WO2024062835A1 - Vehicle control system - Google Patents

Vehicle control system Download PDF

Info

Publication number
WO2024062835A1
WO2024062835A1 PCT/JP2023/030540 JP2023030540W WO2024062835A1 WO 2024062835 A1 WO2024062835 A1 WO 2024062835A1 JP 2023030540 W JP2023030540 W JP 2023030540W WO 2024062835 A1 WO2024062835 A1 WO 2024062835A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
drive
vehicle
torque
control unit
Prior art date
Application number
PCT/JP2023/030540
Other languages
French (fr)
Japanese (ja)
Inventor
正徳 ▲高▼橋
皓俊 小川
亮 石橋
Original Assignee
株式会社Soken
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Soken, 株式会社デンソー filed Critical 株式会社Soken
Publication of WO2024062835A1 publication Critical patent/WO2024062835A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure

Definitions

  • the present disclosure relates to a vehicle control system.
  • a control device that controls a running electric vehicle using the output torque of a motor.
  • a sudden acceleration start torque is calculated based on the inclination angle, and the motor is controlled.
  • Patent Document 2 in a four-wheel drive electric vehicle in which a clutch is provided between the front wheels and the front wheel drive motor, when driving in sports mode, it is possible to drive in rear wheel drive by disengaging the clutch. It is.
  • Patent Document 1 it is not possible to generate torque exceeding the upper limit torque of the motor, and there is a possibility that the motor cannot overcome the step. In this way, Patent Documents 1 and 2 do not mention clutch control that takes into consideration overcoming bumps and resonance of the drive system.
  • An object of the present disclosure is to provide a vehicle control system that can appropriately control the drive of a vehicle.
  • the present disclosure is a vehicle control system that controls the drive of a vehicle, and includes a drive source, a friction clutch, a clutch actuator, and a control section.
  • the friction clutch is provided in the power transmission path from the drive source to the drive wheels, and is capable of switching stages of power transmission.
  • a clutch actuator drives a friction clutch.
  • the control unit controls driving of the drive source and the clutch actuator.
  • control unit performs torque application control to control the rotation speed of the drive source and the clutch stroke speed at which the friction clutch is switched from a non-fully engaged state to a fully engaged state when the vehicle goes over a step.
  • control unit increases the rotation speed of the drive source when the torque fluctuation frequency of the drive source is in the resonance region of the drive shaft connected to the drive wheel, and increases the rotation speed of the drive source and the drive shaft.
  • the clutch stroke is controlled based on the difference in rotation speed.
  • FIG. 1 is a schematic diagram showing a vehicle control system according to a first embodiment
  • FIG. 2 is a time chart illustrating behavior when it is not possible to get over a step due to insufficient torque.
  • FIG. 3 is a flowchart illustrating clutch control according to the first embodiment
  • FIG. 4 is a map showing the relationship between clutch engagement time and inertia torque according to the first embodiment
  • FIG. 5 is a time chart illustrating clutch control according to the first embodiment
  • FIG. 6 is a time chart illustrating behavior when a step cannot be overcome due to lock protection control.
  • FIG. 1 is a schematic diagram showing a vehicle control system according to a first embodiment
  • FIG. 2 is a time chart illustrating behavior when it is not possible to get over a step due to insufficient torque.
  • FIG. 3 is a flowchart illustrating clutch control according to the first embodiment
  • FIG. 4 is a map showing the relationship between clutch engagement time and inertia torque according to the first embodiment
  • FIG. 5 is a time chart
  • FIG. 7 is a flowchart illustrating clutch control according to the second embodiment
  • FIG. 8 is a time chart illustrating clutch control according to the second embodiment
  • FIG. 9 is a map showing the relationship between clutch engagement time and rotational speed change amount according to temperature according to the third embodiment
  • FIG. 10 is a flowchart illustrating clutch control according to the third embodiment
  • FIG. 11A is a schematic diagram showing a state in which a vehicle crosses a step
  • FIG. 11B is a schematic diagram showing a state in which the vehicle has climbed over a step
  • FIG. 12 is a flowchart illustrating clutch control according to the fourth embodiment
  • FIG. 13 is a time chart illustrating clutch control according to the fourth embodiment
  • FIG. 14 is a flowchart illustrating clutch control according to the fifth embodiment
  • FIG. 15 is a time chart illustrating clutch control according to the fifth embodiment.
  • FIGS. 1 to 6 A vehicle control device according to a first embodiment is shown in FIGS. 1 to 6.
  • the vehicle control system 1 includes a front wheel drive section 10, a rear wheel drive section 20, a clutch 31, a clutch actuator 35, a control section 50, and the like.
  • the front-wheel drive unit 10 has a drive shaft 12 connected to the front wheels 11, a main motor 15, and a power transmission unit 18.
  • the rear-wheel drive unit 20 has a drive shaft 22 connected to the rear wheels 21, a main motor 25, and a power transmission unit 28.
  • the vehicle control system 1 of this embodiment is a so-called four-wheel drive system in which the main motors 15, 25, which are drive sources, are provided on the front and rear wheel sides, respectively.
  • the main motors 15 and 25 are so-called motors that function as electric motors that generate torque by being supplied with electric power from a battery (not shown), and as generators that are driven to generate electricity when the vehicle 99 is braked. It is a generator.
  • the driving force of the main motor 15 is transmitted to the drive shaft 12 via the power transmission section 18, and rotates the front wheels 11.
  • the driving force of the main motor 25 is transmitted to the drive shaft 22 via the power transmission section 28, and rotationally drives the rear wheels 21.
  • the power transmission units 18 and 28 are comprised of a speed reducer, a differential device that absorbs a difference in rotation between the left and right sides, and the like.
  • the front wheel drive unit 10 and the rear wheel drive unit 20 will be referred to as a "drive system”
  • the main motor will be referred to as an "MG".
  • the clutch 31 is provided in the front wheel drive unit 10 and can switch between connecting and disconnecting the main engine motor 15 and the front wheels 11. Specifically, the clutch 31 is provided on the drive shaft 12 between the differential gear and the front wheels 11. The clutch actuator 35 controls the stroke of the clutch 31 by applying a load to the clutch 31, and switches the clutch 31 between an engaged state and a released state.
  • the clutch 31 is a friction-type electric clutch, and by fully engaging it, it is possible to transmit the torque of the main motor 15 to the drive shaft 12, eliminating loss due to friction and the like. Further, by controlling the drive of the clutch actuator 35, it is possible to transmit a portion of the torque of the main engine motor 15 to the drive shaft, which is a so-called half-clutch state. In this embodiment, the engagement speed of the clutch 31 can be controlled by controlling the clutch actuator 35.
  • the control unit 50 is mainly composed of a microcomputer, and internally includes a CPU, ROM, RAM, I/O, and a bus line connecting these components, all of which are not shown.
  • Each process in the control unit 50 may be a software process in which a CPU executes a program stored in a physical memory device such as a ROM (i.e., a readable non-temporary tangible recording medium), or It may also be a hardware process using a dedicated electronic circuit.
  • the control unit 50 detects current sensors 61 and 63 that detect the current of the main motors 15 and 25, rotation angle sensors 62 and 64 that detect the rotation of the main motors 15 and 25, a wheel speed sensor 65, and the temperature of the clutch 31. Detection values of the temperature sensor 67 and an accelerator opening sensor (not shown) that detects the pedal opening of the accelerator pedal 40 are acquired, and the driving of the main engine motors 15 and 25 and the clutch actuator 35 is controlled. Control using the temperature sensor 67 will be described later in the fourth embodiment. Note that in the first embodiment and the like, the temperature sensor 67 may be omitted. In FIG. 1, the control unit 50 is shown as being one, but the functions may be divided into a plurality of ECUs or the like. Note that some control lines have been omitted to avoid complication.
  • the common time axis is set as the horizontal axis, and from the top, the accelerator opening, MG torque, MG rotation speed, and tire rotation speed are shown, and the top of the time chart shows the position of the front wheel 11 and the step corresponding to each time.
  • the relationship is shown schematically.
  • the MG rotation speed and the tire rotation speed have similar behavior, although the values are different.
  • the MG rotation number is the number of rotations per unit time, and is a value that can be read as angular velocity.
  • MG torque is generated by driving the main engine motor 15. Since the front wheel 11 was bent due to the weight of the vehicle, it gradually moves upward, and the front wheel 11 floats at time x12. Here, if the MG torque Tmg is insufficient for the step height h to be overcome, the rotation of the front wheel 11 stops at time x13, and thereafter, the front wheel 11 rotates in the opposite direction and falls to the ground at time x14. I can't get over the steps.
  • Equation (1) shows the inertia torque Ti that can be applied by changing the MG rotational speed Nmg.
  • Ti is inertial torque [N ⁇ m]
  • I is inertial moment [kg ⁇ m 2 ]
  • is angular velocity [rad/s].
  • the angular velocity ⁇ is a value that can be converted into the MG rotational speed Nmg
  • the inertia torque Ti that can be applied is determined by the rotational speed change amount ⁇ N and the clutch engagement time ⁇ x.
  • the additional inertia torque Ti is controlled by controlling the rotation speed change amount ⁇ N and the clutch engagement time ⁇ x.
  • step S101 The clutch control of this embodiment will be explained based on the flowchart of FIG. 3. This process is executed by the control unit 50 at a predetermined cycle.
  • steps such as step S101 will be omitted and simply referred to as "S".
  • control unit 50 determines whether the MG torque Tmg is greater than zero. If it is determined that the MG torque Tmg is 0 (S101: NO), the process from S102 onwards is skipped. If it is determined that the MG torque Tmg is greater than 0 (S101: YES), the process moves to S102.
  • the control unit 50 determines whether the tire rotation speed Nt is smaller than a reference value Nref.
  • the reference value Nref is set, for example, according to the vehicle speed at creep torque. If it is determined that the tire rotation speed Nt is equal to or greater than the reference value Nref (S102: NO), it is determined that the front wheel 11 has not hit a step, and the processing from S103 onwards is skipped. If it is determined that the tire rotation speed Nt is smaller than the reference value Nref (S102: YES), the process proceeds to S103.
  • S101 and S102 are steps for determining whether the front wheel 11 has hit a step, and if the tire rotation speed Nt is smaller than the reference value Nref, it is assumed that some resistance is occurring.
  • control unit 50 detects the step height h that the front wheels 11 collide with, for example, based on tire air pressure, etc., and calculates the required torque Tnec to overcome the step height h.
  • the control unit 50 determines whether the maximum torque Tmax that the main engine motor 15 can output is smaller than the required torque Tnec. If it is determined that the maximum torque Tmax is greater than or equal to the required torque Tnec (S104: NO), it is possible to overcome the step with the torque of the main engine motor 15, so the process from S105 onwards is skipped and torque application control is not performed. . If it is determined that the maximum torque Tmax is smaller than the required torque Tnec (S104: YES), the process moves to S105 and the clutch 31 is released. Here, it is desirable to release the clutch 31 as soon as possible.
  • control unit 50 calculates the rotation speed change amount ⁇ N and the clutch engagement time ⁇ x from the difference between the required torque Tnec and the maximum torque Tmax so that the inertia torque Ti can provide the insufficient torque. .
  • the horizontal axis is clutch engagement time ⁇ x
  • the vertical axis is inertia torque Ti, showing the relationship between the clutch engagement time and the inertia torque for each rotation speed change amount ⁇ N calculated by the inertia moment of the main motor 15 and the gear ratio of the reducer.
  • the MG rotation speed Nmg is set to be 500 [rpm] higher than the target rotation speed Nmg * and the clutch 31 is engaged for a time xa [sec]
  • an inertia torque of Ta [N ⁇ m] can be applied. That is, by having the relationship shown in FIG.
  • the rotation speed change amount ⁇ N is the difference from the target rotation speed Nmg * after the step is overcome.
  • the target rotation speed Nmg * after the step is overcome is, for example, a value corresponding to the vehicle speed (for example, 5 [km/h]) due to the creep torque.
  • the control unit 50 performs MG rotational speed increase control. Specifically, the drive of the main engine motor 15 is controlled so that the MG rotational speed Nmg is higher than the target rotational speed Nmg * by a rotational speed change amount ⁇ N.
  • the control unit 50 determines whether the accelerator pedal 40 has been depressed within the determination time. Here, it is determined whether the driver has the intention to go over the bump, but the determination time is the time when the driver's intention can be determined, and the time when the rotation speed increase control can be continued with the clutch released. etc. will be set accordingly. If it is determined that the accelerator pedal 40 has been depressed within the determination time (S108: YES), the process proceeds to S109, and if it is determined that the accelerator pedal 40 has not been depressed within the determination time (S109: NO), the process proceeds to S110. Transition.
  • control unit 50 controls the stroke speed of the clutch actuator 35 so that the clutch 31 is fully engaged during the clutch engagement time ⁇ x.
  • the control unit 50 returns the MG rotation speed Nmg to the target rotation speed Nmg * , and re-engages the clutch 31.
  • the clutch control of this embodiment will be explained based on the time chart of FIG. 5.
  • the horizontal axis is the common time axis, and the accelerator opening, MG torque, clutch stroke, inertia torque, MG rotation speed, and tire rotation speed are shown from the top.
  • the top of the time chart shows the following: The positional relationship between the front wheel 11 and the step corresponding to each time is schematically shown. The same applies to FIG.
  • the behavior up to time x20 is similar to the behavior up to time x10 in FIG.
  • the rotation speeds of the front wheel 11 and the main engine motor 15 decrease.
  • the clutch 31 is released.
  • rotation speed increase control is performed so that the MG rotation speed Nmg becomes N * + ⁇ N.
  • the clutch stroke is controlled so that the clutch 31 is gradually engaged over a clutch engagement time ⁇ x.
  • the change in the MG rotational speed Nmg during half-clutch control in which the clutch 31 is gradually engaged becomes the inertia torque Ti, which is added to the MG torque Tmg, so that the front wheel 11 that was floating at time x24 does not fall, and at time x25 Climbing over the steps is completed. Control after climbing over the step will be described later in the fourth embodiment.
  • inertia torque Ti is applied in addition to the maximum torque Tmax of the main engine motor 15, so that it is possible to get over a higher step.
  • the vehicle control system 1 of this embodiment controls the drive of the vehicle 99, and includes the main motor 15, the clutch 31, the clutch actuator 35, and the control section 50.
  • the clutch 31 is provided in a power transmission path from the main engine motor 15 to the front wheels 11, and can switch between connecting and disconnecting power transmission. Since the clutch 31 is a friction clutch, half-clutch control is possible.
  • Clutch actuator 35 drives clutch 31.
  • the control unit 50 controls the driving of the main engine motor 15 and the clutch actuator 35.
  • the control unit 50 performs torque application control that controls the MG rotational speed Nmg and the clutch stroke speed for switching the clutch 31 from a non-fully engaged state to a fully engaged state.
  • the "state where the clutch 30 is not fully engaged" includes a state where the clutch 30 is completely released and a half-clutch state.
  • the control unit 50 performs a rotational speed change that changes the rotational speed of the main motor 15 by engaging the clutch 31 in torque application control based on the necessary torque Tnec required for getting over the step and the maximum torque Tmax that can be output by the main motor 15.
