WO2024062645A1 - System for performing wireless power transmission, base station, method, and program - Google Patents

System for performing wireless power transmission, base station, method, and program Download PDF

Info

Publication number
WO2024062645A1
WO2024062645A1 PCT/JP2023/005195 JP2023005195W WO2024062645A1 WO 2024062645 A1 WO2024062645 A1 WO 2024062645A1 JP 2023005195 W JP2023005195 W JP 2023005195W WO 2024062645 A1 WO2024062645 A1 WO 2024062645A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
wireless
transmission
base station
Prior art date
Application number
PCT/JP2023/005195
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 中本
直輝 長谷川
裕貴 ▲高▼木
昂 平川
喜元 太田
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2024062645A1 publication Critical patent/WO2024062645A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a system, base station, method, and program that can perform wireless power transfer (WPT).
  • WPT wireless power transfer
  • a communication system that performs communication between a base station and a terminal device using at least part of a plurality of radio resources set in a radio frame (for example, see Patent Document 1).
  • a system that performs wireless power transmission (WPT) using a mobile communication base station is being considered as a power supply infrastructure that supplies power to the terminal device.
  • WPT wireless power transmission
  • One of the challenges for such a system is to increase the output and efficiency of a power amplifier when amplifying signals for wireless power transmission (WPT).
  • a system is a system that includes a base station that can communicate by selectively using a plurality of radio resources, and performs wireless power transmission from the base station to a terminal device.
  • the base station includes a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; and a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission using a power amplifier and transmits the amplified signal to the terminal device.
  • the terminal device includes a wireless processing unit that receives a transmission signal including the dummy signal transmitted from the base station, and a power output unit that outputs the power of the received signal that received the transmission signal including the dummy signal as received power. It has a section and a.
  • the dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
  • PAPR peak power to average power ratio
  • the output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal, and the wireless processing unit and the dummy signal for wireless power transmission so that the peak of power added efficiency (PAE) in the efficiency characteristic of the power amplifier is located at or near the upper limit of each of the output power range of the communication signal.
  • PAE peak of power added efficiency
  • Control may be performed to switch the efficiency characteristics of the power amplifier between when transmitting the communication signal and when transmitting the communication signal.
  • the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. Furthermore, the drain voltage of the power amplification FET may be controlled.
  • a system is a system that includes a base station capable of communicating by selectively using a plurality of radio resources, and performs wireless power transmission from the base station to a terminal device.
  • the base station includes a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; and a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission using a power amplifier and transmits the amplified signal to the terminal device.
  • the terminal device includes a wireless processing unit that receives a transmission signal including the dummy signal transmitted from the base station, and a power output unit that outputs the power of the received signal that received the transmission signal including the dummy signal as received power. It has a section and a.
  • the output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal, and the wireless processing unit At the time of transmitting the dummy signal for wireless power transmission and at the time of transmitting the dummy signal for wireless power transmission, Control is performed to switch the efficiency characteristics of the power amplifier when transmitting a communication signal.
  • the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. Furthermore, the drain voltage of the power amplification FET may be controlled.
  • the communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively, and the wireless processing unit switches the drain voltage on a frame-by-frame basis. It may be controlled as follows.
  • a base station is a base station that can communicate by selectively using a plurality of radio resources.
  • This base station includes: a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; It includes a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission using a power amplifier and transmits the amplified signal to a terminal device.
  • the dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
  • PAPR peak power to average power ratio
  • the output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal
  • the wireless processing unit is configured to output power of the dummy signal for wireless power transmission in the power amplifier.
  • the wireless power transmission dummy so that the peak of power added efficiency (PAE) in the efficiency characteristics of the power amplifier is located at or near the upper limit of each of the range and the output power range of the communication signal; Control may be performed to switch the efficiency characteristics of the power amplifier between when transmitting a signal and when transmitting the communication signal.
  • PAE peak of power added efficiency
  • the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal.
  • the drain voltage of the power amplification FET may be controlled in this manner.
  • a base station is a base station that can communicate by selectively using a plurality of radio resources.
  • This base station includes: a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission with a power amplifier and transmits the amplified signal to a terminal device, and the output power range of the dummy signal for wireless power transmission in the power amplifier is equal to the output of a communication signal.
  • the wireless processing unit sets the efficiency of the power amplifier to the upper limit or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. Control is performed to switch the efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that the peak of power added efficiency (PAE) in the characteristics is located.
  • PAE power added efficiency
  • the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal.
  • the drain voltage of the power amplification FET may be controlled in this manner.
  • the communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively, and the wireless processing unit calculates the drain voltage on a frame-by-frame basis. It may be controlled to switch.
  • a method is a method in which a base station and a terminal device selectively use a plurality of radio resources to communicate with each other.
  • the base station generates a transmission signal including a dummy signal for wireless power transmission using an unused radio resource that is not used for communication among the plurality of radio resources;
  • the station amplifies the transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to the terminal device, and the terminal device amplifies the transmission signal including the dummy signal transmitted from the base station.
  • the terminal device outputs, as received power, the power of the received signal from which the terminal device received the transmission signal including the dummy signal.
  • the dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
  • PAPR peak power to average power ratio
  • a method is a method in which a base station and a terminal device selectively use a plurality of radio resources to communicate with each other.
  • the base station generates a transmission signal including a dummy signal for wireless power transmission using an unused radio resource that is not used for communication among the plurality of radio resources;
  • the station amplifies the transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to the terminal device, and the terminal device amplifies the transmission signal including the dummy signal transmitted from the base station.
  • the terminal device outputs, as received power, the power of the received signal from which the terminal device received the transmission signal including the dummy signal.
  • An output power range of the dummy signal for wireless power transmission in the power amplifier is higher than an output power range of the communication signal.
  • the base station sets efficiency characteristics of the power amplifier at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. further comprising performing control to switch efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that a peak of power added efficiency (PAE) is located at .
  • PAE peak of power added efficiency
  • the power amplifier is configured with a power amplification FET, and the base station switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. , may include controlling a drain voltage of the power amplification FET.
  • the communication signal and the wireless power transmission dummy signal are transmitted in different communication frames and wireless power transmission frames, respectively, and the base station measures the efficiency characteristics of the power amplifier on a frame-by-frame basis. It may further include controlling to switch by.
  • a program according to yet another aspect of the present invention is a program executed in a computer or processor provided in a base station that selectively uses a plurality of radio resources to communicate with a terminal device.
  • This program includes a program code for generating a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources, and the wireless power transmission. and a program code for amplifying a transmission signal including a dummy signal for use with a power amplifier and transmitting the amplified signal to the terminal device.
  • the dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
  • PAPR peak power to average power ratio
  • a program according to yet another aspect of the present invention is a program executed in a computer or processor provided in a base station that selectively uses a plurality of radio resources to communicate with a terminal device.
  • This program includes a program code for generating a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources, and the wireless power transmission. and a program code for amplifying a transmission signal including a dummy signal for use with a power amplifier and transmitting the amplified signal to the terminal device.
  • An output power range of the dummy signal for wireless power transmission in the power amplifier is higher than an output power range of the communication signal.
  • This program sets power added efficiency (PAE) in the efficiency characteristics of the power amplifier at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal.
  • the power amplifier further includes a program code for performing control to switch efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that a peak of is located.
  • the power amplifier is configured with a power amplification FET, and the power amplifier is configured to switch efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal.
  • Program code may also be included to control the drain voltage of the FET.
  • the communication signal and the wireless power transmission dummy signal are transmitted in different communication frames and wireless power transmission frames, respectively, and the efficiency characteristics of the power amplifier are controlled to be switched on a frame-by-frame basis. It may further include program code for.
  • the program includes a trained model used for machine learning.
  • the present invention it is possible to increase the output and efficiency of a power amplifier when amplifying a signal for wireless power transmission in a base station.
  • FIG. 1 is an explanatory diagram showing an example of the overall configuration of a system according to an embodiment.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a base station and a terminal device that constitute the system according to the embodiment.
  • FIG. 3A is an explanatory diagram illustrating an example of allocation of WPT blocks in radio resources (resource blocks) of transmission signals including WPT dummy signals transmitted from the base station according to the embodiment.
  • FIG. 3B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from a base station according to the embodiment.
  • FIG. 4 is a graph showing an example of input/output power characteristics and efficiency characteristics of the power amplifier of the base station according to the present embodiment.
  • FIG. 5A is an explanatory diagram illustrating an example of arrangement of symbol points in QAM primary modulation of a communication signal transmitted from a base station according to the embodiment.
  • FIG. 5B is an explanatory diagram showing an example of an arrangement of symbol points in the modulation of a dummy signal for WPT transmitted from the base station.
  • FIG. 6 is a graph showing an example of complementary cumulative distribution function (CCDF) curves of the communication signal and the WPT dummy signal transmitted from the base station according to the embodiment.
  • FIG. 7 is a graph showing an example of efficiency characteristics of the power amplifier when amplifying each of the communication signal and the WPT dummy signal transmitted from the base station according to the embodiment.
  • FIG. 8 is a time chart showing an example of controlling the drain voltage of the power amplifier of the base station according to the embodiment.
  • FIG. 9 is an explanatory diagram illustrating an example of power feeding to each terminal device by beamforming from a base station to a plurality of terminal devices according to the embodiment.
  • the system according to the embodiment described in this specification is a system capable of wireless power transmission (WPT) from a mobile communication base station to a terminal device (e.g., a mobile communication UE (mobile station) or an IoT device) to be powered.
  • the system according to the embodiment is a system that effectively utilizes unused wireless resources (resource blocks) that are not used for communication among a plurality of wireless resources (resource blocks) set in a downlink wireless frame to a terminal device such as a UE, for wireless power transmission (WPT) to the terminal device.
  • the system according to the embodiment may be a wireless communication system between a base station and a terminal device having a wireless power transmission (WPT) function from the base station to the terminal device.
  • the system according to the embodiment may also be a wireless power transmission (WPT) system from a base station to a terminal device having a wireless communication function between the base station and the terminal device.
  • WPT wireless power transmission
  • a modulated signal with a lower PAPR peak-to-average power ratio
  • the drain voltage when amplifying the wireless power transmission (WPT) signal with a power amplifier (transmitting amplifier) made of FET is controlled to be higher than that of the communication signal, thereby achieving high output and high efficiency of the power amplifier when amplifying the wireless power transmission (WPT) signal at the base station.
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to the present embodiment.
  • the system of the present embodiment includes a cellular base station 10 that forms a communication area (cell) 10A, and is capable of wirelessly communicating with the base station 10 by connecting to the base station 10 when located in the communication area 10A. It has a terminal device (hereinafter also referred to as "UE" (user equipment)) 20 to which power is supplied.
  • UE user equipment
  • UE20 may be a mobile station in a mobile communication system, or may be a combination of a communication device (e.g., a mobile communication module) and various devices. UE20 is equipped with, for example, an array antenna having multiple antenna elements. UE20 may be an IoT device (also called "IoT equipment").
  • a base station 10 is equipped with a plurality of array antennas 110 having a large number of antenna elements, and can perform communication using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method with a plurality of UEs 20.
  • mMIMO is a wireless transmission technology that achieves high-capacity, high-speed communication by transmitting and receiving data using the array antenna 110.
  • communication can be performed using an MU (Multi User)-MIMO transmission method that performs beamforming to form beams 10B in time division or simultaneously for each of the plurality of UEs 20.
  • MU Multi User
  • a part of the communication area 10A is a wireless power transmission area (hereinafter referred to as "WPT area") 10A' where wireless power transmission is performed from the base station 10 to the terminal device 20.
  • the WPT area 10A' may be a smaller area than the communication area 10A as shown in the figure, or may be an area having the same or approximately the same size and position as the communication area 10A.
  • unused radio resources that are not used for communication among resource blocks that are a plurality of radio resources (time/frequency resources) constituting a downlink radio frame from the base station 10 are ) is used as a wireless power transmission block.
  • the base station 10 sends a dummy signal for wireless power transmission (hereinafter also referred to as "WPT dummy signal") to a wireless power transmission block (WPT block), which is a wireless resource that is not used for communication. ) is generated and transmitted to the UE 20.
  • WPT dummy signal a dummy signal for wireless power transmission
  • WPT block wireless power transmission block
  • a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed only on some subcarriers of a radio frame. Therefore, it is expected that wireless power transmission to the UE 20 will be performed by effectively utilizing the unused radio resources in the radio frame.
  • RS reference signals
  • the radio waves of communication signals transmitted and received between the base station 10 and the UE 20 and the radio waves of the transmission signal to which the WPT dummy signal is assigned are transmitted from the base station 10 to the UE 20, for example, are millimeter waves or microwaves.
  • FIG. 2 is a block diagram showing an example of the main configuration of a base station 10 and a terminal device (UE) 20 that constitute a system according to an embodiment.
  • the base station 10 includes a base station device 100 and an antenna 110.
  • the antenna 110 is, for example, an array antenna having a large number of antenna elements as shown in FIG. 1.
  • multiple antennas 110 may be arranged to correspond to multiple sector cells.
  • the base station device 100 includes a communication signal processing section 120 and a wireless processing section 130.
  • the communication signal processing unit 120 processes signals such as various user data and control information transmitted and received with the UE 20.
  • the communication signal processing unit 120 transmits a downlink including a WPT dummy signal using an unused radio resource that is not used for communication among the plurality of radio resources.
