WO2024062874A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2024062874A1
WO2024062874A1 PCT/JP2023/031534 JP2023031534W WO2024062874A1 WO 2024062874 A1 WO2024062874 A1 WO 2024062874A1 JP 2023031534 W JP2023031534 W JP 2023031534W WO 2024062874 A1 WO2024062874 A1 WO 2024062874A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
sensor
light
distance
pattern
Prior art date
Application number
PCT/JP2023/031534
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 澁井
正彦 南雲
均 中田
大岳 北見
貴志 猿田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024062874A1 publication Critical patent/WO2024062874A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present technology relates to an information processing device, an information processing method, and a program for distance measurement.
  • ToF Time of Flight
  • Such distance measuring sensors are installed in various devices, including AMR (Autonomous Mobile Robot). It is expected that AMR equipped with a ranging sensor will be used in various fields in the future. Since such an AMR emits laser light or the like for distance measurement, there is an increased chance that the AMR receives not only the laser light emitted by itself but also the laser light emitted by others.
  • AMR Autonomous Mobile Robot
  • AMR may not be able to perform proper distance measurement.
  • the present technology was developed in view of these circumstances, and its purpose is to suppress the decrease in distance measurement accuracy due to disturbances.
  • first image data as distance image data obtained based on a light reception signal of a first sensor which is a light reception sensor that performs a light reception operation for distance measurement
  • the second image data which is the image data obtained based on the light reception signal of the second sensor, which is the light reception sensor of the type
  • the external an AI (Artificial Intelligence) image processing unit that performs processing to infer a distance measurement error area that occurs in the first image data due to interference light in the wavelength band received by the first sensor emitted by the object, as a correction target area.
  • FIG. 2 is a diagram for explaining an outline of the operation of AMR.
  • FIG. 2 is a block diagram showing a configuration example of an iToF sensor, an RGB sensor, and a control unit. It is a figure showing the example of composition of the 1st light sensing portion.
  • FIG. 2 is a diagram illustrating a configuration example of pixels included in a pixel array section.
  • FIG. 3 is a diagram for explaining an example in which charges are distributed to two charge storage units. It is a figure showing an example of a 1st pattern.
  • FIG. 11 is a diagram showing an example of a second pattern. It is a figure which shows an example of a 3rd pattern. It is a figure which shows an example of a 4th pattern.
  • FIG. 7 is a diagram for explaining correction of a correction target area.
  • FIG. 11 is a diagram for explaining correction of a correction target area together with FIG. 10;
  • FIG. 12 is a diagram for explaining correction of a correction target area together with FIGS. 10 and 11.
  • FIG. 3 is a flowchart illustrating an example of processing executed by a control unit of AMR.
  • FIG. 2 is a block diagram showing a configuration example of AMR.
  • FIG. 7 is a diagram showing a configuration example of an AMR iToF sensor and an RGB sensor according to a second embodiment.
  • FIG. 11 is a block diagram illustrating a configuration example of an AMR according to a second embodiment.
  • FIG. 1 is a diagram for explaining an overview of the operation of AMR1.
  • the AMR 1 is a robot that moves autonomously, and moves while determining an appropriate route while detecting obstacles and the like based mainly on image data captured in the direction of travel.
  • the AMR 1 includes a first optical system 2, an iToF (indirect time of flight) sensor 3, a second optical system 4, an R (Red) G (Green) B (Blue) sensor 5, a control unit 6, and a drive unit 7. It is composed of
  • the first optical system 2 is provided at the front stage of the iToF sensor 3 so that the iToF sensor 3 receives appropriate incident light. Equipped with etc.
  • the first optical system 2 ensures a good light receiving state of the iToF sensor 3 by appropriately driving an actuator (not shown) based on control by the control unit 6. Note that a part of the first optical system 2 may be provided as a part of the iToF sensor 3 as a microlens or the like.
  • the iToF sensor 3 is a sensor that receives reflected light of a specific wavelength band irradiated onto a subject, and obtains distance information to the subject for each pixel based on its flight time.
  • the iToF sensor 3 generates distance image data based on distance information for each pixel and outputs it to the subsequent control section 6.
  • the iToF sensor 3 may be configured to output a light reception signal, and the subsequent control unit 6 or the like may be configured to generate distance image data based on the light reception signal.
  • the iToF sensor 3 is configured as, for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, and has sensitivity to IR (Infrared) light.
  • CMOS Complementary Metal Oxide Semiconductor
  • IR Infrared
  • the second optical system 4 is provided in front of the RGB sensor 5 so that the RGB sensor 5 receives appropriate incident light, and includes, for example, a cover lens, a zoom lens, a focus lens, and other lenses, as well as an aperture mechanism.
  • the second optical system 4 ensures a good light receiving state of the RGB sensor 5 by appropriately driving an actuator (not shown) based on control by the control unit 6. Note that a part of the second optical system 4 may be provided as a part of the RGB sensor 5 as a microlens or the like.
  • the RGB sensor 5 generates RGB image data as color image data by receiving light from the subject and outputs it to the control section 6 at the subsequent stage.
  • the RGB sensor 5 is configured as, for example, a CMOS type or CCD (Charge Coupled Device) type image sensor, and has sensitivity to light in the visible light band.
  • CMOS complementary metal-oxide-semiconductor
  • CCD Charge Coupled Device
  • the control unit 6 receives distance image data from the iToF sensor 3 and receives RGB image data from the RGB sensor 5. The control unit 6 recognizes the object present in the imaging direction based on the distance image data and determines an appropriate travel route.
  • the control unit 6 issues a drive instruction to the drive unit 7 to move along the travel route.
  • the drive unit 7 includes various drive mechanisms, actuators, etc., and contributes to the movement of the AMR 1.
  • FIG. 2 shows a more detailed configuration of the iToF sensor 3, RGB sensor 5, and control section 6.
  • the iToF sensor 3 includes a light emitting unit 8, a first light receiving unit 9, a first signal processing unit 10, and a light emission control unit 11.
  • the light emitting unit 8 is configured to include an LED (Light Emitting Diode) that emits IR light based on a light emission signal that is a periodic signal of a specific frequency and is applied by the light emission control unit 11.
  • LED Light Emitting Diode
  • the first light receiving section 9 includes a pixel array section 13 in which pixels 12 having light receiving elements that receive reflected light emitted from the light emitting section 8 and reflected by the subject are two-dimensionally arranged in a matrix. .
  • Each pixel 12 is configured with two charge storage sections 14a and 14b, and responds to a signal (transfer control signals TRTa, TRTb to be described later) based on a light emission signal applied by the light emission control section 11.
  • the charge storage sections 14a and 14b in which charges are stored are switched.
  • the pixel 12 outputs a light reception signal according to the amount of charge accumulated in the charge accumulation section 14a and the charge accumulation section 14b, respectively. That is, the pixel 12 outputs a light reception signal corresponding to the amount of charge accumulated in the charge storage section 14a and a light reception signal corresponding to the amount of charge accumulated in the charge storage section 14b. These two light reception signals are used in a subsequent stage to obtain distance information to the subject.
  • FIG. 3 An example of the configuration of the first light receiving section 9 is shown in FIG. 3.
  • the first light receiving section 9 includes a pixel array section 13, a vertical drive section 15, a column processing section 16, a horizontal drive section 17, and a system control section 18.
  • the pixel array section 13, the vertical drive section 15, the column processing section 16, the horizontal drive section 17, and the system control section 18 are formed on a semiconductor substrate (chip) not shown.
  • pixels 12 are arranged in a matrix, each having a PD (Photo Diode) 19 (not shown in FIG. 3) as a photoelectric conversion element that generates and internally accumulates photoelectric charges corresponding to the amount of incident light. are arranged two-dimensionally.
  • PD Photo Diode
  • pixel drive lines 20 are formed for each row of the pixel array in a matrix form along the arrangement direction of the pixels 12 in the pixel row (horizontal direction in FIG. 3), and vertical signal lines 20 are formed for each column. 21 are formed along the arrangement direction of the pixels 12 in the pixel column (vertical direction in FIG. 3).
  • One end of the pixel drive line 20 is connected to an output end corresponding to each row of the vertical drive section 15.
  • the vertical drive unit 15 is a pixel drive unit that is composed of a shift register, an address decoder, etc., and drives each pixel 12 of the pixel array unit 13, either all pixels at the same time or row by row.
  • the pixel signals output from each pixel 12 in a pixel row selected and scanned by the vertical drive unit 15 are supplied to the column processing unit 16 through each vertical signal line 21.
  • the column processing unit 16 performs a predetermined signal processing on the pixel signals output from each pixel in the selected row through the vertical signal line 21 for each pixel column in the pixel array unit 13, and temporarily holds the pixel signals after signal processing.
  • the column processing unit 16 performs at least noise removal processing, such as CDS (Correlated Double Sampling) processing, as signal processing.
  • This correlated double sampling process by the column processing unit 16 removes fixed pattern noise specific to pixels, such as reset noise and threshold variation of amplification transistors.
  • the column processing section 16 may also be provided with, for example, an A/D (Analog/Digital) conversion function, and output the signal level as a digital signal.
  • the horizontal drive section 17 is composed of a shift register, an address decoder, etc., and sequentially selects unit circuits corresponding to the pixel columns of the column processing section 16. By this selective scanning by the horizontal driving section 17, pixel signals subjected to signal processing in the column processing section 16 are sequentially outputted to the first signal processing section 10 in FIG.
  • the system control unit 18 includes a timing generator that generates various timing signals, and operates the vertical drive unit 15, column processing unit 16, horizontal drive unit 17, etc. based on the various timing signals generated by the timing generator. Performs drive control.
  • a pixel drive line 20 is wired along the row direction for each pixel row, and two vertical signal lines 21 are wired along the column direction for each pixel column. has been done.
  • the pixel drive line 20 transmits a drive signal for driving when reading a signal from the pixel 12.
  • FIG. 3 shows an example in which one pixel drive line 20 is wired for one pixel 12, the number of pixel drive lines 20 is not limited to one.
  • One end of the pixel drive line 20 is connected to an output end corresponding to each row of the vertical drive section 15.
  • FIG. 4 shows an example of the configuration of each pixel 12 included in the pixel array section 13.
  • the pixel 12 includes a PD 19 as a photoelectric conversion element, and is configured so that charges generated by the PD 19 are distributed to taps 22a and 22b. Of the charges generated by the PD 19, the charges distributed to the tap 22a are read out from the vertical signal line 21a and output as the light reception signal S1. Furthermore, the charge distributed to the tap 22b is read out from the vertical signal line 21b and output as a light reception signal S2.
  • Tap 22a is composed of a transfer transistor 23a, a charge storage section 14a (Floating Diffusion), a reset transistor 24, an amplification transistor 25a, and a selection transistor 26a.
  • tap 22b is composed of a transfer transistor 23b, a charge storage section 14b, a reset transistor 24, an amplification transistor 25b, and a selection transistor 26b.
  • the reset transistor 24 may be shared by the charge storage section 14a and the charge storage section 14b, or may be provided in each of the charge storage section 14a and the charge storage section 14b. good.
  • the reset transistor 24 When the reset transistor 24 is provided in each of the charge storage section 14a and the charge storage section 14b, the reset timing can be controlled individually for the charge storage section 14a and the charge storage section 14b, so that fine control can be performed. becomes possible.
  • the charge storage section 14a and the charge storage section 14b are provided with a common reset transistor 24, the reset timing can be made the same for the charge storage section 14a and the charge storage section 14b, and control becomes simple.
  • the circuit configuration can also be simplified.
  • distribution of charges in the pixel 12 will be explained.
  • distribution refers to the fact that charges generated by photoelectric conversion in the PD 19 are transferred to different charge storage sections 14a and 14b by being transferred by either of the transfer transistors 23a and 23b depending on the timing of charge generation. means.
  • the light emitting unit 8 outputs irradiation light that is modulated so that the irradiation is turned on and off once in one cycle Tp of the light emission signal, which is a periodic signal, and the distance to the subject is adjusted.
  • the reflected light is received by the PD 19 after a corresponding delay time Td.
  • the transfer control signal TRTa is supplied by the pixel drive line 20a and controls on/off of the transfer transistor 23a. Further, the transfer control signal TRTb is supplied by the pixel drive line 20b and controls on/off of the transfer transistor 23b. As shown in the figure, the transfer control signal TRTa has the same phase as the irradiation light, while the transfer control signal TRTb has the inverted phase of the transfer control signal TRTa.
  • the selection transistor 26a when the selection transistor 26a is turned on according to the selection signal SELa, the charges accumulated in the charge storage section 14a are read out via the vertical signal line 21a.
  • the first light receiving section 9 outputs a light receiving signal S1 corresponding to the amount of charge.
  • the selection transistor 26b is turned on according to the selection signal SELb, the charge stored in the charge storage section 14b is read out via the vertical signal line 21b, and the light reception signal S2 corresponding to the amount of charge is sent to the first light reception. It is output from section 9.
  • the charges accumulated in the charge accumulation section 14a are discharged when the reset transistor 24 is turned on in accordance with the reset signal RST supplied by the pixel drive line 20c. Similarly, the charges accumulated in the charge accumulation section 14b are discharged when the reset transistor 24 is turned on according to the reset signal RST.
  • the pixel 12 can distribute the charge generated by the reflected light received by the PD 19 to the tap 22a and the tap 22b according to the delay time Td, and output the light reception signal S1 and the light reception signal S2.
  • the delay time Td depends on the time it takes for the light emitted by the light emitting unit 8 to travel to the subject, reflect on the subject, and then fly to the first light receiving unit 9, that is, it depends on the distance to the subject. be. Therefore, the iToF sensor 3 can determine the distance (depth) to the subject according to the delay time Td based on the light reception signal S1 and the light reception signal S2.
  • the first light receiving section 9 performs light reception control using the synchronization signal of the light emission signal. Therefore, the synchronization signal of the light emission signal is applied from the light emission control section 11 to the first light receiving section 9 .
  • the first signal processing section 10 includes a distance image data generation section 27 and a brightness image data generation section 28.
  • the distance image data generation unit 27 uses the light reception signals S1 and S2 output from the first light reception unit 9 to generate distance image data in which distance information representing the distance to the subject is associated with each pixel 12.
  • the distance image data generated by the distance image data generation section 27 is based on distance information obtained by receiving reflected light of the IR light emitted by the light emitting section 8 of the AMR 1.
  • the opposing AMR 1' AMR 1'
  • a distance measurement error may be included due to the IR light emitted by the opposing AMR 1'.
  • the distance image data output from the distance image data generation unit 27 and which may contain distance measurement errors is referred to as "primary distance image data DD1.”
  • the first method is to use the primary distance image data DD1 at a subsequent stage without correcting it. This is suitable when the primary distance image data DD1 does not include a distance measurement error or when the included distance measurement error is small.
  • the second method is to correct the primary distance image data DD1 and use it at a later stage. This is suitable when the distance measurement error included in the primary distance image data DD1 is not small and it is difficult to handle it without correction, but it is possible to correct it.
  • the third method is to obtain distance image data anew using another method without correcting the primary distance image data DD1. This is suitable when the distance measurement error contained in the primary distance image data DD1 is large and cannot be appropriately corrected, or when the area containing the distance measurement error is large.
  • the luminance image data generating unit 28 performs processing to realize the third method of the three methods described above. Specifically, the luminance image data generating unit 28 generates luminance image data BD using the light receiving signals S1 and S2 output from the first light receiving unit 9.
  • the brightness image data BD is used together with the RGB image data CD output from the RGB sensor 5 to generate distance measurement image data using a distance measurement method using stereo images.
  • distance image data generated by a distance measurement method using stereo images instead of the primary distance image data DD1 will be referred to as "alternative distance image data SD.”
  • the primary distance image data DD1 can be obtained by calculating the distribution of the amount of charge accumulated in the charge storage section 14a and the charge storage section 14b shown in FIG. 4 using the light reception signals S1 and S2.
  • the luminance image data BD can be obtained according to the total amount of charge accumulated in both the charge accumulation section 14a and the charge accumulation section 14b shown in FIG. 4. That is, by calculating the total amount of charge accumulated in both the charge accumulation section 14a and the charge accumulation section 14b using the light receiving signals S1 and S2, it is possible to obtain the luminance information of each pixel 12 in the luminance image data BD.
  • the primary distance image data DD1 and the brightness image data BD are information that can be calculated by performing different calculations using the light reception signal S1 and the light reception signal S2.
  • the primary distance image data DD1 is used as is, or after being corrected, it is used as distance information in subsequent processing such as object detection and travel route determination.
  • the brightness image data BD is treated as one image data in the stereo image distance measuring method and is used to generate the alternative distance image data SD.
  • the light emission control section 11 receives an instruction from the first signal processing section 10 and supplies a light emission signal to the light emission section 8, and also supplies a synchronization signal of the light emission signal to the first light receiving section 9.
  • the iToF sensor 3 which includes the above-mentioned parts, outputs primary distance image data DD1 and brightness image data BD to the control unit 6.
  • the RGB sensor 5 in this example includes a second light receiving section 29 and a second signal processing section 30.
  • the RGB sensor 5 is composed of a CMOS sensor, a CCD sensor, etc., as described above.
  • the spatial resolution of the RGB sensor 5 is higher than that of the iToF sensor 3.
  • the second light receiving section 29 has a pixel array section in which each pixel is two-dimensionally arranged with R, G, or B color filters arranged in a Bayer array, etc., and the R, G, or B wavelength band in which each pixel receives light.
  • a signal obtained by photoelectrically converting the visible light is supplied to the second signal processing section 30 as a light reception signal.
  • the second signal processing section 30 includes an RGB image data generation section 31.
  • the RGB image data generation section 31 performs CDS processing, AGC (Automatic Gain Control) processing, etc. on the R signal, G signal, or B signal supplied from the second light receiving section 29, and further performs A/D conversion processing. By doing this, digital data is generated. Further, the RGB image data generation unit 31 generates RGB image data CD consisting of an R signal, a G signal, and a B signal for each pixel by performing a synchronization process on the digital data, and is supplied to the control section 6.
  • a polarizing filter that transmits light in a predetermined polarization direction may be provided on the incident surface of the image sensor of the RGB sensor 5.
  • a polarized image signal is generated based on light polarized in a predetermined polarization direction by the polarizing filter.
  • the polarizing filter has, for example, four polarization directions, in which case polarized image signals in four directions are generated.
  • the generated polarized image signal is supplied to the control section 6.
  • the control unit 6 uses the primary distance image data DD1 and brightness image data BD output from the iToF sensor 3 and the RGB image data CD output from the RGB sensor 5 to generate final distance image data.
  • This distance image data will be referred to as "final distance image data DD2.”
  • the control unit 6 includes an AI (Artificial Intelligence) image processing unit 32, a correction processing unit 33, and an alternative distance image data generation unit 34 in order to generate the final distance image data DD2 (see FIG. 2).
  • AI Artificial Intelligence
  • the AI image processing unit 32 performs various types of processing using an artificial intelligence model (hereinafter referred to as the "AI model") obtained through machine learning. Specifically, the AI image processing unit 32 performs a process of inferring the type of interference mode of the IR light (hereinafter referred to as "interfering light”) irradiated by the above-mentioned opposed AMR 1'.
  • AI model an artificial intelligence model obtained through machine learning. Specifically, the AI image processing unit 32 performs a process of inferring the type of interference mode of the IR light (hereinafter referred to as "interfering light") irradiated by the above-mentioned opposed AMR 1'.
  • the AI image processing unit 32 performs a process of inferring an area including a distance measurement error caused by interference light in the primary distance image data DD1 as a correction target area ArC.
  • the correction processing unit 33 corrects the distance information for the correction target area ArC inferred by the AI image processing unit 32.
  • This correction processing may be realized by performing inference using an AI model different from the AI model used by the AI image processing unit 32, or may be realized by rule-based processing.
  • the alternative distance image data generation unit 34 uses the brightness image data BD output from the brightness image data generation unit 28 of the first signal processing unit 10 and the RGB image data output from the RGB image data generation unit 31 of the second signal processing unit 30. Substitute distance image data SD is generated based on the image data CD.
  • the brightness image data BD is an IR image
  • the RGB image data CD is a color image. Therefore, both image data are of different types.
  • the alternative distance image data generation unit 34 can generate alternative distance image data SD using these different types of image data.
  • the alternative distance image data generation unit 34 first identifies a pixel in the RGB image data CD that corresponds to an arbitrary pixel in the brightness image data BD as a corresponding point. The corresponding points are identified for each pixel in the brightness image data BD.
  • RGB image data After converting RGB image data to monochrome image data, it is conceivable to use a block matching method on the luminance image data BD as an IR image and the monochrome RGB image data.
  • An AI model may be used in the block matching method.
  • the number of pixels in the luminance image data BD is said to be smaller than the number of pixels in the RGB image data CD, so by identifying the corresponding point of each pixel in the luminance image data BD on the RGB image data CD, It is possible to prevent a situation in which there are no suitable pixels to be used.
  • the corresponding point of each pixel of the RGB image data CD may be specified on the luminance image data BD. In this case, there may be cases where there is no appropriate corresponding point on the brightness image data BD, or cases where corresponding points of a plurality of pixels of the RGB image data CD are the same pixel on the brightness image data BD.
  • the above-mentioned AI image processing unit 32 uses the AI model to classify the degree of influence of the interference light emitted from the opposing AMR 1' on the primary distance image data DD1 as a "disturbance pattern PT.”
  • FIG. 6 shows an example of the first pattern PT1 regarding the interference pattern PT.
  • the first pattern PT1 is a pattern that does not cause distance measurement errors due to interference light.
  • the first pattern PT1 is a state in which the opposing AMR 1' is not emitting light or a state in which direct light and reflected light of the interference light from the opposing AMR 1' are not incident on the sensor surface of the iToF sensor 3 due to the angle of the interference light. It is said that
  • FIG. 7 shows an example of the second pattern PT2 regarding the interference pattern PT.
  • the second pattern PT2 is a pattern with a large distance measurement error due to interference light. For example, there is a state in which direct interference light from the opposing AMR 1' is incident over substantially the entire sensor surface of the iToF sensor 3. Further, for example, there is a case where the interference light is light substantially perpendicular to the sensor surface of the iToF sensor 3. That is, when the area including the distance measurement error is wide and the correction target area ArC is wide, the second pattern PT2 is inferred.
  • FIG. 8 shows an example of the third pattern PT3 regarding the interference pattern PT.
  • the third pattern PT3 is a pattern in which there is a distance measurement error due to the interference light, and the influence of the distance measurement error due to the interference light is smaller than the second pattern PT2. For example, this is a state where the opposing AMR 1' is emitting interference light toward the ground or a wall, and the reflected light of the interference light is incident on a part of the sensor surface of the iToF sensor 3. Another case is that the interference light is non-parallel to the sensor surface of the iToF sensor 3.
  • FIG. 9 shows an example of the fourth pattern PT4 regarding the interference pattern PT.
  • the fourth pattern PT4 is a state in which interference light is irradiated from the opposing AMR 1' in the same manner as the third pattern PT3, and there is an obstacle BO that blocks the direct light or a part of the reflected light of the interference light. It is a state of In other words, the oncoming AMR 1' is emitting interference light toward the ground, floor, or wall, and part of the reflected light of the interference light that is not blocked by the obstacle BO is iToF. This is a state in which the light is incident on a part of the sensor surface of the sensor 3.