  • the amount ⁇ N and the clutch engagement time ⁇ x are set.
  • the clutch engagement time ⁇ x is the time from when the MG rotational speed Nmg is larger than the target rotational speed Nmg * of the main engine motor 15 by the amount of rotational speed change ⁇ N until the clutch 31 is fully engaged.
  • the inertia torque Ti can be added to the drive torque by controlling the engagement state of the clutch 31 using the rotational speed change amount ⁇ N and the clutch engagement time ⁇ x.
  • FIGS. 6 to 8 A second embodiment is shown in FIGS. 6 to 8.
  • clutch control is performed so that the vehicle can overcome the bump while avoiding tire lock protection.
  • the behavior when a step cannot be overcome by the lock protection control will be explained based on the time chart of FIG. 6.
  • the behavior from time x30 to time x32 is the same as from time x10 to time x12 in FIG.
  • the front wheels 11 stop rotating at time x33.
  • lock protection control intervenes at time x34.
  • the MG torque Tmg is reduced even if the accelerator pedal 40 continues to be depressed.
  • the MG torque Tmg decreases, the front wheel 11 rotates in the opposite direction and falls to the ground at time x35.
  • the lock protection control ends at time x36 when the MG torque Tmg returns to a value corresponding to the accelerator opening degree. There are cases in which the vehicle can overcome a step by restoring the MG torque Tmg, but there are cases in which tire locking and lock protection control are repeated.
  • the control unit 50 determines whether the accelerator pedal 40 has been depressed within the determination time. If it is determined that the accelerator pedal 40 has not been depressed within the determination time (S204: NO), the process from S205 onward is skipped. If it is determined that the accelerator pedal 40 has been depressed within the determination time (S204: YES), the process moves to S205.
  • the control unit 50 determines whether or not the tire is in a locked state based on the MG torque Tmg and the tire rotation speed Tn.
  • the MG torque Tmg is greater than or equal to the threshold value and the tire rotational speed Tn is less than or equal to the lock determination threshold value, which is set to an arbitrary value close to 0, it is determined that the tire is in a locked state. If it is determined that the tires are not in a locked state (S205: NO), the processes from S206 onwards are skipped. If it is determined that the tires are locked (S205: YES), the process moves to S206.
  • the control unit 50 performs half-clutch control on the clutch 31.
  • the clutch 31 is disengaged, the torque will be lost, so it is not completely disengaged, but half-clutch control is performed with an arbitrary engagement force that can apply inertia torque by transitioning to full engagement.
  • the processing in S207 to S209 is similar to the processing in S106, S107, and S109 in FIG.
  • the clutch control of this embodiment will be explained based on the time chart of FIG. 8.
  • the behavior from time x40 to time x43 is the same as from time x30 to time x33 in FIG.
  • the clutch stroke is controlled to temporarily bring the clutch into a half-clutch state at time x44, which is a timing before the time when lock protection control intervenes.
  • the load is reduced, so the MG rotational speed Nmg increases.
  • the clutch stroke is gradually controlled so that the clutch 31 is re-engaged over a clutch engagement time ⁇ x.
  • the change in the MG rotational speed Nmg at this time becomes the inertia torque Ti, which is added to the MG torque Tmg.
  • the clutch 31 is re-engaged at time x46, and climbing over the step is completed at time x47.
  • the clutch 31 when the front wheels 11 become locked while climbing over a step, the clutch 31 is controlled to a half-clutch state.
  • the clutch 31 By setting the clutch 31 to half-clutch while going over a step, even if the front wheels 11 are locked, the main engine motor 15 can be rotated to avoid current concentration, and the intervention of lock protection control can be avoided. Can be done.
  • the front wheels 11 can overcome a step without falling. Further, the same effects as those of the above embodiment are achieved.
  • FIGS. 9 and 10 A third embodiment is shown in FIGS. 9 and 10.
  • the additional inertia torque Ti is controlled by controlling the rotational speed change amount ⁇ N and the clutch engagement time ⁇ x.
  • the kinetic energy K of the rotating body is shown in equation (2).
  • kinetic energy K is proportional to the square of the angular velocity ⁇ . Considering that kinetic energy is converted into frictional heat in half-clutch control according to the law of conservation of energy, the larger the rotational speed change amount ⁇ N is, the more likely the clutch temperature is to rise in torque application control.
  • FIG. 9 shows the relationship between the clutch engagement time ⁇ x and the rotation speed change amount ⁇ N for each inertia torque Ti, with the horizontal axis representing the clutch engagement time ⁇ x and the vertical axis representing the rotation speed change amount ⁇ N.
  • the inertia torque Ti can be made equal to that at point B by shortening the clutch engagement time ⁇ X.
  • the clutch engagement time ⁇ x is too short, the engagement shock may increase and drivability may worsen.
  • the temperature difference ⁇ tmp, the rotational speed change amount ⁇ N, and the clutch engagement time ⁇ x are mapped, and based on the temperature difference ⁇ tmp, which is the difference between the clutch temperature detected by the temperature sensor 67 and the outside air temperature, Set the rotational speed change amount ⁇ N and clutch engagement time ⁇ x. For example, if the temperature difference ⁇ tmp is 20°C, the rotational speed change ⁇ N and clutch engagement time ⁇ x at point B, and if the temperature difference ⁇ tmp is 40°C, the rotational speed change ⁇ N and clutch engagement time ⁇ x at point C. And so on.
  • the clutch control of this embodiment will be explained based on the flowchart of FIG. 10. 10 differs from FIG. 3 in that S120 is added between S105 and S106.
  • the control unit 50 calculates the temperature difference ⁇ tmp based on the detected value of the temperature sensor 67.
  • the control unit 50 calculates the rotational speed change amount ⁇ N and the clutch engagement time ⁇ x based on the temperature difference ⁇ tmp so that the inertia torque Ti can make up for the insufficient torque.
  • the rotational speed change amount ⁇ N and the clutch engagement time ⁇ x may be set using the temperature difference ⁇ tmp. .
  • the vehicle control system 1 includes a temperature sensor 67 that detects the temperature of the clutch 31.
  • the control unit 50 controls the rotation speed of the main engine motor 15 and the clutch stroke speed based on the temperature of the clutch 31. Thereby, overheating of the clutch 31 can be prevented. Further, the same effects as those of the above embodiment are achieved.
  • FIGS. 11A to 13 The fourth embodiment is shown in FIGS. 11A to 13.
  • control after getting over a step will be mainly described.
  • the control until the vehicle gets over the level difference may be any one of the first to third embodiments, or may be a control different from these.
  • FIGS. 11A and 11B schematically show the vehicle 99 climbing over a step, and the block arrows indicate the driving force of the front wheel drive section 10, the rear wheel drive section 20, and the vehicle as a whole.
  • the MG torque Tmg is reduced and the clutch 31 is disengaged, thereby further suppressing the feeling of jumping out after the step has been overcome.
  • control unit 50 determines whether the vehicle 99 has climbed over the step. If it is determined that the step has not been climbed over (S303: NO), the process returns to S302 and the step over-step control is continued. If it is determined that the step has been climbed over (S303: YES), the process moves to S304.
  • the control unit 50 releases the clutch 31 in S304, and performs MG rotation speed control in S305.
  • the MG rotation speed Nmg increases, so for example, the tire rotation speed Nt corresponding to the vehicle speed when driving at creep torque is converted into a value converted by the gear ratio of the reduction gear.
  • the MG rotation speed Nmg is controlled as follows.
  • the control unit 50 determines whether the MG rotation speed Nmg has reached the target rotation speed Nmg * . Here, if the rotation speed is within a predetermined range including the target rotation speed Nmg * , an affirmative determination is made. If it is determined that the MG rotational speed Nmg is not the target rotational speed Nmg * (S306: NO), the process returns to S305 and the MG rotational speed control is continued. If it is determined that the MG rotation speed Nmg has reached the target rotation speed (S306: YES), the process moves to S307.
  • the control unit 50 determines whether the vehicle speed V is equal to or less than the vehicle speed determination threshold Vth. If it is determined that the vehicle speed V is greater than the vehicle speed determination threshold Vth (S307: NO), the process moves to S308, where brake control is performed to reduce the vehicle speed V. If it is determined that the vehicle speed V is less than or equal to the vehicle speed determination threshold Vth (S307: YES), the process moves to S309 and the clutch 31 is engaged.
  • the clutch control after going over a step will be explained based on the time chart in Figure 13.
  • the horizontal axis represents the common time axis, and from the top, the accelerator opening, MG torque, clutch stroke, brake torque, MG rotation speed, and tire rotation speed are shown.
  • the MG rotation speed Nmg increases, so the MG rotation speed is controlled so that the MG rotation speed Nmg becomes the target rotation speed Nmg * . Since the tire rotation speed Nt when the MG rotation speed Nmg becomes the target rotation speed Nmg * is larger than the tire rotation speed threshold TH corresponding to the vehicle speed determination threshold Vth, brake control is performed at time x52. At time x53 after the tire rotation speed Nt reaches the tire rotation speed threshold TH, the clutch 31 is engaged and normal control is returned to.
  • the control unit 50 releases the clutch 31 after the vehicle 99 gets over the step.
  • the clutch 31 By releasing the clutch 31 and disconnecting the main engine motor 15 and the drive shaft 12 after getting over the step, sudden acceleration after getting over the step is suppressed. This further improves vehicle safety after climbing over a bump. Further, the same effects as those of the above embodiment are achieved.
  • FIGS. 14 and 15 A fifth embodiment is shown in FIGS. 14 and 15.
  • the fluctuation period of the cogging torque or torque ripple of the main engine motor 15 is a rotational speed corresponding to the resonance frequency of the drive system, resonance occurs. Therefore, in this embodiment, resonance is avoided by controlling the MG rotational speed Nmg and the engagement state of the clutch 31.
  • the control unit 50 calculates the torque fluctuation frequency due to torque ripple and cogging torque based on the number of poles of the main motor 15, the MG rotation speed Nmg, etc. Note that a plurality of torque fluctuation frequencies may be calculated, such as a fluctuation frequency due to torque ripple and a fluctuation frequency due to cogging torque.
  • the control unit 50 determines whether the calculated torque fluctuation frequency corresponds to the resonance frequency of the drive system.
  • the torque fluctuation frequency is within a predetermined range including the resonance frequency, an affirmative determination is made.
  • a predetermined range including the resonance frequency will be referred to as a "resonance region" as appropriate. If it is determined that the torque fluctuation frequency does not correspond to the resonance frequency of the drive system (S403: NO), the process moves to S404, the current MG rotational speed Nmg is maintained, and the clutch 31 is fully engaged. If it is determined that the torque fluctuation frequency corresponds to the resonance frequency of the drive system (S403: YES), the process moves to S405.
  • control unit 50 calculates a target rotation speed Nmg * of the main motor 15 that is larger than the current MG rotation speed Nmg and at which the torque fluctuation frequency does not become the resonance frequency of the drive system.
  • the control unit 50 calculates a differential rotation speed vdef, which is the difference between the rotation speed of the drive shaft 12 corresponding to the target rotation speed Nmg * and the current rotation speed of the drive shaft 12.
  • the control unit 50 calculates the friction coefficient ⁇ at the differential rotation speed vdef from the ⁇ v characteristics of the clutch 31.
  • control unit 50 calculates the target clutch load F * from the calculated friction coefficient ⁇ and the current target drive torque Td * (Equation (3)).
  • n is the number of plate sets in the clutch 31, and r is the clutch plate radius.
  • the control unit 50 calculates a target clutch stroke from the load-stroke characteristics of the clutch 31 using the target clutch load F * .
  • the control unit 50 controls the main motor 15 and the clutch actuator 35 so that the MG rotational speed Nmg becomes the target rotational speed Nmg * and the clutch stroke becomes the target clutch stroke.
  • the clutch control of this embodiment will be explained based on the time chart of FIG. 15.
  • the common time axis is the horizontal axis, and from the top, the vehicle speed, MG rotational speed, clutch stroke, and drive torque are shown.
  • the rotation speed of the main engine motor 15 on the front wheel side is shown as Nmg_f and the drive torque is shown as Td_f as a solid line
  • the rotation speed of the main engine motor 25 on the rear wheel side is shown as Nmg_r and the drive torque is shown as Td_r as a dashed line.
  • the MG rotational speed Nmg is smaller than the rotational speed region where the torque fluctuation frequency corresponds to the resonance region (hereinafter simply referred to as the "resonance region"), so the MG rotational speed Nmg is changed to the rotational speed according to the vehicle speed. Then, the clutch 31 is fully engaged.
  • the MG rotational speed Nmg enters the resonance region at time x60, the rear wheel drive unit 20 side, which is not provided with a clutch, continues to control the MG rotational speed Nmg_r according to the vehicle speed.
  • the rotation speed Nmg_f of the main engine motor 15 is controlled to be above the resonance region.
  • the output torque of the main motor 15 becomes larger than the required drive torque, so the clutch 31 is controlled to be a half-clutch so that the drive torque Td_f of the front wheel drive unit 10 becomes a torque in accordance with the request.
  • the control unit 50 increases the rotation speed of the front wheels 11, and increases the rotation speed of the front wheels 11.
  • the clutch stroke is controlled based on the difference from the rotation speed of the drive shaft 12. This suppresses resonance and improves comfort in the vehicle interior.
  • the vehicle control system 1 of this embodiment is a four-wheel drive system, and by performing half-clutch control on the clutch 31, it is possible to continue four-wheel drive while avoiding resonance in the front wheel drive unit 10. This further improves vehicle stability.
  • the clutch 31 corresponds to a “friction clutch” and the clutch 31 is provided in the front wheel drive unit 10, so the front wheel 11 is a “drive wheel”, the drive shaft 12 is a “drive shaft”, and the main engine motor 15 is a “drive wheel”. Corresponds to "drive source”.
  • the clutch is provided in the front wheel drive section. In other embodiments, the clutch may be provided on the rear wheel drive, or may be provided on the front wheel drive and the rear wheel drive.
  • the rear wheel 21 corresponds to a "drive wheel”
  • the drive shaft 22 corresponds to a "drive shaft”
  • the main motor 25 corresponds to a "drive source.”
  • the vehicle drive system is a so-called four-wheel drive system in which the main motor serving as the drive source is provided in the front wheel drive section and the rear wheel drive section.
  • the vehicle drive system may be a so-called two-wheel drive system in which the main motor is provided in one of the front wheel drive section or the rear wheel drive section.
  • the clutch is provided on the drive shaft.
  • the clutch may be provided anywhere on the power transmission path from the drive source to the drive wheels, such as between the drive source and the reducer, between the reducer and the drive shaft, etc. good.
  • the controller further includes a temperature sensor (67) that detects the temperature of the friction clutch, and in the torque application control, the control unit controls the rotation speed of the drive source and the clutch stroke speed based on the temperature of the friction clutch.”
  • the vehicle control system according to any one of items 1 to 3, in which the control unit releases the friction clutch after the vehicle passes over a step. The vehicle control system described in this document.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied in a computer program.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and a memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by a computer. As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms within the scope of its purpose.

