison process, the degree of similarity between the measured vibration vector and the estimated vibration vector is determined by cosine similarity, but the present invention is not limited to this. For example, if the distance between the measured vibration vector and the estimated vibration vector (for example, L2 norm) is smaller than a threshold, the vibration mode comparison unit 150 determines that the measured vibration vector and the estimated vibration vector at a predetermined resonance frequency are similar. It may be determined.
Note that the vibration mode comparison unit 150 determines that the measured vibration vector and the estimated vibration vector at a predetermined resonance frequency are similar when the distance between the measured vibration vector and the estimated vibration vector is less than or equal to a threshold value. Good too.
 これにより、計測振動ベクトルの大きさと推定振動ベクトルの大きさとを加味した類似度で判定することができ、類似度の信頼性を向上させる可能性がある。 With this, it is possible to make a determination based on the degree of similarity that takes into account the magnitude of the measured vibration vector and the magnitude of the estimated vibration vector, which may improve the reliability of the degree of similarity.
 [第2変形例]
 上記の実施形態では、振動モード比較処理において、各振動モードの振幅ピーク値の空間分布表現を用いてコンター図を生成することとしたが、これに限定されない。例えば、振動モード比較部150は、振動モードの位相を対象物の各位置において算出し、位相に基づいてコンター図を生成するようにしてもよい。
 なお、振動モード比較部150は、例えば、振動モードの振幅と位相とに基づいて、コンター図を生成するようにしてもよい。
[Second modification]
In the above embodiment, in the vibration mode comparison process, a contour diagram is generated using the spatial distribution expression of the amplitude peak value of each vibration mode, but the present invention is not limited to this. For example, the vibration mode comparison unit 150 may calculate the phase of the vibration mode at each position of the object, and generate a contour diagram based on the phase.
Note that the vibration mode comparison unit 150 may generate a contour diagram based on the amplitude and phase of the vibration mode, for example.
 これにより、振幅のみでは類似性を判別することが困難な特殊な振動モードにおいても、計測振動モードと推定振動モードとの比較を適切に実行することができる。 This makes it possible to properly compare the measured vibration mode with the estimated vibration mode, even in special vibration modes where it is difficult to determine similarity based on amplitude alone.
 [第3変形例]
 上記の実施形態では、推定振動モードの空間分布表現を試料振動モード計測装置200によって計測された計測振動モードと一致させるように類似度を算出することとしたが、これに限定されない。例えば、計測結果取得部110は、試料振動モード計測装置200によって計測された三次元の計測振動モードを、例えば、x-y平面上,y-z平面上,x-z平面上のそれぞれに写像するようにしてもよい。そして、弾性定数決定部120は、振動モード比較処理において、有限要素法解析処理において算出された推定振動モードを、計測結果取得部110において写像したものと同一の平面上(この例ではx-y平面,y-z平面,x-z平面)に写像する。そして、振動モード比較部150は、各々の平面上において、写像された計測振動モードの空間分布表現(コンター図)と、推定振動モードの空間分布表現(コンター図)とを比較するようにしてもよい。
[Third Modification]
In the above embodiment, the similarity is calculated so that the spatial distribution expression of the estimated vibration mode coincides with the measured vibration mode measured by the sample vibration mode measurement device 200, but is not limited to this. For example, the measurement result acquisition unit 110 may map the three-dimensional measured vibration mode measured by the sample vibration mode measurement device 200 onto, for example, an x-y plane, a y-z plane, and an x-z plane. Then, in the vibration mode comparison process, the elastic constant determination unit 120 maps the estimated vibration mode calculated in the finite element method analysis process onto the same plane (in this example, the x-y plane, the y-z plane, and the x-z plane) as the one mapped by the measurement result acquisition unit 110. Then, the vibration mode comparison unit 150 may compare the spatial distribution expression (contour diagram) of the mapped measured vibration mode with the spatial distribution expression (contour diagram) of the estimated vibration mode on each plane.
 図6に、計測振動モードと推定振動モードとの写像例について図示する。
 この図の左側には、中央部に対象物の三次元計測振動モードを可視化したオブジェクトデータを、その周囲にx-y平面,y-z平面,x-z平面上にそれぞれ写像した計測振動モードのコンター図を図示している。また、この図の右側には、中央部に三次元推定振動モードを可視化したオブジェクトデータを、その周囲にx-y平面,y-z平面,x-z平面上にそれぞれ写像した計測振動モードのコンター図を図示している。
FIG. 6 illustrates an example of mapping between the measured vibration mode and the estimated vibration mode.
On the left side of this figure, the object data that visualizes the three-dimensional measurement vibration mode of the object in the center, and the measurement vibration modes mapped on the xy plane, yz plane, and xz plane, respectively, are shown around it. A contour diagram of the figure is shown. In addition, on the right side of this figure, the object data that visualizes the three-dimensional estimated vibration mode in the center, and the measured vibration modes mapped on the xy plane, yz plane, and xz plane, respectively, are shown around it. A contour diagram is illustrated.
 振動モード比較処理において、振動モード比較部150は、例えば、x-y平面上における計測振動モードのコンター図と、x-y平面上における推定振動モードのコンター図とに基づいて、x-y平面振動モード類似率を算出する。x-y平面振動モード類似率に基づいて、計測振動モードと推定振動モードとが類似していないと判定される場合、弾性パラメータ更新部160は、計測振動モードと推定振動モードとが類似していないと判定する。そして、振動モード比較部150は、他の平面上における振動モード類似率の算出を省略する。
 全ての平面上において、計測振動モードと推定振動モードとが類似していると判定される場合、弾性パラメータ更新部160は、計測振動モードと推定振動モードとが類似していると判定する。
In the vibration mode comparison process, the vibration mode comparison unit 150, for example, calculates the vibration mode in the xy plane based on the contour diagram of the measured vibration mode on the xy plane and the contour diagram of the estimated vibration mode on the xy plane. Calculate the vibration mode similarity rate. When it is determined that the measured vibration mode and the estimated vibration mode are not similar based on the xy plane vibration mode similarity rate, the elastic parameter updating unit 160 determines that the measured vibration mode and the estimated vibration mode are similar. It is determined that there is no. The vibration mode comparison unit 150 then omits calculation of vibration mode similarity rates on other planes.
