WO2024062718A1 - Metal honeycomb body, honeycomb unit, catalytic converter, method for manufacturing honeycomb unit, method for manufacturing catalytic converter, and method for manufacturing metal honeycomb body - Google Patents

Metal honeycomb body, honeycomb unit, catalytic converter, method for manufacturing honeycomb unit, method for manufacturing catalytic converter, and method for manufacturing metal honeycomb body Download PDF

Info

Publication number
WO2024062718A1
WO2024062718A1 PCT/JP2023/024616 JP2023024616W WO2024062718A1 WO 2024062718 A1 WO2024062718 A1 WO 2024062718A1 JP 2023024616 W JP2023024616 W JP 2023024616W WO 2024062718 A1 WO2024062718 A1 WO 2024062718A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
honeycomb body
foil
metal honeycomb
plug
Prior art date
Application number
PCT/JP2023/024616
Other languages
French (fr)
Japanese (ja)
Inventor
康秀 後藤
太郎 河野
啓 村松
省吾 紺谷
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022151963A external-priority patent/JP2024046526A/en
Priority claimed from JP2022211244A external-priority patent/JP2024094600A/en
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024062718A1 publication Critical patent/WO2024062718A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a metal honeycomb body having a winding core hollow portion.
  • a metal honeycomb body in which flat foil and corrugated foil made of metal foil are wound around a predetermined axis is known.
  • a winding core having a hollow structure is formed at the center. Since the winding core has low purification performance, it is required to reduce the exhaust gas flowing into the winding core.
  • Patent Document 1 discloses a purification device with improved purification performance by forming a large number of through holes in metal foil used for a metal honeycomb body.
  • Patent Document 2 discloses a metal catalyst carrier using a metal honeycomb body formed by winding a metal flat foil and a corrugated foil, in which a metal plug is arranged in the hollow part of the winding core to inhibit gas flow. The technology for setting this up is disclosed.
  • Patent Document 3 discloses that in a metal honeycomb body using a metal honeycomb body formed by winding a metal flat foil and a corrugated metal foil, starting ends of both metal foils at an axial end of a winding core hollow part are disclosed.
  • a technique has been disclosed in which a restricting part is provided that restricts the flow of exhaust gas in a winding core part with a widened space between the winding core parts.
  • the metal honeycomb body of Patent Document 3 uses a method in which a restricting portion is provided by processing metal foil, so the heat capacity does not increase, but the durability of the restricting portion is insufficient due to insufficient strength.
  • the metal honeycomb body of the present invention provides (1) a metal honeycomb body constructed by winding flat and corrugated metal foils around a predetermined axis; It is characterized in that a plug made of a porous material is disposed at one end or both ends of the hollow part of the winding core.
  • the metal piece is made of the same material as the metal foil, and the brazing material is made of the same material as the brazing material used to join the flat foil and the corrugated foil.
  • the metal honeycomb body according to (3) above characterized by:
  • a honeycomb unit comprising the metal honeycomb body according to any one of (1) to (8) above, and an outer cylinder in which the metal honeycomb body is housed.
  • the predetermined portion includes a portion where the flat foil and the corrugated foil are to be joined, and a portion where the metal honeycomb body and the outer cylinder are to be joined, and in the base material supplying step, , where the total content of the metal pieces contained in the slurry base material is X% by mass and the total content of the brazing material is Y% by mass, X:Y is the ratio of X% by mass and Y% by mass. is included in the range of 3:7 to 9:1.
  • the step of supplying the base material is a step of supplying the slurry base material to both ends of the hollow part of the winding core, and X:Y is within a range of 3:7 to 7:3.
  • a catalyst slurry inflow step of flowing a slurry containing a catalyst from an end in the axial direction of the honeycomb unit; and after the catalyst slurry inflow step.
  • a method for manufacturing a catalytic converter comprising: a catalyst supporting step of drying and firing the honeycomb unit to support a catalyst.
  • a porous plug at one end or both ends of the hollow core, exhaust gas can be prevented from escaping from the hollow core.
  • the steady-state purification performance of the metal honeycomb body can be improved.
  • the plug is made of a porous material, the heat capacity of the metal honeycomb body can be lowered than when a dense plug is used. Thereby, the light-off performance of the metal honeycomb body can be improved.
  • the shape retention of the plug can be improved compared to the method of controlling the inflow of exhaust gas by processing metal foil.
  • FIG. 2 is a plan view of a catalytic converter.
  • FIG. 3 is a cross-sectional view of a hollow part of a winding core in which porous plugs are provided at both ends.
  • FIG. 2 is a developed view of the metal foil and an enlarged view of a part of the metal foil.
  • FIG. 3 is a cross-sectional view of a hollow part of the winding core with a porous plug disposed at one end.
  • the metal honeycomb body of the first embodiment is made of metal foil in which through holes are formed, and porous plugs are provided at both ends of the hollow part of the winding core.
  • the metal honeycomb body of the second embodiment is made of metal foil in which through holes are formed, and a porous plug is disposed at one end of the hollow part of the winding core.
  • the metal honeycomb body of the third embodiment is made of metal foil in which no through holes are formed, and porous plugs are provided at both ends of the hollow part of the winding core.
  • the metal honeycomb body of the fourth embodiment is made of metal foil in which no through holes are formed, and a porous plug is disposed at one end of the hollow part of the winding core.
  • FIG. 1 is a plan view of a catalytic converter according to an embodiment of the present invention, viewed from the axial direction.
  • the porous plug disposed in the hollow part of the winding core is omitted from illustration.
  • the axial direction is also the direction in which exhaust gas flows toward the catalytic converter.
  • FIG. 2 is a cross-sectional view of the hollow part of the winding core of the catalytic converter, showing the arrangement position of the porous plug.
  • FIG. 3 is a developed view of the metal foil that is the base of the flat foil and the corrugated foil, and an enlarged view of a part of the metal foil.
  • the catalytic converter 1 includes a metal honeycomb body 4 and an outer cylinder 5 on which a catalyst is supported. However, the outer cylinder 5 may be omitted.
  • the metal honeycomb body 4 is constituted by a wound body in which a flat foil 2 and a corrugated foil 3 are layered and wound. By overlapping the flat foil 2 and the corrugated foil 3, a gas conduction path for conducting exhaust gas is formed.
  • the catalytic converter 1 of this embodiment can be used as a purification device for purifying vehicle exhaust gas.
  • the flat foil 2 and corrugated foil 3 can be made of a metal foil made of a heat-resistant alloy.
  • the thickness of the metal foil is preferably 20 ⁇ m or more.
  • the thickness of the metal foil is preferably 100 ⁇ m or less, and more preferably 70 ⁇ m or less.
  • a large number of through holes 4a are formed in the metal foil serving as the base of the flat foil 2 and the corrugated foil 3.
  • the exhaust gas flowing into the metal honeycomb body 4 becomes a turbulent flow, and the steady-state purification performance can be improved. Furthermore, since the heat capacity of the metal honeycomb body 4 is reduced, the light-off performance can be improved.
  • a large number of through holes 4a may be formed only in the flat foil 2, or a large number of through holes 4a may be formed only in the corrugated foil 3.
  • the diameter of the through hole 4a is preferably 0.2 mm or more. If the diameter of the through-holes 4a becomes too large, there is a risk that the steady-state purification performance will be lower than that of a metal honeycomb body without through-holes. Therefore, the diameter of the through hole 4a is preferably 8 mm or less. In order to achieve a low heat capacity of the metal honeycomb body 4, the aperture ratio of the through holes 4a is preferably 20% or more. In order to achieve durability of the metal honeycomb body 4, the aperture ratio of the through holes 4a is preferably 60% or less.
  • the predetermined region on the gas inlet side of the metal honeycomb body 4 (hereinafter also referred to as the non-opening part on the gas inlet side) be a non-opening part without the through hole 4a. It is desirable that the non-opening portion on the gas inlet side be 1 mm or more from the end on the gas inlet side. Thereby, the strength of the foil can be maintained and a sufficient bonding area between the porous plug and the foil can be secured. Since the plug of this embodiment is porous, if the entire plug is bonded to a region with an opening, the bonding area may be reduced and the bonding strength of the porous plug may be reduced.
  • a predetermined region on the gas outlet side of the metal honeycomb body 4 (hereinafter also referred to as a non-opening part on the gas outlet side) be a non-opening part without the through hole 4a. It is desirable that the non-opening portion on the gas outlet side be 1 mm or more from the end on the gas inlet side. The reason for this is the same as that for the non-opening portion on the gas inlet side, so the explanation will be omitted. Note that it is desirable that the non-opening portion on the gas outlet side be 10 mm or less from the end on the gas outlet side.
  • the through holes 4a of this embodiment are arranged in a staggered manner with respect to the metal foil.
  • the ratio of "pore area” to "total area” can be defined as "opening ratio”. Since the method of calculating the aperture ratio is common knowledge in the art, the above explanation will be omitted.
  • the shape of the through-hole 4a was circular in this embodiment, it may be other shapes (for example, an ellipse, a polygon, etc.).
  • the arrangement form of the through holes 4a is not limited to a staggered arrangement, but may be arranged in another arrangement form (for example, a lattice arrangement).
  • the lower limit of the plate width of the metal foil is preferably three times the diameter of the winding core hollow part 6, which will be described later.
  • the upper limit of the width of the metal foil is preferably 500 mm.
  • the size of the metal foil can be changed as appropriate depending on the use of the catalytic converter 1.
  • the corrugated foil 3 can be manufactured by corrugating metal foil, for example.
  • various types of heat-resistant stainless steel containing Al in the alloy composition can be used for the metal foil.
  • ferritic stainless steel in other words, Fe-20Cr-5Al alloy
  • Fe-20Cr-5Al alloy consisting of 20% by mass of Cr, 5% by mass of Al, and the balance being Fe and inevitable impurities
  • other stainless steels for example, stainless steel containing 15-25% by mass of Cr and 2-8% by mass of Al
  • stainless steel containing 15-25% by mass of Cr and 2-8% by mass of Al can also be used.
  • a brazing material can be used for joining the flat foil 2 and the corrugated foil 3 and joining the metal honeycomb body 4 and the outer cylinder 5.
  • a Ni-based brazing material with high heat resistance can be used as the brazing material.
  • the brazing material may be foil brazing or powder brazing.
  • the catalyst can be supported on the metal foil by applying a predetermined wash coat liquid to the surface of the metal foil of the metal honeycomb body 4, drying and firing it.
  • a predetermined wash coat liquid to the surface of the metal foil of the metal honeycomb body 4, drying and firing it.
  • the method for applying the wash coat liquid will be described later.
  • a ferritic stainless steel containing about 13% by mass or more and 20% by mass or less of Cr such as SUS436L or SUS430, can be used.
  • the lower limit of the wall thickness of the outer tube 5 is preferably 0.5 mm.
  • the upper limit of the wall thickness of the outer tube 5 is preferably 3 mm.
  • the lower limit of the cell density of the metal honeycomb body 4 is preferably 15.5 cells per square centimeter (in other words, 100 cells per square inch).
  • the upper limit of the cell density of the metal honeycomb body 4 is preferably 93 cells per square centimeter (in other words, 600 cells per square inch).
  • a core hollow part 6 is formed in the center of the metal honeycomb body 4 and extends in a cylindrical shape in the axial direction. Porous plugs 30 are arranged at both ends of the winding core hollow part 6.
  • FIG. 4 schematically shows a cross section of the porous plug 30.
  • a plug slurry liquid (corresponding to a slurry base material) is prepared by mixing a large number of metal pieces 31 and fragmented or powdered brazing material in a liquid with appropriate viscosity, and this plug slurry liquid is wound around the core.
  • the porous plugs 30 can be placed at both ends of the winding core hollow part 6 by injecting the porous plugs from one end and the other end of the hollow part 6 and then drying and firing.
  • the porous plug 30 has a structure in which a large number of metal pieces 31 are joined with brazing material. Since the porous plug 30 has a large number of voids formed therein, the heat capacity is lower than that of a conventional dense plug, and the light-off performance can be improved.
  • voids are formed is as follows. A plug slurry liquid containing metal pieces 31 and brazing material is injected into the winding core hollow part 6, and then the liquid is removed by drying. Further, during subsequent firing, the brazing material melts, and the molten brazing material permeates into the gaps between the metal pieces, thereby forming voids.
  • FIG. 4 illustrates only the porous plug 30 on one end side.
  • a region surrounded by a surface along the upper and lower end surfaces of the porous plug 30 (the surface indicated by the dotted line in FIG. 4) and the inner surface of the winding core hollow part 6 is defined, and the area occupied by the void with respect to the volume of the region is defined.
  • the volume ratio can be referred to as "porosity.”
  • the upper and lower end surfaces of the porous plug 30 define one end and the other end in the longitudinal direction of the winding core hollow part 6 in the solid part of the porous plug 30 excluding voids, and the surface passing through the one end and the other end are defined as The surfaces through which it passes can be referred to as "upper and lower end surfaces.”
  • the porosity of the porous plug 30 can be calculated. Specifically, the arithmetic mean value of the area ratio of voids in each CT cross-sectional image can be set as the porosity of the porous plug 30.
  • the porosity of the porous plug 30 is preferably 7% or more. By increasing the porosity of the porous plug 30 to 7% or more, the heat capacity of the porous plug 30 is sufficiently reduced, and the light-off performance of the metal honeycomb body 4 can be improved.
  • the porosity of the porous plug 30 is preferably 85% or less.
  • the porosity of the porous plug 30 is suppressed to 85% or less, exhaust gas can be effectively prevented from escaping from the winding core hollow part 6.
  • the metal foils (the flat foil 2 and the corrugated foil 3) of this embodiment are formed with a large number of through holes 4a, and the pressure loss of the metal honeycomb body 4 becomes large, so that exhaust gas escapes from the winding core hollow part 6. easy. This tendency becomes particularly noticeable when the flow rate of exhaust gas is high.
  • exhaust gas can be effectively prevented from escaping from the winding core hollow part 6. Thereby, the steady-state purification performance of the metal honeycomb body 4 can be improved.
  • the axial length of the porous plug 30 is preferably D or more. By setting the axial length of the porous plug 30 to be greater than or equal to D, a sufficient bonding area of the porous plug 30 to the winding core hollow part 6 is ensured, so that the porous plug 30 can be removed from the winding core hollow part 6. It can prevent it from falling off.
  • the axial length of the porous plug 30 is preferably 3D or less. By setting the axial length of the porous plug 30 to 3D or less, the heat capacity reduction effect of the porous plug 30 can be more effectively exhibited.
  • brazing material used to join the flat foil 2 and the corrugated foil 3 as the brazing material of the porous plug 30.
  • a Ni-based brazing material used as the bonding material for the flat foil 2 and the corrugated foil 3
  • Ni-based brazing material as the brazing material for the porous plug 30.
  • Ni-based brazing materials include BNi-1 to BNi-7 specified in "JISZ 3265,” BNi-5a, BNi-8, and BNi published by AWS (American Welding Society). -9, BNi-10, BNi-11, BNi-12, BNi-13, etc. can be used.
  • the types of brazing materials may be different as long as the coefficients of thermal expansion of the brazing materials are relatively similar.
  • the same metal as the flat foil 2 and the corrugated foil 3 for the metal piece 31.
  • the heat resistance and thermal expansion properties of the metal piece 31, the flat foil 2, and the corrugated foil 3 can be made equal.
  • the types of metals may be different as long as their coefficients of thermal expansion are relatively similar.
  • the shape of the metal piece 31 is not particularly limited, but may be, for example, a disc shape, a spherical shape, a triangular pyramid shape, a cubic shape, etc.
  • the porous plug 30 may be formed by mixing metal pieces 31 having different shapes.
  • the metal piece 31 is formed into a disk shape, the aspect ratio becomes large and voids are likely to be formed. Therefore, it is preferable to use a disk-shaped metal piece 31.
  • a plug slurry liquid (corresponding to a slurry base material) is prepared by mixing a large number of metal pieces 31 and a piece-like or powdered brazing material in a liquid having an appropriate viscosity.
  • the ratio of X% by mass to Y% by mass, X:Y is 3: It is in the range of 7 to 9:1.
  • X/Y is 3/7 or more and 9/1 or less. If X/Y becomes too small, it becomes impossible to maintain the shape as a plug. In other words, if the amount of brazing material is excessively large, the brazing material will flow down during firing, making it impossible to obtain a plug-shaped fired body.
  • a preferable lower limit of X:Y is 4:6. In other words, the preferable lower limit of X/Y is 4/6. By setting X/Y to 4/6 or more, the porosity of the porous plug 30 increases, and the light-off performance of the catalytic converter 1 improves. That is, since the amount of brazing material filling the voids is reduced, the porosity of the porous plug 30 can be increased.
  • a preferable upper limit of X:Y is 7:3. In other words, the preferable upper limit of X/Y is 7/3. By setting X/Y to 7/3 or less, the brazing strength of adjacent metal pieces 31 is improved, and the shape retention of the plug can be further improved.
  • FIG. 5 is a photograph of a porous plug when X:Y is 5:5, and as is clear from this photograph, the plug shape is maintained.
  • a predetermined amount of the prepared plug slurry liquid is injected into the winding core hollow part 6 from both ends of the winding core hollow part 6 and dried.
  • the metal honeycomb body 4 is fired at a temperature of about 1200° C. in a vacuum atmosphere (corresponding to the "firing process" described later).
  • the adjacent metal pieces 31 are brazed together with the molten brazing material.
  • the porous plug 30 can be held at the planned placement position at both ends of the hollow core 6.
  • the manufacturing process of the honeycomb unit can be divided into a preparation process before the firing process and a firing process.
  • the preparation process includes a process A of disposing a brazing material on the intended joining portions of the flat foil 2 and the corrugated foil 3, a process B of disposing a brazing material on the intended joining portions of the metal honeycomb body 4 and the outer tube 5, and a process C of injecting a plug slurry liquid into the hollow portion 6 of the winding core.
  • the means of disposing the brazing material may be, for example, the application of a powdered brazing material or the temporary fixing with foil brazing.
  • Step A may be performed when the flat foil 2 and the corrugated foil 3 are wound around a predetermined axis, or may be performed after the flat foil 2 and the corrugated foil 3 are wound.
  • step A can be carried out by spraying brazing material from above the metal honeycomb body 4 toward the portion to be joined.
  • Step B may be performed after step A.
  • a strip-shaped solder foil is wrapped around the part of the metal honeycomb body 4 to be joined, and after the metal honeycomb body 4 wrapped with the solder foil is inserted into the outer cylinder 5, the outer cylinder 5 is contracted.
  • Step B can be carried out by pressing it against the metal honeycomb body 4 around which the solder foil is wrapped. Compression means for compressing the outer tube 5 radially inward can be used as the diameter reduction means.
  • step B is not limited to the diameter reducing means.
  • step B may be realized by press-fitting the metal honeycomb body 4 wrapped with solder foil into the outer cylinder 5.
  • step B may be implemented before step A.
  • the foil solder is wrapped around the metal honeycomb body 4 and process B is performed, and after the process B is performed, the solder metal is sprinkled and the metal honeycomb body 4 is manufactured. You may also implement A.
  • step C is not particularly limited. As shown in the Examples described below, it may be carried out after Step A and Step B, or may be carried out before Step A and/or Step B. However, since step C is a step of injecting the plug slurry liquid into the winding core hollow part 6, it needs to be carried out after at least the flat foil 2 and the corrugated foil 3 are wound around a predetermined axis.
  • the metal honeycomb body 4 is made to support a catalyst.
  • a method for supporting the catalyst for example, an immersion method or a suction method can be used.
  • the immersion method is a method in which the metal honeycomb body 4 joined to the outer cylinder 5, that is, the above-mentioned honeycomb unit, is immersed in a wash coat liquid, and a catalyst is applied to the metal foil constituting the metal honeycomb body 4 ("catalyst").
  • slurry inlet step for example, a slurry liquid obtained by stirring ⁇ alumina powder, lanthanum oxide, zirconium oxide, and cerium oxide in an aqueous solution of palladium nitrate can be used.
  • the washcoat liquid containing the catalyst will flow in from the other end side of the hollow portion 6 of the winding core. This means that there is a risk of excess catalyst accumulating inside the hollow portion 6 of the winding core. To solve this problem, it is necessary to drill a hole through the porous plug 30, which increases the number of processing steps.
  • both ends of the core hollow part 6 are closed by the porous plugs 30, when the honeycomb unit is immersed in the washcoat liquid, the washcoat liquid is inside the winding core hollow part 6. It is possible to prevent the inflow of This reduces the amount of catalyst used, thereby reducing costs. Furthermore, the step of forming a through hole in the porous plug 30 can be omitted.
  • a wash coat liquid containing a catalyst is sucked from the axial direction of the metal honeycomb body 4, and the catalyst is applied to the metal foil constituting the metal honeycomb body 4 (corresponding to the "catalyst slurry inflow step").
  • the suction method as well, as explained in the immersion method, by closing both ends of the hollow core 6 with the porous plugs 30, it is possible to prevent the washcoat liquid from flowing into the hollow core 6.
  • the applied catalyst can be supported on the metal foil by drying and firing (corresponding to a "catalyst supporting step").
  • the firing conditions are appropriately set depending on the inner diameter of the cells, the axial length of the metal honeycomb body 4, the type of washcoat liquid, etc.
  • the firing temperature can be set to 400 to 800°C, and the firing time can be set to 1 to 6 hours. can.
  • the catalyst After the catalyst is introduced, the catalyst can be supported by drying and firing.
  • the catalytic converter 1 may be formed by applying a wash coat liquid to the metal honeycomb body 4 by the method described above, drying and firing.