Abstract

This vehicle control system (1) controls drive of a vehicle (99) and comprises: a drive source (15), a friction clutch (31), a clutch actuator (35), and a control unit (50). The friction clutch (31) is disposed in a power transmission passage from the drive source (15) to drive wheels (11) so as to be capable of switching between engagement and disengagement of power transmission. The clutch actuator (35) drives the friction clutch (31). The control unit (50) controls drive of the drive source (15) and the clutch actuator (35). When the vehicle (99) traverses a level difference, the control unit (50) performs torque application control for controlling the revolution speed (Nmg) of the drive source and controlling the speed of clutch stroke for switching the state of the friction clutch (31) from an imperfect coupling state to a perfect coupling state.

Description

車両制御システムvehicle control system 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年9月20日に出願された特許出願番号2022-149070号に基づくものであり、ここにその記載内容を援用する。 This application is based on patent application number 2022-149070 filed on September 20, 2022, and the contents thereof are hereby incorporated.
 本開示は、車両制御システムに関する。 The present disclosure relates to a vehicle control system.
 従来、モータの出力トルクによって走行する電動車両を制御する制御装置が知られている。例えば特許文献1では、走行路上に段差がある場合、傾斜角に基づいて急加速開始トルクを算出し、モータを制御する。また、例えば特許文献2では、前輪と前輪駆動モータとの間にクラッチが設けられた4輪駆動の電動車両において、スポーツモードで走行するとき、クラッチを切り離すことで後輪駆動での走行が可能である。 Conventionally, a control device is known that controls a running electric vehicle using the output torque of a motor. For example, in Patent Document 1, when there is a step on the road, a sudden acceleration start torque is calculated based on the inclination angle, and the motor is controlled. Furthermore, for example, in Patent Document 2, in a four-wheel drive electric vehicle in which a clutch is provided between the front wheels and the front wheel drive motor, when driving in sports mode, it is possible to drive in rear wheel drive by disengaging the clutch. It is.
特開2014-231789号公報Japanese Patent Application Publication No. 2014-231789 米国特許出願公開第2020/0361465号明細書US Patent Application Publication No. 2020/0361465
 特許文献1では、モータの上限トルクを超えるトルクは発生できず、段差を乗り越えられない虞がある。このように、段差乗り越えや駆動系の共振を考慮したクラッチ制御については、特許文献1、2では言及されていない。本開示の目的は、車両の駆動を適切に制御可能な車両制御システムを提供することにある。 In Patent Document 1, it is not possible to generate torque exceeding the upper limit torque of the motor, and there is a possibility that the motor cannot overcome the step. In this way, Patent Documents 1 and 2 do not mention clutch control that takes into consideration overcoming bumps and resonance of the drive system. An object of the present disclosure is to provide a vehicle control system that can appropriately control the drive of a vehicle.
 本開示は、車両の駆動を制御する車両制御システムであって、駆動源と、摩擦クラッチと、クラッチアクチュエータと、制御部と、を備える。摩擦クラッチは、駆動源から駆動輪に至る動力伝達経路に設けられ、動力伝達の段接を切り替え可能である。クラッチアクチュエータは、摩擦クラッチを駆動する。制御部は、駆動源およびクラッチアクチュエータの駆動を制御する。 The present disclosure is a vehicle control system that controls the drive of a vehicle, and includes a drive source, a friction clutch, a clutch actuator, and a control section. The friction clutch is provided in the power transmission path from the drive source to the drive wheels, and is capable of switching stages of power transmission. A clutch actuator drives a friction clutch. The control unit controls driving of the drive source and the clutch actuator.
 第1態様では、制御部は、車両が段差を乗り越えるとき、駆動源の回転数、および、摩擦クラッチを完全係合でない状態から完全係合へ切り替えるクラッチストローク速度を制御するトルク付与制御を行う。 In the first mode, the control unit performs torque application control to control the rotation speed of the drive source and the clutch stroke speed at which the friction clutch is switched from a non-fully engaged state to a fully engaged state when the vehicle goes over a step.
 第2態様では、制御部は、駆動源のトルク変動周波数が、駆動輪と接続される駆動軸の共振領域である場合、駆動源の回転数を増加させ、駆動源の回転数と駆動軸の回転数との差に基づき、クラッチストロークを制御する。これにより、車両の駆動を適切に制御することができる。 In the second aspect, the control unit increases the rotation speed of the drive source when the torque fluctuation frequency of the drive source is in the resonance region of the drive shaft connected to the drive wheel, and increases the rotation speed of the drive source and the drive shaft. The clutch stroke is controlled based on the difference in rotation speed. Thereby, the drive of the vehicle can be appropriately controlled.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態による車両制御システムを示す模式図であり、 図2は、トルク不足により段差を乗り越えられない場合の挙動を説明するタイムチャートであり、 図3は、第1実施形態によるクラッチ制御を説明するフローチャートであり、 図4は、第1実施形態によるクラッチ係合時間と慣性トルクとの関係を示すマップであり、 図5は、第1実施形態によるクラッチ制御を説明するタイムチャートであり、 図6は、ロック保護制御により段差を乗り越えられない場合の挙動を説明するタイムチャートであり、 図7は、第2実施形態によるクラッチ制御を説明するフローチャートであり、 図8は、第2実施形態によるクラッチ制御を説明するタイムチャートであり、 図9は、第3実施形態による温度に応じたクラッチ係合時間と回転数変化量との関係を示すマップであり、 図10は、第3実施形態によるクラッチ制御を説明するフローチャートであり、 図11Aは、車両が段差を乗り越える状態を示す模式図であり、 図11Bは、車両が段差を乗り越えた状態を示す模式図であり、 図12は、第4実施形態によるクラッチ制御を説明するフローチャートであり、 図13は、第4実施形態によるクラッチ制御を説明するタイムチャートであり、 図14は、第5実施形態によるクラッチ制御を説明するフローチャートであり、 図15は、第5実施形態によるクラッチ制御を説明するタイムチャートである。
The above objects and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic diagram showing a vehicle control system according to a first embodiment, FIG. 2 is a time chart illustrating behavior when it is not possible to get over a step due to insufficient torque. FIG. 3 is a flowchart illustrating clutch control according to the first embodiment, FIG. 4 is a map showing the relationship between clutch engagement time and inertia torque according to the first embodiment, FIG. 5 is a time chart illustrating clutch control according to the first embodiment, FIG. 6 is a time chart illustrating behavior when a step cannot be overcome due to lock protection control. FIG. 7 is a flowchart illustrating clutch control according to the second embodiment, FIG. 8 is a time chart illustrating clutch control according to the second embodiment, FIG. 9 is a map showing the relationship between clutch engagement time and rotational speed change amount according to temperature according to the third embodiment, FIG. 10 is a flowchart illustrating clutch control according to the third embodiment, FIG. 11A is a schematic diagram showing a state in which a vehicle crosses a step; FIG. 11B is a schematic diagram showing a state in which the vehicle has climbed over a step; FIG. 12 is a flowchart illustrating clutch control according to the fourth embodiment, FIG. 13 is a time chart illustrating clutch control according to the fourth embodiment, FIG. 14 is a flowchart illustrating clutch control according to the fifth embodiment, FIG. 15 is a time chart illustrating clutch control according to the fifth embodiment.
 以下、本開示による車両制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。 Hereinafter, a vehicle control device according to the present disclosure will be explained based on the drawings. Hereinafter, in a plurality of embodiments, substantially the same configurations are denoted by the same reference numerals, and description thereof will be omitted.
   (第1実施形態)
 第1実施形態による車両制御装置を図1~図6に示す。図1に示すように、車両制御システム1は、前輪駆動部10、後輪駆動部20、クラッチ31、クラッチアクチュエータ35、および、制御部50等を備える。
(First embodiment)
A vehicle control device according to a first embodiment is shown in FIGS. 1 to 6. As shown in FIG. 1, the vehicle control system 1 includes a front wheel drive section 10, a rear wheel drive section 20, a clutch 31, a clutch actuator 35, a control section 50, and the like.
 前輪駆動部10は、前輪11と接続されるドライブシャフト12、主機モータ15、および、動力伝達部18等を有する。後輪駆動部20は、後輪21と接続されるドライブシャフト22、主機モータ25、および、動力伝達部28等を有する。本実施形態の車両制御システム1は、前輪側および後輪側にそれぞれ駆動源である主機モータ15、25が設けられる、所謂4輪駆動システムである。 The front-wheel drive unit 10 has a drive shaft 12 connected to the front wheels 11, a main motor 15, and a power transmission unit 18. The rear-wheel drive unit 20 has a drive shaft 22 connected to the rear wheels 21, a main motor 25, and a power transmission unit 28. The vehicle control system 1 of this embodiment is a so-called four-wheel drive system in which the main motors 15, 25, which are drive sources, are provided on the front and rear wheel sides, respectively.
 主機モータ15、25は、図示しないバッテリからの電力が供給されることによりトルクを発生する電動機としての機能、および、車両99の制動時に駆動されて発電する発電機としての機能を有する、所謂モータジェネレータである。主機モータ15の駆動力は、動力伝達部18を経由してドライブシャフト12に伝達され、前輪11を回転駆動させる。主機モータ25の駆動力は、動力伝達部28を経由してドライブシャフト22に伝達され、後輪21を回転駆動させる。動力伝達部18、28は、減速機および左右の回転差を吸収する差動装置等から構成される。以下適宜、前輪駆動部10および後輪駆動部20を「駆動系」、主機モータを「MG」とする。 The main motors 15 and 25 are so-called motors that function as electric motors that generate torque by being supplied with electric power from a battery (not shown), and as generators that are driven to generate electricity when the vehicle 99 is braked. It is a generator. The driving force of the main motor 15 is transmitted to the drive shaft 12 via the power transmission section 18, and rotates the front wheels 11. The driving force of the main motor 25 is transmitted to the drive shaft 22 via the power transmission section 28, and rotationally drives the rear wheels 21. The power transmission units 18 and 28 are comprised of a speed reducer, a differential device that absorbs a difference in rotation between the left and right sides, and the like. Hereinafter, the front wheel drive unit 10 and the rear wheel drive unit 20 will be referred to as a "drive system", and the main motor will be referred to as an "MG".
 クラッチ31は、前輪駆動部10に設けられており、主機モータ15と前輪11との断接を切り替え可能である。詳細には、クラッチ31は、差動装置と前輪11の間であって、ドライブシャフト12に設けられている。クラッチアクチュエータ35は、クラッチ31に荷重を付与することでクラッチ31のストロークを制御し、クラッチ31の係合状態と解放状態とを切り替える。 The clutch 31 is provided in the front wheel drive unit 10 and can switch between connecting and disconnecting the main engine motor 15 and the front wheels 11. Specifically, the clutch 31 is provided on the drive shaft 12 between the differential gear and the front wheels 11. The clutch actuator 35 controls the stroke of the clutch 31 by applying a load to the clutch 31, and switches the clutch 31 between an engaged state and a released state.
 クラッチ31は、摩擦式の電動クラッチであり、完全締結させることで、摩擦等によるロスを除き、主機モータ15のトルクをドライブシャフト12に伝達可能である。また、クラッチアクチュエータ35の駆動を制御することで、主機モータ15のトルクの一部をドライブシャフトに伝達させるようにする、いわゆる半クラッチ状態とすることが可能である。本実施形態では、クラッチアクチュエータ35を制御することで、クラッチ31の締結速度を制御可能である。 The clutch 31 is a friction-type electric clutch, and by fully engaging it, it is possible to transmit the torque of the main motor 15 to the drive shaft 12, eliminating loss due to friction and the like. Further, by controlling the drive of the clutch actuator 35, it is possible to transmit a portion of the torque of the main engine motor 15 to the drive shaft, which is a so-called half-clutch state. In this embodiment, the engagement speed of the clutch 31 can be controlled by controlling the clutch actuator 35.
 制御部50は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。 The control unit 50 is mainly composed of a microcomputer, and internally includes a CPU, ROM, RAM, I/O, and a bus line connecting these components, all of which are not shown. Each process in the control unit 50 may be a software process in which a CPU executes a program stored in a physical memory device such as a ROM (i.e., a readable non-temporary tangible recording medium), or It may also be a hardware process using a dedicated electronic circuit.
 制御部50は、主機モータ15、25の電流を検出する電流センサ61、63、主機モータ15、25の回転を検出する回転角センサ62、64、車輪速センサ65、クラッチ31の温度を検出する温度センサ67、および、アクセルペダル40のペダル開度を検出する図示しないアクセル開度センサの検出値等を取得し、主機モータ15、25およびクラッチアクチュエータ35の駆動を制御する。温度センサ67を用いた制御については、第4実施形態にて後述する。なお、第1実施形態等では温度センサ67を省略してもよい。図1では、制御部50が1つであるものとして記載しているが、複数のECU等に機能を分けてもよい。なお、煩雑になることを避けるため、一部の制御線は省略した。 The control unit 50 detects current sensors 61 and 63 that detect the current of the main motors 15 and 25, rotation angle sensors 62 and 64 that detect the rotation of the main motors 15 and 25, a wheel speed sensor 65, and the temperature of the clutch 31. Detection values of the temperature sensor 67 and an accelerator opening sensor (not shown) that detects the pedal opening of the accelerator pedal 40 are acquired, and the driving of the main engine motors 15 and 25 and the clutch actuator 35 is controlled. Control using the temperature sensor 67 will be described later in the fourth embodiment. Note that in the first embodiment and the like, the temperature sensor 67 may be omitted. In FIG. 1, the control unit 50 is shown as being one, but the functions may be divided into a plurality of ECUs or the like. Note that some control lines have been omitted to avoid complication.
 ここで、ドライブシャフトと主機モータとがクラッチにより切り離せない参考例において、トルク不足により段差が乗り越えられない場合の挙動を図2のタイムチャートに基づいて説明する。図2では、共通時間軸を横軸とし、上段から、アクセル開度、MGトルク、MG回転数、タイヤ回転数とし、タイムチャートの上側には、各時刻に対応する前輪11と段差との位置関係を模式的に示した。図6も同様である。ドライブシャフトと主機モータとが直結されている場合、値は異なるものの、MG回転数とタイヤ回転数とは、挙動が相似形となる。なお、MG回転数は、単位時間あたりの回転回数であって、角速度と読み替え可能な値である。 Here, in a reference example in which the drive shaft and main motor cannot be separated by a clutch, the behavior when a step cannot be overcome due to insufficient torque will be explained based on the time chart of FIG. 2. In FIG. 2, the common time axis is set as the horizontal axis, and from the top, the accelerator opening, MG torque, MG rotation speed, and tire rotation speed are shown, and the top of the time chart shows the position of the front wheel 11 and the step corresponding to each time. The relationship is shown schematically. The same applies to FIG. When the drive shaft and the main engine motor are directly connected, the MG rotation speed and the tire rotation speed have similar behavior, although the values are different. Note that the MG rotation number is the number of rotations per unit time, and is a value that can be read as angular velocity.
 時刻x10以前において、アクセルペダル40が踏み込まれておらず、車両99がクリープトルクで段差に向かって進んでいるものとする。時刻x10にて前輪11が段差に当たると、前輪11および主機モータ15の回転が停止する。 It is assumed that before time x10, the accelerator pedal 40 is not depressed and the vehicle 99 is moving towards the step with creep torque. When the front wheel 11 hits a step at time x10, the rotation of the front wheel 11 and the main engine motor 15 is stopped.
 ドライバに段差を乗り越える意思があり、時刻x11にてアクセルペダル40が踏み込まれると、主機モータ15の駆動によりMGトルクが発生する。前輪11が車重により撓んでいた分、徐々に上方に移動し、時刻x12にて前輪11が浮く。ここで、乗り越えたい段差高さhに対してMGトルクTmgが足りないと、時刻x13にて前輪11の回転が止まり、以降、前輪11が逆回転して、時刻x14にて地面に落下し、段差を乗り越えることができない。 When the driver has the intention of overcoming the step and depresses the accelerator pedal 40 at time x11, MG torque is generated by driving the main engine motor 15. Since the front wheel 11 was bent due to the weight of the vehicle, it gradually moves upward, and the front wheel 11 floats at time x12. Here, if the MG torque Tmg is insufficient for the step height h to be overcome, the rotation of the front wheel 11 stops at time x13, and thereafter, the front wheel 11 rotates in the opposite direction and falls to the ground at time x14. I can't get over the steps.
