WO2024063003A1 - Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries - Google Patents

Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries Download PDF

Info

Publication number
WO2024063003A1
WO2024063003A1 PCT/JP2023/033509 JP2023033509W WO2024063003A1 WO 2024063003 A1 WO2024063003 A1 WO 2024063003A1 JP 2023033509 W JP2023033509 W JP 2023033509W WO 2024063003 A1 WO2024063003 A1 WO 2024063003A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
conductive pigment
less
pigment
paste
Prior art date
Application number
PCT/JP2023/033509
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 塚本
陸矢 鈴木
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2023578968A priority Critical patent/JP7453487B1/en
Publication of WO2024063003A1 publication Critical patent/WO2024063003A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a conductive pigment paste and composite material paste that have excellent pigment dispersibility and storage stability even at high pigment concentrations, and an electrode for lithium ion batteries coated with the composite material paste.
  • pigment dispersions in which pigments are dispersed in mixtures of pigment dispersion resins, solvents, etc. have been widely used in various fields. In these fields, improvements in performance such as pigment dispersibility, storage stability, coating properties, conductivity, finishing properties, and solvent resistance are increasingly required. Pigment dispersion resins and pigment pastes are being developed that have excellent storage stability that does not cause re-agglomeration of pigment particles in a pigment dispersion.
  • pigment paste When designing a pigment paste, make sure that the pigment dispersion resin does not have a negative effect on the performance of the final product itself, such as an electrode, or reduce the amount of solvent and pigment dispersion resin used, or reduce the energy used during drying. From this point of view, it is important to prepare a highly concentrated and uniformly dispersed pigment paste using a small amount of pigment dispersion resin. It is also important that the pigment paste can be stored for a long period of time without deterioration.
  • Patent Document 1 includes bundle-shaped carbon nanotubes, a dispersion medium, and a polyvinyl butyral resin having a weight average molecular weight of more than 50,000, and the dispersed particle size of the bundle-shaped carbon nanotubes is 3 to 3 in the particle size distribution D50.
  • Carbon nanotube dispersions that are 10 ⁇ m are described.
  • the electrode slurry containing the carbon nanotube dispersion liquid, electrode active material, and binder resin has good initial dispersibility, viscosity, and other properties, long-term storage performance may not be sufficient.
  • the problems to be solved by the present invention are conductive pigment pastes and composite pastes that have excellent pigment dispersibility and appropriate viscosity (low viscosity) even at high pigment concentrations, and excellent storage stability, as well as various performances (battery).
  • the purpose of the present invention is to provide an electrode for a lithium ion battery that has excellent performance (performance, etc.).
  • a conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E),
  • the pigment dispersion resin (A) has at least one polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g
  • the conductive pigment (B) contains carbon nanotubes (B1), When the content of the basic low molecular weight component (E) is ⁇ (parts by mass) with respect to 100 parts by mass of the carbon nanotube (B1), and the BET specific surface area of the carbon nanotube (B1) is ⁇ (m 2 /g).
  • the pigment dispersion resin (A) has at least one polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g
  • the conductive pigment (B) contains carbon nanotubes (B1),
  • the content of the basic low molecular weight component (E) with respect to 100 parts by mass of the carbon nanotube (B1) is ⁇ (parts by mass), the BET specific surface area of the carbon nanotube (B1) is ⁇ (m 2 /g), and the carbon nanotube
  • the BET specific surface area of the carbon nanotube (B1) is 100 m 2 /g to 800 m 2 /g, and the maximum within the range of 1560 m ⁇ 1 to 1600 cm ⁇ 1 in the Raman spectrum of the carbon nanotube (B1).
  • the G/D ratio is 0.1 to 5, where the peak intensity is G and the maximum peak intensity within the range of 1310 m -1 to 1350 cm -1 is D.
  • conductive pigment paste is 0.1 to 5, where the peak intensity is G and the maximum peak intensity within the range of 1310 m -1 to 1350 cm -1 is D.
  • the conductive pigment paste and composite material paste of the present invention have excellent pigment dispersibility and appropriate viscosity (low viscosity) even at high pigment concentrations, excellent storage stability, and excellent electrical conductivity of the coating film. Furthermore, the lithium ion battery electrode obtained by applying the composite material paste has excellent various performances (battery performance, etc.).
  • the present invention is not limited to the following embodiments, but should be understood to include various modifications that may be implemented without departing from the gist of the present invention.
  • the "specific surface area" refers to the BET specific surface area determined by the nitrogen adsorption method.
  • a conductive pigment paste having a conductive pigment in an appropriately dispersed state is prepared.
  • a composite paste is produced by adding components such as an electrode active material to the conductive pigment paste.
  • the conductive pigment paste of the first aspect of the present invention contains a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E).
  • the conductive pigment (B) contains carbon nanotubes (B1), and the content of the basic low molecular weight component (E) with respect to 100 parts by mass of the carbon nanotubes (B1) is ⁇ (parts by mass),
  • a conductive pigment paste in which the value of X in the following formula (1) is 5 or more is suitable.
  • X ⁇ / ⁇ 300...Formula (1)
  • the value of More preferably it is 500 or less, still more preferably 300 or less.
  • a suitable range is preferably 5 or more and 2,500 or less, more preferably 10 or more and 1,000 or less, still more preferably 40 or more and 500 or less, particularly preferably 60 or more and 300 or less.
  • the surface of the carbon nanotubes (B1) can be sufficiently wetted with the basic low molecular weight component (E), and the dispersibility (including viscosity) and storage stability (increase) of the carbon nanotubes (B1) can be improved. It has been found that the properties (including viscosity control) can be improved. If the content of the basic low molecular weight component (E) is excessive with respect to the BET specific surface area of the carbon nanotubes (B1), the odor becomes strong and the cost increases. If the content is insufficient, the basic low molecular weight component (E) content may be insufficient relative to the BET specific surface area of the carbon nanotubes (B1), resulting in poor dispersibility and storage stability (suppression of viscosity increase).
  • the conductive pigment paste of the second aspect of the present invention includes a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E ), wherein the pigment dispersion resin (A) has at least one kind of polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol. /g, the conductive pigment (B) contains carbon nanotubes (B1), and the content of the basic low molecular weight component (E) is ⁇ (parts by mass) with respect to 100 parts by mass of the carbon nanotubes (B1).
  • the BET specific surface area of the carbon nanotube (B1) is ⁇ (m 2 /g)
  • the amount of acidic groups of the carbon nanotube (B1) is ⁇ (mmol/g)
  • the value of Y in the following formula (2) is , 0.01 or more is suitable.
  • Y ⁇ / ⁇ / ⁇ ...Formula (2)
  • the value of Y is preferably 0.01 or more, more preferably 1 or more, even more preferably 2 or more, particularly preferably 3 or more, for example 400 or less, preferably 200 or less. Yes, more preferably 150 or less, still more preferably 100 or less.
  • a suitable range is preferably 0.01 or more and 400 or less, more preferably 1 or more and 200 or less, still more preferably 2 or more and 150 or less, and particularly preferably 3 or more and 100 or less.
  • the surface of the carbon nanotube (B1) having a certain amount of acidic groups can be sufficiently wetted with the basic low molecular weight component (E), and the dispersibility (including viscosity) of the carbon nanotube (B1) ) and storage stability (including inhibition of thickening). If the content of the basic low molecular weight component (E) is excessive with respect to the BET specific surface area of the carbon nanotube (B1) having an acidic group, the odor becomes strong and the cost increases.
  • the basic low molecular weight component (E) content may be insufficient relative to the BET specific surface area of the carbon nanotube (B1) having acidic groups, resulting in poor dispersibility and storage stability (inhibition of thickening). .
  • Pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, a cyano group, a pyrrolidone group, and an ether group. group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g.
  • the above acid group may be in the form of a salt.
  • the type of resin is not particularly limited as long as it is a resin other than the fluororesin (D) described below.
  • acrylic resin polyester resin, epoxy resin, polyether resin, alkyd resin, urethane resin, polyvinyl alcohol, polyvinyl acetal, polyvinylpyrrolidone, polyvinyl acetate, silicone resin, polycarbonate resin, chlorine resin, and composite resins thereof, etc. can be mentioned.
  • These resins can be used alone or in combination of two or more.
  • the pigment dispersion resin (A) a monomer containing a polymerizable unsaturated group-containing monomer of the following formula (1) is polymerized or copolymerized. It is preferable to contain a vinyl (co)polymer (A1) obtained by.
  • the "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
  • C(-R) 2 C(-R) 2 Formula (1)
  • R may be the same or different and is a hydrogen atom or an organic group.
  • the vinyl (co)polymer (A1) preferably contains in its structure a structural unit represented by "-CH 2 -CH(-X)-" (wherein X is an active hydrogen group or an organic group containing an active hydrogen group).
  • Examples of the vinyl (co)polymer (A1) include hydroxyl group-containing vinyl (co)polymers, carboxyl group-containing vinyl (co)polymers, amide group-containing vinyl (co)polymers, sulfonic acid group-containing vinyl (co)polymers, phosphate group-containing vinyl (co)polymers, and pyrrolidone group-containing vinyl (co)polymers. These (co)polymers may be used alone or in combination of two or more.
  • hydroxyl group-containing vinyl (co)polymer examples include polyhydroxyalkyl (meth)acrylate (such as polyhydroxyethyl (meth)acrylate), polyvinyl alcohol, vinyl alcohol-fatty acid vinyl copolymer, and vinyl alcohol-ethylene copolymer. , vinyl alcohol-(N-vinylformamide) copolymers, copolymers of hydroxyalkyl (meth)acrylates (such as hydroxyethyl (meth)acrylate) and other polymerizable unsaturated monomers, and the like.
  • the vinyl alcohol units in the (co)polymer may be those obtained by (co)polymerizing fatty acid vinyl units and then hydrolyzing them.
  • carboxyl group-containing vinyl (co)polymer examples include a polymer of (meth)acrylic acid, a copolymer of (meth)acrylic acid and other polymerizable unsaturated monomers, and the like.
  • Examples of the amide group-containing vinyl (co)polymer include a polymer of (meth)acrylamide, a polymer of (meth)acrylamide derivatives (such as 3-(meth)acrylamidopropyltrimethylammonium chloride, or a polymer of (meth)acrylamide and others). Examples include copolymers with polymerizable unsaturated monomers.
  • sulfonic acid group-containing vinyl (co)polymer examples include polymers of allylsulfonic acid or styrenesulfonic acid, copolymers of allylsulfonic acid and/or styrenesulfonic acid, and other polymerizable unsaturated monomers, etc. can be mentioned.
  • Examples of the phosphoric acid group-containing vinyl (co)polymer include a polymer of (meth)acryloyloxyalkyl acid phosphate, or a copolymer of (meth)acryloyloxyalkyl acid phosphate and other polymerizable unsaturated monomers. can be mentioned.
  • the vinyl (co)polymer (A1) contains, in addition to the structural unit represented by "-CH 2 --CH(-X)-", a polymerizable unsaturated group-containing monomer that can be copolymerized as necessary. may contain structural units derived from Examples of copolymerizable polymerizable unsaturated group-containing monomers include vinyl formate, vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl valerate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, Carboxylic acid vinyl ester monomers such as vinyl benzoate, vinyl versatate, and vinyl pivalate; Olefins such as ethylene, propylene, and butylene; Aromatic vinyls such as styrene and ⁇ -methylstyrene; (meth)acrylic acid Ethylenically unsaturated carboxylic acids such as methyl, ethyl (meth)acrylate, n-butyl (meth)acrylate
  • Alkyl ester monomer such as methyl vinyl ether, n-propyl vinyl ether, isobutyl vinyl ether, dodecyl vinyl ether; Vinyl halide monomer or vinylidene monomer such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc. Allyl compounds such as allyl acetate and allyl chloride; Quaternary ammonium group-containing monomers such as vinyltrimethoxysilane, N-vinylformamide, and N-vinyl-2-pyrrolidone. These monomers can be used alone or in combination of two or more.
  • the polar functional group concentration of the pigment dispersion resin (A) is usually 0.3 mmol/g to 23 mmol/g, preferably 9 mmol/g from the viewpoint of pigment dispersibility, storage stability, and compatibility with solvents. It is preferable that the amount is 23 mmol/g.
  • the vinyl (co)polymer (A1) can be produced by a known polymerization method, for example, it is preferable to use solution polymerization, but it is not limited to this, and bulk polymerization or emulsification is preferred. Polymerization, suspension polymerization, etc. may be used. When solution polymerization is carried out, it may be continuous or batch polymerization, and the monomers may be charged all at once, divided into portions, or added continuously or intermittently.
  • the polymerization initiator used in solution polymerization is not particularly limited, but specifically, for example, azobisisobutyronitrile, azobis-2,4-dimethylparellonitrile, azobis(4-methoxy-2 azo compounds such as acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate, etc.
  • Percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, ⁇ -cumyl peroxyneodecanate , perester compounds such as t-butylperoxyneodecanate; known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used. These can be used alone or in combination of two or more.
  • the polymerization reaction temperature is not particularly limited, but can usually be set within a range of about 30°C or higher and 200°C or lower.
  • the vinyl (co)polymer (A1) that can be obtained as described above has a degree of polymerization of, for example, 100 or more, preferably 150 or more, and for example, 4,000 or less, preferably 3,000 or less, more preferably 700 or less.
  • the weight average molecular weight is, for example, 500 or more, preferably 1,000 or more, more preferably 2,000 or more, still more preferably 7,000 or more, and for example 2,000,000 or less, preferably 1,000 or more. ,000 or less, more preferably 500,000 or less.
  • the weight average molecular weight is usually in the range of 500 to 50,000, more preferably in the range of 1,000 to 20,000, and more particularly in the range of 1,500 to 20,000, from the viewpoint of finishability, corrosion resistance, etc. Preferably, it is within the range of 000.
  • the weight average molecular weight in this specification is based on the retention time (retention capacity) measured using gel permeation chromatography (GPC) of standard polystyrene with a known molecular weight measured under the same conditions. This value is calculated by converting the retention time (retention capacity) into the molecular weight of polystyrene.
  • HLC8120GPC (trade name, manufactured by Tosoh Corporation) was used as a gel permeation chromatograph, and "TSKgel G-4000HXL”, “TSKgel G-3000HXL”, and “TSKgel G-2500HXL” were used as columns.
  • TSKgel G-2000HXL (trade names, both manufactured by Tosoh Corporation), and can be measured under the conditions of a mobile phase of tetrahydrofuran, a measurement temperature of 40° C., a flow rate of 1 mL/min, and a detector RI.
  • the above vinyl (co)polymer (A1) can be made into a solid or a resin solution substituted with an arbitrary solvent by removing the solvent and/or replacing the solvent after completion of the synthesis.
  • the solvent may be removed by heating at normal pressure or under reduced pressure.
  • a replacement solvent may be introduced at any stage before desolvation, during desolvation, or after desolvation.
  • the solid content of the pigment dispersion resin (A) is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, based on the total solid content of the conductive pigment paste. For example, it is 40% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less.
  • the solid content of the pigment dispersion resin (A) is, based on the content of the conductive pigment (B), for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 50% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less.
  • the conductive pigment (B) contains carbon nanotubes (B1).
  • the conductive pigment (B) may further contain a conductive pigment (B2) other than the carbon nanotubes (B1).
  • the content of carbon nanotubes (B1) in the conductive pigment (B) is preferably 50% by mass or more, more preferably 75% by mass or more, and 95% by mass, based on 100% by mass of the conductive pigment (B). % or more is more preferable.
  • Carbon nanotube (B1)) As the carbon nanotubes (B1), single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination. In particular, from the viewpoint of viscosity, conductivity, and cost, it is preferable to use multi-walled carbon nanotubes.
  • the average outer diameter of the carbon nanotubes (B1) is, for example, 1 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and is, for example, 30 nm or less, preferably 28 nm or less, more preferably 25 nm or less.
  • the average length of the carbon nanotubes (B1) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and is, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the BET specific surface area of the carbon nanotubes (B1) is, for example, 100 m 2 /g, preferably 130 m 2 /g, more preferably 160 m 2 /g, for example 800 m 2 from the viewpoint of viscosity and conductivity. /g, preferably 600 m 2 /g or less, more preferably 400 m 2 /g or less.
  • the amount of acidic groups in the carbon nanotubes (B1) is, for example, 0.01 mmol/g to 0.5 mmol/g, preferably 0.01 mmol/g to 0.2 mmol/g, from the viewpoint of dispersibility and storage stability. and more preferably 0.01 mmol/g to 0.1 mmol/g. If the amount of acidic groups is 0.01 mmol/g or more, the dispersibility will be good, and if the amount is 1.0 mmol/g or less, the storage stability will be good.
  • the above acidic group can be provided by the following acid treatment of carbon nanotubes.
  • the acid treatment method is not particularly limited as long as the acid can be brought into contact with the carbon nanotubes, but a method of immersing the carbon nanotubes in an acid treatment solution (aqueous acid solution) is preferred.
  • an acid treatment solution aqueous acid solution
  • the acid contained in the acid treatment liquid is not particularly limited, examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. Among these, nitric acid and sulfuric acid are preferred.
  • the amount of acidic groups in carbon nanotubes can be adjusted by adjusting the concentration, temperature, treatment time, etc. of the acid treatment solution.
  • acid-treated carbon nanotubes can be obtained.
  • the method for washing the acid-treated carbon nanotubes is not particularly limited, but washing with water is preferred.
  • carbon nanotubes are recovered from acid-treated carbon nanotubes by a known method such as filtration, and then the carbon nanotubes are washed with water. After the above washing, water adhering to the surface may be removed by drying, if necessary, to obtain acid-treated carbon nanotubes.
  • the volume-converted median diameter (D50) of the carbon nanotube (B1) is, for example, 10 ⁇ m or more, preferably 15 ⁇ m or more, and more preferably 20 ⁇ m or more, when measured by the method described in Examples. , for example, 250 ⁇ m or less, preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the median diameter (D50) can be determined by irradiating carbon nanotube particles with a laser beam and converting the diameter of the carbon nanotube into a sphere from the scattered light. The larger the median diameter (D50), the more aggregates of carbon nanotubes are present, which means that the dispersibility is poor.
  • the median diameter (D50) is larger than 250 ⁇ m, there is a high possibility that aggregates of carbon nanotubes will exist in the electrode, resulting in non-uniform conductivity throughout the electrode.
  • the median diameter (D50) is smaller than 10 ⁇ m, the conductive path is insufficient because the fiber length is short, and the conductivity decreases.
  • the median diameter (D50) is within the range of 10 to 250 ⁇ m, carbon nanotubes can be uniformly dispersed within the electrode while maintaining conductivity.
  • the maximum peak intensity within the range of 1560 cm -1 to 1600 cm -1 is designated as G
  • the maximum peak intensity within the range of 1310 cm -1 to 1350 cm -1 is designated as D.
  • the G/D ratio is, for example, 0.1 or more, preferably 0.4 or more, more preferably 0.6 or more, for example 5.0 or less, preferably 3.0 or less. Yes, and more preferably 1.0 or less.
  • it is preferable that the G/D ratio is within the range of 0.1 to 5.0 because there are fewer defects and crystal interfaces on the carbon surface and the conductivity tends to be high.
  • conductive pigments (B2) other than carbon nanotubes (B1) are not particularly limited, and include, for example, at least one kind selected from the group consisting of acetylene black, Ketjen black, furnace black, thermal black, graphene, and graphite. Examples include conductive carbon. Preferably, it is one or more selected from the group consisting of acetylene black, Ketjen black, furnace black, and thermal black, more preferably one or more selected from the group consisting of acetylene black, Ketjen black, and Preferably it is one or more types of acetylene black.
  • the average primary particle diameter of the other conductive pigment (B2) is preferably 10 to 80 nm, more preferably 20 to 70 nm.
  • the average primary particle diameter is determined by observing the conductive carbon (B2) with an electron microscope, determining the projected area of each of 100 particles, and determining the diameter assuming a circle equal to the area.
  • the average diameter of primary particles is determined by simply averaging the diameters of the particles. Note that if the pigment is in an aggregated state, calculations are performed using the primary particles that make up the aggregated particles.
  • the BET specific surface area of the conductive carbon (B2) is not particularly limited. In terms of viscosity and conductivity, it is, for example, 1 m 2 /g or more, preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and for example 500 m 2 /g or less, preferably 250 m 2 /g or less. , more preferably 200 m 2 /g or less.
  • the dibutyl phthalate (DBP) oil absorption amount of the conductive carbon (B2) is not particularly limited.
  • the amount is, for example, 60 ml/100 g or more, preferably 150 ml/100 g or more, and is, for example, 1,000 ml/100 g or less, preferably 800 ml/100 g or less.
  • the solid content of the conductive pigment (B) is, for example, 10.0% by mass or more, preferably 30.0% by mass, based on the total solid content of the conductive pigment paste. As mentioned above, it is more preferably 40.0% by mass or more, for example, 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less.
  • Solvent (C) As the solvent (C), water, various organic solvents, etc. can be suitably used. Specifically, for example, water; hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, and cyclobutane; aromatic solvents such as toluene and xylene; n- Ether solvents such as butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate, ethylene glycol monomethyl ether acetate, butyl carbitol acetate, Ester solvents; Ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and
  • the conductive pigment paste does not substantially contain water.
  • substantially free of water means that the water content is usually 1% by mass or less, preferably 0.5% by mass or less, and especially It is preferably 0.1% by mass or less.
  • the water content of the conductive pigment paste can be measured by Karl Fischer coulometric titration.
  • a Karl Fischer moisture content meter (manufactured by Kyoto Denshi Kogyo Co., Ltd., trade name: MKC-610) was used, and the settings of a moisture vaporizer (manufactured by Kyoto Denshi Kogyo Co., Ltd., trade name ADP-611) included in the device were performed.
  • the temperature can be measured as 130°C.
  • an amide compound (solvent) such as N-methyl-2-pyrrolidone