When it is determined that the measured vibration mode and the estimated vibration mode are similar on all planes, the elastic parameter updating unit 160 determines that the measured vibration mode and the estimated vibration mode are similar.
 なお、写像先の平面はx-y平面,y-z平面,x-z平面に限定されない。三次元的に互いに直交する3つの平面であれば、任意の平面でよい。 Note that the mapping destination plane is not limited to the xy plane, yz plane, and xz plane. Any three planes may be used as long as they are three-dimensionally orthogonal to each other.
 上記の実施形態では、試料振動モード計測装置200が対象物を観測した方向から見た振動モードの空間分布表現を比較対象としたが、本変形例では、観測方向からの比較が難しい場合においても、適切な平面上に写像を行うことで、観測視点を変えて比較を行うことができる。
 例えば、写像先の直交平面として、写像後の対象部三次元形状の平面面積が最大となるように直交平面を決定するようにしてもよい。
 これにより、複雑な三次元形状を持つ対象物に対して、より適切かつ迅速に計測振動モードと推定振動モードとの類似性を判定することが可能となる。
In the above embodiment, the spatial distribution expression of the vibration mode viewed from the direction in which the sample vibration mode measuring device 200 observed the object was used as the comparison target, but in this modification, even when it is difficult to compare from the observation direction. By mapping onto an appropriate plane, it is possible to change the observation viewpoint and perform comparisons.
For example, the orthogonal plane to be mapped may be determined so that the plane area of the three-dimensional shape of the target portion after mapping is maximized.
This makes it possible to more appropriately and quickly determine the similarity between the measured vibration mode and the estimated vibration mode for an object having a complex three-dimensional shape.
 本変形例は、計測結果取得部110(例えば、取得部の一例)は、計測振動モード(例えば、対象物の三次元変形の一例)をx-y平面,y-z平面,x-z平面(例えば、互いに直交する3つの平面の一例)に投影し、弾性定数決定部120(例えば、決定部の一例)は、3つの平面のそれぞれにおける計測振動モード(例えば、振動モードの一例)と推定振動モード(例えば、推定振動モードの一例)とに基づいて、弾性定数を決定する構成を示している。
 ある一面とその背面の形状とが大きく異なる極めて複雑な形状では、測定する一面のみのモード類似だけでは、誤った弾性定数を求める恐れがあるが、どのような角度からも類似を判定することで、極めて複雑な形状の対象物であっても、弾性定数の精度を正確に求めることができる。
 このような構成により、対象物の三次元変形を投影された3つの平面それぞれにおいて比較することで、振動モードと推定振動モードとの比較をより適切かつ迅速に実行することができ、結果として、弾性定数をより高速かつ正確に決定することができる。
In this modification, the measurement result acquisition unit 110 (for example, an example of an acquisition unit) selects the measurement vibration mode (for example, an example of three-dimensional deformation of the object) on the xy plane, the yz plane, and the xz plane. (for example, an example of three planes perpendicular to each other), and the elastic constant determination unit 120 (for example, an example of a determination unit) estimates the measured vibration mode (for example, an example of a vibration mode) in each of the three planes. A configuration is shown in which an elastic constant is determined based on a vibration mode (for example, an example of an estimated vibration mode).
For extremely complex shapes where the shape of one side is significantly different from the shape of the back side, there is a risk of obtaining incorrect elastic constants if only the mode similarity of one side is measured, but it is possible to determine the similarity from any angle. , it is possible to accurately determine the accuracy of elastic constants even for objects with extremely complex shapes.
With this configuration, by comparing the three-dimensional deformation of the object on each of the three projected planes, it is possible to more appropriately and quickly compare the vibration mode and the estimated vibration mode, and as a result, Elastic constants can be determined faster and more accurately.
 [第4変形例]
 上記の実施形態では、計測振動モードと推定振動モードとを表現する空間分布表現について、コンター図を例示したが、これに限定されない。例えば、三次元位置境界を引かず、ヒートマップを生成するようにしてもよい。
[Fourth modification]
In the above embodiment, a contour diagram is used as an example of the spatial distribution representation representing the measured vibration mode and the estimated vibration mode, but the present invention is not limited to this. For example, a heat map may be generated without drawing three-dimensional position boundaries.
 なお、計測振動モードと推定振動モードとにおける振幅の時間変化を表現するために、例えば、フローマップを生成するようにしてもよい。 Note that, for example, a flow map may be generated in order to express the temporal change in amplitude in the measured vibration mode and the estimated vibration mode.
 そして、例えば、ヒートマップやフローマップをメッシュで分割し、それぞれのメッシュ内の色情報に基づいて、計測振動ベクトルと推定振動ベクトルとを算出し、類似度を算出するようにしてもよい。 Then, for example, the heat map or flow map may be divided into meshes, and based on the color information within each mesh, the measured vibration vector and the estimated vibration vector may be calculated, and the degree of similarity may be calculated.
 [第5変形例]
 上記の実施形態では、初期弾性パラメータ設定処理において、弾性パラメータ設定部130は、弾性パラメータをランダムに設定することとしたが、これに限定されない。
 例えば、弾性定数決定部120は、弾性定数を決定すると、その対象物の素材と三次元形状と弾性定数とを不図示の記憶部に記憶させるようにしてもよい。そして、例えば、同一あるいは類似する素材で、同一あるいは類似する三次元形状が新たな解析の対象物として入力された場合、弾性パラメータ設定部130は、記憶部に蓄積された過去の弾性定数決定結果を参照し、弾性パラメータを設定するようにしてもよい。
[Fifth Modification]
In the above embodiment, in the initial elasticity parameter setting process, the elasticity parameter setting unit 130 randomly sets the elasticity parameters, but the present invention is not limited to this.