 そこで本実施形態では、段差乗り越え時にクラッチ31の締結状態を制御し、MG回転数Nmgを変化させることでの慣性トルクTiをMGトルクTmgに上乗せすることで、MGトルクTmgのみでは乗り越えられなかった段差を乗り越え可能とする。MG回転数Nmgの変化により付与できる慣性トルクTiを式(1)に示す。式中のTiは慣性トルク[N・m]、Iは慣性モーメント[kg・m2]、ωは角速度[rad/s]である。角速度ωは、MG回転数Nmgに換算可能な値であって、付与可能な慣性トルクTiは、回転数変化量ΔNとクラッチ係合時間Δxで決まる。本実施形態では、回転数変化量ΔNおよびクラッチ係合時間Δxを制御することで、上乗せする慣性トルクTiを制御する。 Therefore, in this embodiment, the engagement state of the clutch 31 is controlled when climbing over a step, and the inertia torque Ti obtained by changing the MG rotational speed Nmg is added to the MG torque Tmg. Makes it possible to get over steps. Equation (1) shows the inertia torque Ti that can be applied by changing the MG rotational speed Nmg. In the formula, Ti is inertial torque [N·m], I is inertial moment [kg·m 2 ], and ω is angular velocity [rad/s]. The angular velocity ω is a value that can be converted into the MG rotational speed Nmg, and the inertia torque Ti that can be applied is determined by the rotational speed change amount ΔN and the clutch engagement time Δx. In this embodiment, the additional inertia torque Ti is controlled by controlling the rotation speed change amount ΔN and the clutch engagement time Δx.
  Ti=I×dω/dt  ・・・(1) Ti=I×dω/dt...(1)
 本実施形態のクラッチ制御を図3のフローチャートに基づいて説明する。この処理は、制御部50にて所定の周期で実行される。以下、ステップS101等の「ステップ」を省略し、単に記号「S」と記す。 The clutch control of this embodiment will be explained based on the flowchart of FIG. 3. This process is executed by the control unit 50 at a predetermined cycle. Hereinafter, "steps" such as step S101 will be omitted and simply referred to as "S".
 S101では、制御部50は、MGトルクTmgが0より大きいか否か判断する。MGトルクTmgが0であると判断された場合(S101:NO)、S102以降の処理をスキップする。MGトルクTmgが0より大きいと判断された場合(S101:YES)、S102へ移行する。 In S101, the control unit 50 determines whether the MG torque Tmg is greater than zero. If it is determined that the MG torque Tmg is 0 (S101: NO), the process from S102 onwards is skipped. If it is determined that the MG torque Tmg is greater than 0 (S101: YES), the process moves to S102.
 S102では、制御部50は、タイヤ回転数Ntが参照値Nrefより小さいか否か判断する。参照値Nrefは、例えばクリープトルクでの車速に応じて設定される。タイヤ回転数Ntが参照値Nref以上であると判断された場合(S102:NO)、前輪11は段差にぶつかっていないと判定し、S103以降の処理をスキップする。タイヤ回転数Ntが参照値Nrefより小さいと判断された場合(S102:YES)、S103へ移行する。S101、S102は、前輪11が段差にぶつかっているかを判定するステップであって、タイヤ回転数Ntが参照値Nrefより小さい場合、何らかの抵抗が発生しているとみなす。 In S102, the control unit 50 determines whether the tire rotation speed Nt is smaller than a reference value Nref. The reference value Nref is set, for example, according to the vehicle speed at creep torque. If it is determined that the tire rotation speed Nt is equal to or greater than the reference value Nref (S102: NO), it is determined that the front wheel 11 has not hit a step, and the processing from S103 onwards is skipped. If it is determined that the tire rotation speed Nt is smaller than the reference value Nref (S102: YES), the process proceeds to S103. S101 and S102 are steps for determining whether the front wheel 11 has hit a step, and if the tire rotation speed Nt is smaller than the reference value Nref, it is assumed that some resistance is occurring.
 S103では、制御部50は、例えばタイヤ空気圧等により前輪11がぶつかっている段差高さhを検出し、段差高さhを乗り越えるための必要トルクTnecを演算する。 In S103, the control unit 50 detects the step height h that the front wheels 11 collide with, for example, based on tire air pressure, etc., and calculates the required torque Tnec to overcome the step height h.
 S104では、制御部50は、主機モータ15が出力可能な最大トルクTmaxが必要トルクTnecより小さいか否か判断する。最大トルクTmaxが必要トルクTnec以上であると判断された場合(S104:NO)、主機モータ15のトルクにて段差を乗り越え可能であるので、S105以降の処理をスキップし、トルク付与制御を行わない。最大トルクTmaxが必要トルクTnecより小さいと判断された場合(S104:YES)、S105へ移行し、クラッチ31を解放する、ここでは、可及的速やかにクラッチ31を解放することが望ましい。 In S104, the control unit 50 determines whether the maximum torque Tmax that the main engine motor 15 can output is smaller than the required torque Tnec. If it is determined that the maximum torque Tmax is greater than or equal to the required torque Tnec (S104: NO), it is possible to overcome the step with the torque of the main engine motor 15, so the process from S105 onwards is skipped and torque application control is not performed. . If it is determined that the maximum torque Tmax is smaller than the required torque Tnec (S104: YES), the process moves to S105 and the clutch 31 is released. Here, it is desirable to release the clutch 31 as soon as possible.
 S106では、制御部50は、必要トルクTnecと最大トルクTmaxとの差分から、不足する分のトルクを慣性トルクTiにて付与できるように、回転数変化量ΔNおよびクラッチ係合時間Δxを演算する。 In S106, the control unit 50 calculates the rotation speed change amount ΔN and the clutch engagement time Δx from the difference between the required torque Tnec and the maximum torque Tmax so that the inertia torque Ti can provide the insufficient torque. .
 図4は、横軸がクラッチ係合時間Δx、縦軸が慣性トルクTiであり、主機モータ15の慣性モーメントと減速機のギア比で計算した回転数変化量ΔNごとのクラッチ係合時間と慣性トルクとの関係を示している。例えば、点Aを参照すると、MG回転数Nmgを目標回転数Nmg*より500[rpm]高くしておき、時間xa[sec]かけてクラッチ31を繋ぐと、Ta[N・m]の慣性トルクを付与できる。すなわち、図4に示す関係を予めマップ等にて持っておくことで、段差を乗り越えるのに要する必要トルクTnecから、回転数変化量ΔNおよびクラッチ係合時間Δxを演算可能である。なお、回転数変化量ΔNは、段差乗り越え後の目標回転数Nmg*との差分とする。段差乗り越え後の目標回転数Nmg*は、例えばクリープトルクよる車速(例えば5[km/h])に応じた値とする。 In FIG. 4, the horizontal axis is clutch engagement time Δx, and the vertical axis is inertia torque Ti, showing the relationship between the clutch engagement time and the inertia torque for each rotation speed change amount ΔN calculated by the inertia moment of the main motor 15 and the gear ratio of the reducer. For example, referring to point A, if the MG rotation speed Nmg is set to be 500 [rpm] higher than the target rotation speed Nmg * and the clutch 31 is engaged for a time xa [sec], an inertia torque of Ta [N·m] can be applied. That is, by having the relationship shown in FIG. 4 in advance in a map or the like, it is possible to calculate the rotation speed change amount ΔN and the clutch engagement time Δx from the torque Tnec required to overcome the step. The rotation speed change amount ΔN is the difference from the target rotation speed Nmg * after the step is overcome. The target rotation speed Nmg * after the step is overcome is, for example, a value corresponding to the vehicle speed (for example, 5 [km/h]) due to the creep torque.
 図3に戻り、S106に続いて移行するS107では、制御部50は、MG回転数上昇制御を行う。詳細には、MG回転数Nmgが目標回転数Nmg*よりも回転数変化量ΔN高くなるように、主機モータ15の駆動を制御する。 Returning to FIG. 3, in S107 following S106, the control unit 50 performs MG rotational speed increase control. Specifically, the drive of the main engine motor 15 is controlled so that the MG rotational speed Nmg is higher than the target rotational speed Nmg * by a rotational speed change amount ΔN.
 S108では、制御部50は、アクセルペダル40が判定時間内に踏み込まれたか否か判断する。ここでは、ドライバに段差を乗り越える意思があるかを判定している、といえ、判定時間はドライバの意思を判定可能な時間や、クラッチを解放した状態での回転数上昇制御を継続可能な時間等に応じて設定される。アクセルペダル40が判定時間内に踏み込まれたと判断された場合(S108:YES)、S109へ移行し、アクセルペダル40が判定時間内に踏み込まれなかったと判断された場合(S109:NO)、S110へ移行する。 In S108, the control unit 50 determines whether the accelerator pedal 40 has been depressed within the determination time. Here, it is determined whether the driver has the intention to go over the bump, but the determination time is the time when the driver's intention can be determined, and the time when the rotation speed increase control can be continued with the clutch released. etc. will be set accordingly. If it is determined that the accelerator pedal 40 has been depressed within the determination time (S108: YES), the process proceeds to S109, and if it is determined that the accelerator pedal 40 has not been depressed within the determination time (S109: NO), the process proceeds to S110. Transition.
 S109では、制御部50は、クラッチ係合時間Δxにてクラッチ31が完全締結状態となるように、クラッチアクチュエータ35によるストローク速度を制御する。S110では、制御部50は、MG回転数Nmgを目標回転数Nmg*に戻し、クラッチ31を再係合する。 In S109, the control unit 50 controls the stroke speed of the clutch actuator 35 so that the clutch 31 is fully engaged during the clutch engagement time Δx. In S110, the control unit 50 returns the MG rotation speed Nmg to the target rotation speed Nmg * , and re-engages the clutch 31.
 本実施形態のクラッチ制御を図5のタイムチャートに基づいて説明する。図5では、共通時間軸を横軸とし、上段から、アクセル開度、MGトルク、クラッチストローク、慣性トルク、MG回転数、タイヤ回転数を示し、図3と同様、タイムチャートの上側には、各時刻に対応する前輪11と段差との位置関係を模式的に示した。図8も同様である。 The clutch control of this embodiment will be explained based on the time chart of FIG. 5. In FIG. 5, the horizontal axis is the common time axis, and the accelerator opening, MG torque, clutch stroke, inertia torque, MG rotation speed, and tire rotation speed are shown from the top. Similar to FIG. 3, the top of the time chart shows the following: The positional relationship between the front wheel 11 and the step corresponding to each time is schematically shown. The same applies to FIG.
 時刻x20までの挙動は、図3の時刻x10までの挙動と同様である。時刻x20にて、前輪11が段差に当たると、前輪11および主機モータ15の回転数が低下する。時刻x21にて回転数が0となると、クラッチ31を解放する。時刻x22にてクラッチ解放が完了すると、MG回転数NmgがN*+ΔNとなるように、回転数上昇制御を行う。 The behavior up to time x20 is similar to the behavior up to time x10 in FIG. At time x20, when the front wheel 11 hits a step, the rotation speeds of the front wheel 11 and the main engine motor 15 decrease. When the rotational speed becomes 0 at time x21, the clutch 31 is released. When the clutch release is completed at time x22, rotation speed increase control is performed so that the MG rotation speed Nmg becomes N * +ΔN.
 時刻x23にて、ドライバによりアクセルペダル40が踏み込まれると、クラッチ係合時間Δxをかけてクラッチ31が徐々に繋がるように、クラッチストロークを制御する。クラッチ31を徐々に繋げる半クラッチ制御でのMG回転数Nmgの変化が、慣性トルクTiとなり、MGトルクTmgに加算されるので、時刻x24にて浮いた前輪11が落下せず、時刻x25にて段差乗り越えが完了する。段差乗り越え後の制御は第4実施形態にて後述する。 At time x23, when the driver depresses the accelerator pedal 40, the clutch stroke is controlled so that the clutch 31 is gradually engaged over a clutch engagement time Δx. The change in the MG rotational speed Nmg during half-clutch control in which the clutch 31 is gradually engaged becomes the inertia torque Ti, which is added to the MG torque Tmg, so that the front wheel 11 that was floating at time x24 does not fall, and at time x25 Climbing over the steps is completed. Control after climbing over the step will be described later in the fourth embodiment.
 本実施形態では、段差乗り越え時において、クラッチ31を半クラッチ制御することで、主機モータ15の最大トルクTmaxに加えて慣性トルクTiが付与されるため、より高い段差を乗り越えることができる。 In the present embodiment, by half-clutching the clutch 31 when climbing over a step, inertia torque Ti is applied in addition to the maximum torque Tmax of the main engine motor 15, so that it is possible to get over a higher step.
 以上説明したように、本実施形態の車両制御システム1は、車両99の駆動を制御するものであって、主機モータ15と、クラッチ31と、クラッチアクチュエータ35と、制御部50と、を備える。クラッチ31は、主機モータ15から前輪11に至る動力伝達経路に設けられ、動力伝達の断接を切り替え可能である。クラッチ31は、摩擦クラッチであるので、半クラッチ制御が可能である。クラッチアクチュエータ35は、クラッチ31を駆動する。 As explained above, the vehicle control system 1 of this embodiment controls the drive of the vehicle 99, and includes the main motor 15, the clutch 31, the clutch actuator 35, and the control section 50. The clutch 31 is provided in a power transmission path from the main engine motor 15 to the front wheels 11, and can switch between connecting and disconnecting power transmission. Since the clutch 31 is a friction clutch, half-clutch control is possible. Clutch actuator 35 drives clutch 31.
 制御部50は、主機モータ15およびクラッチアクチュエータ35の駆動を制御する。制御部50は、車両99が段差を乗り越えるとき、MG回転数Nmg、および、クラッチ31を完全係合でない状態から完全係合へ切り替えるクラッチストローク速度を制御するトルク付与制御を行う。ここで、「完全係合でない状態」には、クラッチ30が完全に解放されている状態、および、半クラッチ状態を含む。これにより車両99の駆動を適切に制御することができる。具体的には、トルク付与制御により慣性トルク分を主機モータ15のトルクに駆動トルクとして上乗せ可能であるので、段差乗り越え性能を向上可能である。 The control unit 50 controls the driving of the main engine motor 15 and the clutch actuator 35. When the vehicle 99 passes over a step, the control unit 50 performs torque application control that controls the MG rotational speed Nmg and the clutch stroke speed for switching the clutch 31 from a non-fully engaged state to a fully engaged state. Here, the "state where the clutch 30 is not fully engaged" includes a state where the clutch 30 is completely released and a half-clutch state. Thereby, the drive of the vehicle 99 can be appropriately controlled. Specifically, since it is possible to add an inertia torque amount to the torque of the main engine motor 15 as a driving torque by the torque application control, it is possible to improve the step-crossing performance.
 制御部50は、段差の乗り越えに要する必要トルクTnecおよび主機モータ15にて出力可能な最大トルクTmaxに基づき、トルク付与制御においてクラッチ31の係合により主機モータ15の回転数を変化させる回転数変化量ΔN、および、クラッチ係合時間Δxを設定する。クラッチ係合時間Δxは、主機モータ15の目標回転数Nmg*よりも回転数変化量ΔNの分、MG回転数Nmgが大きい状態から、クラッチ31を完全係合させるまでの時間である。これにより、回転数変化量ΔNおよびクラッチ係合時間Δxにてクラッチ31の締結状態を制御することで、慣性トルクTiを駆動トルクに上乗せすることができる。 The control unit 50 performs a rotational speed change that changes the rotational speed of the main motor 15 by engaging the clutch 31 in torque application control based on the necessary torque Tnec required for getting over the step and the maximum torque Tmax that can be output by the main motor 15. The amount ΔN and the clutch engagement time Δx are set. The clutch engagement time Δx is the time from when the MG rotational speed Nmg is larger than the target rotational speed Nmg * of the main engine motor 15 by the amount of rotational speed change ΔN until the clutch 31 is fully engaged. Thereby, the inertia torque Ti can be added to the drive torque by controlling the engagement state of the clutch 31 using the rotational speed change amount ΔN and the clutch engagement time Δx.
   (第2実施形態)
 第2実施形態を図6~図8に示す。本実施形態では、タイヤロック保護を回避して段差を乗り越えられるように、クラッチ制御を行う。まず、図6にロック保護制御により段差が乗り越えられない場合の挙動を図6のタイムチャートに基づいて説明する。
(Second embodiment)
A second embodiment is shown in FIGS. 6 to 8. In this embodiment, clutch control is performed so that the vehicle can overcome the bump while avoiding tire lock protection. First, the behavior when a step cannot be overcome by the lock protection control will be explained based on the time chart of FIG. 6.