  • it may contain an amine component as an impurity, and in the conductive pigment paste of the present invention, the viscosity or Thickening trends were sometimes different.
  • the solvent etc. will volatilize and will not remain. It is preferable to collect and reuse. That is, it is preferable to use a recycled product as the solvent (C).
  • This recycled solvent (recycled product) also contains the amine compound (E1) originally contained in the conductive pigment paste of the present invention, and the viscosity or thickening tendency of the conductive pigment paste varies from lot to lot. It will be different.
  • amine compounds often have a strong odor. Therefore, it is preferable to control and adjust the amine compound content in the recycled solvent (C) to a certain amount or less, and the amine compound content is usually 1% by mass or less, preferably 0.5% by mass. % or less, particularly preferably 0.1% by mass or less.
  • the above-mentioned "using a recycled product as the solvent (C)" means that the solvent (C) used in the conductive pigment paste of the present invention contains 10% or more (preferably 20% or more) of a recycled product. It is.
  • the content of the solvent (C) in the conductive pigment paste is, for example, 40% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more, for example 99% by mass, based on the total amount of the conductive pigment paste. % or less, preferably 98% by mass or less, more preferably 97% by mass or less.
  • the solubility parameter ⁇ A of the pigment dispersion resin (A) and the solubility parameter ⁇ C of the solvent (C) have a relationship of
  • the solubility parameter ⁇ C of the solvent (C) itself is preferably 10.0 or more, more preferably 10.5 or more, preferably 12.0 or less, and more preferably 11.5 or less.
  • the solubility parameter of the resin is numerically quantified based on the turbidity measurement method known to those skilled in the art. 2359, 1968).
  • the solubility parameter of a solvent can be determined according to the method described in "Polymer Handbook VII" edited by J. Brandrup and EHImmergut, Solubility Parameter Values, pp519-559 (John Wiley & Sons, 3rd edition published in 1989).
  • the solubility parameter of the mixed solvent can be determined experimentally. It can also be determined by the sum of products with solubility parameters.
  • the unit of solubility parameter is "(cal/cm 3 ) 1/2 ".
  • Fluororesin (D) is a resin intended for forming an electrode layer.
  • PVDF polyvinylidene fluoride
  • the fluororesin (D) may be contained during pigment dispersion, or may be added and contained after pigment dispersion.
  • the weight average molecular weight of the fluororesin (D) is preferably 100,000 or more, more preferably 500,000, and more preferably 650,000 or more from the viewpoints of adhesion to the base material, reinforcement of film physical properties, and solvent resistance. is more preferable, preferably 3 million or less, and more preferably 2 million or less.
  • the content of the fluororesin (D) is, for example, 10.0% by mass or more, preferably 30.0% by mass or more, more preferably 40.0% by mass or more, based on the solid content of the conductive pigment paste, For example, it is 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less.
  • the basic low molecular weight component (E) may be either an inorganic base compound or an organic base compound.
  • hydroxides such as lithium hydroxide, barium hydroxide, sodium hydroxide, potassium hydroxide
  • metal hydrides such as sodium hydride, potassium hydride
  • Phosphates such as trisodium phosphate and tripotassium phosphate
  • Acetate salts such as lithium acetate, sodium acetate, and potassium acetate
  • Sodium methoxide, sodium ethoxide Examples include alkoxide compounds such as potassium tertiary butoxide; amine compounds such as ammonia, primary amines, secondary amines, and tertiary amines; and the like.
  • the molecular weight of the basic low molecular weight component (E) is, for example, less than 1000, preferably 500 or less, more preferably 350 or less, still more preferably 250 or less, particularly preferably 120 or less.
  • the basic low molecular weight component (E) preferably contains an amine compound (E1) from the viewpoint of improving the wettability and/or storage stability of the conductive pigment.
  • the content of the amine compound (E1) in the basic low molecular weight component (E) is preferably 50% by mass or more, more preferably 75% by mass or more, based on 100% by mass of the basic low molecular weight component (E). It is preferably 95% by mass or more, and more preferably 95% by mass or more.
  • Examples of the amine compound (E1) include ammonia, primary amines, secondary amines, tertiary amines, and the like.
  • Primary amines include, for example, ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, laurylamine, myristyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethyl
  • secondary amines include diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di- (2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, diphenylamine, N-methylaniline, N-ethylaniline, dibenzylamine , methylbenzylamine, dinaphthylamine, pyrrole, indoline, indole, morpholine and other secondary monoamines; N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl- 1,3-d
  • tertiary amine examples include trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, Tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, Tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethylethanol
  • the amine compound (E1) examples include aliphatic amines, alicyclic amines, aromatic amines, etc., and any of them can be preferably used, but aromatic amines, primary aliphatic amine compounds having a hydroxyl group, A secondary aliphatic amine compound having the following is preferable, and a primary aromatic amine compound is more preferable.
  • the nitrogen atoms in the amine compound (E1) are only nitrogen atoms constituting an amino group.
  • the amine compound (E1) preferably has 3 or less nitrogen atoms, more preferably 2 or less, and even more preferably 1 nitrogen atom.
  • the amine compound (E1) is preferably not an amine compound having a triazine ring in the molecule.
  • the aliphatic amine compound should be mixed in an amount exceeding 1 molar equivalent per 1 molar equivalent of the amine compound having a triazine ring. is preferred.
  • the molecular weight thereof is less than 116.
  • the weight average molecular weight of the amine compound (E1) is preferably less than 1000, more preferably 500 or less, and even more preferably 350 or less. It is preferably 250 or less, particularly preferably 120 or less, and even more preferably 120 or less.
  • the primary aliphatic amine compound having a hydroxyl group is preferably a primary aliphatic amine compound having a hydroxyl group and having a weight average molecular weight of 89 or more.
  • the boiling point of the amine compound is preferably 400°C or lower, more preferably 300°C or lower, and even more preferably 200°C or lower.
  • the amine value of the amine compound (E1) is, for example, 5 mgKOH/g or more, preferably 105 mgKOH/g or more, more preferably 250 mgKOH/g or more, still more preferably 400 mgKOH/g or more, and, for example, 1000 mgKOH/g or less. Preferably, it is within this range.
  • the content of the basic low molecular weight component (E) is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably 40% by mass or more, based on 100% by mass of the solid content of the conductive pigment paste.
  • it is preferably 300% by mass or less, preferably 200% by mass or less, more preferably 150% by mass or less.
  • the lower limit is, for example, 1% by mass or more, preferably 12% by mass or more, more preferably 40% by mass or more, still more preferably 80% by mass or more, based on 100% by mass of the solid content of the conductive pigment (B). It is.
  • the upper limit is, for example, 1000% by mass or less, preferably 500% by mass or less, more preferably 350% by mass or less, still more preferably 300% by mass or less.
  • the basic low molecular weight component (E) especially the amine compound (E1)] often has a strong odor, the working environment may deteriorate during the blending or drying process. Furthermore, since they are generally expensive, the cost may increase. Therefore, it is necessary to keep the content to the minimum necessary.
  • the content ratio of the solvent (C) and the basic low molecular weight component (E) is usually 100/0.1 to 100/10 in mass ratio of the solvent (C) and the basic low molecular weight component (E). within the range, preferably within the range of 100/0.5 to 100/8, more preferably within the range of 100/1 to 100/6, and more preferably 100/1.5 to 100/4. It is preferable that it be within the range of .
  • the conductive pigment paste of the present invention may contain other components as necessary. can do.
  • pigments include, for example, resins other than pigment dispersion resin (A) and fluororesin (D), neutralizers, antifoaming agents, preservatives, rust preventives, plasticizers, and conductive pigments other than (B). Examples include pigments.
  • Pigments other than the conductive pigment (B) include, for example, white pigments such as titanium white and zinc white; blue pigments such as cyanine blue and industhrene blue; green pigments such as cyanine green and verdigris; azo-based and quinacridone-based pigments, etc.
  • Red pigments such as organic red pigments and red pigments
  • organic yellow pigments such as benzimidazolone series, isoindolinone series, isoindoline series, and quinophthalone series
  • yellow pigments such as titanium yellow and yellow lead; These pigments can be used alone or in combination of two or more.
  • Pigments other than these conductive pigments (B) can be used for purposes such as color adjustment and reinforcing the physical properties of the film within a range that does not significantly impair conductivity. It may be dispersed simultaneously with B), or it may be mixed as a pigment or a pigment paste after a paste is prepared by dispersing the pigment dispersion resin (A) and the conductive pigment (B).
  • the content of pigments other than the conductive pigment (B) is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 1% by mass or less, based on the total pigments in the conductive pigment paste. It is particularly preferable that it does not substantially contain it. Moreover, it is preferable that the conductive pigment paste of the present invention does not contain a pigment derivative. In particular, it is preferable not to contain a triazine-based pigment derivative containing a triazine ring in the molecule.
  • the viscosity of the conductive pigment paste at a shear rate of 2 s -1 is less than 5000 mPa ⁇ s, preferably less than 2500 mPa ⁇ s, and 1000 mPa ⁇ s. s, and 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, and more preferably 100 mPa ⁇ s or more.
  • it is preferably 10 mPa ⁇ s or more and less than 5000 mPa ⁇ s, more preferably 50 mPa ⁇ s or more and less than 2500 mPa ⁇ s, and particularly preferably 100 mPa ⁇ s or more and less than 1000 mPa ⁇ s.
  • the viscosity can be measured using, for example, a cone and plate viscometer (manufactured by HAAKE, trade name: Mars2, diameter 35 mm, 2° inclination cone and plate).
  • a cone and plate viscometer manufactured by HAAKE, trade name: Mars2, diameter 35 mm, 2° inclination cone and plate.
  • the conductive pigment paste of the present invention can be prepared using a paint shaker, a sand mill, a ball mill, a pebble mill, a LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin film rotating high-speed mixer ( It can be prepared by uniformly mixing and dispersing using a conventionally known dispersing machine such as (trade name: CLEAR MIX, FIL MIX, etc.).
  • the present invention provides a composite paste formed by further blending an electrode active material (F) with the above conductive pigment paste.
  • the composite paste is suitable for use as a positive electrode or a negative electrode for a lithium ion battery electrode, and preferably as a positive electrode.
  • the second aspect of the composite material paste of the present invention includes a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), a basic low molecular weight component (E), and Contains an electrode active material (F), and the pigment dispersion resin (A) consists of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, a cyano group, a pyrrolidone group, and an ether group.
  • the conductive pigment (B) has at least one polar functional group selected from the group consisting of carbon nanotubes ( The manufacturing method (order of mixing the components) is not limited as long as it contains B1).
  • Electrode active material (F) examples include lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and LiNi 1/3 Co 1/3 Mn 1/3 O.
  • Lithium composite oxides such as No. 2 ; lithium iron phosphate (LiFePO 4 ); sodium composite oxides; potassium composite oxides, and the like.
  • the electrode active material containing lithium iron phosphate is inexpensive and has relatively good cycle characteristics and energy density, so it can be suitably used.
  • the particle size of the electrode active material is, for example, 0.5 ⁇ m or more, preferably 10.5 ⁇ m or more, and, for example, 30 ⁇ m or less, preferably 20 ⁇ m or less.
  • the solid content of the electrode active material (F) in the solid content of the composite paste of the present invention is usually 70% by mass or more and less than 100% by mass, preferably 80% by mass or more and less than 100% by mass. is preferable from the viewpoint of battery capacity, battery resistance, etc.
  • the composite paste contains the electrode active material (F), it may thicken during storage.
  • the electrode active material (F) has alkali metal hydroxides (e.g., LiOH, KOH, NaOH, etc.) derived from the raw materials on the particle surface, and is thought to aggregate (thicken) due to the conductive pigment (B) having an acidic surface. Therefore, by containing a certain amount or more of a basic low molecular weight component (E) [particularly an amine compound (E1)], it is possible to suppress the thickening of the composite paste during storage.
  • a basic low molecular weight component (E) particularly an amine compound (E1)
  • the composite material paste of the present invention can be obtained by first preparing the above-mentioned conductive pigment paste, and then blending at least one type of electrode active material (F) into the paste. Further, the composite material paste of the present invention may be prepared by mixing the aforementioned components (A), (B), (C), (D), (E), and the electrode active material (F).
  • the solid content of the pigment dispersion resin (A) in the solid content of the composite material paste of the present invention is, for example, 0.01% by mass or more, preferably 0.02% by mass or more, and, for example, 20% by mass or less, preferably The content is preferably 10% by mass or less in terms of battery performance, paste viscosity, etc.
  • the composite paste of the present invention contains a basic low molecular weight component (E) from the viewpoint of storage stability (suppression of thickening) in the composite paste.
  • E basic low molecular weight component
  • the lower limit of the content of the basic low molecular weight component (E) based on the solid content of the conductive pigment (B) is 100% by mass.
  • the content is usually 1% by mass or more, preferably 10% by mass or more, more preferably 40% by mass or more, and still more preferably 80% by mass or more.
  • the upper limit is usually 500% by mass or less, preferably 400% by mass or less, more preferably 350% by mass or less, still more preferably 300% by mass or less, from the viewpoint of the amount of component (E) remaining in the electrode film.
  • the solid content of the conductive pigment (B) in the solid content of the composite material paste of the present invention is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
  • the content is preferably 30% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less.
  • the content of the solvent (C) in the composite material paste of the present invention is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and, for example, 70% by mass or less, preferably From the viewpoint of electrode drying efficiency and paste viscosity, the content is preferably 60% by mass or less, more preferably 50% by mass or less.
  • the electrode composite material layer (also called electrode layer or composite material layer) of a lithium ion secondary battery is made by applying composite material paste for lithium ion battery electrodes to the surface of the core material of the positive or negative electrode. It can be manufactured by coating and drying, and the obtained electrode mixture layer of a lithium ion secondary battery is particularly preferably used as a positive electrode.
  • the conductive pigment paste of the present invention can be used not only as a paste for a composite layer but also as a primer layer between an electrode core material and a composite layer.
  • the method for applying the composite material paste for lithium ion battery electrodes can be performed by a method known per se using a die coater or the like.
  • the coating amount of the composite material paste for lithium ion battery electrodes is not particularly limited, but for example, the thickness of the composite material layer after drying is 0.04 mm or more, preferably 0.06 mm or more, and, for example, 0.30 mm or less, 0.04 mm or more. It can be set within a range of 24 mm or less.
  • the temperature of the drying step can be appropriately set within the range of, for example, 80 to 200°C, preferably 100 to 180°C.
  • the time for the drying step can be appropriately set, for example, within the range of 5 to 120 seconds, preferably 5 to 60 seconds.
  • a methanol solution of sodium hydroxide was added to carry out a saponification reaction, and the mixture was thoroughly washed and then dried with a hot air dryer. Finally, a sulfonic acid modified polyvinyl alcohol resin with a weight average molecular weight of 17000, a polar functional group concentration of 18.1 mmol / g, and a saponification degree of 90 mol% was obtained.
  • Example 1A 40 parts of sulfonic acid-modified polyvinyl alcohol resin (solid content: 40 parts) obtained in Production Example 1, 200 parts of carbon nanotubes (CNT1), KF Polymer W#7300 (trade name, polyvinylidene fluoride, weight average molecular weight 1 million, Kureha Co., Ltd.) 180 parts of N-methyl-2-pyrrolidone (NMP1), and 200 parts of benzylamine were mixed and dispersed in a ball mill for 5 hours to produce a conductive pigment paste (A-1).
  • CNT1 carbon nanotubes
  • KF Polymer W#7300 trade name, polyvinylidene fluoride, weight average molecular weight 1 million, Kureha Co., Ltd.
  • NMP1 N-methyl-2-pyrrolidone
  • Example 1B 100 parts of the conductive pigment paste (A-1) was mixed with 900 parts of active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle size 6 ⁇ m , BET specific surface area 0.7 m2 /g) using a disperser to produce a composite paste (B-1).
  • active material particles lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle size 6 ⁇ m , BET specific surface area 0.7 m2 /g
  • Examples 2B to 21B, Comparative Examples 1B to 2B Mixed material pastes (B-2) to (B-23) were obtained in the same manner as in Example 1B, except for using the formulations shown in Table 1 below.
  • CNT1 to CNT6 are all multi-walled carbon nanotubes.
  • the median diameter (D50), G/D ratio, and acidic group amount in the above table were measured by the following method.
  • the median diameter (D50) was measured using a laser diffraction/scattering type particle size distribution measuring device "LA-960" (trade name, manufactured by Horiba, Ltd.) according to the following procedure.
  • CMCNa carboxymethyl cellulose sodium
  • CMCNa aqueous solution A solid content of 2.0 g of F10MC (trade name, manufactured by Nippon Paper Industries, Ltd., sodium carboxymethylcellulose) was added to 100 mL of distilled water, and the mixture was stirred and dissolved at room temperature for 24 hours or more to prepare an aqueous solution containing 2.0% by mass of CMCNa.
  • F10MC trade name, manufactured by Nippon Paper Industries, Ltd., sodium carboxymethylcellulose
  • the time set (irradiation time) was set to 40 seconds, the POW SET was set to 50%, and the START POW was set to 50% (output 50%), and the carbon nanotube water was homogenized by ultrasonic irradiation using auto power operation with a constant output power.
  • a dispersion liquid was prepared.
  • the ratio of dispersed particles of carbon nanotubes of 1 ⁇ m or less and the median diameter (D50) were measured according to the following method.
  • the optical model of the LS 13 320 universal liquid module is set to have carbon nanotubes with a refractive index of 1.520 and water with a refractive index of 1.333, and approximately 1.0 mL of a CMCNa aqueous solution is filled after the module has been cleaned.
  • the prepared aqueous carbon nanotube dispersion was measured using a particle size analyzer with relative concentration, which indicates the percentage of light scattered outside the beam by the particles.
  • the Raman spectrum of carbon nanotubes was measured using a Raman microscope "XploRA" (trade name, manufactured by Horiba, Ltd.) using a laser wavelength of 532 nm.
  • the G/D ratio is the G/D ratio of carbon nanotubes when the maximum peak intensity is G within the range of -1 to 1600 cm -1 and D is the maximum peak intensity within the range of 1310 cm -1 to 1350 cm -1 . did.
  • Evaluation tests were conducted on the conductive pigment pastes and composite material pastes obtained in the above Examples and Comparative Examples. As for the evaluation, D is a failure. If even one evaluation result is a failure, the evaluation of the conductive pigment paste is a failure. The evaluation results are shown in Table 1.
  • the dispersibility of the obtained conductive pigment paste was evaluated according to the following criteria using a tube gauge according to the dispersion test of JIS K-5600-2-5.
  • D Aggregates are visually confirmed. Dispersibility is very poor.
  • ⁇ Initial viscosity> The viscosity of the resulting composite paste was measured using a cone-and-plate viscometer "Mars 2" (trade name, manufactured by HAAKE) at a shear rate of 2.0 sec -1 , and evaluated according to the following criteria.
  • D Viscosity is 50 Pa ⁇ s or more.
  • A The viscosity increase rate (%) after storage is 10% or more and less than 20%.
  • B The viscosity increase rate (%) after storage is 20% or more and less than 50%.
  • C The viscosity increase rate (%) after storage is 50% or more and less than 200%.
  • D The viscosity increase rate (%) after storage is 200% or more (or gelation makes it impossible to measure).
  • ⁇ Volume resistivity (conductivity)> The conductive pigment pastes obtained in Examples 1A, 7A, 8A, and 9A were further measured for volume resistivity.
  • a 5% by mass solution of polyvinylidene fluoride manufactured by Kureha Co., Ltd., trade name "KF Polymer W#7300", solvent: N-methyl-2-pyrrolidone
  • the ratio of the mass of the conductive pigment (B) in the obtained conductive pigment paste to the total mass of the solid content of the pigment dispersion resin (A) and the solid content of KF Polymer W#7300 in the conductive pigment paste is 5:100.
  • the conductive pigment paste and KF Polymer W#7300 solution were weighed out and mixed for 2 minutes using an ultrasonic homogenizer to obtain a measurement sample.
  • a measurement sample was coated on a glass plate (2 mm x 100 mm x 150 mm) using a doctor blade method, and dried by heating at 80° C. for 60 minutes to form a coating film on the glass plate.
  • a resistivity meter "Loresta-GP MCP-T610" (trade name) was measured using an ASP probe "MCP-TP03P” (trade name, manufactured by Mitsubishi Chemical Analytech). , manufactured by Mitsubishi Chemical Analytech, Inc.), and the volume resistivity was calculated by multiplying the obtained resistance value by a resistivity correction factor (RCF) of 4.532 and the film thickness of the coating film.
  • RCF resistivity correction factor
  • A The volume resistivity is less than 7 ⁇ cm, and the conductivity is good.
  • B Volume resistivity is 7 ⁇ cm or more and less than 15 ⁇ cm, and conductivity is normal.
  • D Volume resistivity is 15 ⁇ cm or more, and conductivity is poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention addresses the problem of providing an electroconductive pigment paste and a mix paste which, even when having a high pigment concentration, are excellent in terms of pigment dispersibility and storage stability, and of providing an electrode for lithium-ion batteries which has various excellent performances. The electroconductive pigment paste comprises a pigment-dispersing resin (A), an electroconductive pigment (B), a solvent (C), a fluororesin (D), and a basic low-molecular-weight component (E), wherein the pigment-dispersing resin (A) has at least one kind of polar functional groups and has a concentration of the polar functional groups of 0.3-23 mmol/g, the electroconductive pigment (B) includes carbon nanotubes (B1), and when the content of the basic low-molecular-weight component (E) per 100 parts by mass of the content of the carbon nanotubes (B1) is expressed by α (parts by mass) and the BET specific surface area of the carbon nanotubes (B1) is expressed by β (m2/g), then X=α/β×300 and the X is 5 or greater.