For example, when the elastic constant determination unit 120 determines the elastic constant, the elastic constant determination unit 120 may store the material, three-dimensional shape, and elastic constant of the object in a storage unit (not shown). Then, for example, when the same or similar material and the same or similar three-dimensional shape are input as an object for a new analysis, the elastic parameter setting unit 130 may set the elastic parameters by referring to the past elastic constant determination results stored in the storage unit.
 これにより、過去の決定結果に基づいて、同一対象物に対しては、弾性定数を瞬時に決定することができる。また、類似する対象物に対しては、弾性定数決定に要する時間を短縮する可能性が生じる。 With this, it is possible to instantly determine the elastic constant for the same object based on past determination results. Furthermore, for similar objects, there is a possibility of shortening the time required to determine the elastic constant.
 なお、弾性定数出力処理において、弾性定数決定部120は、例えば、弾性パラメータ評価値が設定条件を満たす弾性パラメータと、過去に決定された同一あるいは類似する対象物の弾性定数とに基づいて、弾性定数を出力するようにしてもよい。 In the elastic constant output process, the elastic constant determination unit 120 determines the elasticity based on, for example, an elasticity parameter whose elasticity parameter evaluation value satisfies a setting condition and an elasticity constant of the same or similar object determined in the past. A constant may also be output.
 [第6変形例]
 上記の実施形態では、情報処理装置100は、弾性定数を決定すると、処理を終了させることとしたが、これに限定されない。限定ではなく例として、情報処理装置100は、不図示の判定部において、決定された弾性定数の各係数を評価し、対象物の材料的特性を判定するようにしてもよい。
[Sixth variation]
In the above embodiment, the information processing apparatus 100 terminates the process after determining the elastic constant, but the present invention is not limited thereto. As an example and not a limitation, the information processing apparatus 100 may have a determination unit (not shown) evaluate each coefficient of the determined elastic constant and determine the material properties of the object.
 例えば、以下の表1~表3の結果が得られた場合を仮定する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
For example, assume that the results shown in Tables 1 to 3 below are obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1の結果では、E、ν、Gがそれぞれで同じ値となっており、このようなE11=E22=E33のように、ヤング率、ポアソン比、せん断剛力がそれぞれの値が全て同じにみなせる場合には、判定部は、等方性と判定する。
 表2の結果では、E22=E33であるが、E11は異なっている(同様に、ν、Gの二つは同じで、一つは異なっている。)。このようにE11≠E22=E33(E11=E22≠E33、E22≠E11=E33)のように、ヤング率、ポアソン比、せん断剛力のそれぞれの値の二つは同じにみなせ、一つは異なる場合は、判定部は、面内等方性材料と判定する。
 一方、表3のようにヤング率、ポアソン比、せん断剛力のそれぞれの値の全てが異なるとみなせる場合は、判定部は、直交異方性と判定する。
 そして、判定部の判定結果を不図示の出力部が出力するようにしてもよい。
In the results in Table 1, E, ν, and G have the same value, and as shown in E 11 = E 22 = E 33 , Young's modulus, Poisson's ratio, and shear stiffness all have the same values. If they can be considered to be the same, the determination unit determines that they are isotropic.
In the results of Table 2, E 22 =E 33 , but E 11 is different (Similarly, two of ν and G are the same and one is different). In this way, E 11 ≠ E 22 = E 33 (E 11 = E 22 ≠ E 33 , E 22 ≠ E 11 = E 33 ), the values of Young's modulus, Poisson's ratio, and shear stiffness are If they are considered to be the same but one is different, the determination unit determines that the materials are in-plane isotropic.
On the other hand, if the values of Young's modulus, Poisson's ratio, and shear stiffness can all be considered to be different as shown in Table 3, the determination unit determines that the material is orthotropic.
Then, the determination result of the determination unit may be outputted by an output unit (not shown).
 本変形例は、弾性パラメータの自由度が9であり(例えば、複数の入力弾性値が9変数である一例)、決定部によって決定された弾性定数に基づいて、判定部が対象物を直交異方性材料であるか、面内等方性材料であるか、等方性材料であるか判定し、判定結果を出力部が出力する構成の一例を示している。
 このような構成にすることで、対象物の性質(等方性材料および等方性材料を内包する直交異方性材料であるか否か)を適切に判定することができる。
In this modification, the degree of freedom of the elasticity parameter is 9 (for example, an example in which a plurality of input elasticity values are 9 variables), and the determination unit orthogonally determines the object based on the elastic constant determined by the determination unit. An example of a configuration is shown in which it is determined whether the material is an orthotropic material, an in-plane isotropic material, or an isotropic material, and the output unit outputs the determination result.
With such a configuration, the properties of the object (whether it is an isotropic material or an orthotropic material containing an isotropic material) can be appropriately determined.
 [第7変形例]
 上記の実施例では、対象物の材料種として、金属やセラミックなどの粘弾性の低い材料を例示したが、これに限定されない。例えば、完全弾性体である(完全弾性体とみなすことのできる)構成物(例えば、炭素繊維)と、粘弾性特性を有する構成物(例えば、マトリクス樹脂)とで構成される粘弾性特性を有する材料種(例えば、CFRP(Carbon Fiber Reinforced Plastics))を対象物としてもよい。以下に、当該対象物の場合の粘弾性取得手法を述べる。
[Seventh modification]
In the above embodiments, materials with low viscoelasticity such as metals and ceramics are exemplified as the material type of the object, but the material is not limited thereto. For example, it has viscoelastic properties and is composed of a composition that is a perfectly elastic body (for example, carbon fiber) and a composition that has viscoelastic properties (for example, a matrix resin). The object may be a material type (for example, CFRP (Carbon Fiber Reinforced Plastics)). The viscoelasticity acquisition method for the object will be described below.