  • the type of the interference pattern PT can also be expressed as a type depending on the direction of the interference light.
  • the AI image processing unit 32 of the control unit 6 of the AMR 1 performs a process of inferring the correction target area ArC according to the disturbance pattern PT using the AI model.
  • the AI image processing unit 32 determines that the correction target area ArC does not exist in the primary distance image data DD1, and avoids the inference process for the correction target area ArC.
  • the AI image processing unit 32 does not infer the correction target area ArC. Since it can be estimated that the second pattern PT2 includes a distance measurement error over almost the entire sensor surface of the iToF sensor 3, the AI image processing unit 32 determines that the accuracy of the distance information after correction cannot be guaranteed. , avoiding estimation of the correction target area ArC.
  • the alternative distance image data generation unit 34 of the control unit 6 generates alternative distance image data SD.
  • the generated alternative distance image data SD is treated as final distance image data DD2.
  • the AI image processing unit 32 performs a process of inferring the correction target area ArC on the primary distance image data DD1 by providing the primary distance image data DD1 as input data to the AI model.
  • the area Ar1 (the area shown by the dashed line in Figure 8) where the interfering light is reflected on the floor surface is obtained as the output data of the AI model as the correction target area ArC.
  • the interference pattern PT of the primary distance image data DD1 is the fourth pattern PT4 shown in FIG.
  • processing for inferring the correction target area ArC on the primary distance image data DD1 is performed.
  • an area Ar2 (area indicated by a broken line in FIG. 9) on the floor surface where the interfering light is reflected is obtained as the correction target area ArC as output data of the AI model.
  • the region Ar3 (region indicated by the dashed line in FIG. 9) in which the obstacle BO is imaged in the primary distance image data DD1 is not regarded as the correction target region ArC since normal distance information is obtained.
  • correction processing section 33 of the control section 6 corrects the distance information for the correction target area ArC specified on the primary distance image data DD1.
  • an AI model may be used to correct the distance information
  • rule-based processing may also be applied.
  • an arbitrary pixel in the correction target area ArC is selected as the correction target pixel GC (see FIG. 10).
  • the correction processing unit 33 selects the pixel G1 outside the correction target area ArC in the area recognized as the floor surface, acquires its distance information, and selects the pixel G1 located outside the correction target area ArC in the area recognized as the floor surface, and selects the pixel G1 located in the horizontal direction of the pixel G1. Correction is performed by replacing it with distance information (see FIG. 11).
  • the pixels G1 selected outside the correction target area ArC may be selected from the pixels closest to the correction target area ArC (see FIG. 12).
  • Corrected distance image data which is distance image data obtained after distance information is corrected, is treated as final distance image data DD2.
  • the AI image processing unit 32 performs a process of classifying the interference pattern PT regarding the primary distance image data DD1 using the AI model.
  • the AI model used for classifying the disturbance pattern PT is referred to as a first AI model M1.
  • the learning data used for machine learning to generate the first AI model M1 is each distance image data corresponding to the images of the first pattern PT1 to the fourth pattern PT4 as shown in each figure of FIGS. 6 to 9. , is the label information of the first pattern PT1 to the fourth pattern PT4 as correct data.
  • RGB image data CD obtained from the RGB sensor 5 may be used as learning data for generating the first AI model M1. Thereby, it is possible to learn feature amounts regarding the presence or absence of influence by IR light and the magnitude of influence, and it is possible to obtain the first AI model M1 with high inference accuracy.
  • the AI image processing unit 32 also performs a process of identifying the correction target area ArC in the primary distance image data DD1 using an AI model.
  • the AI model used to identify the correction target area ArC is referred to as the second AI model M2.
  • the learning data used for machine learning to generate the second AI model M2 are distance image data belonging to the first pattern PT1 (first normal image data) and distance image data belonging to the third pattern PT3 (first correction required). (image data), and information on the correction target area ArC for distance image data belonging to the third pattern PT3 as correct data.
  • the distance image data belonging to the first pattern PT1 and the distance image data belonging to the third pattern PT3 are distance image data obtained as a result of imaging the same subject at the same angle of view, and are By using distance image data that differs only in the presence or absence of light emission, it is possible to obtain the second AI model M2 that has suitably learned the range affected by the interference light from the opposing AMR 1'.
  • RGB image data CD (second normal image data) obtained from the RGB sensor 5 may be used as learning data for generating the second AI model M2.
  • the AI image processing unit 32 described above uses the primary distance image data DD1 output from the iToF sensor 3 and the RGB image data CD output from the RGB sensor 5 as input data for inference of the correction target area ArC to an AI model. It is something that can be given. That is, the second AI model M2 calculates the primary distance by taking into account both the characteristics of the object obtained from the RGB image data CD, from which the influence of IR light as interference light has been eliminated, and the characteristics of the distance information in the primary distance image data DD1. A correction target area ArC in the image data DD1 is inferred.
  • the second AI model M2 uses the distance image data belonging to the first pattern PT1 as learning data
  • the second AI model M2 uses the distance image data of the third pattern PT3 that includes a distance measurement error due to the influence of interference light. It is assumed that the difference between the distance image data and distance image data from which distance measurement errors due to the influence of interfering light have been removed, that is, the distance image data of the first pattern PT1 as corrected distance image data, has been learned.
  • the second AI model M2 can be used not only to specify the correction target area ArC but also to correct the correction target area ArC.
  • control unit 6 acquires RGB image data CD acquired from the RGB sensor 5 in step S102.
  • step S103 the control unit 6 performs inference processing using the first AI model M1 to identify the interference pattern PT.
  • the first AI model M1 receives primary distance image data DD1 and RGB image data CD as input data.
  • step S104 and step S105 the control unit 6 performs branch processing according to the identified disturbance pattern PT.
  • step S104 the control unit 6 determines whether the identified interference pattern PT is the first pattern PT1 or not. If it is determined that it is the first pattern PT1, that is, if the first AI model M1 infers that appropriate distance information has been obtained for each pixel and no correction is necessary, the control unit 6 proceeds to step S110 and outputs the primary distance image data DD1 as the final distance image data DD2.
  • step S104 determines in the subsequent step S105 whether or not the identified interference pattern PT is the second pattern PT2. do.
  • step S106 inference processing using the second AI model M2 is performed.
  • the second AI model M2 receives, as input data, the primary distance image data DD1, the RGB image data CD, and information about the disturbance pattern PT which is the inference result of the first AI model M1. Thereby, the correction target area ArC on the primary distance image data DD1 is specified.
  • step S107 the control unit 6 performs a process of correcting the distance information regarding the correction target area ArC.
  • the correction process rule-based processing or inference using an AI model may be performed.
  • step S110 the control unit 6 outputs the corrected distance image data obtained by the correction process in step S107 as final distance image data DD2.
  • step S105 if it is determined that the identified interference pattern PT is the second pattern PT2, that is, the primary distance image data DD1 includes a distance measurement error, and even if corrected, the appropriate distance information is If it is inferred by the first AI model M1 that it cannot be obtained, the control unit 6 proceeds to step S108 and obtains the brightness image data BD output from the iToF sensor 3.
  • step S109 the control unit 6 uses the brightness image data BD and the RGB image data CD to generate alternative distance image data SD using a distance measurement method using stereo images.
  • step S110 the control unit 6 outputs the alternative distance image data SD obtained in step S109 as final distance image data DD2.
  • FIG. 14 is a block diagram showing an example of the internal configuration of the AMR 1. As shown in FIG.
  • the AMR 1 includes the above-mentioned iToF sensor 3, RGB sensor 5, control unit 6, imaging optical system 35, optical system driving unit 36, memory unit 37, and communication unit 38.
  • the iToF sensor 3, the RGB sensor 5, the control section 6, the memory section 37, and the communication section 38 are connected via a bus 39, and are capable of mutual data communication.
  • the control unit 6 includes a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the CPU performs overall control of the AMR 1 by executing various processes according to programs stored in the ROM or programs loaded into the RAM. Since the control unit 6 has already been described, further explanation will be omitted.
  • the imaging optical system 35 includes the first optical system 2 and the second optical system 4 described above, and it guides light (IR light and visible light) from the subject to the first optical system of the iToF sensor 3. The light is focused on the light receiving section 9 and the light receiving surface of the second light receiving section 29 of the RGB sensor 5.
  • the optical system driving unit 36 collectively refers to the driving units for each optical component of the imaging optical system 35. Specifically, the optical system driving unit 36 has actuators for driving the zoom lens, focus lens, and aperture mechanism, and driving circuits for the actuators.
  • the memory unit 37 is a nonvolatile storage device such as an HDD (Hard Disk Drive) or a flash memory device, and is used as a storage destination (recording destination) for image data output from the iToF sensor 3 and the RGB sensor 5.
  • HDD Hard Disk Drive
  • flash memory device a nonvolatile storage device such as an SSD (Hard Disk Drive) or a flash memory device, and is used as a storage destination (recording destination) for image data output from the iToF sensor 3 and the RGB sensor 5.
  • the communication unit 38 performs various data communications with external devices according to the communication control of the control unit 6.
  • the communication unit 38 of the AMR 1 may be able to perform data communication with the communication unit of the opposing AMR 1'.
  • the implementation of the present technology is not limited to this, and inference processing using an AI model may be performed inside the iToF sensor 3.
  • FIG. 15 The configuration of the iToF sensor 3A and RGB sensor 5A included in such an AMR 1 is shown in FIG. 15. Note that descriptions of configurations similar to those in FIG. 2 will be omitted as appropriate.
  • the iToF sensor 3A includes a control section 6 in addition to a light emitting section 8, a first light receiving section 9, a first signal processing section 10, and a light emission control section 11. That is, the iToF sensor 3A functions as the AI image processing section 32, correction processing section 33, and alternative distance image data generation section 34 included in the control section 6.
  • the RGB sensor 5A has a configuration similar to that shown in FIG. 2, including a second light receiving unit 29 and a second signal processing unit 30, but the RGB image data CD generated in the RGB image data generating unit 31 of the second signal processing unit 30 is supplied to the iToF sensor 3A.
  • FIG. 16 is a block diagram showing an example of the internal configuration of the AMR 1 according to the second embodiment.
  • the AMR 1 includes an iToF sensor 3A, an RGB sensor 5A, an imaging optical system 35, an optical system drive section 36, a memory section 37, a communication section 38, and an external control section 40. There is.
  • the iToF sensor 3A, the RGB sensor 5A, the memory section 37, the communication section 38, and the external control section 40 are connected via a bus 39, and are capable of mutual data communication.
  • Imaging optical system 35 Descriptions of the imaging optical system 35, optical system drive section 36, memory section 37, and communication section 38 are omitted to avoid duplication with FIG. 14.
  • the extra-sensor control unit 40 realizes, for example, some of the functions of the control unit 6 described above, and includes, for example, processing for driving the drive unit of the AMR 1 based on distance image data and communication with the opposing AMR 1'. Perform processing, etc.
  • the iToF sensor 3A includes a light emitting section 8, a first light receiving section 9, a first signal processing section 10, an in-sensor control section 41, an AI image processing section 42, a memory section 43, and a communication I/F 44. and are capable of data communication with each other via a bus 45.
  • the light emitting section 8, the first light receiving section 9, and the first signal processing section 10 will not be repeatedly explained.
  • the sensor internal control unit 41 realizes some of the functions of the control unit 6 and the light emission control unit 11 in FIG. 15, and specifically performs various processes that can be executed without using an AI model.
  • the sensor internal control unit 41 is realized by, for example, a CPU or an MPU (Micro Processor Unit).
  • the in-sensor control unit 41 issues instructions to the light emission control unit 11 to realize light emission control. Further, the in-sensor control unit 41 issues instructions to the first light receiving unit 9 and controls execution of the imaging operation. Similarly, the first signal processing section 10 also controls the execution of processing.
  • the AI image processing unit 42 performs processing using an AI model in the control unit 6, and is realized by, for example, a DSP (Digital Signal Processor).
  • DSP Digital Signal Processor
  • the processing executed by the AI image processing unit 42 includes processing for inferring the disturbance pattern PT and processing for inferring the correction target area ArC, as described above. Further, the correction process may be realized by inferring distance information after correction with respect to the correction target area ArC.
  • Switching of the AI model used by the AI image processing unit 42 is performed, for example, based on the processing of the extra-sensor control unit 40 and the intra-sensor control unit 41. Furthermore, switching between AI models is realized by, for example, storing a plurality of AI models in the memory unit 43 or the memory unit 37.
  • the memory unit 43 can be used as a so-called frame memory in which the primary distance image data DD1 and luminance image data BD obtained by the first signal processing unit 10 are stored.
  • the memory unit 43 can also be used for temporary storage of data used in the process in which the AI image processing unit 42 executes processing using an AI model.
  • the memory unit 43 stores information on programs, AI applications, and AI models used by the AI image processing unit 42.
  • the AI application refers to an application that uses an AI model.
  • an application that generates primary distance image data DD1 using an AI model is an example of an AI application.
  • the communication I/F 44 is an interface that communicates with the external control section 40, the memory section 37, etc. located outside the iToF sensor 3A.
  • the communication I/F 44 performs communication to acquire programs executed by the sensor internal control unit 41 and AI applications and AI models used by the AI image processing unit 42 from the outside, and stores them in the memory unit 43 included in the iToF sensor 3A. Make me remember.
  • the AI model is stored in the memory unit 43 included in the iToF sensor 3A, and can be used by the AI image processing unit 42.
  • Distance image data such as the final distance image data DD2 as a processing result of the processing using the AI model performed by the AI image processing unit 42 is output to the outside of the iToF sensor 3A via the communication I/F 44.
  • the RGB sensor 5A includes a second light receiving section 29, a second signal processing section 30, an internal sensor control section 46, a memory section 47, and a communication I/F 48, each of which exchanges data with each other via a bus 49. It is said that communication is possible.
  • the second light receiving section 29 and the second signal processing section 30 will not be repeatedly explained.
  • the in-sensor control unit 46 instructs the second light receiving unit 29 to control the execution of the imaging operation.
  • the second signal processing section 30 also controls the execution of processing. Thereby, RGB image data CD is obtained in the RGB sensor 5A.
  • the memory section 47 can be used as a so-called frame memory in which the RGB image data CD obtained by the second signal processing section 30 is stored.
  • the communication I/F 48 is an interface that communicates with the external control unit 40, the memory unit 37, etc. located outside the RGB sensor 5A.
  • the communication I/F 44 performs communication to acquire a program and the like to be executed by the in-sensor control unit 41 from the outside, and stores it in the memory unit 47 included in the RGB sensor 5A.
  • the above-mentioned AMR 1 describes that the communication unit 38 may communicate with the opposing AMR 1'. In this communication by the communication unit 38, the AMR 1 may be configured to acquire manufacturer information, model information, etc. of the opposing AMR 1' from the opposing AMR 1'.
  • the AMR 1 can obtain information about the interfering light emitted from the opposing AMR 1', making it possible to improve correction accuracy. Further, since processing can be performed using various AI models in consideration of the size, shape, etc. of the casing of the opposing AMR 1', it is possible to improve inference accuracy.
  • the AMR1 described above uses an AI model to perform a correction process to reduce the distance measurement error included in the correction target area ArC.
  • the AMR 1 may determine the material of the subject using an AI model or the like, and perform correction on the correction target area ArC in consideration of the material of the subject in the correction process.
  • a plurality of images with different materials for floors and walls are provided as learning data.
  • the AI model obtained through this learning is an AI model that infers the correction target area ArC, it can infer an appropriate area as the correction target area ArC depending on the material. It becomes possible to improve inference accuracy.
  • an AI model that performs correction processing by inferring distance information after correction it is possible to appropriately correct the correction target area ArC according to the material of the subject, so that the correction result can be It becomes possible to make the distance information of the final distance image data DD2 highly accurate.
  • the iToF sensor 3 (3A) is the first sensor and the RGB sensor 5 (5A) is the second sensor.
  • the types of sensors included in the AMR 1 are not limited to these.
  • the AMR 1 may be provided with a dToF (direct ToF) sensor instead of the iToF sensor 3 (3A) as the first sensor, or may be provided with a distance measurement sensor provided with phase difference detection pixels, or may be provided with any other distance measurement sensor.
  • dToF direct ToF
  • the AMR 1 may be provided with a sensor that outputs a monochrome image instead of the RGB sensor 5 (5A), may be provided with an IR sensor, or may be provided with a polarization sensor as the second sensor. .
  • the AMR 1 can use a sensor capable of detecting the external shape of the subject as the second sensor. This makes it possible to identify the corresponding point of any pixel in the distance image data output from the distance measurement sensor on the image data output from the second sensor, and replaces it with the stereo image distance measurement method.
  • Distance image data SD can be generated.
  • the AMR1 as an information processing device is equipped with an AI image processing unit 32, 42 that performs processing to infer, as input data to a machine-learned artificial intelligence model (second AI model M2), a ranging error area that occurs in the first image data due to interfering light (e.g., interfering light of IR light) in the light receiving wavelength band of the first sensor emitted by an external object (opposing AMR1'), as a correction target area ArC, by providing the first image data (primary distance image data DD1) as distance image data obtained based on the light receiving signals S1, S2 of the first sensor (iToF sensor 3, 3A), which is a light receiving sensor that performs light receiving operation for distance measurement, and the second image data (RGB image data CD), which is image data obtained based on the light receiving signals (R signal, G signal, B signal) of the second sensor (RGB sensor 5, 5A), which is a light receiving sensor of a different type from the first sensor,
  • a machine-learned artificial intelligence model a
  • the distance information about the correction target area ArC in the first image data (primary distance image data DD1) is corrected, and the corrected distance image data is It may also include a correction processing section 33 that outputs.
  • the correction processing section 33 that outputs.
  • the above-mentioned external object may be the AMR (opposing AMR 1'). If information processing devices such as AMRs that move while generating distance image data about objects located in front of them pass each other, there is a concern that the distance measurement accuracy will decrease due to the laser light emitted for distance measurement. Ru. By specifying the correction target area ArC in such an information processing device, it is possible to suppress a decrease in distance measurement accuracy.
  • the artificial intelligence model (second AI model M2) in AMR1 as an information processing device uses the first normal image data (primary distance image data DD1) in which the correction target area ArC is assumed not to exist.
  • Image data for example, distance image data regarding FIG. 6
  • first correction-required image data for example, distance image data regarding FIG. 8
  • second image data RGB
  • the second normal image data based on the image data CD may be obtained by machine learning using learning data set as a set.
  • the first normal image data and the first image data requiring correction are distance image data
  • the second normal image data is, for example, an RGB image, a monochrome image, a polarized light image, or the like.
  • the distance image data of the second pattern PT2 shown in FIG. 7 and the distance image data of the fourth pattern PT4 shown in FIG. 9 as learning data it becomes possible to recognize features such as the outline of the object to be measured, and improve the accuracy of inference of the correction target area ArC. Can be done. Furthermore, by not using the distance image data of the second pattern PT2 shown in FIG. 7 and the distance image data of the fourth pattern PT4 shown in FIG. 9 as learning data, it is possible to reduce the learning data, and The time required can be shortened. Note that by further using the distance image data of the fourth pattern PT4 shown in FIG. 9 as learning data, the correction accuracy in the case where an obstacle BO exists between the oncoming AMR 1' and the oncoming AMR 1' may be improved. Moreover, by further using the distance image data of the second pattern PT2 shown in FIG. 7 as learning data, it is possible to determine whether or not to perform correction using the AI model.
  • the learning data for the second AI model M2 may further include corrective data for the correction target area ArC. This makes it possible to improve the estimation accuracy of the correction target area ArC.
  • the AI image processing units 32 and 42 in the AMR 1 as an information processing device use an artificial intelligence model (first AI model M1) to prevent interference with interference light. Processing may be performed to infer a disturbance pattern PT which is a type of aspect. Thereby, for example, the correction target area ArC can be inferred using the second AI model M2 learned for each disturbance pattern PT, so that the inference accuracy can be improved.
  • first AI model M1 an artificial intelligence model
  • the correction target area ArC can be inferred using the second AI model M2 learned for each disturbance pattern PT, so that the inference accuracy can be improved.
  • the interference patterns PT may be classified into types according to the direction of interference light. For example, if interference light is irradiated approximately orthogonally to the sensor surface of the first sensor (iToF sensors 3, 3A), the interference light will affect the entire sensor surface and the accuracy of distance image data will be significantly reduced. It will drop. Further, when the reflected light of the interference light is incident on the sensor surface of the first sensor, the accuracy of the distance image data decreases in a part of the area that receives the reflected light. By estimating such a pattern of interference light, it becomes possible to use an appropriate second AI model M2 for each interference pattern PT, and it is possible to improve inference accuracy.
  • the interference pattern PT is such that the direct light of the interference light hits the sensor surface of the first sensor (iToF sensor 3, 3A).
  • a first pattern PT1 in which no direct light is incident a second pattern PT2 in which direct light is incident on the sensor surface, and a third pattern in which direct light is not incident on the sensor surface and there is no obstacle BO that blocks at least a portion of the interfering light.
  • the pattern may include at least PT3 and a fourth pattern PT4 in which direct light is not incident on the sensor surface and an obstacle BO is present.
  • distance information about the correction target area ArC in the first image data is corrected and corrected distance image data is output.
  • the correction processing unit 33 may perform correction on the fourth pattern PT4 except for the area where the obstacle BO is imaged.
  • the distance information obtained about the obstacle BO is considered to be correct.
  • the artificial intelligence model (first AI model M1) that infers the disturbance pattern PT is the one in which the correction target area ArC does not exist.
  • the first normal image data (for example, the distance image data for FIG. 6) is the first image data (primary distance image data DD1) that has been determined to be the same, and the first correction-required image is the first image data having the correction target area ArC.
  • Data for example, the distance image data for FIG. 8
  • second normal image data based on the second image data RGB image data CD
  • correct data for the interference pattern PT are used. It may also be obtained through machine learning.
  • the interference pattern PT By performing supervised learning in which the interference pattern PT is given as correct data, the accuracy of inference of the interference pattern PT for distance image data can be improved, and subsequent correction processing can be performed appropriately. Note that by further using the distance image data of the second pattern PT2 shown in FIG. 7 and the distance image data of the fourth pattern PT4 shown in FIG. 9 as learning data, the interference pattern PT for various situations is inferred. This makes it possible to perform appropriate correction processing and the like.
  • the stereo It may also include an alternative distance image data generation unit 34 that generates alternative distance image data SD by a distance measurement method using images. That is, for example, a distance measurement method using stereo images is adopted as an alternative to distance measurement using the iToF method. Therefore, it is possible to generate alternative distance image data SD that eliminates distance measurement errors caused by interfering light.
  • the first sensor (iToF sensor 3, 3A) in the AMR 1 as an information processing device receives a light reception signal S1 from which distance image data and brightness image data BD are obtained
  • the alternative distance image data generation unit 34 generates brightness image data BD and second image data as two images used in the distance measurement method using stereo images.
  • Image data RGB image data CD
  • the light reception signals S1 and S2 output from the first sensor are used both for generating distance image data using the iToF distance measurement method and for generating distance image data using the distance measurement method using stereo images.
  • the two-lens sensors can handle the generation of distance image data and alternative distance image data SD.
  • This makes it possible to reduce component costs and downsize the AMR1 compared to a total of 3-lens configuration, which has a single-lens sensor that generates distance image data and two-lens sensors that obtain stereo images. It becomes possible.