Description

導電性顔料ペースト、合材ペースト、及びリチウムイオン電池用電極Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries
 本発明は、高顔料濃度においても、顔料分散性及び貯蔵安定性に優れる導電性顔料ペースト及び合材ペースト、並びに合材ペーストを塗布したリチウムイオン電池用電極に関する。 The present invention relates to a conductive pigment paste and composite material paste that have excellent pigment dispersibility and storage stability even at high pigment concentrations, and an electrode for lithium ion batteries coated with the composite material paste.
 従来、顔料を顔料分散樹脂及び溶媒等の混合物中に分散させたペースト状の顔料分散体が、各種分野で広く用いられている。これらの分野では、顔料分散性、貯蔵安定性、塗工性、導電性、仕上がり性、耐溶剤性等の性能向上がますます要求されており、そのため、優れた顔料分散能力と、形成された顔料分散体中の顔料粒子を再凝集させないだけの優れた貯蔵安定性を有する顔料分散樹脂及び顔料ペーストの開発がなされつつある。 Conventionally, paste-like pigment dispersions in which pigments are dispersed in mixtures of pigment dispersion resins, solvents, etc. have been widely used in various fields. In these fields, improvements in performance such as pigment dispersibility, storage stability, coating properties, conductivity, finishing properties, and solvent resistance are increasingly required. Pigment dispersion resins and pigment pastes are being developed that have excellent storage stability that does not cause re-agglomeration of pigment particles in a pigment dispersion.
 顔料ペーストの設計にあたっては、顔料分散樹脂が電極等の最終製品そのものの性能に悪い影響を及ぼさないように、あるいは溶媒及び顔料分散樹脂の使用量を低減することや乾燥時の使用エネルギーを低減する観点から、少量の顔料分散樹脂で高濃度かつ均一に分散された顔料ペーストを作製することが重要となっている。
また、当該顔料ペーストが長期間変質なく貯蔵できることも重要である。
When designing a pigment paste, make sure that the pigment dispersion resin does not have a negative effect on the performance of the final product itself, such as an electrode, or reduce the amount of solvent and pigment dispersion resin used, or reduce the energy used during drying. From this point of view, it is important to prepare a highly concentrated and uniformly dispersed pigment paste using a small amount of pigment dispersion resin.
It is also important that the pigment paste can be stored for a long period of time without deterioration.
 かかる状況の下、特許文献1には、バンドル型カーボンナノチューブ、分散媒、および重量平均分子量が5万超過のポリビニルブチラール樹脂を含み、バンドル型カーボンナノチューブの分散粒径が粒径分布D50において3~10μmであるカーボンナノチューブ分散液が記載されている。
しかしながら、上記カーボンナノチューブ分散液及び電極活物質とバインダー樹脂を含む電極スラリーは、初期の分散性や粘性等の性能は良いものの、長期の貯蔵性能は十分でない場合があった。
Under such circumstances, Patent Document 1 includes bundle-shaped carbon nanotubes, a dispersion medium, and a polyvinyl butyral resin having a weight average molecular weight of more than 50,000, and the dispersed particle size of the bundle-shaped carbon nanotubes is 3 to 3 in the particle size distribution D50. Carbon nanotube dispersions that are 10 μm are described.
However, although the electrode slurry containing the carbon nanotube dispersion liquid, electrode active material, and binder resin has good initial dispersibility, viscosity, and other properties, long-term storage performance may not be sufficient.
特表2018-535284号公報Special table 2018-535284 publication
 本発明が解決しようとする課題は、高顔料濃度においても顔料分散性に優れ適切な粘度(低い粘度)を有し、貯蔵安定性に優れる導電性顔料ペースト及び合材ペースト、並びに諸性能(電池性能等)に優れるリチウムイオン電池用電極を提供することである。 The problems to be solved by the present invention are conductive pigment pastes and composite pastes that have excellent pigment dispersibility and appropriate viscosity (low viscosity) even at high pigment concentrations, and excellent storage stability, as well as various performances (battery). The purpose of the present invention is to provide an electrode for a lithium ion battery that has excellent performance (performance, etc.).
 発明者等は、上記課題を解決するために鋭意検討した結果、
第一の態様として、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)とした場合、X=α/β×300で示される式(1)のXの値が、5以上である導電性顔料ペーストの場合、及び/又は、
第二の態様として、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、塩基性低分子量成分(E)が、アミン化合物(E1)を含有し、カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)、カーボンナノチューブ(B1)の酸性基量をγ(mmol/g)とした場合、Y=α/β/γで示される式(2)のYの値が、0.01以上である、導電性顔料ペーストの場合、
において、上記課題の解決が達成できることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the inventors have found that
A first aspect is a conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E), , the pigment dispersion resin (A) has at least one kind of polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g, and the conductive pigment (B) contains carbon nanotubes (B1), the content of the basic low molecular weight component (E) is α (parts by mass) with respect to 100 parts by mass of the carbon nanotubes (B1), and the BET specific surface area of the carbon nanotubes (B1) is In the case of a conductive pigment paste in which the value of X in formula ( 1 ) shown by X=α/β×300 is 5 or more, and/or
A second embodiment is a conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E), , the pigment dispersion resin (A) has at least one kind of polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g, and the conductive pigment (B) contains carbon nanotubes (B1), the basic low molecular weight component (E) contains an amine compound (E1), and the basic low molecular weight component (E) is based on 100 parts by mass of the carbon nanotubes (B1). When the content of is α (parts by mass), the BET specific surface area of the carbon nanotube (B1) is β (m 2 /g), and the amount of acidic groups of the carbon nanotube (B1) is γ (mmol/g), Y= In the case of a conductive pigment paste in which the value of Y in formula (2) expressed by α/β/γ is 0.01 or more,
The inventors have discovered that the above problems can be solved, and have completed the present invention.
 即ち、本発明は、以下の導電性顔料ペースト、合材ペースト及びリチウムイオン電池用電極を提供するものである。
[項1] 顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、
顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、
導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、
カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)とした場合、下記式(1)のXの値が、5以上である、導電性顔料ペースト。
X=α/β×300・・・式(1)
[項2] 顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、
顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、
導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、
カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)、カーボンナノチューブ(B1)の酸性基量をγ(mmol/g)とした場合、下記式(2)のYの値が、0.01以上である、導電性顔料ペースト。
Y=α/β/γ・・・式(2)
[項3] 塩基性低分子量成分(E)が、アミン化合物(E1)を含む、項1又は2に記載の導電性顔料ペースト。
[項4] カーボンナノチューブ(B1)の体積換算のメディアン径(D50)が、10~250μmである、項1~3のいずれか1項に記載の導電性顔料ペースト。
[項5] 塩基性低分子量成分(E)の含有量が、導電性顔料(B)の固形分100質量%を基準として、12質量%以上、500質量%以下である、項1~4のいずれか1項に記載の導電性顔料ペースト。
[項6] カーボンナノチューブ(B1)の酸性基量が、0.01mmol/g~0.5mmol/gである、項1~5のいずれか1項に記載の導電性顔料ペースト。
[項7] カーボンナノチューブ(B1)のBET比表面積が、100m/g~800m/gであり、カーボンナノチューブ(B1)のラマンスペクトルにおいて、1560m-1~1600cm-1の範囲内での最大ピーク強度をG、1310m-1~1350cm-1の範囲内での最大ピーク強度をDとした際のG/D比が0.1~5である、項1~6のいずれか1項に記載の導電性顔料ペースト。
[項8] 溶媒(C)の水分含有量が1質量%以下であり、かつアミン化合物含有量が1質量%以下である、項1~7のいずれか1項に記載の導電性顔料ペースト。
[項9] 塩基性低分子量成分(E)の重量平均分子量が、1000未満である、項1~8のいずれか1項に記載の導電性顔料ペースト。
[項10] アミン化合物(E1)のアミン価が、105mgKOH/g~1000mgKOH/gである、項3~9のいずれか1項に記載の導電性顔料ペースト。
[項11] 溶媒(C)が、N-メチル-2-ピロリドンである、項1~10のいずれか1項に記載の導電性顔料ペースト。
[項12] 項1~11のいずれか1項に記載の導電性顔料ペーストと電極活物質(F)を配合してなる合材ペースト。
[項13] 項12に記載の合材ペーストを用いて得られるリチウムイオン電池用電極。
That is, the present invention provides the following conductive pigment paste, composite paste, and electrode for lithium ion batteries.
[Item 1] A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E),
The pigment dispersion resin (A) has at least one polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g,
The conductive pigment (B) contains carbon nanotubes (B1),
When the content of the basic low molecular weight component (E) is α (parts by mass) with respect to 100 parts by mass of the carbon nanotube (B1), and the BET specific surface area of the carbon nanotube (B1) is β (m 2 /g). , a conductive pigment paste in which the value of X in the following formula (1) is 5 or more.
X=α/β×300...Formula (1)
[Item 2] A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E),
The pigment dispersion resin (A) has at least one polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g,
The conductive pigment (B) contains carbon nanotubes (B1),
The content of the basic low molecular weight component (E) with respect to 100 parts by mass of the carbon nanotube (B1) is α (parts by mass), the BET specific surface area of the carbon nanotube (B1) is β (m 2 /g), and the carbon nanotube A conductive pigment paste in which the value of Y in the following formula (2) is 0.01 or more, where the amount of acidic groups in (B1) is γ (mmol/g).
Y=α/β/γ...Formula (2)
[Item 3] The conductive pigment paste according to Item 1 or 2, wherein the basic low molecular weight component (E) contains an amine compound (E1).
[Item 4] The conductive pigment paste according to any one of Items 1 to 3, wherein the carbon nanotube (B1) has a volumetric median diameter (D50) of 10 to 250 μm.
[Item 5] Items 1 to 4, wherein the content of the basic low molecular weight component (E) is 12% by mass or more and 500% by mass or less, based on 100% by mass of the solid content of the conductive pigment (B). The conductive pigment paste according to any one of the items.
[Item 6] The conductive pigment paste according to any one of Items 1 to 5, wherein the carbon nanotube (B1) has an acidic group content of 0.01 mmol/g to 0.5 mmol/g.
[Item 7] The BET specific surface area of the carbon nanotube (B1) is 100 m 2 /g to 800 m 2 /g, and the maximum within the range of 1560 m −1 to 1600 cm −1 in the Raman spectrum of the carbon nanotube (B1). As described in any one of items 1 to 6, the G/D ratio is 0.1 to 5, where the peak intensity is G and the maximum peak intensity within the range of 1310 m -1 to 1350 cm -1 is D. conductive pigment paste.
[Item 8] The conductive pigment paste according to any one of Items 1 to 7, wherein the solvent (C) has a water content of 1% by mass or less and an amine compound content of 1% by mass or less.
[Item 9] The conductive pigment paste according to any one of Items 1 to 8, wherein the basic low molecular weight component (E) has a weight average molecular weight of less than 1000.
[Item 10] The conductive pigment paste according to any one of Items 3 to 9, wherein the amine compound (E1) has an amine value of 105 mgKOH/g to 1000 mgKOH/g.
[Item 11] The conductive pigment paste according to any one of Items 1 to 10, wherein the solvent (C) is N-methyl-2-pyrrolidone.
[Item 12] A composite paste obtained by blending the conductive pigment paste according to any one of Items 1 to 11 and an electrode active material (F).
[Item 13] An electrode for a lithium ion battery obtained using the composite paste according to Item 12.
 本発明の導電性顔料ペースト及び合材ペーストは、高顔料濃度においても顔料分散性に優れ適切な粘度(低い粘度)を有し、貯蔵安定性に優れ、塗膜の導電性が優れている。さらに、合材ペーストを塗布して得られるリチウムイオン電池用電極は、諸性能(電池性能等)に優れる。 The conductive pigment paste and composite material paste of the present invention have excellent pigment dispersibility and appropriate viscosity (low viscosity) even at high pigment concentrations, excellent storage stability, and excellent electrical conductivity of the coating film. Furthermore, the lithium ion battery electrode obtained by applying the composite material paste has excellent various performances (battery performance, etc.).
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, modes for carrying out the present invention will be described in detail.
 なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
本発明において、「比表面積」とは、窒素吸着法によるBET比表面積のことである。
 本発明では、まず適度な分散状態の導電性顔料を有する導電性顔料ペーストが調整される。さらに諸性能を満足するリチウムイオン電池用電極を得るため、導電性顔料ペーストに電極活物質等の成分を追加して合材ペーストが製造される。
It should be noted that the present invention is not limited to the following embodiments, but should be understood to include various modifications that may be implemented without departing from the gist of the present invention.
In the present invention, the "specific surface area" refers to the BET specific surface area determined by the nitrogen adsorption method.
In the present invention, first, a conductive pigment paste having a conductive pigment in an appropriately dispersed state is prepared. Furthermore, in order to obtain an electrode for a lithium ion battery that satisfies various performances, a composite paste is produced by adding components such as an electrode active material to the conductive pigment paste.
 [導電性顔料ペースト]
 本発明の第一の態様の導電性顔料ペーストとしては、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)とした場合、下記式(1)のXの値が、5以上である、導電性顔料ペーストが好適である。
X=α/β×300・・・式(1)
 Xの値としては、好ましくは5以上であり、より好ましくは10以上であり、さらに好ましくは40以上であり、特に好ましくは60以上であり、例えば2500以下であり、好ましくは1000以下であり、より好ましくは500以下であり、さらに好ましくは300以下である。また、好適な範囲としては、好ましくは5以上2500以下であり、より好ましくは10以上1000以下であり、さらに好ましくは40以上500以下であり、特に好ましくは60以上300以下である。
この範囲内であればカーボンナノチューブ(B1)の表面に必要十分に塩基性低分子量成分(E)を濡れさせることができ、カーボンナノチューブ(B1)の分散性(粘度含む)や貯蔵安定性(増粘抑制含む)を向上できることを見出した。
カーボンナノチューブ(B1)のBET比表面積に対する塩基性低分子量成分(E)の含有量が過剰であると、臭気がきつくなり、またコスト増になる。含有量が不足するとカーボンナノチューブ(B1)のBET比表面積に対する塩基性低分子量成分(E)含有量が不足して、分散性や貯蔵安定性(増粘抑制)が劣る場合がある。
[Conductive pigment paste]
The conductive pigment paste of the first aspect of the present invention contains a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E). A conductive pigment paste containing a pigment dispersion resin (A) having at least one polar functional group, and a polar functional group concentration of the pigment dispersion resin (A) of 0.3 mmol/g to 23 mmol/g. The conductive pigment (B) contains carbon nanotubes (B1), and the content of the basic low molecular weight component (E) with respect to 100 parts by mass of the carbon nanotubes (B1) is α (parts by mass), When the BET specific surface area of carbon nanotubes (B1) is β (m 2 /g), a conductive pigment paste in which the value of X in the following formula (1) is 5 or more is suitable.
X=α/β×300...Formula (1)
The value of More preferably it is 500 or less, still more preferably 300 or less. Moreover, a suitable range is preferably 5 or more and 2,500 or less, more preferably 10 or more and 1,000 or less, still more preferably 40 or more and 500 or less, particularly preferably 60 or more and 300 or less.
Within this range, the surface of the carbon nanotubes (B1) can be sufficiently wetted with the basic low molecular weight component (E), and the dispersibility (including viscosity) and storage stability (increase) of the carbon nanotubes (B1) can be improved. It has been found that the properties (including viscosity control) can be improved.
If the content of the basic low molecular weight component (E) is excessive with respect to the BET specific surface area of the carbon nanotubes (B1), the odor becomes strong and the cost increases. If the content is insufficient, the basic low molecular weight component (E) content may be insufficient relative to the BET specific surface area of the carbon nanotubes (B1), resulting in poor dispersibility and storage stability (suppression of viscosity increase).
 また、本発明の第二の態様の導電性顔料ペーストとしては、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)、カーボンナノチューブ(B1)の酸性基量をγ(mmol/g)とした場合、下記式(2)のYの値が、0.01以上である導電性顔料ペーストが好適である。
Y=α/β/γ・・・式(2)
 Yの値としては、好ましくは0.01以上であり、より好ましくは1以上であり、さらに好ましくは2以上であり、特に好ましくは3以上であり、例えば400以下であり、好ましくは200以下であり、より好ましくは150以下であり、さらに好ましくは100以下である。また、好適な範囲としては、好ましくは0.01以上400以下であり、より好ましくは1以上200以下であり、さらに好ましくは2以上150以下であり、特に好ましくは3以上100以下である。
この範囲内であればカーボンナノチューブ(B1)の一定量の酸性基を有する表面に必要十分に塩基性低分子量成分(E)を濡れさせることができ、カーボンナノチューブ(B1)の分散性(粘度含む)や貯蔵安定性(増粘抑制含む)を向上できることを見出した。
酸性基を有するカーボンナノチューブ(B1)のBET比表面積に対する塩基性低分子量成分(E)の含有量が過剰であると、臭気がきつくなり、またコスト増になる。含有量が不足するとカーボンナノチューブ(B1)の酸性基を有するBET比表面積に対する塩基性低分子量成分(E)含有量が不足して、分散性や貯蔵安定性(増粘抑制)が劣る場合がある。
Further, the conductive pigment paste of the second aspect of the present invention includes a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E ), wherein the pigment dispersion resin (A) has at least one kind of polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol. /g, the conductive pigment (B) contains carbon nanotubes (B1), and the content of the basic low molecular weight component (E) is α (parts by mass) with respect to 100 parts by mass of the carbon nanotubes (B1). ), the BET specific surface area of the carbon nanotube (B1) is β (m 2 /g), and the amount of acidic groups of the carbon nanotube (B1) is γ (mmol/g), then the value of Y in the following formula (2) is , 0.01 or more is suitable.
Y=α/β/γ...Formula (2)
The value of Y is preferably 0.01 or more, more preferably 1 or more, even more preferably 2 or more, particularly preferably 3 or more, for example 400 or less, preferably 200 or less. Yes, more preferably 150 or less, still more preferably 100 or less. Moreover, a suitable range is preferably 0.01 or more and 400 or less, more preferably 1 or more and 200 or less, still more preferably 2 or more and 150 or less, and particularly preferably 3 or more and 100 or less.
Within this range, the surface of the carbon nanotube (B1) having a certain amount of acidic groups can be sufficiently wetted with the basic low molecular weight component (E), and the dispersibility (including viscosity) of the carbon nanotube (B1) ) and storage stability (including inhibition of thickening).
If the content of the basic low molecular weight component (E) is excessive with respect to the BET specific surface area of the carbon nanotube (B1) having an acidic group, the odor becomes strong and the cost increases. If the content is insufficient, the basic low molecular weight component (E) content may be insufficient relative to the BET specific surface area of the carbon nanotube (B1) having acidic groups, resulting in poor dispersibility and storage stability (inhibition of thickening). .
 顔料分散樹脂(A)
 上記顔料分散樹脂(A)は、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、シアノ基、ピロリドン基、エーテル基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gである。また、上記の酸基は塩になっていてもよい。
Pigment dispersion resin (A)
The pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, a cyano group, a pyrrolidone group, and an ether group. group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g. Moreover, the above acid group may be in the form of a salt.
 樹脂の種類としては、後述するフッ素樹脂(D)以外の樹脂であれば特に限定されない。例えば、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂、アルキド樹脂、ウレタン樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、ポリ酢酸ビニル、シリコーン樹脂、ポリカーボネート樹脂、塩素系樹脂、及びこれらの複合樹脂等が挙げられる。これらの樹脂は、1種を単独で又は2種以上を併用して用いることができる。 The type of resin is not particularly limited as long as it is a resin other than the fluororesin (D) described below. For example, acrylic resin, polyester resin, epoxy resin, polyether resin, alkyd resin, urethane resin, polyvinyl alcohol, polyvinyl acetal, polyvinylpyrrolidone, polyvinyl acetate, silicone resin, polycarbonate resin, chlorine resin, and composite resins thereof, etc. can be mentioned. These resins can be used alone or in combination of two or more.
 なかでも、顔料分散性、貯蔵安定製、及び仕上がり性等の観点から、顔料分散樹脂(A)としては、下記式(1)の重合性不飽和基含有モノマーを含むモノマーを重合又は共重合することにより得られるビニル(共)重合体(A1)を含有することが好ましい。尚、本発明の「(共)重合体」とは、1種のモノマーを重合した重合体と2種以上のモノマーを共重合した共重合体の両方を含むものである。 Among these, from the viewpoints of pigment dispersibility, storage stability, finishing properties, etc., as the pigment dispersion resin (A), a monomer containing a polymerizable unsaturated group-containing monomer of the following formula (1) is polymerized or copolymerized. It is preferable to contain a vinyl (co)polymer (A1) obtained by. In addition, the "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
 C(-R)=C(-R) ・・・式(1)
[上記式において、Rは、それぞれ同じでも異なってもよく、水素原子又は有機基である。]
