WO2024062514A1 - Steering control method and steering control device - Google Patents

Steering control method and steering control device Download PDF

Info

Publication number
WO2024062514A1
WO2024062514A1 PCT/JP2022/034905 JP2022034905W WO2024062514A1 WO 2024062514 A1 WO2024062514 A1 WO 2024062514A1 JP 2022034905 W JP2022034905 W JP 2022034905W WO 2024062514 A1 WO2024062514 A1 WO 2024062514A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
axial force
current
estimated
force
Prior art date
Application number
PCT/JP2022/034905
Other languages
French (fr)
Japanese (ja)
Inventor
一弘 五十嵐
範規 久保川
友明 種田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/034905 priority Critical patent/WO2024062514A1/en
Publication of WO2024062514A1 publication Critical patent/WO2024062514A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a steering control method and a steering control device.
  • the steering control device described in Patent Document 1 below drives a reaction motor based on a control amount of the steering reaction force, which is based on the steering angle, and a control amount calculated by multiplying the current of the steering motor by a set gain, thereby reflecting the influence of an external force acting on the steered wheels in the steering reaction force.
  • An object of the present invention is to improve the accuracy of estimating the steering rack axial force from the current of the steering motor.
  • a target steering angle which is a target value of the steering angle of the steered wheels
  • a target steering angle is calculated based on the steering angle of a steering wheel that is mechanically separated from the steered wheels.
  • the first current estimated axial force which is the steering rack axial force
  • the second current estimated axial force which is the steering rack axial force
  • the estimated steering rack axial force is calculated based on the first current estimated axial force, and when the steering state is a reverse steering state, the second current is calculated.
  • the target reaction force current is the target value of the current that drives the reaction force motor that calculates the estimated steering rack axial force based on the estimated axial force and applies a steering reaction force to the steering wheel based on the estimated estimated steering rack axial force. is calculated, and the reaction force motor is driven based on the estimated target reaction force current.
  • FIG. 1 is a schematic configuration diagram of an example of a steering control device according to an embodiment.
  • FIG. 2 is a block diagram of an example of a functional configuration of a controller.
  • FIG. 3 is a block diagram of an example of a functional configuration of a target steering reaction force calculation section.
  • FIG. 2 is a block diagram of an example of a functional configuration of an FB axial force calculation section. It is a characteristic diagram which shows the relationship between the current axial force calculated by multiplying the steering current by a fixed torque constant, and the actual steering rack axial force.
  • FIG. 3 is a characteristic diagram showing the relationship between positive efficiency current axial force and actual steering rack axial force.
  • FIG. 3 is a characteristic diagram showing the relationship between reverse efficiency current axial force and actual steering rack axial force.
  • FIG. 1 is a schematic configuration diagram of an example of a steering control device according to an embodiment.
  • FIG. 2 is a block diagram of an example of a functional configuration of a controller.
  • FIG. 3 is a block
  • FIG. 3 is an explanatory diagram of an example of a mixing ratio of axial force according to a steering angular velocity.
  • FIG. 4 is a characteristic diagram showing the relationship between a feedback axial force and an actual steering rack axial force. It is a flow chart of an example of a steering control method of an embodiment.
  • FIG. 1 is a schematic configuration diagram of an example of a steering control device according to an embodiment.
  • the vehicle in which the steering control device of the embodiment is mounted will be referred to as the "host vehicle.”
  • the steering control device of the embodiment is a steer-by-wire type steering control device that can mechanically separate the steering wheel 1a and the front wheels 2, which are steered wheels.
  • the steering control device of the embodiment includes a steering angle sensor 3, a turning angle sensor 4, a vehicle speed sensor 5, an acceleration sensor 6, a steering control section 8, a reaction force control section 9, and a controller 11.
  • the steering angle sensor 3 detects the steering angle ⁇ of the steering wheel 1a.
  • the steering angle sensor 3 outputs information on the detected steering angle ⁇ to the controller 11.
  • the steering angle sensor 4 detects the steering angle ⁇ of the front wheels (steering wheels) 2.
  • the steering angle sensor 4 outputs information on the detected steering angle ⁇ to the controller 11.
  • Vehicle speed sensor 5 detects vehicle speed V of the host vehicle.
  • the vehicle speed sensor 5 outputs information on the detected vehicle speed V to the controller 11.
  • Acceleration sensor 6 detects lateral acceleration Gy acting on the host vehicle.
  • the acceleration sensor outputs information on the detected lateral acceleration Gy to the controller 11.
  • the steering control section 8 includes a steering motor 8A, a steering current detection section 8B, and a steering motor drive section 8C.
  • the steering motor 8A is connected to the pinion shaft 10d via a reduction gear.
  • the steering motor 8A is driven by the steering motor drive section 8C, and moves the steering rack 10a left and right via the pinion shaft 10d and pinion gear 10e. Thereby, the steering motor 8A steers the front wheels 2.
  • the steering motor 8A may be driven, for example, by controlling a steering current Itm that is a current flowing through the steering motor 8A.
  • the steering current detection section 8B detects the steering current Itm.
  • the steering current detection section 8B outputs a signal indicating the steering current Itm to the steering motor drive section 8C and the controller 11.
  • the steering motor drive section 8C controls the steering motor 8A based on the target steering current Itt calculated by the controller 11 so that the steering current Itm detected by the steering current detection section 8B matches the target steering current Itt.
  • the steering current Itm is controlled. Thereby, the steering motor drive section 8C drives the steering motor 8A.
  • the target steering current Itt is a target value of the current flowing through the steering motor 8A.
  • the reaction force control section 9 includes a reaction force motor 9A, a reaction force current detection section 9B, and a reaction force motor drive section 9C.
  • the reaction motor 9A is connected to the steering shaft 1b via a reduction gear.
  • the reaction motor 9A is driven by the reaction motor drive section 9C, and applies rotational torque to the steering wheel 1a via the steering shaft 1b. Thereby, the reaction force motor 9A generates a steering reaction force.
  • the reaction motor 9A may be driven, for example, by controlling the reaction current Ism flowing through the reaction motor 9A.
  • the reaction current detection section 9B detects the reaction current Ism. Then, the reaction current detection section 9B outputs a detection signal indicating the reaction current Ism to the reaction force motor drive section 9C and the controller 11.