  • the correction processing unit 33 in the AMR 1 serving as the information processing apparatus may perform correction using information on peripheral pixels of the correction target area ArC. Thereby, correction processing can be performed with simple processing.
  • the first sensors (iToF sensors 3, 3A) in the AMR 1 serving as the information processing device may be sensors having sensitivity to IR light.
  • the interfering light for the first sensor is IR light. Therefore, if the second sensor is, for example, the RGB sensor 5 or 5A, second image data (RGB image data CD) that is not affected by interference light, which is IR light, is output, so that the correction target area ArC can be inferred. The accuracy and accuracy of correction processing can be improved.
  • the information processing method executed by the AMR1 as an information processing device is to process distance image data obtained based on the light reception signals S1 and S2 of the first sensor (iToF sensor 3, 3A), which is a light reception sensor that performs a light reception operation for distance measurement.
  • the first image data primary distance image data DD1
  • the light reception signals (R signal, G signal, B signal) of the second sensor RGB sensor 5, 5A) which is a light reception sensor of a different type from the first sensor.
  • the second image data (RGB image data CD), which is image data obtained based on , as input data to the machine-learned artificial intelligence model (second AI model M2)
  • the information is used to infer a distance measurement error area that occurs in the first image data due to interference light in the wavelength band received by the first sensor emitted by an external object (opposing AMR 1') as a correction target area ArC. This is done by the processing device.
  • the program in this technology is based on first image data (primary This is image data obtained based on the distance image data DD1) and the light reception signals (R signal, G signal, B signal) of the second sensor (RGB sensor 5, 5A) which is a light reception sensor of a different type from the first sensor.
  • first image data primary This is image data obtained based on the distance image data DD1
  • the light reception signals R signal, G signal, B signal
  • the second sensor RGB sensor 5, 5A
  • the arithmetic processing unit executes a function of inferring a distance measurement error area that occurs in the first image data due to interference light in the wavelength band received by the first sensor emitted by the opposing AMR 1') as a correction target area ArC.
  • the AMR 1 as the information processing device described above, it is possible to suppress a decrease in distance measurement accuracy due to disturbance.
  • HDD Hard Disk Drive
  • ROM Read Only Memory
  • MO Magnetic Optical
  • DVDs Digital Versatile Discs
  • Blu-ray Discs registered trademark
  • magnetic disks and semiconductor memory.
  • a removable recording medium can be provided as so-called package software.
  • a program can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • the present technology can also adopt the following configuration.
  • An information processing device comprising an AI (Artificial Intelligence) image processing unit that performs a process of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
  • AI Artificial Intelligence
  • the information processing device further comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data.
  • the external object is an AMR (Autonomous Mobile Robot).
  • the artificial intelligence model includes first normal image data that is the first image data in which the correction target area does not exist, and first correction-required image data that is the first image data that has the correction target area. and second normal image data based on the second image data.
  • Information processing device (5) The information processing device according to (4) above, wherein the learning data further includes correct data regarding the correction target area.
  • the information processing device performs a process of inferring a disturbance pattern that is a type of disturbance mode of the disturbance light using an artificial intelligence model. .
  • the interference pattern is classified into types according to the direction of the interference light.
  • the interference pattern includes a first pattern in which the direct light of the interference light does not enter the sensor surface of the first sensor, a second pattern in which the direct light does not enter the sensor surface, and a second pattern in which the direct light does not enter the sensor surface.
  • the information processing device comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data;
  • the information processing device comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data;
  • the information processing device comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data;
  • the information processing device comprising a correction processing unit that performs the correction on the fourth pattern except for an area where the obstacle is imaged.
  • the artificial intelligence model that infers the disturbance pattern uses first normal image data that is the first image data in which the correction target area does not exist, and first normal image data that is the first image data that has the correction target area.
  • the above-mentioned image data is obtained by machine learning using learning data that is a set of first correction image data, second normal image data based on the second image data, and correct data for the interference pattern.
  • the information processing device according to any one of (7) to (9) above.
  • (11) an alternative distance image data generation unit that generates alternative distance image data by a distance measurement method using stereo images when the AI image processing unit obtains an inference result that the interference pattern is the second pattern;
  • the information processing device according to any one of (8) to (9) above.
  • the first sensor is a light-receiving sensor that performs a light-receiving operation using an iToF (indirect time of flight) ranging method that outputs a light-receiving signal from which the distance image data and brightness image data are obtained;
  • the correction processing unit performs the correction using information on peripheral pixels of the correction target area.
  • the second image data which is image data obtained based on the light reception signal of A program that causes an arithmetic processing unit to execute a function of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
  • AMR information processing equipment
  • AMR information processing equipment
  • 3A iToF sensor first sensor
  • 5A RGB sensor second sensor
  • Correction processing section 34
  • Primary distance image data first image data, distance image data
  • BD Brightness image data
  • CD RGB image data second image data
  • SD Alternative distance image data
  • ArC Correction target area
  • PT Obstruction pattern PT1 1st pattern PT2 2nd pattern PT3 3rd pattern PT4 4th pattern BO Obstacle
  • M1 1st AI model artificial intelligence model
  • M2 2nd AI model artificial intelligence model

Abstract

An information processing device according to the present invention comprises an artificial intelligence (AI) image processing unit that: receives input of first image data and second image data as input data for an artificial intelligence model which has been trained with machine learning, said first image data being distance image data which is obtained on the basis of a light reception signal of a first sensor serving as a light-receiving sensor that performs a light reception operation for distance measurement, said second image data being image data obtained on the basis of a light reception signal of a second sensor that is a light-receiving sensor differing in type from the first sensor; and uses the artificial intelligence model to perform a process for inferring, as a correction target region, a distance measurement error region which appears in the first image data due to interference light that has been emitted from an outside object and that is in a light-reception wavelength band of the first sensor.

Description

情報処理装置、情報処理方法、プログラムInformation processing device, information processing method, program
 本技術は測距を行うための情報処理装置、情報処理方法、プログラムに関する。 The present technology relates to an information processing device, an information processing method, and a program for distance measurement.
 対象までの距離を測定する測距装置について、例えば、下記特許文献1に示すようなToF(Time of Flight)センサがある。 Regarding distance measuring devices that measure the distance to a target, there is a ToF (Time of Flight) sensor as shown in Patent Document 1 below, for example.
特表2014-524016号公報Special table 2014-524016 publication
 このような測距センサは種々の機器に搭載されており、その中にはAMR(Autonomous Mobile Robot)も含まれている。
 測距センサを搭載したAMRは今後種々の現場で用いられることが想定される。このようなAMRは、測距のためにレーザ光などを出射しているため、自身が発したレーザ光だけでなく他者が発したレーザ光を受光する機会が増える。
Such distance measuring sensors are installed in various devices, including AMR (Autonomous Mobile Robot).
It is expected that AMR equipped with a ranging sensor will be used in various fields in the future. Since such an AMR emits laser light or the like for distance measurement, there is an increased chance that the AMR receives not only the laser light emitted by itself but also the laser light emitted by others.
 従って、AMRは適切な測距を行えなくなる可能性がある。 Therefore, AMR may not be able to perform proper distance measurement.
 本技術は、このような事情に鑑みて為されたものであり、外乱による測距精度の低下を抑制することを目的とする。 The present technology was developed in view of these circumstances, and its purpose is to suppress the decrease in distance measurement accuracy due to disturbances.
 本技術に係る情報処理装置は、測距のための受光動作を行う受光センサである第1センサの受光信号に基づき得られる距離画像データとしての第1画像データと、前記第1センサとは異なる種別の受光センサである第2センサの受光信号に基づき得られる画像データである第2画像データとを機械学習された人工知能モデルの入力データとして与えることにより、前記人工知能モデルを用いて、外部の物体が発する前記第1センサの受光波長帯の妨害光に起因して前記第1画像データに生じる測距誤差領域を補正対象領域として推論する処理を行うAI(Artificial Intelligence)画像処理部を備えている。
 即ち、測距センサとそれ以外のセンサを組み合わせて使用することにより、外部の物体が発するレーザ光などによって測距結果が影響を受ける画素領域を補正対象領域として特定することが可能となる。
In the information processing device according to the present technology, first image data as distance image data obtained based on a light reception signal of a first sensor, which is a light reception sensor that performs a light reception operation for distance measurement, is different from the first sensor. By providing the second image data, which is the image data obtained based on the light reception signal of the second sensor, which is the light reception sensor of the type, as input data to the machine-learned artificial intelligence model, using the artificial intelligence model, the external an AI (Artificial Intelligence) image processing unit that performs processing to infer a distance measurement error area that occurs in the first image data due to interference light in the wavelength band received by the first sensor emitted by the object, as a correction target area. ing.
That is, by using a distance measurement sensor and other sensors in combination, it becomes possible to specify a pixel area whose distance measurement results are affected by laser light emitted by an external object as a correction target area.
AMRの動作概要を説明するための図である。FIG. 2 is a diagram for explaining an outline of the operation of AMR. iToFセンサとRGBセンサと制御部の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of an iToF sensor, an RGB sensor, and a control unit. 第1受光部の構成例を示す図である。It is a figure showing the example of composition of the 1st light sensing portion. 画素アレイ部が備える画素の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of pixels included in a pixel array section. 二つの電荷蓄積部に対して電荷が振り分けられる例を説明するための図である。FIG. 3 is a diagram for explaining an example in which charges are distributed to two charge storage units. 第1パターンの一例を示す図である。It is a figure showing an example of a 1st pattern. 第2パターンの一例を示す図である。FIG. 11 is a diagram showing an example of a second pattern. 第3パターンの一例を示す図である。It is a figure which shows an example of a 3rd pattern. 第4パターンの一例を示す図である。It is a figure which shows an example of a 4th pattern. 補正対象領域の補正を説明するための図である。FIG. 7 is a diagram for explaining correction of a correction target area. 図10と共に補正対象領域の補正を説明するための図である。FIG. 11 is a diagram for explaining correction of a correction target area together with FIG. 10; 図10及び図11と共に補正対象領域の補正を説明するための図である。FIG. 12 is a diagram for explaining correction of a correction target area together with FIGS. 10 and 11. FIG. AMRの制御部が実行する処理の一例を示すフローチャートである。3 is a flowchart illustrating an example of processing executed by a control unit of AMR. AMRの構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of AMR. 第2の実施の形態のAMRのiToFセンサとRGBセンサの構成例を示す図である。FIG. 7 is a diagram showing a configuration example of an AMR iToF sensor and an RGB sensor according to a second embodiment. 第2の実施の形態のAMRの構成例を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration example of an AMR according to a second embodiment.
 以下、実施の形態を次の順序で説明する。
<1.情報処理装置の構成>
<2.各センサ及び制御部の構成>
<3.制御部の機能構成>
<4.妨害態様の類型>
<5.補正対象領域の推論>
<6.補正対象領域の補正>
<7.学習用データ>
<8.補正に関する処理フロー>
<9.AMRの構成>
<10.第2の実施の形態>
<11.変形例>
<12.まとめ>
<13.本技術>
Hereinafter, embodiments will be described in the following order.
<1. Configuration of information processing device>
<2. Configuration of each sensor and control section>
<3. Functional configuration of control section>
<4. Types of interference modes>
<5. Inference of correction target area>
<6. Correction of correction target area>
<7. Learning data>
<8. Processing flow related to correction>
<9. AMR configuration>
<10. Second embodiment>
<11. Modified example>
<12. Summary>
<13. This technology>
<1.情報処理装置の構成>
 本技術の実施の形態に係る情報処理装置の一例としてAMR(Autonomous Mobile Robot)を挙げ、添付図を参照して説明する。
<1. Configuration of information processing device>
An AMR (Autonomous Mobile Robot) will be cited as an example of an information processing device according to an embodiment of the present technology, and will be described with reference to the attached drawings.
 図1はAMR1の動作の概要を説明するための図である。
 AMR1は、自律的に移動するロボットであり、主に進行方向を撮像した画像データ等に基づいて障害物などを検出しながら適切なルートを判定しつつ移動を行うものである。
FIG. 1 is a diagram for explaining an overview of the operation of AMR1.
The AMR 1 is a robot that moves autonomously, and moves while determining an appropriate route while detecting obstacles and the like based mainly on image data captured in the direction of travel.
 AMR1は、第1光学系2とiToF(indirect Time of Flight)センサ3と第2光学系4とR(Red)G(Green)B(Blue)センサ5と制御部6と駆動部7とを備えて構成されている。 The AMR 1 includes a first optical system 2, an iToF (indirect time of flight) sensor 3, a second optical system 4, an R (Red) G (Green) B (Blue) sensor 5, a control unit 6, and a drive unit 7. It is composed of
 第1光学系2は、iToFセンサ3で適切な入射光を受光するためにiToFセンサ3の前段に設けられており、例えば、カバーレンズ、ズームレンズ、フォーカスレンズ等のレンズや絞り(アイリス)機構などを備える。 The first optical system 2 is provided at the front stage of the iToF sensor 3 so that the iToF sensor 3 receives appropriate incident light. Equipped with etc.
 第1光学系2は、制御部6による制御に基づいて不図示のアクチュエータが適宜駆動されることにより、iToFセンサ3の良好な受光状態を確保する。
 なお、第1光学系2の一部がマイクロレンズなどとしてiToFセンサ3の一部として設けられていてもよい。
The first optical system 2 ensures a good light receiving state of the iToF sensor 3 by appropriately driving an actuator (not shown) based on control by the control unit 6.
Note that a part of the first optical system 2 may be provided as a part of the iToF sensor 3 as a microlens or the like.
 iToFセンサ3は、被写体に対して照射された特定の波長帯の光についての反射光を受光し、その飛行時間に基づいて被写体までの距離情報を画素ごとに得るセンサである。iToFセンサ3は、画素ごとの距離情報に基づいて距離画像データを生成して後段の制御部6に出力する。なお、iToFセンサ3は受光信号を出力するものとされ、後段の制御部6等において当該受光信号に基づく距離画像データの生成が行われるように構成されていてもよい。 The iToF sensor 3 is a sensor that receives reflected light of a specific wavelength band irradiated onto a subject, and obtains distance information to the subject for each pixel based on its flight time. The iToF sensor 3 generates distance image data based on distance information for each pixel and outputs it to the subsequent control section 6. Note that the iToF sensor 3 may be configured to output a light reception signal, and the subsequent control unit 6 or the like may be configured to generate distance image data based on the light reception signal.
 iToFセンサ3は、例えば、CMOS(Complementary Metal Oxide Semiconductor)型のイメージセンサとして構成されており、IR(Infrared)光に対する感度を有している。 The iToF sensor 3 is configured as, for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, and has sensitivity to IR (Infrared) light.
 第2光学系4は、RGBセンサ5で適切な入射光を受光するためにRGBセンサ5の前段に設けられており、例えば、カバーレンズ、ズームレンズ、フォーカスレンズ等のレンズや絞り機構などを備える。 The second optical system 4 is provided in front of the RGB sensor 5 so that the RGB sensor 5 receives appropriate incident light, and includes, for example, a cover lens, a zoom lens, a focus lens, and other lenses, as well as an aperture mechanism.
 第2光学系4は、制御部6による制御に基づいて不図示のアクチュエータが適宜駆動されることにより、RGBセンサ5の良好な受光状態を確保する。
 なお、第2光学系4の一部がマイクロレンズなどとしてRGBセンサ5の一部として設けられていてもよい。
The second optical system 4 ensures a good light receiving state of the RGB sensor 5 by appropriately driving an actuator (not shown) based on control by the control unit 6.
Note that a part of the second optical system 4 may be provided as a part of the RGB sensor 5 as a microlens or the like.
 RGBセンサ5は、被写体からの光を受光することによりカラー画像データとしてのRGB画像データを生成し後段の制御部6に出力する。 The RGB sensor 5 generates RGB image data as color image data by receiving light from the subject and outputs it to the control section 6 at the subsequent stage.
 RGBセンサ5は、例えば、CMOS型或いはCCD(Charge Coupled Device)型のイメージセンサとして構成されており、可視光帯域の光に対する感度を有している。 The RGB sensor 5 is configured as, for example, a CMOS type or CCD (Charge Coupled Device) type image sensor, and has sensitivity to light in the visible light band.
 制御部6は、iToFセンサ3から距離画像データを受け取ると共に、RGBセンサ5からRGB画像データを受け取る。
 制御部6は、距離画像データに基づいて撮像方向に存在する被写体を認識し、適切な走行ルートを判定する。
The control unit 6 receives distance image data from the iToF sensor 3 and receives RGB image data from the RGB sensor 5.
The control unit 6 recognizes the object present in the imaging direction based on the distance image data and determines an appropriate travel route.
 制御部6は、当該走行ルートを移動するために駆動部7に対して駆動指示を行う。 The control unit 6 issues a drive instruction to the drive unit 7 to move along the travel route.
 駆動部7は、種々の駆動機構とアクチュエータ等を備えて構成されており、AMR1の移動に寄与する。
The drive unit 7 includes various drive mechanisms, actuators, etc., and contributes to the movement of the AMR 1.
<2.各センサ及び制御部の構成>
 ここで、本技術を実現するためのより詳細な構成について説明する。具体的には、iToFセンサ3とRGBセンサ5と制御部6のより詳細な構成を図2に示す。
<2. Configuration of each sensor and control section>
Here, a more detailed configuration for realizing the present technology will be described. Specifically, FIG. 2 shows a more detailed configuration of the iToF sensor 3, RGB sensor 5, and control section 6.
 iToFセンサ3は、発光部8と第1受光部9と第1信号処理部10と発光制御部11とを備えている。 The iToF sensor 3 includes a light emitting unit 8, a first light receiving unit 9, a first signal processing unit 10, and a light emission control unit 11.
 発光部8は、発光制御部11によって印加される特定周波数の周期信号とされた発光信号に基づいてIR光を照射するLED(Light Emitting Diode)を有して構成されている。 The light emitting unit 8 is configured to include an LED (Light Emitting Diode) that emits IR light based on a light emission signal that is a periodic signal of a specific frequency and is applied by the light emission control unit 11.
 第1受光部9は、発光部8から照射され被写体で反射した反射光を受光する受光素子を有した画素12が行列状に二次元配置された画素アレイ部13を有して構成されている。 The first light receiving section 9 includes a pixel array section 13 in which pixels 12 having light receiving elements that receive reflected light emitted from the light emitting section 8 and reflected by the subject are two-dimensionally arranged in a matrix. .
 各画素12は、二つの電荷蓄積部14a、14bを有して構成されており、発光制御部11によって印加される発光信号に準じた信号(後述する転送制御信号TRTa、TRTb)に応じて、電荷が蓄積される電荷蓄積部14a、14bの切り替えが行われる。 Each pixel 12 is configured with two charge storage sections 14a and 14b, and responds to a signal (transfer control signals TRTa, TRTb to be described later) based on a light emission signal applied by the light emission control section 11. The charge storage sections 14a and 14b in which charges are stored are switched.
 画素12は、電荷蓄積部14aと電荷蓄積部14bとに蓄積されたそれぞれの電荷量に応じた受光信号を出力する。即ち、画素12は、電荷蓄積部14aに蓄積された電荷量に応じた受光信号と、電荷蓄積部14bに蓄積された電荷量に応じた受光信号とを出力する。この二つの受光信号は被写体までの距離情報を得るために後段において利用される。 The pixel 12 outputs a light reception signal according to the amount of charge accumulated in the charge accumulation section 14a and the charge accumulation section 14b, respectively. That is, the pixel 12 outputs a light reception signal corresponding to the amount of charge accumulated in the charge storage section 14a and a light reception signal corresponding to the amount of charge accumulated in the charge storage section 14b. These two light reception signals are used in a subsequent stage to obtain distance information to the subject.
 第1受光部9の構成例について図3に示す。 An example of the configuration of the first light receiving section 9 is shown in FIG. 3.
 第1受光部9は、画素アレイ部13、垂直駆動部15、カラム処理部16、水平駆動部17及びシステム制御部18を含んで構成されている。画素アレイ部13、垂直駆動部15、カラム処理部16、水平駆動部17及びシステム制御部18は、図示しない半導体基板(チップ)上に形成されている。 The first light receiving section 9 includes a pixel array section 13, a vertical drive section 15, a column processing section 16, a horizontal drive section 17, and a system control section 18. The pixel array section 13, the vertical drive section 15, the column processing section 16, the horizontal drive section 17, and the system control section 18 are formed on a semiconductor substrate (chip) not shown.
 画素アレイ部13には、入射光量に応じた電荷量の光電荷を発生して内部に蓄積する光電変換素子としてのPD(Photo Diode)19(図3において不図示)を有する画素12が行列状に二次元配置されている。 In the pixel array section 13, pixels 12 are arranged in a matrix, each having a PD (Photo Diode) 19 (not shown in FIG. 3) as a photoelectric conversion element that generates and internally accumulates photoelectric charges corresponding to the amount of incident light. are arranged two-dimensionally.
 画素アレイ部13には更に、行列状の画素配列に対して行毎に画素駆動線20が画素行における画素12の配列方向(図3左右方向)に沿って形成され、列毎に垂直信号線21が画素列における画素12の配列方向(図3上下方向)に沿って形成されている。画素駆動線20の一端は、垂直駆動部15の各行に対応した出力端に接続されている。 Further, in the pixel array section 13, pixel drive lines 20 are formed for each row of the pixel array in a matrix form along the arrangement direction of the pixels 12 in the pixel row (horizontal direction in FIG. 3), and vertical signal lines 20 are formed for each column. 21 are formed along the arrangement direction of the pixels 12 in the pixel column (vertical direction in FIG. 3). One end of the pixel drive line 20 is connected to an output end corresponding to each row of the vertical drive section 15.
 垂直駆動部15は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部13の各画素12を、全画素同時あるいは行単位等で駆動する画素駆動部である。垂直駆動部15によって選択走査された画素行の各画素12から出力される画素信号は、垂直信号線21の各々を通してカラム処理部16に供給される。カラム処理部16は、画素アレイ部13の画素列毎に、選択行の各画素から垂直信号線21を通して出力される画素信号に対して所定の信号処理を行うと共に、信号処理後の画素信号を一時的に保持する。 The vertical drive unit 15 is a pixel drive unit that is composed of a shift register, an address decoder, etc., and drives each pixel 12 of the pixel array unit 13, either all pixels at the same time or row by row. The pixel signals output from each pixel 12 in a pixel row selected and scanned by the vertical drive unit 15 are supplied to the column processing unit 16 through each vertical signal line 21. The column processing unit 16 performs a predetermined signal processing on the pixel signals output from each pixel in the selected row through the vertical signal line 21 for each pixel column in the pixel array unit 13, and temporarily holds the pixel signals after signal processing.
 具体的には、カラム処理部16は、信号処理として少なくとも、ノイズ除去処理、例えばCDS(Correlated Double Sampling:相関二重サンプリング)処理を行う。このカラム処理部16による相関二重サンプリング処理により、リセットノイズや増幅トランジスタの閾値ばらつき等の画素固有の固定パターンノイズが除去される。なお、カラム処理部16にノイズ除去処理以外に、例えば、A/D(Analog/Digital)変換機能を持たせ、信号レベルをデジタル信号で出力することも可能である。 Specifically, the column processing unit 16 performs at least noise removal processing, such as CDS (Correlated Double Sampling) processing, as signal processing. This correlated double sampling process by the column processing unit 16 removes fixed pattern noise specific to pixels, such as reset noise and threshold variation of amplification transistors. In addition to noise removal processing, the column processing section 16 may also be provided with, for example, an A/D (Analog/Digital) conversion function, and output the signal level as a digital signal.