 上記ビニル(共)重合体(A1)としては、その構造中に「-CH-CH(-X)-」で表される構造単位(ただし、Xは活性水素基又は活性水素基を含む有機基である。)を含むものが好ましい。上記ビニル(共)重合体(A1)としては、例えば、水酸基含有ビニル(共)重合体、カルボキシル基含有ビニル(共)重合体、アミド基含有ビニル(共)重合体、スルホン酸基含有ビニル(共)重合体、リン酸基含有ビニル(共)重合体、ピロリドン基含有ビニル(共)重合体等が挙げられる。これらの(共)重合体は、1種を単独で又は2種以上を組み合わせて用いることができる。
C(-R) 2 = C(-R) 2 Formula (1)
[In the above formula, R may be the same or different and is a hydrogen atom or an organic group.]
The vinyl (co)polymer (A1) preferably contains in its structure a structural unit represented by "-CH 2 -CH(-X)-" (wherein X is an active hydrogen group or an organic group containing an active hydrogen group). Examples of the vinyl (co)polymer (A1) include hydroxyl group-containing vinyl (co)polymers, carboxyl group-containing vinyl (co)polymers, amide group-containing vinyl (co)polymers, sulfonic acid group-containing vinyl (co)polymers, phosphate group-containing vinyl (co)polymers, and pyrrolidone group-containing vinyl (co)polymers. These (co)polymers may be used alone or in combination of two or more.
 水酸基含有ビニル(共)重合体としては、例えば、ポリヒドロキシアルキル(メタ)アクリレート(ポリヒドロキシエチル(メタ)アクリレート等)、ポリビニルアルコール、ビニルアルコール-脂肪酸ビニル共重合体、ビニルアルコール-エチレン共重合体、ビニルアルコール-(N-ビニルホルムアミド)共重合体、ヒドロキシアルキル(メタ)アクリレート(ヒドロキシエチル(メタ)アクリレート等)とその他の重合性不飽和モノマーとの共重合体等が挙げられる。(共)重合体中のビニルアルコール単位は脂肪酸ビニル単位を(共)重合した後に加水分解して得られたものでも良い。 Examples of the hydroxyl group-containing vinyl (co)polymer include polyhydroxyalkyl (meth)acrylate (such as polyhydroxyethyl (meth)acrylate), polyvinyl alcohol, vinyl alcohol-fatty acid vinyl copolymer, and vinyl alcohol-ethylene copolymer. , vinyl alcohol-(N-vinylformamide) copolymers, copolymers of hydroxyalkyl (meth)acrylates (such as hydroxyethyl (meth)acrylate) and other polymerizable unsaturated monomers, and the like. The vinyl alcohol units in the (co)polymer may be those obtained by (co)polymerizing fatty acid vinyl units and then hydrolyzing them.
 カルボキシル基含有ビニル(共)重合体としては、例えば、(メタ)アクリル酸の重合体、又は(メタ)アクリル酸とその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of the carboxyl group-containing vinyl (co)polymer include a polymer of (meth)acrylic acid, a copolymer of (meth)acrylic acid and other polymerizable unsaturated monomers, and the like.
 アミド基含有ビニル(共)重合体としては、例えば、(メタ)アクリルアミドの重合体、(メタ)アクリルアミド誘導体(3-(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド等の重合体、又は(メタ)アクリルアミドとその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of the amide group-containing vinyl (co)polymer include a polymer of (meth)acrylamide, a polymer of (meth)acrylamide derivatives (such as 3-(meth)acrylamidopropyltrimethylammonium chloride, or a polymer of (meth)acrylamide and others). Examples include copolymers with polymerizable unsaturated monomers.
 スルホン酸基含有ビニル(共)重合体としては、例えば、アリルスルホン酸又はスチレンスルホン酸等の重合体、アリルスルホン酸及び/又はスチレンスルホン酸とその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of the sulfonic acid group-containing vinyl (co)polymer include polymers of allylsulfonic acid or styrenesulfonic acid, copolymers of allylsulfonic acid and/or styrenesulfonic acid, and other polymerizable unsaturated monomers, etc. can be mentioned.
 リン酸基含有ビニル(共)重合体としては、例えば、(メタ)アクリロイルオキシアルキルアシッドホスフェートの重合体、又は(メタ)アクリロイルオキシアルキルアシッドホスフェートとその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of the phosphoric acid group-containing vinyl (co)polymer include a polymer of (meth)acryloyloxyalkyl acid phosphate, or a copolymer of (meth)acryloyloxyalkyl acid phosphate and other polymerizable unsaturated monomers. can be mentioned.
 上記ビニル(共)重合体(A1)は、上記の「-CH-CH(-X)-」で表される構造単位以外に、必要に応じて共重合可能な重合性不飽和基含有モノマー由来の構造単位を含んでいてもよい。共重合可能な重合性不飽和基含有モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酢酸イソプロペニル、バレリン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサティック酸ビニル、ピバリン酸ビニル等のカルボン酸ビニルエステル単量体;エチレン、プロピレン、ブチレン等のオレフィン類;スチレン、α-メチルスチレン等の芳香族ビニル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、フマル酸ジメチル、マレイン酸ジメチル、マレイン酸ジエチル、イタコン酸ジイソプロピル等のエチレン性不飽和カルボン酸アルキルエステル単量体;メチルビニルエーテル、n-プロピルビニルエーテル、イソブチルビニルエーテル、ドデシルビニルエーテル等のビニルエーテル単量体;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル単量体又はビニリデン単量体;酢酸アリル、塩化アリル等のアリル化合物;第四級アンモニウム基含有単量体;ビニルトリメトキシシラン、N-ビニルホルムアミド、、N-ビニル-2-ピロリドン等が挙げられる。これらの単量体は、1種を単独で又は2種以上を組み合わせて用いることができる。 The vinyl (co)polymer (A1) contains, in addition to the structural unit represented by "-CH 2 --CH(-X)-", a polymerizable unsaturated group-containing monomer that can be copolymerized as necessary. may contain structural units derived from Examples of copolymerizable polymerizable unsaturated group-containing monomers include vinyl formate, vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl valerate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, Carboxylic acid vinyl ester monomers such as vinyl benzoate, vinyl versatate, and vinyl pivalate; Olefins such as ethylene, propylene, and butylene; Aromatic vinyls such as styrene and α-methylstyrene; (meth)acrylic acid Ethylenically unsaturated carboxylic acids such as methyl, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dimethyl fumarate, dimethyl maleate, diethyl maleate, diisopropyl itaconate, etc. Alkyl ester monomer; Vinyl ether monomer such as methyl vinyl ether, n-propyl vinyl ether, isobutyl vinyl ether, dodecyl vinyl ether; Vinyl halide monomer or vinylidene monomer such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc. Allyl compounds such as allyl acetate and allyl chloride; Quaternary ammonium group-containing monomers such as vinyltrimethoxysilane, N-vinylformamide, and N-vinyl-2-pyrrolidone. These monomers can be used alone or in combination of two or more.
 顔料分散樹脂(A)の極性官能基濃量は、顔料分散性、貯蔵安定性、及び溶媒との相溶性の観点から、通常0.3mmol/g~23mmol/gであり、好ましくは9mmol/g~23mmol/gであることが好適である。 The polar functional group concentration of the pigment dispersion resin (A) is usually 0.3 mmol/g to 23 mmol/g, preferably 9 mmol/g from the viewpoint of pigment dispersibility, storage stability, and compatibility with solvents. It is preferable that the amount is 23 mmol/g.
 上記ビニル(共)重合体(A1)の重合方法は、それ自体既知の重合方法で製造することができ、例えば溶液重合を用いることが好ましいが、これに限られるものではなく、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。 The vinyl (co)polymer (A1) can be produced by a known polymerization method, for example, it is preferable to use solution polymerization, but it is not limited to this, and bulk polymerization or emulsification is preferred. Polymerization, suspension polymerization, etc. may be used. When solution polymerization is carried out, it may be continuous or batch polymerization, and the monomers may be charged all at once, divided into portions, or added continuously or intermittently.
 溶液重合において使用する重合開始剤は、特に限定するものではないが、具体的には、例えば、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルパレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルパレロニトリル)等のアゾ化合物;アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物;ジイソプピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート等のパーエステル化合物;アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリル等の公知のラジカル重合開始剤を使用できる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。 The polymerization initiator used in solution polymerization is not particularly limited, but specifically, for example, azobisisobutyronitrile, azobis-2,4-dimethylparellonitrile, azobis(4-methoxy-2 azo compounds such as acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate, etc. Percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, α-cumyl peroxyneodecanate , perester compounds such as t-butylperoxyneodecanate; known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used. These can be used alone or in combination of two or more.
 重合反応温度は、特に限定するものではないが、通常30℃以上200℃以下程度の範囲で設定できる。 The polymerization reaction temperature is not particularly limited, but can usually be set within a range of about 30°C or higher and 200°C or lower.
 上記のようにして得ることができるビニル(共)重合体(A1)は、重合度が例えば100以上、好ましくは150以上であり、例えば4,000以下、好ましくは3,000以下、より好ましくは700以下である。 The vinyl (co)polymer (A1) that can be obtained as described above has a degree of polymerization of, for example, 100 or more, preferably 150 or more, and for example, 4,000 or less, preferably 3,000 or less, more preferably 700 or less.
 また、重量平均分子量としては、例えば500以上、好ましくは1,000以上、より好ましくは2,000以上、さらに好ましくは7,000以上であり、例えば2,000,000以下、好ましくは1,000,000以下、より好ましくは500,000以下である。 Further, the weight average molecular weight is, for example, 500 or more, preferably 1,000 or more, more preferably 2,000 or more, still more preferably 7,000 or more, and for example 2,000,000 or less, preferably 1,000 or more. ,000 or less, more preferably 500,000 or less.
 重量平均分子量としては、仕上がり性、防食性等の観点から、通常500~50,000の範囲内であり、さらに1,000~20,000の範囲内であり、さらに特に1,500~20,000の範囲内であることが好ましい。
 なお、本明細書における重量平均分子量は、特に記載がない限り、ゲルパーミュエーションクロマトグラフ(GPC)を用いて測定した保持時間(保持容量)を、同一条件で測定した分子量既知の標準ポリスチレンの保持時間(保持容量)によりポリスチレンの分子量に換算して求めた値である。具体的には、ゲルパーミュエーションクロマトグラフとして、「HLC8120GPC」(商品名、東ソー社製)を用い、カラムとして、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」及び「TSKgel G-2000HXL」(商品名、いずれも東ソー社製)の4本を用い、移動相テトラヒドロフラン、測定温度40℃、流速1mL/min及び検出器RIの条件下で測定することができる。
The weight average molecular weight is usually in the range of 500 to 50,000, more preferably in the range of 1,000 to 20,000, and more particularly in the range of 1,500 to 20,000, from the viewpoint of finishability, corrosion resistance, etc. Preferably, it is within the range of 000.
In addition, unless otherwise specified, the weight average molecular weight in this specification is based on the retention time (retention capacity) measured using gel permeation chromatography (GPC) of standard polystyrene with a known molecular weight measured under the same conditions. This value is calculated by converting the retention time (retention capacity) into the molecular weight of polystyrene. Specifically, "HLC8120GPC" (trade name, manufactured by Tosoh Corporation) was used as a gel permeation chromatograph, and "TSKgel G-4000HXL", "TSKgel G-3000HXL", and "TSKgel G-2500HXL" were used as columns. and "TSKgel G-2000HXL" (trade names, both manufactured by Tosoh Corporation), and can be measured under the conditions of a mobile phase of tetrahydrofuran, a measurement temperature of 40° C., a flow rate of 1 mL/min, and a detector RI.
 上記ビニル(共)重合体(A1)は、合成終了後に脱溶媒及び/又は溶媒置換することで、固体又は任意の溶媒に置き換えた樹脂溶液にできる。 The above vinyl (co)polymer (A1) can be made into a solid or a resin solution substituted with an arbitrary solvent by removing the solvent and/or replacing the solvent after completion of the synthesis.
 脱溶媒の方法としては、常圧で加熱により行ってもよいし、減圧下で脱溶媒してもよい。溶媒置換の方法としては、脱溶媒前、脱溶媒途中、又は脱溶媒後のいずれの段階で置換溶媒を投入してもよい。 The solvent may be removed by heating at normal pressure or under reduced pressure. As a method of solvent replacement, a replacement solvent may be introduced at any stage before desolvation, during desolvation, or after desolvation.
 (顔料分散樹脂(A)の含有量)
 顔料分散樹脂(A)の固形分含有量は、導電性顔料ペーストの固形分総量を基準として、例えば0.1質量%以上、好ましくは1質量%以上、より好ましくは3質量%以上であり、例えば40質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下である。
(Content of pigment dispersion resin (A))
The solid content of the pigment dispersion resin (A) is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, based on the total solid content of the conductive pigment paste. For example, it is 40% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less.
 また、顔料分散樹脂(A)の固形分含有量は、導電性顔料(B)の含有量を基準として、例えば0.1質量%以上、好ましくは1質量%以上、より好ましくは5質量%以上であり、例えば50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下である。 The solid content of the pigment dispersion resin (A) is, based on the content of the conductive pigment (B), for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 50% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less.
 導電性顔料(B)
 上記導電性顔料(B)は、カーボンナノチューブ(B1)を含有する。
導電性顔料(B)は、さらに、カーボンナノチューブ(B1)以外のその他の導電性顔料(B2)を含有していてもよい。
上記導電性顔料(B)中のカーボンナノチューブ(B1)の含有量としては、導電性顔料(B)100質量%を基準として、50質量%以上が好ましく、75質量%以上がより好ましく、95質量%以上がさらに好ましい。
Conductive pigment (B)
The conductive pigment (B) contains carbon nanotubes (B1).
The conductive pigment (B) may further contain a conductive pigment (B2) other than the carbon nanotubes (B1).
The content of carbon nanotubes (B1) in the conductive pigment (B) is preferably 50% by mass or more, more preferably 75% by mass or more, and 95% by mass, based on 100% by mass of the conductive pigment (B). % or more is more preferable.
 (カーボンナノチューブ(B1))
 カーボンナノチューブ(B1)としては、単層カーボンナノチューブ、又は多層カーボンナノチューブをそれぞれ単独で、又は組合せて使用できる。特に粘度、導電性及びコストの関係から、多層カーボンナノチューブを用いることが好ましい。
(Carbon nanotube (B1))
As the carbon nanotubes (B1), single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination. In particular, from the viewpoint of viscosity, conductivity, and cost, it is preferable to use multi-walled carbon nanotubes.
 カーボンナノチューブ(B1)の平均外径としては、例えば1nm以上、好ましくは3nm以上、より好ましくは5nm以上であり、例えば30nm以下、好ましくは28nm以下、より好ましくは25nm以下である。
カーボンナノチューブ(B1)の平均長さとしては、例えば0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、例えば100μm以下、好ましくは80μm以下、より好ましくは60μm以下である。
The average outer diameter of the carbon nanotubes (B1) is, for example, 1 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and is, for example, 30 nm or less, preferably 28 nm or less, more preferably 25 nm or less.
The average length of the carbon nanotubes (B1) is, for example, 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, and is, for example, 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less.
 カーボンナノチューブ(B1)のBET比表面積としては、粘度及び導電性の関係から、例えば100m/gであり、好ましくは130m/gであり、より好ましくは160m/gであり、例えば800m/g以下であり、好ましくは600m/g以下であり、より好ましくは400m/g以下である。 The BET specific surface area of the carbon nanotubes (B1) is, for example, 100 m 2 /g, preferably 130 m 2 /g, more preferably 160 m 2 /g, for example 800 m 2 from the viewpoint of viscosity and conductivity. /g, preferably 600 m 2 /g or less, more preferably 400 m 2 /g or less.
 上記カーボンナノチューブ(B1)の酸性基量としては、分散性及び貯蔵性の観点から、例えば0.01mmol/g~0.5mmol/gであり、好ましくは0.01mmol/g~0.2mmol/gであり、より好ましくは0.01mmol/g~0.1mmol/gである。酸性基量が0.01mmol/g以上であれば分散性が良好となり、また1.0mmol/g以下であれば貯蔵性が良好となる。
上記酸性基は以下のカーボンナノチューブの酸処理により付与することができる。
The amount of acidic groups in the carbon nanotubes (B1) is, for example, 0.01 mmol/g to 0.5 mmol/g, preferably 0.01 mmol/g to 0.2 mmol/g, from the viewpoint of dispersibility and storage stability. and more preferably 0.01 mmol/g to 0.1 mmol/g. If the amount of acidic groups is 0.01 mmol/g or more, the dispersibility will be good, and if the amount is 1.0 mmol/g or less, the storage stability will be good.
The above acidic group can be provided by the following acid treatment of carbon nanotubes.
 <酸処理方法>
 酸処理の方法としては、カーボンナノチューブに酸を接触させることができれば特に限定されないが、カーボンナノチューブを酸処理液(酸の水溶液)中に浸漬させる方法が好ましい。酸処理液に含まれる酸としては、特に限定されないが、例えば硝酸、硫酸、塩酸が挙げられる。これらは、1種単独で、または、2種以上を組み合わせて用いることができる。そしてこれらの中でも、硝酸、硫酸が好ましい。
カーボンナノチューブの酸性基量は、酸処理液の濃度、温度、処理時間等によって調整することができる。
<Acid treatment method>
The acid treatment method is not particularly limited as long as the acid can be brought into contact with the carbon nanotubes, but a method of immersing the carbon nanotubes in an acid treatment solution (aqueous acid solution) is preferred. Although the acid contained in the acid treatment liquid is not particularly limited, examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. Among these, nitric acid and sulfuric acid are preferred.
The amount of acidic groups in carbon nanotubes can be adjusted by adjusting the concentration, temperature, treatment time, etc. of the acid treatment solution.
 酸処理後、後述する洗浄方法により表面に付着した余剰な酸成分を除去し、酸処理カーボンナノチューブを得ることができる。
酸処理したカーボンナノチューブを洗浄する方法としては、特に限定されないが、水洗が好ましい。例えば、酸処理をしたカーボンナノチューブから、ろ過などの既知の手法でカーボンナノチューブを回収し、続いてカーボンナノチューブを水洗する。上記洗浄後、必要に応じて、表面に付着した水を乾燥により除去する等して、酸処理カーボンナノチューブを得ることができる。
After the acid treatment, excess acid components adhering to the surface can be removed by a cleaning method to be described later, and acid-treated carbon nanotubes can be obtained.
The method for washing the acid-treated carbon nanotubes is not particularly limited, but washing with water is preferred. For example, carbon nanotubes are recovered from acid-treated carbon nanotubes by a known method such as filtration, and then the carbon nanotubes are washed with water. After the above washing, water adhering to the surface may be removed by drying, if necessary, to obtain acid-treated carbon nanotubes.
 また、カーボンナノチューブ(B1)の体積換算のメディアン径(D50)としては、実施例で記載する方法で測定した場合、例えば10μm以上であり、好ましくは15μm以上であり、より好ましくは20μm以上であり、例えば250μm以下であり、好ましくは200μm以下であり、より好ましくは150μm以下である。ここでメディアン径(D50)はカーボンナノチューブの粒子にレーザー光を照射し、その散乱光からカーボンナノチューブの直径を球形に換算して求めることができる。メディアン径(D50)が大きいほどカーボンナノチューブの凝集塊が多く存在し、分散性が悪いことを意味する。メディアン径(D50)が250μmより大きい場合、電極中でカーボンナノチューブの凝集塊が存在する可能性が高くなり、電極全体における導電性が不均一となる。一方、メディアン径(D50)が10μmよりも小さい場合、繊維長が短くなっていることから導電パスが不十分であり、導電性が低下してしまう。メディアン径(D50)が10~250μmの範囲内である場合、カーボンナノチューブは導電性を維持したまま電極内で均一に分散することが可能になる。 Further, the volume-converted median diameter (D50) of the carbon nanotube (B1) is, for example, 10 μm or more, preferably 15 μm or more, and more preferably 20 μm or more, when measured by the method described in Examples. , for example, 250 μm or less, preferably 200 μm or less, and more preferably 150 μm or less. Here, the median diameter (D50) can be determined by irradiating carbon nanotube particles with a laser beam and converting the diameter of the carbon nanotube into a sphere from the scattered light. The larger the median diameter (D50), the more aggregates of carbon nanotubes are present, which means that the dispersibility is poor. If the median diameter (D50) is larger than 250 μm, there is a high possibility that aggregates of carbon nanotubes will exist in the electrode, resulting in non-uniform conductivity throughout the electrode. On the other hand, when the median diameter (D50) is smaller than 10 μm, the conductive path is insufficient because the fiber length is short, and the conductivity decreases. When the median diameter (D50) is within the range of 10 to 250 μm, carbon nanotubes can be uniformly dispersed within the electrode while maintaining conductivity.
 また、上記カーボンナノチューブ(B1)のラマンスペクトルにおいて、1560cm-1~1600cm-1の範囲内での最大ピーク強度をG、1310cm-1~1350cm-1の範囲内での最大ピーク強度をDとした際のG/D比が、例えば0.1以上であり、好ましくは0.4以上であり、より好ましくは0.6以上であり、例えば5.0以下であり、好ましくは3.0以下であり、より好ましくは1.0以下である。
ここで、G/D比が0.1~5.0の範囲内であると、炭素表面の欠陥や結晶界面が少なく導電性が高くなりやすいため好適である。
In addition, in the Raman spectrum of the carbon nanotube (B1), the maximum peak intensity within the range of 1560 cm -1 to 1600 cm -1 is designated as G, and the maximum peak intensity within the range of 1310 cm -1 to 1350 cm -1 is designated as D. The G/D ratio is, for example, 0.1 or more, preferably 0.4 or more, more preferably 0.6 or more, for example 5.0 or less, preferably 3.0 or less. Yes, and more preferably 1.0 or less.
Here, it is preferable that the G/D ratio is within the range of 0.1 to 5.0 because there are fewer defects and crystal interfaces on the carbon surface and the conductivity tends to be high.
 (その他の導電性顔料(B2))
 カーボンナノチューブ(B1)以外のその他の導電性顔料(B2)としては、特に限定されず、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、グラフェン、黒鉛からなる群より選ばれる少なくとも一種の導電性カーボンが挙げられる。好ましくは、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラックからなる群より選ばれる1種以上であり、より好ましくは、アセチレンブラック、ケッチェンブラックからなる群より選ばれる1種以上であり、さらに好ましくはアセチレンブラックの1種以上である。
(Other conductive pigments (B2))