 時刻x30~時刻x32の挙動は、図2中の時刻x10~時刻x12と同様である。時刻x32にて、乗り越えたい段差高さに対してトルクが不足していると、時刻x33にて前輪11の回転が停止する。前輪11の回転が止まり、ロック状態となった後、ロック保護待機時間XLが経過すると、時刻x34にて、ロック保護制御が介入する。ロック保護制御では、アクセルペダル40が踏み込まれている状態が継続していたとしても、MGトルクTmgを低下させる。MGトルクTmgが低下すると、前輪11が逆回転し、時刻x35にて地面に落下する。また、MGトルクTmgがアクセル開度に応じた値まで復帰した時刻x36にてロック保護制御が終了する。MGトルクTmgの復帰により段差を乗り越えられる場合もあるが、タイヤロックとロック保護制御とを繰り返す場合もある。 The behavior from time x30 to time x32 is the same as from time x10 to time x12 in FIG. At time x32, if the torque is insufficient for the height of the step to be overcome, the front wheels 11 stop rotating at time x33. When the lock protection standby time XL has elapsed after the front wheel 11 stops rotating and enters the locked state, lock protection control intervenes at time x34. In the lock protection control, the MG torque Tmg is reduced even if the accelerator pedal 40 continues to be depressed. When the MG torque Tmg decreases, the front wheel 11 rotates in the opposite direction and falls to the ground at time x35. Further, the lock protection control ends at time x36 when the MG torque Tmg returns to a value corresponding to the accelerator opening degree. There are cases in which the vehicle can overcome a step by restoring the MG torque Tmg, but there are cases in which tire locking and lock protection control are repeated.
 そこで本実施形態では、ロック保護制御を回避して段差を乗り越えられるように、クラッチ31の締結状態を制御する。本実施形態のクラッチ制御を図7のフローチャートに基づいて説明する。S201~S203の処理は、図3中のS101~S103の処理と同様である。 Therefore, in this embodiment, the engagement state of the clutch 31 is controlled so that the vehicle can overcome the step without lock protection control. Clutch control of this embodiment will be explained based on the flowchart of FIG. 7. The processing from S201 to S203 is similar to the processing from S101 to S103 in FIG.
 S204では、図3中のS108と同様、制御部50は、アクセルペダル40が判定時間内に踏み込まれたか否か判断する。アクセルペダル40が判定時間内に踏み込まれなかったと判断された場合(S204:NO)、S205以降の処理をスキップする。アクセルペダル40が判定時間内に踏み込まれたと判断された場合(S204:YES)、S205へ移行する。 In S204, similar to S108 in FIG. 3, the control unit 50 determines whether the accelerator pedal 40 has been depressed within the determination time. If it is determined that the accelerator pedal 40 has not been depressed within the determination time (S204: NO), the process from S205 onward is skipped. If it is determined that the accelerator pedal 40 has been depressed within the determination time (S204: YES), the process moves to S205.
 S205では、制御部50は、タイヤロック状態か否かを、MGトルクTmgおよびタイヤ回転数Tnに基づいて判断する。MGトルクTmgが閾値以上であって、タイヤ回転数Tnが0に近い任意の値に設定されるロック判定閾値以下の場合、タイヤロック状態であると判断する。タイヤロック状態でないと判断された場合(S205:NO)、S206以降の処理をスキップする。タイヤロック状態あると判断された場合(S205:YES)、S206へ移行する。 In S205, the control unit 50 determines whether or not the tire is in a locked state based on the MG torque Tmg and the tire rotation speed Tn. When the MG torque Tmg is greater than or equal to the threshold value and the tire rotational speed Tn is less than or equal to the lock determination threshold value, which is set to an arbitrary value close to 0, it is determined that the tire is in a locked state. If it is determined that the tires are not in a locked state (S205: NO), the processes from S206 onwards are skipped. If it is determined that the tires are locked (S205: YES), the process moves to S206.
 S206では、制御部50は、クラッチ31を半クラッチ制御する。ここでは、クラッチ31を切ってしまうとトルクが抜けてしまうため完全解放はせず、完全締結への移行により慣性トルクを付与可能な任意の締結力での半クラッチ制御とする。S207~S209の処理は、図3中のS106、S107、S109の処理と同様である。 In S206, the control unit 50 performs half-clutch control on the clutch 31. Here, if the clutch 31 is disengaged, the torque will be lost, so it is not completely disengaged, but half-clutch control is performed with an arbitrary engagement force that can apply inertia torque by transitioning to full engagement. The processing in S207 to S209 is similar to the processing in S106, S107, and S109 in FIG.
 本実施形態のクラッチ制御を図8のタイムチャートに基づいて説明する。時刻x40~時刻x43の挙動は、図6の時刻x30~時刻x33と同様である。時刻x43にてロック状態となると、ロック保護制御が介入する時間よりも前のタイミングである時刻x44にて、クラッチストロークを制御することで一時的に半クラッチ状態とする。クラッチ31を半クラッチ状態とすることで、負荷が減るので、MG回転数Nmgが上昇する。 The clutch control of this embodiment will be explained based on the time chart of FIG. 8. The behavior from time x40 to time x43 is the same as from time x30 to time x33 in FIG. When the lock state is reached at time x43, the clutch stroke is controlled to temporarily bring the clutch into a half-clutch state at time x44, which is a timing before the time when lock protection control intervenes. By setting the clutch 31 in a half-clutch state, the load is reduced, so the MG rotational speed Nmg increases.
 回転数上昇制御によりMG回転数NmgがN*+ΔNとなった時刻x45では、クラッチ係合時間Δxをかけてクラッチ31が再び繋がるように、徐々にクラッチストロークを制御する。このときのMG回転数Nmgの変化が慣性トルクTiとなり、MGトルクTmgに加算される。時刻x46にてクラッチ31が再係合され、時刻x47にて段差乗り越えが完了する。 At time x45 when the MG rotation speed Nmg becomes N * +ΔN due to the rotation speed increase control, the clutch stroke is gradually controlled so that the clutch 31 is re-engaged over a clutch engagement time Δx. The change in the MG rotational speed Nmg at this time becomes the inertia torque Ti, which is added to the MG torque Tmg. The clutch 31 is re-engaged at time x46, and climbing over the step is completed at time x47.
 本実施形態では、段差乗り越えの途中で前輪11がロックされるロック状態となった場合、クラッチ31を半クラッチ状態に制御する。段差乗り越え途中でクラッチ31を半クラッチとすることで、前輪11がロックしていても、主機モータ15を回転させることで、電流集中を回避することができ、ロック保護制御の介入を回避することができる。また、半クラッチ状態とした後、トルク付与制御にて慣性トルクTiを付与することで、前輪11が落下することなく段差を乗り越えることができる。また上記実施形態と同様の効果を奏する。 In the present embodiment, when the front wheels 11 become locked while climbing over a step, the clutch 31 is controlled to a half-clutch state. By setting the clutch 31 to half-clutch while going over a step, even if the front wheels 11 are locked, the main engine motor 15 can be rotated to avoid current concentration, and the intervention of lock protection control can be avoided. Can be done. In addition, by applying inertia torque Ti through torque application control after the clutch is in a half-clutch state, the front wheels 11 can overcome a step without falling. Further, the same effects as those of the above embodiment are achieved.
   (第3実施形態)
 第3実施形態を図9および図10に示す。上記実施形態では、回転数変化量ΔNおよびクラッチ係合時間Δxを制御することで、上乗せする慣性トルクTiを制御する。ここで、回転体の運動エネルギーKを式(2)に示す。
(Third embodiment)
A third embodiment is shown in FIGS. 9 and 10. In the embodiment described above, the additional inertia torque Ti is controlled by controlling the rotational speed change amount ΔN and the clutch engagement time Δx. Here, the kinetic energy K of the rotating body is shown in equation (2).
  K=(1/2)×I×ω2  ・・・(2) K=(1/2)×I×ω 2 ...(2)
 式(2)に示すように、運動エネルギーKは、角速度ωの2乗に比例する。エネルギー保存則より、半クラッチ制御では運動エネルギーが摩擦熱に変換されると考えると、トルク付与制御において、回転数変化量ΔNが大きいほど、クラッチ温度が上昇しやすい。 As shown in equation (2), kinetic energy K is proportional to the square of the angular velocity ω. Considering that kinetic energy is converted into frictional heat in half-clutch control according to the law of conservation of energy, the larger the rotational speed change amount ΔN is, the more likely the clutch temperature is to rise in torque application control.
 図9は、横軸をクラッチ係合時間Δx、縦軸を回転数変化量ΔNとし、慣性トルクTiごとのクラッチ係合時間Δxと回転数変化量ΔNとの関係を示している。例えば、点Cに示すように、点Bよりも回転数変化量ΔNを小さくする場合、クラッチ係合時間ΔXを短くすることで、点Bと同等の慣性トルクTiとすることができる。ただし、クラッチ係合時間Δxを短くしすぎると、係合ショックが増大し、ドラビリが悪化する虞がある点に留意する必要がある。 FIG. 9 shows the relationship between the clutch engagement time Δx and the rotation speed change amount ΔN for each inertia torque Ti, with the horizontal axis representing the clutch engagement time Δx and the vertical axis representing the rotation speed change amount ΔN. For example, as shown at point C, when the rotational speed change amount ΔN is made smaller than that at point B, the inertia torque Ti can be made equal to that at point B by shortening the clutch engagement time ΔX. However, it must be noted that if the clutch engagement time Δx is too short, the engagement shock may increase and drivability may worsen.
 そこで本実施形態では、温度差Δtmp、回転数変化量ΔNおよびクラッチ係合時間Δxをマップ化しておき、温度センサ67により検出されたクラッチ温度と外気温との差である温度差Δtmpに基づいて回転数変化量ΔNおよびクラッチ係合時間Δxを設定する。例えば、温度差Δtmpが20℃の場合、B点の回転数変化量ΔNおよびクラッチ係合時間Δxとし、温度差Δtmpが40℃の場合、C点の回転数変化量ΔNおよびクラッチ係合時間Δxとする、といった具合である。 Therefore, in this embodiment, the temperature difference Δtmp, the rotational speed change amount ΔN, and the clutch engagement time Δx are mapped, and based on the temperature difference Δtmp, which is the difference between the clutch temperature detected by the temperature sensor 67 and the outside air temperature, Set the rotational speed change amount ΔN and clutch engagement time Δx. For example, if the temperature difference Δtmp is 20°C, the rotational speed change ΔN and clutch engagement time Δx at point B, and if the temperature difference Δtmp is 40°C, the rotational speed change ΔN and clutch engagement time Δx at point C. And so on.
 本実施形態のクラッチ制御を図10のフローチャートに基づいて説明する。図10では、S105とS106との間にS120が追加されている点が図3と異なっている。S120では、制御部50は、温度センサ67の検出値に基づき、温度差Δtmpを演算する。S106では、制御部50は、不足分のトルクを慣性トルクTiにて付与できるように、温度差Δtmpに基づいて回転数変化量ΔNおよびクラッチ係合時間Δxを演算する。なお、ここでは第1実施形態の制御を例に説明したが、第2実施形態の制御において、温度差Δtmpを用いて回転数変化量ΔNおよびクラッチ係合時間Δxを設定するようにしてもよい。 The clutch control of this embodiment will be explained based on the flowchart of FIG. 10. 10 differs from FIG. 3 in that S120 is added between S105 and S106. In S120, the control unit 50 calculates the temperature difference Δtmp based on the detected value of the temperature sensor 67. In S106, the control unit 50 calculates the rotational speed change amount ΔN and the clutch engagement time Δx based on the temperature difference Δtmp so that the inertia torque Ti can make up for the insufficient torque. Note that although the control of the first embodiment has been explained here as an example, in the control of the second embodiment, the rotational speed change amount ΔN and the clutch engagement time Δx may be set using the temperature difference Δtmp. .
 本実施形態では、車両制御システム1は、クラッチ31の温度を検出する温度センサ67を備える。制御部50は、トルク付与制御において、クラッチ31の温度に基づき、主機モータ15の回転数、および、クラッチストローク速度を制御する。これにより、クラッチ31の過熱を防ぐことができる。また上記実施形態と同様の効果を奏する。 In this embodiment, the vehicle control system 1 includes a temperature sensor 67 that detects the temperature of the clutch 31. In the torque application control, the control unit 50 controls the rotation speed of the main engine motor 15 and the clutch stroke speed based on the temperature of the clutch 31. Thereby, overheating of the clutch 31 can be prevented. Further, the same effects as those of the above embodiment are achieved.
   (第4実施形態)
 第4実施形態を図11A~図13に示す。本実施形態では、段差乗り越え後の制御を中心に説明する。なお、段差を乗り越えるまでの制御は、第1実施形態~第3実施形態のいずれであってもよいし、これらとは異なる制御としてもよい。
(Fourth embodiment)
The fourth embodiment is shown in FIGS. 11A to 13. In this embodiment, control after getting over a step will be mainly described. Note that the control until the vehicle gets over the level difference may be any one of the first to third embodiments, or may be a control different from these.
 図11Aおよび図11Bは、車両99の段差乗り越えを模式的に示しており、ブロック矢印は、前輪駆動部10、後輪駆動部20、および、車両全体としての駆動力を示している。例えば電動車両の自動運転中など、運転者の意図が反映されにくい状況での段差乗り越えにおいて、段差乗り越え後にMGトルクTmgを低下させることで、乗り越え後の過剰な加速や急激な飛び出し感を抑制する必要がある。本実施形態では、段差乗り越え完了後、MGトルクTmgを低下させるとともに、クラッチ31を切ることで、段差乗り越え後の飛び出し感をより抑制する。 FIGS. 11A and 11B schematically show the vehicle 99 climbing over a step, and the block arrows indicate the driving force of the front wheel drive section 10, the rear wheel drive section 20, and the vehicle as a whole. For example, when climbing over a bump in situations where the driver's intentions are difficult to reflect, such as during automatic operation of an electric vehicle, by reducing MG torque Tmg after climbing over the bump, excessive acceleration and sudden jump feeling after climbing over the bump can be suppressed. There is a need. In this embodiment, after completing the step over the step, the MG torque Tmg is reduced and the clutch 31 is disengaged, thereby further suppressing the feeling of jumping out after the step has been overcome.
 本実施形態のクラッチ制御を図12のフローチャートに基づいて説明する。S301では、制御部50は、走行経路に段差があるか否か判断する。段差がないと判断された場合(S301:NO)、S302以降の処理をスキップする。S302では、例えば上記実施形態の段差乗り越え制御を行う。 Clutch control of this embodiment will be explained based on the flowchart of FIG. 12. In S301, the control unit 50 determines whether there is a step in the travel route. If it is determined that there is no level difference (S301: NO), the process from S302 onwards is skipped. In S302, for example, the level difference climbing control of the above embodiment is performed.
 S303では、制御部50は、車両99が段差を乗り越えたか否か判断する。段差を乗り越えていないと判断された場合(S303:NO)、S302へ戻り、段差乗り越え制御を継続する。段差を乗り越えたと判断された場合(S303:YES)、S304へ移行する。 In S303, the control unit 50 determines whether the vehicle 99 has climbed over the step. If it is determined that the step has not been climbed over (S303: NO), the process returns to S302 and the step over-step control is continued. If it is determined that the step has been climbed over (S303: YES), the process moves to S304.
 制御部50は、S304にてクラッチ31を解放し、S305にてMG回転数制御を行う。クラッチ31を解放し、負荷がなくなると、MG回転数Nmgが吹け上がってしまうため、例えばクリープトルクでの走行時の車速に応じたタイヤ回転数Ntを減速ギアのギア比で換算した値となるように、MG回転数Nmgを制御する。 The control unit 50 releases the clutch 31 in S304, and performs MG rotation speed control in S305. When the clutch 31 is released and the load is removed, the MG rotation speed Nmg increases, so for example, the tire rotation speed Nt corresponding to the vehicle speed when driving at creep torque is converted into a value converted by the gear ratio of the reduction gear. The MG rotation speed Nmg is controlled as follows.
 S306では、制御部50は、MG回転数Nmgが目標回転数Nmg*となったか否か判断する。ここでは、目標回転数Nmg*を含む所定範囲内となった場合、肯定判断する。MG回転数Nmgが目標回転数Nmg*となっていないと判断された場合(S306:NO)、S305へ戻り、MG回転数制御を継続する。MG回転数Nmgが目標回転数になったと判断された場合(S306:YES)、S307へ移行する。 In S306, the control unit 50 determines whether the MG rotation speed Nmg has reached the target rotation speed Nmg * . Here, if the rotation speed is within a predetermined range including the target rotation speed Nmg * , an affirmative determination is made. If it is determined that the MG rotational speed Nmg is not the target rotational speed Nmg * (S306: NO), the process returns to S305 and the MG rotational speed control is continued. If it is determined that the MG rotation speed Nmg has reached the target rotation speed (S306: YES), the process moves to S307.
 S307では、制御部50は、車速Vが車速判定閾値Vth以下か否か判断する。車速Vが車速判定閾値Vthより大きいと判断された場合(S307:NO)、S308へ移行し、ブレーキ制御を行い、車速Vを低下させる。車速Vが車速判定閾値Vth以下であると判断された場合(S307:YES)、S309へ移行し、クラッチ31を係合する。 In S307, the control unit 50 determines whether the vehicle speed V is equal to or less than the vehicle speed determination threshold Vth. If it is determined that the vehicle speed V is greater than the vehicle speed determination threshold Vth (S307: NO), the process moves to S308, where brake control is performed to reduce the vehicle speed V. If it is determined that the vehicle speed V is less than or equal to the vehicle speed determination threshold Vth (S307: YES), the process moves to S309 and the clutch 31 is engaged.
 段差乗り越え後のクラッチ制御を図13のタイムチャートに基づいて説明する。図13では、共通時間軸を横軸とし、上段から、アクセル開度、MGトルク、クラッチストローク、ブレーキトルク、MG回転数、タイヤ回転数を示す。 The clutch control after going over a step will be explained based on the time chart in Figure 13. In Figure 13, the horizontal axis represents the common time axis, and from the top, the accelerator opening, MG torque, clutch stroke, brake torque, MG rotation speed, and tire rotation speed are shown.