  • a WPT dummy signal can be generated by modulating with a modulation method that has a smaller PAPR (peak power to average power ratio) (also referred to as "wave height ratio”) than the communication signal.
  • PAPR peak power to average power ratio
  • the WPT dummy signal may be a modulated signal that is modulated using a Zadoff-Chu sequence code and has a constant amplitude and a phase that changes over time, or may be a modulated signal that is modulated using a Zadoff-Chu code, and may be a modulated signal that has a constant amplitude and a phase that changes over time.
  • the signal may be a signal modulated at one or more symbol points having the maximum amplitude or near the maximum amplitude.
  • the transmission signal generation uses primary modulation such as QAM (quadrature amplitude modulation) for communication signals and modulation with small PAPR for WPT dummy signals, and secondary modulation such as OFDM (orthogonal frequency division multiplexing) modulation. May include.
  • the radio processing unit 130 transmits the transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the UE 20, and outputs the reception signal received from the UE 20 via the antenna 110 to the communication signal processing unit 120.
  • the wireless processing unit 130 includes a power amplifier (transmission amplifier) 131 that amplifies the power of a transmission signal, and a control unit 132 that controls the power amplifier 131.
  • the power amplifier 131 can be configured using, for example, a high frequency/high power FET.
  • the control unit 132 controls the drain voltage (DC voltage) applied to the power amplifier 131 so as to switch the efficiency characteristics of the power amplifier 131 made of FET between when amplifying a communication signal and when amplifying a WPT dummy signal. control.
  • the process of including a WPT dummy signal using unused radio resources in the transmission signal of downlink communication to the UE 20 and the control of the drain voltage of the power amplifier 131 are performed for each subframe that constitutes the radio frame of mobile communication. You may go.
  • the base station 10 may autonomously perform the process of including a WPT dummy signal using unused radio resources in the transmission signal of the downlink communication to the UE 20, or the process may be performed by the base station 10 autonomously, or upon request or instruction from the UE 20, or It may also be performed based on a request or instruction from an external platform (eg, server, cloud system).
  • an external platform eg, server, cloud system
  • the wireless processing unit 130 controls one or more beams formed by the array antenna 110 based on the BF control signal. Furthermore, the radio processing unit 130 transmits a downlink transmission signal including the WPT dummy signal generated by the communication signal processing unit 120 to the UE 20 via the antenna 110.
  • the base station 10 performs beamforming (BF) control to form individual beams 10B for each UE 20 or for each UE group in the target area to which a plurality of UEs 20 belong.
  • Wireless power transfer may be performed separately or for each UE group.
  • BF control for each UE 20 or for each UE group may be performed by digital BF control in the frequency domain in the communication signal processing section 120, or by analog BF control in the radio processing section 130.
  • the UE 20 includes an antenna 210, a wireless processing section 220, a communication signal processing section 230, a power output section 240, and a battery 250.
  • Antenna 210 is, for example, a small array antenna having a plurality of antenna elements.
  • the wireless processing unit 220 transmits transmission signals such as feedback information and user data generated by the communication signal processing unit 230 from the antenna 210 to the base station 10, and transmits received signals received from the base station 10 via the antenna 210 to communication. It is also output to the signal processing section 230.
  • the wireless processing unit 220 receives a transmission signal including a WPT dummy signal transmitted from the base station 10.
  • the power output unit 240 includes, for example, a rectifier, and outputs the power of the received signal that has received the transmission signal including the WPT dummy signal from the base station 10 as the received power for battery charging.
  • the battery 250 can be charged by the received power output from the power output unit 240.
  • FIG. 3A is an explanatory diagram showing an example of allocation of WPT blocks in radio resources (resource blocks) of a transmission signal including a WPT dummy signal transmitted from the base station 10 according to the present embodiment.
  • FIG. 3B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from the base station 10 according to the present embodiment.
  • a plurality of radio resources used in downlink communication and uplink communication in the system of this embodiment are a plurality of resource blocks defined by subcarriers on the frequency axis and slots on the time axis. It is 30.
  • Each resource block 30 has subcarriers 33 of a predetermined bandwidth that are orthogonal to each other on the frequency axis, as shown in FIG. 3B.
  • the resource block 30 configuring the radio resource in FIG. 3A is allocated to a plurality of consecutive subframes configuring a radio frame for mobile communication.
  • each subframe is composed of a predetermined number (for example, 20) of resource blocks, including a communication subframe (hereinafter referred to as "communication frame”) F1 and a WPT subframe (hereinafter referred to as "WPT frame”). (referred to as "frame”) F2 are located alternately.
  • the communication frame F1 includes a resource block 31 for uplink and downlink communication
  • the WPT frame F2 includes a WPT resource block 32 that is cross-hatched in the figure.
  • a plurality of uplink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20, and a plurality of downlink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20. These resource blocks are allocated to signals for downlink communication of user data and information. Further, a downlink WPT signal is allocated to the resource block 32 of the WPT frame F2.
  • FIG. 4 is a graph showing an example of the characteristics of the output power Pout [dBm] and the efficiency PAE [%] with respect to the input power Pin [dBm] of the power amplifier 131 of the base station 10 according to the present embodiment.
  • Curve A in the figure is a simulation calculation result of AC output power Pout [dBm] with respect to AC input power Pin [dBm] of the power amplifier 131, and plotted points of " ⁇ " are measurements of output power Pout [dBm]. This is the result.
  • curve B in the figure is a simulation calculation result of PAE (power added efficiency) [%], which is one of the index values of efficiency with respect to the input power Pin [dBm] of the power amplifier 131, and the plot of " ⁇ " The points are the measurement results of efficiency PAE [%].
  • PAE [%] of the power amplifier 131 is defined as (Pout-Pin)/Pdc.
  • Pdc is DC power input (applied) to the power amplifier 131.
  • the linear region in the figure is a region where the relationship between input power Pin and output power Pout is linear or nearly linear.
  • the saturated region in the figure is a region where the output power Pout is saturated or almost saturated with respect to an increase in the input power Pin.
  • the peak of the efficiency PAE of the power amplifier 131 is located near the boundary between the linear region and the saturation region.
  • the base station 10 When the base station 10 amplifies a communication signal consisting of a modulated signal with a high PAPR (Peak to Average Power Ratio) using the power amplifier 131, the low output power and low efficiency linear region of the power amplifier 131 is used.
  • the operating parameters (e.g., drain voltage) of the power amplifier 131 are set so that the average power of the communication signal (modulated signal) is located at a point (center of the linear region) that is backed off appropriately to the low power side from the start point (left end) of the saturation region in Figure 4.
  • WPT wireless power transmission
  • the WPT dummy signal in order to amplify the WPT dummy signal in the high output power and high efficiency region of the power amplifier 131, the WPT dummy signal has a PAPR (peak power to average power ratio) higher than that of the communication signal.
  • PAPR peak power to average power ratio
  • FIG. 5A is an explanatory diagram showing an example of arrangement of symbol points 41 in QAM primary modulation of a communication signal transmitted from the base station 10 according to the present embodiment.
  • FIG. 5A is a diagram of a constellation showing the arrangement of a plurality of symbol points (64-value symbol points) in the case of the 64QAM method.
  • FIG. 5B is an explanatory diagram showing an example of arrangement of symbol points in modulation of the WPT dummy signal transmitted from the base station 10 according to the present embodiment.
  • the horizontal axis shows in-phase channel components
  • the vertical axis shows orthogonal channel components.
  • an OFDM modulated signal with a lower PAPR (peak power to average power ratio) than the communication signal is used as the WPT dummy signal.
  • the WPT signal is composed of an OFDM modulated signal modulated only at the outermost or peripheral symbol points 41S having the maximum amplitude.
  • a dummy signal may also be used.
  • a dummy signal for WPT may be used that is an OFDM modulated signal modulated at symbol point 42 where the phase changes with a constant amplitude over time.
  • the OFDM modulated signal at symbol point 42 in FIG. 5B can be generated using, for example, a code of the Zadoff-Chu sequence.
  • FIG. 6 is a graph showing an example of complementary cumulative distribution function (CCDF) curves of a communication signal and a WPT dummy signal transmitted from base station 10 according to this embodiment.
  • the horizontal axis of FIG. 6 is the power level [dB] of a signal that exceeds the average power of the entire signal, and the vertical axis is the percentage [%] of time that a signal of each power level exists.
  • Curve C11 in the figure is a CCDF curve of a communication signal (OFDM modulated signal), whose PAPR (peak-to-average power ratio) is about 10 to 12 dB.
  • Curve C12 in the figure is a CCDF curve of a WPT dummy signal (OFDM modulated signal), whose PAPR is about 3 dB lower than that of the communication signal.
  • the range of the output power Pout of the power amplifier 131 when amplifying the WPT dummy signal can be increased by using the WPT dummy signal when amplifying the communication signal.
  • the efficiency (PAE) of the power amplifier 131 can be set in a high output power range near its peak. Therefore, communication signals can be amplified within a low output power range with a high margin so as not to generate spurious signals, and the power amplifier 131 can have high output and high efficiency when amplifying the WPT dummy signal. be able to.
  • the peak of power added efficiency (PAE:) in the efficiency characteristics of the power amplifier 131 is at or near the upper limit of each of the output power range of the WPT dummy signal and the output power range of the communication signal. Control may be performed to switch the efficiency characteristics of the power amplifier 131 when transmitting the WPT dummy signal and when transmitting the communication signal so that the power amplifier 131 is located. With this control, the output power of the power amplifier 131 when amplifying the WPT dummy signal can be further increased.
  • FIG. 7 is a graph showing an example of efficiency characteristics of the power amplifier 131 when amplifying each of the communication signal and the WPT dummy signal transmitted from the base station according to the embodiment.
  • the horizontal axis in the figure is the output power Pout [dBm] of the power amplifier 131, and the vertical axis is PAE (power added efficiency) indicating the efficiency of the power amplifier 131.
  • the first output power range R1 in FIG. 7 is used in the above-mentioned communication frame F1 (see FIG. 3A) that can accommodate a high PAPR (10 to 12 dB) of a communication signal.
  • the second output power range R2 on the high power side is used in the above-mentioned WPT frame F2 (see FIG. 3A) that can accommodate the low PAPR (3 dB) of the WPT dummy signal.
  • a first efficiency characteristic curve C21 is an efficiency characteristic when a communication signal drain voltage Vd1 is applied to the power amplifier 131 configured with an FET.
  • This drain voltage Vd1 is set so that the output power range R1 of the communication signal is lower than the peak of the efficiency PAE of the power amplifier 131 and is located in a low output power linear range with a high margin to prevent spurious generation. controlled.
  • the second efficiency characteristic curve C22 is the efficiency characteristic when the drain voltage Vd2 for WPT is applied to the power amplifier 131 configured with an FET.
  • This drain voltage Vd2 is such that the output power range R2 for the WPT signal, which is higher than the output power range R1 of the communication signal, is in the output power range slightly lower than the peak of the efficiency PAE of the power amplifier 131, or in the output power range near the peak.
  • the drain voltage Vd1 for the communication signal is controlled to be higher than the drain voltage Vd1 for the communication signal.
  • the drain voltage applied to the power amplifier 131 is set to a low level with a high margin to prevent the generation of spurious signals for the communication signal.
  • the power amplifier 131 can be amplified within the range of output power, and the output power and efficiency of the power amplifier 131 can be increased when amplifying the WPT dummy signal.
  • the peak of the efficiency PAE of the power amplifier 131 can be shifted to the high output power side, so that both higher output and higher efficiency can be achieved.
  • FIG. 8 is a time chart showing an example of controlling the drain voltage of the power amplifier 131 of the base station 10 according to the embodiment.
  • control of the drain voltage for increasing the output and efficiency of the power amplifier 131 may be performed for each frame of mobile communication (frame unit).
  • the drain voltage of the power amplifier 131 in the communication frame F1 for amplifying a communication signal, the drain voltage of the power amplifier 131 is controlled to the first drain voltage Vd1 for the communication signal.
  • the WPT frame F2 that amplifies the WPT dummy signal the drain voltage of the power amplifier 131 is controlled to be switched to a second drain voltage Vd2 higher than the first drain voltage Vd1 for communication signals.
  • unused radio resources are effectively used as wireless power transfer blocks (WPT blocks), and from the base station 10 to the UE 20.
  • WPT wireless power transfer
  • FIG. 9 is an explanatory diagram showing an example of power feeding to each UE by beamforming from the base station 10 to a plurality of UEs 20 according to the present embodiment.
  • a plurality of UEs 20(1) to 20(3) are located in a WPT area 10A' (see FIG. 1 described above) within a communication area 10A, and a beam formed by each UE is provided.
  • Power may be supplied to each UE 20(1) to 20(3) via 10B(1) to 10B(3).
  • the beams 10B(1) to 10B(3) may be formed, for example, by being switched in a time-division manner.
  • the communication signal can be amplified in the base station 10 within a low output power range with a large margin to prevent spurious signals from occurring, and the power amplifier 131 can be made to have a high output and high efficiency when amplifying the dummy signal for WPT.
  • the efficiency characteristics of the power amplifier 131 (drain voltage control) when transmitting the WPT dummy signal and transmitting the communication signal, the power when amplifying the WPT dummy signal is The output power of amplifier 131 can be further increased.
  • the drain voltage of the power amplifier 131 is controlled frame by frame (frame by frame), which is compared to envelope tracking technology in which the drain voltage of the power amplifier is constantly controlled in accordance with the output power. Therefore, the synchronous control of the drain voltage becomes easier, and the mounting circuit for control becomes simpler.
  • power can be supplied to the terminal device 20 by using wireless resources that are not used for communication between the base station 10 and the terminal device 20.
  • the present invention can also provide a power supply infrastructure capable of supplying power to a large number of terminal devices 20 capable of receiving radio waves transmitted from a base station 10, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote inclusive and sustainable industrialization, and promote innovation and infrastructure.”
  • SDGs Sustainable Development Goals
  • processing steps and components of the system, terminal device (UE, IoT device), base station, mobile station, relay device, and control device described in this specification can be implemented by various means.
  • these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • the processing unit or other means used may be one or more of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processor (DSPD), a programmable logic device (PLD), a field programmable a gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, other electronic unit, computer, or combination thereof designed to perform the functions described herein; It may be implemented inside.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processor
  • PLD programmable logic device
  • FPGA field programmable a gate array
  • the means used to implement the components described above may include programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.).
  • any computer/processor readable medium tangibly embodying firmware and/or software code such as a processing unit, may be used to implement the above steps and components described herein. It may be used for implementation.
  • the firmware and/or software code may be stored in memory and executed by a computer or processor, eg, in a controller.
  • the memory may be implemented within the computer or processor, or external to the processor.
  • the firmware and/or software code may also be stored in, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), etc. ), flash memory, floppy disks, compact disks (CDs), digital versatile disks (DVDs), magnetic or optical data storage devices, etc. good.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EEPROM electrically erasable PROM
  • flash memory floppy disks
  • CDs compact disks
  • DVDs digital versatile disks
  • magnetic or optical data storage devices etc. good.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program may be read and executed by a computer, processor, or other device or apparatus, and its format is not limited to a specific format.
  • the code of the program may be a source code, an object code, or a binary code, or may be a mixture of two or more of these codes.
  • Base station 10A Communication area 10A': WPT area 10B: Beam 20: Terminal equipment (UE) 100: Base station device 110: Antenna (array antenna) 120: Communication signal processing section 130: Radio processing section 131: Power amplifier 132: Control section 210: Antenna (array antenna) 230: Communication signal processing section 240: Power output section 250: Battery