Other conductive pigments (B2) other than carbon nanotubes (B1) are not particularly limited, and include, for example, at least one kind selected from the group consisting of acetylene black, Ketjen black, furnace black, thermal black, graphene, and graphite. Examples include conductive carbon. Preferably, it is one or more selected from the group consisting of acetylene black, Ketjen black, furnace black, and thermal black, more preferably one or more selected from the group consisting of acetylene black, Ketjen black, and Preferably it is one or more types of acetylene black.
 その他の導電性顔料(B2)の平均一次粒子径としては、10~80nmであることが好ましく、20~70nmであることがより好ましい。ここで、平均一次粒子径は、導電性カーボン(B2)を電子顕微鏡で観察し、100個の粒子について、それぞれ投影面積を求めてその面積に等しい円を仮定したときの直径を求め、100個の粒子の直径を単純平均して求めた一次粒子の平均径をいう。なお、顔料が凝集状態になっていた場合は、凝集粒子を構成している一次粒子で計算をする。 The average primary particle diameter of the other conductive pigment (B2) is preferably 10 to 80 nm, more preferably 20 to 70 nm. Here, the average primary particle diameter is determined by observing the conductive carbon (B2) with an electron microscope, determining the projected area of each of 100 particles, and determining the diameter assuming a circle equal to the area. The average diameter of primary particles is determined by simply averaging the diameters of the particles. Note that if the pigment is in an aggregated state, calculations are performed using the primary particles that make up the aggregated particles.
 導電性カーボン(B2)のBET比表面積は、特に限定されない。粘度及び導電性の関係から、例えば1m/g以上、好ましくは10m/g以上であり、より好ましくは20m/g以上であり、例えば500m/g以下、好ましくは250m/g以下、より好ましくは200m/g以下である。 The BET specific surface area of the conductive carbon (B2) is not particularly limited. In terms of viscosity and conductivity, it is, for example, 1 m 2 /g or more, preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and for example 500 m 2 /g or less, preferably 250 m 2 /g or less. , more preferably 200 m 2 /g or less.
 導電性カーボン(B2)のジブチルフタレート(DBP)吸油量は、特に限定されない。顔料分散性及び導電性の関係から、例えば60ml/100g以上、好ましくは150ml/100g以上であり、例えば1,000ml/100g以下、好ましくは800ml/100g以下である。 The dibutyl phthalate (DBP) oil absorption amount of the conductive carbon (B2) is not particularly limited. In terms of pigment dispersibility and conductivity, the amount is, for example, 60 ml/100 g or more, preferably 150 ml/100 g or more, and is, for example, 1,000 ml/100 g or less, preferably 800 ml/100 g or less.
 (導電性顔料(B)の含有量)
 導電性顔料(B)の固形分含有量は、導電性と顔料分散性の観点から、導電性顔料ペーストの固形分総量を基準として、例えば10.0質量%以上、好ましくは30.0質量%以上、より好ましくは40.0質量%以上であり、例えば99.0質量%以下、好ましくは80.0質量%以下、より好ましくは60.0質量%以下である。
(Content of conductive pigment (B))
From the viewpoint of conductivity and pigment dispersibility, the solid content of the conductive pigment (B) is, for example, 10.0% by mass or more, preferably 30.0% by mass, based on the total solid content of the conductive pigment paste. As mentioned above, it is more preferably 40.0% by mass or more, for example, 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less.
 溶媒(C)
 上記溶媒(C)は、水や各種有機溶媒などを好適に用いることができる。
具体的には、例えば、水;n-ブタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロブタン等の炭化水素系溶剤;トルエン、キシレン等の芳香族系溶剤;n-ブチルエーテル、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール等のエーテル系溶剤;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤;メタノール、エタノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール等の等のアルコール系溶剤;エクアミド(商品名、出光興産社製、アミド系溶剤)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、N-メチルアセトアミド、N-メチルプロピオアミド、N-メチル-2-ピロリドン等のアミド系溶剤等を挙げることができる。
なかでも、アミド系溶剤が好ましく、N-メチル-2-ピロリドンがより好ましい。これらの溶媒は、1種を単独で又は2種以上を併用して用いることができる。
Solvent (C)
As the solvent (C), water, various organic solvents, etc. can be suitably used.
Specifically, for example, water; hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, and cyclobutane; aromatic solvents such as toluene and xylene; n- Ether solvents such as butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate, ethylene glycol monomethyl ether acetate, butyl carbitol acetate, Ester solvents; Ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone; Alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, sec-butanol, and isobutanol; Equamide (trade name, Idemitsu Kosan Co., Ltd.) amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methylpropioamide, N-methyl-2-pyrrolidone, etc. etc. can be mentioned.
Among these, amide solvents are preferred, and N-methyl-2-pyrrolidone is more preferred. These solvents can be used alone or in combination of two or more.
 また、導電性顔料ペーストの顔料分散性や樹脂成分を変質又は加水分解させない観点から、実質的に水を含まないことが好ましい。ここで「実質的に水を含まない」とは、導電性顔料ペーストの全量を基準として、水の含有量が、通常1質量%以下であり、好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下であることをいう。
本発明において、導電性顔料ペーストの水の分含有量は、カールフィッシャー電量滴定法にて測定できる。具体的には、カールフィッシャー水分率計(京都電子工業社製、商品名:MKC-610)を用い、該装置に備えられた水分気化装置(京都電子社製、商品名ADP-611)の設定温度は130℃として測定できる。
Further, from the viewpoint of pigment dispersibility of the conductive pigment paste and prevention of deterioration or hydrolysis of the resin component, it is preferable that the conductive pigment paste does not substantially contain water. Here, "substantially free of water" means that the water content is usually 1% by mass or less, preferably 0.5% by mass or less, and especially It is preferably 0.1% by mass or less.
In the present invention, the water content of the conductive pigment paste can be measured by Karl Fischer coulometric titration. Specifically, a Karl Fischer moisture content meter (manufactured by Kyoto Denshi Kogyo Co., Ltd., trade name: MKC-610) was used, and the settings of a moisture vaporizer (manufactured by Kyoto Denshi Kogyo Co., Ltd., trade name ADP-611) included in the device were performed. The temperature can be measured as 130°C.
 N-メチル-2-ピロリドン等のアミド系化合物(溶剤)を用いる場合、不純物としてアミン成分を含むことがあり、本発明の導電性顔料ペーストにおいて、この不純物であるアミン成分によってロット毎に粘度または増粘傾向が異なることがあった。
また、本発明の導電性顔料ペーストを後述する方法で電極層にする場合、溶媒等は揮発するため残らないが、廃棄物削減、環境対応、及び/又は原料コスト削減のために揮発した溶媒を回収及び再利用することが好ましい。すなわち、溶媒(C)として再生品を使用する事が好ましい。この再生溶媒(再生品)には、本発明の導電性顔料ペーストにもともと含有しているアミン化合物(E1)も含まれることになり、同じくロット毎に導電性顔料ペーストの粘度または増粘傾向が異なることになる。また、アミン化合物は強い臭気を有する場合が多い。
従って、再生品である溶媒(C)中のアミン化合物含有量を一定量以下に管理・調整することが好ましく、アミン化合物含有量としては、通常1質量%以下であり、好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下であることが好適である。
なお、上記「溶媒(C)として再生品を使用」とは、本発明の導電性顔料ペーストに用いられる溶媒(C)中に再生品が10%以上(好ましくは20%以上)含まれるということである。
When using an amide compound (solvent) such as N-methyl-2-pyrrolidone, it may contain an amine component as an impurity, and in the conductive pigment paste of the present invention, the viscosity or Thickening trends were sometimes different.
In addition, when the conductive pigment paste of the present invention is made into an electrode layer by the method described below, the solvent etc. will volatilize and will not remain. It is preferable to collect and reuse. That is, it is preferable to use a recycled product as the solvent (C). This recycled solvent (recycled product) also contains the amine compound (E1) originally contained in the conductive pigment paste of the present invention, and the viscosity or thickening tendency of the conductive pigment paste varies from lot to lot. It will be different. Furthermore, amine compounds often have a strong odor.
Therefore, it is preferable to control and adjust the amine compound content in the recycled solvent (C) to a certain amount or less, and the amine compound content is usually 1% by mass or less, preferably 0.5% by mass. % or less, particularly preferably 0.1% by mass or less.
In addition, the above-mentioned "using a recycled product as the solvent (C)" means that the solvent (C) used in the conductive pigment paste of the present invention contains 10% or more (preferably 20% or more) of a recycled product. It is.
 導電性顔料ペーストにおける溶媒(C)の含有量は、導電性顔料ペーストの総量を基準として、例えば40質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上であり、例えば99質量%以下、好ましくは98質量%以下、より好ましくは97質量%以下である。 The content of the solvent (C) in the conductive pigment paste is, for example, 40% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more, for example 99% by mass, based on the total amount of the conductive pigment paste. % or less, preferably 98% by mass or less, more preferably 97% by mass or less.
 また、樹脂の溶解性の観点から、顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であることが好ましい。溶媒(C)自体の溶解性パラメーターδCとしては、10.0以上が好ましく、10.5以上がより好ましく、12.0以下が好ましく、11.5以下がより好ましい。 In addition, from the viewpoint of resin solubility, it is preferable that the solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) have a relationship of |δA−δC|<2.0. . The solubility parameter δC of the solvent (C) itself is preferably 10.0 or more, more preferably 10.5 or more, preferably 12.0 or less, and more preferably 11.5 or less.
 樹脂の溶解性パラメーターは、当業者に公知の濁度測定法をもとに数値定量化されるものであり、具体的には、K.W.SUH、J.M.CORBETTの式(Journal of Applied Polymer Science,12,2359,1968)に準じて求めることができる。 The solubility parameter of the resin is numerically quantified based on the turbidity measurement method known to those skilled in the art. 2359, 1968).
 溶媒の溶解性パラメーターは、J.Brandrup及びE.H.Immergut編「Polymer Handbook VII」 Solubility Parameter Values,pp519-559(John Wiley& Sons社、第3版1989年発行)に記載される方法に従って求めることができる。
2種以上の溶媒(C)を組合せて混合溶媒として用いる場合、その混合溶媒の溶解性パラメーターは、実験的に求めることができ、また、簡便な方法として、個々の液状溶媒のモル分率と溶解性パラメーターとの積の総和により求めることもできる。
なお、本発明において、溶解性パラメーターの単位は「(cal/cm1/2」である。
The solubility parameter of a solvent can be determined according to the method described in "Polymer Handbook VII" edited by J. Brandrup and EHImmergut, Solubility Parameter Values, pp519-559 (John Wiley & Sons, 3rd edition published in 1989).
When two or more solvents (C) are used in combination as a mixed solvent, the solubility parameter of the mixed solvent can be determined experimentally. It can also be determined by the sum of products with solubility parameters.
In the present invention, the unit of solubility parameter is "(cal/cm 3 ) 1/2 ".
 フッ素樹脂(D)
 上記フッ素樹脂(D)は、電極層の膜形成を目的とする樹脂である。
Fluororesin (D)
The fluororesin (D) is a resin intended for forming an electrode layer.
 フッ素樹脂(D)としては、特にポリフッ化ビニリデン(PVDF)が好ましく、1種を単独で又は2種以上を併用して用いることができる。 As the fluororesin (D), polyvinylidene fluoride (PVDF) is particularly preferred, and one type can be used alone or two or more types can be used in combination.
 フッ素樹脂(D)は、顔料分散時に含有していてもよく、あるいは顔料分散後に添加して含有してもよい。フッ素樹脂(D)の重量平均分子量としては、基材との密着性、膜物性の補強、及び耐溶剤性の観点から、10万以上であることが好ましく、50万がより好ましく、65万以上がさらに好ましく、300万以下であることが好ましく、200万以下であることがより好ましい。 The fluororesin (D) may be contained during pigment dispersion, or may be added and contained after pigment dispersion. The weight average molecular weight of the fluororesin (D) is preferably 100,000 or more, more preferably 500,000, and more preferably 650,000 or more from the viewpoints of adhesion to the base material, reinforcement of film physical properties, and solvent resistance. is more preferable, preferably 3 million or less, and more preferably 2 million or less.
 フッ素樹脂(D)の含有量は、導電性顔料ペーストの固形分を基準として、例えば10.0質量%以上、好ましくは30.0質量%以上、より好ましくは40.0質量%以上であり、例えば99.0質量%以下、好ましくは80.0質量%以下、より好ましくは60.0質量%以下である。 The content of the fluororesin (D) is, for example, 10.0% by mass or more, preferably 30.0% by mass or more, more preferably 40.0% by mass or more, based on the solid content of the conductive pigment paste, For example, it is 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less.
 塩基性低分子量成分(E)
 塩基性低分子量成分(E)としては、無機塩基化合物及び有機塩基化合物のいずれであってもよい。例えば、水酸化リチウム、水酸化バリウム、水酸化ナトリウム、水酸化カリウム等の水酸化物;水素化ナトリウム、水素化カリウム等の金属水素化物;炭酸リチウム、炭酸水素リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸セシウム等の炭酸塩;りん酸三ナトリウム、りん酸三カリウム等のリン酸塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム等の酢酸塩;ナトリウムメトキサイド、ナトリウムエトキサイド、カリウムターシャリーブトキサイド等のアルコキサイド化合物;アンモニア、1級アミン、2級アミン、3級アミン等のアミン化合物;等が挙げられる。
これらの塩基性低分子量成分(E)は、1種を単独で又は2種以上を併用して用いることができる。
塩基性低分子量成分(E)の分子量は、例えば1000未満であり、好ましくは500以下、より好ましくは350以下、さらに好ましくは250以下、特に好ましくは120以下である。
Basic low molecular weight component (E)
The basic low molecular weight component (E) may be either an inorganic base compound or an organic base compound. For example, hydroxides such as lithium hydroxide, barium hydroxide, sodium hydroxide, potassium hydroxide; metal hydrides such as sodium hydride, potassium hydride; lithium carbonate, lithium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, Carbonates such as potassium carbonate, potassium hydrogen carbonate, and cesium carbonate; Phosphates such as trisodium phosphate and tripotassium phosphate; Acetate salts such as lithium acetate, sodium acetate, and potassium acetate; Sodium methoxide, sodium ethoxide, Examples include alkoxide compounds such as potassium tertiary butoxide; amine compounds such as ammonia, primary amines, secondary amines, and tertiary amines; and the like.
These basic low molecular weight components (E) can be used alone or in combination of two or more.
The molecular weight of the basic low molecular weight component (E) is, for example, less than 1000, preferably 500 or less, more preferably 350 or less, still more preferably 250 or less, particularly preferably 120 or less.
上記塩基性低分子量成分(E)は、導電性顔料のぬれ性及び/又は貯蔵安定性を上げる観点から、アミン化合物(E1)を含有することが好ましい。
上記塩基性低分子量成分(E)中のアミン化合物(E1)の含有量としては、塩基性低分子量成分(E)100質量%を基準として、50質量%以上が好ましく、75質量%以上がより好ましく、95質量%以上がさらに好ましい。
上記アミン化合物(E1)としては、例えば、アンモニア、1級アミン、2級アミン、3級アミン等が挙げられる。
The basic low molecular weight component (E) preferably contains an amine compound (E1) from the viewpoint of improving the wettability and/or storage stability of the conductive pigment.
The content of the amine compound (E1) in the basic low molecular weight component (E) is preferably 50% by mass or more, more preferably 75% by mass or more, based on 100% by mass of the basic low molecular weight component (E). It is preferably 95% by mass or more, and more preferably 95% by mass or more.
Examples of the amine compound (E1) include ammonia, primary amines, secondary amines, tertiary amines, and the like.
 1級アミンとしては、例えば、エチルアミン、n-プロピルアミン、sec-プロピルアミン、n-ブチルアミン、sec-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ラウリルアミン、ミスチリルアミン、1,2-ジメチルヘキシルアミン、3-ペンチルアミン、2-エチルヘキシルアミン、アリルアミン、アミノエタノール、1-アミノプロパノール、2-アミノプロパノール、アミノブタノール、アミノペンタノール、アミノヘキサノール、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、3-(2-エチルヘキシロキシ)プロピルアミン、アミノシクロペンタン、アミノシクロヘキサン、アミノノルボルネン、アミノメチルシクロヘキサン、アミノベンゼン、ベンジルアミン、フェネチルアミン、α-フェニルエチルアミン、ナフチルアミン、フルフリルアミン等の1級モノアミン;エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ビス-(3-アミノプロピル)エーテル、1,2-ビス-(3-アミノプロポキシ)エタン、1,3-ビス-(3-アミノプロポキシ)-2,2’-ジメチルプロパン、アミノエチルエタノールアミン、1,2-ビスアミノシクロヘキサン、1,3-ビスアミノシクロヘキサン、1,4-ビスアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、1,3-ビスアミノエチルシクロヘキサン、1,4-ビスアミノエチルシクロヘキサン、1,3-ビスアミノプロピルシクロヘキサン、1,4-ビスアミノプロピルシクロヘキサン、水添4,4’-ジアミノジフェニルメタン、2-アミノピペリジン、4-アミノピペリジン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、2-アミノエチルピペリジン、4-アミノエチルピペリジン、N-アミノエチルピペリジン、N-アミノプロピルピペリジン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン、イソホロンジアミン、メンタンジアミン、1,4-ビスアミノプロピルピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、m-アミノベンジルアミン、4-クロロ-o-フェニレンジアミン、テトラクロロ-p-キシリレンジアミン、4-メトキシ-6-メチル-m-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ベンジジン、4,4’-ビス(o-トルイジン)、ジアニシジン、4,4’-ジアミノジフェニルメタン、2,2-(4,4’-ジアミノジフェニル)プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-チオジアニリン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジトリルスルホン、メチレンビス(o-クロロアニリン)、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ジエチレントリアミン、イミノビスプロピルアミン、メチルイミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、1,4-ビス(アミノエチルピペラジン)、1,4-ビス(アミノプロピルピペラジン)、2,6-ジアミノピリジン、ビス(3,4-ジアミノフェニル)スルホン等の1級ポリアミン等が挙げられる。 Primary amines include, for example, ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, laurylamine, myristyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethylhexyloxy)propylamine, aminocyclopentane, aminocyclohexane, aminonorbornene, aminomethylcyclohexane, aminobenzene, benzylamine, phenethylamine, Primary monoamines such as α-phenylethylamine, naphthylamine, and furfurylamine; ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, dimethylaminopropylamine, diethylaminopropylamine, bis-(3-aminopropyl)ether, 1,2-bis-(3-aminopropoxy)ethane, 1,3-bis-(3-aminopropoxy)-2,2'-dimethylpropane, aminoethylethanolamine, 1,2-bisaminocyclohexane, 1,3-bisaminocyclohexane, 1,4-bisaminocyclohexane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 1,3-bisaminoethylcyclohexane, 1,4-bisaminoethylcyclohexane, 1,3-bis Aminopropylcyclohexane, 1,4-bisaminopropylcyclohexane, hydrogenated 4,4'-diaminodiphenylmethane, 2-aminopiperidine, 4-aminopiperidine, 2-aminomethylpiperidine, 4-aminomethylpiperidine, 2-aminoethylpiperidine, 4-aminoethylpiperidine, N-aminoethylpiperidine, N-aminopropylpiperidine, N-aminoethylmorpholine, N-aminopropylmorpholine, isophoronediamine, menthanediamine, 1,4-bisaminopropylpiperazine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, m-aminobenzylamine, 4-chloro-o-phenylenediamine, tetrachloro-p-xylylenediamine, 4-methoxy-6-methyl-m-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, benzylamine, 4,4'-bis(o-toluidine), dianisidine, 4,4'-diaminodiphenylmethane, 2,2-(4,4'-diaminodiphenyl)propane, 4,4'-diaminodiphenyl ether, 4,4'-thiodianiline, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminoditolyl sulfone, methylenebis(o-chloroaniline), 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro[5,5]undecane, diethylene Examples of primary polyamines include triamine, iminobispropylamine, methyliminobispropylamine, bis(hexamethylene)triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-aminoethylpiperazine, N-aminopropylpiperazine, 1,4-bis(aminoethylpiperazine), 1,4-bis(aminopropylpiperazine), 2,6-diaminopyridine, and bis(3,4-diaminophenyl)sulfone.
 2級アミンとしては、例えば、ジエチルアミン、ジプロピルアミン、ジ-n-ブチルアミン、ジ-sec-ブチルアミン、ジイソブチルアミン、ジ-n-ペンチルアミン、ジ-3-ペンチルアミン、ジヘキシルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、メチルヘキシルアミン、ジアリルアミン、ピロリジン、ピペリジン、2,4-ルペチジン、2,6-ルペチジン、3,5-ルペチジン、ジフェニルアミン、N-メチルアニリン、N-エチルアニリン、ジベンジルアミン、メチルベンジルアミン、ジナフチルアミン、ピロール、インドリン、インドール、モルホリン等の2級モノアミン;N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,2-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,2-ジアミノブタン、N,N’-ジメチル-1,3-ジアミノブタン、N,N’-ジメチル-1,4-ジアミノブタン、N,N’-ジメチル-1,5-ジアミノペンタン、N,N’-ジメチル-1,6-ジアミノヘキサン、N,N’-ジメチル-1,7-ジアミノヘプタン、N,N’-ジエチルエチレンジアミン、N,N’-ジエチル-1,2-ジアミノプロパン、N,N’-ジエチル-1,3-ジアミノプロパン、N,N’-ジエチル-1,2-ジアミノブタン、N,N’-ジエチル-1,3-ジアミノブタン、N,N’-ジエチル-1,4-ジアミノブタン、N,N’-ジエチル-1,6-ジアミノヘキサン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、2,6-ジメチルピペラジン、ホモピペラジン、1,1-ジ-(4-ピペリジル)メタン、1,2-ジ-(4-ピペリジル)エタン、1,3-ジ-(4-ピペリジル)プロパン、1,4-ジ-(4-ピペリジル)ブタン等の2級ポリアミン等が挙げられる。 Examples of secondary amines include diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di- (2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, diphenylamine, N-methylaniline, N-ethylaniline, dibenzylamine , methylbenzylamine, dinaphthylamine, pyrrole, indoline, indole, morpholine and other secondary monoamines; N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl- 1,3-diaminopropane, N,N'-dimethyl-1,2-diaminobutane, N,N'-dimethyl-1,3-diaminobutane, N,N'-dimethyl-1,4-diaminobutane, N , N'-dimethyl-1,5-diaminopentane, N,N'-dimethyl-1,6-diaminohexane, N,N'-dimethyl-1,7-diaminoheptane, N,N'-diethylethylenediamine, N , N'-diethyl-1,2-diaminopropane, N,N'-diethyl-1,3-diaminopropane, N,N'-diethyl-1,2-diaminobutane, N,N'-diethyl-1, 3-diaminobutane, N,N'-diethyl-1,4-diaminobutane, N,N'-diethyl-1,6-diaminohexane, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 2,6 -dimethylpiperazine, homopiperazine, 1,1-di-(4-piperidyl)methane, 1,2-di-(4-piperidyl)ethane, 1,3-di-(4-piperidyl)propane, 1,4- Examples include secondary polyamines such as di-(4-piperidyl)butane.