 図7は、本変形例における情報処理の手順例を示すフローチャートである。
 なお、以下説明するフローチャートは、本変形例における情報処理の手順の一例を示すものに過ぎず、他のステップを追加したり、一部のステップを削除したりしてもよい。また、フローチャートにおけるステップの一部を入れ替えて実行してもよい。また、前述の内容と同じステップには同じ符号を付し説明を省略することがある。
FIG. 7 is a flowchart illustrating an example of the procedure of information processing in this modification.
Note that the flowchart described below merely shows an example of the procedure of information processing in this modification, and other steps may be added or some steps may be deleted. Further, some of the steps in the flowchart may be replaced and executed. In addition, steps that are the same as those described above may be given the same reference numerals and explanations may be omitted.
 例えば、弾性定数決定部120は、試料形状取得処理を実行すると(S120)、粘弾性特性取得処理を実行する(S310)。
 粘弾性特性取得処理において、弾性定数決定部120は、不図示の粘弾性測定装置(動的粘弾性試験機)によって、対象物のうち、粘弾性を有する構成物(例えば、CFRPの場合、マトリクス樹脂のみからなる試験片)を作成し、当該構成物の動的粘弾性試験結果を取得する。すると、弾性定数決定部120は、複数の周波数における動的粘弾性試験結果に基づいて、例えば、時間温度変換則により広域の換算周波数帯における粘弾性特性を算出する。
 これにより、測定対象となる対象物を構成する材料のうち粘弾性を有する構成物について、試料振動モード計測結果取得処理において取得した対象物の計測共振周波数に応じる周波数において、粘弾性特性が取得できる。
For example, after executing the sample shape acquisition process (S120), the elastic constant determination unit 120 executes the viscoelastic property acquisition process (S310).
In the viscoelastic property acquisition process, the elastic constant determination unit 120 uses a viscoelasticity measuring device (dynamic viscoelasticity tester) not shown to measure a component having viscoelasticity (for example, in the case of CFRP, a matrix) out of the target object. A test piece consisting only of resin is created, and the dynamic viscoelasticity test results of the composition are obtained. Then, the elastic constant determination unit 120 calculates the viscoelastic properties in a wide converted frequency band based on the dynamic viscoelasticity test results at a plurality of frequencies, for example, using a time-temperature conversion law.
This makes it possible to obtain the viscoelastic properties of a material that has viscoelasticity among the materials constituting the object to be measured at a frequency that corresponds to the measurement resonance frequency of the object obtained in the sample vibration mode measurement result acquisition process. .
 なお、動的粘弾性試験結果の取得や粘弾性特性の算出は、計測結果取得部110において実行されることとしてもよい。 Note that the acquisition of the dynamic viscoelasticity test results and the calculation of the viscoelastic properties may be performed in the measurement result acquisition unit 110.
 例えば、弾性定数決定部120は、初期弾性パラメータ設定処理を実行すると(S130)、複素等価剛性算出処理を実行する(S320)。 For example, when the elastic constant determining unit 120 executes the initial elastic parameter setting process (S130), it executes the complex equivalent stiffness calculation process (S320).
 複素等価剛性算出処理において、弾性定数決定部120は、例えば、粘弾性特性取得処理において粘弾性特性を取得した構成物(例えば、マトリクス樹脂)と、初期弾性パラメータ設定処理において弾性パラメータが設定された、完全弾性体である構成物(例えば、炭素繊維)とに基づいて、粘弾性特性を有する対象物の代表体積要素モデル(例えば、解析モデルの一例)を生成する。以下、代表体積要素モデルを、「RVE(Representative Volume Element)」と略すことがある。 In the complex equivalent stiffness calculation process, the elastic constant determination unit 120 generates a representative volume element model (e.g., an example of an analytical model) of an object having viscoelastic properties based on, for example, a component (e.g., matrix resin) whose viscoelastic properties have been acquired in the viscoelastic property acquisition process, and a component (e.g., carbon fiber) that is a perfect elastic body whose elastic parameters have been set in the initial elastic parameter setting process. Hereinafter, the representative volume element model may be abbreviated as "Representative Volume Element (RVE)."
 次いで、弾性定数決定部120は、例えば、作成された代表体積要素モデルに対して異なる方向に様々な周波数で負荷を与えた場合の歪みを、有限要素法によって解析する。すると、弾性定数決定部120は、例えば、代表体積要素モデルに対する解析結果に基づいて、複素等価剛性を算出する。 Next, the elastic constant determination unit 120 analyzes, for example, the strain caused by applying loads in different directions and at various frequencies to the created representative volume element model using the finite element method. Then, the elastic constant determining unit 120 calculates the complex equivalent stiffness, for example, based on the analysis results for the representative volume element model.
 例えば、代表体積要素モデルの複素等価剛性が算出されると、弾性定数決定部120は、一般化マクスウェルモデル係数同定処理を実行する(S330)。以下、一般化マクスウェルモデルを、「GMM」と略すことがある。なお、一般化マクスウェルモデルに限らず、ツェナー (Zener) モデル(一般化マックスウェルモデルに並列にばね単独要素を付加したモデル)等を用いてもよい。 For example, when the complex equivalent stiffness of the representative volume element model is calculated, the elastic constant determination unit 120 executes the generalized Maxwell model coefficient identification process (S330). Hereinafter, the generalized Maxwell model may be abbreviated as "GMM". In addition, not only the generalized Maxwell model but also the Zener model (a model in which a single spring element is added in parallel to the generalized Maxwell model) or the like may be used.
 一般化マクスウェルモデル係数同定処理において、弾性定数決定部120は、例えば、複素等価剛性に基づいて、GMMの各係数を、例えば、遺伝的アルゴリズム(GA)によって同定する。 In the generalized Maxwell model coefficient identification process, the elastic constant determining unit 120 identifies each coefficient of the GMM using, for example, a genetic algorithm (GA) based on, for example, the complex equivalent stiffness.