Abstract

Provided is a system in which the efficiency of a power amplifier for amplifying a wireless power transmission signal in a base station can be improved. In this invention, the base station generates a transmission signal including a dummy signal for wireless power transmission using radio resources not used for communication among a plurality of radio resources, and amplifies the transmission signal including a dummy signal for wireless power transmission using the power amplifier and transmits same to a terminal device. The terminal device receives the transmission signal including a wireless power transmission signal transmitted from the base station and outputs electric power of a reception signal, which is the received transmission signal including a wireless power transmission signal. The dummy signal for wireless power transmission is a modulation signal having a peak-to-average power ratio (PAPR) lower than a communication signal.

Description

無線電力伝送を行うシステム、基地局、方法及びプログラムSystem, base station, method and program for wireless power transmission
 本発明は、無線電力伝送(WPT)を行うことができるシステム、基地局、方法及びプログラムに関するものである。 The present invention relates to a system, base station, method, and program that can perform wireless power transfer (WPT).
 従来、無線フレームに設定された複数の無線リソースの少なくとも一部を用いて基地局と端末装置との間で通信を行う通信システムが知られている(例えば、特許文献1参照)。 Conventionally, a communication system is known that performs communication between a base station and a terminal device using at least part of a plurality of radio resources set in a radio frame (for example, see Patent Document 1).
国際公開第2017/164220号International Publication No. 2017/164220
 従来の通信システムにおいて基地局に接続して通信する端末装置として、内蔵電池から供給される電力を主に利用する携帯型の端末装置がある。この端末装置では、内蔵電池の残量が少なくなったときに内蔵電池を充電する煩雑な作業が必要である。また、内蔵電池ではなく有線接続の電源ラインから供給される電力を利用する端末装置は、そのような電源ラインを利用可能な場所での使用に制限される。このように基地局に接続して通信を行う様々な端末装置への給電をまかなうことができるような給電インフラが未整備である。 In conventional communication systems, as a terminal device that connects to a base station and communicates, there is a portable terminal device that mainly uses power supplied from a built-in battery. This terminal device requires a complicated task of charging the built-in battery when its remaining capacity is low. Further, terminal devices that use power supplied from a wired power line instead of a built-in battery are limited to use in locations where such a power line can be used. In this way, power supply infrastructure that can supply power to various terminal devices that connect to base stations and communicate is not yet developed.
 第5世代及びその後の次世代の移動通信システムでは、基地局に接続して通信する端末装置(例えば、ユーザ装置、IoTデバイス等)が急増してくるのが予想され、膨大なトラフィックを捌く通信インフラの整備が進められている。しかしながら、上記通信を行う膨大な数の端末装置への給電をまかなうことができる給電インフラは未整備のままである。 In the 5th generation and subsequent next generation mobile communication systems, it is expected that the number of terminal devices (e.g., user equipment, IoT devices, etc.) that connect to base stations and communicate will rapidly increase, and communication that will handle a huge amount of traffic will be necessary. Infrastructure development is progressing. However, the power supply infrastructure capable of supplying power to the huge number of terminal devices that perform the above communication remains underdeveloped.
 上記端末装置へ給電する給電インフラとして、移動通信の基地局を用いて無線電力伝送(WPT)を行うシステムが検討されている。かかるシステムの課題の一つとして、無線電力伝送(WPT)用の信号を増幅するときの電力増幅器の高出力化及び高効率化を図ることがある。 A system that performs wireless power transmission (WPT) using a mobile communication base station is being considered as a power supply infrastructure that supplies power to the terminal device. One of the challenges for such a system is to increase the output and efficiency of a power amplifier when amplifying signals for wireless power transmission (WPT).
 本発明の一態様に係るシステムは、複数の無線リソースを選択的に用いて通信可能な基地局を備え、前記基地局から端末装置に無線電力伝送を行うシステムである。前記基地局は、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信する無線処理部と、を有する。前記端末装置は、前記基地局から送信された前記ダミー信号を含む送信信号を受信する無線処理部と、前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力する電力出力部と、を有する。前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である。 A system according to one aspect of the present invention is a system that includes a base station that can communicate by selectively using a plurality of radio resources, and performs wireless power transmission from the base station to a terminal device. The base station includes a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; and a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission using a power amplifier and transmits the amplified signal to the terminal device. The terminal device includes a wireless processing unit that receives a transmission signal including the dummy signal transmitted from the base station, and a power output unit that outputs the power of the received signal that received the transmission signal including the dummy signal as received power. It has a section and a. The dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
 前記システムにおいて、前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は前記通信信号の出力電力範囲よりも高く、前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行ってもよい。 In the system, the output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal, and the wireless processing unit and the dummy signal for wireless power transmission so that the peak of power added efficiency (PAE) in the efficiency characteristic of the power amplifier is located at or near the upper limit of each of the output power range of the communication signal. Control may be performed to switch the efficiency characteristics of the power amplifier between when transmitting the communication signal and when transmitting the communication signal.
 前記システムにおいて、前記電力増幅器は電力増幅用FETで構成され、前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御してもよい。 In the system, the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. Furthermore, the drain voltage of the power amplification FET may be controlled.
 本発明の他の態様に係るシステムは、複数の無線リソースを選択的に用いて通信可能な基地局を備え、前記基地局から端末装置に無線電力伝送を行うシステムである。前記基地局は、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信する無線処理部と、を有する。前記端末装置は、前記基地局から送信された前記ダミー信号を含む送信信号を受信する無線処理部と、前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力する電力出力部と、を有する。前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高く、前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行う。 A system according to another aspect of the present invention is a system that includes a base station capable of communicating by selectively using a plurality of radio resources, and performs wireless power transmission from the base station to a terminal device. The base station includes a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; and a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission using a power amplifier and transmits the amplified signal to the terminal device. The terminal device includes a wireless processing unit that receives a transmission signal including the dummy signal transmitted from the base station, and a power output unit that outputs the power of the received signal that received the transmission signal including the dummy signal as received power. It has a section and a. The output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal, and the wireless processing unit At the time of transmitting the dummy signal for wireless power transmission and at the time of transmitting the dummy signal for wireless power transmission, Control is performed to switch the efficiency characteristics of the power amplifier when transmitting a communication signal.
 前記システムにおいて、前記電力増幅器は電力増幅用FETで構成され、前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御してもよい。 In the system, the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. Furthermore, the drain voltage of the power amplification FET may be controlled.
 前記システムにおいて、前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、前記無線処理部は、前記ドレイン電圧をフレーム単位で切り替えるように制御してもよい。 In the system, the communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively, and the wireless processing unit switches the drain voltage on a frame-by-frame basis. It may be controlled as follows.
 本発明の更に他の態様に係る基地局は、複数の無線リソースを選択的に用いて通信可能な基地局である。この基地局は、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して端末装置に送信する無線処理部と、を備える。前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である。 A base station according to yet another aspect of the present invention is a base station that can communicate by selectively using a plurality of radio resources. This base station includes: a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; It includes a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission using a power amplifier and transmits the amplified signal to a terminal device. The dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
 前記基地局において、前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は前記通信信号の出力電力範囲よりも高く、前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行ってもよい。 In the base station, the output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal, and the wireless processing unit is configured to output power of the dummy signal for wireless power transmission in the power amplifier. the wireless power transmission dummy so that the peak of power added efficiency (PAE) in the efficiency characteristics of the power amplifier is located at or near the upper limit of each of the range and the output power range of the communication signal; Control may be performed to switch the efficiency characteristics of the power amplifier between when transmitting a signal and when transmitting the communication signal.
 前記基地局において、前記電力増幅器は電力増幅用FETで構成され、前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御してもよい。 In the base station, the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. The drain voltage of the power amplification FET may be controlled in this manner.
 本発明の更に他の態様に係る基地局は、複数の無線リソースを選択的に用いて通信可能な基地局である。この基地局は、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して端末装置に送信する無線処理部と、を備え、前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高く、前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行う。 A base station according to yet another aspect of the present invention is a base station that can communicate by selectively using a plurality of radio resources. This base station includes: a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources; a wireless processing unit that amplifies a transmission signal including a dummy signal for transmission with a power amplifier and transmits the amplified signal to a terminal device, and the output power range of the dummy signal for wireless power transmission in the power amplifier is equal to the output of a communication signal. the efficiency of the power amplifier is higher than the power range, and the wireless processing unit sets the efficiency of the power amplifier to the upper limit or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. Control is performed to switch the efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that the peak of power added efficiency (PAE) in the characteristics is located.
 前記基地局において、前記電力増幅器は電力増幅用FETで構成され、前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御してもよい。 In the base station, the power amplifier is configured with a power amplification FET, and the wireless processing unit switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. The drain voltage of the power amplification FET may be controlled in this manner.
 前記基地局において、前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、前記無線処理部は、前記ドレイン電圧をフレーム単位で切り替えるように制御してもよい。 In the base station, the communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively, and the wireless processing unit calculates the drain voltage on a frame-by-frame basis. It may be controlled to switch.
 本発明の更に他の態様に係る方法は、基地局及び端末装置が複数の無線リソースを選択的に用いて互いに通信を行う方法である。この方法は、前記基地局が、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成することと、前記基地局が、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信することと、前記端末装置が、前記基地局から送信された前記ダミー信号を含む送信信号を受信することと、前記端末装置が、前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力することと、を含む。前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である。 A method according to yet another aspect of the present invention is a method in which a base station and a terminal device selectively use a plurality of radio resources to communicate with each other. In this method, the base station generates a transmission signal including a dummy signal for wireless power transmission using an unused radio resource that is not used for communication among the plurality of radio resources; The station amplifies the transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to the terminal device, and the terminal device amplifies the transmission signal including the dummy signal transmitted from the base station. and the terminal device outputs, as received power, the power of the received signal from which the terminal device received the transmission signal including the dummy signal. The dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
 本発明の更に他の態様に係る方法は、基地局及び端末装置が複数の無線リソースを選択的に用いて互いに通信を行う方法である。この方法は、前記基地局が、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成することと、前記基地局が、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信することと、前記端末装置が、前記基地局から送信された前記ダミー信号を含む送信信号を受信することと、前記端末装置が、前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力することと、を含む。前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高い。また、この方法は、前記基地局が、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行うことを、更に含む。 A method according to yet another aspect of the present invention is a method in which a base station and a terminal device selectively use a plurality of radio resources to communicate with each other. In this method, the base station generates a transmission signal including a dummy signal for wireless power transmission using an unused radio resource that is not used for communication among the plurality of radio resources; The station amplifies the transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to the terminal device, and the terminal device amplifies the transmission signal including the dummy signal transmitted from the base station. and the terminal device outputs, as received power, the power of the received signal from which the terminal device received the transmission signal including the dummy signal. An output power range of the dummy signal for wireless power transmission in the power amplifier is higher than an output power range of the communication signal. Further, in this method, the base station sets efficiency characteristics of the power amplifier at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. further comprising performing control to switch efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that a peak of power added efficiency (PAE) is located at .
 前記方法において、前記電力増幅器は電力増幅用FETで構成され、前記基地局が、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御することを、含んでもよい。 In the method, the power amplifier is configured with a power amplification FET, and the base station switches efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. , may include controlling a drain voltage of the power amplification FET.