 水平駆動部17は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部16の画素列に対応する単位回路を順番に選択する。この水平駆動部17による選択走査により、カラム処理部16で信号処理された画素信号が順番に図2の第1信号処理部10に出力される。 The horizontal drive section 17 is composed of a shift register, an address decoder, etc., and sequentially selects unit circuits corresponding to the pixel columns of the column processing section 16. By this selective scanning by the horizontal driving section 17, pixel signals subjected to signal processing in the column processing section 16 are sequentially outputted to the first signal processing section 10 in FIG.
 システム制御部18は、各種のタイミング信号を生成するタイミングジェネレータ等によって構成され、タイミングジェネレータで生成された各種のタイミング信号を基に垂直駆動部15、カラム処理部16、及び水平駆動部17などの駆動制御を行う。 The system control unit 18 includes a timing generator that generates various timing signals, and operates the vertical drive unit 15, column processing unit 16, horizontal drive unit 17, etc. based on the various timing signals generated by the timing generator. Performs drive control.
 画素アレイ部13においては、行列状の画素配列に対して、画素行毎に画素駆動線20が行方向に沿って配線され、各画素列に2つの垂直信号線21が列方向に沿って配線されている。例えば画素駆動線20は、画素12から信号を読み出す際の駆動を行うための駆動信号を伝送する。なお、図3では、一つの画素12に対して1本の画素駆動線20が配線されている例を示しているが、画素駆動線20は1本に限られるものではない。画素駆動線20の一端は、垂直駆動部15の各行に対応した出力端に接続されている。 In the pixel array section 13, for a matrix-like pixel arrangement, a pixel drive line 20 is wired along the row direction for each pixel row, and two vertical signal lines 21 are wired along the column direction for each pixel column. has been done. For example, the pixel drive line 20 transmits a drive signal for driving when reading a signal from the pixel 12. Note that although FIG. 3 shows an example in which one pixel drive line 20 is wired for one pixel 12, the number of pixel drive lines 20 is not limited to one. One end of the pixel drive line 20 is connected to an output end corresponding to each row of the vertical drive section 15.
 続いて、画素アレイ部13が備える各画素12の構成例について図4に示す。 Next, FIG. 4 shows an example of the configuration of each pixel 12 included in the pixel array section 13.
 画素12は、光電変換素子としてのPD19を備え、PD19で発生した電荷がタップ22a、22bに振り分けられるように構成されている。そして、PD19で発生した電荷のうち、タップ22aに振り分けられた電荷が垂直信号線21aから読み出されて受光信号S1として出力される。また、タップ22bに振り分けられた電荷が垂直信号線21bから読み出されて受光信号S2として出力される。 The pixel 12 includes a PD 19 as a photoelectric conversion element, and is configured so that charges generated by the PD 19 are distributed to taps 22a and 22b. Of the charges generated by the PD 19, the charges distributed to the tap 22a are read out from the vertical signal line 21a and output as the light reception signal S1. Furthermore, the charge distributed to the tap 22b is read out from the vertical signal line 21b and output as a light reception signal S2.
 タップ22aは、転送トランジスタ23a、電荷蓄積部14a(Floating Diffusion)、リセットトランジスタ24、増幅トランジスタ25a、及び選択トランジスタ26aにより構成される。同様に、タップ22bは、転送トランジスタ23b、電荷蓄積部14b、リセットトランジスタ24、増幅トランジスタ25b、及び選択トランジスタ26bにより構成される。 Tap 22a is composed of a transfer transistor 23a, a charge storage section 14a (Floating Diffusion), a reset transistor 24, an amplification transistor 25a, and a selection transistor 26a. Similarly, tap 22b is composed of a transfer transistor 23b, a charge storage section 14b, a reset transistor 24, an amplification transistor 25b, and a selection transistor 26b.
 なお、図4に示すようにリセットトランジスタ24を、電荷蓄積部14aと電荷蓄積部14bで共用する構成としてもよいし、電荷蓄積部14aと電荷蓄積部14bのそれぞれに設けられている構成としてもよい。 Note that, as shown in FIG. 4, the reset transistor 24 may be shared by the charge storage section 14a and the charge storage section 14b, or may be provided in each of the charge storage section 14a and the charge storage section 14b. good.
 電荷蓄積部14aと電荷蓄積部14bのそれぞれにリセットトランジスタ24を設ける構成とした場合、リセットのタイミングを、電荷蓄積部14aと電荷蓄積部14bをそれぞれ個別に制御できるため、細かな制御を行うことが可能となる。電荷蓄積部14aと電荷蓄積部14bに共通したリセットトランジスタ24を設ける構成とした場合、リセットのタイミングを、電荷蓄積部14aと電荷蓄積部14bで同一にすることができ、制御が簡便になり、回路構成も簡便化することができる。 When the reset transistor 24 is provided in each of the charge storage section 14a and the charge storage section 14b, the reset timing can be controlled individually for the charge storage section 14a and the charge storage section 14b, so that fine control can be performed. becomes possible. When the charge storage section 14a and the charge storage section 14b are provided with a common reset transistor 24, the reset timing can be made the same for the charge storage section 14a and the charge storage section 14b, and control becomes simple. The circuit configuration can also be simplified.
 図5を参照して、画素12における電荷の振り分けについて説明する。ここで、振り分けとは、PD19における光電変換により発生した電荷について、電荷発生のタイミングに応じて転送トランジスタ23a、23bの何れかによって転送されることにより異なる電荷蓄積部14a、14bに振り分けられることを意味する。 With reference to FIG. 5, distribution of charges in the pixel 12 will be explained. Here, distribution refers to the fact that charges generated by photoelectric conversion in the PD 19 are transferred to different charge storage sections 14a and 14b by being transferred by either of the transfer transistors 23a and 23b depending on the timing of charge generation. means.
 図5に示すように、周期信号とされた発光信号における1周期Tpにおいて照射のオン/オフが1回ずつ行われるように変調された照射光が発光部8から出力され、被写体までの距離に応じた遅延時間Tdだけ遅れて、PD19において反射光が受光される。 As shown in FIG. 5, the light emitting unit 8 outputs irradiation light that is modulated so that the irradiation is turned on and off once in one cycle Tp of the light emission signal, which is a periodic signal, and the distance to the subject is adjusted. The reflected light is received by the PD 19 after a corresponding delay time Td.
 転送制御信号TRTaは、画素駆動線20aによって供給され、転送トランジスタ23aのオン/オフを制御する。また、転送制御信号TRTbは、画素駆動線20bによって供給され、転送トランジスタ23bのオン/オフを制御する。図示するように、転送制御信号TRTaが、照射光と同一の位相である一方で、転送制御信号TRTbは、転送制御信号TRTaを反転した位相となっている。 The transfer control signal TRTa is supplied by the pixel drive line 20a and controls on/off of the transfer transistor 23a. Further, the transfer control signal TRTb is supplied by the pixel drive line 20b and controls on/off of the transfer transistor 23b. As shown in the figure, the transfer control signal TRTa has the same phase as the irradiation light, while the transfer control signal TRTb has the inverted phase of the transfer control signal TRTa.
 従って、PD19が反射光を受光することにより発生する電荷は、転送制御信号TRTaに従って転送トランジスタ23aがオンとなっている間であれば電荷蓄積部14aに転送される。また転送制御信号TRTbに従って転送トランジスタ23bがオンとなっている間であれば電荷蓄積部14bに転送される。これにより、照射時間Tの照射光の照射が周期的に行われる所定の期間において、転送トランジスタ23aを介して転送された電荷は電荷蓄積部14aに順次蓄積され、転送トランジスタ23bを介して転送された電荷は電荷蓄積部14bに順次蓄積される。 Therefore, charges generated when the PD 19 receives reflected light are transferred to the charge storage section 14a while the transfer transistor 23a is turned on according to the transfer control signal TRTa. Furthermore, while the transfer transistor 23b is on according to the transfer control signal TRTb, the charge is transferred to the charge storage section 14b. As a result, during a predetermined period in which the irradiation light of the irradiation time T is periodically performed, the charges transferred via the transfer transistor 23a are sequentially accumulated in the charge storage section 14a, and are transferred via the transfer transistor 23b. The accumulated charges are sequentially accumulated in the charge accumulation section 14b.
 そして、電荷を蓄積する期間の終了後、図4に示すように、選択信号SELaに従って選択トランジスタ26aがオンとなると、電荷蓄積部14aに蓄積されている電荷が垂直信号線21aを介して読み出され、その電荷量に応じた受光信号S1が第1受光部9から出力される。同様に、選択信号SELbに従って選択トランジスタ26bがオンとなると、電荷蓄積部14bに蓄積されている電荷が垂直信号線21bを介して読み出され、その電荷量に応じた受光信号S2が第1受光部9から出力される。 After the charge accumulation period ends, as shown in FIG. 4, when the selection transistor 26a is turned on according to the selection signal SELa, the charges accumulated in the charge storage section 14a are read out via the vertical signal line 21a. The first light receiving section 9 outputs a light receiving signal S1 corresponding to the amount of charge. Similarly, when the selection transistor 26b is turned on according to the selection signal SELb, the charge stored in the charge storage section 14b is read out via the vertical signal line 21b, and the light reception signal S2 corresponding to the amount of charge is sent to the first light reception. It is output from section 9.
 電荷蓄積部14aに蓄積されている電荷は、画素駆動線20cによって供給されるリセット信号RSTに従ってリセットトランジスタ24がオンになると排出される。同様に電荷蓄積部14bに蓄積されている電荷は、リセット信号RSTに従ってリセットトランジスタ24がオンになると排出される。 The charges accumulated in the charge accumulation section 14a are discharged when the reset transistor 24 is turned on in accordance with the reset signal RST supplied by the pixel drive line 20c. Similarly, the charges accumulated in the charge accumulation section 14b are discharged when the reset transistor 24 is turned on according to the reset signal RST.
 このように、画素12は、PD19が受光した反射光により発生する電荷を、遅延時間Tdに応じてタップ22a及びタップ22bに振り分けて、受光信号S1及び受光信号S2を出力することができる。そして、遅延時間Tdは、発光部8で発光した光が被写体まで飛行し、被写体で反射した後に第1受光部9まで飛行する時間に応じたもの、即ち、被写体までの距離に応じたものである。従って、iToFセンサ3は、受光信号S1及び受光信号S2に基づき、遅延時間Tdに従って被写体までの距離(デプス)を求めることができる。 In this way, the pixel 12 can distribute the charge generated by the reflected light received by the PD 19 to the tap 22a and the tap 22b according to the delay time Td, and output the light reception signal S1 and the light reception signal S2. The delay time Td depends on the time it takes for the light emitted by the light emitting unit 8 to travel to the subject, reflect on the subject, and then fly to the first light receiving unit 9, that is, it depends on the distance to the subject. be. Therefore, the iToF sensor 3 can determine the distance (depth) to the subject according to the delay time Td based on the light reception signal S1 and the light reception signal S2.
 図2の説明に戻る。
 第1受光部9は、上述したように、発光信号の同期信号を用いて受光制御を行う。従って、第1受光部9に対して発光制御部11から発光信号の同期信号が印加される。
Returning to the explanation of FIG. 2.
As described above, the first light receiving section 9 performs light reception control using the synchronization signal of the light emission signal. Therefore, the synchronization signal of the light emission signal is applied from the light emission control section 11 to the first light receiving section 9 .
 第1信号処理部10は、距離画像データ生成部27と輝度画像データ生成部28とを備える。 The first signal processing section 10 includes a distance image data generation section 27 and a brightness image data generation section 28.
 距離画像データ生成部27は、第1受光部9から出力される受光信号S1、S2を用いて、被写体までの距離を表す距離情報が画素12ごとに対応付けられた距離画像データを生成する。 The distance image data generation unit 27 uses the light reception signals S1 and S2 output from the first light reception unit 9 to generate distance image data in which distance information representing the distance to the subject is associated with each pixel 12.
 なお、距離画像データ生成部27によって生成される距離画像データは、AMR1の発光部8によって照射されるIR光についての反射光を受光することにより得られる距離情報に基づくものである。
 しかし、自身(AMR1)と対向して接近してくる他のAMR(以降、対向AMR1’と記載)が存在する場合には、対向AMR1’が照射するIR光によって測距誤差が含まれる可能性がある。
Note that the distance image data generated by the distance image data generation section 27 is based on distance information obtained by receiving reflected light of the IR light emitted by the light emitting section 8 of the AMR 1.
However, if there is another AMR (hereinafter referred to as the opposing AMR 1') approaching and facing itself (AMR 1), there is a possibility that a distance measurement error may be included due to the IR light emitted by the opposing AMR 1'. There is.
 距離画像データ生成部27から出力される距離画像データであって測距誤差が含まれ得る距離画像データを「一次距離画像データDD1」と記載する。 The distance image data output from the distance image data generation unit 27 and which may contain distance measurement errors is referred to as "primary distance image data DD1."
 一次距離画像データDD1の扱いは幾つか考えられる。
 第1の方法は、一次距離画像データDD1を補正せずに後段で利用する方法である。一次距離画像データDD1に測距誤差が含まれていない場合や、含まれている測距誤差が小さい場合などに好適である。
There are several possible ways to handle the primary distance image data DD1.
The first method is to use the primary distance image data DD1 at a subsequent stage without correcting it. This is suitable when the primary distance image data DD1 does not include a distance measurement error or when the included distance measurement error is small.
 第2の方法は、一次距離画像データDD1を補正して後段で利用する方法である。一次距離画像データDD1に含まれる測距誤差が小さくなく未補正で扱うのは厳しいが補正が可能な場合などに好適である。 The second method is to correct the primary distance image data DD1 and use it at a later stage. This is suitable when the distance measurement error included in the primary distance image data DD1 is not small and it is difficult to handle it without correction, but it is possible to correct it.
 第3の方法は、一次距離画像データDD1を補正せずに別の手法で距離画像データを改めて取得する方法である。一次距離画像データDD1に含まれる測距誤差が大きく適切な補正ができない場合や、測距誤差が含まれる領域が大きい場合などに好適である。 The third method is to obtain distance image data anew using another method without correcting the primary distance image data DD1. This is suitable when the distance measurement error contained in the primary distance image data DD1 is large and cannot be appropriately corrected, or when the area containing the distance measurement error is large.
 輝度画像データ生成部28は、上述した三つ方法のうち、第3の方法を実現するための処理を行うものである。具体的に、輝度画像データ生成部28は、第1受光部9から出力される受光信号S1、S2を用いて輝度画像データBDを生成する。 The luminance image data generating unit 28 performs processing to realize the third method of the three methods described above. Specifically, the luminance image data generating unit 28 generates luminance image data BD using the light receiving signals S1 and S2 output from the first light receiving unit 9.
 輝度画像データBDは、RGBセンサ5から出力されるRGB画像データCDと共にステレオ画像を用いた測距方式による測距画像データの生成に用いられる。
 ここで、一次距離画像データDD1の代わりにステレオ画像を用いた測距方式によって生成される距離画像データを「代替距離画像データSD」と記載する。
The brightness image data BD is used together with the RGB image data CD output from the RGB sensor 5 to generate distance measurement image data using a distance measurement method using stereo images.
Here, distance image data generated by a distance measurement method using stereo images instead of the primary distance image data DD1 will be referred to as "alternative distance image data SD."
 輝度画像データBDの生成について説明する。
 先ず、一次距離画像データDD1は、図4に示す電荷蓄積部14aと電荷蓄積部14bに蓄積された電荷量の振り分け具合について受光信号S1、S2を用いて算出することにより得ることができる。
Generation of the brightness image data BD will be explained.
First, the primary distance image data DD1 can be obtained by calculating the distribution of the amount of charge accumulated in the charge storage section 14a and the charge storage section 14b shown in FIG. 4 using the light reception signals S1 and S2.
 これに対して、輝度画像データBDは、図4に示す電荷蓄積部14aと電荷蓄積部14bの双方に蓄積された電荷の合計量に応じて得ることができる。即ち、受光信号S1、S2を用いて電荷蓄積部14aと電荷蓄積部14bの双方についての電荷蓄積量の合計を算出することで、輝度画像データBDにおける各画素12の輝度情報を得ることができる。 In contrast, the luminance image data BD can be obtained according to the total amount of charge accumulated in both the charge accumulation section 14a and the charge accumulation section 14b shown in FIG. 4. That is, by calculating the total amount of charge accumulated in both the charge accumulation section 14a and the charge accumulation section 14b using the light receiving signals S1 and S2, it is possible to obtain the luminance information of each pixel 12 in the luminance image data BD.
 この説明から理解されるように、一次距離画像データDD1と輝度画像データBDは、受光信号S1と受光信号S2を用いて異なる演算を行うことにより算出可能な情報である。 As understood from this explanation, the primary distance image data DD1 and the brightness image data BD are information that can be calculated by performing different calculations using the light reception signal S1 and the light reception signal S2.
 上述したように、一次距離画像データDD1は、そのままで用いられるか、或いは補正されることにより、距離情報として被写体の検出や走行ルートの決定などの後段の処理に用いられる。
 そして、輝度画像データBDは、ステレオ画像方式の測距方式における一方の画像データとして扱われることにより代替距離画像データSDの生成に用いられる。
As described above, the primary distance image data DD1 is used as is, or after being corrected, it is used as distance information in subsequent processing such as object detection and travel route determination.
The brightness image data BD is treated as one image data in the stereo image distance measuring method and is used to generate the alternative distance image data SD.
 代替距離画像データSDの生成については改めて後述する。 The generation of the alternative distance image data SD will be described later.
 発光制御部11は、第1信号処理部10からの指示を受けて発光部8に対して発光信号を供給すると共に、当該発光信号の同期信号を第1受光部9に供給する。 The light emission control section 11 receives an instruction from the first signal processing section 10 and supplies a light emission signal to the light emission section 8, and also supplies a synchronization signal of the light emission signal to the first light receiving section 9.
 上述した各部を備えたiToFセンサ3は、制御部6に対して一次距離画像データDD1と輝度画像データBDを出力する。 The iToF sensor 3, which includes the above-mentioned parts, outputs primary distance image data DD1 and brightness image data BD to the control unit 6.
 続いて、RGBセンサ5について説明する。本例におけるRGBセンサ5は、第2受光部29及び第2信号処理部30を有する。RGBセンサ5は、上述したようにCMOSセンサやCCDセンサ等で構成されている。RGBセンサ5の空間分解能はiToFセンサ3よりも高い構成とされている。 Next, the RGB sensor 5 will be explained. The RGB sensor 5 in this example includes a second light receiving section 29 and a second signal processing section 30. The RGB sensor 5 is composed of a CMOS sensor, a CCD sensor, etc., as described above. The spatial resolution of the RGB sensor 5 is higher than that of the iToF sensor 3.
 第2受光部29は、R、GまたはBのカラーフィルタをベイヤ配列等で配置した各画素が二次元配置された画素アレイ部を有し、各画素が受光したR、GまたはBの波長帯の可視光を光電変換して得た信号を、受光信号として第2信号処理部30に供給する。 The second light receiving section 29 has a pixel array section in which each pixel is two-dimensionally arranged with R, G, or B color filters arranged in a Bayer array, etc., and the R, G, or B wavelength band in which each pixel receives light. A signal obtained by photoelectrically converting the visible light is supplied to the second signal processing section 30 as a light reception signal.
 第2信号処理部30は、RGB画像データ生成部31を有して構成されている。
 RGB画像データ生成部31は、第2受光部29から供給されるR信号、G信号、またはB信号に対してCDS処理、AGC(Automatic Gain Control)処理などを実行し、更にA/D変換処理を行うことにより、デジタルデータを生成する。また、RGB画像データ生成部31は、当該デジタルデータに対して同時化処理を行うことにより、画素ごとのR信号、G信号及びB信号からなるRGB画像データCDを生成し、当該RGB画像データCDを制御部6に供給する。
The second signal processing section 30 includes an RGB image data generation section 31.
The RGB image data generation section 31 performs CDS processing, AGC (Automatic Gain Control) processing, etc. on the R signal, G signal, or B signal supplied from the second light receiving section 29, and further performs A/D conversion processing. By doing this, digital data is generated. Further, the RGB image data generation unit 31 generates RGB image data CD consisting of an R signal, a G signal, and a B signal for each pixel by performing a synchronization process on the digital data, and is supplied to the control section 6.
 なお、RGBセンサ5のイメージセンサの入射面には、所定の偏光方向の光を透過する偏光フィルタが設けられていてもよい。当該偏光フィルタにより所定の偏光方向に偏光された光に基づく偏光画像信号が生成される。当該偏光フィルタは、例えば偏光方向が4方向とされており、その場合4方向の偏光画像信号が生成される。生成された偏光画像信号は制御部6に供給される。 Note that a polarizing filter that transmits light in a predetermined polarization direction may be provided on the incident surface of the image sensor of the RGB sensor 5. A polarized image signal is generated based on light polarized in a predetermined polarization direction by the polarizing filter. The polarizing filter has, for example, four polarization directions, in which case polarized image signals in four directions are generated. The generated polarized image signal is supplied to the control section 6.
 制御部6は、iToFセンサ3から出力される一次距離画像データDD1と輝度画像データBD、及び、RGBセンサ5から出力されるRGB画像データCDを用いて、最終的な距離画像データを生成する。この距離画像データを「最終距離画像データDD2」と記載する。
The control unit 6 uses the primary distance image data DD1 and brightness image data BD output from the iToF sensor 3 and the RGB image data CD output from the RGB sensor 5 to generate final distance image data. This distance image data will be referred to as "final distance image data DD2."
<3.制御部の機能構成>
 制御部6は、最終距離画像データDD2を生成するために、AI(Artificial Intelligence)画像処理部32と補正処理部33と代替距離画像データ生成部34とを備える(図2参照)。
<3. Functional configuration of control section>
The control unit 6 includes an AI (Artificial Intelligence) image processing unit 32, a correction processing unit 33, and an alternative distance image data generation unit 34 in order to generate the final distance image data DD2 (see FIG. 2).
 AI画像処理部32は、機械学習により得た人工知能モデル(以降、「AIモデル」と記載)を用いて各種の処理を行う。
 具体的には、AI画像処理部32は上述した対向AMR1’によって照射されるIR光(以降、「妨害光」と記載)の妨害態様の類型を推論する処理を行う。
The AI image processing unit 32 performs various types of processing using an artificial intelligence model (hereinafter referred to as the "AI model") obtained through machine learning.
Specifically, the AI image processing unit 32 performs a process of inferring the type of interference mode of the IR light (hereinafter referred to as "interfering light") irradiated by the above-mentioned opposed AMR 1'.
 また、AI画像処理部32は、一次距離画像データDD1における妨害光に起因する測距誤差を含む領域を補正対象領域ArCとして推論する処理を行う。 Furthermore, the AI image processing unit 32 performs a process of inferring an area including a distance measurement error caused by interference light in the primary distance image data DD1 as a correction target area ArC.
 AI画像処理部32が推論に用いるAIモデルの学習については改めて後述する。 Learning of the AI model used for inference by the AI image processing unit 32 will be described later.