  • the reaction motor drive section 9C controls the reaction motor 9A based on the target reaction current Ist calculated by the controller 11 so that the reaction current Ism detected by the reaction current detection section 9B matches the target reaction current Ist.
  • the reaction force current Ism is controlled.
  • the reaction force motor drive section 9C drives the reaction force motor 9A.
  • the target reaction force current Ist is a target value of the current flowing through the reaction force motor 9A.
  • the backup clutch 12 is provided between the steering shaft 1b and the pinion shaft 10b.
  • the pinion shaft 10b is connected to the steering rack 10a via a pinion gear 10c, and when the backup clutch 12 is engaged, the steering shaft 1b and the pinion shaft 10b are connected, thereby connecting the steering wheel 1a and the front wheel 2. are mechanically connected.
  • the backup clutch 12 is released, the steering shaft 1b and pinion shaft 10b are disconnected, thereby mechanically separating the steering wheel 1a and the front wheels 2.
  • the backup clutch 12 is in a released state and that the steering wheel 1a and the front wheels 2 are mechanically separated.
  • the controller 11 is an electronic control unit that controls the driving of the steering motor 8A by the steering control section 8 and the driving of the reaction force motor 9A by the reaction force control section 9.
  • the controller 11 may include a processor 20 and peripheral components such as a storage device 21.
  • the processor 20 may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
  • the storage device 21 may include any one of a semiconductor storage device, a magnetic storage device, and an optical storage device.
  • the storage device 21 may include memory such as a register, a cache memory, a ROM (Read Only Memory) used as a main storage device, and a RAM (Random Access Memory).
  • the functions of the controller 11 described below are realized, for example, by the processor 20 executing a computer program stored in the storage device 21.
  • FIG. 2 shows an example of the functional configuration of the controller 11.
  • the controller 11 includes a target steering angle calculation section 11A, a target steering reaction force calculation section 11B, a target steering current calculation section 11C, a subtractor 11D, and a differentiator 11E.
  • the target turning angle calculation unit 11A calculates a target turning angle ⁇ t, which is a target value of the turning angle ⁇ , based on the steering angle ⁇ detected by the steering angle sensor 3 and the vehicle speed V detected by the vehicle speed sensor 5.
  • the target turning angle ⁇ t may be calculated, for example, by multiplying the steering angle ⁇ by the variable gear ratio of the steering angle ⁇ and the turning angle ⁇ .
  • the subtractor 11D calculates a deviation ⁇ by subtracting the turning angle ⁇ detected by the turning angle sensor 4 from the target turning angle ⁇ t.
  • the target steering current calculation unit 11C calculates the target steering current Itt based on the deviation ⁇ .
  • the target steering current calculation section 11C outputs the target steering current Itt to the steering motor drive section 8C.
  • the differentiator 11E calculates the target turning angular velocity ⁇ t by differentiating the target turning angle ⁇ t.
  • the target turning angular speed ⁇ t is an example of the “steering speed” described in the claims.
  • Target steering reaction force calculation unit 11B calculates a target reaction force current Ist based on the steering angle ⁇ detected by steering angle sensor 3, the vehicle speed V detected by vehicle speed sensor 5, the lateral acceleration Gy detected by acceleration sensor 6, the steering current Itm detected by steering current detection unit 8B, and the target steering angular velocity ⁇ t.
  • Target steering reaction force calculation unit 11B outputs the calculated target reaction force current Ist to reaction force motor drive unit 9C.
  • the target steering reaction force calculation unit 11B includes a feedforward axial force calculation unit 30, a feedback axial force calculation unit 31, a mixture ratio setting unit 32, a subtractor 33, multipliers 34 and 35, an adder 36, a conversion unit 37, and a target reaction force current calculation unit 38.
  • the feedforward axial force may be expressed as "FF axial force” and the feedback axial force as "FB axial force”.
  • the FF axial force calculation unit 30 calculates the FF axial force Fff, which is a steering rack axial force that provides a steering reaction force according to the steering angle ⁇ , based on the steering angle ⁇ or the target steering angle ⁇ t (i.e., the steering command value) and the vehicle speed V.
  • the steering rack axial force is the rack axial force applied to the steering rack 10a.
  • the FF axial force calculation unit 30 may calculate the FF axial force Fff based on the target steering angle ⁇ t calculated based on the steering angle ⁇ and the vehicle speed V, and the pinion stiffness, pinion viscosity, rack inertia, and rack viscosity of the pinion and rack of the steering mechanism.
  • the FF axial force Fff may be an axial force applied to the steering rack that includes at least a proportional component according to the target steering angle ⁇ t and a damping component according to the steering angular speed.
  • the FF axial force calculation unit 30 outputs the calculated FF axial force Fff to the multiplier 34.
  • the FB axial force calculation unit 31 calculates the FB axial force Ffb based on the lateral acceleration Gy, the steering current Itm, the target turning angular velocity ⁇ t, and the vehicle speed V.
  • the FB axial force Ffb is a steering rack axial force that applies force from the road surface as a steering reaction force to the steering wheel 1a and returns it to the driver.
  • the configuration and function of the FB axial force calculation unit 31 will be described later.
  • the mixing ratio setting unit 32 sets a mixing ratio Gf: (1-Gf) for calculating a mixed axial force by mixing the FF axial force Fff and the FB axial force Ffb.
  • the mixing ratio setting section 32 may set the mixing ratio Gf: (1-Gf) according to the axial force difference between the FF axial force Fff and the FB axial force Ffb.
  • the subtracter 33, multipliers 34 and 35, and adder 36 mix the FF axial force Fff and the FB axial force Ffb at a mixing ratio Gf: (1-Gf) to obtain the result given by the following equation (1).
  • Mixed axial force Fff ⁇ Gf+Ffb ⁇ (1-Gf)... (1)
  • the converter 37 calculates the target steering reaction force based on the mixed axial force calculated by the subtracter 33, the multipliers 34 and 35, and the adder 36.
  • the target steering reaction force is a target value of the steering reaction force.
  • the conversion unit 37 may convert the mixed axial force into a target steering reaction force using an axial force-steering reaction force conversion map that defines a target steering reaction force corresponding to the vehicle speed V and the axial force.
  • the target reaction force current calculation section 38 calculates the target reaction force current Ist based on the target steering reaction force calculated by the conversion section 37 according to the following equation (2).