 前記方法において、前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、前記基地局が、前記電力増幅器の効率特性をフレーム単位で切り替えるように制御することを更に含んでもよい。 In the method, the communication signal and the wireless power transmission dummy signal are transmitted in different communication frames and wireless power transmission frames, respectively, and the base station measures the efficiency characteristics of the power amplifier on a frame-by-frame basis. It may further include controlling to switch by.
 本発明の更に他の態様に係るプログラムは、複数の無線リソースを選択的に用いて端末装置と通信を行う基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成するためのプログラムコードと、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信するためのプログラムコードと、を含む。前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である。 A program according to yet another aspect of the present invention is a program executed in a computer or processor provided in a base station that selectively uses a plurality of radio resources to communicate with a terminal device. This program includes a program code for generating a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources, and the wireless power transmission. and a program code for amplifying a transmission signal including a dummy signal for use with a power amplifier and transmitting the amplified signal to the terminal device. The dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
 本発明の更に他の態様に係るプログラムは、複数の無線リソースを選択的に用いて端末装置と通信を行う基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成するためのプログラムコードと、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信するためのプログラムコードと、を含む。前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高い。このプログラムは、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行うためのプログラムコードを、更に含む。 A program according to yet another aspect of the present invention is a program executed in a computer or processor provided in a base station that selectively uses a plurality of radio resources to communicate with a terminal device. This program includes a program code for generating a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources, and the wireless power transmission. and a program code for amplifying a transmission signal including a dummy signal for use with a power amplifier and transmitting the amplified signal to the terminal device. An output power range of the dummy signal for wireless power transmission in the power amplifier is higher than an output power range of the communication signal. This program sets power added efficiency (PAE) in the efficiency characteristics of the power amplifier at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. The power amplifier further includes a program code for performing control to switch efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that a peak of is located.
 前記プログラムにおいて、前記電力増幅器は電力増幅用FETで構成され、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御するためのプログラムコードを、含んでもよい。 In the program, the power amplifier is configured with a power amplification FET, and the power amplifier is configured to switch efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. Program code may also be included to control the drain voltage of the FET.
 前記プログラムにおいて、前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、前記電力増幅器の効率特性をフレーム単位で切り替えるように制御するためのプログラムコードを更に含んでもよい。 In the program, the communication signal and the wireless power transmission dummy signal are transmitted in different communication frames and wireless power transmission frames, respectively, and the efficiency characteristics of the power amplifier are controlled to be switched on a frame-by-frame basis. It may further include program code for.
 前記プログラムは、機械学習に用いられる学習済モデルを含む。 The program includes a trained model used for machine learning.
 本発明によれば、基地局において無線電力伝送用の信号を増幅するときの電力増幅器の高出力化及び高効率化を図ることができる。 According to the present invention, it is possible to increase the output and efficiency of a power amplifier when amplifying a signal for wireless power transmission in a base station.
図1は、実施形態に係るシステムの全体構成の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of the overall configuration of a system according to an embodiment. 図2は、実施形態に係るシステムを構成する基地局及び端末装置の構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of the configuration of a base station and a terminal device that constitute the system according to the embodiment. 図3Aは、実施形態に係る基地局から送信されるWPT用ダミー信号を含む送信信号の無線リソース(リソースブロック)におけるWPTブロックの割り当ての一例を示す説明図である。FIG. 3A is an explanatory diagram illustrating an example of allocation of WPT blocks in radio resources (resource blocks) of transmission signals including WPT dummy signals transmitted from the base station according to the embodiment. 図3Bは、実施形態に係る基地局から送信される送信信号のOFDM方式の二次変調における周波数軸上のスペクトルの一例を示す説明図である。FIG. 3B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from a base station according to the embodiment. 図4は、本実施形態に係る基地局の電力増幅器の入出力電力特性及び効率特性の一例を示すグラフである。FIG. 4 is a graph showing an example of input/output power characteristics and efficiency characteristics of the power amplifier of the base station according to the present embodiment. 図5Aは、実施形態に係る基地局から送信される通信信号のQAM方式の一次変調におけるシンボル点の配置の一例を示す説明図である。FIG. 5A is an explanatory diagram illustrating an example of arrangement of symbol points in QAM primary modulation of a communication signal transmitted from a base station according to the embodiment. 図5Bは、同基地局から送信されるWPT用ダミー信号の変調におけるシンボル点の配置の一例を示す説明図である。FIG. 5B is an explanatory diagram showing an example of an arrangement of symbol points in the modulation of a dummy signal for WPT transmitted from the base station. 図6は、実施形態に係る基地局から送信される通信信号及びWPT用ダミー信号の相補累積分布関数(CCDF)曲線の一例を示すグラフである。FIG. 6 is a graph showing an example of complementary cumulative distribution function (CCDF) curves of the communication signal and the WPT dummy signal transmitted from the base station according to the embodiment. 図7は、実施形態に係る基地局から送信される通信信号及びWPT用ダミー信号のそれぞれを増幅するときの電力増幅器の効率特性の一例を示すグラフである。FIG. 7 is a graph showing an example of efficiency characteristics of the power amplifier when amplifying each of the communication signal and the WPT dummy signal transmitted from the base station according to the embodiment. 図8は、実施形態に係る基地局の電力増幅器のドレイン電圧の制御の一例を示すタイムチャートである。FIG. 8 is a time chart showing an example of controlling the drain voltage of the power amplifier of the base station according to the embodiment. 図9は、実施形態に係る基地局から複数の端末装置へのビームフォーミングによる端末装置毎の給電の一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of power feeding to each terminal device by beamforming from a base station to a plurality of terminal devices according to the embodiment.
 以下、図面を参照して本発明の実施形態について説明する。
 本書に記載された実施形態に係るシステムは、移動通信の基地局から給電対象の端末装置(例えば、移動通信のUE(移動局)やIoTデバイス)に対して無線電力伝送(WPT)することができるシステムである。実施形態のシステムは、例えば、UEなどの端末装置への下りリンクの無線フレームに設定された複数の無線リソース(リソースブロック)のうち通信に使用されていない通信未使用の無線リソース(リソースブロック)を端末装置への無線電力伝送(WPT)に有効活用したシステムである。実施形態のシステムは、基地局から端末装置への無線電力伝送(WPT)機能を有する、基地局と端末装置との間の無線通信システムであってもよい。また、実施形態のシステムは、基地局と端末装置との間の無線通信機能を有する、基地局から端末装置への無線電力伝送(WPT)システムであってもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The system according to the embodiment described in this specification is a system capable of wireless power transmission (WPT) from a mobile communication base station to a terminal device (e.g., a mobile communication UE (mobile station) or an IoT device) to be powered. The system according to the embodiment is a system that effectively utilizes unused wireless resources (resource blocks) that are not used for communication among a plurality of wireless resources (resource blocks) set in a downlink wireless frame to a terminal device such as a UE, for wireless power transmission (WPT) to the terminal device. The system according to the embodiment may be a wireless communication system between a base station and a terminal device having a wireless power transmission (WPT) function from the base station to the terminal device. The system according to the embodiment may also be a wireless power transmission (WPT) system from a base station to a terminal device having a wireless communication function between the base station and the terminal device.
 特に、本実施形態のシステムでは、無線電力伝送(WPT)用の信号としてPAPR(ピーク電力対平均電力比)が通信信号よりも低い変調信号を用い、FETからなる電力増幅器(送信アンプ)で無線電力伝送(WPT)用の信号を増幅するときのドレイン電圧を通信信号の場合よりも高めに制御することにより、基地局において無線電力伝送(WPT)用の信号を増幅するときの電力増幅器の高出力化及び高効率化を図っている。 In particular, in the system of this embodiment, a modulated signal with a lower PAPR (peak-to-average power ratio) is used as the wireless power transmission (WPT) signal than the communication signal, and the drain voltage when amplifying the wireless power transmission (WPT) signal with a power amplifier (transmitting amplifier) made of FET is controlled to be higher than that of the communication signal, thereby achieving high output and high efficiency of the power amplifier when amplifying the wireless power transmission (WPT) signal at the base station.
 図1は、本実施形態に係るシステムの概略構成の一例を示す説明図である。本実施形態のシステムは、通信エリア(セル)10Aを形成するセルラー方式の基地局10と、通信エリア10Aに在圏しているときに基地局10に接続して基地局10と無線通信可能な給電対象の端末装置(以下「UE」(ユーザ装置)ともいう。)20と、を有する。 FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to the present embodiment. The system of the present embodiment includes a cellular base station 10 that forms a communication area (cell) 10A, and is capable of wirelessly communicating with the base station 10 by connecting to the base station 10 when located in the communication area 10A. It has a terminal device (hereinafter also referred to as "UE" (user equipment)) 20 to which power is supplied.
 UE20は、移動通信システムの移動局でもよいし、通信装置(例えば移動通信モジュール)と各種デバイスとを組み合わせたものであってもよい。UE20は、例えば複数のアンテナ素子を有するアレーアンテナを備える。UE20はIoTデバイス(「IoT機器」ともいう。)であってもよい。 UE20 may be a mobile station in a mobile communication system, or may be a combination of a communication device (e.g., a mobile communication module) and various devices. UE20 is equipped with, for example, an array antenna having multiple antenna elements. UE20 may be an IoT device (also called "IoT equipment").
 図1において、基地局10は、多数のアンテナ素子を有する複数のアレーアンテナ110を備え、複数のUE20との間でmassive MIMO(以下「mMIMO」ともいう。)伝送方式の通信を行うことができる。mMIMOは、アレーアンテナ110を用いてデータ送受信を行うことにより大容量・高速通信を実現する無線伝送技術である。また、複数のUE20のそれぞれに対して時分割で又は同時にビーム10Bを形成するビームフォーミングを行うMU(Multi User)-MIMO伝送方式で通信を行うことができる。多素子のアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UE20の通信環境に応じてUE20ごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUE20との通信ができるため、システム容量を拡大することができる。 In FIG. 1, a base station 10 is equipped with a plurality of array antennas 110 having a large number of antenna elements, and can perform communication using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method with a plurality of UEs 20. . mMIMO is a wireless transmission technology that achieves high-capacity, high-speed communication by transmitting and receiving data using the array antenna 110. Furthermore, communication can be performed using an MU (Multi User)-MIMO transmission method that performs beamforming to form beams 10B in time division or simultaneously for each of the plurality of UEs 20. By performing MU-MIMO transmission using a multi-element array antenna, it is possible to direct and communicate an appropriate beam to each UE 20 according to the communication environment of each UE 20, thereby improving the communication quality of the entire cell. Moreover, since communication with a plurality of UEs 20 can be performed using the same radio resource (time/frequency resource), system capacity can be expanded.
 また、図1において、通信エリア10A内の一部は、基地局10から端末装置20に向けて無線電力伝送を行う無線電力伝送エリア(以下「WPTエリア」という。)10A'になっている。WPTエリア10A'は図示のように通信エリア10Aよりも狭いエリアでもよいし、通信エリア10Aと同じ又はほぼ同じサイズ及び位置のエリアであってもよい。 Further, in FIG. 1, a part of the communication area 10A is a wireless power transmission area (hereinafter referred to as "WPT area") 10A' where wireless power transmission is performed from the base station 10 to the terminal device 20. The WPT area 10A' may be a smaller area than the communication area 10A as shown in the figure, or may be an area having the same or approximately the same size and position as the communication area 10A.
 WPTエリア10A'では、基地局10からの下りリンクの無線フレームを構成する複数の無線リソース(時間・周波数リソース)であるリソースブロックのうち通信に用いられていない通信未使用の無線リソース(リソースブロック)を無線電力伝送ブロックとして活用している。基地局10は、UE20への下りリンクの無線フレームにおいて、通信未使用の無線リソースである無線電力伝送ブロック(WPTブロック)に無線電力伝送用のダミー信号(以下「WPT用ダミー信号」ともいう。)を割り当てた送信信号を生成してUE20に送信する。 In the WPT area 10A', unused radio resources (resource blocks) that are not used for communication among resource blocks that are a plurality of radio resources (time/frequency resources) constituting a downlink radio frame from the base station 10 are ) is used as a wireless power transmission block. In the downlink radio frame to the UE 20, the base station 10 sends a dummy signal for wireless power transmission (hereinafter also referred to as "WPT dummy signal") to a wireless power transmission block (WPT block), which is a wireless resource that is not used for communication. ) is generated and transmitted to the UE 20.
 特に、第5世代又はそれ以降の世代の移動通信システムにおいては、無線フレームの一部のサブキャリアのみに必要最小限の参照信号(RS)や制御信号を配置するリーンキャリアという技術が提案されており、無線フレームにおける通信未使用の無線リソースの部分を有効活用してUE20への無線電力伝送を行うことが期待される。 In particular, in 5th generation or later generation mobile communication systems, a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed only on some subcarriers of a radio frame. Therefore, it is expected that wireless power transmission to the UE 20 will be performed by effectively utilizing the unused radio resources in the radio frame.
 基地局10とUE20との間で送受信される通信の信号の電波及び基地局10からUE20に送信されるWPT用ダミー信号を割り当てた送信信号の電波は、例えば、ミリ波又はマイクロ波である。 The radio waves of communication signals transmitted and received between the base station 10 and the UE 20 and the radio waves of the transmission signal to which the WPT dummy signal is assigned are transmitted from the base station 10 to the UE 20, for example, are millimeter waves or microwaves.
 図2は、実施形態に係るシステムを構成する基地局10及び端末装置(UE)20の主要構成の一例を示すブロック図である。基地局10は、基地局装置100とアンテナ110とを備える。アンテナ110は、例えば、図1に示すように多数のアンテナ素子を有するアレーアンテナである。アンテナ110は単数でもよいし複数であってもよい。例えば、アンテナ110は複数のセクタセルに対応させて複数配置してもよい。 FIG. 2 is a block diagram showing an example of the main configuration of a base station 10 and a terminal device (UE) 20 that constitute a system according to an embodiment. The base station 10 includes a base station device 100 and an antenna 110. The antenna 110 is, for example, an array antenna having a large number of antenna elements as shown in FIG. 1. There may be a single antenna 110 or multiple antennas 110. For example, multiple antennas 110 may be arranged to correspond to multiple sector cells.
 基地局装置100は、通信信号処理部120と無線処理部130とを備える。通信信号処理部120は、UE20との間で送受信される各種のユーザデータや制御情報等の信号を処理する。 The base station device 100 includes a communication signal processing section 120 and a wireless processing section 130. The communication signal processing unit 120 processes signals such as various user data and control information transmitted and received with the UE 20.