 補正処理部33は、AI画像処理部32によって推論された補正対象領域ArCを対象として距離情報の補正を行う。この補正処理にはAI画像処理部32が用いるAIモデルとは別のAIモデルを用いた推論を行うことにより実現してもよいし、ルールベースの処理によって実現されてもよい。 The correction processing unit 33 corrects the distance information for the correction target area ArC inferred by the AI image processing unit 32. This correction processing may be realized by performing inference using an AI model different from the AI model used by the AI image processing unit 32, or may be realized by rule-based processing.
 代替距離画像データ生成部34は、第1信号処理部10の輝度画像データ生成部28から出力される輝度画像データBDと、第2信号処理部30のRGB画像データ生成部31から出力されるRGB画像データCDとに基づいて、代替距離画像データSDを生成する。 The alternative distance image data generation unit 34 uses the brightness image data BD output from the brightness image data generation unit 28 of the first signal processing unit 10 and the RGB image data output from the RGB image data generation unit 31 of the second signal processing unit 30. Substitute distance image data SD is generated based on the image data CD.
 ここで、輝度画像データBDはIR画像であり、RGB画像データCDはカラー画像である。従って、双方の画像データは異なる種類のものとされる。
 しかし、代替距離画像データ生成部34は、これらの異なる種類の画像データを用いて代替距離画像データSDを生成することが可能である。
Here, the brightness image data BD is an IR image, and the RGB image data CD is a color image. Therefore, both image data are of different types.
However, the alternative distance image data generation unit 34 can generate alternative distance image data SD using these different types of image data.
 具体的には、代替距離画像データ生成部34は先ず、RGB画像データCDにおいて輝度画像データBDにおける任意の画素と対応する画素を対応点として特定する。
 対応点の特定は、輝度画像データBDにおける画素ごとに行われる。
Specifically, the alternative distance image data generation unit 34 first identifies a pixel in the RGB image data CD that corresponds to an arbitrary pixel in the brightness image data BD as a corresponding point.
The corresponding points are identified for each pixel in the brightness image data BD.
 また、RGB画像データをモノクロの画像データに変換した後、IR画像としての輝度画像データBDとモノクロ化したRGB画像データとにおいてブロックマッチング手法を用いることが考えられる。 Furthermore, after converting RGB image data to monochrome image data, it is conceivable to use a block matching method on the luminance image data BD as an IR image and the monochrome RGB image data.
 ブロックマッチング手法では、AIモデルが用いられてもよい。 An AI model may be used in the block matching method.
 輝度画像データBDにおける各画素の対応点をRGB画像データCD上で特定することにより、輝度画像データBDの画素ごとの視差情報を得ることができる。これにより、当該視差情報を用いて輝度画像データBDの画素ごとの距離情報を得ることができる。 By identifying the corresponding points of each pixel in the luminance image data BD on the RGB image data CD, it is possible to obtain disparity information for each pixel of the luminance image data BD. This makes it possible to obtain distance information for each pixel of the luminance image data BD using the disparity information.
 なお、輝度画像データBDの画素数はRGB画像データCDの画素数よりも少ないものとされているため、輝度画像データBDの各画素の対応点をRGB画像データCD上で特定することにより、対応する適切な画素が存在しない状況を防止することができる。
 但し、RGB画像データCDの各画素の対応点を輝度画像データBD上で特定してもよい。この場合には、輝度画像データBD上に適切な対応点が存在しない場合や、或いはRGB画像データCDの複数画素の対応点が輝度画像データBD上の同一の画素とされる場合がある。
Note that the number of pixels in the luminance image data BD is said to be smaller than the number of pixels in the RGB image data CD, so by identifying the corresponding point of each pixel in the luminance image data BD on the RGB image data CD, It is possible to prevent a situation in which there are no suitable pixels to be used.
However, the corresponding point of each pixel of the RGB image data CD may be specified on the luminance image data BD. In this case, there may be cases where there is no appropriate corresponding point on the brightness image data BD, or cases where corresponding points of a plurality of pixels of the RGB image data CD are the same pixel on the brightness image data BD.
<4.妨害態様の類型>
 上述したAI画像処理部32は、AIモデルを用いて対向AMR1’から照射された妨害光による一次距離画像データDD1に対する影響度合いの類型を「妨害パターンPT」として分類する。
<4. Types of interference modes>
The above-mentioned AI image processing unit 32 uses the AI model to classify the degree of influence of the interference light emitted from the opposing AMR 1' on the primary distance image data DD1 as a "disturbance pattern PT."
 妨害パターンPTについての第1パターンPT1の例を図6に示す。第1パターンPT1は、妨害光による測距誤差が生じないパターンとされる。例えば、対向AMR1’が発光をしていない状態や、妨害光の角度によって対向AMR1’からの妨害光の直接光及び反射光がiToFセンサ3のセンサ面に入射されていない状態が第1パターンPT1とされる。 FIG. 6 shows an example of the first pattern PT1 regarding the interference pattern PT. The first pattern PT1 is a pattern that does not cause distance measurement errors due to interference light. For example, the first pattern PT1 is a state in which the opposing AMR 1' is not emitting light or a state in which direct light and reflected light of the interference light from the opposing AMR 1' are not incident on the sensor surface of the iToF sensor 3 due to the angle of the interference light. It is said that
 妨害パターンPTについての第2パターンPT2の例を図7に示す。第2パターンPT2は、妨害光による測距誤差が大きいパターンとされる。例えば、対向AMR1’からの妨害光の直接光がiToFセンサ3のセンサ面の略全面に亘って入射されている状態である。また、例えば、妨害光がiToFセンサ3のセンサ面に略直交する光とされた場合などである。
 即ち、測距誤差を含む領域が広く補正対象領域ArCが広範囲に亘る場合に第2パターンPT2と推論される。
FIG. 7 shows an example of the second pattern PT2 regarding the interference pattern PT. The second pattern PT2 is a pattern with a large distance measurement error due to interference light. For example, there is a state in which direct interference light from the opposing AMR 1' is incident over substantially the entire sensor surface of the iToF sensor 3. Further, for example, there is a case where the interference light is light substantially perpendicular to the sensor surface of the iToF sensor 3.
That is, when the area including the distance measurement error is wide and the correction target area ArC is wide, the second pattern PT2 is inferred.
 妨害パターンPTについての第3パターンPT3の例を図8に示す。第3パターンPT3は、妨害光による測距誤差が存在し且つ第2パターンPT2よりも妨害光に起因する測距誤差の影響が小さいパターンとされる。例えば、対向AMR1’が地面や壁に向けて妨害光を照射している状態などであり、妨害光の反射光がiToFセンサ3のセンサ面の一部に入射されている状態である。また、妨害光がiToFセンサ3のセンサ面に非平行な光とされた場合などである。 FIG. 8 shows an example of the third pattern PT3 regarding the interference pattern PT. The third pattern PT3 is a pattern in which there is a distance measurement error due to the interference light, and the influence of the distance measurement error due to the interference light is smaller than the second pattern PT2. For example, this is a state where the opposing AMR 1' is emitting interference light toward the ground or a wall, and the reflected light of the interference light is incident on a part of the sensor surface of the iToF sensor 3. Another case is that the interference light is non-parallel to the sensor surface of the iToF sensor 3.
 妨害パターンPTについての第4パターンPT4の例を図9に示す。第4パターンPT4は、第3パターンPT3と同様の態様で対向AMR1’から妨害光が照射されている状態であり、且つ、妨害光の直接光または反射光の一部を遮る障害物BOが存在する状態である。即ち、対向AMR1’が地面や床面や壁面に向けて妨害光を照射している状態などであり、且つ、妨害光の反射光のうち障害物BOによって遮られなかった一部の光がiToFセンサ3のセンサ面の一部に入射されている状態である。 FIG. 9 shows an example of the fourth pattern PT4 regarding the interference pattern PT. The fourth pattern PT4 is a state in which interference light is irradiated from the opposing AMR 1' in the same manner as the third pattern PT3, and there is an obstacle BO that blocks the direct light or a part of the reflected light of the interference light. It is a state of In other words, the oncoming AMR 1' is emitting interference light toward the ground, floor, or wall, and part of the reflected light of the interference light that is not blocked by the obstacle BO is iToF. This is a state in which the light is incident on a part of the sensor surface of the sensor 3.
 なお、上述の説明から理解されるように、妨害パターンPTの類型は、妨害光の向きに応じた類型と換言することもできる。
Note that, as understood from the above description, the type of the interference pattern PT can also be expressed as a type depending on the direction of the interference light.
<5.補正対象領域の推論>
 AMR1の制御部6のAI画像処理部32は、上述したように、AIモデルを用いて妨害パターンPTに応じた補正対象領域ArCを推論する処理を行う。
<5. Inference of correction target area>
As described above, the AI image processing unit 32 of the control unit 6 of the AMR 1 performs a process of inferring the correction target area ArC according to the disturbance pattern PT using the AI model.
 具体的に、一次距離画像データDD1の妨害パターンPTが図6に示す第1パターンPT1であると推論された場合には、AI画像処理部32は補正対象領域ArCの推論を行わない。即ち、AI画像処理部32は一次距離画像データDD1に補正対象領域ArCは存在しないと判定して補正対象領域ArCの推論処理を回避する。 Specifically, when it is inferred that the interference pattern PT of the primary distance image data DD1 is the first pattern PT1 shown in FIG. 6, the AI image processing unit 32 does not infer the correction target area ArC. That is, the AI image processing unit 32 determines that the correction target area ArC does not exist in the primary distance image data DD1, and avoids the inference process for the correction target area ArC.
 また、一次距離画像データDD1の妨害パターンPTが図7に示す第2パターンPT2であると推論された場合には、AI画像処理部32は補正対象領域ArCの推論を行わない。第2パターンPT2は、iToFセンサ3のセンサ面の略全面に亘って測距誤差が含まれていると推定できるため、AI画像処理部32は補正後の距離情報の精度が担保できないと判定し、補正対象領域ArCの推定を回避する。 Furthermore, if it is inferred that the interference pattern PT of the primary distance image data DD1 is the second pattern PT2 shown in FIG. 7, the AI image processing unit 32 does not infer the correction target area ArC. Since it can be estimated that the second pattern PT2 includes a distance measurement error over almost the entire sensor surface of the iToF sensor 3, the AI image processing unit 32 determines that the accuracy of the distance information after correction cannot be guaranteed. , avoiding estimation of the correction target area ArC.
 この場合、制御部6の代替距離画像データ生成部34による代替距離画像データSDの生成が行われる。生成された代替距離画像データSDは最終距離画像データDD2として扱われる。 In this case, the alternative distance image data generation unit 34 of the control unit 6 generates alternative distance image data SD. The generated alternative distance image data SD is treated as final distance image data DD2.
 更に、一次距離画像データDD1の妨害パターンPTが図8に示す第3パターンPT3であると推論された場合には、AI画像処理部32は、AIモデルに対して一次距離画像データDD1を入力データとして与えることにより、一次距離画像データDD1上の補正対象領域ArCを推論する処理を行う。
 このとき、図8に示す例であれば、AIモデルの出力データとして床面における妨害光が反射されている領域Ar1(図8に破線で示した領域)が補正対象領域ArCとして得られる。
Furthermore, when it is inferred that the interference pattern PT of the primary distance image data DD1 is the third pattern PT3 shown in Figure 8, the AI image processing unit 32 performs a process of inferring the correction target area ArC on the primary distance image data DD1 by providing the primary distance image data DD1 as input data to the AI model.
In this case, in the example shown in Figure 8, the area Ar1 (the area shown by the dashed line in Figure 8) where the interfering light is reflected on the floor surface is obtained as the output data of the AI model as the correction target area ArC.
 また、一次距離画像データDD1の妨害パターンPTが図9に示す第4パターンPT4であると推論された場合には、AI画像処理部32は、AIモデルに対して一次距離画像データDD1を入力データとして与えることにより、一次距離画像データDD1上の補正対象領域ArCを推論する処理を行う。 Further, when it is inferred that the interference pattern PT of the primary distance image data DD1 is the fourth pattern PT4 shown in FIG. By giving as follows, processing for inferring the correction target area ArC on the primary distance image data DD1 is performed.
 このとき、図9に示す例であれば、AIモデルの出力データとして床面における妨害光が反射されている領域Ar2(図9に破線で示した領域)が補正対象領域ArCとして得られる。そして、一次距離画像データDD1における障害物BOが撮像された領域Ar3(図9に一点鎖線で示す領域)については正常な距離情報が得られているとして補正対象領域ArCとは見なされない。
At this time, in the example shown in FIG. 9, an area Ar2 (area indicated by a broken line in FIG. 9) on the floor surface where the interfering light is reflected is obtained as the correction target area ArC as output data of the AI model. The region Ar3 (region indicated by the dashed line in FIG. 9) in which the obstacle BO is imaged in the primary distance image data DD1 is not regarded as the correction target region ArC since normal distance information is obtained.
<6.補正対象領域の補正>
 上述したように、制御部6の補正処理部33は、一次距離画像データDD1上において特定された補正対象領域ArCを対象として距離情報の補正を行う。
 距離情報の補正にはAIモデルを用いてもよいが、ルールベースの処理が適用されてもよい。
<6. Correction of correction target area>
As described above, the correction processing section 33 of the control section 6 corrects the distance information for the correction target area ArC specified on the primary distance image data DD1.
Although an AI model may be used to correct the distance information, rule-based processing may also be applied.
 ここでは第3パターンPT3についてルールベースの処理によって補正処理が行われる場合の一例を説明する。 Here, an example will be described in which correction processing is performed on the third pattern PT3 by rule-based processing.
 図8に示す例は、床面の一部の領域Ar1が補正対象領域ArCであるとの推論結果が得られている。 In the example shown in FIG. 8, an inference result has been obtained that a part of the area Ar1 on the floor surface is the correction target area ArC.
 補正対象領域ArCの補正では、先ず、補正対象領域ArCにおける任意の画素が補正対象画素GCとして選択される(図10参照)。 In the correction of the correction target area ArC, first, an arbitrary pixel in the correction target area ArC is selected as the correction target pixel GC (see FIG. 10).
 次に、床面として認識され且つ補正対象領域ArCではないと推定された領域に含まれる画素のうち、補正対象画素GCと同じ距離に位置すると推定される画素、例えば、補正対象画素GCと垂直方向における位置が一致する画素G1を選択し、当該選択された画素G1についての距離情報を補正対象画素GCの距離情報として置き換える。 Next, among the pixels included in the area that is recognized as the floor surface and is estimated not to be the correction target area ArC, a pixel that is estimated to be located at the same distance as the correction target pixel GC, for example, pixel G1 whose position in the vertical direction coincides with that of the correction target pixel GC, is selected, and the distance information for the selected pixel G1 is replaced with the distance information for the correction target pixel GC.
 換言すれば、補正処理部33は、床面として認識された領域における補正対象領域ArC外の画素G1を選択してその距離情報を取得し、当該画素G1の水平方向に位置する補正対象画素GCの距離情報として置き換えることにより補正を行う(図11参照)。 In other words, the correction processing unit 33 selects the pixel G1 outside the correction target area ArC in the area recognized as the floor surface, acquires its distance information, and selects the pixel G1 located outside the correction target area ArC in the area recognized as the floor surface, and selects the pixel G1 located in the horizontal direction of the pixel G1. Correction is performed by replacing it with distance information (see FIG. 11).
 なお、補正対象領域ArC外において選択される画素G1は、補正対象領域ArCに最も近い画素から選択されてもよい(図12参照)。 Note that the pixels G1 selected outside the correction target area ArC may be selected from the pixels closest to the correction target area ArC (see FIG. 12).
 距離情報の補正が行われた後に得られる距離画像データである補正後距離画像データは、最終距離画像データDD2として扱われる。
Corrected distance image data, which is distance image data obtained after distance information is corrected, is treated as final distance image data DD2.
<7.学習用データ>
 AIモデルの生成のために用いられる学習用データについて説明する。
<7. Learning data>
Learning data used to generate an AI model will be explained.
 上述したように、AI画像処理部32は、AIモデルを用いて一次距離画像データDD1についての妨害パターンPTを分類する処理を行う。ここで、妨害パターンPTの分類に用いられるAIモデルを第1AIモデルM1と記載する。 As described above, the AI image processing unit 32 performs a process of classifying the interference pattern PT regarding the primary distance image data DD1 using the AI model. Here, the AI model used for classifying the disturbance pattern PT is referred to as a first AI model M1.
 第1AIモデルM1を生成するための機械学習に用いられる学習用データは、図6から図9の各図に示すような第1パターンPT1から第4パターンPT4の画像に応じた各距離画像データと、正解データとしての第1パターンPT1から第4パターンPT4のラベル情報とされる。 The learning data used for machine learning to generate the first AI model M1 is each distance image data corresponding to the images of the first pattern PT1 to the fourth pattern PT4 as shown in each figure of FIGS. 6 to 9. , is the label information of the first pattern PT1 to the fourth pattern PT4 as correct data.
 このような距離画像データと正解データとしてのラベル情報を教師データとして与えることにより教師有り学習による第1AIモデルM1を得ることができる。 By providing such distance image data and label information as correct data as teacher data, it is possible to obtain the first AI model M1 through supervised learning.
 また、第1AIモデルM1を生成するための学習用データとして更にRGBセンサ5から得られるRGB画像データCDを用いてもよい。
 これにより、IR光による影響の有無や影響の大きさについての特徴量を学習させることができ、推論精度の高い第1AIモデルM1を得ることができる。
Furthermore, RGB image data CD obtained from the RGB sensor 5 may be used as learning data for generating the first AI model M1.
Thereby, it is possible to learn feature amounts regarding the presence or absence of influence by IR light and the magnitude of influence, and it is possible to obtain the first AI model M1 with high inference accuracy.
 また、AI画像処理部32は、AIモデルを用いて一次距離画像データDD1における補正対象領域ArCを特定する処理を行う。ここで、補正対象領域ArCの特定に用いられるAIモデルを第2AIモデルM2と記載する。 The AI image processing unit 32 also performs a process of identifying the correction target area ArC in the primary distance image data DD1 using an AI model. Here, the AI model used to identify the correction target area ArC is referred to as the second AI model M2.
 第2AIモデルM2を生成するための機械学習に用いられる学習用データは、第1パターンPT1に属する距離画像データ(第1正常画像データ)と第3パターンPT3に属する距離画像データ(第1要補正画像データ)、そして、正解データとして当該第3パターンPT3に属する距離画像データについての補正対象領域ArCの情報とされる。 The learning data used for machine learning to generate the second AI model M2 are distance image data belonging to the first pattern PT1 (first normal image data) and distance image data belonging to the third pattern PT3 (first correction required). (image data), and information on the correction target area ArC for distance image data belonging to the third pattern PT3 as correct data.
 特に、第1パターンPT1に属する距離画像データと第3パターンPT3に属する距離画像データは、同一の画角で同一の被写体を撮像した結果得られた距離画像データであって、対向AMR1’によるIR光の発光有無のみ異なる距離画像データとされることで、対向AMR1’からの妨害光の影響が及ぶ範囲を好適に学習した第2AIモデルM2を得ることができる。 In particular, the distance image data belonging to the first pattern PT1 and the distance image data belonging to the third pattern PT3 are distance image data obtained as a result of imaging the same subject at the same angle of view, and are By using distance image data that differs only in the presence or absence of light emission, it is possible to obtain the second AI model M2 that has suitably learned the range affected by the interference light from the opposing AMR 1'.
 また、第2AIモデルM2を生成するための学習用データとして更にRGBセンサ5から得られるRGB画像データCD(第2正常画像データ)を用いてもよい。 Furthermore, RGB image data CD (second normal image data) obtained from the RGB sensor 5 may be used as learning data for generating the second AI model M2.
 上述したAI画像処理部32は、補正対象領域ArCの推論の際の入力データとしてiToFセンサ3から出力される一次距離画像データDD1とRGBセンサ5から出力されるRGB画像データCDをAIモデルに対して与えるものである。
 即ち、第2AIモデルM2は、妨害光としてのIR光の影響が排除されたRGB画像データCDから得た被写体の特徴と、一次距離画像データDD1における距離情報の特徴の双方を加味して一次距離画像データDD1における補正対象領域ArCを推論する。
The AI image processing unit 32 described above uses the primary distance image data DD1 output from the iToF sensor 3 and the RGB image data CD output from the RGB sensor 5 as input data for inference of the correction target area ArC to an AI model. It is something that can be given.
That is, the second AI model M2 calculates the primary distance by taking into account both the characteristics of the object obtained from the RGB image data CD, from which the influence of IR light as interference light has been eliminated, and the characteristics of the distance information in the primary distance image data DD1. A correction target area ArC in the image data DD1 is inferred.
 従って、第2AIモデルM2を生成するための学習用データとしてRGB画像データCDを用いることにより、補正対象領域ArCの推論精度を向上させることができる。 Therefore, by using the RGB image data CD as learning data for generating the second AI model M2, it is possible to improve the inference accuracy of the correction target area ArC.
 なお、第2AIモデルM2の学習用データとして第1パターンPT1に属する距離画像データを用いることから、第2AIモデルM2は、妨害光の影響として測距誤差が含まれた第3パターンPT3の距離画像データと妨害光の影響としての測距誤差を排除した距離画像データ、即ち、補正後の距離画像データとしての第1パターンPT1の距離画像データの双方の差分を学習したものとされる。 Note that since the second AI model M2 uses the distance image data belonging to the first pattern PT1 as learning data, the second AI model M2 uses the distance image data of the third pattern PT3 that includes a distance measurement error due to the influence of interference light. It is assumed that the difference between the distance image data and distance image data from which distance measurement errors due to the influence of interfering light have been removed, that is, the distance image data of the first pattern PT1 as corrected distance image data, has been learned.
 従って、AI画像処理部32において、補正対象領域ArCを特定するだけでなく補正対象領域ArCの補正処理に当該第2AIモデルM2を用いることができる。
Therefore, in the AI image processing unit 32, the second AI model M2 can be used not only to specify the correction target area ArC but also to correct the correction target area ArC.
<8.補正に関する処理フロー>
 AMR1の制御部6が実行する処理の一例について図13を参照して説明する。
 制御部6は、ステップS101において、iToFセンサ3から出力される一次距離画像データDD1を取得する。
<8. Processing flow related to correction>
An example of processing executed by the control unit 6 of the AMR 1 will be described with reference to FIG. 13.
The control unit 6 acquires the primary distance image data DD1 output from the iToF sensor 3 in step S101.
 続いて、制御部6はステップS102において、RGBセンサ5から取得されるRGB画像データCDを取得する。 Subsequently, the control unit 6 acquires RGB image data CD acquired from the RGB sensor 5 in step S102.
 制御部6はステップS103において、第1AIモデルM1を用いた推論処理を行い、妨害パターンPTの特定を行う。第1AIモデルM1には、入力データとして、一次距離画像データDD1とRGB画像データCDとが入力される。 In step S103, the control unit 6 performs inference processing using the first AI model M1 to identify the interference pattern PT. The first AI model M1 receives primary distance image data DD1 and RGB image data CD as input data.
 制御部6はステップS104及びステップS105において、特定された妨害パターンPTに応じた分岐処理を行う。 In step S104 and step S105, the control unit 6 performs branch processing according to the identified disturbance pattern PT.