  • the target reaction force current calculation section 38 outputs the calculation result to the reaction force motor drive section 9C.
  • Target reaction force current Ist target steering reaction force x gain... (2)
  • FIG. 4 is a block diagram of an example of the functional configuration of the FB axial force calculation unit 31.
  • the FB axial force calculation unit 31 includes a first current axial force conversion unit 40, a first correction unit 41, a second current axial force conversion unit 42, a second correction unit 43, and a lateral G-axis force conversion unit 44. , a first mixed axial force calculation section 45, a second mixed axial force calculation section 46, and an axial force switching section 47.
  • the FB axial force Ffb is estimated based on the positive efficiency current axial force Fcf0.
  • the positive efficiency torque constant Nf and the positive efficiency current axial force Fcf0 are examples of a "first coefficient" and a “first estimated current axial force”, respectively, described in the claims.
  • the first correction unit 41 corrects the positive efficiency current axial force Fcf0 by removing the friction component accompanying the steering of the steering wheels 2 from the positive efficiency current axial force Fcf0, and corrects the positive efficiency current axial force Fcf0. Output. For example, when the sign of the positive efficiency current axial force Fcf0 before correction is positive, a predetermined friction component (constant) is subtracted from the positive efficiency current axial force Fcf0, and the sign of the positive efficiency current axial force Fcf0 is negative. In this case, the corrected positive efficiency current axial force Fcf is calculated by adding the friction component to the positive efficiency current axial force Fcf0.
  • the corrected positive efficiency current axial force Fcf is an example of the "second axial force component based on the first estimated current axial force" described in the claims.
  • the positive efficiency torque constant Nf and the friction component are set so that the positive efficiency current axial force Fcf and the steering rack axial force actually applied to the steering rack 10a generally match in the increased steering state.
  • FIG. 5 is a characteristic diagram showing the relationship between the current axial force calculated by multiplying the steering current by a constant torque constant and the actual steering rack axial force.
  • the self-aligning torque acts in the opposite direction to the rotation direction of the steering motor 8A
  • the self-aligning torque acts in the same direction as the rotation direction of the steering motor 8A. Therefore, the ratio (inclination) of the current axial force to the actual steering rack axial force is smaller in the reverse steering state than in the additional steering state.
  • the friction component always acts in the opposite direction to the rotational direction of the steering motor 8A as the steering wheel 2 is turned (that is, when the steering motor 8A is rotating).
  • FIG. 6 is a characteristic diagram showing the relationship between the positive efficiency current axial force Fcf and the actual steering rack axial force.
  • the positive efficiency torque is adjusted so that the slope of the positive efficiency current axial force Fcf0 with respect to the actual steering rack axial force (that is, the ratio (positive efficiency current axial force Fcf0/actual steering rack axial force)) is "1" in the increased steering state.
  • the ratio positive efficiency current axial force Fcf0/actual steering rack axial force
  • Nr reverse efficiency torque constant
  • the reverse efficiency torque constant Nr and the reverse efficiency current axial force Fcr0 are examples of a "second coefficient" and a "second estimated current axial force", respectively, described in the claims.
  • the self-aligning torque acts in the same direction as the rotational direction of the steering motor 8A, so the steering current Itm is smaller than in the additional steering state. Therefore, if the reverse efficiency torque constant Nr used to estimate the FB axial force Ffb in the reverse steering state is made the same as the positive efficiency torque constant Nf used to estimate the FB axial force Ffb in the additional steering state, Efficiency current axial force Fcr0 becomes too small. Therefore, the reverse efficiency torque constant Nr is set to a larger value than the positive efficiency torque constant Nf.
  • the second correction unit 43 corrects the reverse efficiency current axial force Fcr0 by removing the friction component accompanying the steering of the steering wheel 2 from the reverse efficiency current axial force Fcr0, and corrects the reverse efficiency current axial force Fcr0 after correction.
  • Output Fcr For example, when the sign of the reverse efficiency current axial force Fcr0 before correction is positive, a predetermined friction component (constant) is added to the reverse efficiency current axial force Fcr0, and the sign of the reverse efficiency current axial force Fcr0 is negative. In this case, the corrected reverse efficiency current axial force Fcr is calculated by subtracting the friction component from the reverse efficiency current axial force Fcr0.
  • the corrected reverse efficiency current axial force Fcr is an example of the "second axial force component based on the second current estimated axial force" described in the claims.
  • the reverse efficiency torque constant Nr and the friction component are set so that the reverse efficiency current axial force Fcr and the steering rack axial force actually applied to the steering rack 10a generally match in the reverse steering state.
  • FIG. 7 is a characteristic diagram showing the relationship between the reverse efficiency current axial force Fcr and the actual steering rack axial force.
  • the reverse efficiency torque is adjusted so that the slope of the reverse efficiency current axial force Fcr0 with respect to the actual steering rack axial force (i.e., the ratio (reverse efficiency current axial force Fcr0/actual steering rack axial force)) is "1" in the reverse steering state.
  • the lateral G-axis force converter 44 calculates the lateral G-axis force Ft, which is the steering rack axial force according to the lateral acceleration acting on the vehicle.
  • the lateral G-axis force conversion unit 44 may calculate the lateral G-axis force Ft by multiplying the lateral acceleration Gy by a gain that is a coefficient according to the vehicle speed V.
  • the first mixed axial force calculation section 45 predetermines the positive efficiency current axial force Fcf0 before correction calculated by the first current axial force conversion section 40 and the lateral G axial force Ft calculated by the lateral G axial force conversion section 44.
  • the first mixed axial force Fm1 is calculated by mixing at a ratio of .
  • the first mixed axial force Fm1 is an example of a "first axial force component" described in the claims.
  • the second mixed axial force calculation unit 46 calculates the second mixed axial force Fm2 by mixing the reverse efficiency current axial force Fcr and the first mixed axial force Fm1. Please refer to the range of "return steering state" in FIG.
  • the second mixed axial force calculation unit 46 outputs the first mixed axial force Fm1 as the second mixed axial force Fm2 when the target turning angular velocity ⁇ t is greater than or equal to "0" and less than the first steered angular velocity ⁇ 1.
  • the target turning angular speed ⁇ t is equal to or higher than the second turning angular speed ⁇ 2, which is larger than the first turning angular speed ⁇ 1, the reverse efficiency current axial force Fcr is output as the second mixed axial force Fm2.