 より具体例には、貯蔵弾性率C´を以下の式(1)で、損失弾性率C´´を式(2)でそれぞれ仮定する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ただし、ωは各周波数であり、Cは弾性係数である。また、iは各マクスウェル要素を示し、c=C/Cは正規化された緩和係数を、τ=μ/Cは緩和時間を、それぞれ表す。
More specifically, the storage modulus C' is assumed to be the following equation (1), and the loss elastic modulus C'' is assumed to be the equation (2) below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
However, ω is each frequency, and C 0 is the elastic coefficient. Further, i represents each Maxwell element, c i =C i /C 0 represents the normalized relaxation coefficient, and τ ii /C i represents the relaxation time.
 このとき、例えば、以下の式で定義される誤差関数が閾値未満または閾値以下となるように、各係数Cを遺伝的アルゴリズム等によって求める。
Figure JPOXMLDOC01-appb-M000006
 ただし、y´modelはGMMの貯蔵弾性率であり、y´expはRVEの貯蔵弾性率である。また、y´´modelはGMMの損失弾性率であり、y´´expはRVEの損失弾性率である。
At this time, for example, each coefficient C i is determined by a genetic algorithm or the like so that the error function defined by the following equation is less than or equal to a threshold value.
Figure JPOXMLDOC01-appb-M000006
However, y'model is the storage modulus of GMM, and y'exp is the storage modulus of RVE. Moreover, y''model is the loss elastic modulus of GMM, and y''exp is the loss elastic modulus of RVE.
 各係数Cに基づいて、対象物のGMMにおける貯蔵弾性率と損失弾性率とが同定されると、解析部140は、弾性パラメータと貯蔵弾性率と損失弾性率とに基づいて、例えば、有限要素法による解析処理を実行する(S140)。 When the storage modulus and loss modulus in the GMM of the object are identified based on each coefficient C i , the analysis unit 140 calculates, for example, a finite Analysis processing using the element method is executed (S140).
 弾性パラメータ評価値が設定条件を満さないと判定する場合(S200:NO)、弾性定数決定部120は、例えば、S320のステップに処理を戻す。そして、例えば、更新後の弾性パラメータに基づいて、代表体積要素モデルを再作成し、複素等価剛性を算出する。すると、一般化マクスウェルモデル係数同定処理において、複素等価剛性が更新されたことに基づいて、GMMの各係数も更新される。 If it is determined that the elastic parameter evaluation value does not satisfy the set condition (S200: NO), the elastic constant determination unit 120 returns the process to step S320, for example. Then, for example, based on the updated elastic parameters, the representative volume element model is recreated and the complex equivalent stiffness is calculated. Then, in the generalized Maxwell model coefficient identification process, each coefficient of the GMM is also updated based on the updated complex equivalent stiffness.
 弾性パラメータ評価値が設定条件を満たすと判定する場合(S200:YES)、弾性定数決定部120は、弾性定数出力処理を実行する(S210)。
 弾性定数出力処理において、弾性定数決定部120は、例えば、その時点における弾性パラメータと、GMMの貯蔵弾性率と、GMMの損失弾性率とを弾性定数として出力する。
When determining that the elastic parameter evaluation value satisfies the setting conditions (S200: YES), the elastic constant determining unit 120 executes elastic constant output processing (S210).
In the elastic constant output process, the elastic constant determining unit 120 outputs, for example, the elastic parameter at that point, the storage elastic modulus of the GMM, and the loss elastic modulus of the GMM as elastic constants.
 なお、貯蔵弾性率と損失弾性率とは、GMMによって同定することに限定されない。例えば、ウイリアムズ・ランデル・フェリーの式(Williams-Landel-Ferry式、WLF式)を用いて、貯蔵弾性率と損失弾性率とを弾性パラメータと同時に最適化するようにしてもよい。 Note that the storage modulus and loss modulus are not limited to being identified by GMM. For example, the storage modulus and the loss modulus may be simultaneously optimized as elastic parameters using the Williams-Landel-Ferry formula (Williams-Landel-Ferry formula, WLF formula).
 本変形例において、情報処理装置の弾性定数決定部120(例えば、算出部の一例)は、粘弾性特性を有するCFRP(例えば、粘弾性を有する対象物の一例)のRVE(例えば、解析モデルの一例)に基づいてGMMにおける貯蔵弾性率や損失弾性率(例えば、弾性パラメータ値の一例)を算出し、複数の入力弾性値と弾性パラメータ値と計測結果とに基づいて、弾性定数を提示する構成の一例を示している。
 これにより、粘弾性を有する対象物においても、対象物の解析モデルに基づいて弾性パラメータ値を算出し、例えば、入力弾性値と弾性パラメータ値との更新を行うことで、弾性定数を決定することができる。
In this modification, the elastic constant determination unit 120 (for example, an example of a calculation unit) of the information processing device performs an RVE (for example, an analysis model A configuration that calculates the storage elastic modulus and loss elastic modulus (for example, an example of elastic parameter values) in GMM based on the above data (for example), and presents an elastic constant based on a plurality of input elastic values, elastic parameter values, and measurement results. An example is shown.
As a result, even for objects that have viscoelasticity, elastic parameter values can be calculated based on the analytical model of the object, and, for example, the elastic constant can be determined by updating the input elastic value and the elastic parameter value. Can be done.
 また、本変形例は、対象物は、マトリクス樹脂(例えば、粘弾性を有する第1構成物の一例)と、炭素繊維(例えば、第1構成物とは異なる第2構成物の一例)とで構成される。そして、複数の入力弾性値が第2構成物の入力弾性値である構成の一例を示している。
 これにより、粘弾性を持つ第1構成物と、第1構成物とは異なる第2構成物との混合物である対象物において、弾性定数の決定が困難である対象物の弾性定数を提示することができる。
In addition, in this modification, the target object is a matrix resin (for example, an example of a first composition having viscoelasticity) and carbon fibers (for example, an example of a second composition different from the first composition). configured. An example of a configuration is shown in which the plurality of input elasticity values are the input elasticity values of the second component.
With this, it is possible to present the elastic constant of an object for which it is difficult to determine the elastic constant in an object that is a mixture of a first composition having viscoelasticity and a second composition different from the first composition. Can be done.