 具体的に、制御部6はステップS104において、特定された妨害パターンPTが第1パターンPT1であるか否かを判定する。
 第1パターンPT1であると判定した場合、即ち、各画素において適切な距離情報が取得されており、補正の必要が無いと第1AIモデルM1によって推論された場合、制御部6はステップS110へと進み、一次距離画像データDD1を最終距離画像データDD2として出力する。
Specifically, in step S104, the control unit 6 determines whether the identified interference pattern PT is the first pattern PT1 or not.
If it is determined that it is the first pattern PT1, that is, if the first AI model M1 infers that appropriate distance information has been obtained for each pixel and no correction is necessary, the control unit 6 proceeds to step S110 and outputs the primary distance image data DD1 as the final distance image data DD2.
 一方、ステップS104において、特定された妨害パターンPTが第1パターンPT1でないと判定した場合、制御部6は続くステップS105において、特定された妨害パターンPTが第2パターンPT2であるか否かを判定する。 On the other hand, if it is determined in step S104 that the identified interference pattern PT is not the first pattern PT1, the control unit 6 determines in the subsequent step S105 whether or not the identified interference pattern PT is the second pattern PT2. do.
 第2パターンPT2ではないと判定した場合、即ち、一次距離画像データDD1に測距誤差が含まれており、且つ、補正が可能であると第1AIモデルM1によって推論された場合、制御部6はステップS106へと進み、第2AIモデルM2を用いた推論処理を行う。 If it is determined that it is not the second pattern PT2, that is, if the first AI model M1 infers that the primary distance image data DD1 includes a distance measurement error and can be corrected, the control unit 6 Proceeding to step S106, inference processing using the second AI model M2 is performed.
 第2AIモデルM2には、入力データとして、一次距離画像データDD1とRGB画像データCDと第1AIモデルM1の推論結果である妨害パターンPTの情報が入力される。
 これにより、一次距離画像データDD1上における補正対象領域ArCが特定される。
The second AI model M2 receives, as input data, the primary distance image data DD1, the RGB image data CD, and information about the disturbance pattern PT which is the inference result of the first AI model M1.
Thereby, the correction target area ArC on the primary distance image data DD1 is specified.
 続いて、制御部6はステップS107において、補正対象領域ArCについての距離情報を補正する処理を行う。補正処理では、ルールベースの処理を行ってもよいしAIモデルを用いた推論を行ってもよい。 Subsequently, in step S107, the control unit 6 performs a process of correcting the distance information regarding the correction target area ArC. In the correction process, rule-based processing or inference using an AI model may be performed.
 制御部6はステップS110において、ステップS107の補正処理によって得られた補正後の距離画像データを最終距離画像データDD2として出力する。 In step S110, the control unit 6 outputs the corrected distance image data obtained by the correction process in step S107 as final distance image data DD2.
 ステップS105において、特定された妨害パターンPTが第2パターンPT2であると判定した場合、即ち、一次距離画像データDD1に測距誤差が含まれており、且つ、補正しても適切な距離情報を得ることができないと第1AIモデルM1によって推論された場合、制御部6はステップS108へと進み、iToFセンサ3から出力される輝度画像データBDを取得する。 In step S105, if it is determined that the identified interference pattern PT is the second pattern PT2, that is, the primary distance image data DD1 includes a distance measurement error, and even if corrected, the appropriate distance information is If it is inferred by the first AI model M1 that it cannot be obtained, the control unit 6 proceeds to step S108 and obtains the brightness image data BD output from the iToF sensor 3.
 制御部6はステップS109において、輝度画像データBDとRGB画像データCDを用いてステレオ画像を用いた測距方式による代替距離画像データSDの生成を行う。 In step S109, the control unit 6 uses the brightness image data BD and the RGB image data CD to generate alternative distance image data SD using a distance measurement method using stereo images.
 制御部6はステップS110において、ステップS109で得た代替距離画像データSDを最終距離画像データDD2として出力する。
In step S110, the control unit 6 outputs the alternative distance image data SD obtained in step S109 as final distance image data DD2.
<9.AMRの構成>
 図14はAMR1の内部構成例を示すブロック図である。
 AMR1は、上述したiToFセンサ3、RGBセンサ5、制御部6、撮像光学系35、光学系駆動部36、メモリ部37、通信部38を備えている。
9. Configuration of AMR
FIG. 14 is a block diagram showing an example of the internal configuration of the AMR 1. As shown in FIG.
The AMR 1 includes the above-mentioned iToF sensor 3, RGB sensor 5, control unit 6, imaging optical system 35, optical system driving unit 36, memory unit 37, and communication unit 38.
 iToFセンサ3とRGBセンサ5と制御部6とメモリ部37と通信部38はバス39を介して接続され、相互にデータ通信を行うことが可能とされている。 The iToF sensor 3, the RGB sensor 5, the control section 6, the memory section 37, and the communication section 38 are connected via a bus 39, and are capable of mutual data communication.
 iToFセンサ3とRGBセンサ5については重複説明を避ける。 Duplicate explanations regarding the iToF sensor 3 and RGB sensor 5 will be avoided.
 制御部6は、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等を有するマイクロコンピュータを備えて構成されている。CPUがROMに記憶されているプログラム、またはRAMにロードされたプログラムに従って各種の処理を実行することで、AMR1の全体制御を行う。
 制御部6については既に述べたため、これ以上の説明を省く。
The control unit 6 includes a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The CPU performs overall control of the AMR 1 by executing various processes according to programs stored in the ROM or programs loaded into the RAM.
Since the control unit 6 has already been described, further explanation will be omitted.
 撮像光学系35は、上述した第1光学系2と第2光学系4を包括して示したものであり、被写体からの光(IR光及び可視光)が導かれ、iToFセンサ3の第1受光部9及びRGBセンサ5の第2受光部29の受光面に集光される。 The imaging optical system 35 includes the first optical system 2 and the second optical system 4 described above, and it guides light (IR light and visible light) from the subject to the first optical system of the iToF sensor 3. The light is focused on the light receiving section 9 and the light receiving surface of the second light receiving section 29 of the RGB sensor 5.
 光学系駆動部36は、撮像光学系35が有する各光学部材の駆動部を包括的に示したものである。具体的に、光学系駆動部36は、ズームレンズ、フォーカスレンズ、絞り機構それぞれを駆動するためのアクチュエータ、及び該アクチュエータの駆動回路を有している。 The optical system driving unit 36 collectively refers to the driving units for each optical component of the imaging optical system 35. Specifically, the optical system driving unit 36 has actuators for driving the zoom lens, focus lens, and aperture mechanism, and driving circuits for the actuators.
 メモリ部37は、例えばHDD(Hard Disk Drive)やフラッシュメモリ装置等の不揮発性の記憶デバイスとされ、iToFセンサ3やRGBセンサ5から出力された画像データの保存先(記録先)として用いられる。 The memory unit 37 is a nonvolatile storage device such as an HDD (Hard Disk Drive) or a flash memory device, and is used as a storage destination (recording destination) for image data output from the iToF sensor 3 and the RGB sensor 5.
 通信部38は、制御部6の通信制御に応じて、外部装置との間で各種データ通信を行う。例えば、AMR1の通信部38は、対向AMR1’の通信部との間でのデータ通信を行うことが可能とされていてもよい。
The communication unit 38 performs various data communications with external devices according to the communication control of the control unit 6. For example, the communication unit 38 of the AMR 1 may be able to perform data communication with the communication unit of the opposing AMR 1'.
<10.第2の実施の形態>
 上述したAMR1においては、iToFセンサ3の外部においてAIモデルを用いた推論処理が行われる例を挙げた。
<10. Second embodiment>
In the AMR 1 described above, an example was given in which inference processing using an AI model is performed outside the iToF sensor 3.
 しかし、本技術の実施にはこれに限らず、iToFセンサ3の内部においてAIモデルを用いた推論処理が行われてもよい。 However, the implementation of the present technology is not limited to this, and inference processing using an AI model may be performed inside the iToF sensor 3.
 このようなAMR1が備えるiToFセンサ3AとRGBセンサ5Aの構成について、図15に示す。なお、図2と同様の構成については適宜説明を省略する。 The configuration of the iToF sensor 3A and RGB sensor 5A included in such an AMR 1 is shown in FIG. 15. Note that descriptions of configurations similar to those in FIG. 2 will be omitted as appropriate.
 iToFセンサ3Aは、発光部8と第1受光部9と第1信号処理部10と発光制御部11に加えて、制御部6を備えている。即ち、iToFセンサ3Aは、制御部6が有するAI画像処理部32と補正処理部33と代替距離画像データ生成部34として機能する。 The iToF sensor 3A includes a control section 6 in addition to a light emitting section 8, a first light receiving section 9, a first signal processing section 10, and a light emission control section 11. That is, the iToF sensor 3A functions as the AI image processing section 32, correction processing section 33, and alternative distance image data generation section 34 included in the control section 6.
 RGBセンサ5Aは、第2受光部29及び第2信号処理部30を有する構成は図2に示すものと同様であるが、第2信号処理部30のRGB画像データ生成部31において生成されるRGB画像データCDは、iToFセンサ3Aに供給される。 The RGB sensor 5A has a configuration similar to that shown in FIG. 2, including a second light receiving unit 29 and a second signal processing unit 30, but the RGB image data CD generated in the RGB image data generating unit 31 of the second signal processing unit 30 is supplied to the iToF sensor 3A.
 第2の実施の形態のAMR1の内部構成例を示すブロック図を図16に示す。
 AMR1は、iToFセンサ3Aと、RGBセンサ5Aと、撮像光学系35と、光学系駆動部36と、メモリ部37と、通信部38と、センサ外制御部40と、を有して構成されている。
FIG. 16 is a block diagram showing an example of the internal configuration of the AMR 1 according to the second embodiment.
The AMR 1 includes an iToF sensor 3A, an RGB sensor 5A, an imaging optical system 35, an optical system drive section 36, a memory section 37, a communication section 38, and an external control section 40. There is.
 iToFセンサ3AとRGBセンサ5Aとメモリ部37と通信部38とセンサ外制御部40とはバス39を介して接続され、相互にデータ通信を行うことが可能とされている。 The iToF sensor 3A, the RGB sensor 5A, the memory section 37, the communication section 38, and the external control section 40 are connected via a bus 39, and are capable of mutual data communication.
 撮像光学系35と光学系駆動部36とメモリ部37と通信部38についての説明は図14との重複を避けるために省略する。 Descriptions of the imaging optical system 35, optical system drive section 36, memory section 37, and communication section 38 are omitted to avoid duplication with FIG. 14.
 センサ外制御部40は、例えば、上述した制御部6における一部の機能を実現するものであり、例えば、距離画像データに基づいてAMR1の駆動部を駆動させる処理や、対向AMR1’との通信処理などを行う。 The extra-sensor control unit 40 realizes, for example, some of the functions of the control unit 6 described above, and includes, for example, processing for driving the drive unit of the AMR 1 based on distance image data and communication with the opposing AMR 1'. Perform processing, etc.
 iToFセンサ3Aは、発光部8と、第1受光部9と、第1信号処理部10と、センサ内制御部41と、AI画像処理部42と、メモリ部43と、通信I/F44とを備え、それぞれがバス45を介して相互にデータ通信可能とされている。 The iToF sensor 3A includes a light emitting section 8, a first light receiving section 9, a first signal processing section 10, an in-sensor control section 41, an AI image processing section 42, a memory section 43, and a communication I/F 44. and are capable of data communication with each other via a bus 45.
 発光部8と第1受光部9と第1信号処理部10ついては重複説明を避ける。 The light emitting section 8, the first light receiving section 9, and the first signal processing section 10 will not be repeatedly explained.
 センサ内制御部41は、図15における制御部6や発光制御部11の一部の機能を実現するものであり、具体的にはAIモデルを用いずに実行可能な各種の処理を行う。
 センサ内制御部41は、例えばCPUやMPU(Micro Processor Unit)などによって実現される。
The sensor internal control unit 41 realizes some of the functions of the control unit 6 and the light emission control unit 11 in FIG. 15, and specifically performs various processes that can be executed without using an AI model.
The sensor internal control unit 41 is realized by, for example, a CPU or an MPU (Micro Processor Unit).
 例えば、センサ内制御部41は、発光制御部11に対する指示を行い発光制御を実現する。また、センサ内制御部41は、第1受光部9に対する指示を行い撮像動作の実行制御を行う。同様に、第1信号処理部10に対しても処理の実行制御を行う。 For example, the in-sensor control unit 41 issues instructions to the light emission control unit 11 to realize light emission control. Further, the in-sensor control unit 41 issues instructions to the first light receiving unit 9 and controls execution of the imaging operation. Similarly, the first signal processing section 10 also controls the execution of processing.
 AI画像処理部42は、制御部6におけるAIモデルを用いた処理を行うものであり、例えば、DSP(Digital Signal Processor)によって実現される。 The AI image processing unit 42 performs processing using an AI model in the control unit 6, and is realized by, for example, a DSP (Digital Signal Processor).
 本実施の形態において、AI画像処理部42が実行する処理は、上述したように、妨害パターンPTを推論する処理や、補正対象領域ArCを推論する処理を行う。また、補正対象領域ArCに対する補正後の距離情報を推論することにより補正処理を実現してもよい。 In the present embodiment, the processing executed by the AI image processing unit 42 includes processing for inferring the disturbance pattern PT and processing for inferring the correction target area ArC, as described above. Further, the correction process may be realized by inferring distance information after correction with respect to the correction target area ArC.
 AI画像処理部42で用いるAIモデルの切り替えは、例えば、センサ外制御部40やセンサ内制御部41の処理に基づいてなされる。また、AIモデルの切り替えは、例えば、メモリ部43やメモリ部37に複数のAIモデルを記憶させておくことにより実現される。 Switching of the AI model used by the AI image processing unit 42 is performed, for example, based on the processing of the extra-sensor control unit 40 and the intra-sensor control unit 41. Furthermore, switching between AI models is realized by, for example, storing a plurality of AI models in the memory unit 43 or the memory unit 37.
 メモリ部43には、第1信号処理部10により得られた一次距離画像データDD1や輝度画像データBDが保存される所謂フレームメモリとして利用可能である。また、メモリ部43は、AI画像処理部42がAIモデルを用いた処理を実行する過程で用いるデータの一時的な記憶にも用いることが可能とされる。 The memory unit 43 can be used as a so-called frame memory in which the primary distance image data DD1 and luminance image data BD obtained by the first signal processing unit 10 are stored. The memory unit 43 can also be used for temporary storage of data used in the process in which the AI image processing unit 42 executes processing using an AI model.
 また、メモリ部43には、AI画像処理部42で用いられるプログラムやAIアプリケーションやAIモデルの情報が記憶される。なお、AIアプリケーションは、AIモデルを利用したアプリケーションを指す。 Additionally, the memory unit 43 stores information on programs, AI applications, and AI models used by the AI image processing unit 42. Note that the AI application refers to an application that uses an AI model.
 例えば、AIモデルを用いて一次距離画像データDD1を生成するアプリケーションなどはAIアプリケーションの一例である。 For example, an application that generates primary distance image data DD1 using an AI model is an example of an AI application.
 通信I/F44は、iToFセンサ3Aの外部にあるセンサ外制御部40やメモリ部37等との通信を行うインタフェースである。通信I/F44は、センサ内制御部41が実行するプログラムやAI画像処理部42が利用するAIアプリケーションやAIモデルなどを外部から取得するための通信を行い、iToFセンサ3Aが備えるメモリ部43に記憶させる。
 これにより、iToFセンサ3Aが備えるメモリ部43にAIモデルが記憶され、AI画像処理部42による利用が可能となる。
The communication I/F 44 is an interface that communicates with the external control section 40, the memory section 37, etc. located outside the iToF sensor 3A. The communication I/F 44 performs communication to acquire programs executed by the sensor internal control unit 41 and AI applications and AI models used by the AI image processing unit 42 from the outside, and stores them in the memory unit 43 included in the iToF sensor 3A. Make me remember.
As a result, the AI model is stored in the memory unit 43 included in the iToF sensor 3A, and can be used by the AI image processing unit 42.
 AI画像処理部42によって行われたAIモデルを用いた処理における処理結果としての最終距離画像データDD2などの距離画像データは、通信I/F44を介してiToFセンサ3Aの外部に出力される。 Distance image data such as the final distance image data DD2 as a processing result of the processing using the AI model performed by the AI image processing unit 42 is output to the outside of the iToF sensor 3A via the communication I/F 44.
 RGBセンサ5Aは、第2受光部29と、第2信号処理部30と、センサ内制御部46と、メモリ部47と、通信I/F48とを備え、それぞれがバス49を介して相互にデータ通信可能とされている。 The RGB sensor 5A includes a second light receiving section 29, a second signal processing section 30, an internal sensor control section 46, a memory section 47, and a communication I/F 48, each of which exchanges data with each other via a bus 49. It is said that communication is possible.
 第2受光部29及び第2信号処理部30については重複説明を避ける。 The second light receiving section 29 and the second signal processing section 30 will not be repeatedly explained.
 センサ内制御部46は、第2受光部29に対する指示を行って撮像動作の実行制御を行う。同様に、第2信号処理部30に対しても処理の実行制御を行う。
 これにより、RGBセンサ5AにおいてRGB画像データCDが得られる。
The in-sensor control unit 46 instructs the second light receiving unit 29 to control the execution of the imaging operation. Similarly, the second signal processing section 30 also controls the execution of processing.
Thereby, RGB image data CD is obtained in the RGB sensor 5A.
 メモリ部47は、第2信号処理部30により得られたRGB画像データCDが保存される所謂フレームメモリとして利用可能である。 The memory section 47 can be used as a so-called frame memory in which the RGB image data CD obtained by the second signal processing section 30 is stored.
 通信I/F48は、RGBセンサ5Aの外部にあるセンサ外制御部40やメモリ部37等との通信を行うインタフェースである。通信I/F44は、センサ内制御部41が実行するプログラム等を外部から取得するための通信を行い、RGBセンサ5Aが備えるメモリ部47に記憶させる。
The communication I/F 48 is an interface that communicates with the external control unit 40, the memory unit 37, etc. located outside the RGB sensor 5A. The communication I/F 44 performs communication to acquire a program and the like to be executed by the in-sensor control unit 41 from the outside, and stores it in the memory unit 47 included in the RGB sensor 5A.
<11.変形例>
 上述したAMR1は、通信部38が対向AMR1’と通信してもよい旨を記載した。通信部38による該通信においては、対向AMR1’のメーカー情報や機種情報などを対向AMR1’から取得するようにAMR1が構成されていてもよい。
<11. Modified example>
The above-mentioned AMR 1 describes that the communication unit 38 may communicate with the opposing AMR 1'. In this communication by the communication unit 38, the AMR 1 may be configured to acquire manufacturer information, model information, etc. of the opposing AMR 1' from the opposing AMR 1'.
 AMR1は、対向AMR1’を特定するための情報を取得することにより、対向AMR1’から照射される妨害光についての情報を得ることができ、補正精度を向上させることが可能となる。
 また、対向AMR1’の筐体サイズや形状等を考慮して各種のAIモデルを用いた処理を行うことができるため、推論精度の向上を図ることができる。
By acquiring information for specifying the opposing AMR 1', the AMR 1 can obtain information about the interfering light emitted from the opposing AMR 1', making it possible to improve correction accuracy.
Further, since processing can be performed using various AI models in consideration of the size, shape, etc. of the casing of the opposing AMR 1', it is possible to improve inference accuracy.
 上述したAMR1は、AIモデルを用いて補正対象領域ArCに含まれる測距誤差を小さくするための補正処理を行うものである。このとき、AMR1は、AIモデルを用いるなどして被写体の材質を判定し、補正処理において被写体の材質を加味して補正対象領域ArCについての補正を行ってもよい。 The AMR1 described above uses an AI model to perform a correction process to reduce the distance measurement error included in the correction target area ArC. At this time, the AMR 1 may determine the material of the subject using an AI model or the like, and perform correction on the correction target area ArC in consideration of the material of the subject in the correction process.
 例えば、AIモデルの学習において床面や壁面の材質が異なる複数の画像を学習用データとして与える。
 この学習によって得られたAIモデルは、例えば、補正対象領域ArCを推論するAIモデルであれば、材質に応じて適切な領域を補正対象領域ArCとして推論することができるため、補正対象領域ArCの推論精度を高めることが可能となる。
 また、補整後の距離情報を推論することにより補正処理を行うAIモデルであれば、補正対象領域ArCに対する補正を被写体の材質に応じて適切に行うことが可能となるため、補正の結果得られた最終距離画像データDD2の距離情報を高精度のものにすることが可能となる。
For example, in learning an AI model, a plurality of images with different materials for floors and walls are provided as learning data.
For example, if the AI model obtained through this learning is an AI model that infers the correction target area ArC, it can infer an appropriate area as the correction target area ArC depending on the material. It becomes possible to improve inference accuracy.
In addition, with an AI model that performs correction processing by inferring distance information after correction, it is possible to appropriately correct the correction target area ArC according to the material of the subject, so that the correction result can be It becomes possible to make the distance information of the final distance image data DD2 highly accurate.
 上述したAMR1においては、第1センサとしてのiToFセンサ3(3A)と、第2センサとしてのRGBセンサ5(5A)とを備えている例を挙げた。
 本技術の実施においてはAMR1が備える各センサの種類はこれに限られない。
In the above-mentioned AMR 1, an example was given in which the iToF sensor 3 (3A) is the first sensor and the RGB sensor 5 (5A) is the second sensor.
In implementing the present technology, the types of sensors included in the AMR 1 are not limited to these.
 例えば、AMR1が第1センサとして、iToFセンサ3(3A)の替わりにdToF(direct ToF)センサを備えていてもよいし、位相差検出画素が設けられた測距センサを備えていてもよいし、それ以外の測距センサを備えていてもよい。 For example, the AMR 1 may be provided with a dToF (direct ToF) sensor instead of the iToF sensor 3 (3A) as the first sensor, or may be provided with a distance measurement sensor provided with phase difference detection pixels, or may be provided with any other distance measurement sensor.
 また、AMR1が第2センサとして、RGBセンサ5(5A)の替わりにモノクロ画像を出力するセンサを備えていてもよいし、IRセンサを備えていてもよいし、偏光センサを備えていてもよい。
 換言すれば、AMR1は、第2センサとして、被写体の外形を検出できるようなセンサを用いることができる。これにより、測距センサから出力される距離画像データにおける任意の画素の対応点を第2センサから出力される画像データ上で特定することが可能となり、ステレオ画像方式の測距方式を用いて代替距離画像データSDを生成することができる。
Further, the AMR 1 may be provided with a sensor that outputs a monochrome image instead of the RGB sensor 5 (5A), may be provided with an IR sensor, or may be provided with a polarization sensor as the second sensor. .
In other words, the AMR 1 can use a sensor capable of detecting the external shape of the subject as the second sensor. This makes it possible to identify the corresponding point of any pixel in the distance image data output from the distance measurement sensor on the image data output from the second sensor, and replaces it with the stereo image distance measurement method. Distance image data SD can be generated.