 時刻x50にて、前輪11が段差を乗り越えると、ドライバが踏力を弱めることでアクセル開度が小さくなり、MGトルクTmgが低下する。時刻x51にて、段差乗り越え判定されると、クラッチ31が解放される。これにより、段差乗り越え後の飛び出し感を抑制することができる。 At time x50, when the front wheels 11 pass over the step, the driver weakens the pedal effort, thereby reducing the accelerator opening and reducing the MG torque Tmg. At time x51, when it is determined that the vehicle has climbed over the step, the clutch 31 is released. Thereby, it is possible to suppress the feeling of jumping out after climbing over a step.
 時刻x51にてクラッチ31を解放すると、MG回転数Nmgが上昇するため、MG回転数Nmgが目標回転数Nmg*となるように、MG回転数制御を行う。MG回転数Nmgが目標回転数Nmg*となったときのタイヤ回転数Ntが、車速判定閾値Vthに対応するタイヤ回転数閾値THより大きいので、時刻x52にてブレーキ制御を行う。タイヤ回転数Ntがタイヤ回転数閾値THとなった後の時刻x53にて、クラッチ31を係合し、通常制御に復帰する。 When the clutch 31 is released at time x51, the MG rotation speed Nmg increases, so the MG rotation speed is controlled so that the MG rotation speed Nmg becomes the target rotation speed Nmg * . Since the tire rotation speed Nt when the MG rotation speed Nmg becomes the target rotation speed Nmg * is larger than the tire rotation speed threshold TH corresponding to the vehicle speed determination threshold Vth, brake control is performed at time x52. At time x53 after the tire rotation speed Nt reaches the tire rotation speed threshold TH, the clutch 31 is engaged and normal control is returned to.
 本実施形態では、制御部50は、車両99が段差を乗り越えた後、クラッチ31を解放する。段差乗り越え後にクラッチ31を解放し、主機モータ15とドライブシャフト12とを切り離すことで、乗り越え完了後の急加速を抑制する。これにより、段差乗り越え後の車両安全性がより向上する。また上記実施形態と同様の効果を奏する。 In the present embodiment, the control unit 50 releases the clutch 31 after the vehicle 99 gets over the step. By releasing the clutch 31 and disconnecting the main engine motor 15 and the drive shaft 12 after getting over the step, sudden acceleration after getting over the step is suppressed. This further improves vehicle safety after climbing over a bump. Further, the same effects as those of the above embodiment are achieved.
   (第5実施形態)
 第5実施形態を図14および図15に示す。車両99の走行中等において、主機モータ15のコギングトルクやトルクリップルの変動周期が駆動系の共振周波数に相当する回転数であるときにクラッチ31を完全締結すると、共振が生じる。そこで本実施形態では、MG回転数Nmgおよびクラッチ31の係合状態を制御することで共振を回避する。
(Fifth embodiment)
A fifth embodiment is shown in FIGS. 14 and 15. When the clutch 31 is fully engaged while the vehicle 99 is running, etc., when the fluctuation period of the cogging torque or torque ripple of the main engine motor 15 is a rotational speed corresponding to the resonance frequency of the drive system, resonance occurs. Therefore, in this embodiment, resonance is avoided by controlling the MG rotational speed Nmg and the engagement state of the clutch 31.
 本実施形態のクラッチ制御を図14のフローチャートに基づいて説明する。S401では、制御部50は、クラッチ31の締結指令があるか否か判断する。クラッチ31の締結指令がないと判断された場合(S401:NO)、S402以降の処理をスキップする。クラッチ31の締結指令があると判断された場合(S401:YES)、S402へ移行する。 Clutch control of this embodiment will be explained based on the flowchart of FIG. 14. In S401, the control unit 50 determines whether or not there is a command to engage the clutch 31. If it is determined that there is no command to engage the clutch 31 (S401: NO), the process from S402 onwards is skipped. If it is determined that there is a command to engage the clutch 31 (S401: YES), the process moves to S402.
 S402では、制御部50は、主機モータ15の極数およびMG回転数Nmg等に基づき、トルクリップルやコギングトルクによるトルク変動周波数を演算する。なお、トルクリップルによる変動周波数、および、コギングトルクによる変動周波数といった具合に、複数のトルク変動周波数を演算するようにしてもよい。 In S402, the control unit 50 calculates the torque fluctuation frequency due to torque ripple and cogging torque based on the number of poles of the main motor 15, the MG rotation speed Nmg, etc. Note that a plurality of torque fluctuation frequencies may be calculated, such as a fluctuation frequency due to torque ripple and a fluctuation frequency due to cogging torque.
 S403では、制御部50は、演算されたトルク変動周波数が、駆動系の共振周波数に相当するか否か判断する。ここでは、トルク変動周波数が、共振周波数を含む所定範囲内である場合、肯定判断する。以下適宜、共振周波数を含む所定範囲を「共振領域」とする。トルク変動周波数が駆動系の共振周波数に相当しないと判断された場合(S403:NO)、S404へ移行し、現在のMG回転数Nmgを維持し、クラッチ31を完全係合させる。トルク変動周波数が駆動系の共振周波数に相当すると判断された場合(S403:YES)、S405へ移行する。 In S403, the control unit 50 determines whether the calculated torque fluctuation frequency corresponds to the resonance frequency of the drive system. Here, if the torque fluctuation frequency is within a predetermined range including the resonance frequency, an affirmative determination is made. Hereinafter, a predetermined range including the resonance frequency will be referred to as a "resonance region" as appropriate. If it is determined that the torque fluctuation frequency does not correspond to the resonance frequency of the drive system (S403: NO), the process moves to S404, the current MG rotational speed Nmg is maintained, and the clutch 31 is fully engaged. If it is determined that the torque fluctuation frequency corresponds to the resonance frequency of the drive system (S403: YES), the process moves to S405.
 S405では、制御部50は、現在のMG回転数Nmgより大きく、トルク変動周波数が駆動系の共振周波数とならないような主機モータ15の目標回転数Nmg*を演算する。 In S405, the control unit 50 calculates a target rotation speed Nmg * of the main motor 15 that is larger than the current MG rotation speed Nmg and at which the torque fluctuation frequency does not become the resonance frequency of the drive system.
 S406では、制御部50は、目標回転数Nmg*に相当するドライブシャフト12の回転数と、現在のドライブシャフト12の回転数との差である差回転vdefを演算する。S407では、制御部50は、クラッチ31のμv特性から、差回転vdefでの摩擦係数μを演算する。 In S406, the control unit 50 calculates a differential rotation speed vdef, which is the difference between the rotation speed of the drive shaft 12 corresponding to the target rotation speed Nmg * and the current rotation speed of the drive shaft 12. In S407, the control unit 50 calculates the friction coefficient μ at the differential rotation speed vdef from the μv characteristics of the clutch 31.
 S408では、制御部50は、演算された摩擦係数μ、および、現在の目標駆動トルクTd*から、目標クラッチ荷重F*を演算する(式(3))。式(3)中のnはクラッチ31の板組数、rはクラッチ板半径である。 In S408, the control unit 50 calculates the target clutch load F * from the calculated friction coefficient μ and the current target drive torque Td * (Equation (3)). In equation (3), n is the number of plate sets in the clutch 31, and r is the clutch plate radius.
  F*=Td*/(2×μ×n×r)  ・・・(3) F * =Td * /(2×μ×n×r)...(3)
 S409では、制御部50は、クラッチ31の荷重-ストローク特性から、目標クラッチ荷重F*を用いて、目標クラッチストロークを演算する。S410では、制御部50は、MG回転数Nmgが目標回転数Nmg*、クラッチストロークが目標クラッチストロークとなるよう、主機モータ15およびクラッチアクチュエータ35をそれぞれ制御する。 In S409, the control unit 50 calculates a target clutch stroke from the load-stroke characteristics of the clutch 31 using the target clutch load F * . In S410, the control unit 50 controls the main motor 15 and the clutch actuator 35 so that the MG rotational speed Nmg becomes the target rotational speed Nmg * and the clutch stroke becomes the target clutch stroke.
 本実施形態のクラッチ制御を図15のタイムチャートに基づいて説明する。図15では、共通時間軸を横軸とし、上段から、車速、MG回転数、クラッチストローク、駆動トルクとする。ここでは、前輪側の主機モータ15の回転数をNmg_f、駆動トルクをTd_fとして実線、後輪側の主機モータ25の回転数をNmg_r、駆動トルクをTd_rとして一点鎖線で記載した。なお、本明細書ではクラッチ31が設けられている前輪側の動作を主に説明しており、後輪側との区別が必要な場合を除き、添え字の_f、_rを省略する。図14では、駆動トルクの前後輪分配率が1:1であるものとして記載したが、前後輪分配率は1:1とは異なる比率としてもよい。 The clutch control of this embodiment will be explained based on the time chart of FIG. 15. In FIG. 15, the common time axis is the horizontal axis, and from the top, the vehicle speed, MG rotational speed, clutch stroke, and drive torque are shown. Here, the rotation speed of the main engine motor 15 on the front wheel side is shown as Nmg_f and the drive torque is shown as Td_f as a solid line, and the rotation speed of the main engine motor 25 on the rear wheel side is shown as Nmg_r and the drive torque is shown as Td_r as a dashed line. Note that this specification mainly describes the operation of the front wheel side where the clutch 31 is provided, and the subscripts _f and _r are omitted unless it is necessary to distinguish from the rear wheel side. In FIG. 14, the distribution ratio of the driving torque between the front and rear wheels is 1:1, but the ratio between the front and rear wheels may be different from 1:1.
 時刻x60以前は、トルク変動周波数が共振領域に相当する回転数領域(以下、単に「共振領域」とする。)よりもMG回転数Nmgが小さいため、MG回転数Nmgを車速に応じた回転数とし、クラッチ31を完全係合する。時刻x60にて、MG回転数Nmgが共振領域になった場合、クラッチが設けられていない後輪駆動部20側では、車速に応じたMG回転数Nmg_rの制御を継続する。 Before time x60, the MG rotational speed Nmg is smaller than the rotational speed region where the torque fluctuation frequency corresponds to the resonance region (hereinafter simply referred to as the "resonance region"), so the MG rotational speed Nmg is changed to the rotational speed according to the vehicle speed. Then, the clutch 31 is fully engaged. When the MG rotational speed Nmg enters the resonance region at time x60, the rear wheel drive unit 20 side, which is not provided with a clutch, continues to control the MG rotational speed Nmg_r according to the vehicle speed.
 一方、クラッチ31が設けられている前輪駆動部10側では、主機モータ15の回転数Nmg_fが共振領域よりも上側となるように制御する。これにより、主機モータ15の出力トルクは要求される駆動トルクより大きくなるため、前輪駆動部10の駆動トルクTd_fが要求に応じたトルクとなるように、クラッチ31を半クラッチ制御する。 On the other hand, on the front wheel drive unit 10 side where the clutch 31 is provided, the rotation speed Nmg_f of the main engine motor 15 is controlled to be above the resonance region. As a result, the output torque of the main motor 15 becomes larger than the required drive torque, so the clutch 31 is controlled to be a half-clutch so that the drive torque Td_f of the front wheel drive unit 10 becomes a torque in accordance with the request.
 時刻x61にて、車速に応じたMG回転数Nmgが共振領域を上回ると、半クラッチ制御を終了し、クラッチ31を完全係合させる。これにより、共振を回避しつつ、所望の駆動力を駆動系に伝達することができる。 At time x61, when the MG rotational speed Nmg corresponding to the vehicle speed exceeds the resonance region, the half-clutch control is ended and the clutch 31 is fully engaged. Thereby, desired driving force can be transmitted to the drive system while avoiding resonance.
 本実施形態では、制御部50は、主機モータ15のトルク変動周波数が、前輪11と接続されるドライブシャフト12の共振領域である場合、前輪11の回転数を増加させ、前輪11の回転数とドライブシャフト12の回転数との差に基づき、クラッチストロークを制御する。これにより、共振が抑制され、車室内の快適性が向上する。また、本実施形態の車両制御システム1は4輪駆動システムであって、クラッチ31を半クラッチ制御することで前輪駆動部10での共振を回避しつつ、4輪駆動を継続可能である。これにより、車両安定性がより向上する。 In this embodiment, when the torque fluctuation frequency of the main motor 15 is in the resonance region of the drive shaft 12 connected to the front wheels 11, the control unit 50 increases the rotation speed of the front wheels 11, and increases the rotation speed of the front wheels 11. The clutch stroke is controlled based on the difference from the rotation speed of the drive shaft 12. This suppresses resonance and improves comfort in the vehicle interior. Furthermore, the vehicle control system 1 of this embodiment is a four-wheel drive system, and by performing half-clutch control on the clutch 31, it is possible to continue four-wheel drive while avoiding resonance in the front wheel drive unit 10. This further improves vehicle stability.
 実施形態では、クラッチ31が「摩擦クラッチ」に対応し、クラッチ31が前輪駆動部10に設けられているので、前輪11が「駆動輪」、ドライブシャフト12が「駆動軸」、主機モータ15が「駆動源」に対応する。 In the embodiment, the clutch 31 corresponds to a "friction clutch" and the clutch 31 is provided in the front wheel drive unit 10, so the front wheel 11 is a "drive wheel", the drive shaft 12 is a "drive shaft", and the main engine motor 15 is a "drive wheel". Corresponds to "drive source".
   (他の実施形態)
 上記実施形態では、クラッチが前輪駆動部に設けられている。他の実施形態では、クラッチを後輪駆動部に設けてもよいし、前輪駆動部および後輪駆動部に設けてもよい。後輪駆動部にクラッチを設ける場合、後輪21が「駆動輪」、ドライブシャフト22が「駆動軸」、主機モータ25が「駆動源」に対応する。
(Other embodiments)
In the embodiment described above, the clutch is provided in the front wheel drive section. In other embodiments, the clutch may be provided on the rear wheel drive, or may be provided on the front wheel drive and the rear wheel drive. When a clutch is provided in the rear wheel drive unit, the rear wheel 21 corresponds to a "drive wheel," the drive shaft 22 corresponds to a "drive shaft," and the main motor 25 corresponds to a "drive source."
 上記実施形態では、車両駆動システムは、駆動源である主機モータが前輪駆動部および後輪駆動部に設けられる、所謂4輪駆動システムである。他の実施形態では、車両駆動システムは、主機モータが前輪駆動部または後輪駆動部の一方に設けられる、所謂2輪駆動システムであってもよい。 In the above embodiment, the vehicle drive system is a so-called four-wheel drive system in which the main motor serving as the drive source is provided in the front wheel drive section and the rear wheel drive section. In another embodiment, the vehicle drive system may be a so-called two-wheel drive system in which the main motor is provided in one of the front wheel drive section or the rear wheel drive section.
 上記実施形態では、クラッチは駆動軸に設けられている。他の実施形態では、クラッチは、駆動源から駆動輪に至る動力伝達経路上であれば、駆動源と減速機との間、減速機とドライブシャフトとの間等、いずれの箇所に設けてもよい。 In the above embodiment, the clutch is provided on the drive shaft. In other embodiments, the clutch may be provided anywhere on the power transmission path from the drive source to the drive wheels, such as between the drive source and the reducer, between the reducer and the drive shaft, etc. good.
 本開示は、例えば以下の通りとしてもよい。「前記摩擦クラッチの温度を検出する温度センサ(67)をさらに備え、前記制御部は、前記トルク付与制御において、前記摩擦クラッチの温度に基づき、前記駆動源の回転数および前記クラッチストローク速度を制御する項目1~3のいずれか一項に記載の車両制御システム。」、「前記制御部は、前記車両が段差を乗り越えた後、前記摩擦クラッチを解放する項目1~4のいずれか一項に記載の車両制御システム。」である。 For example, the present disclosure may be as follows. "The controller further includes a temperature sensor (67) that detects the temperature of the friction clutch, and in the torque application control, the control unit controls the rotation speed of the drive source and the clutch stroke speed based on the temperature of the friction clutch." The vehicle control system according to any one of items 1 to 3, in which the control unit releases the friction clutch after the vehicle passes over a step. The vehicle control system described in this document.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 The control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied in a computer program. Alternatively, the control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and a memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits. In addition, the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by a computer. As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms within the scope of its purpose.
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described in accordance with embodiments. However, the present disclosure is not limited to such embodiments and structures. This disclosure also encompasses various modifications and variations within the range of equivalents. Various combinations and configurations, as well as other combinations and configurations including only one, more, or fewer elements, are also within the scope and spirit of the present disclosure.