 また、本変形例は、情報処理装置は、動的粘弾性試験結果や広域の換算周波数帯における粘弾性特性(例えば、第1構成物の粘弾性特性の一例)を取得する計測結果取得部110(例えば、粘弾性特性取得部の一例)を備え、粘弾性特性と複数の入力弾性値とに基づく解析モデルに基づいて、弾性パラメータ値を算出する構成の一例を示している。
 これにより、第1構成物の粘弾性特性と、第1構成物と第2構成物とで構成される対象物の共鳴周波数と共鳴周波数での振動モードとを計測することで、対象物の弾性定数を求めることができる。
In addition, in this modification, the information processing device includes a measurement result acquisition unit 110 that acquires dynamic viscoelasticity test results and viscoelastic properties in a wide converted frequency band (for example, an example of the viscoelastic properties of the first component). (for example, an example of a viscoelastic property acquisition unit), and calculates an elastic parameter value based on an analytical model based on viscoelastic properties and a plurality of input elastic values.
As a result, by measuring the viscoelastic properties of the first component, the resonant frequency of the object composed of the first component and the second component, and the vibration mode at the resonant frequency, the elasticity of the object can be measured. You can find constants.
 [他の実施形態]
 本発明の他の態様として、情報処理装置は、対象物の共鳴周波数と共鳴周波数での振動モードとを計測した計測結果を取得する取得部と、複数の入力弾性値と計測結果とに基づいて、弾性定数を決定する決定部とを備え、決定部は、複数の入力弾性値に基づいて推定された対象物の推定共鳴周波数および推定振動モードに基づく空間分布表現と、計測結果に基づく共鳴周波数および振動モードに基づく空間分布表現とに基づいて、入力弾性値を更新し、設定条件を満たす入力弾性値に基づいて、弾性定数を決定するようにしてもよい。
[Other embodiments]
As another aspect of the present invention, the information processing device includes an acquisition unit that acquires measurement results obtained by measuring a resonant frequency of an object and a vibration mode at the resonant frequency; , a determining unit that determines an elastic constant, and the determining unit is configured to express a spatial distribution based on an estimated resonance frequency and an estimated vibration mode of the object estimated based on a plurality of input elastic values, and a resonant frequency based on a measurement result. The input elasticity value may be updated based on the input elasticity value and the spatial distribution expression based on the vibration mode, and the elastic constant may be determined based on the input elasticity value that satisfies the setting conditions.
 また、空間分布表現はコンター図であり、決定部は、コンター図に基づいて算出されたベクトルに基づいて、類似度を算出し、類似度が設定値よりも小さい、または設定値以下である場合、入力弾性値を設定しなおすようにしてもよい。 In addition, the spatial distribution expression is a contour diagram, and the determination unit calculates the degree of similarity based on the vector calculated based on the contour diagram, and if the degree of similarity is smaller than the set value or less than the set value, , the input elasticity value may be reset.
 また、決定部は、コンター図の所定メッシュ毎の色に基づいて、ベクトルを算出するようにしてもよい。 Furthermore, the determining unit may calculate the vector based on the color of each predetermined mesh of the contour diagram.
 また、決定部は、遺伝的アルゴリズムに基づいて、入力弾性値を更新するようにしてもよい。 Additionally, the determining unit may update the input elasticity value based on a genetic algorithm.
 本発明では、測定対象の材料種は、金属やセラミックなどの粘弾性の低い材料に限られず、高分子材料などの振動に減衰現象を伴う粘弾性の高い材料も測定可能である。ただし、高分子材料などの対象物の弾性定数を決定するには、対象物の動的弾性率を測定し、動的弾性率から得られる貯蔵弾性率と損失弾性率の負荷周波数と基準温度との関係を実験で取得し、本発明の有限要素解析を適用すれば可能となる。 In the present invention, the type of material to be measured is not limited to materials with low viscoelasticity such as metals and ceramics, but also materials with high viscoelasticity that are accompanied by vibration damping phenomena such as polymeric materials can be measured. However, in order to determine the elastic constant of an object such as a polymeric material, the dynamic elastic modulus of the object is measured, and the storage modulus and loss modulus obtained from the dynamic elastic modulus are calculated using the loading frequency and reference temperature. This becomes possible by obtaining the relationship experimentally and applying the finite element analysis of the present invention.
 1   情報処理システム
 100  情報処理装置
 110   計測結果取得部
 120   弾性定数決定部
 200  試料振動モード計測装置
 300  試料形状計測装置
1 Information processing system 100 Information processing device 110 Measurement result acquisition unit 120 Elastic constant determination unit 200 Sample vibration mode measurement device 300 Sample shape measurement device

Claims (13)

  1.  対象物の共鳴周波数と前記共鳴周波数での振動モードとを計測した計測結果を取得する取得部と、
     複数の入力弾性値と前記計測結果とに基づいて、弾性定数を提示する決定部と、
     を備え、
     前記決定部は、
      前記複数の入力弾性値を用いて、前記対象物の推定共鳴周波数における各推定振動モードでの第1コンター図を作成し、
      前記計測結果に基づく前記推定共鳴周波数に対応した計測共鳴周波数における各計測振動モードでの第2コンター図を作成し、
      前記第1コンター図と前記第2コンター図との類似度に基づいて、遺伝的アルゴリズムによって前記入力弾性値を更新し、
      設定条件を満たす前記入力弾性値に基づいて、前記弾性定数を提示する、
     情報処理装置。
    an acquisition unit that acquires a measurement result of measuring a resonant frequency of an object and a vibration mode at the resonant frequency;
    a determining unit that presents an elastic constant based on the plurality of input elasticity values and the measurement results;
    Equipped with
    The determining unit is
    using the plurality of input elasticity values to create a first contour diagram for each estimated vibration mode at the estimated resonant frequency of the object;
    creating a second contour diagram in each measurement vibration mode at a measurement resonance frequency corresponding to the estimated resonance frequency based on the measurement results;
    updating the input elasticity value by a genetic algorithm based on the similarity between the first contour diagram and the second contour diagram;
    presenting the elastic constant based on the input elasticity value that satisfies a setting condition;
    Information processing device.