 3級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-iso-プロピルアミン、トリ-1,2-ジメチルプロピルアミン、トリ-3-メトキシプロピルアミン、トリ-n-ブチルアミン、トリ-iso-ブチルアミン、トリ-sec-ブチルアミン、トリ-ペンチルアミン、トリ-3-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-オクチルアミン、トリ-2-エチルヘキシルアミン、トリ-ドデシルアミン、トリ-ラウリルアミン、ジシクロヘキシルエチルアミン、シクロヘキシルジエチルアミン、トリ-シクロヘキシルアミン、N,N-ジメチルヘキシルアミン、N-メチルジヘキシルアミン、N,N-ジメチルシクロヘキシルアミン、N-メチルジシクロヘキシルアミン、N、N-ジエチルエタノールアミン、N、N-ジメチルエタノールアミン、N-エチルジエタノールアミン、トリエタノールアミン、トリベンジルアミン、N,N-ジメチルベンジルアミン、ジエチルベンジルアミン、トリフェニルアミン、N,N-ジメチルアミノ-p-クレゾール、N,N-ジメチルアミノメチルフェノール、2-(N,N-ジメチルアミノメチル)フェノール、N,N-ジメチルアニリン、N,N-ジエチルアニリン、ピリジン、キノリン、N-メチルモルホリン、N-メチルピペリジン、2-(2-ジメチルアミノエトキシ)-4-メチル-1,3,2-ジオキサボルナン、2-、3-、4-ピコリン等の3級モノアミン;テトラメチルエチレンジアミン、ピラジン、N,N’-ジメチルピペラジン、N,N’-ビス((2-ヒドロキシ)プロピル)ピペラジン、ヘキサメチレンテトラミン、N,N,N’,N’-テトラメチル-1,3-ブタンアミン、2-ジメチルアミノ-2-ヒドロキシプロパン、ジエチルアミノエタノール、N,N,N-トリス(3-ジメチルアミノプロピル)アミン、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、ヘプタメチルイソビグアニド等の3級ポリアミン等が挙げられる。
これらは1種を単独で、又は2種以上を併用して用いることができる。
なかでも、酸基や水酸基などの他の官能基を含有しないことが好ましく、1級のアミン化合物が好ましく、1価のアミン化合物(モノアミン)が好ましい。
上記アミン化合物(E1)としては、脂肪族アミン、脂環族アミン、芳香族アミン等が挙げられ、いずれも好適に使用できるが、芳香族アミン、水酸基を有する1級の脂肪族アミン化合物、水酸基を有する2級の脂肪族アミン化合物が好ましく、1級の芳香族アミン化合物がより好ましい。
また、アミン化合物(E1)中の窒素原子が、アミノ基を構成する窒素原子のみであることが好ましい。
また、アミン化合物(E1)は、窒素原子が3個以下であることが好ましく、2個以下であることがより好ましく、1個であることがさらに好ましい。
Examples of the tertiary amine include trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, Tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, Tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethylethanol Amine, N,N-dimethylethanolamine, N-ethyldiethanolamine, triethanolamine, tribenzylamine, N,N-dimethylbenzylamine, diethylbenzylamine, triphenylamine, N,N-dimethylamino-p-cresol, N,N-dimethylaminomethylphenol, 2-(N,N-dimethylaminomethyl)phenol, N,N-dimethylaniline, N,N-diethylaniline, pyridine, quinoline, N-methylmorpholine, N-methylpiperidine, Tertiary monoamines such as 2-(2-dimethylaminoethoxy)-4-methyl-1,3,2-dioxabornane, 2-, 3-, 4-picoline; tetramethylethylenediamine, pyrazine, N,N'-dimethylpiperazine , N,N'-bis((2-hydroxy)propyl)piperazine, hexamethylenetetramine, N,N,N',N'-tetramethyl-1,3-butanamine, 2-dimethylamino-2-hydroxypropane, Examples include tertiary polyamines such as diethylaminoethanol, N,N,N-tris(3-dimethylaminopropyl)amine, 2,4,6-tris(N,N-dimethylaminomethyl)phenol, and heptamethylisobiguanide. .
These can be used alone or in combination of two or more.
Among these, it is preferable that it does not contain other functional groups such as acid groups and hydroxyl groups, primary amine compounds are preferable, and monovalent amine compounds (monoamines) are preferable.
Examples of the amine compound (E1) include aliphatic amines, alicyclic amines, aromatic amines, etc., and any of them can be preferably used, but aromatic amines, primary aliphatic amine compounds having a hydroxyl group, A secondary aliphatic amine compound having the following is preferable, and a primary aromatic amine compound is more preferable.
Further, it is preferable that the nitrogen atoms in the amine compound (E1) are only nitrogen atoms constituting an amino group.
Further, the amine compound (E1) preferably has 3 or less nitrogen atoms, more preferably 2 or less, and even more preferably 1 nitrogen atom.
 また、アミン化合物(E1)としては、分子内にトリアジン環を有するアミン化合物でないことが好ましい。
 脂肪族アミン化合物と分子内にトリアジン環を有するアミン化合物を併用する場合、トリアジン環を有するアミン化合物1モル当量に対して、脂肪族アミン化合物が1モル当量超となる量で混合して用いることが好ましい。この際、脂肪族アミン化合物が1級の1価の脂肪族アミン化合物の場合には、その分子量が116未満であることが好ましい。
Further, the amine compound (E1) is preferably not an amine compound having a triazine ring in the molecule.
When an aliphatic amine compound and an amine compound having a triazine ring in the molecule are used together, the aliphatic amine compound should be mixed in an amount exceeding 1 molar equivalent per 1 molar equivalent of the amine compound having a triazine ring. is preferred. In this case, when the aliphatic amine compound is a primary monovalent aliphatic amine compound, it is preferable that the molecular weight thereof is less than 116.
 乾燥後の電極層にアミン化合物が残らないことが好ましいため、アミン化合物(E1)の重量平均分子量が1000未満であることが好ましく、500以下であることがより好ましく、350以下であることがさらに好ましく、250以下であることが特に好ましく、120以下であることがさらに特に好ましい。なお、水酸基を有する1級の脂肪族アミン化合物については、重量平均分子量が89以上の水酸基を有する1級の脂肪族アミン化合物であることが好ましい。
また同じ理由で、アミン化合物の沸点としては、400℃以下が好ましく、300℃以下がより好ましく、200℃以下がさらに好ましい。
また、アミン化合物(E1)のアミン価としては、例えば5mgKOH/g以上、好ましくは105mgKOH/g以上、より好ましくは250mgKOH/g以上、さらに好ましくは400mgKOH/g以上であり、例えば1000mgKOH/g以下の範囲内であることが好適である。
Since it is preferable that no amine compound remains in the electrode layer after drying, the weight average molecular weight of the amine compound (E1) is preferably less than 1000, more preferably 500 or less, and even more preferably 350 or less. It is preferably 250 or less, particularly preferably 120 or less, and even more preferably 120 or less. Note that the primary aliphatic amine compound having a hydroxyl group is preferably a primary aliphatic amine compound having a hydroxyl group and having a weight average molecular weight of 89 or more.
For the same reason, the boiling point of the amine compound is preferably 400°C or lower, more preferably 300°C or lower, and even more preferably 200°C or lower.
Further, the amine value of the amine compound (E1) is, for example, 5 mgKOH/g or more, preferably 105 mgKOH/g or more, more preferably 250 mgKOH/g or more, still more preferably 400 mgKOH/g or more, and, for example, 1000 mgKOH/g or less. Preferably, it is within this range.
 上記塩基性低分子量成分(E)の含有量としては、導電性顔料ペーストの固形分100質量%を基準として、例えば1質量%以上、好ましくは10質量%以上、より好ましくは40質量%以上であり、例えば300質量%以下、好ましくは200質量%以下、より好ましくは150質量%以下が好適である。
また、導電性顔料(B)の固形分100質量%を基準として、下限としては、例えば1質量%以上、好ましくは12質量%以上、より好ましくは40質量%以上、更に好ましくは80質量%以上である。上限としては、例えば1000質量%以下、好ましくは500質量%以下、より好ましくは350質量%以下、更に好ましくは300質量%以下である。塩基性低分子量成分(E)〔特にアミン化合物(E1)〕は、臭気が強いものが多いため、配合時や乾燥過程で作業環境が悪化する場合がある。また、一般的に高価なためコスト増になる場合がある。従って、必要最低限の含有量にする必要がある。
また、溶媒(C)と塩基性低分子量成分(E)の含有比率としては、溶媒(C)と塩基性低分子量成分(E)の質量比で、通常100/0.1~100/10の範囲内であり、好ましくは100/0.5~100/8の範囲内であり、より好ましくは100/1~100/6の範囲内であり、より好ましくは100/1.5~100/4の範囲内であることが好適である。
The content of the basic low molecular weight component (E) is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably 40% by mass or more, based on 100% by mass of the solid content of the conductive pigment paste. For example, it is preferably 300% by mass or less, preferably 200% by mass or less, more preferably 150% by mass or less.
Furthermore, the lower limit is, for example, 1% by mass or more, preferably 12% by mass or more, more preferably 40% by mass or more, still more preferably 80% by mass or more, based on 100% by mass of the solid content of the conductive pigment (B). It is. The upper limit is, for example, 1000% by mass or less, preferably 500% by mass or less, more preferably 350% by mass or less, still more preferably 300% by mass or less. Since the basic low molecular weight component (E) [especially the amine compound (E1)] often has a strong odor, the working environment may deteriorate during the blending or drying process. Furthermore, since they are generally expensive, the cost may increase. Therefore, it is necessary to keep the content to the minimum necessary.
In addition, the content ratio of the solvent (C) and the basic low molecular weight component (E) is usually 100/0.1 to 100/10 in mass ratio of the solvent (C) and the basic low molecular weight component (E). within the range, preferably within the range of 100/0.5 to 100/8, more preferably within the range of 100/1 to 100/6, and more preferably 100/1.5 to 100/4. It is preferable that it be within the range of .
 その他の成分
 本発明の導電性顔料ペーストとしては、上記の成分(A)、(B)、(C)、(D)、及び(E)の他に、必要に応じて、その他の成分を含有することができる。
Other components In addition to the above components (A), (B), (C), (D), and (E), the conductive pigment paste of the present invention may contain other components as necessary. can do.
 その他の成分としては、例えば、顔料分散樹脂(A)及びフッ素樹脂(D)以外の樹脂、中和剤、消泡剤、防腐剤、防錆剤、可塑剤、導電性顔料(B)以外の顔料等を挙げることができる。 Other components include, for example, resins other than pigment dispersion resin (A) and fluororesin (D), neutralizers, antifoaming agents, preservatives, rust preventives, plasticizers, and conductive pigments other than (B). Examples include pigments.
 導電性顔料(B)以外の顔料としては、例えば、チタン白、亜鉛華等の白色顔料;シアニンブルー、インダスレンブルー等の青色顔料;シアニングリーン、緑青等の緑色顔料;アゾ系やキナクリドン系等の有機赤色顔料、ベンガラ等の赤色顔料;ベンツイミダゾロン系、イソインドリノン系、イソインドリン系及びキノフタロン系等の有機黄色顔料、チタンイエロー、黄鉛等の黄色顔料等が挙げられる。これらの顔料は、1種を単独で又は2種以上を併用して用いることができる。これらの導電性顔料(B)以外の顔料は、導電性を大きく損なわない範囲内で色調整や膜の物性補強等の目的で使用することができ、顔料分散樹脂(A)と導電性顔料(B)と共に同時に分散してもよく、また、顔料分散樹脂(A)と導電性顔料(B)を分散してペーストを作成した後に顔料又は顔料ペーストとして混ぜても良い。 Pigments other than the conductive pigment (B) include, for example, white pigments such as titanium white and zinc white; blue pigments such as cyanine blue and industhrene blue; green pigments such as cyanine green and verdigris; azo-based and quinacridone-based pigments, etc. Red pigments such as organic red pigments and red pigments; organic yellow pigments such as benzimidazolone series, isoindolinone series, isoindoline series, and quinophthalone series; yellow pigments such as titanium yellow and yellow lead; These pigments can be used alone or in combination of two or more. Pigments other than these conductive pigments (B) can be used for purposes such as color adjustment and reinforcing the physical properties of the film within a range that does not significantly impair conductivity. It may be dispersed simultaneously with B), or it may be mixed as a pigment or a pigment paste after a paste is prepared by dispersing the pigment dispersion resin (A) and the conductive pigment (B).
 上記導電性顔料(B)以外の顔料の含有量としては、導電性顔料ペースト中の全顔料を基準として、10質量以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましく、実質的に含有しないことが特に好ましい。
また、本発明の導電性顔料ペーストとしては、顔料誘導体を含まないことが好ましい。特に分子内にトリアジン環を含有するトリアジン系の顔料誘導体を含有していないことが好ましい。
The content of pigments other than the conductive pigment (B) is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 1% by mass or less, based on the total pigments in the conductive pigment paste. It is particularly preferable that it does not substantially contain it.
Moreover, it is preferable that the conductive pigment paste of the present invention does not contain a pigment derivative. In particular, it is preferable not to contain a triazine-based pigment derivative containing a triazine ring in the molecule.
 上記導電性顔料ペーストの粘度としては、顔料分散性や貯蔵安定性などの観点から、せん断速度2s-1での粘度が、5000mPa・s未満であり、好ましくは2500mPa・s未満であり、1000mPa・s未満であり、10mPa・s以上であり、好ましくは50mPa・s以上であり、より好ましくは100mPa・s以上である。例えば、10mPa・s以上かつ5000mPa・s未満であることが好ましく、50mPa・s以上かつ2500mPa・s未満であることがより好ましく、100mPa・s以上かつ1000mPa・s未満であることが特に好ましい。 From the viewpoint of pigment dispersibility and storage stability, the viscosity of the conductive pigment paste at a shear rate of 2 s -1 is less than 5000 mPa·s, preferably less than 2500 mPa·s, and 1000 mPa·s. s, and 10 mPa·s or more, preferably 50 mPa·s or more, and more preferably 100 mPa·s or more. For example, it is preferably 10 mPa·s or more and less than 5000 mPa·s, more preferably 50 mPa·s or more and less than 2500 mPa·s, and particularly preferably 100 mPa·s or more and less than 1000 mPa·s.
 粘度の測定は、例えば、コーン&プレート型粘度計(HAAKE社製、商品名Mars2、直径35mm、2°傾斜のコーン&プレート)を用いて測定する事ができる。 The viscosity can be measured using, for example, a cone and plate viscometer (manufactured by HAAKE, trade name: Mars2, diameter 35 mm, 2° inclination cone and plate).
 本発明の導電性顔料ペーストは、以上に述べた各成分を、例えば、ペイントシェーカー、サンドミル、ボールミル、ペブルミル、LMZミル、DCPパールミル、遊星ボールミル、ホモジナイザー、二軸混練機、薄膜旋回型高速ミキサー(商品名:クレアミックス、フィルミックス等)等の従来公知の分散機を用いて均一に混合、分散させることにより調製することができる。 The conductive pigment paste of the present invention can be prepared using a paint shaker, a sand mill, a ball mill, a pebble mill, a LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin film rotating high-speed mixer ( It can be prepared by uniformly mixing and dispersing using a conventionally known dispersing machine such as (trade name: CLEAR MIX, FIL MIX, etc.).
 [合材ペースト]
 本発明は、上記導電性顔料ペーストに、さらに電極活物質(F)を配合してなる合材ペーストを提供する。当該合材ペーストは、リチウムイオン電池電極用の正極又は負極用途に使用する事が好適であり、好ましくは正極用途として使用することが好適である。
 また、本発明の合材ペーストの第二の態様としては、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、塩基性低分子量成分(E)及び電極活物質(F)を含有し、顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、シアノ基、ピロリドン基、エーテル基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、導電性顔料(B)が、カーボンナノチューブ(B1)を含有するものであれば、製造方法(各成の混合する順序)は限定されない。
[Mixture paste]
The present invention provides a composite paste formed by further blending an electrode active material (F) with the above conductive pigment paste. The composite paste is suitable for use as a positive electrode or a negative electrode for a lithium ion battery electrode, and preferably as a positive electrode.
In addition, the second aspect of the composite material paste of the present invention includes a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), a basic low molecular weight component (E), and Contains an electrode active material (F), and the pigment dispersion resin (A) consists of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, a cyano group, a pyrrolidone group, and an ether group. The conductive pigment (B) has at least one polar functional group selected from the group consisting of carbon nanotubes ( The manufacturing method (order of mixing the components) is not limited as long as it contains B1).
 電極活物質(F)
 電極活物質(F)としては、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、LiNi1/3Co1/3Mn1/3等のリチウム複合酸化物;リン酸鉄リチウム(LiFePO);ナトリウム複合酸化物;カリウム複合酸化物等が挙げられる。これらの電極活物質(F)は、1種単独で、又は2種以上を混合して用いることができる。上記リン酸鉄リチウムを含有する電極活物質は、安価でありサイクル特性及びエネルギー密度が比較的良好であるため、好適に用いることができる。
電極活物質の粒子径としては、例えば0.5μm以上であり、好ましくは10.5μm以上であり、例えば30μm以下であり、好ましくは20μm以下である。
Electrode active material (F)
Examples of the electrode active material (F) include lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and LiNi 1/3 Co 1/3 Mn 1/3 O. Lithium composite oxides such as No. 2 ; lithium iron phosphate (LiFePO 4 ); sodium composite oxides; potassium composite oxides, and the like. These electrode active materials (F) can be used alone or in combination of two or more. The electrode active material containing lithium iron phosphate is inexpensive and has relatively good cycle characteristics and energy density, so it can be suitably used.
The particle size of the electrode active material is, for example, 0.5 μm or more, preferably 10.5 μm or more, and, for example, 30 μm or less, preferably 20 μm or less.
 本発明の合材ペースト固形分中の電極活物質(F)の固形分含有量は、通常70質量%以上、かつ100質量%未満、好ましくは80質量%以上、かつ100質量%未満であることが、電池容量、電池抵抗等の面から好適である。 The solid content of the electrode active material (F) in the solid content of the composite paste of the present invention is usually 70% by mass or more and less than 100% by mass, preferably 80% by mass or more and less than 100% by mass. is preferable from the viewpoint of battery capacity, battery resistance, etc.
 合材ペースト中に上記電極活物質(F)を含有すると、貯蔵により増粘する場合がある。その理由としては、電極活物質(F)は、粒子表面に原料由来のアルカリ金属の水酸化物(例えば、LiOH、KOH、NaOHなど)を有することになるため、酸性表面を有する導電性顔料(B)により凝集(増粘)すると考えられる。そのため、塩基性低分子量成分(E)〔特にアミン化合物(E1)〕を一定量以上含有することにより合材ペーストの貯蔵増粘を抑制することができる。 When the composite paste contains the electrode active material (F), it may thicken during storage. The reason for this is that the electrode active material (F) has alkali metal hydroxides (e.g., LiOH, KOH, NaOH, etc.) derived from the raw materials on the particle surface, and is thought to aggregate (thicken) due to the conductive pigment (B) having an acidic surface. Therefore, by containing a certain amount or more of a basic low molecular weight component (E) [particularly an amine compound (E1)], it is possible to suppress the thickening of the composite paste during storage.
 合材ペーストの製法
 本発明の合材ペーストは、前述した導電性顔料ペーストをまず調製し、当該ペーストに少なくとも1種の電極活物質(F)を配合することにより得ることができる。
また、本発明の合材ペーストは、前述の成分(A)、(B)、(C)、(D)、(E)、及び電極活物質(F)を混和して調製してもよい。
Method for Producing Composite Material Paste The composite material paste of the present invention can be obtained by first preparing the above-mentioned conductive pigment paste, and then blending at least one type of electrode active material (F) into the paste.
Further, the composite material paste of the present invention may be prepared by mixing the aforementioned components (A), (B), (C), (D), (E), and the electrode active material (F).
 本発明の合材ペースト固形分中の顔料分散樹脂(A)の固形分含有量は、例えば0.01質量%以上、好ましくは0.02質量%以上であり、例えば20質量%以下、好ましくは10質量%以下であることが、電池性能、ペースト粘度等の面から好適である。 The solid content of the pigment dispersion resin (A) in the solid content of the composite material paste of the present invention is, for example, 0.01% by mass or more, preferably 0.02% by mass or more, and, for example, 20% by mass or less, preferably The content is preferably 10% by mass or less in terms of battery performance, paste viscosity, etc.
 本発明の合材ペーストにおいては、合材ペーストにおける貯蔵安定性(増粘抑制)の観点から、塩基性低分子量成分(E)を含有している。
塩基性低分子量成分(E)を導電性顔料(B)に接触させ(濡れさせ)、次いで電極活物質(F)を混合することで導電性顔料(B)と電極活物質(F)との凝集が緩和される観点から、まず導電性顔料(B)と塩基性低分子量成分(E)を混合する順序を含むことが好ましい。
The composite paste of the present invention contains a basic low molecular weight component (E) from the viewpoint of storage stability (suppression of thickening) in the composite paste.
By bringing the basic low molecular weight component (E) into contact with (wetting) the conductive pigment (B) and then mixing the electrode active material (F), the conductive pigment (B) and the electrode active material (F) are combined. From the viewpoint of alleviating aggregation, it is preferable to first include the order of mixing the conductive pigment (B) and the basic low molecular weight component (E).
 本発明の合材ペーストにおいて、導電性顔料(B)の固形分100質量%を基準として、塩基性低分子量成分(E)の好ましい含有量下限値としては、合材ペーストの貯蔵安定性(増粘抑制)の観点から、通常1質量%以上、好ましくは10質量%以上、より好ましくは40質量%以上、更に好ましくは80質量%以上である。上限としては、電極膜中の成分(E)残存量の観点から、通常500質量%以下、好ましくは400質量%以下、より好ましくは350質量%以下、更に好ましくは300質量%以下である。 In the composite paste of the present invention, the lower limit of the content of the basic low molecular weight component (E) based on the solid content of the conductive pigment (B) is 100% by mass. From the viewpoint of (viscosity suppression), the content is usually 1% by mass or more, preferably 10% by mass or more, more preferably 40% by mass or more, and still more preferably 80% by mass or more. The upper limit is usually 500% by mass or less, preferably 400% by mass or less, more preferably 350% by mass or less, still more preferably 300% by mass or less, from the viewpoint of the amount of component (E) remaining in the electrode film.
 本発明の合材ペースト固形分中の導電性顔料(B)の固形分含有量は、例えば0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、例えば30質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下であることが電池性能の点から好適である。また、本発明の合材ペースト中の溶媒(C)の含有量は、例えば1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上であり、例えば70質量%以下、好ましくは60質量%以下、より好ましくは50質量%以下であることが電極乾燥効率、ペースト粘度の点から好適である。 The solid content of the conductive pigment (B) in the solid content of the composite material paste of the present invention is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. For example, from the viewpoint of battery performance, the content is preferably 30% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less. Further, the content of the solvent (C) in the composite material paste of the present invention is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and, for example, 70% by mass or less, preferably From the viewpoint of electrode drying efficiency and paste viscosity, the content is preferably 60% by mass or less, more preferably 50% by mass or less.