<12.まとめ>
 上述した各例において説明したように、情報処理装置としてのAMR1は、測距のための受光動作を行う受光センサである第1センサ(iToFセンサ3、3A)の受光信号S1、S2に基づき得られる距離画像データとしての第1画像データ(一次距離画像データDD1)と、第1センサとは異なる種別の受光センサである第2センサ(RGBセンサ5、5A)の受光信号(R信号、G信号、B信号)に基づき得られる画像データである第2画像データ(RGB画像データCD)とを機械学習された人工知能モデル(第2AIモデルM2)の入力データとして与えることにより、人工知能モデル(第2AIモデルM2)を用いて、外部の物体(対向AMR1’)が発する第1センサの受光波長帯の妨害光(例えばIR光の妨害光)に起因して第1画像データに生じる測距誤差領域を補正対象領域ArCとして推論する処理を行うAI画像処理部32、42を備えている。
 即ち、測距センサとそれ以外のセンサを組み合わせて使用することにより、外部の物体が発するIR帯域のレーザ光などによって測距結果が影響を受ける画素領域を補正対象領域ArCとして特定することが可能となる。
 従って、適切な補正処理を行うことにより、外乱による影響を低減させることができる。
 また、AMR1の個体ごとに異なる周波数や発光パターンを用いるなどして距離画像データを生成することが考えられるが、AMR間でID認証等を用いて意図的に異なる周波数や発光パターンを用いる必要がある。そして、このように測距を行うAMR1の数が増加することを踏まえると、異なるメーカーのAMRにおいて周波数や発光パターンを異ならせる制御を行うことは極めて煩雑となり困難である可能性が高い。
 本構成によれば、測距誤差が生じる補正対象領域ArCを特定することで補正を可能とすることにより、上述の煩雑な処理を不要とし外乱に対する測距精度のロバスト性を高めることが可能となる。
 なお、被写体についての適切な測距情報を得ることにより、AMR1の緊急停止や移動が再開できない膠着状態等を回避することができる。
<12. Summary>
As described in each of the above examples, the AMR1 as an information processing device is equipped with an AI image processing unit 32, 42 that performs processing to infer, as input data to a machine-learned artificial intelligence model (second AI model M2), a ranging error area that occurs in the first image data due to interfering light (e.g., interfering light of IR light) in the light receiving wavelength band of the first sensor emitted by an external object (opposing AMR1'), as a correction target area ArC, by providing the first image data (primary distance image data DD1) as distance image data obtained based on the light receiving signals S1, S2 of the first sensor ( iToF sensor 3, 3A), which is a light receiving sensor that performs light receiving operation for distance measurement, and the second image data (RGB image data CD), which is image data obtained based on the light receiving signals (R signal, G signal, B signal) of the second sensor ( RGB sensor 5, 5A), which is a light receiving sensor of a different type from the first sensor, as input data to the machine-learned artificial intelligence model (second AI model M2).
In other words, by using a distance measurement sensor in combination with other sensors, it is possible to identify a pixel area where the distance measurement results are affected by IR band laser light emitted by an external object as the correction target area ArC.
Therefore, by performing an appropriate correction process, the influence of disturbances can be reduced.
It is also conceivable to generate distance image data by using different frequencies or emission patterns for each individual AMR 1, but this would require intentionally using different frequencies and emission patterns between AMRs using ID authentication, etc. Given that the number of AMRs 1 performing distance measurement in this way will increase, it is highly likely that controlling AMRs from different manufacturers to use different frequencies and emission patterns will become extremely complicated and difficult.
According to this configuration, by identifying the correction target area ArC in which distance measurement errors occur and enabling correction, it is possible to eliminate the above-mentioned complicated processing and to increase the robustness of distance measurement accuracy against disturbances.
By obtaining appropriate distance measurement information about the subject, it is possible to avoid an emergency stop of the AMR 1 or a deadlock in which movement cannot be resumed.
 図2等を参照して説明したように、情報処理装置としてのAMR1においては、第1画像データ(一次距離画像データDD1)における補正対象領域ArCについての距離情報の補正を行い補正後距離画像データを出力する補正処理部33を備えていてもよい。
 距離情報の補正を行うことにより、適切な距離画像データを得ることができる。従って、誤った距離情報に基づく不適切な制御が行われてしまうことを抑制することができる。
As explained with reference to FIG. 2, etc., in the AMR1 as an information processing device, the distance information about the correction target area ArC in the first image data (primary distance image data DD1) is corrected, and the corrected distance image data is It may also include a correction processing section 33 that outputs.
By correcting the distance information, appropriate distance image data can be obtained. Therefore, it is possible to prevent inappropriate control from being performed based on incorrect distance information.
 上述したように、情報処理装置としてのAMR1において、上述した外部の物体はAMR(対向AMR1’)とされてもよい。
 前方に位置する対象物についての距離画像データを生成しながら移動するAMRなどの情報処理装置が互いにすれ違う場合には、測距のために照射しているレーザ光による測距精度の低下が懸念される。このような情報処理装置において補正対象領域ArCを特定することで測距精度の低下を抑制することが可能となる。
As described above, in the AMR 1 as the information processing device, the above-mentioned external object may be the AMR (opposing AMR 1').
If information processing devices such as AMRs that move while generating distance image data about objects located in front of them pass each other, there is a concern that the distance measurement accuracy will decrease due to the laser light emitted for distance measurement. Ru. By specifying the correction target area ArC in such an information processing device, it is possible to suppress a decrease in distance measurement accuracy.
 上述したように、情報処理装置としてのAMR1における人工知能モデル(第2AIモデルM2)は、補正対象領域ArCが存在しないものとされた第1画像データ(一次距離画像データDD1)である第1正常画像データ(例えば図6についての距離画像データ)と、補正対象領域ArCを有する第1画像データである第1要補正画像データ(例えば図8についての距離画像データ)と、第2画像データ(RGB画像データCD)に基づく第2正常画像データと、を組にした学習用データを用いた機械学習により得られるものとされてもよい。
 第1正常画像データ及び第1要補正画像データは距離画像データであり、第2正常画像データは例えばRGB画像やモノクロ画像や偏光画像などである。
 距離画像データだけでなく第2正常画像データを学習用データとして用いることにより、測距対象の物体の輪郭などの特徴を認識することが可能となり、補正対象領域ArCの推論精度の向上を図ることができる。
 また、学習用データとして図7に示す第2パターンPT2の距離画像データや、図9に示す第4パターンPT4の距離画像データを用いないことにより、学習用データを削減することができ、学習に要する時間を短縮することができる。
 なお、図9に示す第4パターンPT4の距離画像データを更に学習用データとして用いることにより、対向AMR1’との間に障害物BOが存在する場合についての補正精度を向上させてもよい。
 また、図7に示す第2パターンPT2の距離画像データを更に学習用データとして用いることにより、補正を行うか否かについてAIモデルを用いて判定することができる。
As described above, the artificial intelligence model (second AI model M2) in AMR1 as an information processing device uses the first normal image data (primary distance image data DD1) in which the correction target area ArC is assumed not to exist. Image data (for example, distance image data regarding FIG. 6), first correction-required image data (for example, distance image data regarding FIG. 8), which is first image data having a correction target area ArC, and second image data (RGB The second normal image data based on the image data CD) may be obtained by machine learning using learning data set as a set.
The first normal image data and the first image data requiring correction are distance image data, and the second normal image data is, for example, an RGB image, a monochrome image, a polarized light image, or the like.
By using not only the distance image data but also the second normal image data as learning data, it becomes possible to recognize features such as the outline of the object to be measured, and improve the accuracy of inference of the correction target area ArC. Can be done.
Furthermore, by not using the distance image data of the second pattern PT2 shown in FIG. 7 and the distance image data of the fourth pattern PT4 shown in FIG. 9 as learning data, it is possible to reduce the learning data, and The time required can be shortened.
Note that by further using the distance image data of the fourth pattern PT4 shown in FIG. 9 as learning data, the correction accuracy in the case where an obstacle BO exists between the oncoming AMR 1' and the oncoming AMR 1' may be improved.
Moreover, by further using the distance image data of the second pattern PT2 shown in FIG. 7 as learning data, it is possible to determine whether or not to perform correction using the AI model.
 上述したように、情報処理装置としてのAMR1において、第2AIモデルM2の学習用データは、更に補正対象領域ArCについての正解データを含んでいてもよい。
 これにより、補正対象領域ArCの推論精度の向上を図ることができる。
As described above, in the AMR1 as an information processing device, the learning data for the second AI model M2 may further include corrective data for the correction target area ArC.
This makes it possible to improve the estimation accuracy of the correction target area ArC.
 図6から図9の各図を参照して説明したように、情報処理装置としてのAMR1におけるAI画像処理部32、42は、人工知能モデル(第1AIモデルM1)を用いて、妨害光の妨害態様の類型である妨害パターンPTを推論する処理を行ってもよい。
 これにより、例えば、妨害パターンPTごとに学習した第2AIモデルM2を用いて補正対象領域ArCの推論を行うことができるため、推論精度の向上を図ることができる。
As explained with reference to each figure from FIG. 6 to FIG. 9, the AI image processing units 32 and 42 in the AMR 1 as an information processing device use an artificial intelligence model (first AI model M1) to prevent interference with interference light. Processing may be performed to infer a disturbance pattern PT which is a type of aspect.
Thereby, for example, the correction target area ArC can be inferred using the second AI model M2 learned for each disturbance pattern PT, so that the inference accuracy can be improved.
 図6から図9の各図を参照して説明したように、情報処理装置としてのAMR1において、妨害パターンPTは、妨害光の向きに応じて分類された類型とされてもよい。
 例えば、第1センサ(iToFセンサ3、3A)のセンサ面に対して略直交して妨害光が照射されている場合には、センサ面全体に妨害光の影響が及び距離画像データの精度が著しく低下してしまう。また、第1センサのセンサ面に対して妨害光の反射光が入射する場合には、反射光を受光する一部の領域において距離画像データの精度の低下が起きる。
 このような妨害光のパターンを推定することで、妨害パターンPTごとに適切な第2AIモデルM2を用いることが可能となり、推論精度の向上を図ることができる。
As described with reference to each of FIGS. 6 to 9, in the AMR 1 as an information processing device, the interference patterns PT may be classified into types according to the direction of interference light.
For example, if interference light is irradiated approximately orthogonally to the sensor surface of the first sensor ( iToF sensors 3, 3A), the interference light will affect the entire sensor surface and the accuracy of distance image data will be significantly reduced. It will drop. Further, when the reflected light of the interference light is incident on the sensor surface of the first sensor, the accuracy of the distance image data decreases in a part of the area that receives the reflected light.
By estimating such a pattern of interference light, it becomes possible to use an appropriate second AI model M2 for each interference pattern PT, and it is possible to improve inference accuracy.
 図6から図9の各図を参照して説明したように、情報処理装置としてのAMR1において、妨害パターンPTは、妨害光の直接光が第1センサ(iToFセンサ3、3A)のセンサ面に入射されない第1パターンPT1と、直接光がセンサ面に入射される第2パターンPT2と、直接光がセンサ面に入射されず且つ妨害光の少なくとも一部を遮る障害物BOが存在しない第3パターンPT3と、直接光がセンサ面に入射されず且つ障害物BOが存在する第4パターンPT4と、を少なくとも含んでいてもよい。
 これにより、補正対象領域ArCの推論精度向上だけでなく、そもそも補正が可能であるのか否かについての判定を行うことができる。従って、補正可能な距離画像データについては高精度で補正を行うと共に補正が不要な距離画像データについては補正処理を回避しつつ、それ以外の距離画像データについては代替手段などを用いて新たに距離画像データを生成するなど、状況に応じた処理を行うことが可能となる。
As explained with reference to each figure from FIG. 6 to FIG. 9, in the AMR1 as an information processing device, the interference pattern PT is such that the direct light of the interference light hits the sensor surface of the first sensor ( iToF sensor 3, 3A). A first pattern PT1 in which no direct light is incident, a second pattern PT2 in which direct light is incident on the sensor surface, and a third pattern in which direct light is not incident on the sensor surface and there is no obstacle BO that blocks at least a portion of the interfering light. The pattern may include at least PT3 and a fourth pattern PT4 in which direct light is not incident on the sensor surface and an obstacle BO is present.
Thereby, it is possible not only to improve the inference accuracy of the correction target area ArC, but also to determine whether or not correction is possible in the first place. Therefore, while correcting distance image data that can be corrected with high precision and avoiding correction processing for distance image data that does not require correction, other distance image data can be newly calculated using alternative methods. It becomes possible to perform processing according to the situation, such as generating image data.
 図9を参照して説明したように、情報処理装置としてのAMR1について、第1画像データ(一次距離画像データDD1)における補正対象領域ArCについての距離情報の補正を行い補正後距離画像データを出力する補正処理部33を備え、補正処理部33は、第4パターンPT4についての補正において、障害物BOが撮像された領域を除いて補正を行ってもよい。
 妨害光の直接光や反射光の少なくとも一部を遮る障害物BOが存在する場合には、当該障害物BOについて得られた距離情報は正しいと考えられる。
 補正の対象からそのような距離情報を除外することにより、不要な補正処理が行われてしまうことを防止することができ、処理負担の軽減を図ることができる。
 また、障害物BOを正しく認識することができるため、障害物BOの手前で一時停止するなど適切な制御を行うことができる。
As described with reference to FIG. 9, for AMR1 as an information processing device, distance information about the correction target area ArC in the first image data (primary distance image data DD1) is corrected and corrected distance image data is output. The correction processing unit 33 may perform correction on the fourth pattern PT4 except for the area where the obstacle BO is imaged.
When there is an obstacle BO that blocks at least a portion of the direct light or reflected light of the interference light, the distance information obtained about the obstacle BO is considered to be correct.
By excluding such distance information from the objects of correction, it is possible to prevent unnecessary correction processing from being performed, and it is possible to reduce the processing load.
Furthermore, since the obstacle BO can be correctly recognized, appropriate control such as temporarily stopping in front of the obstacle BO can be performed.
 図6から図9の各図を参照して説明したように、情報処理装置としてのAMR1において、妨害パターンPTを推論する人工知能モデル(第1AIモデルM1)は、補正対象領域ArCが存在しないものとされた第1画像データ(一次距離画像データDD1)である第1正常画像データ(例えば図6についての距離画像データ)と、補正対象領域ArCを有する第1画像データである第1要補正画像データ(例えば図8についての距離画像データ)と、第2画像データ(RGB画像データCD)に基づく第2正常画像データと、妨害パターンPTについての正解データと、を組にした学習用データを用いた機械学習により得られるものとされてもよい。
 妨害パターンPTを正解データとして与える教師あり学習を行うことにより、距離画像データについての妨害パターンPTの推論精度を向上させることができ、その後の補正処理を適切に行うことが可能となる。
 なお、図7に示す第2パターンPT2の距離画像データや、図9に示す第4パターンPT4の距離画像データを更に学習用データとして用いることにより、各種の状況についての妨害パターンPTの推論を行うことができ、適切な補正処理等を行うことが可能となる。
As explained with reference to each figure from FIG. 6 to FIG. 9, in the AMR1 as an information processing device, the artificial intelligence model (first AI model M1) that infers the disturbance pattern PT is the one in which the correction target area ArC does not exist. The first normal image data (for example, the distance image data for FIG. 6) is the first image data (primary distance image data DD1) that has been determined to be the same, and the first correction-required image is the first image data having the correction target area ArC. Data (for example, the distance image data for FIG. 8), second normal image data based on the second image data (RGB image data CD), and correct data for the interference pattern PT are used. It may also be obtained through machine learning.
By performing supervised learning in which the interference pattern PT is given as correct data, the accuracy of inference of the interference pattern PT for distance image data can be improved, and subsequent correction processing can be performed appropriately.
Note that by further using the distance image data of the second pattern PT2 shown in FIG. 7 and the distance image data of the fourth pattern PT4 shown in FIG. 9 as learning data, the interference pattern PT for various situations is inferred. This makes it possible to perform appropriate correction processing and the like.
 図2等を参照して説明したように、情報処理装置としてのAMR1のAI画像処理部32、42においては、妨害パターンPTは第2パターンPT2であるとの推論結果を得た場合に、ステレオ画像を用いた測距方式によって代替距離画像データSDを生成する代替距離画像データ生成部34を備えていてもよい。
 即ち、例えばiToF方式による測距の代替手段としてステレオ画像を用いた測距方式が採用される。従って、妨害光による測距誤差を排除した代替距離画像データSDを生成することができる。
As explained with reference to FIG. 2 etc., in the AI image processing units 32 and 42 of the AMR1 as an information processing device, when the inference result that the interference pattern PT is the second pattern PT2 is obtained, the stereo It may also include an alternative distance image data generation unit 34 that generates alternative distance image data SD by a distance measurement method using images.
That is, for example, a distance measurement method using stereo images is adopted as an alternative to distance measurement using the iToF method. Therefore, it is possible to generate alternative distance image data SD that eliminates distance measurement errors caused by interfering light.
 図2や図13等を参照して説明したように、情報処理装置としてのAMR1における第1センサ(iToFセンサ3、3A)は、距離画像データと輝度画像データBDとが得られる受光信号S1、S2を出力するiToF測距方式の受光動作を行う受光センサとされ、代替距離画像データ生成部34は、ステレオ画像を用いた測距方式に用いる2枚の画像として、輝度画像データBDと第2画像データ(RGB画像データCD)とを用いてもよい。
 これにより、第1センサから出力される受光信号S1、S2は、iToF測距方式による距離画像データの生成と、ステレオ画像を用いた測距方式による距離画像データの双方に用いられる。
 従って、第1センサ(iToFセンサ3、3A)と第2センサ(RGBセンサ5、5A)の2眼のセンサで距離画像データと代替距離画像データSDの生成に対応することができる。これは、距離画像データを生成する1眼のセンサと、ステレオ画像を得るための2眼のセンサを有する合計3眼の構成と比較して、AMR1における部品コストの削減及び小型化を図ることが可能となる。
As described with reference to FIGS. 2, 13, etc., the first sensor ( iToF sensor 3, 3A) in the AMR 1 as an information processing device receives a light reception signal S1 from which distance image data and brightness image data BD are obtained, The alternative distance image data generation unit 34 generates brightness image data BD and second image data as two images used in the distance measurement method using stereo images. Image data (RGB image data CD) may also be used.
Thereby, the light reception signals S1 and S2 output from the first sensor are used both for generating distance image data using the iToF distance measurement method and for generating distance image data using the distance measurement method using stereo images.
Therefore, the two-lens sensors, the first sensor ( iToF sensors 3, 3A) and the second sensor ( RGB sensors 5, 5A), can handle the generation of distance image data and alternative distance image data SD. This makes it possible to reduce component costs and downsize the AMR1 compared to a total of 3-lens configuration, which has a single-lens sensor that generates distance image data and two-lens sensors that obtain stereo images. It becomes possible.
 図10から図12の各図を参照して説明したように、情報処理装置としてのAMR1における補正処理部33は、補正対象領域ArCの周辺画素の情報を用いて補正を行ってもよい。
 これにより、簡易な処理で補正処理を行うことができる。
As described with reference to the figures of FIGS. 10 to 12, the correction processing unit 33 in the AMR 1 serving as the information processing apparatus may perform correction using information on peripheral pixels of the correction target area ArC.
Thereby, correction processing can be performed with simple processing.
 図2等を参照して説明したように、情報処理装置としてのAMR1における第1センサ(iToFセンサ3、3A)はIR光に対する感度を有するセンサとされてもよい。
 この場合には、第1センサに対する妨害光はIR光とされる。従って、第2センサが例えばRGBセンサ5、5Aの場合には、IR光である妨害光の影響を受けない第2画像データ(RGB画像データCD)が出力されるため、補正対象領域ArCの推論精度や補正処理の精度を向上させることができる。
As described with reference to FIG. 2 and the like, the first sensors ( iToF sensors 3, 3A) in the AMR 1 serving as the information processing device may be sensors having sensitivity to IR light.
In this case, the interfering light for the first sensor is IR light. Therefore, if the second sensor is, for example, the RGB sensor 5 or 5A, second image data (RGB image data CD) that is not affected by interference light, which is IR light, is output, so that the correction target area ArC can be inferred. The accuracy and accuracy of correction processing can be improved.
 情報処理装置としてのAMR1が実行する情報処理方法は、測距のための受光動作を行う受光センサである第1センサ(iToFセンサ3、3A)の受光信号S1、S2に基づき得られる距離画像データとしての第1画像データ(一次距離画像データDD1)と、第1センサとは異なる種別の受光センサである第2センサ(RGBセンサ5、5A)の受光信号(R信号、G信号、B信号)に基づき得られる画像データである第2画像データ(RGB画像データCD)とを機械学習された人工知能モデル(第2AIモデルM2)の入力データとして与えることにより、人工知能モデル(第2AIモデルM2)を用いて、外部の物体(対向AMR1’)が発する第1センサの受光波長帯の妨害光に起因して第1画像データに生じる測距誤差領域を補正対象領域ArCとして推論する処理を、情報処理装置が行うものである。 The information processing method executed by the AMR1 as an information processing device is to process distance image data obtained based on the light reception signals S1 and S2 of the first sensor ( iToF sensor 3, 3A), which is a light reception sensor that performs a light reception operation for distance measurement. as the first image data (primary distance image data DD1), and the light reception signals (R signal, G signal, B signal) of the second sensor ( RGB sensor 5, 5A) which is a light reception sensor of a different type from the first sensor. By giving the second image data (RGB image data CD), which is image data obtained based on , as input data to the machine-learned artificial intelligence model (second AI model M2), The information is used to infer a distance measurement error area that occurs in the first image data due to interference light in the wavelength band received by the first sensor emitted by an external object (opposing AMR 1') as a correction target area ArC. This is done by the processing device.
 本技術におけるプログラムは、測距のための受光動作を行う受光センサである第1センサ(iToFセンサ3、3A)の受光信号S1、S2に基づき得られる距離画像データとしての第1画像データ(一次距離画像データDD1)と、第1センサとは異なる種別の受光センサである第2センサ(RGBセンサ5、5A)の受光信号(R信号、G信号、B信号)に基づき得られる画像データである第2画像データ(RGB画像データCD)とを機械学習された人工知能モデル(第2AIモデルM2)の入力データとして与えることにより、人工知能モデル(第2AIモデルM2)を用いて、外部の物体(対向AMR1’)が発する第1センサの受光波長帯の妨害光に起因して第1画像データに生じる測距誤差領域を補正対象領域ArCとして推論する機能を、演算処理装置に実行させるものである。
 このようなプログラムにより上述した情報処理装置としてのAMR1において、外乱による測距精度の低下を抑制することができる。
The program in this technology is based on first image data (primary This is image data obtained based on the distance image data DD1) and the light reception signals (R signal, G signal, B signal) of the second sensor ( RGB sensor 5, 5A) which is a light reception sensor of a different type from the first sensor. By giving the second image data (RGB image data CD) as input data to the machine-learned artificial intelligence model (second AI model M2), the external object ( The arithmetic processing unit executes a function of inferring a distance measurement error area that occurs in the first image data due to interference light in the wavelength band received by the first sensor emitted by the opposing AMR 1') as a correction target area ArC. .
With such a program, in the AMR 1 as the information processing device described above, it is possible to suppress a decrease in distance measurement accuracy due to disturbance.