  2.  前記決定部は、
      前記第1コンター図と前記第2コンター図をメッシュ化し、メッシュの色に基づくベクトルを求め、
      前記ベクトルに基づいて、前記類似度を算出する、
     請求項1に記載の情報処理装置。
    The determining unit is
    Meshing the first contour diagram and the second contour diagram, obtaining a vector based on the color of the mesh,
    calculating the degree of similarity based on the vector;
    The information processing device according to claim 1.
  3.  前記類似度は、コサイン類似度である、
     請求項1に記載の情報処理装置。
    the similarity is a cosine similarity;
    The information processing device according to claim 1.
  4.  前記決定部は、前記類似度が設定値よりも小さい、または前記設定値以下である場合、前記入力弾性値を設定しなおす、
     請求項1に記載の情報処理装置。
    The determining unit resets the input elasticity value when the similarity is smaller than a set value or less than or equal to the set value.
    The information processing device according to claim 1.
  5.  前記取得部は、前記対象物の三次元変形を互いに直交する3つの平面に投影し、
     前記決定部は、前記3つの平面のそれぞれにおける前記推定共鳴周波数における前記各推定振動モードに基づいて、前記弾性定数を提示する、
     請求項1に記載の情報処理装置。
    The acquisition unit projects the three-dimensional deformation of the object onto three mutually orthogonal planes;
    The determiner presents the elastic constant based on each of the estimated vibration modes at the estimated resonant frequency in each of the three planes.
    The information processing device according to claim 1 .
  6.  前記複数の入力弾性値は9変数であり、
     前記決定部によって提示された前記弾性定数に基づいて、前記対象物が、直交異方性材料であるか、面内等方性材料であるか、等方性材料であるかを判定する判定部と、
     前記判定部の判定結果を出力する出力部と、
     を備える、
     請求項1に記載の情報処理装置。
    The plurality of input elasticity values are nine variables,
    a determining unit that determines whether the object is an orthotropic material, an in-plane isotropic material, or an isotropic material based on the elastic constant presented by the determining unit; and,
    an output unit that outputs the determination result of the determination unit;
    Equipped with
    The information processing device according to claim 1.
  7.  前記第1コンター図と前記第2コンター図とを対比可能に出力する出力部を備え、
     前記出力部は、前記入力弾性値の更新に応じて更新される前記第2コンター図を出力する、
     請求項1に記載の情報処理装置。
    an output unit that outputs the first contour diagram and the second contour diagram in a manner that allows comparison;
    The output unit outputs the second contour diagram that is updated according to the update of the input elasticity value.
    The information processing device according to claim 1.
  8.  前記対象物は、粘弾性を有する対象物であり、
     前記対象物の解析モデルに基づいて、前記対象物に関する弾性パラメータ値を算出する算出部を備え、
     前記決定部は、前記複数の入力弾性値と前記弾性パラメータ値と前記計測結果とに基づいて、弾性定数を提示する、
     請求項1に記載の情報処理装置。
    The object is a viscoelastic object,
    comprising a calculation unit that calculates an elastic parameter value regarding the object based on an analytical model of the object;
    The determining unit presents an elastic constant based on the plurality of input elasticity values, the elasticity parameter value, and the measurement result.
    The information processing device according to claim 1.
  9.  前記対象物は、粘弾性を有する第1構成物と、前記第1構成物とは異なる第2構成物とで構成され、
     前記複数の入力弾性値は、前記第2構成物に関する複数の入力弾性値である、
     請求項8に記載の情報処理装置。
    The object is composed of a first composition having viscoelasticity and a second composition different from the first composition,
    The plurality of input elasticity values are a plurality of input elasticity values regarding the second structure,
    The information processing device according to claim 8.
  10.  前記第1構成物の粘弾性特性を取得する粘弾性特性取得部を備え、
     前記算出部は、前記粘弾性特性と前記複数の入力弾性値とに基づく前記解析モデルに基づいて、前記弾性パラメータ値を算出する、
     請求項9に記載の情報処理装置。
    a viscoelasticity characteristic acquisition unit for acquiring a viscoelasticity characteristic of the first component,
    The calculation unit calculates the elasticity parameter value based on the analysis model based on the viscoelastic property and the multiple input elasticity values.
    The information processing device according to claim 9.
  11.  対象物の共鳴周波数と前記共鳴周波数での振動モードとを計測する計測装置と、
     請求項1から請求項10のいずれか1項に記載の情報処理装置と、
     を備えるシステム。
    a measuring device that measures a resonant frequency of an object and a vibration mode at the resonant frequency;
    The information processing device according to any one of claims 1 to 10,
    A system equipped with
  12.  対象物の共鳴周波数と前記共鳴周波数での振動モードとを計測した計測結果を取得する取得部と、複数の入力弾性値と前記計測結果とに基づいて、弾性定数を提示する決定部と、を備える情報処理装置に実行させるためのプログラムであって、
     前記決定部に、
      前記複数の入力弾性値を用いて、前記対象物の推定共鳴周波数における各推定振動モードでの第1コンター図を作成することと、
      前記計測結果に基づく前記推定共鳴周波数に対応した計測共鳴周波数における各計測振動モードでの第2コンター図を作成することと、
      前記第1コンター図と前記第2コンター図との類似度に基づいて、遺伝的アルゴリズムによって前記入力弾性値を更新することと、
      設定条件を満たす前記入力弾性値に基づいて、前記弾性定数を提示することと、
     を実行させるためのプログラム。
    an acquisition unit that acquires a measurement result of measuring a resonance frequency of a target object and a vibration mode at the resonance frequency; and a determination unit that presents an elastic constant based on a plurality of input elasticity values and the measurement results. A program for causing an information processing device to execute,
    In the determining section,
    using the plurality of input elasticity values to create a first contour diagram for each estimated vibration mode at the estimated resonant frequency of the object;
    creating a second contour diagram in each measurement vibration mode at a measurement resonance frequency corresponding to the estimated resonance frequency based on the measurement result;
    updating the input elasticity value by a genetic algorithm based on the similarity between the first contour diagram and the second contour diagram;
    Presenting the elastic constant based on the input elasticity value that satisfies a setting condition;
    A program to run.