  • the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr are mixed according to the target turning angular speed ⁇ t.
  • the second mixed axial force Fm2 is calculated by mixing at the ratio.
  • the second mixed axial force calculation unit 46 increases the mixing ratio of the reverse efficiency current axial force Fcr as the target turning angular velocity ⁇ t increases.
  • the axial force switching unit 47 determines whether the steering state of the steering wheel 1a is an additional steering state or a reverse steering state. For example, the axial force switching unit 47 determines that the steering current is in the additional steering state when the sign of the steering current Itm and the sign of the target turning angular velocity ⁇ t are the same, and If the sign of ⁇ t is different from that of ⁇ t, it may be determined that the vehicle is in the reverse steering state. Instead of the steering current Itm, it may be determined that the additional steering state is present when the sign of the positive efficiency current axial force Fcf0 and the sign of the target turning angular velocity ⁇ t are the same.
  • the axial force switching unit 47 switches the axial force output as the FB axial force Ftb between the positive efficiency current axial force Fcf and the second mixed axial force Fm2 based on the steering state and the target turning angular velocity ⁇ t. For example, in the case of the return steering state, the axial force switching unit 47 outputs the second mixed axial force Fm2 as the FB axial force Ftb. Therefore, as shown in FIG. 8, when the steering state is the return steering state and the target turning angular velocity ⁇ t is equal to or higher than the second turning angular velocity ⁇ 2, the reverse efficiency current axial force Fcr is output as the FB axial force Ftb. do.
  • the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr The axial force obtained by mixing these at a mixing ratio according to the target turning angular velocity ⁇ t is output as the FB axial force Ftb.
  • the first mixed axial force Fm1 is output as the FB axial force Ftb.
  • the axial force switching unit 47 changes the positive efficiency current axial force Fcf to the FB axial force Ftb. Output.
  • the second mixed axial force Fm2 and the positive efficiency current axial force Fcf are set to the target turning angular velocity ⁇ t.
  • the axial force mixed at a mixing ratio according to the angular velocity ⁇ t is output as the FB axial force Ftb.
  • the axial force switching unit 47 increases the mixing ratio of the positive efficiency current axial force Fcf as the target turning angular velocity ⁇ t increases.
  • the value of the third turning angular velocity ⁇ 3 may be set to the same value as the first turning angular velocity ⁇ 1, for example.
  • the second mixed axial force calculation unit 46 outputs the first mixed axial force Fm1 as the second mixed axial force Fm2. . Therefore, when the steering state is the additional steering state and the target turning angular velocity ⁇ t is greater than or equal to "0" and less than the third turning angular velocity ⁇ 3, the axial force switching unit 47 selects the first mixed axial force Fm1 and the positive efficiency current.
  • An axial force obtained by mixing the axial force Fcf at a mixing ratio according to the target turning angular velocity ⁇ t is output as the FB axial force Ftb.
  • the value of the third turning angular velocity ⁇ 3 may be set to a value different from the first turning angular velocity ⁇ 1, for example.
  • the FB axial force calculation unit 31 includes a third mixed axial force calculation unit (not shown) that calculates a third mixed axial force that is a mixture of the first mixed axial force Fm1 and the positive efficiency current axial force Fcf. May be added.
  • the third mixed axial force calculation unit outputs the positive efficiency current axial force Fcf as the third mixed axial force when the target turning angular velocity ⁇ t is equal to or higher than the third turning angular velocity ⁇ 3.
  • the first mixed axial force Fm1 and the positive efficiency current axial force Fcf are mixed at a mixing ratio according to the target turning angular speed ⁇ t.
  • the resulting axial force is output as a third mixed axial force.
  • the third mixed axial force calculation unit increases the mixing ratio of the positive efficiency current axial force Fcf as the target turning angular velocity ⁇ t increases.
  • the axial force switching unit 47 outputs the third mixed axial force as the FB axial force Ftb in the additional steering state, and outputs the second mixed axial force as the FB axial force Ftb in the reverse steering state.
  • the mixing ratio of the axial forces included in the FB axial force Ffb becomes as shown in FIG. 8.
  • the positive efficiency current axial force Fcf is output as the FB axial force Ffb.
  • the reverse efficiency current axial force Fcr is output as the FB axial force Ffb.
  • the first mixed axial force Fm1 and the positive efficiency current axial force Fcf are set as the targets.
  • the axial force mixed at a mixing ratio according to the steering angular velocity ⁇ t is output as the FB axial force Ftb.
  • the first mixed axial force Fm1 is output as the FB axial force Ffb.
  • the estimation error of the FB axial force Ffb in a state where the steering speed is low (for example, in a state where the steering is held). That is, if the estimated steering rack axial force is always calculated based on the positive efficiency current axial force Fcf when the steering speed is low in order to prevent chatter of the current axial force when the steering speed is low, the calculation result will be too small. Sometimes. By mixing the lateral G-axis force Ft according to the lateral acceleration, errors can be reduced and estimation accuracy can be improved.
  • the steering state is a reverse steering state and the target turning angular velocity ⁇ t is greater than or equal to the first turning angular velocity ⁇ 1 and less than the second turning angular velocity ⁇ 2
  • the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr The axial force obtained by mixing these at a mixing ratio according to the target turning angular velocity ⁇ t is output as the FB axial force Ftb. This prevents the estimation result of the FB axial force Ffb from changing suddenly when the steering state switches between the additional steering state and the reverse steering state, until the target turning angular velocity ⁇ t reaches the second turning angular velocity ⁇ 2.
  • the FB axial force Ffb can be changed gently.
  • FIG. 9 is a characteristic diagram showing the relationship between the FB axial force Ffb and the actual steering rack axial force.
  • the difference between the estimation result of the FB axial force Ffb in the additional steering state and the estimation result of the FB axial force Ffb in the reverse steering state is reduced, and the friction component is removed, so that the FB axial force Ffb and It can be seen that the actual steering rack axial force matches well.
  • the discrepancy between the estimated result of the FB axial force Ffb in the increased steering state and the estimated result of the FB axial force Ffb in the reverse steered state in the region where the steering rack axial force is large is reduced, and the bulge in the hysteresis characteristic is reduced. can.