  • the porosity of the porous plug 30 is suppressed to 70% or less, it is possible to effectively prevent the washcoat liquid from flowing into the winding core hollow part 6.
  • one axial end of the metal honeycomb body 4 may be arranged facing the exhaust gas upstream side, or the other axial end may be arranged so as to face the exhaust gas upstream side. It may be arranged toward the exhaust gas upstream side.
  • FIG. 6 is a sectional view of the winding core hollow part in the catalytic converter of this embodiment, and shows the arrangement position of the porous plug.
  • the porous plug 30 of this embodiment is arranged only at one end (preferably the gas inlet side end) of the winding core hollow part 6, and the porous plug 30 is arranged at both ends of the winding core hollow part 6. This is different from the first embodiment. Since the catalytic converter of this embodiment has the same configuration as the catalytic converter of the first embodiment except for the arrangement position of the porous plug 30, only the porous plug 30 will be described.
  • a slurry liquid is prepared by mixing a large number of metal pieces 31 and a brazing material in a liquid with appropriate viscosity, and this slurry liquid is injected into one end of the winding core hollow part 6, and then dried and fired to form the winding core.
  • a porous plug 30 can be disposed at one end of the hollow portion 6.
  • the preferred porosity of the porous plug 30 is the same as in the first embodiment, so detailed explanation will be omitted.
  • the preferred axial length of the porous plug 30 is the same as that in the first embodiment, so a detailed explanation will be omitted.
  • the material of the porous plug 30 and the shape of the metal piece 31 are also the same as in the first embodiment, so detailed explanations will be omitted.
  • the porous plug 30 is not disposed at the other end of the winding core hollow part 6 in this embodiment. Therefore, when applying the washcoat liquid to the metal honeycomb body 4, the washcoat liquid flows from the other end of the winding core hollow part 6. Therefore, a through hole may be formed in the porous plug 30, and the wash coat liquid that has flowed into the winding core hollow portion 6 may be discharged from the through hole. Thereby, it is possible to prevent excess catalyst from accumulating in the winding core hollow part 6.
  • the through hole may be formed by drilling a hole in the heat-treated porous plug 30 using a drill or the like.
  • the through-hole escape hole is also described in paragraph 0023 of Patent Document 2, so a detailed explanation will be omitted. Note that the "through hole 10" in Patent Document 2 corresponds to the "through hole" in this specification.
  • the upper limit of the porosity of the porous plug 30 was set to 70% as a preferable condition in order to prevent the washcoat liquid from flowing into the hollow part 6 of the winding core.
  • the washcoat liquid is allowed to flow into the porous plug 6, and the washcoat liquid is discharged by forming through holes in the porous plug 30. Therefore, the description of the first embodiment is not referred to regarding setting the upper limit of the porosity of the porous plug 30 to 70%.
  • the composition of the plug slurry used to manufacture the porous plug 30 is the same as that in the first embodiment, and therefore a detailed description thereof will be omitted.
  • the method of supporting the catalyst has also been described in the first embodiment, and therefore a detailed description thereof will be omitted.
  • the porous plug 30 may be disposed facing the exhaust gas inlet side, or the porous plug 30 may be disposed facing the exhaust gas outlet side.
  • the catalytic converter of this embodiment is the same as the catalytic converter of the first embodiment in that porous plugs 30 are provided at both ends of the winding core hollow part 6.
  • this embodiment differs from the catalytic converter of the first embodiment in that through-holes 4a are not formed in the flat foil 2 and the corrugated foil 3. Except for such differences, the description of the first embodiment is incorporated into this embodiment.
  • the catalytic converter of this embodiment is the same as the catalytic converter of the second embodiment in that a porous plug 30 is disposed at one end of the winding core hollow part 6.
  • this embodiment differs from the catalytic converter of the second embodiment in that through-holes 4a are not formed in the flat foil 2 and the corrugated foil 3. Except for such differences, the description of the second embodiment is incorporated into this embodiment.
  • the flat foil 2 and corrugated foil 3 do not have through holes 4a formed, so a catalytic converter with low pressure loss can be provided.
  • the first example corresponds to the first embodiment.
  • a plurality of samples with different mixing ratios of metal pieces and brazing metal were prepared, and the shape retention of the plug, light-off performance, catalyst inflow prevention effect, and steady-state purification performance were evaluated.
  • a metal honeycomb body with a hollow core was manufactured by winding corrugated foil and flat foil in a stacked state.
  • ferritic stainless steel containing 20% by mass of Cr, 5% by mass of Al, and the balance Fe and inevitable impurities was used.
  • a metal foil with a large number of through holes was used. The through hole was circular with a diameter of 0.9 mm.
  • the through holes were arranged in a staggered manner.
  • the aperture ratio was 40%. Note that the aperture ratio was calculated by the method described in the embodiment. Further, non-opening portions with a width of 5 mm were provided at the ends of the gas inlet side and the gas outlet side.
  • the diameter, length, cell density, and diameter of the core hollow part of the metal honeycomb body were 33 mm, 60 mm, 300 cpsi, and 5 mm, respectively.
  • BNi-5 (see JISZ 3265) was used as the bonding material (brazing material) for the corrugated foil and flat foil. The process of disposing the bonding material for the corrugated foil and the flat foil was carried out before the plug slurry liquid was injected.
  • the metal honeycomb body After wrapping a foil-like brazing material around the part of the outer peripheral surface of the metal honeycomb body to be joined, the metal honeycomb body was inserted into an outer cylinder made of SUS436L with a thickness of 1.5 mm and a length of 60 mm, and a plug was formed under the following conditions. Injection treatment and firing treatment of slurry liquid were carried out.
  • the metal pieces used for the porous plugs were made of metal with the same composition as the corrugated foil and flat foil.
  • the brazing material was a powdered brazing material with the same composition as the brazing material used to join the corrugated foil and flat foil.
  • the metal pieces were disk-shaped with a diameter of 0.9 mm and a thickness of 0.05 mm.
  • a plug slurry liquid containing the metal pieces and brazing material was poured into both ends of the hollow part of the winding core of the metal honeycomb body, and then dried at 200°C in air. After drying, the honeycomb unit was fired at 1200°C in a vacuum to provide porous plugs with an axial length of 10 mm at both ends of the hollow part of the winding core.
  • the diameter of the hollow part of the winding core is 5 mm
  • the diameter of the porous plugs is also 5 mm.
  • a catalyst was applied to the metal foil by a dipping method using a slurry liquid prepared by stirring gamma alumina powder, lanthanum oxide, zirconium oxide, and cerium oxide in an aqueous solution of palladium nitrate. The catalyst was then dried at 200°C and then fired in air at 500°C for 1 hour to produce a catalytic converter.
  • the mixing ratio (X:Y) of the metal piece and brazing material is 5:5 in Example 1, 3:7 in Example 2, 4:6 in Example 3, 7:3 in Example 4, and 7:3 in Example 5. was 9:1, Comparative Example 1 was 1:9, and Comparative Example 2 was 9.5:0.5.
  • Three samples were prepared for each of Examples 1 to 5 and Comparative Example 1, and the porosity was measured. However, in Comparative Example 1, the porosity was not measured because the blending ratio of metal pieces was too low and none of the samples took the form of a plug. As described in the embodiment, the porosity is the arithmetic mean value of the porosity obtained by acquiring 10 X-ray CT images of the porous plug, binarizing each X-ray CT image, and performing image analysis. And so. In this example, only the porosity of the porous plug disposed at one end was measured.
  • Comparative Example 3 a dense plug (hereinafter also referred to as an N plug) was provided in place of the porous plug.
  • the same material as the metal piece of the porous plug was used for the N plug.
  • the axial length of the N plug was 10 mm, similar to the porous plug of the example.
  • neither the porous plug nor the N plug was provided.
  • Comparative Example 5 a conical jig was pushed into the overlapping part of the flat foil and the corrugated foil extending into the hollow part of the winding core to expand it, thereby providing a regulating part for regulating the inflow of exhaust gas (that is, the regulation part that regulates the inflow of exhaust gas was provided). Center shape processing in Reference 3).
  • the shape retention of the plug was evaluated by pushing in the porous plug 30 disposed on one end side with a rod from the upper end surface and by the change in the shape of the plug after unloading.
  • the size of the rod was ⁇ 4 mm
  • the pushing distance of the rod was 20 mm
  • the pushing speed of the rod was 1.0 mm/sec.
  • the porous plug will not be deformed and can maintain its original shape even when a load is applied.
  • porous plugs with weak connections between metal pieces change their shape under load. The shape change affects the sealing range of the porous plug. If the bond between the metal pieces is weak, the porous plug will fall apart when using the metal honeycomb body. If it falls apart, the plug loses its original function of suppressing the inflow of gas into the hollow part of the winding core (in other words, preventing gas from escaping).
  • the shape after the load test is the same as the original shape, it is evaluated by AAA as having very good shape retention, and if the axial reduction is within 1 mm, shape retention is evaluated.
  • the properties are evaluated as AA and the reduction exceeds 1 mm, but if the metal pieces can be evaluated to be bonded to each other and the sealed area is sealed, the shape retention is somewhat good. If the shape change was large and it was determined that the sealed portion could not be properly sealed, the shape retention was judged to be poor and the shape was evaluated as B.
  • the metal honeycomb body was cut in the axial direction at the position of the hollow part of the winding core, and the degree of catalyst infiltration was visually confirmed to evaluate the catalyst inflow prevention effect. If the catalyst had not infiltrated into the porous plugs, the catalyst inflow prevention effect was deemed very good and rated as AAA. If the catalyst infiltration into the porous plugs stopped midway, the inflow prevention effect was deemed good and rated as AA. If catalyst infiltration into the hollow part of the winding core was confirmed in only some of the tested samples, the catalyst inflow prevention effect was deemed somewhat good and rated as A. If catalyst infiltration into the hollow part of the winding core was confirmed in all of the tested samples, the catalyst inflow prevention effect was deemed poor and rated as B.
  • the light-off performance was measured by flowing a simulated gas through a metal honeycomb body under the condition of SV (space velocity): 100,000h -1 , gradually increasing the gas temperature from room temperature, and calculating the HC conversion rate (%) at each temperature. was measured and evaluated by the time ( ⁇ 50) when the conversion rate reached 50% from the conversion rate-temperature curve.
  • ⁇ 50 was 9 seconds or less, it was evaluated as AAA, when it was 11 seconds or less, it was evaluated as AA, when it was 13 seconds or less, it was evaluated as A, and when it exceeded 13 seconds, it was evaluated as B.
  • the steady purification performance is determined as AA when T80 is 230°C or less, A when it is 240°C or less, and B when it is over 240°C. evaluated.
  • the simulated gases include HC (propane, C 3 H 6 ): 550 ppm (1650 ppm C), NO: 500 ppm, CO: 0.5%, O 2 : 1.5%, H 2 O: 10%, the balance being N 2 A simulated gas (simulated diesel exhaust gas) was used.
  • Examples 1 to 5 the shape retention of the plug was improved compared to Comparative Example 5 in which center shape processing was adopted as a regulating means.
  • Comparative Example 2 the plug shape retention was evaluated as B because the amount of brazing material was too small.
  • X:Y to 7:3 or less in other words, by setting X/Y to 7/3 or less
  • a desired bonding strength can be obtained and the shape retention of the plug can be improved.
  • Examples 1 to 5 had better light-off performance than Comparative Example 3, which employed an N plug. It was found that by setting X:Y to 4:6 or more, in other words, by setting X/Y to 4/6 or more, the porosity of the porous plug 30 was increased and the light-off performance was further improved.
  • the second example corresponds to the second embodiment.
  • the metal honeycomb body was the same as in the first example.
  • the metal piece and brazing material were the same as in the first example.
  • a porous plug with an axial length of 10 mm was disposed only on one end side (gas inlet side) of the hollow part of the winding core, and as in the first embodiment, plug shape retention, light-off performance, and constant purification performance were achieved. was evaluated.
  • the evaluation method was the same as in the first example. Note that the effect of preventing the inflow of the catalyst was not evaluated.
  • the conditions other than the porous plug were the same as in the first example. However, in Comparative Example 7, metal foil without through holes was used and the hollow part of the winding core was not sealed.
  • the mixing ratio (X:Y) of the metal piece and brazing material was 5:5 in Example 6, 3:7 in Example 7, 4:6 in Example 8, 7:3 in Example 9, and 7:3 in Example 10. The ratio was 9:1.
  • Comparative Example 6 the N plug of Comparative Example 3 was disposed only on one end side (gas inlet side) of the hollow part of the winding core.
  • Example 6 the shape retention of the plug was improved compared to Comparative Example 5 (see Table 1), which employed central shape processing as the restricting means. It was also found that a desired bonding strength was obtained and the shape retention of the plug was improved by setting X:Y to 7:3 or less, in other words, X/Y to 7/3 or less.
  • the light-off performance was improved compared to Comparative Example 6, which employed an N plug. It was found that by setting X:Y to 4:6 or more, in other words, X/Y to 4/6 or more, the porosity of the porous plug 30 was increased and the light-off performance was further improved.
  • Examples 6 to 10 were superior in steady-state purification performance to Comparative Example 4 (see Table 1), and the original purpose of the plug (to regulate the inflow of exhaust gas into the hollow part of the winding core and improve purification performance) was also achieved. Furthermore, Examples 6 to 10 had better steady-state purification performance than Comparative Example 7 (no through-holes, no sealing), and the light-off performance was equal to or better. Therefore, it was found that the problem of concern caused by forming a large number of through-holes in the metal foil (decrease in steady-state purification performance due to gas concentration in the hollow part of the winding core) can be solved by using porous plugs. It was also found that the problem of concern caused by providing plugs in the hollow part of the winding core (decrease in light-off performance) can be solved by making the plugs porous.
  • the present inventors disposed the porous plug of Example 8 in the hollow part of the shaft core of a metal honeycomb body in which the diameter of the through-hole of the metal foil was 8 mm, and while changing the aperture ratio, the steady-state purification performance was improved. A separate test was also conducted to investigate. Regardless of whether the aperture ratio was 20%, 30%, 40%, 50%, or 60%, the steady-state purification performance was evaluated as A or AA.
  • the porous plug of Example 8 was arranged in the hollow part of the shaft core of a metal honeycomb body with an open area ratio of 20%, and a separate test was conducted to examine the steady-state purification performance while changing the diameter of the through hole. . Regardless of whether the diameter of the through hole was 0.5 mm, 2 mm, or 4 mm, the steady-state purification performance was evaluated as AA.
  • the third example corresponds to the third embodiment.
  • a metal honeycomb body with no through holes formed in the metal foil was used.
  • the other configurations of the metal honeycomb body were the same as in the first example.
  • the metal piece and brazing material were the same as in the first example.
  • the mixing ratio (X:Y) of the metal pieces and brazing material is 5:5 in Example 11, 3:7 in Example 12, 4:6 in Example 13, 7:3 in Example 14, and 7:3 in Example 15. was 9:1, Comparative Example 8 was 1:9, and Comparative Example 9 was 9.5:0.5.
  • Three samples were prepared for each of Examples 11 to 15 and Comparative Example 8, and the porosity was measured. However, in Comparative Example 8, the proportion of metal pieces was too low and none of the samples took the form of a plug, so the porosity was not measured. The porosity was measured in the same manner as in the first example.
  • Comparative Example 10 an N plug was provided in place of the porous plug.
  • the same material as the metal piece of the porous plug was used for the N plug.
  • the axial length of the N plug was 10 mm, similar to the porous plug of the example.
  • Comparative Example 11 neither the porous plug nor the N plug was provided.
  • Comparative Example 12 the regulating portion (center shape processing) of Comparative Example 5 was provided.
  • Porous plugs with an axial length of 10 mm were placed at both ends of the hollow part of the winding core, and plug shape retention, light-off performance, catalyst inflow prevention effect, and steady purification performance were evaluated. Additionally, pressure loss was also evaluated as reference information.
  • the light-off performance was measured by flowing a simulated gas through a metal honeycomb body under the condition of SV (space velocity): 100,000h -1 , gradually increasing the gas temperature from room temperature, and calculating the HC conversion rate (%) at each temperature. was measured and evaluated by the time ( ⁇ 50) when the conversion rate reached 50% from the conversion rate-temperature curve.
  • ⁇ 50 was 12 seconds or less, it was evaluated as AAA, when it was 14 seconds or less, it was evaluated as AA, when it was 16 seconds or less, it was evaluated as A, and when it exceeded 16 seconds, it was evaluated as B.
  • the steady purification performance is determined as AA when T80 is 240°C or less, A when it is 250°C or less, and B when it is over 250°C. evaluated.
  • the simulated gases include HC (propane, C 3 H 6 ): 550 ppm (1650 ppm C), NO: 500 ppm, CO: 0.5%, O 2 : 1.5%, H 2 O: 10%, the balance being N 2 A simulated gas (simulated diesel exhaust gas) was used.
  • the pressure loss was evaluated by flowing dry N 2 gas at 25° C. into the metal honeycomb body at a flow rate of 0.12 Nm 3 /min and measuring the pressure difference before and after the metal honeycomb body. Compared to Comparative Example 11 (no sealing), if the difference was within ⁇ 1%, the pressure loss was considered to be low and evaluated as A; if the difference exceeded 1%, the pressure loss was considered to be large and evaluated as B.
  • Examples 11 to 15 showed improved plug shape retention compared to Comparative Example 12, which employed central shape processing as the regulating means. Comparative Example 9 was rated a B for plug shape retention because the amount of brazing material was insufficient. It was also found that the desired joint strength was obtained and the plug shape retention was improved by setting X:Y to 7:3 or less, in other words, X/Y to 7/3 or less. Examples 11 to 15 showed improved light-off performance compared to Comparative Example 10, which employed an N plug. It was found that by setting X:Y to 4:6 or more, in other words, X/Y to 4/6 or more, the porosity of the porous plug 30 was increased, and the light-off performance was further improved.
  • Examples 11 to 15 were superior to Comparative Example 11 in steady-state purification performance and had pressure loss equivalent to that of Comparative Example 11, and thus were able to achieve the original purpose of the plug (to regulate the inflow of exhaust gas into the hollow part of the winding core and improve the purification performance without increasing the pressure loss).
  • the fourth example corresponds to the fourth embodiment.
  • a metal honeycomb body with no through holes formed in the metal foil was used.
  • the other configurations of the metal honeycomb body were the same as in the first example.
  • the metal piece and brazing material were the same as in the first example.
  • a porous plug having an axial length of 10 mm was disposed at the gas inlet end of the hollow part of the winding core, and plug shape retention, light-off performance, steady purification performance, and pressure loss were evaluated. However, in Example 21, a porous plug was provided at the gas outlet end.
  • the compounding ratio (X:Y) of the metal pieces and brazing material was 5:5 for Example 16, 3:7 for Example 17, 4:6 for Example 18, 7:3 for Examples 19 and 21, 9:1 for Example 20, 1:9 for Comparative Example 13, and 9.5:0.5 for Comparative Example 14.
  • X:Y The compounding ratio of the metal pieces and brazing material was 5:5 for Example 16, 3:7 for Example 17, 4:6 for Example 18, 7:3 for Examples 19 and 21, 9:1 for Example 20, 1:9 for Comparative Example 13, and 9.5:0.5 for Comparative Example 14.
  • three samples were prepared and the porosity was measured.
  • the compounding ratio of the metal pieces was too low and none of the samples were in a plug shape, so the porosity was not measured.
  • the porosity was measured in the same manner as in the first example.
  • Comparative Example 15 an N plug was provided in place of the porous plug.
  • the same material as the metal piece of the porous plug was used for the N plug.
  • the axial length of the N plug was 10 mm, similar to the porous plug of the example.
  • Comparative Example 16 neither the porous plug nor the N plug was provided.
  • Comparative Example 17 the regulating portion (center shape processing) of Comparative Example 5 was provided.
  • the shape retention of the plug was evaluated using the same method as in the first example.
  • Light-off performance, steady-state purification performance, and pressure loss were evaluated using the same methods as in the third example.
  • Examples 16 to 20 the shape retention of the plug was improved compared to Comparative Example 17 in which center shape processing was adopted as a regulating means.
  • Comparative Example 14 the plug shape retention was evaluated as B because the amount of brazing material was too small. Furthermore, it has been found that by setting X:Y to 7:3 or less, in other words, by setting X/Y to 7/3 or less, a desired bonding strength can be obtained and the shape retention of the plug can be improved.
  • Examples 16 to 20 had better light-off performance than Comparative Example 15, which adopted an N plug. In Example 21, the obtained performance was the same as in Example 19.
  • Examples 16 to 20 have better steady-state purification performance than Comparative Example 16, and the pressure loss is the same as Comparative Example 16. (improving purification performance without increasing loss) was also maintained.
  • the metal piece 31 and the brazing material are used as raw materials for manufacturing the porous plug 30, but the present invention is not limited to this, and an inorganic adhesive may be used instead of the brazing material.
  • a porous plug 30 in which adjacent metal pieces 31 are bonded with an inorganic adhesive is prepared in advance, and this porous plug 30 is arranged at one end or both ends of the winding core hollow part 6, and the inorganic adhesive It is sufficient to adhere it to the inner surface of the hollow part 6 of the winding core.
  • the inorganic adhesive for example, an inorganic adhesive containing alumina as a main component (for example, Aron Ceramic D manufactured by Toagosei Co., Ltd.) can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