  13.  対象物の弾性定数を提示する提示方法であって、
     前記対象物の共鳴周波数と前記共鳴周波数での振動モードとを計測した計測結果を取得することと、
     複数の入力弾性値を用いて、前記対象物の推定共鳴周波数における各推定振動モードでの第1コンター図を作成することと、
     前記計測結果に基づく前記推定共鳴周波数に対応した計測共鳴周波数における各計測振動モードでの第2コンター図を作成することと、
     前記第1コンター図と前記第2コンター図との類似度に基づいて、遺伝的アルゴリズムによって前記入力弾性値を更新することと、
     設定条件を満たす前記入力弾性値に基づいて、前記弾性定数を提示することと、
     を含む提示方法。
    A method for presenting an elastic constant of an object, comprising the steps of:
    Obtaining a measurement result of measuring a resonance frequency of the object and a vibration mode at the resonance frequency;
    creating a first contour diagram for each estimated vibration mode at an estimated resonant frequency of the object using a plurality of input elasticity values;
    creating a second contour diagram in each measurement vibration mode at a measurement resonance frequency corresponding to the estimated resonance frequency based on the measurement result;
    updating the input elasticity value by a genetic algorithm based on a similarity between the first contour map and the second contour map;
    Presenting the elastic constant based on the input elasticity value that satisfies a set condition;
    Presentation methods including:
PCT/JP2023/033939 2022-09-22 2023-09-19 Information processing device, system, program, and presentation method WO2024063053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151871 2022-09-22
JP2022151871 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024063053A1 true WO2024063053A1 (en) 2024-03-28

Family

ID=90454590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033939 WO2024063053A1 (en) 2022-09-22 2023-09-19 Information processing device, system, program, and presentation method

Country Status (1)

Country Link
WO (1) WO2024063053A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207390A (en) * 2002-01-11 2003-07-25 Sonix Kk Method and device for detecting resonance mode of solid, and method and device for measuring elastic constant of solid
JP2022107954A (en) * 2021-01-12 2022-07-25 株式会社コジマプラスチックス Die management system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207390A (en) * 2002-01-11 2003-07-25 Sonix Kk Method and device for detecting resonance mode of solid, and method and device for measuring elastic constant of solid
JP2022107954A (en) * 2021-01-12 2022-07-25 株式会社コジマプラスチックス Die management system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARAI MASAHIRO, SHIBAHARA NAOYUKI, NISHIMURA MASAOMI, SHIMAMURA YOSHINOBU, KOBAYASHI KAZUYUKI: "IDENTIFICATION OF UNISOTROPIC-VISCOELASTIC PROPERTY OF CFRP USING RESONAT ULTRASOUND SPECTROSCOPY", TRANSACTIONS OF THE JAPAN SOCIETY FOR COMPUTATIONAL METHODS IN ENGINEERING, vol. 15, 1 December 2015 (2015-12-01), pages 02 - 151204, XP093150659 *
BEARDSLEE LUKE B.; REMILLIEUX MARCEL C.; ULRICH T.J.: "Determining material properties of components with complex shapes using Resonant Ultrasound Spectroscopy", APPLIED ACOUSTICS., ELSEVIER PUBLISHING., GB, vol. 178, 16 March 2021 (2021-03-16), GB , XP086535156, ISSN: 0003-682X, DOI: 10.1016/j.apacoust.2021.108014 *

Similar Documents

Publication Publication Date Title
Sutton et al. Recent advances and perspectives in digital image correlation
Zhang et al. The design of accurate micro-compression experiments
Korshunova et al. Bending behavior of octet-truss lattice structures: Modelling options, numerical characterization and experimental validation
Hild et al. CorreliQ4: A software for finite element displacement field measurements by digital image correlation
Kostic et al. Uncertainty in the determination of elastic modulus by tensile testing
WO2021152811A1 (en) Crack estimation device, fault diagnosis device, method for estimating crack, and method for diagnosing fault in dynamo-electric machine
Amado‐Becker et al. Elastic tensor stiffness coefficients for SLS Nylon 12 under different degrees of densification as measured by ultrasonic technique
Stepanova The algorithm for the determination of the Williams asymptotic expansion coefficients for notched semidiscs using the photoelasticity method and finite element method
JP2016024056A (en) Fatigue limit stress specification system and method for specifying fatigue limit stress
Neggers et al. Simultaneous full-field multi-experiment identification
US20240013044A1 (en) Method for characterizing a part through non-destructive inspection
Pierron Material Testing 2.0: A brief review
WO2024063053A1 (en) Information processing device, system, program, and presentation method
Hos et al. Experimental study of crack growth under non-proportional loading along with first modeling attempts
Charalambopoulos et al. Plane strain gradient elastic rectangle in tension
Jailin et al. Sub-minute in situ fracture test in a laboratory CT scanner
Beardslee et al. Determining material properties of components with complex shapes using Resonant Ultrasound Spectroscopy
Kim et al. Determination of dynamic strain hardening parameters using the virtual fields method
Zanarini Full Field ESPI Vibration Measurements to Predict Fatigue Behavior
Titkov et al. Algorithm for J-integral measurement by digital image correlation method
CN113688544A (en) Active-passive combined composite material damage quantitative identification method
Zhou et al. Characterization of Mechanical Properties of 3-D–Printed Materials Using the Asymmetric Four-Point Bending Test and Virtual Fields Method
Antók et al. Evaluation framework for tensile measurements, based on full-field deformation measurements and digital twins
Lemaitre et al. Background on continuum damage mechanics
RU2517989C1 (en) Method for determination of composite material properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868174

Country of ref document: EP

Kind code of ref document: A1