  • the lateral G-axis force Ft with respect to the positive efficiency current axial force Fcf and the reverse efficiency current axial force Fcr It is possible to suppress a decrease in the estimation accuracy of the FB axial force Ffb due to the phase delay.
  • FIG. 10 is a flowchart of an example of the steering control method according to the embodiment.
  • the target turning angle calculation unit 11A calculates a target turning angle ⁇ t, which is a target value of the turning angle ⁇ .
  • the steering motor drive unit 8C drives the steering motor 8A based on the difference between the target steering angle ⁇ t and the actual steering angle of the steered wheels 2.
  • the first current axial force conversion section 40 and the first correction section 41 calculate the positive efficiency current axial force Fcf.
  • step S4 the second current axial force conversion section 42 and the second correction section 43 calculate the reverse efficiency current axial force Fcr.
  • step S5 the axial force switching unit 47 determines whether the steering state of the steering wheel 1a is an additional steering state or a reverse steering state. If the steering state is the additional steering state, the process advances to step S6. If the steering state is the steering state, the process advances to step S7. In step S6, the second mixed axial force calculation unit 46 and the axial force switching unit 47 calculate the positive efficiency current axial force Fcf as the FB axial force Ftb.
  • the first mixed axial force Fm1 and the positive efficiency current axial force Fcf are mixed at a mixing ratio according to the target turning angular speed ⁇ t.
  • the mixed axial force is calculated as FB axial force Ftb.
  • step S7 the second mixed axial force calculation unit 46 and the axial force switching unit 47 calculate the reverse efficiency current axial force Fcr as the FB axial force Ftb.
  • the first mixed axial force Fm1 is calculated as the FB axial force Ffb.
  • the target turning angular speed ⁇ t is greater than or equal to the first turning angular speed ⁇ 1 and less than the second turning angular speed ⁇ 2
  • the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr are mixed according to the target turning angular speed ⁇ t.
  • the axial force mixed in the ratio is calculated as the FB axial force Ftb.
  • step S8 the conversion unit 37 of the target steering reaction force calculation unit 11B (FIG. 3) calculates the target steering reaction force based on the mixed axial force obtained by mixing the FF axial force Fff and the FB axial force Ffb.
  • the target reaction force current calculation unit 38 calculates the target reaction force current Ist based on the target steering reaction force.
  • step S9 the reaction motor drive unit 9C drives the reaction motor 9A based on the target reaction current Ist. The process then ends.
  • the FB axial force calculation unit 31 of the above embodiment calculates the first An axial force obtained by mixing the mixed axial force Fm1 and the positive efficiency current axial force Fcf at a mixing ratio according to the target turning angular velocity ⁇ t is output as the FB axial force Ftb.
  • the steering state is an additional steering state and the target turning angular velocity ⁇ t is greater than or equal to "0" and less than the third turning angular velocity ⁇ 3
  • the first mixed axial force Fm1 is output as the FB axial force Ftb. You may.
  • the FB axial force calculation unit 31 of the above embodiment calculates that when the steering state is the return steering state and the target turning angular velocity ⁇ t is greater than or equal to the first turning angular velocity ⁇ 1 and less than the second turning angular velocity ⁇ 2, , the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr are mixed at a mixing ratio according to the target turning angular velocity ⁇ t, and an axial force is output as the FB axial force Ftb.
  • the reverse efficiency current axial force Fcr is set to the FB axial force. It may also be output as Ftb.
  • a target steering angle which is a target value of the steering angle of the steered wheels
  • Steering is performed by driving a steering motor that steers the steering wheel based on the difference between the actual steering angle of the steering wheel and multiplying the steering current, which is the current that drives the steering motor, by a first coefficient.
  • the first current estimated axial force which is the rack axial force
  • the steering current is multiplied by a second coefficient, which is larger than the first coefficient, to estimate the second current estimated axial force, which is the steering rack axial force.
  • the estimated steering rack axial force is calculated based on the first current estimated axial force, and when the steering state is a reverse steering state, the second current estimated axial force is calculated.
  • the estimated steering rack axial force is calculated based on the estimated steering rack axial force
  • the target reaction force current which is the target value of the current that drives the reaction force motor that applies a steering reaction force to the steering wheel, is calculated based on the estimated steering rack axial force.
  • the reaction force motor is driven based on the estimated target reaction force current.
  • the current axial force can be estimated by multiplying the current axial force by a coefficient tailored to each specific state when the steering state is an additional steering state or a reverse steering state, so the estimation accuracy of the steering rack axial force is accurate in both steering states. can be improved.
  • the estimated steering rack axial force may be calculated based on the axial force obtained by adding the steering rack axial force corresponding to the lateral acceleration acting on the vehicle and the first current estimated axial force.
  • the estimated steering rack axial force may be calculated based on an axial force obtained by mixing the steering rack axial force corresponding to the lateral acceleration acting on the vehicle and a first axial force component obtained by adding the first current estimated axial force and a second axial force component based on the first current estimated axial force, and the mixing ratio of the second axial force component may be made higher when the steering speed is high than when the steering speed is low. If the estimated steering rack axial force is always calculated based on the first current estimated axial force in order to prevent chattering of the current axial force when the steering speed is low (e.g., when the steering wheel is held), the calculation result may be too small. By mixing the steering rack axial force according to the lateral acceleration, the error can be reduced and the estimation accuracy can be improved.
  • the steering rack axial force is estimated based on the axial force that is a mixture of the first axial force component obtained by adding the rack axial force to the first current estimated axial force, and the second axial force component based on the second current estimated axial force.
  • the mixing ratio of the second axial force component may be set higher than when the steering speed is low.

Abstract

This steering control method comprising: calculating a target steering angle of a steering wheel (S1); driving a steering motor on the basis of a difference between the target steering angle and an actual steering angle of the steering wheel (S2); estimating first estimated current axial force which is steering rack axial force, by multiplying a steering current, which is the current that drives the steering motor, by a first coefficient (S3); estimating second estimated current axial force which is steering rack axial force, by multiplying the steering current by a second coefficient larger than the first coefficient (S4); calculating an estimated steering rack axial force on the basis of the first estimated current axial force, when the steering state of the steering wheel is a largely-turned steering state (S6); calculating an estimated steering rack axial force on the basis of the second estimated current axial force when the steering state is a turn-back steering state (S7); calculating a target reaction force current on the basis of the estimated steering rack axial force (S8); and driving a reaction force motor that applies a steering reaction force to the steering wheel on the basis of the estimated target reaction force current (S9).