[Problem] The present invention addresses the problem of providing a plug for a winding-core hollow section, the plug posing no hindrance to light-off performance, regular purification performance, or plug shape maintenance characteristics. [Solution] Provided is a metal honeycomb body configured by winding a flat foil and an undulating foil about a prescribed axis, the flat foil and undulating foil being composed of metal foils, wherein the metal honeycomb body is characterized in that numerous through-holes are formed in the flat foil and/or the undulating foil, and a plug composed of a porous body is installed at one or both ends of a winding-core hollow section in the metal honeycomb body.

Description

メタルハニカム体、ハニカムユニット、触媒コンバータ、ハニカムユニットの製造方法、触媒コンバータの製造方法及びメタルハニカム体の製造方法Metal honeycomb body, honeycomb unit, catalytic converter, method for manufacturing a honeycomb unit, method for manufacturing a catalytic converter, and method for manufacturing a metal honeycomb body
 本発明は、巻き芯中空部を有するメタルハニカム体などに関するものである。 The present invention relates to a metal honeycomb body having a winding core hollow portion.
 車両の排ガスを浄化する浄化装置として、金属箔からなる平箔及び波箔を所定軸周りに巻き回したメタルハニカム体が知られており、平箔及び波箔を巻き回す際にメタルハニカム体の中心に中空構造の巻き芯部が形成される。巻き芯部は、浄化性能が低いことから、巻き芯部に流入する排ガスを低減することが求められている。 As a purifying device for purifying vehicle exhaust gas, a metal honeycomb body in which flat foil and corrugated foil made of metal foil are wound around a predetermined axis is known. A winding core having a hollow structure is formed at the center. Since the winding core has low purification performance, it is required to reduce the exhaust gas flowing into the winding core.
 特許文献1には、メタルハニカム体に用いられる金属箔に多数の貫通孔を形成することにより、浄化性能を向上させた浄化装置が開示されている。 Patent Document 1 discloses a purification device with improved purification performance by forming a large number of through holes in metal foil used for a metal honeycomb body.
 特許文献2には、金属製の平箔と波箔とを巻き回して形成してなるメタルハニカム体を用いたメタル触媒担体において、巻き芯中空部にガスの流通を阻害する金属製プラグを配設する技術が開示されている。 Patent Document 2 discloses a metal catalyst carrier using a metal honeycomb body formed by winding a metal flat foil and a corrugated foil, in which a metal plug is arranged in the hollow part of the winding core to inhibit gas flow. The technology for setting this up is disclosed.
 特許文献3には、金属製の平箔と波箔とを巻き回して形成してなるメタルハニカム体を用いたメタルハニカム体において、巻き芯中空部の軸方向端部における両金属箔の始端部間を拡開させた、巻き芯部における排気の流通を規制する規制部を配設する技術が開示されている。 Patent Document 3 discloses that in a metal honeycomb body using a metal honeycomb body formed by winding a metal flat foil and a corrugated metal foil, starting ends of both metal foils at an axial end of a winding core hollow part are disclosed. A technique has been disclosed in which a restricting part is provided that restricts the flow of exhaust gas in a winding core part with a widened space between the winding core parts.
特開2005―535454号公報JP 2005-535454 A 特開2006-281118号公報JP2006-281118A 特開2010-201413号公報JP 2010-201413 A
 特許文献1に記載された金属箔には、多数の貫通孔が形成されているため、ガス導通路の圧損が大きくなる。ガス導通路の圧損が大きくなると、巻き芯中空部から排ガスが抜けやすくなり、多数の貫通孔を形成することによる効果(定常浄化性能の向上)を十分に享受することができない。 Since a large number of through holes are formed in the metal foil described in Patent Document 1, the pressure loss in the gas conduction path becomes large. When the pressure loss of the gas passage becomes large, exhaust gas tends to escape from the hollow part of the winding core, and the effect (improvement of steady-state purification performance) of forming a large number of through holes cannot be fully enjoyed.
 特許文献2のメタルハニカム体では、緻密な金属製プラグが使用されているため、メタルハニカム体の熱容量が増大し、ライトオフ性能(触媒の浄化性能が発現する温度特性)が悪化する。箔に貫通孔が形成されている場合、孔面積分だけ箔材面積が小さくなり、同一体積の孔なし箔担体と比べて熱容量が抑えられライトオフ性能が向上するが、中心部に緻密材の封止プラグを挿入すると封止プラグの分だけ熱容量が増加し、箔に孔を開けたことによる熱容量低減効果が損なわれる。プラグの長さを短くすれば、熱容量を低減できるが、巻き芯中空部に対するプラグの接合長さが不足するため、プラグの耐久性を維持することができない。 In the metal honeycomb body of Patent Document 2, since a dense metal plug is used, the heat capacity of the metal honeycomb body increases, and the light-off performance (temperature characteristics at which the purification performance of the catalyst is expressed) deteriorates. When through-holes are formed in the foil, the area of the foil material becomes smaller by the area of the holes, which suppresses the heat capacity and improves the light-off performance compared to a foil carrier without holes of the same volume. When a sealing plug is inserted, the heat capacity increases by the amount of the sealing plug, and the heat capacity reduction effect obtained by making holes in the foil is lost. Although the heat capacity can be reduced by shortening the length of the plug, the durability of the plug cannot be maintained because the connection length of the plug to the hollow part of the winding core is insufficient.
 特許文献3のメタルハニカム体は、金属箔を加工して規制部を設ける方法であるため、熱容量は増大しないが、強度不足により規制部の耐久性が十分でない。 The metal honeycomb body of Patent Document 3 uses a method in which a restricting portion is provided by processing metal foil, so the heat capacity does not increase, but the durability of the restricting portion is insufficient due to insufficient strength.
 上記課題を解決するために、本発明のメタルハニカム体は、(1)金属箔からなる平箔及び波箔を所定軸周りに巻き回すことにより構成されたメタルハニカム体において、該メタルハニカム体の巻き芯中空部における一端又は両端には、多孔質体からなるプラグが配設されていることを特徴とする。 In order to solve the above-mentioned problems, the metal honeycomb body of the present invention provides (1) a metal honeycomb body constructed by winding flat and corrugated metal foils around a predetermined axis; It is characterized in that a plug made of a porous material is disposed at one end or both ends of the hollow part of the winding core.
 (2)前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする上記(1)に記載のメタルハニカム体。 (2) The metal honeycomb body according to (1) above, wherein the flat foil and/or the corrugated foil has a large number of through holes formed therein.
 (3)前記多孔質体は、多数の金属片をロウ材で接合した構造を呈していることを特徴とする上記(1)又は(2)に記載のメタルハニカム体。 (3) The metal honeycomb body according to (1) or (2) above, wherein the porous body has a structure in which a large number of metal pieces are joined with a brazing material.
 (4)前記金属片は、前記金属箔と同一の素材で構成されており、前記ロウ材は、前記平箔及び前記波箔の接合に用いられるロウ材と同一の素材で構成されていることを特徴とする上記(3)に記載のメタルハニカム体。 (4) The metal piece is made of the same material as the metal foil, and the brazing material is made of the same material as the brazing material used to join the flat foil and the corrugated foil. The metal honeycomb body according to (3) above, characterized by:
 (5)前記多孔質体は、多数の金属片と、隣接する金属片を互いに接着する無機接着剤とから構成されることを特徴とする上記(1)又は(2)に記載のメタルハニカム体。 (5) The metal honeycomb body according to (1) or (2) above, wherein the porous body is composed of a large number of metal pieces and an inorganic adhesive that adheres adjacent metal pieces to each other. .
 (6)前記多孔質体の空隙率は、7%以上85%以下であることを特徴とする上記(1)乃至(5)のうちいずれか一つに記載のメタルハニカム体。 (6) The metal honeycomb body according to any one of (1) to (5) above, wherein the porous body has a porosity of 7% or more and 85% or less.
 (7)前記多孔質体は、該メタルハニカム体の巻き芯中空部における両端に配設されており、前記多孔質体の空隙率は、70%以下であることを特徴とする上記(1)乃至(6)のうちいずれか一つに記載のメタルハニカム体。 (7) The above-mentioned (1), wherein the porous body is disposed at both ends of the core hollow part of the metal honeycomb body, and the porous body has a porosity of 70% or less. The metal honeycomb body according to any one of (6) to (6).
 (8)前記多孔質体の軸方向における長さは、前記巻き芯中空部の直径の1倍以上3倍以下であることを特徴とする上記(1)乃至(7)のうちいずれか一つに記載のメタルハニカム体。 (8) Any one of (1) to (7) above, characterized in that the length in the axial direction of the porous body is 1 to 3 times the diameter of the hollow part of the winding core. Metal honeycomb body described in.
 (9)上記(1)乃至(8)のうちいずれか一つに記載のメタルハニカム体と、前記メタルハニカム体が収容される外筒と、を有することを特徴とするハニカムユニット。 (9) A honeycomb unit comprising the metal honeycomb body according to any one of (1) to (8) above, and an outer cylinder in which the metal honeycomb body is housed.
 (10)上記(1)乃至(8)のうちいずれか一つに記載のメタルハニカム体に触媒が担持された触媒コンバータ。 (10) A catalytic converter in which a catalyst is supported on the metal honeycomb body according to any one of (1) to (8) above.
 (11)上記(9)に記載のハニカムユニットにおけるメタルハニカム体に触媒が担持された触媒コンバータ。 (11) A catalytic converter in which a catalyst is supported on a metal honeycomb body in the honeycomb unit according to (9) above.
 (12)上記(1)に記載のメタルハニカム体及び外筒を含むハニカムユニットの製造方法であって、ロウ材及び多数の金属片を含むスラリー状母材を、前記巻き芯中空部の端部から供給する母材供給ステップと、前記母材供給ステップの後に、前記ハニカムユニットを焼成する焼成ステップと、を有し、前記焼成ステップに供される前記ハニカムユニットの所定の部位には、予めロウ材が配設されており、前記所定の部位には、前記平箔及び波箔の接合予定部と、前記メタルハニカム体及び前記外筒の接合予定部とが含まれ、前記母材供給ステップにおいて、前記スラリー状母材に含まれる前記金属片の総含有量をX質量%、前記ロウ材の総含有量をY質量%としたとき、X質量%とY質量%の比であるX:Yは、3:7から9:1の範囲に含まれることを特徴とするハニカムユニットの製造方法。 (12) A method for manufacturing a honeycomb unit including a metal honeycomb body and an outer cylinder according to (1) above, in which a slurry-like base material containing a brazing material and a large number of metal pieces is applied to an end of the hollow part of the winding core. and a firing step of firing the honeycomb unit after the base material supplying step, and a predetermined portion of the honeycomb unit to be subjected to the firing step is filled with wax in advance. The predetermined portion includes a portion where the flat foil and the corrugated foil are to be joined, and a portion where the metal honeycomb body and the outer cylinder are to be joined, and in the base material supplying step, , where the total content of the metal pieces contained in the slurry base material is X% by mass and the total content of the brazing material is Y% by mass, X:Y is the ratio of X% by mass and Y% by mass. is included in the range of 3:7 to 9:1.
 (13)前記母材供給ステップは、前記巻き芯中空部における両端に前記スラリー状母材を供給するステップであり、X:Yは、3:7から7:3の範囲に含まれることを特徴とする上記(12)に記載のハニカムユニットの製造方法。 (13) The step of supplying the base material is a step of supplying the slurry base material to both ends of the hollow part of the winding core, and X:Y is within a range of 3:7 to 7:3. The method for manufacturing a honeycomb unit according to (12) above.
 (14)上記(12)又は(13)に記載の前記焼成ステップの後に、前記ハニカムユニットの軸方向における端部から触媒を含むスラリーを流入させる触媒スラリー流入ステップと、前記触媒スラリー流入ステップの後に、前記ハニカムユニットを乾燥及び焼成して触媒を担持させる触媒担持ステップと、を実施することを特徴とする触媒コンバータの製造方法。 (14) After the firing step described in (12) or (13) above, a catalyst slurry inflow step of flowing a slurry containing a catalyst from an end in the axial direction of the honeycomb unit; and after the catalyst slurry inflow step. A method for manufacturing a catalytic converter, comprising: a catalyst supporting step of drying and firing the honeycomb unit to support a catalyst.
 (15)前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする上記(12)又は(13)に記載のハニカムユニットの製造方法。 (15) The method for manufacturing a honeycomb unit according to (12) or (13) above, wherein a large number of through holes are formed in the flat foil and/or the corrugated foil.
 (16)前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする上記(14)に記載の触媒コンバータの製造方法。 (16) The method for manufacturing a catalytic converter according to (14) above, wherein the flat foil and/or the corrugated foil has a large number of through holes formed therein.
 (17)上記(1)に記載のメタルハニカム体の製造方法であって、ロウ材及び多数の金属片を含むスラリー状母材を、前記巻き芯中空部の端部から供給する母材供給ステップと、前記母材供給ステップの後に、前記メタルハニカム体を焼成する焼成ステップと、を有し、前記母材供給ステップにおいて、前記スラリー状母材に含まれる前記金属片の総含有量をX質量%、前記ロウ材の総含有量をY質量%としたとき、X質量%とY質量%の比であるX:Yは、3:7から9:1の範囲に含まれることを特徴とするメタルハニカム体の製造方法。 (17) The method for manufacturing a metal honeycomb body according to (1) above, in which a base material supplying step of supplying a slurry-like base material containing a brazing material and a large number of metal pieces from an end of the winding core hollow part. and, after the base material supply step, a firing step of firing the metal honeycomb body, and in the base material supply step, the total content of the metal pieces contained in the slurry base material is determined by X mass %, and when the total content of the brazing material is Y mass %, the ratio of X mass % to Y mass %, X:Y, is in the range of 3:7 to 9:1. Method for manufacturing metal honeycomb bodies.
 (18)上記(17)に記載の前記焼成ステップの後に、前記メタルハニカム体の軸方向における端部から触媒を含むスラリーを流入させる触媒スラリー流入ステップと、前記触媒スラリー流入ステップの後に、前記メタルハニカム体を乾燥及び焼成して触媒を担持させる触媒担持ステップと、を実施することを特徴とする触媒コンバータの製造方法。 (18) After the firing step described in (17) above, a catalyst slurry inflow step of flowing a slurry containing a catalyst from the axial end of the metal honeycomb body; and after the catalyst slurry inflow step, the metal A method for manufacturing a catalytic converter, comprising: carrying out a catalyst supporting step of drying and firing a honeycomb body to support a catalyst.
 (19)前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする上記(18)に記載の触媒コンバータの製造方法。 (19) The method for manufacturing a catalytic converter according to (18) above, wherein the flat foil and/or the corrugated foil has a large number of through holes formed therein.
 本発明によれば、巻き芯中空部の一端又は両端に多孔質プラグを配設することにより、巻き芯中空部から排ガスが抜けることを抑制できる。これにより、メタルハニカム体の定常浄化性能を高めることができる。
 また、プラグが多孔質体によって構成されているため、緻密なプラグを使用した場合よりも、メタルハニカム体の熱容量を下げることができる。これにより、メタルハニカム体のライトオフ性能を高めることができる。
 さらに、金属箔を加工して排ガスの流入規制を行う方法よりも、プラグの形態維持性を高めることができる。
According to the present invention, by disposing a porous plug at one end or both ends of the hollow core, exhaust gas can be prevented from escaping from the hollow core. Thereby, the steady-state purification performance of the metal honeycomb body can be improved.
Furthermore, since the plug is made of a porous material, the heat capacity of the metal honeycomb body can be lowered than when a dense plug is used. Thereby, the light-off performance of the metal honeycomb body can be improved.
Furthermore, the shape retention of the plug can be improved compared to the method of controlling the inflow of exhaust gas by processing metal foil.
触媒コンバータの平面図である。FIG. 2 is a plan view of a catalytic converter. 両端に多孔質プラグが配設された巻き芯中空部の断面図である。FIG. 3 is a cross-sectional view of a hollow part of a winding core in which porous plugs are provided at both ends. 金属箔の展開図及び金属箔の一部における拡大図である。FIG. 2 is a developed view of the metal foil and an enlarged view of a part of the metal foil. 多孔質プラグの断面図である。FIG. 3 is a cross-sectional view of a porous plug. 巻き芯中空部内の多孔質プラグの断面写真である(X:Y=5:5)。It is a cross-sectional photograph of the porous plug inside the hollow part of the winding core (X:Y=5:5). 一端に多孔質プラグが配設された巻き芯中空部の断面図である。FIG. 3 is a cross-sectional view of a hollow part of the winding core with a porous plug disposed at one end.
 以下、本発明の実施形態について説明する。
 第1実施形態のメタルハニカム体は、貫通孔が形成された金属箔によって構成されており、巻き芯中空部の両端に多孔質プラグが配設されている。
 第2実施形態のメタルハニカム体は、貫通孔が形成された金属箔によって構成されており、巻き芯中空部の一端に多孔質プラグが配設されている。
 第3実施形態のメタルハニカム体は、貫通孔が形成されていない金属箔によって構成されており、巻き芯中空部の両端に多孔質プラグが配設されている。
 第4実施形態のメタルハニカム体は、貫通孔が形成されていない金属箔によって構成されており、巻き芯中空部の一端に多孔質プラグが配設されている。
 以下、各実施形態について説明する。
Embodiments of the present invention will be described below.
The metal honeycomb body of the first embodiment is made of metal foil in which through holes are formed, and porous plugs are provided at both ends of the hollow part of the winding core.
The metal honeycomb body of the second embodiment is made of metal foil in which through holes are formed, and a porous plug is disposed at one end of the hollow part of the winding core.
The metal honeycomb body of the third embodiment is made of metal foil in which no through holes are formed, and porous plugs are provided at both ends of the hollow part of the winding core.
The metal honeycomb body of the fourth embodiment is made of metal foil in which no through holes are formed, and a porous plug is disposed at one end of the hollow part of the winding core.
Each embodiment will be described below.
 (第1実施形態)
 図1は本発明の一実施形態である触媒コンバータを軸方向から視た平面図である。ただし、巻き芯中空部に配設される多孔質プラグは、省略して図示する。なお、軸方向は、触媒コンバータに向かって流入する排ガスの導通方向でもある。
 図2は、触媒コンバータの巻き芯中空部の断面図であり、多孔質プラグの配設位置を示している。図3は、平箔及び波箔のベースとなる金属箔の展開図及び金属箔の一部における拡大図である。
(First embodiment)
FIG. 1 is a plan view of a catalytic converter according to an embodiment of the present invention, viewed from the axial direction. However, the porous plug disposed in the hollow part of the winding core is omitted from illustration. Note that the axial direction is also the direction in which exhaust gas flows toward the catalytic converter.
FIG. 2 is a cross-sectional view of the hollow part of the winding core of the catalytic converter, showing the arrangement position of the porous plug. FIG. 3 is a developed view of the metal foil that is the base of the flat foil and the corrugated foil, and an enlarged view of a part of the metal foil.
 触媒コンバータ1は、触媒が担持されたメタルハニカム体4及び外筒5を含む。ただし、外筒5は省略してもよい。メタルハニカム体4は、平箔2及び波箔3を重ねて巻き回した捲回体によって構成されている。平箔2及び波箔3を重ね合わせることによって、排ガスを導通させるためのガス導通路が形成される。本実施形態の触媒コンバータ1は、車両の排ガスを浄化するための浄化装置として用いることができる。 The catalytic converter 1 includes a metal honeycomb body 4 and an outer cylinder 5 on which a catalyst is supported. However, the outer cylinder 5 may be omitted. The metal honeycomb body 4 is constituted by a wound body in which a flat foil 2 and a corrugated foil 3 are layered and wound. By overlapping the flat foil 2 and the corrugated foil 3, a gas conduction path for conducting exhaust gas is formed. The catalytic converter 1 of this embodiment can be used as a purification device for purifying vehicle exhaust gas.