 また、通信信号処理部120は、UE20に対する下りリンクの通信の際に、複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いたWPT用ダミー信号を含む下りリンクの送信信号を生成する。例えば、WPT用ダミー信号は、通信信号よりもPAPR(ピーク電力対平均電力比)(「波高比」ともいう。)が小さい変調方式で変調して生成することができる。例えば、WPT用ダミー信号は、Zadoff-Chu系列の符号を用いて変調され、時間に対して振幅が一定で位相が変化する変調信号であってもよく、また、デジタル変調方式の複数のシンボル点のうち振幅が最大又は最大近傍の一又は複数のシンボル点で変調された信号であってもよい。また例えば、送信信号の生成は、通信信号用のQAM(直交振幅変調)やWPT用ダミー信号用のPAPRが小さい変調等の一次変調、並びに、OFDM(直交周波数多重)変調等の二次変調を含んでもよい。 In addition, during downlink communication to the UE 20, the communication signal processing unit 120 transmits a downlink including a WPT dummy signal using an unused radio resource that is not used for communication among the plurality of radio resources. Generate a signal. For example, the WPT dummy signal can be generated by modulating with a modulation method that has a smaller PAPR (peak power to average power ratio) (also referred to as "wave height ratio") than the communication signal. For example, the WPT dummy signal may be a modulated signal that is modulated using a Zadoff-Chu sequence code and has a constant amplitude and a phase that changes over time, or may be a modulated signal that is modulated using a Zadoff-Chu code, and may be a modulated signal that has a constant amplitude and a phase that changes over time. The signal may be a signal modulated at one or more symbol points having the maximum amplitude or near the maximum amplitude. For example, the transmission signal generation uses primary modulation such as QAM (quadrature amplitude modulation) for communication signals and modulation with small PAPR for WPT dummy signals, and secondary modulation such as OFDM (orthogonal frequency division multiplexing) modulation. May include.
 無線処理部130は、通信信号処理部120で生成した送信信号をアンテナ110からUE20に送信したり、UE20からアンテナ110を介して受信した受信信号を通信信号処理部120に出力したりする。 The radio processing unit 130 transmits the transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the UE 20, and outputs the reception signal received from the UE 20 via the antenna 110 to the communication signal processing unit 120.
 無線処理部130は、送信信号の電力を増幅する電力増幅器(送信アンプ)131と、電力増幅器131を制御する制御部132とを有する。電力増幅器131は例えば高周波・高電力用のFETを用いて構成することができる。制御部132は、例えば、通信信号の増幅時とWPT用ダミー信号の増幅時との間でFETからなる電力増幅器131の効率特性を切り替えるように、電力増幅器131に印加するドレイン電圧(直流電圧)を制御する。 The wireless processing unit 130 includes a power amplifier (transmission amplifier) 131 that amplifies the power of a transmission signal, and a control unit 132 that controls the power amplifier 131. The power amplifier 131 can be configured using, for example, a high frequency/high power FET. For example, the control unit 132 controls the drain voltage (DC voltage) applied to the power amplifier 131 so as to switch the efficiency characteristics of the power amplifier 131 made of FET between when amplifying a communication signal and when amplifying a WPT dummy signal. control.
 UE20に対する下りリンク通信の送信信号に通信未使用の無線リソースを用いたWPT用ダミー信号を含める処理や、電力増幅器131のドレイン電圧等の制御は、移動通信の無線フレームを構成するサブフレーム毎に行ってもよい。 The process of including a WPT dummy signal using unused radio resources in the transmission signal of downlink communication to the UE 20 and the control of the drain voltage of the power amplifier 131 are performed for each subframe that constitutes the radio frame of mobile communication. You may go.
 また、UE20に対する下りリンク通信の送信信号に、通信未使用の無線リソースを用いたWPT用ダミー信号を含める処理は、基地局10が自律的に行ってもよいし、UE20からの要求若しくは指示又は外部プラットフォーム(例えば、サーバ、クラウドシステム)からの要求若しくは指示に基づいて行ってもよい。 Further, the base station 10 may autonomously perform the process of including a WPT dummy signal using unused radio resources in the transmission signal of the downlink communication to the UE 20, or the process may be performed by the base station 10 autonomously, or upon request or instruction from the UE 20, or It may also be performed based on a request or instruction from an external platform (eg, server, cloud system).
 また、本実施形態において、無線処理部130は、BF制御信号に基づいてアレーアンテナ110で形成される一又は複数のビームを制御する。また、無線処理部130は、通信信号処理部120で生成されたWPT用ダミー信号を含む下りリンクの送信信号を、アンテナ110を介してUE20に送信する。 Furthermore, in this embodiment, the wireless processing unit 130 controls one or more beams formed by the array antenna 110 based on the BF control signal. Furthermore, the radio processing unit 130 transmits a downlink transmission signal including the WPT dummy signal generated by the communication signal processing unit 120 to the UE 20 via the antenna 110.
 基地局10は、UE20に対する下りリンクの通信の際に、UE20毎に又は複数のUE20が属するターゲットエリアのUEグループ毎に、個別のビーム10Bを形成するビームフォーミング(BF)制御を行い、UE20毎に又はUEグループ毎に無線電力伝送を行ってもよい。UE20毎又はUEグループ毎のBF制御は、通信信号処理部120における周波数領域のデジタルBF制御で行ってもよいし、無線処理部130におけるアナログBF制御で行ってもよい。 During downlink communication to the UE 20, the base station 10 performs beamforming (BF) control to form individual beams 10B for each UE 20 or for each UE group in the target area to which a plurality of UEs 20 belong. Wireless power transfer may be performed separately or for each UE group. BF control for each UE 20 or for each UE group may be performed by digital BF control in the frequency domain in the communication signal processing section 120, or by analog BF control in the radio processing section 130.
 図2において、UE20は、アンテナ210と無線処理部220と通信信号処理部230と電力出力部240と電池250とを含む。アンテナ210は、例えば複数のアンテナ素子を有する小型のアレーアンテナである。無線処理部220は、通信信号処理部230で生成したフィードバック情報やユーザデータ等の送信信号をアンテナ210から基地局10に送信したり、基地局10からアンテナ210を介して受信した受信信号を通信信号処理部230に出力したりする。 In FIG. 2, the UE 20 includes an antenna 210, a wireless processing section 220, a communication signal processing section 230, a power output section 240, and a battery 250. Antenna 210 is, for example, a small array antenna having a plurality of antenna elements. The wireless processing unit 220 transmits transmission signals such as feedback information and user data generated by the communication signal processing unit 230 from the antenna 210 to the base station 10, and transmits received signals received from the base station 10 via the antenna 210 to communication. It is also output to the signal processing section 230.
 本実施形態において、無線処理部220は、基地局10から送信されたWPT用ダミー信号を含む送信信号を受信する。また、電力出力部240は、例えば整流器を有し、基地局10からのWPT用ダミー信号を含む送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部240から出力された受電電力により、電池250を充電することができる。 In this embodiment, the wireless processing unit 220 receives a transmission signal including a WPT dummy signal transmitted from the base station 10. Further, the power output unit 240 includes, for example, a rectifier, and outputs the power of the received signal that has received the transmission signal including the WPT dummy signal from the base station 10 as the received power for battery charging. The battery 250 can be charged by the received power output from the power output unit 240.
 図3Aは、本実施形態に係る基地局10から送信されるWPT用ダミー信号を含む送信信号の無線リソース(リソースブロック)におけるWPTブロックの割り当ての一例を示す説明図である。また、図3Bは、本実施形態に係る基地局10から送信される送信信号のOFDM方式の二次変調における周波数軸上のスペクトルの一例を示す説明図である。図3Aに示すように、本実施形態のシステムにおける下りリンク通信及び上りリンク通信で用いられる複数の無線リソースは、周波数軸上のサブキャリアと時間軸上のスロットとにより定義される複数のリソースブロック30である。各リソースブロック30は、図3Bに示すように周波数軸上で互いに直交する所定帯域幅のサブキャリア33を有する。 FIG. 3A is an explanatory diagram showing an example of allocation of WPT blocks in radio resources (resource blocks) of a transmission signal including a WPT dummy signal transmitted from the base station 10 according to the present embodiment. Further, FIG. 3B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from the base station 10 according to the present embodiment. As shown in FIG. 3A, a plurality of radio resources used in downlink communication and uplink communication in the system of this embodiment are a plurality of resource blocks defined by subcarriers on the frequency axis and slots on the time axis. It is 30. Each resource block 30 has subcarriers 33 of a predetermined bandwidth that are orthogonal to each other on the frequency axis, as shown in FIG. 3B.
 図3Aの無線リソースを構成するリソースブロック30は、移動通信の無線フレームを構成する連続の複数のサブフレームに割り当てられる。図示の例では、各サブフレームは所定数(例えば20個)のリソースブロックで構成され、通信用のサブフレーム(以下「通信用フレーム」という。)F1とWPT用のサブフレーム(以下「WPT用フレーム」という。)F2が交互に位置する。通信用フレームF1は、上りリンク及び下りリンクの通信用のリソースブロック31を含み、WPT用フレームF2は、図中のクロスハッチングを付しているWPT用のリソースブロック32を含む。通信用フレームF1のリソースブロック31のうち、上りリンクの複数のリソースブロックには、ユーザデータの上りリンク通信の信号及びUE20からのWPT用のフィードバック情報の通信の信号に割り当てられ、下りリンクの複数のリソースブロックには、ユーザデータや情報の下りリンク通信の信号に割り当てられる。また、WPT用フレームF2のリソースブロック32には、下りリンクのWPT用信号が割り当てられる。 The resource block 30 configuring the radio resource in FIG. 3A is allocated to a plurality of consecutive subframes configuring a radio frame for mobile communication. In the illustrated example, each subframe is composed of a predetermined number (for example, 20) of resource blocks, including a communication subframe (hereinafter referred to as "communication frame") F1 and a WPT subframe (hereinafter referred to as "WPT frame"). (referred to as "frame") F2 are located alternately. The communication frame F1 includes a resource block 31 for uplink and downlink communication, and the WPT frame F2 includes a WPT resource block 32 that is cross-hatched in the figure. Among the resource blocks 31 of the communication frame F1, a plurality of uplink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20, and a plurality of downlink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20. These resource blocks are allocated to signals for downlink communication of user data and information. Further, a downlink WPT signal is allocated to the resource block 32 of the WPT frame F2.
 図4は、本実施形態に係る基地局10の電力増幅器131の入力電力Pin[dBm]に対する出力電力Pout[dBm]及び効率PAE[%]の特性の一例を示すグラフである。図中の曲線Aは、電力増幅器131の交流の入力電力Pin[dBm]に対する交流の出力電力Pout[dBm]のシミュレーション計算結果であり、「□」のプロット点は出力電力Pout[dBm]の測定結果である。また、図中の曲線Bは、電力増幅器131の入力電力Pin[dBm]に対する効率の指標値の一つであるPAE(電力付加効率)[%]のシミュレーション計算結果であり、「○」のプロット点は効率PAE[%]の測定結果である。ここで、電力増幅器131のPAE[%]は、(Pout-Pin)/Pdcで定義される。Pdcは電力増幅器131に入力(印加)される直流電力である。また、図中の線形領域は、入力電力Pinと出力電力Poutとの関係が線形又はほぼ線形の関係にある領域である。図中の飽和領域は、入力電力Pinの増加に対して出力電力Poutが飽和又はほぼ飽和している領域である。線形領域と飽和領域の境界の近傍に、電力増幅器131の効率PAEのピークが位置する。 FIG. 4 is a graph showing an example of the characteristics of the output power Pout [dBm] and the efficiency PAE [%] with respect to the input power Pin [dBm] of the power amplifier 131 of the base station 10 according to the present embodiment. Curve A in the figure is a simulation calculation result of AC output power Pout [dBm] with respect to AC input power Pin [dBm] of the power amplifier 131, and plotted points of "□" are measurements of output power Pout [dBm]. This is the result. In addition, curve B in the figure is a simulation calculation result of PAE (power added efficiency) [%], which is one of the index values of efficiency with respect to the input power Pin [dBm] of the power amplifier 131, and the plot of "○" The points are the measurement results of efficiency PAE [%]. Here, PAE [%] of the power amplifier 131 is defined as (Pout-Pin)/Pdc. Pdc is DC power input (applied) to the power amplifier 131. Furthermore, the linear region in the figure is a region where the relationship between input power Pin and output power Pout is linear or nearly linear. The saturated region in the figure is a region where the output power Pout is saturated or almost saturated with respect to an increase in the input power Pin. The peak of the efficiency PAE of the power amplifier 131 is located near the boundary between the linear region and the saturation region.
 基地局10において、PAPR(ピーク電力対平均電力比)の高い変調信号からなる通信信号を電力増幅器131で増幅するときは、電力増幅器131の低出力電力及び低効率の線形領域が使用される。例えば、図4の飽和領域の開始点(左端)から低電力側に相応のバックオフをとった点(線形領域の中央部)に、通信信号(変調信号)の平均電力が位置するように、電力増幅器131の動作パラメータ(例えば、ドレイン電圧)が設定される。 When the base station 10 amplifies a communication signal consisting of a modulated signal with a high PAPR (Peak to Average Power Ratio) using the power amplifier 131, the low output power and low efficiency linear region of the power amplifier 131 is used. For example, the operating parameters (e.g., drain voltage) of the power amplifier 131 are set so that the average power of the communication signal (modulated signal) is located at a point (center of the linear region) that is backed off appropriately to the low power side from the start point (left end) of the saturation region in Figure 4.
 一方、無線電力伝送(WPT)では、高出力電力及び高効率の領域でWPT用ダミー信号を増幅したいという課題がある。 On the other hand, in wireless power transmission (WPT), there is a problem of wanting to amplify a dummy signal for WPT in a region of high output power and high efficiency.
 そこで、本実施形態では、電力増幅器131の高出力電力及び高効率の領域でWPT用ダミー信号を増幅できるように、WPT用ダミー信号として、PAPR(ピーク電力対平均電力比)が通信信号よりも低いOFDM変調信号を用いる。 Therefore, in this embodiment, in order to amplify the WPT dummy signal in the high output power and high efficiency region of the power amplifier 131, the WPT dummy signal has a PAPR (peak power to average power ratio) higher than that of the communication signal. A low OFDM modulation signal is used.
 図5Aは、本実施形態に係る基地局10から送信される通信信号のQAM方式の一次変調におけるシンボル点41の配置の一例を示す説明図である。図5Aは、64QAM方式の場合の複数のシンボル点(64値のシンボル点)の配置を示すコンスタレーションの図である。また、図5Bは、本実施形態に係る基地局10から送信されるWPT用ダミー信号の変調におけるシンボル点の配置の一例を示す説明図である。図5A及び図5Bにおいて、横軸は同相チャネル成分を示し,縦軸は直交チャネル成分を示している。 FIG. 5A is an explanatory diagram showing an example of arrangement of symbol points 41 in QAM primary modulation of a communication signal transmitted from the base station 10 according to the present embodiment. FIG. 5A is a diagram of a constellation showing the arrangement of a plurality of symbol points (64-value symbol points) in the case of the 64QAM method. Further, FIG. 5B is an explanatory diagram showing an example of arrangement of symbol points in modulation of the WPT dummy signal transmitted from the base station 10 according to the present embodiment. In FIGS. 5A and 5B, the horizontal axis shows in-phase channel components, and the vertical axis shows orthogonal channel components.
 本実施形態では、WPT用ダミー信号として、PAPR(ピーク電力対平均電力比)が通信信号よりも低いOFDM変調信号を用いる。例えば、図5Aにおいて、通信信号用のQAM方式の複数のシンボル点41のうち、振幅が最大である最外周又は最外周周辺の複数のシンボル点41Sのみで変調されたOFDM変調信号からなるWPT用ダミー信号を用いてもよい。 In this embodiment, an OFDM modulated signal with a lower PAPR (peak power to average power ratio) than the communication signal is used as the WPT dummy signal. For example, in FIG. 5A, among the plurality of symbol points 41 of the QAM system for communication signals, the WPT signal is composed of an OFDM modulated signal modulated only at the outermost or peripheral symbol points 41S having the maximum amplitude. A dummy signal may also be used.
 また、図5Bのコンスタレーション図に示すように、時間に対して振幅が一定の条件で位相が変化するシンボル点42で変調されたOFDM変調信号からなるWPT用ダミー信号を用いてもよい。図5Bのシンボル点42でOFDM変調信号は、例えばZadoff-Chu系列の符号を用いて生成することができる。 Also, as shown in the constellation diagram of FIG. 5B, a dummy signal for WPT may be used that is an OFDM modulated signal modulated at symbol point 42 where the phase changes with a constant amplitude over time. The OFDM modulated signal at symbol point 42 in FIG. 5B can be generated using, for example, a code of the Zadoff-Chu sequence.