Claims (6)

  1.  車両(99)の駆動を制御する車両制御システムであって、
     駆動源(15)と、
     前記駆動源から駆動輪(11)に至る動力伝達経路に設けられ、動力伝達の断接を切り替え可能な摩擦クラッチ(31)と、
     前記摩擦クラッチを駆動するクラッチアクチュエータ(35)と、
     前記駆動源および前記クラッチアクチュエータの駆動を制御する制御部(50)と、
     を備え、
     前記制御部は、前記車両が段差を乗り越えるとき、前記駆動源の回転数、および、前記摩擦クラッチを完全係合でない状態から完全係合へ切り替えるクラッチストローク速度を制御するトルク付与制御を行う車両制御システム。
    A vehicle control system that controls the drive of a vehicle (99),
    A driving source (15);
    a friction clutch (31) provided in a power transmission path from the drive source to the drive wheels (11) and capable of switching connection/disconnection of power transmission;
    a clutch actuator (35) that drives the friction clutch;
    a control unit (50) that controls driving of the drive source and the clutch actuator;
    Equipped with
    The control unit performs vehicle control that performs torque application control to control the rotation speed of the drive source and the clutch stroke speed for switching the friction clutch from a non-fully engaged state to a fully engaged state when the vehicle overcomes a step. system.
  2.  前記制御部は、段差の乗り越えに要する必要トルクおよび前記駆動源にて出力可能なトルクに基づき、前記トルク付与制御において前記駆動源の回転数を変化させる回転数変化量、および、前記駆動源の目標回転数よりも前記回転数変化量の分、前記駆動源の回転数が大きい状態から前記摩擦クラッチを完全係合させるまでの時間であるクラッチ係合時間を設定する請求項1に記載の車両制御システム。 The control unit is configured to control a rotational speed change amount for changing the rotational speed of the driving source in the torque application control based on the necessary torque required for getting over a step and the torque that can be outputted by the driving source, and the amount of rotational speed change of the driving source in the torque application control. The vehicle according to claim 1, wherein a clutch engagement time is set, which is the time from when the rotational speed of the drive source is higher than the target rotational speed by the amount of change in rotational speed until the friction clutch is fully engaged. control system.
  3.  前記制御部は、段差乗り越えの途中で前記駆動輪がロックされるロック状態となった場合、前記摩擦クラッチを半クラッチ状態に制御する請求項1または2に記載の車両制御システム。 The vehicle control system according to claim 1 or 2, wherein the control unit controls the friction clutch to be in a half-clutch state when the drive wheel is in a locked state while climbing over a step.
  4.  前記摩擦クラッチの温度を検出する温度センサ(67)をさらに備え、
     前記制御部は、前記トルク付与制御において、前記摩擦クラッチの温度に基づき、前記駆動源の回転数および前記クラッチストローク速度を制御する請求項1または2に記載の車両制御システム。
    Further comprising a temperature sensor (67) that detects the temperature of the friction clutch,
    The vehicle control system according to claim 1 or 2, wherein the control unit controls the rotation speed of the drive source and the clutch stroke speed based on the temperature of the friction clutch in the torque application control.
  5.  前記制御部は、前記車両が段差を乗り越えた後、前記摩擦クラッチを解放する請求項1に記載の車両制御システム。 The vehicle control system according to claim 1, wherein the control unit releases the friction clutch after the vehicle passes over a step.
  6.  車両(99)の駆動を制御する車両制御システムであって、
     駆動源(15)と、
     前記駆動源から駆動輪(11)に至る動力伝達経路に設けられ、動力伝達の断接を切り替え可能な摩擦クラッチ(30)と、
     前記摩擦クラッチを駆動するクラッチアクチュエータ(35)と、
     前記駆動源および前記クラッチアクチュエータの駆動を制御する制御部(50)と、
     を備え、
     前記制御部は、前記駆動源のトルク変動周波数が、前記駆動輪と接続される駆動軸(12)の共振領域である場合、前記駆動源の回転数を増加させ、前記駆動源の回転数と前記駆動軸の回転数との差に基づき、クラッチストロークを制御する車両制御システム。
    A vehicle control system that controls the drive of a vehicle (99),
    A driving source (15);
    a friction clutch (30) provided in a power transmission path from the drive source to the drive wheels (11) and capable of switching connection/disconnection of power transmission;
    a clutch actuator (35) that drives the friction clutch;
    a control unit (50) that controls driving of the drive source and the clutch actuator;
    Equipped with
    When the torque fluctuation frequency of the drive source is in a resonance region of a drive shaft (12) connected to the drive wheel, the control unit increases the rotation speed of the drive source, and increases the rotation speed of the drive source. A vehicle control system that controls a clutch stroke based on a difference between the rotation speed of the drive shaft and the rotation speed of the drive shaft.
PCT/JP2023/030540 2022-09-20 2023-08-24 Vehicle control system WO2024062835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022149070 2022-09-20
JP2022-149070 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024062835A1 true WO2024062835A1 (en) 2024-03-28