 平箔2及び波箔3には、耐熱合金からなる金属箔を用いることができる。金属箔の箔厚は、好ましくは20μm以上である。金属箔の箔厚は、好ましくは100μm以下であり、より好ましくは70μm以下である。このように箔厚の薄い金属箔を用いることにより、排ガス浄化時にメタルハニカム体4の昇温速度を上昇させて、触媒を活性化したり、触媒コンバータ1を軽量化することができる。 The flat foil 2 and corrugated foil 3 can be made of a metal foil made of a heat-resistant alloy. The thickness of the metal foil is preferably 20 μm or more. The thickness of the metal foil is preferably 100 μm or less, and more preferably 70 μm or less. By using a metal foil with such a thin thickness, the temperature rise rate of the metal honeycomb body 4 can be increased during exhaust gas purification, activating the catalyst and reducing the weight of the catalytic converter 1.
 平箔2及び波箔3のベースとなる金属箔には、多数の貫通孔4aが形成されている。平箔2及び波箔3に多数の貫通孔4aを形成することにより、メタルハニカム体4に流入した排ガスが乱流となり、定常浄化性能を高めることができる。また、メタルハニカム体4の熱容量が下がるため、ライトオフ性能を高めることができる。
 ただし、平箔2だけに多数の貫通孔4aを形成してもよいし、波箔3だけに多数の貫通孔4aを形成してもよい。
A large number of through holes 4a are formed in the metal foil serving as the base of the flat foil 2 and the corrugated foil 3. By forming a large number of through holes 4a in the flat foil 2 and the corrugated foil 3, the exhaust gas flowing into the metal honeycomb body 4 becomes a turbulent flow, and the steady-state purification performance can be improved. Furthermore, since the heat capacity of the metal honeycomb body 4 is reduced, the light-off performance can be improved.
However, a large number of through holes 4a may be formed only in the flat foil 2, or a large number of through holes 4a may be formed only in the corrugated foil 3.
 貫通孔4aの直径が過度に小さくなると、貫通孔4aが触媒によって閉塞されるおそれがある。したがって、貫通孔4aの直径は、好ましくは0.2mm以上である。
 貫通孔4aの直径が過度に大きくなると、貫通孔のないメタルハニカム体よりも定常浄化性能が低下するおそれがある。したがって、貫通孔4aの直径は、好ましくは8mm以下である。
 メタルハニカム体4の低熱容量化を実現するために、貫通孔4aの開口率は、好ましくは20%以上である。メタルハニカム体4の耐久性を実現するために、貫通孔4aの開口率は、好ましくは60%以下である。
If the diameter of the through hole 4a becomes too small, the through hole 4a may be blocked by the catalyst. Therefore, the diameter of the through hole 4a is preferably 0.2 mm or more.
If the diameter of the through-holes 4a becomes too large, there is a risk that the steady-state purification performance will be lower than that of a metal honeycomb body without through-holes. Therefore, the diameter of the through hole 4a is preferably 8 mm or less.
In order to achieve a low heat capacity of the metal honeycomb body 4, the aperture ratio of the through holes 4a is preferably 20% or more. In order to achieve durability of the metal honeycomb body 4, the aperture ratio of the through holes 4a is preferably 60% or less.
 メタルハニカム体4のガス入側所定領域(以下、ガス入側非開口部ともいう)は、貫通孔4aのない非開口部とすることが望ましい。ガス入側非開口部は、ガス入側端部から1mm以上とすることが望ましい。これにより、箔の強度が維持されるとともに、多孔質プラグと箔の接合面積を十分に確保することができる。
 本実施形態のプラグは多孔質であるため、プラグ全体が開口部のある領域に接合されると、接合面積が低下して、多孔質プラグの接合強度が低下するおそれがある。多孔質プラグの少なくとも一部が金属箔の非開口部に接合されることで、かかる問題を無くすことができる。
 なお、ガス入側非開口部は、ガス入側端部から10mm以下とすることが望ましい。
It is desirable that the predetermined region on the gas inlet side of the metal honeycomb body 4 (hereinafter also referred to as the non-opening part on the gas inlet side) be a non-opening part without the through hole 4a. It is desirable that the non-opening portion on the gas inlet side be 1 mm or more from the end on the gas inlet side. Thereby, the strength of the foil can be maintained and a sufficient bonding area between the porous plug and the foil can be secured.
Since the plug of this embodiment is porous, if the entire plug is bonded to a region with an opening, the bonding area may be reduced and the bonding strength of the porous plug may be reduced. This problem can be eliminated by bonding at least a portion of the porous plug to the non-opening portion of the metal foil.
Note that it is desirable that the non-opening portion on the gas inlet side be 10 mm or less from the end on the gas inlet side.
 メタルハニカム体4のガス出側所定領域(以下、ガス出側非開口部ともいう)は、貫通孔4aのない非開口部とすることが望ましい。ガス出側非開口部は、ガス入側端部から1mm以上とすることが望ましい。その理由は、ガス入側非開口部と同様であるから、説明を省略する。
 なお、ガス出側非開口部は、ガス出側端部から10mm以下とすることが望ましい。
It is desirable that a predetermined region on the gas outlet side of the metal honeycomb body 4 (hereinafter also referred to as a non-opening part on the gas outlet side) be a non-opening part without the through hole 4a. It is desirable that the non-opening portion on the gas outlet side be 1 mm or more from the end on the gas inlet side. The reason for this is the same as that for the non-opening portion on the gas inlet side, so the explanation will be omitted.
Note that it is desirable that the non-opening portion on the gas outlet side be 10 mm or less from the end on the gas outlet side.
 図3に図示するように、本実施形態の貫通孔4aは、金属箔に対して千鳥状に配設されている。ここで、互いに隣接する三つの貫通孔4aの中心を線で結んだ三角形を描き、三角形の内側の面積を「全体面積」、黒塗りで示す三角形と貫通孔4aとの重なり部分の面積を「孔面積」と定義したとき、「全体面積」に対する「孔面積」の比を「開口率」とすることができる。開口率の算出方法は、技術常識であるから、上述の説明に留める。
 なお、本実施形態では貫通孔4aの形状を円形としたが、他の形状(例えば、楕円、多角形など)であってもよい。また、貫通孔4aの配設形態は、千鳥状に限るものではなく、他の配設形態(例えば、格子状)であってもよい。
As illustrated in FIG. 3, the through holes 4a of this embodiment are arranged in a staggered manner with respect to the metal foil. Here, draw a triangle connecting the centers of three mutually adjacent through holes 4a with a line, and the area inside the triangle is the "total area", and the area of the overlapping part of the triangle shown in black and the through hole 4a is " When defined as "pore area", the ratio of "pore area" to "total area" can be defined as "opening ratio". Since the method of calculating the aperture ratio is common knowledge in the art, the above explanation will be omitted.
In addition, although the shape of the through-hole 4a was circular in this embodiment, it may be other shapes (for example, an ellipse, a polygon, etc.). Further, the arrangement form of the through holes 4a is not limited to a staggered arrangement, but may be arranged in another arrangement form (for example, a lattice arrangement).
 金属箔の板幅の下限は、好ましくは後述する巻き芯中空部6の直径の3倍である。金属箔の板幅の上限は、好ましくは500mmである。金属箔のサイズは、触媒コンバータ1の用途に応じて適宜変更することができる。波箔3は、金属箔を例えばコルゲート加工することによって製造することができる。 The lower limit of the plate width of the metal foil is preferably three times the diameter of the winding core hollow part 6, which will be described later. The upper limit of the width of the metal foil is preferably 500 mm. The size of the metal foil can be changed as appropriate depending on the use of the catalytic converter 1. The corrugated foil 3 can be manufactured by corrugating metal foil, for example.
 ここで、金属箔には、例えば、合金組成にAlを含む耐熱性の各種ステンレス鋼を用いることができる。ステンレス鋼には、Cr:20質量%、Al:5質量%、残部がFe及び不可避的不純物からなるフェライト系ステンレス(言い換えると、Fe-20Cr-5Al合金)を用いることができる。ただし、これ以外のステンレス(例えば、Crを15-25質量%、Alを2-8質量%含有するステンレス)を用いることもできる。 Here, for example, various types of heat-resistant stainless steel containing Al in the alloy composition can be used for the metal foil. As the stainless steel, ferritic stainless steel (in other words, Fe-20Cr-5Al alloy) consisting of 20% by mass of Cr, 5% by mass of Al, and the balance being Fe and inevitable impurities can be used. However, other stainless steels (for example, stainless steel containing 15-25% by mass of Cr and 2-8% by mass of Al) can also be used.
 平箔2と波箔3の接合、メタルハニカム体4と外筒5の接合には、ロウ材を用いることができる。ロウ材には、例えば、耐熱性の高いNi基のロウ材を用いることができる。ロウ材は、箔ロウであってもよいし、粉末ロウであってもよい。 A brazing material can be used for joining the flat foil 2 and the corrugated foil 3 and joining the metal honeycomb body 4 and the outer cylinder 5. For example, a Ni-based brazing material with high heat resistance can be used as the brazing material. The brazing material may be foil brazing or powder brazing.
 触媒は、メタルハニカム体4の金属箔表面に所定のウォッシュコート液を塗布して、それを乾燥、焼成することによって、金属箔に担持させることができる。ウォッシュコート液の塗布方法については、後述する。 The catalyst can be supported on the metal foil by applying a predetermined wash coat liquid to the surface of the metal foil of the metal honeycomb body 4, drying and firing it. The method for applying the wash coat liquid will be described later.
 外筒5には例えばSUS436LやSUS430といったCrを13質量%以上20質量%以下程度含有するフェライト系ステンレスを用いることができる。
 外筒5の肉厚の下限は、好ましくは0.5mmである。外筒5の肉厚の上限は、好ましくは3mmである。
 メタルハニカム体4のセル密度の下限は、好ましくは1平方センチメートルあたり15.5セル(言い換えると、1平方インチあたり100セル)である。メタルハニカム体4のセル密度の上限は、好ましくは1平方センチメートルあたり93セル(言い換えると、1平方インチあたり600セル)である。
For the outer cylinder 5, a ferritic stainless steel containing about 13% by mass or more and 20% by mass or less of Cr, such as SUS436L or SUS430, can be used.
The lower limit of the wall thickness of the outer tube 5 is preferably 0.5 mm. The upper limit of the wall thickness of the outer tube 5 is preferably 3 mm.
The lower limit of the cell density of the metal honeycomb body 4 is preferably 15.5 cells per square centimeter (in other words, 100 cells per square inch). The upper limit of the cell density of the metal honeycomb body 4 is preferably 93 cells per square centimeter (in other words, 600 cells per square inch).
 メタルハニカム体4の中心には、軸方向に向かって筒状に延びる巻き芯中空部6が形成されている。巻き芯中空部6の両端には、多孔質プラグ30が配設されている。図4は、多孔質プラグ30の断面を模式的に示している。
 多数の金属片31と断片状又は粉末状のロウ材を適度な粘性をもつ液体中で混合したプラグ用スラリー液(スラリー状母材に相当する)を準備し、このプラグ用スラリー液を巻き芯中空部6の一端側及び他端側から注入させた後、乾燥及び焼成することによって、巻き芯中空部6の両端に多孔質プラグ30を配設することができる。したがって、多孔質プラグ30は、多数の金属片31がロウ材で接合された構造を呈している。多孔質プラグ30には、多数の空隙が形成されているため、従来の緻密なプラグよりも熱容量が低くなり、ライトオフ性能を高めることができる。
A core hollow part 6 is formed in the center of the metal honeycomb body 4 and extends in a cylindrical shape in the axial direction. Porous plugs 30 are arranged at both ends of the winding core hollow part 6. FIG. 4 schematically shows a cross section of the porous plug 30.
A plug slurry liquid (corresponding to a slurry base material) is prepared by mixing a large number of metal pieces 31 and fragmented or powdered brazing material in a liquid with appropriate viscosity, and this plug slurry liquid is wound around the core. The porous plugs 30 can be placed at both ends of the winding core hollow part 6 by injecting the porous plugs from one end and the other end of the hollow part 6 and then drying and firing. Therefore, the porous plug 30 has a structure in which a large number of metal pieces 31 are joined with brazing material. Since the porous plug 30 has a large number of voids formed therein, the heat capacity is lower than that of a conventional dense plug, and the light-off performance can be improved.
 空隙が形成されるメカニズムについて、本発明者等は、以下のように考えている。金属片31とロウ材を含むプラグ用スラリー液を巻き芯中空部6に注入し、その後乾燥によって液体分が抜ける。さらにその後焼成時にロウ材が溶融し、この溶融したロウ材が金属片の隙間に浸み込むことで、空隙が形成される。 The inventors believe that the mechanism by which voids are formed is as follows. A plug slurry liquid containing metal pieces 31 and brazing material is injected into the winding core hollow part 6, and then the liquid is removed by drying. Further, during subsequent firing, the brazing material melts, and the molten brazing material permeates into the gaps between the metal pieces, thereby forming voids.
 図4の点線は、多孔質プラグ30の両端の位置を示しており、これらの点線に挟まれた領域における空隙の体積割合が、多孔質プラグ30の空隙率となる。なお、図4は、一端側の多孔質プラグ30だけを図示する。
 すなわち、多孔質プラグ30の上下端面に沿った面(図4の点線で示す面)と、巻き芯中空部6の内面とで囲まれた領域を定義し、当該領域の体積に対する、空隙の占める体積の比を「空隙率」とすることができる。多孔質プラグ30の上下端面とは、多孔質プラグ30の空隙を除いた固体部において、巻き芯中空部6の長手方向における一端及び他端を定義し、当該一端を通る面及び当該他端を通る面を「上下端面」とすることができる。
 例えば、多孔質プラグ30を撮像対象として、複数枚のX線CT画像を撮像し、これらのCT断面画像を2値化して固体部と空隙部に分離し、空隙の面積割合を算出することにより、多孔質プラグ30の空隙率を算出することができる。
 具体的には、各CT断面画像の空隙の面積割合の算術平均値を多孔質プラグ30の空隙率とすることができる。
The dotted lines in FIG. 4 indicate the positions of both ends of the porous plug 30, and the volume ratio of voids in the region between these dotted lines is the porosity of the porous plug 30. Note that FIG. 4 illustrates only the porous plug 30 on one end side.
In other words, a region surrounded by a surface along the upper and lower end surfaces of the porous plug 30 (the surface indicated by the dotted line in FIG. 4) and the inner surface of the winding core hollow part 6 is defined, and the area occupied by the void with respect to the volume of the region is defined. The volume ratio can be referred to as "porosity." The upper and lower end surfaces of the porous plug 30 define one end and the other end in the longitudinal direction of the winding core hollow part 6 in the solid part of the porous plug 30 excluding voids, and the surface passing through the one end and the other end are defined as The surfaces through which it passes can be referred to as "upper and lower end surfaces."
For example, by taking a plurality of X-ray CT images of the porous plug 30 as an imaging target, binarizing these CT cross-sectional images and separating them into a solid part and a void part, and calculating the area ratio of the voids. , the porosity of the porous plug 30 can be calculated.
Specifically, the arithmetic mean value of the area ratio of voids in each CT cross-sectional image can be set as the porosity of the porous plug 30.
 多孔質プラグ30の空隙率は、好ましくは7%以上である。多孔質プラグ30の空隙率を7%以上に高めることによって、多孔質プラグ30の熱容量が十分に下がり、メタルハニカム体4のライトオフ性能を高めることができる。 The porosity of the porous plug 30 is preferably 7% or more. By increasing the porosity of the porous plug 30 to 7% or more, the heat capacity of the porous plug 30 is sufficiently reduced, and the light-off performance of the metal honeycomb body 4 can be improved.
 多孔質プラグ30の空隙率は、好ましくは85%以下である。金属片31及びロウ材を原料とする場合、空隙率が過度に高くなると、ロウ材を介さない、金属片同士の固相接合が支配的になるから、多孔質プラグ30自体の強度(つまり、プラグの形態維持性)が保てなくなる。
 また、多孔質プラグ30の空隙率が85%以下に抑えられていれば、巻き芯中空部6から排ガスが抜けることを効果的に防止できる。すなわち、本実施形態の金属箔(平箔2及び波箔3)には多数の貫通孔4aが形成されており、メタルハニカム体4の圧損が大きくなるため、巻き芯中空部6から排ガスが抜け易い。特に、排ガスの流量が高流量である場合には、かかる傾向が顕著となる。本実施形態では、巻き芯中空部6の両端が多孔質プラグ30によって閉塞されているため、巻き芯中空部6から排ガスが抜けることを、効果的に防止できる。これにより、メタルハニカム体4の定常浄化性能を高めることができる。
The porosity of the porous plug 30 is preferably 85% or less. When the metal pieces 31 and the brazing material are used as raw materials, if the porosity becomes excessively high, solid-phase bonding between the metal pieces without the brazing material becomes dominant, so that the strength of the porous plug 30 itself (i.e., The shape retention of the plug will not be maintained.
Further, if the porosity of the porous plug 30 is suppressed to 85% or less, exhaust gas can be effectively prevented from escaping from the winding core hollow part 6. That is, the metal foils (the flat foil 2 and the corrugated foil 3) of this embodiment are formed with a large number of through holes 4a, and the pressure loss of the metal honeycomb body 4 becomes large, so that exhaust gas escapes from the winding core hollow part 6. easy. This tendency becomes particularly noticeable when the flow rate of exhaust gas is high. In this embodiment, since both ends of the winding core hollow part 6 are closed by the porous plugs 30, exhaust gas can be effectively prevented from escaping from the winding core hollow part 6. Thereby, the steady-state purification performance of the metal honeycomb body 4 can be improved.
 巻き芯中空部6の直径をDと定義したとき、多孔質プラグ30の軸方向長さは、好ましくはD以上である。多孔質プラグ30の軸方向長さをD以上に設定することによって、多孔質プラグ30の巻き芯中空部6に対する接合面積が十分に確保されるため、巻き芯中空部6から多孔質プラグ30が脱落することを防止できる。
 多孔質プラグ30の軸方向長さは、好ましくは3D以下である。多孔質プラグ30の軸方向長さを3D以下に設定することによって、多孔質プラグ30による熱容量の低減効果を、より効果的に発現させることができる。
When the diameter of the winding core hollow part 6 is defined as D, the axial length of the porous plug 30 is preferably D or more. By setting the axial length of the porous plug 30 to be greater than or equal to D, a sufficient bonding area of the porous plug 30 to the winding core hollow part 6 is ensured, so that the porous plug 30 can be removed from the winding core hollow part 6. It can prevent it from falling off.
The axial length of the porous plug 30 is preferably 3D or less. By setting the axial length of the porous plug 30 to 3D or less, the heat capacity reduction effect of the porous plug 30 can be more effectively exhibited.
 多孔質プラグ30のロウ材には、平箔2及び波箔3の接合に用いられたロウ材と同一のロウ材を用いることが望ましい。例えば、平箔2及び波箔3の接合材としてNi基のロウ材を用いた場合には、同じNi基のロウ材を多孔質プラグ30のロウ材として用いることが望ましい。これにより、平箔2及び波箔3の接合箇所と、金属片31の接合箇所との耐熱性、熱膨張性を等しくすることができる。Ni基のロウ材には、例えば、「JISZ 3265」に規定されたBNi‐1~BNi‐7、AWS(American Welding Society:アメリカ溶接協会)から公表されているBNi‐5a,BNi‐8,BNi‐9,BNi‐10,BNi‐11,BNi‐12,BNi‐13などを用いることができる。ただし、ロウ材の熱膨張率が比較的近ければ、ロウ材の種類が異なっていてもよい。 It is desirable to use the same brazing material as the brazing material used to join the flat foil 2 and the corrugated foil 3 as the brazing material of the porous plug 30. For example, when a Ni-based brazing material is used as the bonding material for the flat foil 2 and the corrugated foil 3, it is desirable to use the same Ni-based brazing material as the brazing material for the porous plug 30. This makes it possible to equalize the heat resistance and thermal expansion of the joint between the flat foil 2 and the corrugated foil 3 and the joint between the metal piece 31. Examples of Ni-based brazing materials include BNi-1 to BNi-7 specified in "JISZ 3265," BNi-5a, BNi-8, and BNi published by AWS (American Welding Society). -9, BNi-10, BNi-11, BNi-12, BNi-13, etc. can be used. However, the types of brazing materials may be different as long as the coefficients of thermal expansion of the brazing materials are relatively similar.