 これらのプログラムはコンピュータ装置等の機器に内蔵されている記録媒体としてのHDD(Hard Disk Drive)や、CPUを有するマイクロコンピュータ内のROM等に予め記録しておくことができる。またプログラムは、フレキシブルディスク、CD-ROM(Compact Disk Read Only Memory)、MO(Magneto Optical)ディスク、DVD(Digital Versatile Disc)、ブルーレイディスク(Blu-ray Disc(登録商標))、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、このようなプログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN(Local Area Network)、インターネットなどのネットワークを介してダウンロードすることもできる。
These programs can be recorded in advance in an HDD (Hard Disk Drive) as a recording medium built into equipment such as a computer device, or in a ROM in a microcomputer having a CPU. The program can also be used on flexible disks, CD-ROMs (Compact Disk Read Only Memory), MO (Magneto Optical) disks, DVDs (Digital Versatile Discs), Blu-ray Discs (registered trademark), magnetic disks, and semiconductor memory. can be stored (recorded) temporarily or permanently in a removable recording medium such as a memory card. Such a removable recording medium can be provided as so-called package software.
In addition to installing such a program into a personal computer or the like from a removable recording medium, it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limiting, and other effects may also exist.
 また、上述した各例はいかように組み合わせてもよく、各種の組み合わせを用いた場合であっても上述した種々の作用効果を得ることが可能である。
Furthermore, the above-mentioned examples may be combined in any manner, and even when various combinations are used, the above-mentioned various operational effects can be obtained.
<13.本技術>
 本技術は以下のような構成を採ることも可能である。
(1)
 測距のための受光動作を行う受光センサである第1センサの受光信号に基づき得られる距離画像データとしての第1画像データと、前記第1センサとは異なる種別の受光センサである第2センサの受光信号に基づき得られる画像データである第2画像データとを機械学習された人工知能モデルの入力データとして与えることにより、前記人工知能モデルを用いて、外部の物体が発する前記第1センサの受光波長帯の妨害光に起因して前記第1画像データに生じる測距誤差領域を補正対象領域として推論する処理を行うAI(Artificial Intelligence)画像処理部を備えた
 情報処理装置。
(2)
 前記第1画像データにおける前記補正対象領域についての距離情報の補正を行い補正後距離画像データを出力する補正処理部を備えた
 上記(1)に記載の情報処理装置。
(3)
 前記外部の物体はAMR(Autonomous Mobile Robot)とされた
 上記(1)から上記(2)の何れかに記載の情報処理装置。
(4)
 前記人工知能モデルは、前記補正対象領域が存在しないものとされた前記第1画像データである第1正常画像データと、前記補正対象領域を有する前記第1画像データである第1要補正画像データと、前記第2画像データに基づく第2正常画像データと、を組にした学習用データを用いた機械学習により得られるものとされた
 上記(1)から上記(3)の何れかに記載の情報処理装置。
(5)
 前記学習用データは、更に前記補正対象領域についての正解データを含む
 上記(4)に記載の情報処理装置。
(6)
 前記AI画像処理部は、人工知能モデルを用いて、前記妨害光の妨害態様の類型である妨害パターンを推論する処理を行う
 上記(1)から上記(5)の何れかに記載の情報処理装置。
(7)
 前記妨害パターンは、前記妨害光の向きに応じて分類された類型とされた
 上記(6)に記載の情報処理装置。
(8)
 前記妨害パターンは、前記妨害光の直接光が前記第1センサのセンサ面に入射されない第1パターンと、前記直接光が前記センサ面に入射される第2パターンと、前記直接光が前記センサ面に入射されず且つ前記妨害光の少なくとも一部を遮る障害物が存在しない第3パターンと、前記直接光が前記センサ面に入射されず且つ前記障害物が存在する第4パターンと、を少なくとも含む
 上記(7)に記載の情報処理装置。
(9)
 前記第1画像データにおける前記補正対象領域についての距離情報の補正を行い補正後距離画像データを出力する補正処理部を備え、
 前記補正処理部は、前記第4パターンについての補正において、前記障害物が撮像された領域を除いて前記補正を行う
 上記(8)に記載の情報処理装置。
(10)
 前記妨害パターンを推論する人工知能モデルは、前記補正対象領域が存在しないものとされた前記第1画像データである第1正常画像データと、前記補正対象領域を有する前記第1画像データである第1要補正画像データと、前記第2画像データに基づく第2正常画像データと、前記妨害パターンについての正解データと、を組にした学習用データを用いた機械学習により得られるものとされた
 上記(7)から上記(9)の何れかに記載の情報処理装置。
(11)
 前記AI画像処理部において前記妨害パターンは前記第2パターンであるとの推論結果を得た場合に、ステレオ画像を用いた測距方式によって代替距離画像データを生成する代替距離画像データ生成部を備えた
 上記(8)から上記(9)の何れかに記載の情報処理装置。
(12)
 前記第1センサは、前記距離画像データと輝度画像データとが得られる受光信号を出力するiToF(indirect Time of Flight)測距方式の受光動作を行う受光センサとされ、
 前記代替距離画像データ生成部は、前記ステレオ画像を用いた測距方式に用いる2枚の画像として、前記輝度画像データと前記第2画像データとを用いる
 上記(11)に記載の情報処理装置。
(13)
 前記補正処理部は、前記補正対象領域の周辺画素の情報を用いて前記補正を行う
 上記(2)に記載の情報処理装置。
(14)
 前記第1センサはIR(Infrared)光に対する感度を有するセンサとされた
 上記(1)から上記(13)の何れかに記載の情報処理装置。
(15)
 測距のための受光動作を行う受光センサである第1センサの受光信号に基づき得られる距離画像データとしての第1画像データと、前記第1センサとは異なる種別の受光センサである第2センサの受光信号に基づき得られる画像データである第2画像データとを機械学習された人工知能モデルの入力データとして与えることにより、前記人工知能モデルを用いて、外部の物体が発する前記第1センサの受光波長帯の妨害光に起因して前記第1画像データに生じる測距誤差領域を補正対象領域として推論する処理を、情報処理装置が行う
 情報処理方法。
(16)
 測距のための受光動作を行う受光センサである第1センサの受光信号に基づき得られる距離画像データとしての第1画像データと、前記第1センサとは異なる種別の受光センサである第2センサの受光信号に基づき得られる画像データである第2画像データとを機械学習された人工知能モデルの入力データとして与えることにより、前記人工知能モデルを用いて、外部の物体が発する前記第1センサの受光波長帯の妨害光に起因して前記第1画像データに生じる測距誤差領域を補正対象領域として推論する機能を、演算処理装置に実行させる
 プログラム。
<13. This technology>
The present technology can also adopt the following configuration.
(1)
First image data as distance image data obtained based on a light reception signal of a first sensor that is a light reception sensor that performs a light reception operation for distance measurement, and a second sensor that is a light reception sensor of a different type from the first sensor. By providing the second image data, which is image data obtained based on the light reception signal of An information processing device comprising an AI (Artificial Intelligence) image processing unit that performs a process of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
(2)
The information processing device according to (1) above, further comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data.
(3)
The information processing device according to any one of (1) to (2) above, wherein the external object is an AMR (Autonomous Mobile Robot).
(4)
The artificial intelligence model includes first normal image data that is the first image data in which the correction target area does not exist, and first correction-required image data that is the first image data that has the correction target area. and second normal image data based on the second image data. Information processing device.
(5)
The information processing device according to (4) above, wherein the learning data further includes correct data regarding the correction target area.
(6)
The information processing device according to any one of (1) to (5) above, wherein the AI image processing unit performs a process of inferring a disturbance pattern that is a type of disturbance mode of the disturbance light using an artificial intelligence model. .
(7)
The information processing device according to (6) above, wherein the interference pattern is classified into types according to the direction of the interference light.
(8)
The interference pattern includes a first pattern in which the direct light of the interference light does not enter the sensor surface of the first sensor, a second pattern in which the direct light does not enter the sensor surface, and a second pattern in which the direct light does not enter the sensor surface. at least a third pattern in which the direct light is not incident on the sensor surface and there is no obstacle that blocks at least a part of the interfering light; and a fourth pattern in which the direct light is not incident on the sensor surface and the obstacle is present. The information processing device according to (7) above.
(9)
comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data;
The information processing device according to (8), wherein the correction processing unit performs the correction on the fourth pattern except for an area where the obstacle is imaged.
(10)
The artificial intelligence model that infers the disturbance pattern uses first normal image data that is the first image data in which the correction target area does not exist, and first normal image data that is the first image data that has the correction target area. The above-mentioned image data is obtained by machine learning using learning data that is a set of first correction image data, second normal image data based on the second image data, and correct data for the interference pattern. The information processing device according to any one of (7) to (9) above.
(11)
an alternative distance image data generation unit that generates alternative distance image data by a distance measurement method using stereo images when the AI image processing unit obtains an inference result that the interference pattern is the second pattern; The information processing device according to any one of (8) to (9) above.
(12)
The first sensor is a light-receiving sensor that performs a light-receiving operation using an iToF (indirect time of flight) ranging method that outputs a light-receiving signal from which the distance image data and brightness image data are obtained;
The information processing device according to (11), wherein the alternative distance image data generation unit uses the luminance image data and the second image data as two images used in the distance measurement method using the stereo images.
(13)
The information processing device according to (2) above, wherein the correction processing unit performs the correction using information on peripheral pixels of the correction target area.
(14)
The information processing device according to any one of (1) to (13) above, wherein the first sensor is a sensor having sensitivity to IR (Infrared) light.
(15)
First image data as distance image data obtained based on a light reception signal of a first sensor that is a light reception sensor that performs a light reception operation for distance measurement, and a second sensor that is a light reception sensor of a different type from the first sensor. By providing the second image data, which is image data obtained based on the light reception signal of An information processing method, wherein an information processing device performs a process of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
(16)
First image data as distance image data obtained based on a light reception signal of a first sensor that is a light reception sensor that performs a light reception operation for distance measurement, and a second sensor that is a light reception sensor of a different type from the first sensor. By providing the second image data, which is image data obtained based on the light reception signal of A program that causes an arithmetic processing unit to execute a function of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
1 AMR(情報処理装置)
1’対向AMR(外部の物体)
3、3A iToFセンサ(第1センサ)
5、5A RGBセンサ(第2センサ)
32 AI画像処理部
33 補正処理部
34 代替距離画像データ生成部
S1、S2 受光信号
DD1 一次距離画像データ(第1画像データ、距離画像データ)
BD 輝度画像データ
CD RGB画像データ(第2画像データ)
SD 代替距離画像データ
ArC 補正対象領域
PT 妨害パターン
PT1 第1パターン
PT2 第2パターン
PT3 第3パターン
PT4 第4パターン
BO 障害物
M1 第1AIモデル(人工知能モデル)
M2 第2AIモデル(人工知能モデル)
1 AMR (information processing equipment)
1' Opposing AMR (external object)
3, 3A iToF sensor (first sensor)
5, 5A RGB sensor (second sensor)
32 AI image processing section 33 Correction processing section 34 Alternative distance image data generation section S1, S2 Light reception signal DD1 Primary distance image data (first image data, distance image data)
BD Brightness image data CD RGB image data (second image data)
SD Alternative distance image data ArC Correction target area PT Obstruction pattern PT1 1st pattern PT2 2nd pattern PT3 3rd pattern PT4 4th pattern BO Obstacle M1 1st AI model (artificial intelligence model)
M2 2nd AI model (artificial intelligence model)

Claims (16)

  1.  測距のための受光動作を行う受光センサである第1センサの受光信号に基づき得られる距離画像データとしての第1画像データと、前記第1センサとは異なる種別の受光センサである第2センサの受光信号に基づき得られる画像データである第2画像データとを機械学習された人工知能モデルの入力データとして与えることにより、前記人工知能モデルを用いて、外部の物体が発する前記第1センサの受光波長帯の妨害光に起因して前記第1画像データに生じる測距誤差領域を補正対象領域として推論する処理を行うAI(Artificial Intelligence)画像処理部を備えた
     情報処理装置。
    First image data as distance image data obtained based on a light reception signal of a first sensor that is a light reception sensor that performs a light reception operation for distance measurement, and a second sensor that is a light reception sensor of a different type from the first sensor. By providing the second image data, which is image data obtained based on the light reception signal of An information processing device comprising an AI (Artificial Intelligence) image processing unit that performs a process of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
  2.  前記第1画像データにおける前記補正対象領域についての距離情報の補正を行い補正後距離画像データを出力する補正処理部を備えた
     請求項1に記載の情報処理装置。
    The information processing apparatus according to claim 1, further comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data.
  3.  前記外部の物体はAMR(Autonomous Mobile Robot)とされた
     請求項1に記載の情報処理装置。
    The information processing device according to claim 1, wherein the external object is an AMR (Autonomous Mobile Robot).
  4.  前記人工知能モデルは、前記補正対象領域が存在しないものとされた前記第1画像データである第1正常画像データと、前記補正対象領域を有する前記第1画像データである第1要補正画像データと、前記第2画像データに基づく第2正常画像データと、を組にした学習用データを用いた機械学習により得られるものとされた
     請求項1に記載の情報処理装置。
    The artificial intelligence model includes first normal image data that is the first image data in which the correction target area does not exist, and first correction-required image data that is the first image data that has the correction target area. and second normal image data based on the second image data, the information processing apparatus according to claim 1, is obtained by machine learning using learning data that is a set of the following: and second normal image data based on the second image data.
  5.  前記学習用データは、更に前記補正対象領域についての正解データを含む
     請求項4に記載の情報処理装置。
    The information processing device according to claim 4, wherein the learning data further includes correct data regarding the correction target area.
  6.  前記AI画像処理部は、人工知能モデルを用いて、前記妨害光の妨害態様の類型である妨害パターンを推論する処理を行う
     請求項1に記載の情報処理装置。
    The information processing device according to claim 1, wherein the AI image processing unit performs a process of inferring a disturbance pattern that is a type of disturbance mode of the disturbance light using an artificial intelligence model.
  7.  前記妨害パターンは、前記妨害光の向きに応じて分類された類型とされた
     請求項6に記載の情報処理装置。
    The information processing device according to claim 6, wherein the interference pattern is classified into types according to the direction of the interference light.
  8.  前記妨害パターンは、前記妨害光の直接光が前記第1センサのセンサ面に入射されない第1パターンと、前記直接光が前記センサ面に入射される第2パターンと、前記直接光が前記センサ面に入射されず且つ前記妨害光の少なくとも一部を遮る障害物が存在しない第3パターンと、前記直接光が前記センサ面に入射されず且つ前記障害物が存在する第4パターンと、を少なくとも含む
     請求項7に記載の情報処理装置。
    The interference pattern includes a first pattern in which direct light of the interference light does not enter the sensor surface of the first sensor, a second pattern in which the direct light does not enter the sensor surface, and a second pattern in which the direct light does not enter the sensor surface. at least a third pattern in which the direct light is not incident on the sensor surface and there is no obstacle that blocks at least a portion of the interfering light; and a fourth pattern in which the direct light is not incident on the sensor surface and the obstacle is present. The information processing device according to claim 7.
  9.  前記第1画像データにおける前記補正対象領域についての距離情報の補正を行い補正後距離画像データを出力する補正処理部を備え、
     前記補正処理部は、前記第4パターンについての補正において、前記障害物が撮像された領域を除いて前記補正を行う
     請求項8に記載の情報処理装置。
    comprising a correction processing unit that corrects distance information regarding the correction target area in the first image data and outputs corrected distance image data;
    The information processing device according to claim 8, wherein the correction processing unit performs the correction on the fourth pattern except for an area where the obstacle is imaged.
  10.  前記妨害パターンを推論する人工知能モデルは、前記補正対象領域が存在しないものとされた前記第1画像データである第1正常画像データと、前記補正対象領域を有する前記第1画像データである第1要補正画像データと、前記第2画像データに基づく第2正常画像データと、前記妨害パターンについての正解データと、を組にした学習用データを用いた機械学習により得られるものとされた
     請求項7に記載の情報処理装置。
    The artificial intelligence model that infers the disturbance pattern uses first normal image data that is the first image data in which the correction target area does not exist, and first normal image data that is the first image data that has the correction target area. The claim is that the image data is obtained by machine learning using learning data that is a set of first correction image data, second normal image data based on the second image data, and correct data for the interference pattern. The information processing device according to item 7.
  11.  前記AI画像処理部において前記妨害パターンは前記第2パターンであるとの推論結果を得た場合に、ステレオ画像を用いた測距方式によって代替距離画像データを生成する代替距離画像データ生成部を備えた
     請求項8に記載の情報処理装置。
    an alternative distance image data generation unit that generates alternative distance image data by a distance measurement method using stereo images when the AI image processing unit obtains an inference result that the interference pattern is the second pattern; The information processing device according to claim 8.
  12.  前記第1センサは、前記距離画像データと輝度画像データとが得られる受光信号を出力するiToF(indirect Time of Flight)測距方式の受光動作を行う受光センサとされ、
     前記代替距離画像データ生成部は、前記ステレオ画像を用いた測距方式に用いる2枚の画像として、前記輝度画像データと前記第2画像データとを用いる
     請求項11に記載の情報処理装置。
    The first sensor is a light-receiving sensor that performs a light-receiving operation using an iToF (indirect time of flight) ranging method that outputs a light-receiving signal from which the distance image data and brightness image data are obtained;
    The information processing device according to claim 11, wherein the alternative distance image data generation unit uses the luminance image data and the second image data as two images used in the distance measurement method using the stereo images.
  13.  前記補正処理部は、前記補正対象領域の周辺画素の情報を用いて前記補正を行う
     請求項2に記載の情報処理装置。
    The information processing device according to claim 2, wherein the correction processing unit performs the correction using information on peripheral pixels of the correction target area.
  14.  前記第1センサはIR(Infrared)光に対する感度を有するセンサとされた
     請求項1に記載の情報処理装置。
    The information processing device according to claim 1, wherein the first sensor is a sensor having sensitivity to IR (Infrared) light.
  15.  測距のための受光動作を行う受光センサである第1センサの受光信号に基づき得られる距離画像データとしての第1画像データと、前記第1センサとは異なる種別の受光センサである第2センサの受光信号に基づき得られる画像データである第2画像データとを機械学習された人工知能モデルの入力データとして与えることにより、前記人工知能モデルを用いて、外部の物体が発する前記第1センサの受光波長帯の妨害光に起因して前記第1画像データに生じる測距誤差領域を補正対象領域として推論する処理を、情報処理装置が行う
     情報処理方法。
    First image data as distance image data obtained based on a light reception signal of a first sensor that is a light reception sensor that performs a light reception operation for distance measurement, and a second sensor that is a light reception sensor of a different type from the first sensor. By providing the second image data, which is image data obtained based on the light reception signal of An information processing method, wherein an information processing device performs a process of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
  16.  測距のための受光動作を行う受光センサである第1センサの受光信号に基づき得られる距離画像データとしての第1画像データと、前記第1センサとは異なる種別の受光センサである第2センサの受光信号に基づき得られる画像データである第2画像データとを機械学習された人工知能モデルの入力データとして与えることにより、前記人工知能モデルを用いて、外部の物体が発する前記第1センサの受光波長帯の妨害光に起因して前記第1画像データに生じる測距誤差領域を補正対象領域として推論する機能を、演算処理装置に実行させる
     プログラム。
    First image data as distance image data obtained based on a light reception signal of a first sensor that is a light reception sensor that performs a light reception operation for distance measurement, and a second sensor that is a light reception sensor of a different type from the first sensor. By providing the second image data, which is image data obtained based on the light reception signal of A program that causes an arithmetic processing unit to execute a function of inferring a distance measurement error area that occurs in the first image data due to interference light in a received light wavelength band as a correction target area.
PCT/JP2023/031534 2022-09-20 2023-08-30 Information processing device, information processing method, and program WO2024062874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022148872 2022-09-20
JP2022-148872 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024062874A1 true WO2024062874A1 (en) 2024-03-28

Family

ID=90454198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031534 WO2024062874A1 (en) 2022-09-20 2023-08-30 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2024062874A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181949A (en) * 2013-03-18 2014-09-29 Sanyo Electric Co Ltd Information acquisition device and object detection device
US20170262768A1 (en) * 2016-03-13 2017-09-14 Microsoft Technology Licensing, Llc Depth from time-of-flight using machine learning
JP2019015706A (en) * 2017-07-11 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 Imaging device and monitoring device
WO2020066637A1 (en) * 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 Depth acquisition device, depth acquisition method, and program
JP2021012133A (en) * 2019-07-08 2021-02-04 株式会社リコー Distance measuring device, information processing apparatus, distance measuring method, on-vehicle device, movable body, and distance measuring system
US20210166124A1 (en) * 2019-12-03 2021-06-03 Sony Semiconductor Solutions Corporation Apparatuses and methods for training a machine learning network for use with a time-of-flight camera
WO2022034856A1 (en) * 2020-08-13 2022-02-17 ソニーグループ株式会社 Information processing device, information processing method, and program
WO2022201803A1 (en) * 2021-03-25 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 Information processing device, information processing method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181949A (en) * 2013-03-18 2014-09-29 Sanyo Electric Co Ltd Information acquisition device and object detection device
US20170262768A1 (en) * 2016-03-13 2017-09-14 Microsoft Technology Licensing, Llc Depth from time-of-flight using machine learning
JP2019015706A (en) * 2017-07-11 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 Imaging device and monitoring device
WO2020066637A1 (en) * 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 Depth acquisition device, depth acquisition method, and program
JP2021012133A (en) * 2019-07-08 2021-02-04 株式会社リコー Distance measuring device, information processing apparatus, distance measuring method, on-vehicle device, movable body, and distance measuring system
US20210166124A1 (en) * 2019-12-03 2021-06-03 Sony Semiconductor Solutions Corporation Apparatuses and methods for training a machine learning network for use with a time-of-flight camera
WO2022034856A1 (en) * 2020-08-13 2022-02-17 ソニーグループ株式会社 Information processing device, information processing method, and program
WO2022201803A1 (en) * 2021-03-25 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 Information processing device, information processing method, and program

Similar Documents

Publication Publication Date Title
KR102352333B1 (en) Solid state imaging device, manufacturing method of the same, and electronic equipment
US10191245B2 (en) Image sensor
JP5895355B2 (en) Imaging device
US10666875B2 (en) Solid-state imaging device
US20110221931A1 (en) Temperature information output apparatus, imaging apparatus, method of outputting temperature information
WO2016133053A1 (en) Range image measuring apparatus
US20160353043A1 (en) Image sensor and image apparatus
JP6257396B2 (en) FOCUS DETECTION DEVICE, ITS CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP2017059563A (en) Imaging element
US9425230B2 (en) Solid-state imaging device and manufacturing method of the same, and electronic apparatus
JP6381274B2 (en) Imaging device, control method thereof, and control program
JP2018019296A (en) Imaging apparatus and control method therefor
JP6362511B2 (en) Imaging apparatus and control method thereof
JP6740666B2 (en) Imaging device, focus detection device, and imaging device
WO2024062874A1 (en) Information processing device, information processing method, and program
JP7146022B2 (en) Semiconductor device, imager, and method performed by the imager
US11249279B2 (en) Imaging apparatus and control method of imaging apparatus
JP6946045B2 (en) Focus detector and imaging system
US10375294B2 (en) Focus detection apparatus and focus detection method
JP2020039113A (en) Imaging apparatus, imaging system, and driving method of imaging apparatus
US10341556B2 (en) Image capturing apparatus and control method therefor
JP4950699B2 (en) Focus detection device, driving method thereof, and camera system
KR102253023B1 (en) Image sensor having optical black region and dark level compensation method using the same
JP2009053540A (en) Imaging device
US20200296274A1 (en) Image capturing apparatus and method for controlling same, and storage medium