 図6は、本実施形態に係る基地局10から送信される通信信号及びWPT用ダミー信号の相補累積分布関数(CCDF)曲線の一例を示すグラフである。図6の横軸は、信号全体の平均電力を超える信号の電力レベル[dB]であり、縦軸は、各電力レベルの信号が存在する時間の割合[%]である。図中の曲線C11は、通信信号(OFDM変調信号)のCCDF曲線であり、そのPAPR(ピーク電力対平均電力比)は10~12dB程度である。図中の曲線C12は、WPT用ダミー信号(OFDM変調信号)のCCDF曲線であり、そのPAPRは通信信号よりも低い3dB程度である。 FIG. 6 is a graph showing an example of complementary cumulative distribution function (CCDF) curves of a communication signal and a WPT dummy signal transmitted from base station 10 according to this embodiment. The horizontal axis of FIG. 6 is the power level [dB] of a signal that exceeds the average power of the entire signal, and the vertical axis is the percentage [%] of time that a signal of each power level exists. Curve C11 in the figure is a CCDF curve of a communication signal (OFDM modulated signal), whose PAPR (peak-to-average power ratio) is about 10 to 12 dB. Curve C12 in the figure is a CCDF curve of a WPT dummy signal (OFDM modulated signal), whose PAPR is about 3 dB lower than that of the communication signal.
 図6に示すように、通信信号よりも低いPAPRを有するWPT用ダミー信号を用いることにより、WPT用ダミー信号を増幅するときの電力増幅器131の出力電力Poutの範囲を、通信信号の増幅時によりも高い、電力増幅器131の効率(PAE)がピーク近傍の高出力電力範囲に設定することができる。従って、通信信号についてはスプリアスが発生しないように高いマージンをとった低めの出力電力の範囲で増幅できるとともに、WPT用ダミー信号を増幅するときの電力増幅器131の高出力化及び高効率化を図ることができる。 As shown in FIG. 6, by using a WPT dummy signal having a lower PAPR than the communication signal, the range of the output power Pout of the power amplifier 131 when amplifying the WPT dummy signal can be increased by using the WPT dummy signal when amplifying the communication signal. The efficiency (PAE) of the power amplifier 131 can be set in a high output power range near its peak. Therefore, communication signals can be amplified within a low output power range with a high margin so as not to generate spurious signals, and the power amplifier 131 can have high output and high efficiency when amplifying the WPT dummy signal. be able to.
 なお、本実施形態において、WPT用ダミー信号の出力電力範囲及び通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、電力増幅器131の効率特性における電力付加効率(PAE:)のピークが位置するように、WPT用ダミー信号の送信時と通信信号の送信時で電力増幅器131の効率特性を切り替える制御を行ってもよい。この制御により、WPT用ダミー信号を増幅するときの電力増幅器131の出力電力を更に高めることができる。 Note that in this embodiment, the peak of power added efficiency (PAE:) in the efficiency characteristics of the power amplifier 131 is at or near the upper limit of each of the output power range of the WPT dummy signal and the output power range of the communication signal. Control may be performed to switch the efficiency characteristics of the power amplifier 131 when transmitting the WPT dummy signal and when transmitting the communication signal so that the power amplifier 131 is located. With this control, the output power of the power amplifier 131 when amplifying the WPT dummy signal can be further increased.
 図7は、実施形態に係る基地局から送信される通信信号及びWPT用ダミー信号のそれぞれを増幅するときの電力増幅器131の効率特性の一例を示すグラフである。図中の横軸は、電力増幅器131の出力電力Pout[dBm]であり、縦軸は電力増幅器131の効率を示すPAE(電力付加効率)である。また、図7中の第1の出力電力範囲R1は、通信信号の高いPAPR(10~12dB)に対応可能な前述の通信用フレームF1(図3A参照)で使用される。また、高電力側の第2の出力電力範囲R2は、WPT用ダミー信号の低いPAPR(3dB)に対応可能な前述のWPT用フレームF2(図3A参照)で使用される。 FIG. 7 is a graph showing an example of efficiency characteristics of the power amplifier 131 when amplifying each of the communication signal and the WPT dummy signal transmitted from the base station according to the embodiment. The horizontal axis in the figure is the output power Pout [dBm] of the power amplifier 131, and the vertical axis is PAE (power added efficiency) indicating the efficiency of the power amplifier 131. Further, the first output power range R1 in FIG. 7 is used in the above-mentioned communication frame F1 (see FIG. 3A) that can accommodate a high PAPR (10 to 12 dB) of a communication signal. Further, the second output power range R2 on the high power side is used in the above-mentioned WPT frame F2 (see FIG. 3A) that can accommodate the low PAPR (3 dB) of the WPT dummy signal.
 図7において、第1の効率特性曲線C21は、FETで構成された電力増幅器131に通信信号用のドレイン電圧Vd1を印加したときの効率特性である。このドレイン電圧Vd1は、通信信号の出力電力範囲R1が、電力増幅器131の効率PAEのピークよりも低く、スプリアスが発生しないように高いマージンをとった低めの出力電力の線形範囲に位置するように制御される。 In FIG. 7, a first efficiency characteristic curve C21 is an efficiency characteristic when a communication signal drain voltage Vd1 is applied to the power amplifier 131 configured with an FET. This drain voltage Vd1 is set so that the output power range R1 of the communication signal is lower than the peak of the efficiency PAE of the power amplifier 131 and is located in a low output power linear range with a high margin to prevent spurious generation. controlled.
 第2の効率特性曲線C22は、FETで構成された電力増幅器131にWPT用のドレイン電圧Vd2を印加したときの効率特性である。このドレイン電圧Vd2は、通信信号の出力電力範囲R1よりも高いWPT信号用の出力電力範囲R2が、電力増幅器131の効率PAEのピークよりも若干低い出力電力範囲又は当該ピーク近傍の出力電力範囲に位置するように、上記通信信号用のドレイン電圧Vd1よりも高めに制御される。 The second efficiency characteristic curve C22 is the efficiency characteristic when the drain voltage Vd2 for WPT is applied to the power amplifier 131 configured with an FET. This drain voltage Vd2 is such that the output power range R2 for the WPT signal, which is higher than the output power range R1 of the communication signal, is in the output power range slightly lower than the peak of the efficiency PAE of the power amplifier 131, or in the output power range near the peak. The drain voltage Vd1 for the communication signal is controlled to be higher than the drain voltage Vd1 for the communication signal.
 このように通信信号の増幅時とWPT用ダミー信号の増幅時との間で電力増幅器131に印加するドレイン電圧を制御することにより、通信信号についてはスプリアスが発生しないように高いマージンをとった低めの出力電力の範囲で増幅できるとともに、WPT用ダミー信号を増幅するときの電力増幅器131の高出力化及び高効率化を図ることができる。特に、WPT用ダミー信号の増幅時には、電力増幅器131の効率PAEのピークを高出電力側にシフトさせることできるため、更なる高出力化及び高効率化の両立を図ることができる。 In this way, by controlling the drain voltage applied to the power amplifier 131 between the time of amplifying the communication signal and the time of amplifying the WPT dummy signal, the drain voltage applied to the power amplifier 131 is set to a low level with a high margin to prevent the generation of spurious signals for the communication signal. The power amplifier 131 can be amplified within the range of output power, and the output power and efficiency of the power amplifier 131 can be increased when amplifying the WPT dummy signal. In particular, when amplifying the WPT dummy signal, the peak of the efficiency PAE of the power amplifier 131 can be shifted to the high output power side, so that both higher output and higher efficiency can be achieved.
 図8は、実施形態に係る基地局10の電力増幅器131のドレイン電圧の制御の一例を示すタイムチャートである。図8に示すように、電力増幅器131の高出力化及び高効率化のためのドレイン電圧の制御は、移動通信のフレーム毎(フレーム単位)で行ってもよい。例えば、図8において、通信信号を増幅する通信用フレームF1では、電力増幅器131のドレイン電圧を通信信号用の第1のドレイン電圧Vd1に制御する。一方、WPT用ダミー信号を増幅するWPT用フレームF2では、電力増幅器131のドレイン電圧を、通信信号用の第1のドレイン電圧Vd1よりも高い第2のドレイン電圧Vd2に切り替えるように制御する。 FIG. 8 is a time chart showing an example of controlling the drain voltage of the power amplifier 131 of the base station 10 according to the embodiment. As shown in FIG. 8, control of the drain voltage for increasing the output and efficiency of the power amplifier 131 may be performed for each frame of mobile communication (frame unit). For example, in FIG. 8, in the communication frame F1 for amplifying a communication signal, the drain voltage of the power amplifier 131 is controlled to the first drain voltage Vd1 for the communication signal. On the other hand, in the WPT frame F2 that amplifies the WPT dummy signal, the drain voltage of the power amplifier 131 is controlled to be switched to a second drain voltage Vd2 higher than the first drain voltage Vd1 for communication signals.
 このように電力増幅器131のドレイン電圧の制御をフレーム毎に(フレーム単位で)行うことにより、電力増幅器のドレイン電圧を出力電力に合わせて常時制御するエンベロープトラッキング技術と比較して、ドレイン電圧の同期制御がより容易になり、制御のための実装回路がより簡易になる。 By controlling the drain voltage of the power amplifier 131 frame by frame in this way, it is possible to synchronize the drain voltage, compared to envelope tracking technology that constantly controls the drain voltage of the power amplifier in accordance with the output power. Control becomes easier and the implementation circuit for control becomes simpler.
 上記構成の図1~図8のシステムによれば、基地局10からUE20への下りリンク通信において、通信未使用の無線リソースを無線電力伝送ブロック(WPTブロック)として有効活用し、基地局10からUE20への無線電力伝送(WPT)を行うことができる。また、基地局10においてWPT用ダミー信号を増幅するときの電力増幅器131の高出力化及び高効率化を図ることができる。 According to the systems of FIGS. 1 to 8 having the above configuration, in downlink communication from the base station 10 to the UE 20, unused radio resources are effectively used as wireless power transfer blocks (WPT blocks), and from the base station 10 to the UE 20. Wireless power transfer (WPT) to the UE 20 can be performed. Furthermore, it is possible to increase the output and efficiency of the power amplifier 131 when amplifying the WPT dummy signal in the base station 10.
 図9は、本実施形態に係る基地局10から複数のUE20へのビームフォーミングによるUE毎の給電の一例を示す説明図である。本実施形態において、図9に示すように通信エリア10A内のWPTエリア10A'(前述の図1参照)に複数のUE20(1)~20(3)が在圏し、UE毎に形成したビーム10B(1)~10B(3)を介して各UE20(1)~20(3)に給電してもよい。ビーム10B(1)~10B(3)は、例えば時分割で切り替えて形成してもよい。 FIG. 9 is an explanatory diagram showing an example of power feeding to each UE by beamforming from the base station 10 to a plurality of UEs 20 according to the present embodiment. In this embodiment, as shown in FIG. 9, a plurality of UEs 20(1) to 20(3) are located in a WPT area 10A' (see FIG. 1 described above) within a communication area 10A, and a beam formed by each UE is provided. Power may be supplied to each UE 20(1) to 20(3) via 10B(1) to 10B(3). The beams 10B(1) to 10B(3) may be formed, for example, by being switched in a time-division manner.
 以上、本実施形態によれば、通信信号よりも低いPAPRを有するWPT用ダミー信号を用いることにより、基地局10において、通信信号についてはスプリアスが発生しないように高いマージンをとった低めの出力電力の範囲で増幅できるとともに、WPT用ダミー信号を増幅するときの電力増幅器131の高出力化及び高効率化を図ることができる。 As described above, according to this embodiment, by using a dummy signal for WPT that has a lower PAPR than the communication signal, the communication signal can be amplified in the base station 10 within a low output power range with a large margin to prevent spurious signals from occurring, and the power amplifier 131 can be made to have a high output and high efficiency when amplifying the dummy signal for WPT.
 また、本実施形態によれば、WPT用ダミー信号の送信時と通信信号の送信時で電力増幅器131の効率特性を切り替える制御(ドレイン電圧の制御)により、WPT用ダミー信号を増幅するときの電力増幅器131の出力電力を更に高めることができる。 Further, according to the present embodiment, by controlling the efficiency characteristics of the power amplifier 131 (drain voltage control) when transmitting the WPT dummy signal and transmitting the communication signal, the power when amplifying the WPT dummy signal is The output power of amplifier 131 can be further increased.
 また、本実施形態によれば、電力増幅器131のドレイン電圧の制御をフレーム毎に(フレーム単位で)行うことにより、電力増幅器のドレイン電圧を出力電力に合わせて常時制御するエンベロープトラッキング技術と比較して、ドレイン電圧の同期制御がより容易になり、制御のための実装回路がより簡易になる。 Furthermore, according to the present embodiment, the drain voltage of the power amplifier 131 is controlled frame by frame (frame by frame), which is compared to envelope tracking technology in which the drain voltage of the power amplifier is constantly controlled in accordance with the output power. Therefore, the synchronous control of the drain voltage becomes easier, and the mounting circuit for control becomes simpler.
 また、本実施形態によれば、基地局10と端末装置20との間の通信未使用の無線リソースを利用して端末装置20への給電を行うことができる。 Furthermore, according to the present embodiment, power can be supplied to the terminal device 20 by using wireless resources that are not used for communication between the base station 10 and the terminal device 20.
 また、本発明は、基地局10から送信された電波を受信可能な多数の端末装置20への給電をまかなうことができる給電インフラを提供できるため、持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」の達成に貢献できる。 The present invention can also provide a power supply infrastructure capable of supplying power to a large number of terminal devices 20 capable of receiving radio waves transmitted from a base station 10, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote inclusive and sustainable industrialization, and promote innovation and infrastructure."
 なお、本明細書で説明された処理工程並びにシステム、端末装置(UE、IoTデバイス)、基地局、移動局、中継装置及び制御装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 Note that the processing steps and components of the system, terminal device (UE, IoT device), base station, mobile station, relay device, and control device described in this specification can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、各種無線通信装置、基地局装置(Node B、Node G)、端末装置、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 Regarding hardware implementation, in order to realize the above steps and components in entities (e.g., various wireless communication devices, base station devices (Node B, Node G), terminal devices, hard disk drive devices, or optical disk drive devices) The processing unit or other means used may be one or more of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processor (DSPD), a programmable logic device (PLD), a field programmable a gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, other electronic unit, computer, or combination thereof designed to perform the functions described herein; It may be implemented inside.
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Additionally, for firmware and/or software implementations, the means used to implement the components described above, such as processing units, may include programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.). In general, any computer/processor readable medium tangibly embodying firmware and/or software code, such as a processing unit, may be used to implement the above steps and components described herein. It may be used for implementation. For example, the firmware and/or software code may be stored in memory and executed by a computer or processor, eg, in a controller. The memory may be implemented within the computer or processor, or external to the processor. The firmware and/or software code may also be stored in, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), etc. ), flash memory, floppy disks, compact disks (CDs), digital versatile disks (DVDs), magnetic or optical data storage devices, etc. good. The code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。 Additionally, the medium may be a non-temporary recording medium. Further, the code of the program may be read and executed by a computer, processor, or other device or apparatus, and its format is not limited to a specific format. For example, the code of the program may be a source code, an object code, or a binary code, or may be a mixture of two or more of these codes.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 The description of the embodiments disclosed herein is also provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of this disclosure. Therefore, this disclosure is not to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
10   :基地局
10A  :通信エリア
10A' :WPTエリア
10B  :ビーム
20   :端末装置(UE)
100  :基地局装置
110  :アンテナ(アレーアンテナ)
120  :通信信号処理部
130  :無線処理部
131  :電力増幅器
132  :制御部
210  :アンテナ(アレーアンテナ)
230  :通信信号処理部
240  :電力出力部
250  :電池
10: Base station 10A: Communication area 10A': WPT area 10B: Beam 20: Terminal equipment (UE)
100: Base station device 110: Antenna (array antenna)
120: Communication signal processing section 130: Radio processing section 131: Power amplifier 132: Control section 210: Antenna (array antenna)
230: Communication signal processing section 240: Power output section 250: Battery