 金属片31には、平箔2及び波箔3と同一の金属を用いることが望ましい。これにより、金属片31、平箔2及び波箔3の耐熱性、熱膨張性を等しくすることができる。ただし、熱膨張率が比較的近ければ、金属の種類は異なっていてもよい。 It is desirable to use the same metal as the flat foil 2 and the corrugated foil 3 for the metal piece 31. Thereby, the heat resistance and thermal expansion properties of the metal piece 31, the flat foil 2, and the corrugated foil 3 can be made equal. However, the types of metals may be different as long as their coefficients of thermal expansion are relatively similar.
 金属片31の形状は特に限定しないが、例えば、円板形状、球体形状、三角錐形状、立方体形状等であってもよい。また、形状が異なる金属片31を混合して、多孔質プラグ30を形成してもよい。ただし、金属片31を円板形状に形成すると、アスペクト比が大きくなり、空隙ができやすい。したがって、円板形状の金属片31を用いることが好ましい。 The shape of the metal piece 31 is not particularly limited, but may be, for example, a disc shape, a spherical shape, a triangular pyramid shape, a cubic shape, etc. Alternatively, the porous plug 30 may be formed by mixing metal pieces 31 having different shapes. However, if the metal piece 31 is formed into a disk shape, the aspect ratio becomes large and voids are likely to be formed. Therefore, it is preferable to use a disk-shaped metal piece 31.
 次に、多孔質プラグ30を巻き芯中空部6に配設する方法について、具体的に説明する。多数の金属片31と断片状又は粉末状のロウ材を適度な粘性を持つ液体中で混合したプラグ用スラリー液(スラリー状母材に相当する)を準備する。プラグ用スラリー液における金属片31の総含有量をX質量%、ロウ材の総含有量をY質量%としたとき、X質量%とY質量%との比であるX:Yは、3:7から9:1の範囲に含まれる。この配合比の条件を分数で表記すると、X/Yは、3/7以上9/1以下である。
 X/Yが過度に小さくなると、プラグとしての形状を維持できなくなる。言い換えると、ロウ材が過度に多くなると、焼成時にロウ材が流れ落ちてしまうため、プラグ形状の焼成体を得ることができない。
Next, a method for disposing the porous plug 30 in the winding core hollow part 6 will be specifically explained. A plug slurry liquid (corresponding to a slurry base material) is prepared by mixing a large number of metal pieces 31 and a piece-like or powdered brazing material in a liquid having an appropriate viscosity. When the total content of the metal pieces 31 in the plug slurry liquid is X% by mass and the total content of the brazing metal is Y% by mass, the ratio of X% by mass to Y% by mass, X:Y, is 3: It is in the range of 7 to 9:1. When the conditions of this compounding ratio are expressed as a fraction, X/Y is 3/7 or more and 9/1 or less.
If X/Y becomes too small, it becomes impossible to maintain the shape as a plug. In other words, if the amount of brazing material is excessively large, the brazing material will flow down during firing, making it impossible to obtain a plug-shaped fired body.
 X/Yが過度に大きくなると、多孔質プラグ30自体の強度が低下する。言い換えると、ロウ材が不足して、ロウ材を介さない、金属片同士の固相接合が支配的になり、隣接する金属片31どうしのロウ付け強度が低下するため、プラグ形態を維持することができない。 If X/Y becomes too large, the strength of the porous plug 30 itself will decrease. In other words, due to the lack of brazing material, solid-phase bonding between the metal pieces without using the brazing material becomes dominant, and the brazing strength between adjacent metal pieces 31 decreases, so that the plug form cannot be maintained. I can't.
 X:Yの好ましい下限値は、4:6である。言い換えると、X/Yの好ましい下限値は、4/6である。X/Yを4/6以上に設定することによって、多孔質プラグ30の空隙率が高まり、触媒コンバータ1のライトオフ性能が向上する。すなわち、空隙を埋めるロウ材の量が減るため、多孔質プラグ30の空隙率を高めることができる。
 X:Yの好ましい上限値は、7:3である。言い換えると、X/Yの好ましい上限値は、7/3である。X/Yを7/3以下に設定することによって、隣接する金属片31のロウ付け強度が向上して、プラグの形態維持性をより高めることができる。
A preferable lower limit of X:Y is 4:6. In other words, the preferable lower limit of X/Y is 4/6. By setting X/Y to 4/6 or more, the porosity of the porous plug 30 increases, and the light-off performance of the catalytic converter 1 improves. That is, since the amount of brazing material filling the voids is reduced, the porosity of the porous plug 30 can be increased.
A preferable upper limit of X:Y is 7:3. In other words, the preferable upper limit of X/Y is 7/3. By setting X/Y to 7/3 or less, the brazing strength of adjacent metal pieces 31 is improved, and the shape retention of the plug can be further improved.
 ここで、図5はX:Yを5:5としたときの多孔質プラグの写真であり、この写真から明らかなように、プラグ形態が維持されている。 Here, FIG. 5 is a photograph of a porous plug when X:Y is 5:5, and as is clear from this photograph, the plug shape is maintained.
 巻き芯中空部6の内部に、準備したプラグ用スラリー液を所定量巻き芯中空部6の両端側から注入して、乾燥させる。 A predetermined amount of the prepared plug slurry liquid is injected into the winding core hollow part 6 from both ends of the winding core hollow part 6 and dried.
 プラグ用スラリー液の注入、乾燥後、メタルハニカム体4を真空雰囲気下において、1200℃程度の温度で焼成する(後述する「焼成処理工程」に相当する)。メタルハニカム体4を焼成すると、溶融したロウ材によって、隣接する金属片31どうしがロウ付けされる。また、溶融したロウ材は巻き芯中空部6の内面にも付着するため、多孔質プラグ30を巻き芯中空部6の両端における配設予定位置に対して、ホールドすることができる。 After the plug slurry liquid is injected and dried, the metal honeycomb body 4 is fired at a temperature of about 1200° C. in a vacuum atmosphere (corresponding to the "firing process" described later). When the metal honeycomb body 4 is fired, the adjacent metal pieces 31 are brazed together with the molten brazing material. Further, since the molten brazing material also adheres to the inner surface of the hollow core 6, the porous plug 30 can be held at the planned placement position at both ends of the hollow core 6.
 次に、ハニカムユニット及び触媒コンバータの製造方法について説明する。
 ハニカムユニットの製造工程は、焼成処理前の準備工程と、焼成処理工程とに分けることができる。準備工程には、平箔2及び波箔3の接合予定部にロウ材を配設する工程A、メタルハニカム体4及び外筒5の接合予定部にロウ材を配設する工程B、巻き芯中空部6に対して、プラグ用スラリー液を注入する工程Cが含まれる。ロウ材の配設手段は、特に限定しないが、例えば粉末状のロウ材を塗布することを配設手段としてもよいし、箔ロウによる仮止めを配設手段としてもよい。
Next, a method for manufacturing the honeycomb unit and the catalytic converter will be described.
The manufacturing process of the honeycomb unit can be divided into a preparation process before the firing process and a firing process. The preparation process includes a process A of disposing a brazing material on the intended joining portions of the flat foil 2 and the corrugated foil 3, a process B of disposing a brazing material on the intended joining portions of the metal honeycomb body 4 and the outer tube 5, and a process C of injecting a plug slurry liquid into the hollow portion 6 of the winding core. There are no particular limitations on the means of disposing the brazing material, and the disposing means may be, for example, the application of a powdered brazing material or the temporary fixing with foil brazing.
 工程Aは、平箔2及び波箔3を所定軸周りに巻き回すときに実施してもよいし、巻き回した後に実施してもよい。巻き回した後に実施する場合、例えば、メタルハニカム体4の上から接合予定部に向かってロウ材を散布することで、工程Aとすることができる。 Step A may be performed when the flat foil 2 and the corrugated foil 3 are wound around a predetermined axis, or may be performed after the flat foil 2 and the corrugated foil 3 are wound. When carried out after winding, for example, step A can be carried out by spraying brazing material from above the metal honeycomb body 4 toward the portion to be joined.
 工程Bは、工程Aの後に実施してもよい。例えば、工程Aの実施後にストリップ状の箔ロウをメタルハニカム体4の接合予定部に巻き付け、この箔ロウが巻き付けられたメタルハニカム体4を外筒5に内挿した後、外筒5を縮径して箔ロウが巻き付けられたメタルハニカム体4に押し付けることで、工程Bとすることができる。縮径手段には、外筒5を径方向内側に向かって圧縮する圧縮手段を用いることができる。また、工程Bは縮径手段に限るものではない。例えば、箔ロウが巻き付けられたメタルハニカム体4を外筒5に圧入することにより、工程Bを実現してもよい。
 ただし、工程Bは、工程Aの前に実施してもよい。例えば、平箔2及び波箔3を所定軸周りに巻き回してメタルハニカム体4を製造した後、箔ロウを巻き付けて工程Bを実施するとともに、工程Bの実施後にロウ材を散布して工程Aを実施してもよい。
Step B may be performed after step A. For example, after carrying out step A, a strip-shaped solder foil is wrapped around the part of the metal honeycomb body 4 to be joined, and after the metal honeycomb body 4 wrapped with the solder foil is inserted into the outer cylinder 5, the outer cylinder 5 is contracted. Step B can be carried out by pressing it against the metal honeycomb body 4 around which the solder foil is wrapped. Compression means for compressing the outer tube 5 radially inward can be used as the diameter reduction means. Further, step B is not limited to the diameter reducing means. For example, step B may be realized by press-fitting the metal honeycomb body 4 wrapped with solder foil into the outer cylinder 5.
However, step B may be implemented before step A. For example, after manufacturing the metal honeycomb body 4 by winding the flat foil 2 and the corrugated foil 3 around a predetermined axis, the foil solder is wrapped around the metal honeycomb body 4 and process B is performed, and after the process B is performed, the solder metal is sprinkled and the metal honeycomb body 4 is manufactured. You may also implement A.
 工程Cの順序は特に限定しない。後述する実施例で示すように、工程A及び工程Bの後に実施してもよいし、工程A及び/又は工程Bの前に実施してもよい。ただし、工程Cは、巻き芯中空部6に対してプラグ用スラリー液を注入する工程であるため、少なくとも平箔2及び波箔3が所定軸周りに巻かれた後に実施する必要がある。 The order of step C is not particularly limited. As shown in the Examples described below, it may be carried out after Step A and Step B, or may be carried out before Step A and/or Step B. However, since step C is a step of injecting the plug slurry liquid into the winding core hollow part 6, it needs to be carried out after at least the flat foil 2 and the corrugated foil 3 are wound around a predetermined axis.
 準備工程の後に実施される焼成処理工程については、説明を繰り返さない。工程A乃至Cの後に焼成処理工程を実施することにより、多孔質プラグ30の製造,設置と、平箔2及び波箔3の接合処理と、メタルハニカム体4及び外筒5の接合処理とを同時に実施することができる。 The description of the firing process performed after the preparation process will not be repeated. By performing the firing process after steps A to C, the manufacturing and installation of the porous plug 30, the joining process of the flat foil 2 and the corrugated foil 3, and the joining process of the metal honeycomb body 4 and the outer cylinder 5 can be performed. Can be carried out simultaneously.
 次に、触媒コンバータの製造方法について、詳細に説明する。
 ハニカムユニットの製造後(言い換えると、焼成処理工程の実施後)に、メタルハニカム体4に触媒を担持させる。触媒の担持方法には、例えば、浸漬法、吸引法を用いることができる。
 浸漬法は、ウォッシュコート液に外筒5と接合されたメタルハニカム体4、つまり、上述のハニカムユニットを浸漬させ、メタルハニカム体4を構成する金属箔に触媒を塗布する方法である(「触媒スラリー流入ステップ」に相当する)。ウォッシュコート液には、例えば、γアルミナ粉末、ランタン酸化物、ジルコニウム酸化物、セリウム酸化物を硝酸パラジウムの水溶液内で撹拌したスラリー状の液体を用いることができる。
Next, a method for manufacturing a catalytic converter will be described in detail.
After manufacturing the honeycomb unit (in other words, after performing the firing process), the metal honeycomb body 4 is made to support a catalyst. As a method for supporting the catalyst, for example, an immersion method or a suction method can be used.
The immersion method is a method in which the metal honeycomb body 4 joined to the outer cylinder 5, that is, the above-mentioned honeycomb unit, is immersed in a wash coat liquid, and a catalyst is applied to the metal foil constituting the metal honeycomb body 4 ("catalyst"). slurry inlet step). As the washcoat liquid, for example, a slurry liquid obtained by stirring γ alumina powder, lanthanum oxide, zirconium oxide, and cerium oxide in an aqueous solution of palladium nitrate can be used.
 ここで、巻き芯中空部6の一端側だけに多孔質プラグ30を配設した場合には、巻き芯中空部6の他端側から触媒を含むウォッシュコート液が流入する。そのため、余剰の触媒が巻き芯中空部6の内部に溜まるおそれがある。かかる問題を解消するためには、多孔質プラグ30にドリル等で貫通逃がし孔を空ける必要があるため、加工工程が増加する。 Here, if the porous plug 30 is placed only on one end side of the hollow portion 6 of the winding core, the washcoat liquid containing the catalyst will flow in from the other end side of the hollow portion 6 of the winding core. This means that there is a risk of excess catalyst accumulating inside the hollow portion 6 of the winding core. To solve this problem, it is necessary to drill a hole through the porous plug 30, which increases the number of processing steps.
 本実施形態によれば、巻き芯中空部6の両端が多孔質プラグ30によって閉塞されているため、ハニカムユニットをウォッシュコート液に浸漬させた際に、巻き芯中空部6の内側にウォッシュコート液が流入することを防止できる。これにより、触媒の使用量が減るため、コストを削減することができる。また、多孔質プラグ30に貫通逃がし孔を形成する工程を省略することができる。 According to this embodiment, since both ends of the core hollow part 6 are closed by the porous plugs 30, when the honeycomb unit is immersed in the washcoat liquid, the washcoat liquid is inside the winding core hollow part 6. It is possible to prevent the inflow of This reduces the amount of catalyst used, thereby reducing costs. Furthermore, the step of forming a through hole in the porous plug 30 can be omitted.
 吸引法では、触媒を含むウォッシュコート液を、メタルハニカム体4の軸方向から吸引し、メタルハニカム体4を構成する金属箔に触媒を塗布する方法である(「触媒スラリー流入ステップ」に相当する)。吸引法においても、浸漬法で説明した通り、巻き芯中空部6の両端を多孔質プラグ30によって閉塞することにより、巻き芯中空部6の中にウォッシュコート液が流入することを防止できる。
 ウォッシュコート液をメタルハニカム体4の金属箔に塗布した後、乾燥、焼成することによって、塗布した触媒を金属箔に担持させることができる(「触媒担持ステップ」に相当する)。焼成条件は、セルの内径、メタルハニカム体4の軸方向長さ、ウォッシュコート液の種類などによって適宜設定され、例えば焼成温度は400~800℃、焼成時間は1~6時間に設定することができる。触媒の流入後に、乾燥及び焼成することによって、触媒を担持させることができる。
In the suction method, a wash coat liquid containing a catalyst is sucked from the axial direction of the metal honeycomb body 4, and the catalyst is applied to the metal foil constituting the metal honeycomb body 4 (corresponding to the "catalyst slurry inflow step"). ). In the suction method as well, as explained in the immersion method, by closing both ends of the hollow core 6 with the porous plugs 30, it is possible to prevent the washcoat liquid from flowing into the hollow core 6.
After applying the wash coat liquid to the metal foil of the metal honeycomb body 4, the applied catalyst can be supported on the metal foil by drying and firing (corresponding to a "catalyst supporting step"). The firing conditions are appropriately set depending on the inner diameter of the cells, the axial length of the metal honeycomb body 4, the type of washcoat liquid, etc. For example, the firing temperature can be set to 400 to 800°C, and the firing time can be set to 1 to 6 hours. can. After the catalyst is introduced, the catalyst can be supported by drying and firing.
 また、触媒コンバータ1が外筒5を有しない場合には、メタルハニカム体4に、前述の方法でウォッシュコート液を塗布し、乾燥、焼成することによって触媒コンバータとしてもよい。 Furthermore, in the case where the catalytic converter 1 does not have the outer cylinder 5, the catalytic converter may be formed by applying a wash coat liquid to the metal honeycomb body 4 by the method described above, drying and firing.
 ここで、多孔質プラグ30の空隙率が70%以下に抑えられていれば、巻き芯中空部6に対するウォッシュコート液の流入を効果的に防止することができる。 Here, if the porosity of the porous plug 30 is suppressed to 70% or less, it is possible to effectively prevent the washcoat liquid from flowing into the winding core hollow part 6.
 また、巻き芯中空部6の両端に多孔質プラグ30を配設した場合は、メタルハニカム体4の軸方向一端側を排ガス上流側に向けて配置してもよいし、軸方向他端側を排ガス上流側に向けて配置してもよい。 In addition, when the porous plugs 30 are arranged at both ends of the winding core hollow part 6, one axial end of the metal honeycomb body 4 may be arranged facing the exhaust gas upstream side, or the other axial end may be arranged so as to face the exhaust gas upstream side. It may be arranged toward the exhaust gas upstream side.
 (第2実施形態)
 図6は、本実施形態の触媒コンバータにおける巻き芯中空部の断面図であり、多孔質プラグの配設位置を示している。本実施形態の多孔質プラグ30は、巻き芯中空部6の一端(好ましくは、ガス入側端部)のみに配設されており、巻き芯中空部6の両端に多孔質プラグ30を配設した第1実施形態と相違する。本実施形態の触媒コンバータは、多孔質プラグ30の配設位置以外の構成が第1実施形態の触媒コンバータと同じであるから、多孔質プラグ30についてだけ説明する。
(Second embodiment)
FIG. 6 is a sectional view of the winding core hollow part in the catalytic converter of this embodiment, and shows the arrangement position of the porous plug. The porous plug 30 of this embodiment is arranged only at one end (preferably the gas inlet side end) of the winding core hollow part 6, and the porous plug 30 is arranged at both ends of the winding core hollow part 6. This is different from the first embodiment. Since the catalytic converter of this embodiment has the same configuration as the catalytic converter of the first embodiment except for the arrangement position of the porous plug 30, only the porous plug 30 will be described.
 多数の金属片31とロウ材を適度な粘性をもつ液体中で混合したスラリー液を準備し、このスラリー液を巻き芯中空部6の一端に注入した後、乾燥及び焼成することによって、巻き芯中空部6の一端に多孔質プラグ30を配設することができる。 A slurry liquid is prepared by mixing a large number of metal pieces 31 and a brazing material in a liquid with appropriate viscosity, and this slurry liquid is injected into one end of the winding core hollow part 6, and then dried and fired to form the winding core. A porous plug 30 can be disposed at one end of the hollow portion 6.
 多孔質プラグ30の好ましい空隙率は、第1実施形態と同様であるから、詳細な説明を省略する。多孔質プラグ30の好ましい軸方向長さは、第1実施形態と同様であるから、詳細な説明を省略する。 The preferred porosity of the porous plug 30 is the same as in the first embodiment, so detailed explanation will be omitted. The preferred axial length of the porous plug 30 is the same as that in the first embodiment, so a detailed explanation will be omitted.
 多孔質プラグ30の材料、金属片31の形状についても、第1実施形態と同様であるから、詳細な説明を省略する。 The material of the porous plug 30 and the shape of the metal piece 31 are also the same as in the first embodiment, so detailed explanations will be omitted.
 本実施形態の巻き芯中空部6の他端には、多孔質プラグ30が配設されていない。したがって、ウォッシュコート液をメタルハニカム体4に塗布する際に、巻き芯中空部6の他端からウォッシュコート液が流入する。そこで、多孔質プラグ30に貫通逃がし孔を形成しておき、巻き芯中空部6に流入したウォッシュコート液を貫通逃がし孔から排出してもよい。これにより、巻き芯中空部6に、余剰の触媒が溜まることを防止できる。
 なお、貫通逃がし孔は、熱処理後の多孔質プラグ30にドリル等で穴をあけることにより形成してもよい。貫通逃がし孔については、特許文献2の段落0023などにも記載されているから、詳細な説明を省略する。なお、特許文献2の「貫通孔10」が、本明細書の「貫通逃がし孔」に相当する。