 [リチウムイオン電池電極]
 リチウムイオン電池電極の製法
 前述したように、リチウムイオン二次電池の電極合材層(電極層または合材層とも呼ぶ)は、リチウムイオン電池電極用合材ペーストを正極または負極の芯材表面に塗布し、これを乾燥することで、製造することができ、得られたリチウムイオン二次電池の電極合材層は、特に正極に用いることが好ましい。
また、本発明の導電性顔料ペーストの用途としては、合材層のペーストとして用いる以外に、電極芯材と合成層との間のプライマー層としても用いることができる。
リチウムイオン電池電極用合材ペーストの塗布方法は、ダイコーター等を用いたそれ自体公知の方法により行うことができる。リチウムイオン電池電極用合材ペーストの塗布量は特に限定されないが、例えば、乾燥後の合材層の厚みが0.04mm以上、好ましくは0.06mm以上であり、例えば0.30mm以下、0.24mm以下の範囲となるように設定することができる。乾燥工程の温度としては、例えば、80~200℃、好ましくは100~180℃の範囲内で適宜設定することができる。乾燥工程の時間としては、例えば、5~120秒、好ましくは5~60秒の範囲内で適宜設定することができる。
[Lithium ion battery electrode]
Manufacturing method for lithium ion battery electrodes As mentioned above, the electrode composite material layer (also called electrode layer or composite material layer) of a lithium ion secondary battery is made by applying composite material paste for lithium ion battery electrodes to the surface of the core material of the positive or negative electrode. It can be manufactured by coating and drying, and the obtained electrode mixture layer of a lithium ion secondary battery is particularly preferably used as a positive electrode.
Further, the conductive pigment paste of the present invention can be used not only as a paste for a composite layer but also as a primer layer between an electrode core material and a composite layer.
The method for applying the composite material paste for lithium ion battery electrodes can be performed by a method known per se using a die coater or the like. The coating amount of the composite material paste for lithium ion battery electrodes is not particularly limited, but for example, the thickness of the composite material layer after drying is 0.04 mm or more, preferably 0.06 mm or more, and, for example, 0.30 mm or less, 0.04 mm or more. It can be set within a range of 24 mm or less. The temperature of the drying step can be appropriately set within the range of, for example, 80 to 200°C, preferably 100 to 180°C. The time for the drying step can be appropriately set, for example, within the range of 5 to 120 seconds, preferably 5 to 60 seconds.
 上記乾燥工程で溶媒(C)及び塩基性低分子量成分(E)の全部または一部が揮発するが、前述した通り、廃棄物削減、環境対応、及び/又はコスト削減のために、揮発した成分(C)及び成分(E)を回収・再利用することが好ましい。 All or part of the solvent (C) and the basic low molecular weight component (E) are volatilized in the above drying process, but as mentioned above, the volatilized components are It is preferable to collect and reuse component (C) and component (E).
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら特定の実施形態に限定されるものではない。 The present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these specific embodiments.
 [顔料分散樹脂の製造]
 製造例1 スルホン酸変性ポリビニルアルコール樹脂
 温度計、環流冷却管、窒素ガス導入管および撹拌機を備えた反応容器に、重合性モノマーとして酢酸ビニル97質量部及びアリルスルホン酸ナトリウム3.0質量部、溶媒としてメタノール、重合開始剤としてアゾビスイソブチロニトリルを用いて約60℃の温度で共重合反応を行った後、減圧下に未反応のモノマーを除去し、樹脂溶液を得た。次いで、水酸化ナトリウムのメタノール溶液を添加してケン化反応を行い、よく洗浄した後、熱風乾燥機で乾燥した。最終的に、重量平均分子量17000、極性官能基濃度が18.1mmol/g、ケン化度90モル%のスルホン酸変性ポリビニルアルコール樹脂を得た。
[Production of pigment dispersion resin]
Production Example 1 Sulfonic acid modified polyvinyl alcohol resin In a reaction vessel equipped with a thermometer, a reflux condenser, a nitrogen gas inlet tube and a stirrer, 97 parts by mass of vinyl acetate and 3.0 parts by mass of sodium allylsulfonate as polymerizable monomers, methanol as a solvent, and azobisisobutyronitrile as a polymerization initiator were used to carry out a copolymerization reaction at a temperature of about 60 ° C., and unreacted monomers were removed under reduced pressure to obtain a resin solution. Next, a methanol solution of sodium hydroxide was added to carry out a saponification reaction, and the mixture was thoroughly washed and then dried with a hot air dryer. Finally, a sulfonic acid modified polyvinyl alcohol resin with a weight average molecular weight of 17000, a polar functional group concentration of 18.1 mmol / g, and a saponification degree of 90 mol% was obtained.
 [導電性顔料ペースト及び合材ペーストの製造]
 実施例1A
 製造例1で得られたスルホン酸変性ポリビニルアルコール樹脂40部(固形分40部)、カーボンナノチューブ(CNT1)200部、KFポリマーW#7300(商品名、ポリフッ化ビニリデン、重量平均分子量100万、クレハ社製)180部、N-メチル-2-ピロリドン(NMP1)9380部、及びベンジルアミン200部を混合してボールミルにて5時間分散し、導電性顔料ペースト(A-1)を製造した。
[Manufacture of conductive pigment paste and composite material paste]
Example 1A
40 parts of sulfonic acid-modified polyvinyl alcohol resin (solid content: 40 parts) obtained in Production Example 1, 200 parts of carbon nanotubes (CNT1), KF Polymer W#7300 (trade name, polyvinylidene fluoride, weight average molecular weight 1 million, Kureha Co., Ltd.) 180 parts of N-methyl-2-pyrrolidone (NMP1), and 200 parts of benzylamine were mixed and dispersed in a ball mill for 5 hours to produce a conductive pigment paste (A-1).
 実施例1B
 上記導電性顔料ペースト(A-1)100部に対して、活物質粒子(組成式LiNi0.5Mn1.5で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒径6μm、BET比表面積0.7m/g)900部をディスパーで混合して合材ペースト(B-1)を製造した。
Example 1B
100 parts of the conductive pigment paste (A-1) was mixed with 900 parts of active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle size 6 μm , BET specific surface area 0.7 m2 /g) using a disperser to produce a composite paste (B-1).
 実施例2A~21A、比較例1A~2A
 下記表1の配合とする以外は、実施例1Aと同様にして導電性顔料ペースト(A-2)~(A-23)を得た。
Examples 2A to 21A, Comparative Examples 1A to 2A
Conductive pigment pastes (A-2) to (A-23) were obtained in the same manner as in Example 1A except for using the formulations shown in Table 1 below.
 実施例2B~21B、比較例1B~2B
 下記表1の配合とする以外は、実施例1Bと同様にして合材ペースト(B-2)~(B-23)を得た。
Examples 2B to 21B, Comparative Examples 1B to 2B
Mixed material pastes (B-2) to (B-23) were obtained in the same manner as in Example 1B, except for using the formulations shown in Table 1 below.
尚、上記表1中の各成分の詳細は下記の通りである。 The details of each component in Table 1 above are as follows.
 <顔料分散樹脂(A)> <Pigment dispersion resin (A)>
 <カーボンンナノチューブ(B)> <Carbon nanotube (B)>
CNT1~CNT6は全て多層カーボンナノチューブである。
なお、上記表中のメディアン径(D50)、G/D比、及び酸性基量は下記方法で測定した。
CNT1 to CNT6 are all multi-walled carbon nanotubes.
In addition, the median diameter (D50), G/D ratio, and acidic group amount in the above table were measured by the following method.
 <メディアン径(D50)>
 メディアン径(D50)の測定は、レーザ回折/散乱式 粒子径分布測定装置「LA-960」(商品名、堀場製作所社製)を用い、下記の手順で行った。
<Median diameter (D50)>
The median diameter (D50) was measured using a laser diffraction/scattering type particle size distribution measuring device "LA-960" (trade name, manufactured by Horiba, Ltd.) according to the following procedure.
 [水分散媒の調製]
 蒸留水100mLにF10MC(商品名、日本製紙社製、カルボキシメチルセルロースナトリウム(以下CMCNaとも記載))固形分0.10gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa0.1質量%の水分散媒を調製した。
[Preparation of water dispersion medium]
Add 0.10 g of F10MC (trade name, manufactured by Nippon Paper Industries Co., Ltd., carboxymethyl cellulose sodium (hereinafter also referred to as CMCNa)) solid content to 100 mL of distilled water, stir at room temperature for 24 hours or more to dissolve, and dissolve CMCNa0.1% by mass in water. A dispersion medium was prepared.
 [CMCNa水溶液の調製]
 蒸留水100mLにF10MC(商品名、日本製紙社製、カルボキシメチルセルロースナトリウム)固形分2.0gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa2.0質量%の水溶液を調製した。
[Preparation of CMCNa aqueous solution]
A solid content of 2.0 g of F10MC (trade name, manufactured by Nippon Paper Industries, Ltd., sodium carboxymethylcellulose) was added to 100 mL of distilled water, and the mixture was stirred and dissolved at room temperature for 24 hours or more to prepare an aqueous solution containing 2.0% by mass of CMCNa.
 [測定前処理]
 バイアル瓶にカーボンナノチューブを6.0mg秤量し、前記水分散媒6.0gを添加した。測定前処理に超音波ホモジナイザー「SmurtNR-50」(商品名、マイクロテック・ニチオン社製)を用いた。チップの劣化がないことを確認し、チップが処理サンプル液面から10mm以上つかるように調整した。TIME SET(照射時間)を40秒、POW SETを50%、START POWを50%(出力50%)とし、出力電力が一定であるオ-トパワ-運転による超音波照射により均一化させカーボンナノチューブ水分散液を作製した。
[Measurement pre-processing]
6.0 mg of carbon nanotubes were weighed into a vial, and 6.0 g of the aqueous dispersion medium was added thereto. An ultrasonic homogenizer "SmurtNR-50" (trade name, manufactured by Microtech Nichion Co., Ltd.) was used for measurement pretreatment. It was confirmed that there was no deterioration of the chip, and the chip was adjusted so that it was 10 mm or more above the surface of the treated sample liquid. The time set (irradiation time) was set to 40 seconds, the POW SET was set to 50%, and the START POW was set to 50% (output 50%), and the carbon nanotube water was homogenized by ultrasonic irradiation using auto power operation with a constant output power. A dispersion liquid was prepared.
 [測定]
 前記カーボンナノチューブ水分散液を用い、カーボンナノチューブの1μm以下の分散粒子の割合およびメディアン径(D50)の測定を、以下の方法に従い実施した。
LS 13 320 ユニバーサルリキッドモジュールの光学モデルをカーボンナノチューブ1.520、水1.333とそれぞれの屈折率に設定し、モジュ-ル洗浄終了後にCMCNa水溶液を約1.0mL充填する。ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製したカーボンナノチューブ水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8~12%、もしくはPIDSが40%~55%になるように加え、粒度分布計付属装置により78W、2分間超音波照射を行い(測定前処理)、30秒循環し気泡を除いた後に粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、1μm以下の分散粒子の存在割合及びメディアン径(D50)を求めた。
測定は、カーボンナノチューブ1試料につき、採取場所を変え3測定用サンプルを採取して粒度分布測定を行い、1μm以下の分散粒子の存在割合及びメディアン径(D50)をその平均値で求めた。
[measurement]
Using the carbon nanotube aqueous dispersion, the ratio of dispersed particles of carbon nanotubes of 1 μm or less and the median diameter (D50) were measured according to the following method.
The optical model of the LS 13 320 universal liquid module is set to have carbon nanotubes with a refractive index of 1.520 and water with a refractive index of 1.333, and approximately 1.0 mL of a CMCNa aqueous solution is filled after the module has been cleaned. After performing offset measurements, optical alignment, and background measurements at a pump speed of 50%, the prepared aqueous carbon nanotube dispersion was measured using a particle size analyzer with relative concentration, which indicates the percentage of light scattered outside the beam by the particles. 8 to 12% or PIDS to 40% to 55%, irradiated with ultrasonic waves at 78W for 2 minutes using the particle size distribution analyzer attachment (measurement pretreatment), and circulated for 30 seconds to remove air bubbles. Particle size distribution measurements were performed. A graph of volume % versus particle size (particle diameter) was obtained, and the abundance ratio of dispersed particles of 1 μm or less and the median diameter (D50) were determined.
For each sample of carbon nanotubes, three measurement samples were taken from different collection locations, and the particle size distribution was measured, and the proportion of dispersed particles of 1 μm or less and the median diameter (D50) were determined as the average value.
 <カーボンナノチューブのG/D比>
 カーボンナノチューブのラマンスペクトルは、ラマン顕微鏡「XploRA)(商品名、堀場製作所社製)にカーボンナノチューブを設置し、532nmのレーザー波長を用いて測定を行った。得られたピークの内、スペクトルで1560cm-1~1600cm-1の範囲内で最大ピーク強度をG、1310cm-1~1350cm-1の範囲内で最大ピーク強度をDとした際のG/Dの比をカーボンナノチューブのG/D比とした。
<G/D ratio of carbon nanotubes>
The Raman spectrum of carbon nanotubes was measured using a Raman microscope "XploRA" (trade name, manufactured by Horiba, Ltd.) using a laser wavelength of 532 nm. The G/D ratio is the G/D ratio of carbon nanotubes when the maximum peak intensity is G within the range of -1 to 1600 cm -1 and D is the maximum peak intensity within the range of 1310 cm -1 to 1350 cm -1 . did.
 <カーボンナノチューブ(CNT)の酸性基量>
 CNTを2g精秤し、0.01Mのベンジルアミン/N-メチル-2-ピロリドン溶液50mlに浸漬させ、超音波照射機で1時間分散処理をした。その後遠心分離を行い、上澄みをフィルターでろ過した。得られたろ液中に残存するベンジルアミンを0.1Mの塩酸で電位差滴定することにより定量分析し、得られたCNT1g当たりの酸性基量(mmol/g)を特定した。
<Amount of acidic groups in carbon nanotubes (CNTs)>
2g of CNTs were accurately weighed, immersed in 50ml of 0.01M benzylamine/N-methyl-2-pyrrolidone solution, and dispersed for 1 hour using an ultrasonic irradiator. Thereafter, centrifugation was performed, and the supernatant was filtered through a filter. The benzylamine remaining in the obtained filtrate was quantitatively analyzed by potentiometric titration with 0.1 M hydrochloric acid, and the amount of acidic groups (mmol/g) per 1 g of the obtained CNTs was determined.
 <アミン化合物(E1)> <Amine compound (E1)>
 <溶媒(C)>
 用いた溶媒の水分含有量とアミン含有量をそれぞれ測定した。
水分含有量とアミン含有量はカールフィッシャー水分率計「MKC-610」(商品名、京都電子工業株式会社製)とイオンクロマトグラフィーを用いて測定した。
NMP1:N-メチル-2-ピロリドン、SP値11.1、水分含有量0.1質量%、アミン含有量0質量%
NMP2:N-メチル-2-ピロリドン、SP値11.1、水分含有量1.2質量%、アミン含有量0質量%
プロピレングリコールモノメチルエーテル:SP値10.4、水分含有量0.1質量%、アミン含有量0質量%。
<Solvent (C)>
The water content and amine content of the solvents used were measured.
The water content and amine content were measured using a Karl Fischer moisture meter "MKC-610" (trade name, manufactured by Kyoto Electronics Industry Co., Ltd.) and ion chromatography.
NMP1: N-methyl-2-pyrrolidone, SP value 11.1, water content 0.1% by mass, amine content 0% by mass
NMP2: N-methyl-2-pyrrolidone, SP value 11.1, water content 1.2% by mass, amine content 0% by mass
Propylene glycol monomethyl ether: SP value 10.4, water content 0.1% by mass, amine content 0% by mass.
 [評価試験]
 上記実施例及び比較例で得られた導電性顔料ペースト及び合材ペーストの評価試験を行った。評価としてはDが不合格である。1つでも不合格の評価結果がある場合、導電性顔料ペーストの評価としては不合格である。評価結果は表1に示す。
[Evaluation test]
Evaluation tests were conducted on the conductive pigment pastes and composite material pastes obtained in the above Examples and Comparative Examples. As for the evaluation, D is a failure. If even one evaluation result is a failure, the evaluation of the conductive pigment paste is a failure. The evaluation results are shown in Table 1.
 <分散性>
 得られた導電性顔料ペーストをJIS K-5600-2-5の分散度試験に準じ、ツブゲージを用いて下記基準により分散性を評価した。
A:顔料が10μm未満で分散されている。分散性は非常に良好である。
B:顔料が10μm以上、かつ20μm未満で分散されている。分散性はやや良好である。
C:顔料が20μm以上で分散されているが、目視で凝集物は確認できない。分散性はやや劣る。
D:目視で凝集物が確認される。分散性は非常に劣る。
<Dispersibility>
The dispersibility of the obtained conductive pigment paste was evaluated according to the following criteria using a tube gauge according to the dispersion test of JIS K-5600-2-5.
A: Pigment is dispersed to a particle size of less than 10 μm. Dispersibility is very good.
B: Pigment is dispersed in a thickness of 10 μm or more and less than 20 μm. The dispersibility is rather good.
C: The pigment is dispersed to a thickness of 20 μm or more, but no aggregates are visually observed. Dispersibility is slightly inferior.
D: Aggregates are visually confirmed. Dispersibility is very poor.
 <初期粘度>
 得られた合材ペーストをコーン&プレート型粘度計「Mars2」(商品名、HAAKE社製)を用い、シアーレート2.0sec-1で粘度を測定し、下記基準により評価した。
A:粘度が、10Pa・s未満である。
B:粘度が、10Pa・s以上、かつ20Pa・s未満である。
C:粘度が、20Pa・s以上、かつ50Pa・s未満である。
D:粘度が、50Pa・s以上である。
<Initial viscosity>
The viscosity of the resulting composite paste was measured using a cone-and-plate viscometer "Mars 2" (trade name, manufactured by HAAKE) at a shear rate of 2.0 sec -1 , and evaluated according to the following criteria.
A: The viscosity is less than 10 Pa·s.
B: Viscosity is 10 Pa·s or more and less than 20 Pa·s.
C: Viscosity is 20 Pa·s or more and less than 50 Pa·s.
D: Viscosity is 50 Pa·s or more.
 <貯蔵安定性>
 得られた合材ペーストを50℃の温度で2週間貯蔵を行い、初期粘度と貯蔵後の粘度の比較を行なった。粘度は、コーン&プレート型粘度計(HAAKE社製、商品名Mars2、直径35mm、2°傾斜のコーン&プレート)を用い、せん断速度2.0s-1で測定し、下記式により粘度上昇率を求め、下記の基準により貯蔵安定性を評価した。
 粘度上昇率(%)=貯蔵後粘度(mPa・s)/初期粘度(mPa・s)×100-100
S:貯蔵後の粘度上昇率(%)が、10%未満である。
A:貯蔵後の粘度上昇率(%)が、10%以上、かつ20%未満である。
B:貯蔵後の粘度上昇率(%)が、20%以上、かつ50%未満である。
C:貯蔵後の粘度上昇率(%)が、50%以上、かつ200%未満である。
D:貯蔵後の粘度上昇率(%)が、200%以上(又はゲル化して測定不可)である。
<Storage stability>
The obtained composite paste was stored at 50° C. for 2 weeks, and the initial viscosity was compared with the viscosity after storage. The viscosity was measured at a shear rate of 2.0 s -1 using a cone and plate viscometer (manufactured by HAAKE, product name Mars2, diameter 35 mm, cone and plate with a 2° inclination). The viscosity increase rate was calculated using the following formula, and the storage stability was evaluated according to the following criteria.
Viscosity increase rate (%) = viscosity after storage (mPa·s) / initial viscosity (mPa·s) × 100 - 100
S: The viscosity increase rate (%) after storage is less than 10%.
A: The viscosity increase rate (%) after storage is 10% or more and less than 20%.
B: The viscosity increase rate (%) after storage is 20% or more and less than 50%.
C: The viscosity increase rate (%) after storage is 50% or more and less than 200%.
D: The viscosity increase rate (%) after storage is 200% or more (or gelation makes it impossible to measure).
<体積抵抗率(導電性)>
 実施例1A、7A、8A、及び9Aで得られた導電性顔料ペーストに関して、さらに体積抵抗率の測定を行った。体積抵抗率の測定では、バインダーとしてポリフッ化ビニリデンの5質量%溶液(株式会社クレハ製、商品名「KFポリマーW#7300」、溶媒:N-メチル-2-ピロリドン)を使用した。
 得られた導電性顔料ペーストの導電性顔料(B)の質量と、導電性顔料ペーストの顔料分散樹脂(A)固形分及びKFポリマーW#7300固形分を合計した質量との比が5:100となるように、導電性顔料ペーストとKFポリマーW#7300溶液を量り取り、超音波ホモジナイザーで2分間混合して測定用試料を得た。
<Volume resistivity (conductivity)>
The conductive pigment pastes obtained in Examples 1A, 7A, 8A, and 9A were further measured for volume resistivity. In the measurement of volume resistivity, a 5% by mass solution of polyvinylidene fluoride (manufactured by Kureha Co., Ltd., trade name "KF Polymer W#7300", solvent: N-methyl-2-pyrrolidone) was used as a binder.
The ratio of the mass of the conductive pigment (B) in the obtained conductive pigment paste to the total mass of the solid content of the pigment dispersion resin (A) and the solid content of KF Polymer W#7300 in the conductive pigment paste is 5:100. The conductive pigment paste and KF Polymer W#7300 solution were weighed out and mixed for 2 minutes using an ultrasonic homogenizer to obtain a measurement sample.
 ガラス板(2mm×100mm×150mm)上に測定用試料をドクターブレード法にて塗工して、80℃60分で加熱乾燥し、ガラス板上に塗工膜を形成した。得られた塗工膜について膜厚を測定した後、ASPプローブ「MCP-TP03P」(商品名、三菱化学アナリテック社製)を用いて、抵抗率計「Loresta-GP MCP-T610」(商品名、三菱化学アナリテック社製)で抵抗値を測定し、得られた抵抗値に抵抗率補正係数(RCF)4.532及び塗工膜の膜厚を乗じて体積抵抗率を算出した。体積抵抗率は下記基準により評価した。
A:体積抵抗率が、7Ω・cm未満であり、導電性は良好である。
B:体積抵抗率が、7Ω・cm以上、かつ15Ω・cm未満であり、導電性は普通である。
D:体積抵抗率が、15Ω・cm以上であり、導電性は劣る。
評価結果として、実施例1A及び7Aで得られた導電性顔料ペーストは「A」であり、実施例8A及び9Aで得られた導電性顔料ペーストは「B」であった。
A measurement sample was coated on a glass plate (2 mm x 100 mm x 150 mm) using a doctor blade method, and dried by heating at 80° C. for 60 minutes to form a coating film on the glass plate. After measuring the film thickness of the obtained coating film, a resistivity meter "Loresta-GP MCP-T610" (trade name) was measured using an ASP probe "MCP-TP03P" (trade name, manufactured by Mitsubishi Chemical Analytech). , manufactured by Mitsubishi Chemical Analytech, Inc.), and the volume resistivity was calculated by multiplying the obtained resistance value by a resistivity correction factor (RCF) of 4.532 and the film thickness of the coating film. Volume resistivity was evaluated according to the following criteria.
A: The volume resistivity is less than 7 Ω·cm, and the conductivity is good.
B: Volume resistivity is 7 Ω·cm or more and less than 15 Ω·cm, and conductivity is normal.
D: Volume resistivity is 15 Ω·cm or more, and conductivity is poor.
As the evaluation results, the conductive pigment pastes obtained in Examples 1A and 7A were rated "A", and the conductive pigment pastes obtained in Examples 8A and 9A were rated "B".
 [電池電極層の製造]
 応用例1~21
 実施例1B~21Bで得られた合材ペーストを、平均厚み15μmの長尺状アルミニウム箔(正極集電体)の両面に、片面あたりの目付量が10mg/cm(固形分基準)となるようにローラコート法で帯状に塗布して乾燥(乾燥温度180℃、10分間)することにより、正極活物質層を形成した。この正極集電体に担持された正極活物質層(正極電極層)をロールプレス機により圧延して電極層を形成し、性状を調整した。
得られた電極層は残存溶媒量が1%未満であり、仕上がり性などが良好な電極層であった。
 