Description

操舵制御方法及び操舵制御装置Steering control method and steering control device
 本発明は、操舵制御方法及び操舵制御装置に関する。 The present invention relates to a steering control method and a steering control device.
 下記特許文献1に記載の操舵制御装置は、操舵角に基づく操舵反力の制御量と、転舵モータの電流に設定ゲインを乗じて算出した制御量とに基づいて、反力モータを駆動することにより、操向輪に作用する外力の影響を操舵反力に反映する。 The steering control device described in Patent Document 1 below drives a reaction motor based on a control amount of the steering reaction force, which is based on the steering angle, and a control amount calculated by multiplying the current of the steering motor by a set gain, thereby reflecting the influence of an external force acting on the steered wheels in the steering reaction force.
特開2000-108914号公報Japanese Patent Application Publication No. 2000-108914
 しかしながら、転舵モータの電流の大きさとステアリングラック軸力の強さとの間の関係は、操舵装置の操舵状態が切り増し状態であるか切り戻し状態であるかによって変化する。このため転舵モータの電流からステアリングラック軸力を推定する際に用いるゲインを固定すると、不適切な操舵反力が発生して運転者に違和感を与える虞がある。
 本発明は、転舵モータの電流からステアリングラック軸力を推定する精度を向上することを目的とする。
However, the relationship between the magnitude of the current of the steering motor and the strength of the steering rack axial force changes depending on whether the steering state of the steering device is an additional steering state or a reverse steering state. Therefore, if the gain used when estimating the steering rack axial force from the current of the steering motor is fixed, an inappropriate steering reaction force may be generated, which may give the driver a sense of discomfort.
An object of the present invention is to improve the accuracy of estimating the steering rack axial force from the current of the steering motor.
 本発明の一態様の操舵制御方法では、操向輪と機械的に分離したステアリングホイールの操舵角に基づいて操向輪の転舵角の目標値である目標転舵角を算出し、目標転舵角と操向輪の実際の転舵角との差に基づいて操向輪を転舵する転舵モータを駆動し、転舵モータを駆動する電流である転舵電流に第1係数を乗じることによりステアリングラック軸力である第1電流推定軸力を推定し、転舵電流に第1係数よりも大きな第2係数を乗じることによりステアリングラック軸力である第2電流推定軸力を推定し、ステアリングホイールの操舵状態が切り増し操舵状態である場合には第1電流推定軸力に基づいて推定ステアリングラック軸力を算出するとともに、操舵状態が切り戻し操舵状態である場合には第2電流推定軸力に基づいて推定ステアリングラック軸力を算出し、推定した推定ステアリングラック軸力に基づいてステアリングホイールに操舵反力を付与する反力モータを駆動する電流の目標値である目標反力電流を算出し、推定した目標反力電流に基づいて前記反力モータを駆動する。 In the steering control method of one aspect of the present invention, a target steering angle, which is a target value of the steering angle of the steered wheels, is calculated based on the steering angle of a steering wheel that is mechanically separated from the steered wheels. Drives a steering motor that steers the steering wheels based on the difference between the steering angle and the actual steering angle of the steering wheels, and multiplies the steering current, which is the current that drives the steering motor, by a first coefficient. By this, the first current estimated axial force, which is the steering rack axial force, is estimated, and by multiplying the steering current by a second coefficient, which is larger than the first coefficient, the second current estimated axial force, which is the steering rack axial force, is estimated. , when the steering state of the steering wheel is an additional steering state, the estimated steering rack axial force is calculated based on the first current estimated axial force, and when the steering state is a reverse steering state, the second current is calculated. The target reaction force current is the target value of the current that drives the reaction force motor that calculates the estimated steering rack axial force based on the estimated axial force and applies a steering reaction force to the steering wheel based on the estimated estimated steering rack axial force. is calculated, and the reaction force motor is driven based on the estimated target reaction force current.
 本発明によれば、転舵モータの電流からステアリングラック軸力を推定する精度を向上できる。
 本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
According to the present invention, it is possible to improve the accuracy of estimating the steering rack axial force from the current of the steering motor.
The objects and advantages of the invention will be realized and attained by means of the elements and combinations recited in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
実施形態の操舵制御装置の一例の概略構成図である。FIG. 1 is a schematic configuration diagram of an example of a steering control device according to an embodiment. コントローラの機能構成例のブロック図である。FIG. 2 is a block diagram of an example of a functional configuration of a controller. 目標操舵反力演算部の機能構成例のブロック図である。FIG. 3 is a block diagram of an example of a functional configuration of a target steering reaction force calculation section. FB軸力算出部の機能構成例のブロック図である。FIG. 2 is a block diagram of an example of a functional configuration of an FB axial force calculation section. 一定のトルク定数を転舵電流に乗じて算出した電流軸力と実際のステアリングラック軸力の関係を示す特性図である。It is a characteristic diagram which shows the relationship between the current axial force calculated by multiplying the steering current by a fixed torque constant, and the actual steering rack axial force. 正効率電流軸力と実際のステアリングラック軸力の関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between positive efficiency current axial force and actual steering rack axial force. 逆効率電流軸力と実際のステアリングラック軸力の関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between reverse efficiency current axial force and actual steering rack axial force. 操舵角速度に応じた軸力の混合比率の一例の説明図である。FIG. 3 is an explanatory diagram of an example of a mixing ratio of axial force according to a steering angular velocity. フィードバック軸力と実際のステアリングラック軸力の関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between a feedback axial force and an actual steering rack axial force. 実施形態の操舵制御方法の一例のフローチャートである。It is a flow chart of an example of a steering control method of an embodiment.
 (構成)
 図1は、実施形態の操舵制御装置の一例の概略構成図である。以下の説明において実施形態の操舵制御装置が搭載される車両を「自車両」と表記する。実施形態の操舵制御装置は、ステアリングホイール1aと、操向輪である前輪2とを機械的に分離することが可能なステアバイワイヤ方式の操舵制御装置である。
 実施形態の操舵制御装置は、操舵角センサ3と、転舵角センサ4と、車速センサ5と、加速度センサ6と、転舵制御部8と、反力制御部9と、コントローラ11を備える。
(composition)
FIG. 1 is a schematic configuration diagram of an example of a steering control device according to an embodiment. In the following description, the vehicle in which the steering control device of the embodiment is mounted will be referred to as the "host vehicle." The steering control device of the embodiment is a steer-by-wire type steering control device that can mechanically separate the steering wheel 1a and the front wheels 2, which are steered wheels.