The porous plug 30 is not disposed at the other end of the winding core hollow part 6 in this embodiment. Therefore, when applying the washcoat liquid to the metal honeycomb body 4, the washcoat liquid flows from the other end of the winding core hollow part 6. Therefore, a through hole may be formed in the porous plug 30, and the wash coat liquid that has flowed into the winding core hollow portion 6 may be discharged from the through hole. Thereby, it is possible to prevent excess catalyst from accumulating in the winding core hollow part 6.
Note that the through hole may be formed by drilling a hole in the heat-treated porous plug 30 using a drill or the like. The through-hole escape hole is also described in paragraph 0023 of Patent Document 2, so a detailed explanation will be omitted. Note that the "through hole 10" in Patent Document 2 corresponds to the "through hole" in this specification.
 第1実施形態では、巻き芯中空部6に対するウォッシュコート液の流入を防ぐために、好ましい条件として多孔質プラグ30の空隙率の上限を70%に設定したが、本実施形態では、巻き芯中空部6に対するウォッシュコート液の流入を許容し、多孔質プラグ30に貫通孔を形成することにより、ウォッシュコート液を排出している。したがって、多孔質プラグ30の空隙率の上限を70%に設定する点については、第1実施形態の記載を援用しない。 In the first embodiment, the upper limit of the porosity of the porous plug 30 was set to 70% as a preferable condition in order to prevent the washcoat liquid from flowing into the hollow part 6 of the winding core. The washcoat liquid is allowed to flow into the porous plug 6, and the washcoat liquid is discharged by forming through holes in the porous plug 30. Therefore, the description of the first embodiment is not referred to regarding setting the upper limit of the porosity of the porous plug 30 to 70%.
 多孔質プラグ30の製造に用いられるプラグ用スラリーの構成は、第1実施形態と同様であるから、詳細な説明を省略する。触媒の担持方法も、第1実施形態で説明したから詳細な説明を省略する。
 また、第2実施形態においても、多孔質プラグ30側を排ガス入側に向けて配設してもよいし、多孔質プラグ30側を排ガス出側に向けて配設してもよい。
The composition of the plug slurry used to manufacture the porous plug 30 is the same as that in the first embodiment, and therefore a detailed description thereof will be omitted. The method of supporting the catalyst has also been described in the first embodiment, and therefore a detailed description thereof will be omitted.
Also in the second embodiment, the porous plug 30 may be disposed facing the exhaust gas inlet side, or the porous plug 30 may be disposed facing the exhaust gas outlet side.
 (第3実施形態)
 本実施形態の触媒コンバータは、巻き芯中空部6の両端に多孔質プラグ30が配設されている点で、第1実施形態の触媒コンバータと同じである。ただし、平箔2及び波箔3に貫通孔4aが形成されていない点で、第1実施形態の触媒コンバータと相違する。かかる相違点を除いて、第1実施形態の記載を本実施形態に援用する。
(Third embodiment)
The catalytic converter of this embodiment is the same as the catalytic converter of the first embodiment in that porous plugs 30 are provided at both ends of the winding core hollow part 6. However, this embodiment differs from the catalytic converter of the first embodiment in that through-holes 4a are not formed in the flat foil 2 and the corrugated foil 3. Except for such differences, the description of the first embodiment is incorporated into this embodiment.
 本実施形態の平箔2及び波箔3には貫通孔4aが形成されていないため、圧力損失の小さい触媒コンバータを提供することができる。 Since the through holes 4a are not formed in the flat foil 2 and the corrugated foil 3 of this embodiment, a catalytic converter with low pressure loss can be provided.
 (第4実施形態)
 本実施形態の触媒コンバータは、巻き芯中空部6の一端に多孔質プラグ30が配設されている点で、第2実施形態の触媒コンバータと同じである。ただし、平箔2及び波箔3に貫通孔4aが形成されていない点で、第2実施形態の触媒コンバータと相違する。かかる相違点を除いて、第2実施形態の記載を本実施形態に援用する。
(Fourth embodiment)
The catalytic converter of this embodiment is the same as the catalytic converter of the second embodiment in that a porous plug 30 is disposed at one end of the winding core hollow part 6. However, this embodiment differs from the catalytic converter of the second embodiment in that through-holes 4a are not formed in the flat foil 2 and the corrugated foil 3. Except for such differences, the description of the second embodiment is incorporated into this embodiment.
 本実施形態の平箔2及び波箔3には貫通孔4aが形成されていないため、圧力損失の小さい触媒コンバータを提供することができる。 In this embodiment, the flat foil 2 and corrugated foil 3 do not have through holes 4a formed, so a catalytic converter with low pressure loss can be provided.
 次に、実施例を示しながら、本発明について具体的に説明する。
 (第1実施例)
 第1実施例は、第1実施形態に対応する。
  金属片及びロウ材の配合比率が互いに異なる複数の試料を準備し、プラグの形態維持性、ライトオフ性能、触媒流入防止効果及び定常浄化性能を評価した。
 波箔及び平箔を重ねた状態で巻き回し、巻き芯中空部を備えたメタルハニカム体を製造した。波箔及び平箔の金属箔(箔厚:50μm)には、Cr:20質量%、Al:5質量%、残部がFe及び不可避的不純物からなるフェライト系ステンレスを使用した。また多数の貫通孔が形成された金属箔を使用した。貫通孔は、直径が0.9mmの円形とした。貫通孔の配置は、千鳥状とした。開口率は、40%とした。なお、開口率は、実施形態に記載に方法により算出した。またガス入側とガス出側の端部に5mm幅の非開口部を設けた。メタルハニカム体の直径、長さ、セル密度及び巻き芯中空部の直径はそれぞれ、33mm、60mm、300cpsi及び5mmとした。波箔及び平箔の接合材(ロウ材)には、BNi-5(JISZ 3265参照)を使用した。波箔及び平箔の接合材を配設する処理は、プラグ用スラリー液を注入する前に実施した。
Next, the present invention will be specifically described with reference to Examples.
(First example)
The first example corresponds to the first embodiment.
A plurality of samples with different mixing ratios of metal pieces and brazing metal were prepared, and the shape retention of the plug, light-off performance, catalyst inflow prevention effect, and steady-state purification performance were evaluated.
A metal honeycomb body with a hollow core was manufactured by winding corrugated foil and flat foil in a stacked state. For the corrugated and flat metal foils (foil thickness: 50 μm), ferritic stainless steel containing 20% by mass of Cr, 5% by mass of Al, and the balance Fe and inevitable impurities was used. Also, a metal foil with a large number of through holes was used. The through hole was circular with a diameter of 0.9 mm. The through holes were arranged in a staggered manner. The aperture ratio was 40%. Note that the aperture ratio was calculated by the method described in the embodiment. Further, non-opening portions with a width of 5 mm were provided at the ends of the gas inlet side and the gas outlet side. The diameter, length, cell density, and diameter of the core hollow part of the metal honeycomb body were 33 mm, 60 mm, 300 cpsi, and 5 mm, respectively. BNi-5 (see JISZ 3265) was used as the bonding material (brazing material) for the corrugated foil and flat foil. The process of disposing the bonding material for the corrugated foil and the flat foil was carried out before the plug slurry liquid was injected.
 メタルハニカム体の外周面における接合予定部に箔状のロウ材を巻き付けた後、SUS436Lからなる厚さ1.5mm、長さ60mmの外筒にメタルハニカム体を内挿し、以下の条件で、プラグ用スラリー液の注入処理及び焼成処理を実施した。 After wrapping a foil-like brazing material around the part of the outer peripheral surface of the metal honeycomb body to be joined, the metal honeycomb body was inserted into an outer cylinder made of SUS436L with a thickness of 1.5 mm and a length of 60 mm, and a plug was formed under the following conditions. Injection treatment and firing treatment of slurry liquid were carried out.
 多孔質プラグに使用される金属片には、波箔及び平箔と同一組成の金属を使用した。ロウ材には、波箔及び平箔の接合に用いられたロウ材と同一組成の粉末状のロウ材を使用した。金属片は、直径が0.9mm、厚みが0.05mmの円板形状とした。金属片及びロウ材を含むプラグ用スラリー液をメタルハニカム体の巻き芯中空部の両端から注入し、その後大気中200℃で乾燥した。乾燥後に、ハニカムユニットを真空中1200℃で焼成することによって、軸方向長さが10mmの多孔質プラグを巻き芯中空部の両端に配設した。なお、上述の通り、巻き芯中空部の直径が5mmであるから、多孔質プラグの直径も5mmである。
 その後、触媒として、γアルミナ粉末、ランタン酸化物、ジルコニウム酸化物、セリウム酸化物を硝酸パラジウムの水溶液内で撹拌したスラリー状の液体を使用した浸漬法により金属箔に触媒を塗布し、200℃で乾燥後、大気中500℃で1時間焼成することにより、触媒コンバータを製造した。
The metal pieces used for the porous plugs were made of metal with the same composition as the corrugated foil and flat foil. The brazing material was a powdered brazing material with the same composition as the brazing material used to join the corrugated foil and flat foil. The metal pieces were disk-shaped with a diameter of 0.9 mm and a thickness of 0.05 mm. A plug slurry liquid containing the metal pieces and brazing material was poured into both ends of the hollow part of the winding core of the metal honeycomb body, and then dried at 200°C in air. After drying, the honeycomb unit was fired at 1200°C in a vacuum to provide porous plugs with an axial length of 10 mm at both ends of the hollow part of the winding core. As described above, since the diameter of the hollow part of the winding core is 5 mm, the diameter of the porous plugs is also 5 mm.
Thereafter, a catalyst was applied to the metal foil by a dipping method using a slurry liquid prepared by stirring gamma alumina powder, lanthanum oxide, zirconium oxide, and cerium oxide in an aqueous solution of palladium nitrate. The catalyst was then dried at 200°C and then fired in air at 500°C for 1 hour to produce a catalytic converter.
 金属片及びロウ材の配合比率(X:Y)は、実施例1が5:5、実施例2が3:7、実施例3が4:6、実施例4が7:3、実施例5が9:1、比較例1が1:9、比較例2が9.5:0.5とした。
 実施例1~5、比較例1はそれぞれ、3つの試料を準備し、空隙率を測定した。ただし、比較例1は、金属片の配合率が低すぎて、いずれの試料もプラグ形態にならなかったため、空隙率を測定しなかった。空隙率は、実施形態で記載したように、多孔質プラグのX線CT画像を10枚取得し、それぞれのX線CT画像を2値化して画像解析することによって求めた空隙率の算術平均値とした。なお、本実施例では、一端側に配設された多孔質プラグの空隙率だけを測定した。
The mixing ratio (X:Y) of the metal piece and brazing material is 5:5 in Example 1, 3:7 in Example 2, 4:6 in Example 3, 7:3 in Example 4, and 7:3 in Example 5. was 9:1, Comparative Example 1 was 1:9, and Comparative Example 2 was 9.5:0.5.
Three samples were prepared for each of Examples 1 to 5 and Comparative Example 1, and the porosity was measured. However, in Comparative Example 1, the porosity was not measured because the blending ratio of metal pieces was too low and none of the samples took the form of a plug. As described in the embodiment, the porosity is the arithmetic mean value of the porosity obtained by acquiring 10 X-ray CT images of the porous plug, binarizing each X-ray CT image, and performing image analysis. And so. In this example, only the porosity of the porous plug disposed at one end was measured.
 比較例3では、多孔質プラグに代えて緻密なプラグ(以下、Nプラグともいう)を配設した。Nプラグには、多孔質プラグの金属片と同じ材料を使用した。Nプラグの軸方向長さは、実施例の多孔質プラグと同様に、10mmとした。比較例4では、多孔質プラグもNプラグも配設しなかった。比較例5では、巻き芯中空部に延出した平箔及び波箔の重ね合わせ部分に円錐状の治具を押し込み拡開させることによって排ガスの流入を規制する規制部を設けた(つまり、特許文献3の中心形状加工)。 In Comparative Example 3, a dense plug (hereinafter also referred to as an N plug) was provided in place of the porous plug. The same material as the metal piece of the porous plug was used for the N plug. The axial length of the N plug was 10 mm, similar to the porous plug of the example. In Comparative Example 4, neither the porous plug nor the N plug was provided. In Comparative Example 5, a conical jig was pushed into the overlapping part of the flat foil and the corrugated foil extending into the hollow part of the winding core to expand it, thereby providing a regulating part for regulating the inflow of exhaust gas (that is, the regulation part that regulates the inflow of exhaust gas was provided). Center shape processing in Reference 3).
 プラグの形態維持性は、一端側に配設された多孔質プラグ30を上端面からロッドで押し込み、除荷した後のプラグ形状の変化により評価した。ロッドのサイズはφ4mmとし、ロッドの押し込み距離は20mmとし、ロッドの押し込み速度は1.0mm/secとした。ここで、多孔質プラグを構成する金属片がロウ材により強固に接合されている場合、多孔質プラグは、荷重を加えても変形せず元の形状を維持できる。その一方で金属片同士の接合が弱い多孔質プラグは、荷重により形状が変化する。形状変化は、多孔質プラグの封止範囲に影響する。金属片同士の接合が弱い場合、メタルハニカム体の使用時に多孔質プラグがバラバラになる。バラバラになると、巻き芯中空部に対するガスの流入を抑制する(言い換えると、ガス抜けを防止する)プラグ本来の機能が失われる。 The shape retention of the plug was evaluated by pushing in the porous plug 30 disposed on one end side with a rod from the upper end surface and by the change in the shape of the plug after unloading. The size of the rod was φ4 mm, the pushing distance of the rod was 20 mm, and the pushing speed of the rod was 1.0 mm/sec. Here, if the metal pieces constituting the porous plug are firmly joined by a brazing material, the porous plug will not be deformed and can maintain its original shape even when a load is applied. On the other hand, porous plugs with weak connections between metal pieces change their shape under load. The shape change affects the sealing range of the porous plug. If the bond between the metal pieces is weak, the porous plug will fall apart when using the metal honeycomb body. If it falls apart, the plug loses its original function of suppressing the inflow of gas into the hollow part of the winding core (in other words, preventing gas from escaping).
 そこで、本実施例では、荷重試験後の形状が元の形状と変わらないものは、形態維持性が大変良好であるとしてAAAで評価し、軸方向の減少代が1mm以内のものは、形態維持性が良好であるとしてAAで評価し、減少代が1mmを超えるが、金属片同士の接合が確保され封止個所の封止ができていると評価できるものは、形態維持性がやや良好であるとしてAで評価し、形状変化が大きく、封止個所の封止が適切にできでいないと判断したものは、形態維持性が不良であるとしてBで評価した。 Therefore, in this example, if the shape after the load test is the same as the original shape, it is evaluated by AAA as having very good shape retention, and if the axial reduction is within 1 mm, shape retention is evaluated. The properties are evaluated as AA and the reduction exceeds 1 mm, but if the metal pieces can be evaluated to be bonded to each other and the sealed area is sealed, the shape retention is somewhat good. If the shape change was large and it was determined that the sealed portion could not be properly sealed, the shape retention was judged to be poor and the shape was evaluated as B.
 メタルハニカム体を巻き芯中空部の配設位置で軸方向に沿って切断し、触媒の浸み込みの程度を目視で確認することによって、触媒流入防止効果を評価した。多孔質プラグ内に触媒が浸み込んでいない場合には、触媒流入防止効果が大変良好であるとしてAAAで評価した。多孔質プラグに対する触媒の浸み込みが途中で止まっている場合には、流入防止効果が良好であるとしてAAで評価した。試験した試料の中で一部の試料だけに巻き芯中空部に対する触媒の浸み込みが確認された場合には、触媒流入防止効果がやや良好であるとしてAで評価した。試験した試料の全ての試料において、巻き芯中空部に対する触媒の浸み込みが確認された場合には、触媒流入防止効果が不良であるとしてBで評価した。 The metal honeycomb body was cut in the axial direction at the position of the hollow part of the winding core, and the degree of catalyst infiltration was visually confirmed to evaluate the catalyst inflow prevention effect. If the catalyst had not infiltrated into the porous plugs, the catalyst inflow prevention effect was deemed very good and rated as AAA. If the catalyst infiltration into the porous plugs stopped midway, the inflow prevention effect was deemed good and rated as AA. If catalyst infiltration into the hollow part of the winding core was confirmed in only some of the tested samples, the catalyst inflow prevention effect was deemed somewhat good and rated as A. If catalyst infiltration into the hollow part of the winding core was confirmed in all of the tested samples, the catalyst inflow prevention effect was deemed poor and rated as B.
 ライトオフ性能は、SV(空間速度):100,000h-1の条件にて模擬ガスをメタルハニカム体に流し、ガス温度を常温から徐々に昇温して、各温度におけるHC転化率(%)を測定するとともに、転化率-温度曲線から転化率が50%に到達したときの時間(τ50)により評価した。τ50が9秒以下をAAA、11秒以下をAA、13秒以下をA、13秒を超えた場合をBとして評価した。また、転化率-温度曲線から転化率が80%に到達したときの温度(T80)により、T80が230℃以下の場合をAA、240℃以下をA,240℃超をBとして定常浄化性能を評価した。模擬ガスには、HC(プロパン、C):550ppm(1650ppmC)、NO:500ppm、CO:0.5%、O:1.5%、HO:10%、残部がNの模擬ガス(ディーゼル排ガスの模擬ガス)を使用した。
Figure JPOXMLDOC01-appb-T000001
The light-off performance was measured by flowing a simulated gas through a metal honeycomb body under the condition of SV (space velocity): 100,000h -1 , gradually increasing the gas temperature from room temperature, and calculating the HC conversion rate (%) at each temperature. was measured and evaluated by the time (τ50) when the conversion rate reached 50% from the conversion rate-temperature curve. When τ50 was 9 seconds or less, it was evaluated as AAA, when it was 11 seconds or less, it was evaluated as AA, when it was 13 seconds or less, it was evaluated as A, and when it exceeded 13 seconds, it was evaluated as B. In addition, based on the temperature (T80) when the conversion rate reaches 80% from the conversion rate-temperature curve, the steady purification performance is determined as AA when T80 is 230℃ or less, A when it is 240℃ or less, and B when it is over 240℃. evaluated. The simulated gases include HC (propane, C 3 H 6 ): 550 ppm (1650 ppm C), NO: 500 ppm, CO: 0.5%, O 2 : 1.5%, H 2 O: 10%, the balance being N 2 A simulated gas (simulated diesel exhaust gas) was used.
Figure JPOXMLDOC01-appb-T000001
 実施例1~5は、規制手段として中心形状加工を採用した比較例5よりも、プラグの形態維持性が向上した。比較例2は、ロウ材が過少であるため、プラグの形態維持性の評価がBであった。また、X:Yを7:3以下、換言すると、X/Yを7/3以下に設定することによって、所望の接合強度が得られ、プラグの形態維持性が高められることがわかった。実施例1~5は、Nプラグを採用した比較例3よりも、ライトオフ性能が向上した。X:Yを4:6以上、換言すると、X/Yを4/6以上に設定することによって、多孔質プラグ30の空隙率が高まり、ライトオフ性能が更に向上することがわかった。
 X:Yを7:3以下、換言すると、X/Yを7/3以下に設定することによって、触媒流入防止効果が得られることがわかった。
 また、実施例1~5は、比較例4よりも定常浄化性能が優れており、プラグ本来の目的(巻き芯中空部に対する排ガス流入規制を行い、浄化性能を向上させる)も維持できていた。
In Examples 1 to 5, the shape retention of the plug was improved compared to Comparative Example 5 in which center shape processing was adopted as a regulating means. In Comparative Example 2, the plug shape retention was evaluated as B because the amount of brazing material was too small. Furthermore, it has been found that by setting X:Y to 7:3 or less, in other words, by setting X/Y to 7/3 or less, a desired bonding strength can be obtained and the shape retention of the plug can be improved. Examples 1 to 5 had better light-off performance than Comparative Example 3, which employed an N plug. It was found that by setting X:Y to 4:6 or more, in other words, by setting X/Y to 4/6 or more, the porosity of the porous plug 30 was increased and the light-off performance was further improved.
It has been found that the effect of preventing catalyst inflow can be obtained by setting X:Y to 7:3 or less, in other words, by setting X/Y to 7/3 or less.
In addition, Examples 1 to 5 had better steady-state purification performance than Comparative Example 4, and the original purpose of the plug (improving purification performance by regulating the inflow of exhaust gas into the hollow part of the winding core) was also maintained.