[Manufacture of battery electrode layer]
Application examples 1 to 21
The composite paste obtained in Examples 1B to 21B was applied to both sides of a long aluminum foil (positive electrode current collector) with an average thickness of 15 μm so that the basis weight per side was 10 mg/cm 2 (based on solid content). A positive electrode active material layer was formed by applying the material in a strip using a roller coating method and drying (drying temperature: 180° C., 10 minutes). The positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled using a roll press machine to form an electrode layer, and its properties were adjusted.
The resulting electrode layer had a residual solvent amount of less than 1%, and had good finishing properties.

Claims (13)

  1. 顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、
    顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、
    導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、
    カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)とした場合、下記式(1)のXの値が、5以上である、導電性顔料ペースト。
    X=α/β×300・・・式(1)
    A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E),
    The pigment dispersion resin (A) has at least one polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g,
    The conductive pigment (B) contains carbon nanotubes (B1),
    When the content of the basic low molecular weight component (E) is α (parts by mass) with respect to 100 parts by mass of the carbon nanotube (B1), and the BET specific surface area of the carbon nanotube (B1) is β (m 2 /g). , a conductive pigment paste in which the value of X in the following formula (1) is 5 or more.
    X=α/β×300...Formula (1)
  2. 顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び塩基性低分子量成分(E)を含有する導電性顔料ペーストであって、
    顔料分散樹脂(A)が、少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであり、
    導電性顔料(B)が、カーボンナノチューブ(B1)を含有し、
    カーボンナノチューブ(B1)の含有量100質量部に対する塩基性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B1)のBET比表面積をβ(m/g)、カーボンナノチューブ(B1)の酸性基量をγ(mmol/g)とした場合、下記式(2)のYの値が、0.01以上である、導電性顔料ペースト。
    Y=α/β/γ・・・式(2)
    A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a basic low molecular weight component (E),
    The pigment dispersion resin (A) has at least one polar functional group, and the polar functional group concentration of the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g,
    The conductive pigment (B) contains carbon nanotubes (B1),
    The content of the basic low molecular weight component (E) with respect to 100 parts by mass of the carbon nanotube (B1) is α (parts by mass), the BET specific surface area of the carbon nanotube (B1) is β (m 2 /g), and the carbon nanotube A conductive pigment paste in which the value of Y in the following formula (2) is 0.01 or more, where the amount of acidic groups in (B1) is γ (mmol/g).
    Y=α/β/γ...Formula (2)
  3. 塩基性低分子量成分(E)が、アミン化合物(E1)を含む、請求項1又は2に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 1 or 2, wherein the basic low molecular weight component (E) contains an amine compound (E1).
  4. カーボンナノチューブ(B1)の体積換算のメディアン径(D50)が、10~250μmである、請求項1又は2に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 1 or 2, wherein the carbon nanotube (B1) has a volume-based median diameter (D50) of 10 to 250 μm.
  5. 塩基性低分子量成分(E)の含有量が、導電性顔料(B)の固形分100質量%を基準として、12質量%以上、500質量%以下である、請求項1又は2に記載の導電性顔料ペースト。 The conductive material according to claim 1 or 2, wherein the content of the basic low molecular weight component (E) is 12% by mass or more and 500% by mass or less based on 100% by mass of the solid content of the conductive pigment (B). color pigment paste.
  6. カーボンナノチューブ(B1)の酸性基量が、0.01mmol/g~0.5mmol/gである、請求項1又は2に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 1 or 2, wherein the carbon nanotubes (B1) have an acidic group content of 0.01 mmol/g to 0.5 mmol/g.
  7. カーボンナノチューブ(B1)のBET比表面積が、100m/g~800m/gであり、カーボンナノチューブ(B1)のラマンスペクトルにおいて、1560m-1~1600cm-1の範囲内での最大ピーク強度をG、1310m-1~1350cm-1の範囲内での最大ピーク強度をDとした際のG/D比が0.1~5である、請求項1又は2に記載の導電性顔料ペースト。 The BET specific surface area of the carbon nanotube (B1) is 100 m 2 /g to 800 m 2 /g, and the maximum peak intensity within the range of 1560 m −1 to 1600 cm −1 in the Raman spectrum of the carbon nanotube (B1) is G The conductive pigment paste according to claim 1 or 2, wherein the conductive pigment paste has a G/D ratio of 0.1 to 5, where D is the maximum peak intensity within the range of 1310 m -1 to 1350 cm -1 .
  8. 溶媒(C)の水分含有量が1質量%以下であり、かつアミン化合物含有量が1質量%以下である、請求項3に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 3, wherein the solvent (C) has a water content of 1% by mass or less and an amine compound content of 1% by mass or less.
  9. 塩基性低分子量成分(E)の重量平均分子量が、1000未満である、請求項1又は2に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 1 or 2, wherein the weight average molecular weight of the basic low molecular weight component (E) is less than 1,000.
  10. アミン化合物(E1)のアミン価が、105mgKOH/g~1000mgKOH/gである、請求項3に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 3, wherein the amine compound (E1) has an amine value of 105 mgKOH/g to 1000 mgKOH/g.
  11. 溶媒(C)が、N-メチル-2-ピロリドンである、請求項1又は2に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 1 or 2, wherein the solvent (C) is N-methyl-2-pyrrolidone.
  12. 請求項1又は2に記載の導電性顔料ペーストと電極活物質(F)を配合してなる合材ペースト。 A composite paste comprising the conductive pigment paste according to claim 1 or 2 and an electrode active material (F).
  13. 請求項12に記載の合材ペーストを用いて得られるリチウムイオン電池用電極。
     
    An electrode for a lithium ion battery obtained using the composite paste according to claim 12.
PCT/JP2023/033509 2022-09-19 2023-09-14 Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries WO2024063003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023578968A JP7453487B1 (en) 2022-09-19 2023-09-14 Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-148655 2022-09-19
JP2022148655 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024063003A1 true WO2024063003A1 (en) 2024-03-28

Family

ID=90454383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033509 WO2024063003A1 (en) 2022-09-19 2023-09-14 Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries

Country Status (1)

Country Link
WO (1) WO2024063003A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208637A1 (en) * 2018-04-26 2019-10-31 東洋インキScホールディングス株式会社 Carbon nanotube dispersion and use for same
WO2020017656A1 (en) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 Compound, dispersant, dispersion composition for battery, electrode, and battery
JP2021002520A (en) * 2019-06-20 2021-01-07 関西ペイント株式会社 Method for producing conductive paste
WO2021085344A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Paste for secondary batteries, slurry for secondary battery positive electrodes, positive electrode for secondary batteries, secondary battery and method for producing paste for secondary batteries
JP2021115523A (en) * 2020-01-27 2021-08-10 東洋インキScホールディングス株式会社 Dispersant and resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208637A1 (en) * 2018-04-26 2019-10-31 東洋インキScホールディングス株式会社 Carbon nanotube dispersion and use for same
WO2020017656A1 (en) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 Compound, dispersant, dispersion composition for battery, electrode, and battery
JP2021002520A (en) * 2019-06-20 2021-01-07 関西ペイント株式会社 Method for producing conductive paste
WO2021085344A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Paste for secondary batteries, slurry for secondary battery positive electrodes, positive electrode for secondary batteries, secondary battery and method for producing paste for secondary batteries
JP2021115523A (en) * 2020-01-27 2021-08-10 東洋インキScホールディングス株式会社 Dispersant and resin composition

Similar Documents

Publication Publication Date Title
JP7362989B2 (en) Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries
JP6638846B1 (en) Dispersant, dispersion, electrode, and resin composition
JP7060986B2 (en) Binder composition, mixture for producing electrodes for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
KR20210114514A (en) Dispersion Containing Graphene Carbon Nanoparticles and Dispersant Resin
CN110229265A (en) The fluoro-containing copolymer composition mixed
TWI822331B (en) Carbon material dispersion and its use
JP7381757B2 (en) Carbon material dispersion liquid
JP6803491B1 (en) Method of manufacturing conductive paste
JP7453487B1 (en) Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries
WO2024063003A1 (en) Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries
WO2023048203A1 (en) Conductive pigment paste, mixture paste, and electrode for lithium ion battery
JP2017165927A (en) Conductive pigment paste and coating material
WO2021106449A1 (en) Conductive-material dispersion for positive electrode of lithium-ion secondary battery and electrode paste
CN118103463A (en) Conductive pigment paste, clad material paste, and electrode for lithium ion battery
WO2024024162A1 (en) Carbon material dispersion and use thereof
JP5417116B2 (en) Organic solvent paint
WO2022172847A1 (en) Conductive pigment paste, coating material and coating film
WO2023286793A1 (en) Carbon nanotube dispersed liquid for lithium ion battery electrodes
JP7098077B1 (en) Manufacturing method of carbon material dispersion
JP6952919B1 (en) Carbon material dispersion
JP2024069513A (en) Carbon nanotube dispersion for lithium-ion battery electrodes
TW202405100A (en) Carbon material dispersion and use therefor
CN118103324A (en) Carbon material dispersion and use thereof
JP2022176926A (en) Method for producing conductive pigment paste
WO2024070397A1 (en) Carbon nanotube dispersed liquid, electrode coating material using same, electrode and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868125

Country of ref document: EP

Kind code of ref document: A1