Family

ID=90454102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030540 WO2024062835A1 (en) 2022-09-20 2023-08-24 Vehicle control system

Country Status (1)

Country Link
WO (1) WO2024062835A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147697A (en) * 1997-11-18 1999-06-02 Toyota Autom Loom Works Ltd Detector for axle swing angle of industrial vehicle, and industrial vehicle
JP2007083993A (en) * 2005-09-26 2007-04-05 Nissan Motor Co Ltd Apparatus for detecting passage of hybrid vehicle over bump at start and apparatus for controlling driving force during passage over bump at start
JP2007255500A (en) * 2006-03-22 2007-10-04 Honda Motor Co Ltd Creep controller
WO2016042894A1 (en) * 2014-09-16 2016-03-24 日産自動車株式会社 Device for controlling electric vehicle
JP2016138618A (en) * 2015-01-28 2016-08-04 日産自動車株式会社 Vehicular self excited vibration control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147697A (en) * 1997-11-18 1999-06-02 Toyota Autom Loom Works Ltd Detector for axle swing angle of industrial vehicle, and industrial vehicle
JP2007083993A (en) * 2005-09-26 2007-04-05 Nissan Motor Co Ltd Apparatus for detecting passage of hybrid vehicle over bump at start and apparatus for controlling driving force during passage over bump at start
JP2007255500A (en) * 2006-03-22 2007-10-04 Honda Motor Co Ltd Creep controller
WO2016042894A1 (en) * 2014-09-16 2016-03-24 日産自動車株式会社 Device for controlling electric vehicle
JP2016138618A (en) * 2015-01-28 2016-08-04 日産自動車株式会社 Vehicular self excited vibration control device

Similar Documents

Publication Publication Date Title
US10391884B2 (en) Drive power control device for electric vehicle
EP2675641B1 (en) Vehicle and method of controlling a vehicle
WO2018047720A1 (en) Vehicular turning control system
KR101394703B1 (en) Method for prevention abnormal vibration of hybrid vehicle
JP7024326B2 (en) Hybrid vehicle
US9216732B2 (en) Hybrid electric vehicle and method of controlling a hybrid electric vehicle
JP6060802B2 (en) Control device for hybrid vehicle
JP2016523750A (en) System and method for controlling a freewheeling powered vehicle
JP4946319B2 (en) Vehicle driving force distribution device
JP2016103460A5 (en)
JP7176360B2 (en) electric vehicle
JP2008068704A (en) Vehicular drive source control apparatus
WO2024062835A1 (en) Vehicle control system
JP5454448B2 (en) Electric vehicle torque control device
JP2004096824A (en) Control method for electric vehicle and motor mounted thereon
JP6447154B2 (en) Vehicle drive device
JP2010168007A (en) Driving control device
JP3374725B2 (en) Electric vehicle motor torque control device
JP2006136173A (en) Motor traction controller of vehicle
JP6614052B2 (en) Automobile
WO2022024373A1 (en) Control method for series hybrid vehicle and series hybrid vehicle
JP7443977B2 (en) Vehicle control device
JP2013169818A (en) Electric vehicle
JP5953783B2 (en) Motor torque control method for electric vehicle
KR102558573B1 (en) Torque control device for hybrid vehicle and torque control method using the same