The steering control device of the embodiment includes a steering angle sensor 3, a turning angle sensor 4, a vehicle speed sensor 5, an acceleration sensor 6, a steering control section 8, a reaction force control section 9, and a controller 11.
 操舵角センサ3は、ステアリングホイール1aの操舵角δを検出する。操舵角センサ3は、検出した操舵角δの情報をコントローラ11に出力する。転舵角センサ4は、前輪(操向輪)2の転舵角θを検出する。転舵角センサ4は、検出した転舵角θの情報をコントローラ11に出力する。車速センサ5は、自車両の車速Vを検出する。車速センサ5は、検出した車速Vの情報をコントローラ11に出力する。加速度センサ6は、自車両に作用する横方向加速度Gyを検出する。加速度センサは、検出した横方向加速度Gyの情報をコントローラ11に出力する。 The steering angle sensor 3 detects the steering angle δ of the steering wheel 1a. The steering angle sensor 3 outputs information on the detected steering angle δ to the controller 11. The steering angle sensor 4 detects the steering angle θ of the front wheels (steering wheels) 2. The steering angle sensor 4 outputs information on the detected steering angle θ to the controller 11. Vehicle speed sensor 5 detects vehicle speed V of the host vehicle. The vehicle speed sensor 5 outputs information on the detected vehicle speed V to the controller 11. Acceleration sensor 6 detects lateral acceleration Gy acting on the host vehicle. The acceleration sensor outputs information on the detected lateral acceleration Gy to the controller 11.
 転舵制御部8は、転舵モータ8A、転舵電流検出部8B、および転舵モータ駆動部8Cを備える。
 転舵モータ8Aは、減速機を介してピニオンシャフト10dと連結される。そして、転舵モータ8Aは、転舵モータ駆動部8Cによって駆動され、ピニオンシャフト10d及びピニオンギア10eを介してステアリングラック10aを左右に移動させる。これにより、転舵モータ8Aは、前輪2を転舵する。転舵モータ8Aは、例えば、転舵モータ8Aに流れる電流である転舵電流Itmを制御することにより駆動してよい。
The steering control section 8 includes a steering motor 8A, a steering current detection section 8B, and a steering motor drive section 8C.
The steering motor 8A is connected to the pinion shaft 10d via a reduction gear. The steering motor 8A is driven by the steering motor drive section 8C, and moves the steering rack 10a left and right via the pinion shaft 10d and pinion gear 10e. Thereby, the steering motor 8A steers the front wheels 2. The steering motor 8A may be driven, for example, by controlling a steering current Itm that is a current flowing through the steering motor 8A.
 転舵電流検出部8Bは、転舵電流Itmを検出する。転舵電流検出部8Bは、転舵電流Itmを示す信号を、転舵モータ駆動部8Cおよびコントローラ11に出力する。
 転舵モータ駆動部8Cは、コントローラ11が算出する目標転舵電流Ittに基づいて、転舵電流検出部8Bが検出する転舵電流Itmが目標転舵電流Ittと一致するように転舵モータ8Aの転舵電流Itmを制御する。これにより、転舵モータ駆動部8Cは、転舵モータ8Aを駆動する。目標転舵電流Ittとは、転舵モータ8Aに流れる電流の目標値である。
The steering current detection section 8B detects the steering current Itm. The steering current detection section 8B outputs a signal indicating the steering current Itm to the steering motor drive section 8C and the controller 11.
The steering motor drive section 8C controls the steering motor 8A based on the target steering current Itt calculated by the controller 11 so that the steering current Itm detected by the steering current detection section 8B matches the target steering current Itt. The steering current Itm is controlled. Thereby, the steering motor drive section 8C drives the steering motor 8A. The target steering current Itt is a target value of the current flowing through the steering motor 8A.
 反力制御部9は、反力モータ9A、反力電流検出部9B、および反力モータ駆動部9Cを備える。
 反力モータ9Aは、減速機を介してステアリングシャフト1bと連結される。反力モータ9Aは、反力モータ駆動部9Cによって駆動され、ステアリングシャフト1bを介してステアリングホイール1aに回転トルクを付与する。これにより、反力モータ9Aは、操舵反力を発生する。反力モータ9Aは、例えば、反力モータ9Aに流れる反力電流Ismを制御することにより駆動してよい。
 反力電流検出部9Bは、反力電流Ismを検出する。そして、反力電流検出部9Bは、反力電流Ismを示す検出信号を反力モータ駆動部9Cとコントローラ11に出力する。
 反力モータ駆動部9Cは、コントローラ11が算出する目標反力電流Istに基づいて、反力電流検出部9Bが検出する反力電流Ismが目標反力電流Istと一致するように反力モータ9Aの反力電流Ismを制御する。これにより、反力モータ駆動部9Cは、反力モータ9Aを駆動する。目標反力電流Istとは、反力モータ9Aに流れる電流の目標値である。
The reaction force control section 9 includes a reaction force motor 9A, a reaction force current detection section 9B, and a reaction force motor drive section 9C.
The reaction motor 9A is connected to the steering shaft 1b via a reduction gear. The reaction motor 9A is driven by the reaction motor drive section 9C, and applies rotational torque to the steering wheel 1a via the steering shaft 1b. Thereby, the reaction force motor 9A generates a steering reaction force. The reaction motor 9A may be driven, for example, by controlling the reaction current Ism flowing through the reaction motor 9A.
The reaction current detection section 9B detects the reaction current Ism. Then, the reaction current detection section 9B outputs a detection signal indicating the reaction current Ism to the reaction force motor drive section 9C and the controller 11.
The reaction motor drive section 9C controls the reaction motor 9A based on the target reaction current Ist calculated by the controller 11 so that the reaction current Ism detected by the reaction current detection section 9B matches the target reaction current Ist. The reaction force current Ism is controlled. Thereby, the reaction force motor drive section 9C drives the reaction force motor 9A. The target reaction force current Ist is a target value of the current flowing through the reaction force motor 9A.