  (第2実施例)
 第2実施例は、第2実施形態に対応する。
 メタルハニカム体は、第1実施例と同じにした。金属片及びロウ材は、第1実施例と同じにした。
 軸方向長さが10mmの多孔質プラグを巻き芯中空部の一端側(ガス入側)だけに配設して、第1実施例と同様に、プラグ形態維持性、ライトオフ性能及び定常浄化性能を評価した。評価方法は、第1実施例と同じにした。なお、触媒の流入防止効果については、評価しなかった。多孔質プラグ以外の条件は、第1実施例と同じにした。
 ただし、比較例7では、貫通孔のない金属箔を使用し、かつ、巻き芯中空部を封止しなかった。
(Second example)
The second example corresponds to the second embodiment.
The metal honeycomb body was the same as in the first example. The metal piece and brazing material were the same as in the first example.
A porous plug with an axial length of 10 mm was disposed only on one end side (gas inlet side) of the hollow part of the winding core, and as in the first embodiment, plug shape retention, light-off performance, and constant purification performance were achieved. was evaluated. The evaluation method was the same as in the first example. Note that the effect of preventing the inflow of the catalyst was not evaluated. The conditions other than the porous plug were the same as in the first example.
However, in Comparative Example 7, metal foil without through holes was used and the hollow part of the winding core was not sealed.
 金属片及びロウ材の配合比率(X:Y)は、実施例6が5:5、実施例7が3:7、実施例8が4:6、実施例9が7:3、実施例10が9:1とした。 The mixing ratio (X:Y) of the metal piece and brazing material was 5:5 in Example 6, 3:7 in Example 7, 4:6 in Example 8, 7:3 in Example 9, and 7:3 in Example 10. The ratio was 9:1.
 比較例6では、比較例3のNプラグを巻き芯中空部の一端側(ガス入側)だけに配設した。
Figure JPOXMLDOC01-appb-T000002
In Comparative Example 6, the N plug of Comparative Example 3 was disposed only on one end side (gas inlet side) of the hollow part of the winding core.
Figure JPOXMLDOC01-appb-T000002
 実施例6~10は、規制手段として中心形状加工を採用した比較例5(表1参照)よりも、プラグの形態維持性が向上した。また、X:Yを7:3以下、換言すると、X/Yを7/3以下に設定することによって、所望の接合強度が得られ、プラグの形態維持性が高められることがわかった。実施例6~10は、Nプラグを採用した比較例6よりも、ライトオフ性能が向上した。X:Yを4:6以上、換言すると、X/Yを4/6以上に設定することによって、多孔質プラグ30の空隙率が高まり、ライトオフ性能が更に向上することがわかった。
 また、実施例6~10は、比較例4(表1参照)よりも定常浄化性能が優れており、プラグ本来の目的(巻き芯中空部に対する排ガス流入規制を行い、浄化性能を向上させる)も維持できていた。
 さらに、実施例6~10は、比較例7(貫通孔無、封止無)よりも定常浄化性能が優れており、ライトオフ性能も同等以上であった。したがって、金属箔に多数の貫通孔を形成することにより懸念される課題(巻き芯中空部にガスが集中することによる定常浄化性能の低下)を、多孔質プラグによって解決できることがわかった。また、巻き芯中空部にプラグを配設することにより懸念される課題(ライトオフ性能の低下)を、プラグ形態を多孔質とすることによって解決できることがわかった。
In Examples 6 to 10, the shape retention of the plug was improved compared to Comparative Example 5 (see Table 1), which employed central shape processing as the restricting means. It was also found that a desired bonding strength was obtained and the shape retention of the plug was improved by setting X:Y to 7:3 or less, in other words, X/Y to 7/3 or less. In Examples 6 to 10, the light-off performance was improved compared to Comparative Example 6, which employed an N plug. It was found that by setting X:Y to 4:6 or more, in other words, X/Y to 4/6 or more, the porosity of the porous plug 30 was increased and the light-off performance was further improved.
Moreover, Examples 6 to 10 were superior in steady-state purification performance to Comparative Example 4 (see Table 1), and the original purpose of the plug (to regulate the inflow of exhaust gas into the hollow part of the winding core and improve purification performance) was also achieved.
Furthermore, Examples 6 to 10 had better steady-state purification performance than Comparative Example 7 (no through-holes, no sealing), and the light-off performance was equal to or better. Therefore, it was found that the problem of concern caused by forming a large number of through-holes in the metal foil (decrease in steady-state purification performance due to gas concentration in the hollow part of the winding core) can be solved by using porous plugs. It was also found that the problem of concern caused by providing plugs in the hollow part of the winding core (decrease in light-off performance) can be solved by making the plugs porous.
 本発明者等は、金属箔の貫通孔の直径を8mmとしたメタルハニカム体の軸芯中空部に実施例8の多孔質プラグを配設するとともに、開口率を変化させながら、定常浄化性能を調べる試験も別途行った。開口率が20%、30%、40%、50%、60%いずれの場合においても、定常浄化性能の評価はA又はAAであった。
 また、開口率を20%としたメタルハニカム体の軸芯中空部に実施例8の多孔質プラグを配設するとともに、貫通孔の直径を変化させながら、定常浄化性能を調べる試験も別途行った。貫通孔の直径が0.5mm、2mm、4mmいずれの場合においても、定常浄化性能の評価はAAであった。
The present inventors disposed the porous plug of Example 8 in the hollow part of the shaft core of a metal honeycomb body in which the diameter of the through-hole of the metal foil was 8 mm, and while changing the aperture ratio, the steady-state purification performance was improved. A separate test was also conducted to investigate. Regardless of whether the aperture ratio was 20%, 30%, 40%, 50%, or 60%, the steady-state purification performance was evaluated as A or AA.
In addition, the porous plug of Example 8 was arranged in the hollow part of the shaft core of a metal honeycomb body with an open area ratio of 20%, and a separate test was conducted to examine the steady-state purification performance while changing the diameter of the through hole. . Regardless of whether the diameter of the through hole was 0.5 mm, 2 mm, or 4 mm, the steady-state purification performance was evaluated as AA.
 (第3実施例)
 第3実施例は、第3実施形態に対応する。
 金属箔に貫通孔が形成されていないメタルハニカム体を使用した。その他のメタルハニカム体の構成は、第1実施例と同じにした。金属片及びロウ材は、第1実施例と同じにした。
(Third example)
The third example corresponds to the third embodiment.
A metal honeycomb body with no through holes formed in the metal foil was used. The other configurations of the metal honeycomb body were the same as in the first example. The metal piece and brazing material were the same as in the first example.
 金属片及びロウ材の配合比率(X:Y)は、実施例11が5:5、実施例12が3:7、実施例13が4:6、実施例14が7:3、実施例15が9:1、比較例8が1:9、比較例9が9.5:0.5とした。実施例11~15、比較例8はそれぞれ、3つの試料を準備し、空隙率を測定した。ただし、比較例8は、金属片の配合率が低すぎて、いずれの試料もプラグ形態にならなかったため、空隙率を測定しなかった。空隙率は、第1実施例と同様の方法で測定した。 The mixing ratio (X:Y) of the metal pieces and brazing material is 5:5 in Example 11, 3:7 in Example 12, 4:6 in Example 13, 7:3 in Example 14, and 7:3 in Example 15. was 9:1, Comparative Example 8 was 1:9, and Comparative Example 9 was 9.5:0.5. Three samples were prepared for each of Examples 11 to 15 and Comparative Example 8, and the porosity was measured. However, in Comparative Example 8, the proportion of metal pieces was too low and none of the samples took the form of a plug, so the porosity was not measured. The porosity was measured in the same manner as in the first example.
 比較例10では、多孔質プラグに代えてNプラグを配設した。Nプラグには、多孔質プラグの金属片と同じ材料を使用した。Nプラグの軸方向長さは、実施例の多孔質プラグと同様に、10mmとした。比較例11では、多孔質プラグもNプラグも配設しなかった。比較例12では、比較例5の規制部(中心形状加工)を設けた。 In Comparative Example 10, an N plug was provided in place of the porous plug. The same material as the metal piece of the porous plug was used for the N plug. The axial length of the N plug was 10 mm, similar to the porous plug of the example. In Comparative Example 11, neither the porous plug nor the N plug was provided. In Comparative Example 12, the regulating portion (center shape processing) of Comparative Example 5 was provided.
 軸方向長さが10mmの多孔質プラグを巻き芯中空部の両端に配設して、プラグ形態維持性、ライトオフ性能、触媒流入防止効果及び定常浄化性能を評価した。また、参考情報として、圧力損失も評価した。 Porous plugs with an axial length of 10 mm were placed at both ends of the hollow part of the winding core, and plug shape retention, light-off performance, catalyst inflow prevention effect, and steady purification performance were evaluated. Additionally, pressure loss was also evaluated as reference information.
 プラグの形態維持性及び触媒流入防止効果は、第1実施例と同様の方法で評価した。 The shape maintenance of the plug and the effect of preventing catalyst inflow were evaluated in the same manner as in the first example.
 ライトオフ性能は、SV(空間速度):100,000h-1の条件にて模擬ガスをメタルハニカム体に流し、ガス温度を常温から徐々に昇温して、各温度におけるHC転化率(%)を測定するとともに、転化率-温度曲線から転化率が50%に到達したときの時間(τ50)により評価した。τ50が12秒以下をAAA、14秒以下をAA、16秒以下をA、16秒を超えた場合をBとして評価した。
 また、転化率-温度曲線から転化率が80%に到達したときの温度(T80)により、T80が240℃以下の場合をAA、250℃以下をA,250℃超をBとして定常浄化性能を評価した。模擬ガスには、HC(プロパン、C):550ppm(1650ppmC)、NO:500ppm、CO:0.5%、O:1.5%、HO:10%、残部がNの模擬ガス(ディーゼル排ガスの模擬ガス)を使用した。
The light-off performance was measured by flowing a simulated gas through a metal honeycomb body under the condition of SV (space velocity): 100,000h -1 , gradually increasing the gas temperature from room temperature, and calculating the HC conversion rate (%) at each temperature. was measured and evaluated by the time (τ50) when the conversion rate reached 50% from the conversion rate-temperature curve. When τ50 was 12 seconds or less, it was evaluated as AAA, when it was 14 seconds or less, it was evaluated as AA, when it was 16 seconds or less, it was evaluated as A, and when it exceeded 16 seconds, it was evaluated as B.
In addition, based on the temperature (T80) when the conversion rate reaches 80% from the conversion rate-temperature curve, the steady purification performance is determined as AA when T80 is 240°C or less, A when it is 250°C or less, and B when it is over 250°C. evaluated. The simulated gases include HC (propane, C 3 H 6 ): 550 ppm (1650 ppm C), NO: 500 ppm, CO: 0.5%, O 2 : 1.5%, H 2 O: 10%, the balance being N 2 A simulated gas (simulated diesel exhaust gas) was used.
 圧力損失は、25℃の乾燥したNガスを流量0.12Nm/minにてメタルハニカム体に流入させ、メタルハニカム体前後の圧力差を測定することによって評価した。比較例11(封止なし)と比較して、差が±1%以内であれば圧力損失が低いとしてAで評価し、差が1%超であれば圧力損失が大きいとしてBで評価した。
Figure JPOXMLDOC01-appb-T000003
The pressure loss was evaluated by flowing dry N 2 gas at 25° C. into the metal honeycomb body at a flow rate of 0.12 Nm 3 /min and measuring the pressure difference before and after the metal honeycomb body. Compared to Comparative Example 11 (no sealing), if the difference was within ±1%, the pressure loss was considered to be low and evaluated as A; if the difference exceeded 1%, the pressure loss was considered to be large and evaluated as B.
Figure JPOXMLDOC01-appb-T000003
 実施例11~15は、規制手段として中心形状加工を採用した比較例12よりも、プラグの形態維持性が向上した。比較例9は、ロウ材が過少であるため、プラグの形態維持性の評価がBであった。また、X:Yを7:3以下、換言すると、X/Yを7/3以下に設定することによって、所望の接合強度が得られ、プラグの形態維持性が高められることがわかった。実施例11~15は、Nプラグを採用した比較例10よりも、ライトオフ性能が向上した。
 X:Yを4:6以上、換言すると、X/Yを4/6以上に設定することによって、多孔質プラグ30の空隙率が高まり、ライトオフ性能が更に向上することがわかった。
 X:Yを7:3以下、換言すると、X/Yを7/3以下に設定することによって、触媒流入防止効果が得られることがわかった。
 また、実施例11~15は、比較例11よりも定常浄化性能が優れており、圧力損失は比較例11と同等であり、プラグ本来の目的(巻き芯中空部に対する排ガス流入規制を行い、圧力損失の増加を伴うことなく浄化性能を向上させる)も維持できていた。
Examples 11 to 15 showed improved plug shape retention compared to Comparative Example 12, which employed central shape processing as the regulating means. Comparative Example 9 was rated a B for plug shape retention because the amount of brazing material was insufficient. It was also found that the desired joint strength was obtained and the plug shape retention was improved by setting X:Y to 7:3 or less, in other words, X/Y to 7/3 or less. Examples 11 to 15 showed improved light-off performance compared to Comparative Example 10, which employed an N plug.
It was found that by setting X:Y to 4:6 or more, in other words, X/Y to 4/6 or more, the porosity of the porous plug 30 was increased, and the light-off performance was further improved.
It was found that the catalyst inflow prevention effect can be obtained by setting X:Y to 7:3 or less, in other words, by setting X/Y to 7/3 or less.
Moreover, Examples 11 to 15 were superior to Comparative Example 11 in steady-state purification performance and had pressure loss equivalent to that of Comparative Example 11, and thus were able to achieve the original purpose of the plug (to regulate the inflow of exhaust gas into the hollow part of the winding core and improve the purification performance without increasing the pressure loss).
  (第4実施例)
 第4実施例は、第4実施形態に対応する。
 金属箔に貫通孔が形成されていないメタルハニカム体を使用した。その他のメタルハニカム体の構成は第1実施例と同じにした。金属片及びロウ材は、第1実施例と同じにした。
 軸方向長さが10mmの多孔質プラグを巻き芯中空部のガス入側端部に配設して、プラグ形態維持性、ライトオフ性能、定常浄化性能及び圧力損失を評価した。ただし、実施例21では、多孔質プラグをガス出側端部に配設した。
(Fourth example)
The fourth example corresponds to the fourth embodiment.
A metal honeycomb body with no through holes formed in the metal foil was used. The other configurations of the metal honeycomb body were the same as in the first example. The metal piece and brazing material were the same as in the first example.
A porous plug having an axial length of 10 mm was disposed at the gas inlet end of the hollow part of the winding core, and plug shape retention, light-off performance, steady purification performance, and pressure loss were evaluated. However, in Example 21, a porous plug was provided at the gas outlet end.
 金属片及びロウ材の配合比率(X:Y)は、実施例16が5:5、実施例17が3:7、実施例18が4:6、実施例19及び21が7:3、実施例20が9:1、比較例13が1:9、比較例14が9.5:0.5とした。実施例16~21、比較例13はそれぞれ、3つの試料を準備し、空隙率を測定した。ただし、比較例13は、金属片の配合率が低すぎて、いずれの試料もプラグ形態にならなかったため、空隙率を測定しなかった。空隙率は、第1実施例と同じ方法で測定した。 The compounding ratio (X:Y) of the metal pieces and brazing material was 5:5 for Example 16, 3:7 for Example 17, 4:6 for Example 18, 7:3 for Examples 19 and 21, 9:1 for Example 20, 1:9 for Comparative Example 13, and 9.5:0.5 for Comparative Example 14. For each of Examples 16-21 and Comparative Example 13, three samples were prepared and the porosity was measured. However, for Comparative Example 13, the compounding ratio of the metal pieces was too low and none of the samples were in a plug shape, so the porosity was not measured. The porosity was measured in the same manner as in the first example.
 比較例15では、多孔質プラグに代えてNプラグを配設した。Nプラグには、多孔質プラグの金属片と同じ材料を使用した。Nプラグの軸方向長さは、実施例の多孔質プラグと同様に、10mmとした。比較例16では、多孔質プラグもNプラグも配設しなかった。比較例17では、比較例5の規制部(中心形状加工)を設けた。 In Comparative Example 15, an N plug was provided in place of the porous plug. The same material as the metal piece of the porous plug was used for the N plug. The axial length of the N plug was 10 mm, similar to the porous plug of the example. In Comparative Example 16, neither the porous plug nor the N plug was provided. In Comparative Example 17, the regulating portion (center shape processing) of Comparative Example 5 was provided.
 プラグの形態維持性は、第1実施例と同じ方法で評価した。
 ライトオフ性能、定常浄化性能及び圧力損失は、第3実施例と同じ方法で評価した。
Figure JPOXMLDOC01-appb-T000004
The shape retention of the plug was evaluated using the same method as in the first example.
Light-off performance, steady-state purification performance, and pressure loss were evaluated using the same methods as in the third example.
Figure JPOXMLDOC01-appb-T000004
 実施例16~20は、規制手段として中心形状加工を採用した比較例17よりも、プラグの形態維持性が向上した。比較例14は、ロウ材が過少であるため、プラグの形態維持性の評価がBであった。また、X:Yを7:3以下、換言すると、X/Yを7/3以下に設定することによって、所望の接合強度が得られ、プラグの形態維持性が高められることがわかった。実施例16~20は、Nプラグを採用した比較例15よりも、ライトオフ性能が向上した。
 実施例21は、得られた性能が実施例19と同じであった。X:Yを4:6以上、換言すると、X/Yを4/6以上に設定することによって、多孔質プラグ30の空隙率が高まり、ライトオフ性能が更に向上することがわかった。
 また、実施例16~20は、比較例16よりも定常浄化性能が優れており、圧力損失は比較例16と同等であり、プラグ本来の目的(巻き芯中空部に対する排ガス流入規制を行い、圧力損失の増加を伴うことなく浄化性能を向上させる)も維持できていた。
In Examples 16 to 20, the shape retention of the plug was improved compared to Comparative Example 17 in which center shape processing was adopted as a regulating means. In Comparative Example 14, the plug shape retention was evaluated as B because the amount of brazing material was too small. Furthermore, it has been found that by setting X:Y to 7:3 or less, in other words, by setting X/Y to 7/3 or less, a desired bonding strength can be obtained and the shape retention of the plug can be improved. Examples 16 to 20 had better light-off performance than Comparative Example 15, which adopted an N plug.
In Example 21, the obtained performance was the same as in Example 19. It was found that by setting X:Y to 4:6 or more, in other words, by setting X/Y to 4/6 or more, the porosity of the porous plug 30 was increased and the light-off performance was further improved.
In addition, Examples 16 to 20 have better steady-state purification performance than Comparative Example 16, and the pressure loss is the same as Comparative Example 16. (improving purification performance without increasing loss) was also maintained.
(変形例)
 上述の各実施形態では、多孔質プラグ30の製造原料として金属片31及びロウ材を使用したが、本発明はこれに限るものではなく、ロウ材に代えて、無機接着剤を用いることもできる。この場合、隣接する金属片31を無機接着剤で接着した多孔質プラグ30を予め準備しておき、この多孔質プラグ30を巻き芯中空部6の一端又は両端に配設して、無機接着剤で巻き芯中空部6の内面に接着すればよい。無機接着剤には、例えば、主成分にアルミナを含む無機接着剤(例えば、東亜合成株式会社製のアロンセラミックD)を用いることができる。
(Modified example)
In each of the embodiments described above, the metal piece 31 and the brazing material are used as raw materials for manufacturing the porous plug 30, but the present invention is not limited to this, and an inorganic adhesive may be used instead of the brazing material. . In this case, a porous plug 30 in which adjacent metal pieces 31 are bonded with an inorganic adhesive is prepared in advance, and this porous plug 30 is arranged at one end or both ends of the winding core hollow part 6, and the inorganic adhesive It is sufficient to adhere it to the inner surface of the hollow part 6 of the winding core. As the inorganic adhesive, for example, an inorganic adhesive containing alumina as a main component (for example, Aron Ceramic D manufactured by Toagosei Co., Ltd.) can be used.
 1  触媒コンバータ
 2  平箔
 3  波箔
 4  メタルハニカム体
 4a 貫通孔
 5  外筒
 6  巻き芯中空部
 30 多孔質プラグ
 31 金属片
 