Claims (20)

  1.  複数の無線リソースを選択的に用いて通信可能な基地局を備え、前記基地局から端末装置に無線電力伝送を行うシステムであって、
     前記基地局は、
      前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、
      前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信する無線処理部と、を有し、
     前記端末装置は、
      前記基地局から送信された前記ダミー信号を含む送信信号を受信する無線処理部と、
      前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力する電力出力部と、を有し、
     前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である、
    ことを特徴とするシステム。
    A system comprising a base station capable of communicating by selectively using a plurality of radio resources, and performing wireless power transmission from the base station to a terminal device,
    The base station is
    a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused radio resource that is not used for communication among the plurality of radio resources;
    a wireless processing unit that amplifies a transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to the terminal device,
    The terminal device is
    a wireless processing unit that receives a transmission signal including the dummy signal transmitted from the base station;
    a power output unit that outputs the power of the received signal that has received the transmitted signal including the dummy signal as received power;
    The dummy signal for wireless power transmission is a modulated signal whose peak power to average power ratio (PAPR) is lower than that of the communication signal.
    A system characterized by:
  2.  請求項1のシステムにおいて、
     前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は前記通信信号の出力電力範囲よりも高く、
     前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行う、
    ことを特徴とするシステム。
    The system of claim 1,
    The output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal,
    The wireless processing unit may set power added efficiency (in the efficiency characteristics of the power amplifier) at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. performing control to switch the efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that the peak of PAE) is located;
    A system characterized by:
  3.  請求項1のシステムにおいて、
     前記電力増幅器は電力増幅用FETで構成され、
     前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御する、
    ことを特徴とするシステム。
    The system of claim 1,
    The power amplifier is composed of a power amplification FET,
    The wireless processing unit controls the drain voltage of the power amplification FET so as to switch the efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal.
    A system characterized by:
  4.  複数の無線リソースを選択的に用いて通信可能な基地局を備え、前記基地局から端末装置に無線電力伝送を行うシステムであって、
     前記基地局は、
      前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、
      前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信する無線処理部と、を有し、
     前記端末装置は、
      前記基地局から送信された前記ダミー信号を含む送信信号を受信する無線処理部と、
      前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力する電力出力部と、を有し、
     前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高く、
     前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行う、
    ことを特徴とするシステム。
    A system including a base station capable of communicating by selectively using a plurality of wireless resources, and performing wireless power transmission from the base station to a terminal device,
    The base station,
    a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources;
    a wireless processing unit that amplifies a transmission signal including a dummy signal for wireless power transmission by a power amplifier and transmits the amplified transmission signal to the terminal device,
    The terminal device
    a radio processing unit that receives a transmission signal including the dummy signal transmitted from the base station;
    a power output unit that outputs, as received power, the power of a received signal that has received a transmission signal including the dummy signal;
    an output power range of the dummy signal for wireless power transmission in the power amplifier is higher than an output power range of a communication signal;
    the wireless processing unit performs control to switch efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that a peak of a power added efficiency (PAE) in the efficiency characteristics of the power amplifier is located at or near the upper limit of each of an output power range of the dummy signal for wireless power transmission and an output power range of the communication signal.
    A system characterized by:
  5.  請求項4のシステムにおいて、
     前記電力増幅器は電力増幅用FETで構成され、
     前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御する、
    ことを特徴とするシステム。
    The system of claim 4,
    The power amplifier is composed of a power amplification FET,
    The wireless processing unit controls the drain voltage of the power amplification FET so as to switch the efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal.
    A system characterized by:
  6.  請求項3又は5のいずれかのシステムにおいて、
     前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、
     前記無線処理部は、前記ドレイン電圧をフレーム単位で切り替えるように制御する、
    ことを特徴とするシステム。
    The system according to claim 3 or 5,
    The communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively,
    The wireless processing unit controls the drain voltage to be switched on a frame-by-frame basis.
    A system characterized by:
  7.  複数の無線リソースを選択的に用いて通信可能な基地局であって、
     前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、
     前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して端末装置に送信する無線処理部と、を備え、
     前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である、
    ことを特徴とする基地局。
    A base station capable of communicating by selectively using a plurality of radio resources,
    a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused radio resource that is not used for communication among the plurality of radio resources;
    a wireless processing unit that amplifies a transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to a terminal device,
    The dummy signal for wireless power transmission is a modulated signal having a lower peak power to average power ratio (PAPR) than the communication signal.
    A base station characterized by:
  8.  請求項7の基地局において、
     前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は前記通信信号の出力電力範囲よりも高く、
     前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行う、
    ことを特徴とする基地局。
    The base station according to claim 7,
    The output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal,
    The wireless processing unit may set power added efficiency (in the efficiency characteristics of the power amplifier) at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. performing control to switch the efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that the peak of PAE) is located;
    A base station characterized by:
  9.  請求項8の基地局において、
     前記電力増幅器は電力増幅用FETで構成され、
     前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御する、
    ことを特徴とする基地局。
    The base station according to claim 8,
    The power amplifier is composed of a power amplification FET,
    The wireless processing unit controls the drain voltage of the power amplification FET so as to switch the efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal.
    A base station characterized by:
  10.  複数の無線リソースを選択的に用いて通信可能な基地局であって、
     前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成する通信信号処理部と、
     前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して端末装置に送信する無線処理部と、を備え、
     前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高く、
     前記無線処理部は、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行う、
    ことを特徴とする基地局。
    A base station capable of communicating by selectively using a plurality of radio resources,
    a communication signal processing unit that generates a transmission signal including a dummy signal for wireless power transmission using an unused radio resource that is not used for communication among the plurality of radio resources;
    a wireless processing unit that amplifies a transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to a terminal device,
    The output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal,
    The wireless processing unit may set power added efficiency (in the efficiency characteristics of the power amplifier) at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. performing control to switch the efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that the peak of PAE) is located;
    A base station characterized by:
  11.  請求項10の基地局において、
     前記電力増幅器は電力増幅用FETで構成され、
     前記無線処理部は、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御する、
    ことを特徴とする基地局。
    The base station according to claim 10,
    The power amplifier is composed of a power amplification FET,
    The wireless processing unit controls the drain voltage of the power amplification FET so as to switch the efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal.
    A base station characterized by:
  12.  請求項9又は11の基地局において、
     前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、
     前記無線処理部は、前記ドレイン電圧をフレーム単位で切り替えるように制御する、
    ことを特徴とする基地局。
    The base station according to claim 9 or 11,
    The communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively,
    The wireless processing unit controls the drain voltage to be switched on a frame-by-frame basis.
    A base station characterized by:
  13.  基地局及び端末装置が複数の無線リソースを選択的に用いて互いに通信を行う方法であって、
     前記基地局が、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成することと、
     前記基地局が、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信することと、
     前記端末装置が、前記基地局から送信された前記ダミー信号を含む送信信号を受信することと、
     前記端末装置が、前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力することと、を含み、
     前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である、
    ことを特徴する方法。
    A method in which a base station and a terminal device communicate with each other by selectively using a plurality of radio resources, the method comprising:
    The base station generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources;
    The base station amplifies the transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to the terminal device;
    the terminal device receiving a transmission signal including the dummy signal transmitted from the base station;
    The terminal device outputs, as received power, power of a received signal that has received a transmitted signal including the dummy signal,
    The dummy signal for wireless power transmission is a modulated signal having a lower peak power to average power ratio (PAPR) than the communication signal.
    How to characterize that.
  14.  基地局及び端末装置が複数の無線リソースを選択的に用いて互いに通信を行う方法であって、
     前記基地局が、前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成することと、
     前記基地局が、前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信することと、
     前記端末装置が、前記基地局から送信された前記ダミー信号を含む送信信号を受信することと、
     前記端末装置が、前記ダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力することと、を含み、
     前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高く、
     前記基地局が、前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行うことを、更に含む、
    ことを特徴する方法。
    A method in which a base station and a terminal device communicate with each other by selectively using a plurality of radio resources, the method comprising:
    The base station generates a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources;
    The base station amplifies the transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmits the amplified signal to the terminal device;
    the terminal device receiving a transmission signal including the dummy signal transmitted from the base station;
    The terminal device outputs, as received power, power of a received signal that has received a transmitted signal including the dummy signal,
    The output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal,
    The base station sets power added efficiency (PAE) in the efficiency characteristics of the power amplifier at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. ), further comprising performing control to switch the efficiency characteristics of the power amplifier when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal so that the peak of
    How to characterize that.
  15.  請求項14の方法において、
     前記電力増幅器は電力増幅用FETで構成され、
     前記基地局が、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御することを、含む、
    ことを特徴する方法。
    The method of claim 14,
    The power amplifier is composed of a power amplification FET,
    The base station controls the drain voltage of the power amplification FET so as to switch the efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal. ,
    How to characterize that.
  16.  請求項15の方法において、
     前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、
     前記基地局が、前記電力増幅器の効率特性をフレーム単位で切り替えるように制御することを更に含む、
    ことを特徴とする方法。
    The method of claim 15,
    The communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively,
    The base station further includes controlling the efficiency characteristic of the power amplifier to be switched on a frame-by-frame basis.
    A method characterized by:
  17.  複数の無線リソースを選択的に用いて端末装置と通信を行う基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成するためのプログラムコードと、
     前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信するためのプログラムコードと、を含み、
     前記無線電力伝送用のダミー信号は、ピーク電力対平均電力比(PAPR)が通信信号よりも低い変調信号である、
    ことを特徴とするプログラム。
    A program executed on a computer or processor included in a base station that selectively uses a plurality of radio resources to communicate with a terminal device,
    A program code for generating a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources;
    a program code for amplifying a transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmitting it to the terminal device,
    The dummy signal for wireless power transmission is a modulated signal having a lower peak power to average power ratio (PAPR) than the communication signal.
    A program characterized by:
  18.  複数の無線リソースを選択的に用いて端末装置と通信を行う基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いた無線電力伝送用のダミー信号を含む送信信号を生成するためのプログラムコードと、
     前記無線電力伝送用のダミー信号を含む送信信号を電力増幅器で増幅して前記端末装置に送信するためのプログラムコードと、を含み、
     前記電力増幅器における前記無線電力伝送用のダミー信号の出力電力範囲は通信信号の出力電力範囲よりも高く、
     前記無線電力伝送用のダミー信号の出力電力範囲及び前記通信信号の出力電力範囲のぞれぞれの上限又は上限近傍に、前記前記電力増幅器の効率特性における電力付加効率(PAE)のピークが位置するように、前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替える制御を行うためのプログラムコードを、更に含む、
    ことを特徴とするプログラム。
    A program executed on a computer or processor included in a base station that selectively uses a plurality of radio resources to communicate with a terminal device,
    A program code for generating a transmission signal including a dummy signal for wireless power transmission using an unused wireless resource that is not used for communication among the plurality of wireless resources;
    a program code for amplifying a transmission signal including the dummy signal for wireless power transmission with a power amplifier and transmitting it to the terminal device,
    The output power range of the dummy signal for wireless power transmission in the power amplifier is higher than the output power range of the communication signal,
    A peak of power added efficiency (PAE) in the efficiency characteristics of the power amplifier is located at or near the upper limit of each of the output power range of the dummy signal for wireless power transmission and the output power range of the communication signal. further comprising a program code for performing control to switch efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal,
    A program characterized by:
  19.  請求項18のプログラムにおいて、
     前記電力増幅器は電力増幅用FETで構成され、
     前記無線電力伝送用のダミー信号の送信時と前記通信信号の送信時で前記電力増幅器の効率特性を切り替えるように、前記電力増幅用FETのドレイン電圧を制御するためのプログラムコードを、含む、
    ことを特徴するプログラム。
    The program according to claim 18,
    The power amplifier is composed of a power amplification FET,
    A program code for controlling the drain voltage of the power amplification FET so as to switch the efficiency characteristics of the power amplifier between when transmitting the dummy signal for wireless power transmission and when transmitting the communication signal,
    A program characterized by:
  20.  請求項19のプログラムにおいて、
     前記通信信号及び前記無線電力伝送用のダミー信号はそれぞれ、互いに異なる通信用のフレーム及び無線電力伝送用のフレームで送信され、
     前記電力増幅器の効率特性をフレーム単位で切り替えるように制御するためのプログラムコードを更に含む、
    ことを特徴とするプログラム。
    In the program of claim 19,
    The communication signal and the wireless power transmission dummy signal are transmitted in mutually different communication frames and wireless power transmission frames, respectively,
    further comprising a program code for controlling efficiency characteristics of the power amplifier to be switched on a frame-by-frame basis;
    A program characterized by:
PCT/JP2023/005195 2022-09-22 2023-02-15 System for performing wireless power transmission, base station, method, and program WO2024062645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151534A JP7279249B1 (en) 2022-09-22 2022-09-22 SYSTEM, BASE STATION, METHOD AND PROGRAM FOR WIRELESS POWER TRANSMISSION
JP2022-151534 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062645A1 true WO2024062645A1 (en) 2024-03-28