1 Catalytic converter 2 Flat foil 3 Corrugated foil 4 Metal honeycomb body 4a Through hole 5 Outer cylinder 6 Winding core hollow 30 Porous plug 31 Metal piece

Claims (19)

  1.  金属箔からなる平箔及び波箔を所定軸周りに巻き回すことにより構成されたメタルハニカム体において、
     該メタルハニカム体の巻き芯中空部における一端又は両端には、多孔質体からなるプラグが配設されていることを特徴とするメタルハニカム体。
    In a metal honeycomb body constructed by winding flat and corrugated metal foils around a predetermined axis,
    A metal honeycomb body characterized in that a plug made of a porous material is disposed at one end or both ends of a core hollow portion of the metal honeycomb body.
  2.  前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする請求項1に記載のメタルハニカム体。 The metal honeycomb body according to claim 1, characterized in that the flat foil and/or corrugated foil has a large number of through holes formed therein.
  3.  前記多孔質体は、多数の金属片をロウ材で接合した構造を呈していることを特徴とする請求項1又は2に記載のメタルハニカム体。 The metal honeycomb body according to claim 1 or 2, wherein the porous body has a structure in which a large number of metal pieces are joined with a brazing material.
  4.  前記金属片は、前記金属箔と同一の素材で構成されており、
     前記ロウ材は、前記平箔及び前記波箔の接合に用いられるロウ材と同一の素材で構成されていることを特徴とする請求項3に記載のメタルハニカム体。
    The metal piece is made of the same material as the metal foil,
    4. The metal honeycomb body according to claim 3, wherein the brazing material is made of the same material as a brazing material used for joining the flat foil and the corrugated foil.
  5.  前記多孔質体は、多数の金属片と、隣接する金属片を互いに接着する無機接着剤とから構成されることを特徴とする請求項1又は2に記載のメタルハニカム体。 The metal honeycomb body according to claim 1 or 2, wherein the porous body is composed of a large number of metal pieces and an inorganic adhesive that adheres adjacent metal pieces to each other.
  6.  前記多孔質体の空隙率は、7%以上85%以下であることを特徴とする請求項1乃至5のうちいずれか一つに記載のメタルハニカム体。 The metal honeycomb body according to any one of claims 1 to 5, wherein the porous body has a porosity of 7% or more and 85% or less.
  7.  前記多孔質体は、該メタルハニカム体の巻き芯中空部における両端に配設されており、
     前記多孔質体の空隙率は、70%以下であることを特徴とする請求項1乃至6のうちいずれか一つに記載のメタルハニカム体。
    The porous body is disposed at both ends of the core hollow part of the metal honeycomb body,
    The metal honeycomb body according to any one of claims 1 to 6, wherein the porous body has a porosity of 70% or less.
  8.  前記多孔質体の軸方向における長さは、前記巻き芯中空部の直径の1倍以上3倍以下であることを特徴とする請求項1乃至7のうちいずれか一つに記載のメタルハニカム体。 The metal honeycomb body according to any one of claims 1 to 7, wherein the length in the axial direction of the porous body is 1 time or more and 3 times or less the diameter of the winding core hollow part. .
  9.  請求項1乃至8のうちいずれか一つに記載のメタルハニカム体と、
     前記メタルハニカム体が収容される外筒と、
     を有することを特徴とするハニカムユニット。
    A metal honeycomb body according to any one of claims 1 to 8,
    an outer cylinder in which the metal honeycomb body is housed;
    A honeycomb unit characterized by having.
  10.  請求項1乃至8のうちいずれか一つに記載のメタルハニカム体に触媒が担持された触媒コンバータ。 A catalytic converter in which a catalyst is supported on the metal honeycomb body according to any one of claims 1 to 8.
  11.  請求項9に記載のハニカムユニットにおけるメタルハニカム体に触媒が担持された触媒コンバータ。 A catalytic converter in which a catalyst is supported on the metal honeycomb body in the honeycomb unit according to claim 9.
  12.  請求項1に記載のメタルハニカム体及び外筒を含むハニカムユニットの製造方法であって、
     ロウ材及び多数の金属片を含むスラリー状母材を、前記巻き芯中空部の端部から供給する母材供給ステップと、
     前記母材供給ステップの後に、前記ハニカムユニットを焼成する焼成ステップと、
     を有し、
     前記焼成ステップに供される前記ハニカムユニットの所定の部位には、予めロウ材が配設されており、
     前記所定の部位には、前記平箔及び波箔の接合予定部と、前記メタルハニカム体及び前記外筒の接合予定部とが含まれ、
     前記母材供給ステップにおいて、前記スラリー状母材に含まれる前記金属片の総含有量をX質量%、前記ロウ材の総含有量をY質量%としたとき、X質量%とY質量%の比であるX:Yは、3:7から9:1の範囲に含まれることを特徴とするハニカムユニットの製造方法。
    A method for manufacturing a honeycomb unit comprising the metal honeycomb body and outer cylinder according to claim 1,
    a base material supplying step of supplying a slurry-like base material containing a brazing material and a large number of metal pieces from an end of the hollow part of the winding core;
    a firing step of firing the honeycomb unit after the base material supplying step;
    has
    A brazing material is placed in advance at a predetermined portion of the honeycomb unit to be subjected to the firing step,
    The predetermined portion includes a portion where the flat foil and the corrugated foil are scheduled to be joined, and a portion where the metal honeycomb body and the outer cylinder are scheduled to be joined,
    In the base material supply step, when the total content of the metal pieces contained in the slurry base material is X mass % and the total content of the brazing material is Y mass %, the difference between X mass % and Y mass % A method for manufacturing a honeycomb unit, characterized in that the ratio X:Y is within a range of 3:7 to 9:1.
  13.  前記母材供給ステップは、前記巻き芯中空部における両端に前記スラリー状母材を供給するステップであり、
     X:Yは、3:7から7:3の範囲に含まれることを特徴とする請求項12に記載のハニカムユニットの製造方法。
    The base material supplying step is a step of supplying the slurry base material to both ends of the winding core hollow part,
    13. The method for manufacturing a honeycomb unit according to claim 12, wherein X:Y is within a range of 3:7 to 7:3.
  14.  請求項12又は13に記載の前記焼成ステップの後に、
     前記ハニカムユニットの軸方向における端部から触媒を含むスラリーを流入させる触媒スラリー流入ステップと、
     前記触媒スラリー流入ステップの後に、前記ハニカムユニットを乾燥及び焼成して触媒を担持させる触媒担持ステップと、を実施する
     ことを特徴とする触媒コンバータの製造方法。
    After the firing step according to claim 12 or 13,
    a catalyst slurry inflow step of inflowing slurry containing a catalyst from an end in the axial direction of the honeycomb unit;
    A method for manufacturing a catalytic converter, characterized in that, after the catalyst slurry inflow step, a catalyst supporting step is performed in which the honeycomb unit is dried and fired to support a catalyst.
  15.  前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする請求項12又は13に記載のハニカムユニットの製造方法。 The method for manufacturing a honeycomb unit according to claim 12 or 13, wherein the flat foil and/or the corrugated foil has a large number of through holes formed therein.
  16.  前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする請求項14に記載の触媒コンバータの製造方法。 15. The method for manufacturing a catalytic converter according to claim 14, wherein the flat foil and/or the corrugated foil have a large number of through holes formed therein.
  17.  請求項1に記載のメタルハニカム体の製造方法であって、
     ロウ材及び多数の金属片を含むスラリー状母材を、前記巻き芯中空部の端部から供給する母材供給ステップと、
     前記母材供給ステップの後に、前記メタルハニカム体を焼成する焼成ステップと、
     を有し、
     前記母材供給ステップにおいて、前記スラリー状母材に含まれる前記金属片の総含有量をX質量%、前記ロウ材の総含有量をY質量%としたとき、X質量%とY質量%の比であるX:Yは、3:7から9:1の範囲に含まれることを特徴とするメタルハニカム体の製造方法。
    A method for manufacturing a metal honeycomb body according to claim 1, comprising:
    a base material supplying step of supplying a slurry-like base material containing a brazing material and a large number of metal pieces from an end of the hollow part of the winding core;
    After the base material supply step, a firing step of firing the metal honeycomb body;
    has
    In the base material supply step, when the total content of the metal pieces contained in the slurry base material is X mass % and the total content of the brazing material is Y mass %, the difference between X mass % and Y mass % A method for manufacturing a metal honeycomb body, characterized in that the ratio X:Y is within a range of 3:7 to 9:1.
  18.  請求項17に記載の前記焼成ステップの後に、
     前記メタルハニカム体の軸方向における端部から触媒を含むスラリーを流入させる触媒スラリー流入ステップと、
     前記触媒スラリー流入ステップの後に、前記メタルハニカム体を乾燥及び焼成して触媒を担持させる触媒担持ステップと、を実施する
     ことを特徴とする触媒コンバータの製造方法。
    After the calcination step according to claim 17,
    a catalyst slurry inflow step of inflowing a slurry containing a catalyst from an end in the axial direction of the metal honeycomb body;
    A method for manufacturing a catalytic converter, characterized in that, after the catalyst slurry inflow step, a catalyst supporting step is performed in which the metal honeycomb body is dried and fired to support a catalyst.
  19.  前記平箔及び/又は波箔には、多数の貫通孔が形成されていることを特徴とする請求項18に記載の触媒コンバータの製造方法。 The method for manufacturing a catalytic converter according to claim 18, wherein the flat foil and/or the corrugated foil has a large number of through holes formed therein.
PCT/JP2023/024616 2022-09-22 2023-07-03 Metal honeycomb body, honeycomb unit, catalytic converter, method for manufacturing honeycomb unit, method for manufacturing catalytic converter, and method for manufacturing metal honeycomb body WO2024062718A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022151963A JP2024046526A (en) 2022-09-22 2022-09-22 Metal honeycomb body, catalytic converter, and method for manufacturing metal honeycomb body
JP2022-151963 2022-09-22
JP2022211244A JP2024094600A (en) 2022-12-28 Metal honeycomb body, catalytic converter, and method for manufacturing metal honeycomb body
JP2022-211244 2022-12-28
JP2023-043969 2023-03-20
JP2023043969 2023-03-20

Publications (1)

Publication Number Publication Date
WO2024062718A1 true WO2024062718A1 (en) 2024-03-28

Family

ID=90454404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024616 WO2024062718A1 (en) 2022-09-22 2023-07-03 Metal honeycomb body, honeycomb unit, catalytic converter, method for manufacturing honeycomb unit, method for manufacturing catalytic converter, and method for manufacturing metal honeycomb body

Country Status (1)

Country Link
WO (1) WO2024062718A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101637U (en) * 1987-12-28 1989-07-07
JPH06254404A (en) * 1993-03-02 1994-09-13 Nippondenso Co Ltd Self-heating catalyst converter
JPH06254403A (en) * 1993-02-26 1994-09-13 Babcock Hitachi Kk Exhaust gas purification device
JP2009178647A (en) * 2008-01-30 2009-08-13 Cataler Corp Punching metal carrier catalyst for exhaust gas cleaning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101637U (en) * 1987-12-28 1989-07-07
JPH06254403A (en) * 1993-02-26 1994-09-13 Babcock Hitachi Kk Exhaust gas purification device
JPH06254404A (en) * 1993-03-02 1994-09-13 Nippondenso Co Ltd Self-heating catalyst converter
JP2009178647A (en) * 2008-01-30 2009-08-13 Cataler Corp Punching metal carrier catalyst for exhaust gas cleaning

Similar Documents

Publication Publication Date Title
EP1283067B1 (en) Honeycomb filter for purifying exhaust gas
EP1707252B1 (en) Honeycomb structure
JP5775512B2 (en) Honeycomb filter and method for manufacturing honeycomb filter
US8071505B2 (en) Catalytic converter support body
US20070196620A1 (en) Honeycomb structure and exhaust gas purifying device
US20050180898A1 (en) Honeycomb filter for clarification of exhaust gas
EP1840347A1 (en) Honeycomb structure
US20120244042A1 (en) Honeycomb filter
JP6540260B2 (en) Honeycomb structure and automotive catalytic converter
WO2004024293A1 (en) Honeycomb structure
JPWO2007026806A1 (en) Honeycomb catalyst body and manufacturing method thereof
WO2004024295A1 (en) Honeycomb structure
JP2004251137A (en) Honeycomb filter and exhaust emission control system
JP2007289926A (en) Honeycomb structure and honeycomb catalytic body
JPWO2008078799A1 (en) Honeycomb structure and manufacturing method thereof
JP2010513025A (en) Improved soot filter
WO2011125772A1 (en) Honeycomb filter
WO2007069500A1 (en) Catalyst carrier
JP4470554B2 (en) Method for producing exhaust gas purification catalyst
WO2011125770A1 (en) Honeycomb filter
WO2024062718A1 (en) Metal honeycomb body, honeycomb unit, catalytic converter, method for manufacturing honeycomb unit, method for manufacturing catalytic converter, and method for manufacturing metal honeycomb body
JP4471621B2 (en) Honeycomb structure
JP2017064609A (en) Honeycomb structure
JP4402732B1 (en) Honeycomb structure
JP2024046526A (en) Metal honeycomb body, catalytic converter, and method for manufacturing metal honeycomb body