Family

ID=86395846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005195 WO2024062645A1 (en) 2022-09-22 2023-02-15 System for performing wireless power transmission, base station, method, and program

Country Status (2)

Country Link
JP (1) JP7279249B1 (en)
WO (1) WO2024062645A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026412A1 (en) * 2018-08-02 2020-02-06 マクセル株式会社 Radio terminal device and radio power feed device
JP2022513290A (en) * 2018-12-17 2022-02-07 アイディーエーシー ホールディングス インコーポレイテッド Signal design related to parallel delivery of energy and information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026412A1 (en) * 2018-08-02 2020-02-06 マクセル株式会社 Radio terminal device and radio power feed device
JP2022513290A (en) * 2018-12-17 2022-02-07 アイディーエーシー ホールディングス インコーポレイテッド Signal design related to parallel delivery of energy and information

Also Published As

Publication number Publication date
JP7279249B1 (en) 2023-05-22
JP2024046254A (en) 2024-04-03

Similar Documents

Publication Publication Date Title
US10027354B2 (en) Phased array weighting for power efficiency improvement with high peak-to-average power ratio signals
US6751206B1 (en) Method and apparatus for beam switching in a wireless communication system
EP3771098A1 (en) Open loop digital pwm envelope tracking system with dynamic boosting
KR20110016907A (en) Radio transmission device and radio transmission method
US10938350B2 (en) Multi-mode envelope tracking target voltage circuit and related apparatus
EP2258058A1 (en) Method of efficient power boosting
JP2001145147A (en) System and method for controlling total overload
US9743413B2 (en) Network node, user node and methods for power boosting DPCCH
EP3469723A1 (en) Device and method for a wireless communication system
WO2024062645A1 (en) System for performing wireless power transmission, base station, method, and program
WO2024053130A1 (en) System for performing wireless power transmission, base station, method, and program
WO2023085054A1 (en) Wireless power transmission device, wireless power transmission system, method, and program
CN112020143A (en) State information sending and receiving method and device
WO2024062646A1 (en) System that performs communication and wireless power transmission, base station, wireless processing device, and antenna system
WO2024062647A1 (en) System, method, and program for measuring characteristics of rectifier circuit for wireless power transmission
JP7362707B2 (en) Systems, base stations, terminal devices, methods and programs for communication and wireless power transmission
WO2021042088A2 (en) Switched envelope tracking
WO2024057576A1 (en) System, base station, terminal device, method, and program executing wireless electric power transmission
US20150264585A1 (en) Terminal apparatus
Myoenzono et al. Effect of PAPR reduction to BS cooperation MIMO systems under multi-cell environment
CN116472668A (en) Waveform customization average power tracking
US9112650B2 (en) System and method for transmitting data in a multi-cell network
WO2023126051A1 (en) Method and arrangements for supporting energy saving by a radio node
WO2021042087A2 (en) Filtered envelope tracking
JP2004180118A (en) Transmitter and transmitting method