 バックアップクラッチ12は、ステアリングシャフト1bとピニオンシャフト10bとの間に設けられる。ピニオンシャフト10bは、ピニオンギア10cを介してステアリングラック10aに連結しており、バックアップクラッチ12が締結状態になると、ステアリングシャフト1bとピニオンシャフト10bとが接続されることにより、ステアリングホイール1aと前輪2とが機械的に接続する。バックアップクラッチ12が解放状態になると、ステアリングシャフト1bとピニオンシャフト10bとが切断されることにより、ステアリングホイール1aと前輪2とが機械的に切り離される。以下の説明では、バックアップクラッチ12は解放状態であり、ステアリングホイール1aと前輪2とは機械的に切り離されているものとして記載する。 The backup clutch 12 is provided between the steering shaft 1b and the pinion shaft 10b. The pinion shaft 10b is connected to the steering rack 10a via a pinion gear 10c, and when the backup clutch 12 is engaged, the steering shaft 1b and the pinion shaft 10b are connected, thereby connecting the steering wheel 1a and the front wheel 2. are mechanically connected. When the backup clutch 12 is released, the steering shaft 1b and pinion shaft 10b are disconnected, thereby mechanically separating the steering wheel 1a and the front wheels 2. In the following description, it is assumed that the backup clutch 12 is in a released state and that the steering wheel 1a and the front wheels 2 are mechanically separated.
 コントローラ11は、転舵制御部8による転舵モータ8Aの駆動と反力制御部9による反力モータ9Aの駆動とを制御する電子制御ユニットである。コントローラ11は、プロセッサ20と、記憶装置21等の周辺部品とを含んでよい。プロセッサ20は、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。記憶装置21は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置21は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。以下に説明するコントローラ11の機能は、例えばプロセッサ20が、記憶装置21に格納されたコンピュータプログラムを実行することにより実現される。 The controller 11 is an electronic control unit that controls the driving of the steering motor 8A by the steering control section 8 and the driving of the reaction force motor 9A by the reaction force control section 9. The controller 11 may include a processor 20 and peripheral components such as a storage device 21. The processor 20 may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit). The storage device 21 may include any one of a semiconductor storage device, a magnetic storage device, and an optical storage device. The storage device 21 may include memory such as a register, a cache memory, a ROM (Read Only Memory) used as a main storage device, and a RAM (Random Access Memory). The functions of the controller 11 described below are realized, for example, by the processor 20 executing a computer program stored in the storage device 21.
 コントローラ11の機能構成例を図2に示す。コントローラ11は、目標転舵角演算部11Aと、目標操舵反力演算部11Bと、目標転舵電流演算部11Cと、減算器11Dと、微分器11Eを備える。
 目標転舵角演算部11Aは、操舵角センサ3が検出した操舵角δおよび車速センサ5が検出した車速Vに基づいて、転舵角θの目標値である目標転舵角θtを算出する。目標転舵角θtは、例えば、操舵角δと、操舵角δおよび転舵角θの可変ギア比とを乗算することにより算出してよい。
 減算器11Dは、転舵角センサ4が検出した転舵角θを目標転舵角θtから減じた偏差Δθを算出する。目標転舵電流演算部11Cは、偏差Δθに基づいて目標転舵電流Ittを算出する。目標転舵電流演算部11Cは、目標転舵電流Ittを転舵モータ駆動部8Cへ出力する。
 微分器11Eは、目標転舵角θtを微分することにより目標転舵角速度ωtを算出する。目標転舵角速度ωtは、特許請求の範囲に記載の「転舵速度」の一例である。
FIG. 2 shows an example of the functional configuration of the controller 11. The controller 11 includes a target steering angle calculation section 11A, a target steering reaction force calculation section 11B, a target steering current calculation section 11C, a subtractor 11D, and a differentiator 11E.
The target turning angle calculation unit 11A calculates a target turning angle θt, which is a target value of the turning angle θ, based on the steering angle δ detected by the steering angle sensor 3 and the vehicle speed V detected by the vehicle speed sensor 5. The target turning angle θt may be calculated, for example, by multiplying the steering angle δ by the variable gear ratio of the steering angle δ and the turning angle θ.
The subtractor 11D calculates a deviation Δθ by subtracting the turning angle θ detected by the turning angle sensor 4 from the target turning angle θt. The target steering current calculation unit 11C calculates the target steering current Itt based on the deviation Δθ. The target steering current calculation section 11C outputs the target steering current Itt to the steering motor drive section 8C.
The differentiator 11E calculates the target turning angular velocity ωt by differentiating the target turning angle θt. The target turning angular speed ωt is an example of the “steering speed” described in the claims.
 目標操舵反力演算部11Bは、操舵角センサ3が検出した操舵角δ、車速センサ5が検出した車速V、加速度センサ6が検出した横方向加速度Gy、転舵電流検出部8Bが検出した転舵電流Itm、及び目標転舵角速度ωtに基づいて、目標反力電流Istを算出する。目標操舵反力演算部11Bは、算出した目標反力電流Istを反力モータ駆動部9Cに出力する。
 図3を参照する。目標操舵反力演算部11Bは、フィードフォワード軸力算出部30と、フィードバック軸力算出部31と、混合率設定部32と、減算器33と、乗算器34及び35と、加算器36と,変換部37と、目標反力電流演算部38を備える。なお、以下の説明及び図面において、フィードフォワード軸力を「FF軸力」表記し、フィードバック軸力を「FB軸力」と表記することがある。
Target steering reaction force calculation unit 11B calculates a target reaction force current Ist based on the steering angle δ detected by steering angle sensor 3, the vehicle speed V detected by vehicle speed sensor 5, the lateral acceleration Gy detected by acceleration sensor 6, the steering current Itm detected by steering current detection unit 8B, and the target steering angular velocity ωt. Target steering reaction force calculation unit 11B outputs the calculated target reaction force current Ist to reaction force motor drive unit 9C.
Refer to Fig. 3. The target steering reaction force calculation unit 11B includes a feedforward axial force calculation unit 30, a feedback axial force calculation unit 31, a mixture ratio setting unit 32, a subtractor 33, multipliers 34 and 35, an adder 36, a conversion unit 37, and a target reaction force current calculation unit 38. In the following description and drawings, the feedforward axial force may be expressed as "FF axial force" and the feedback axial force as "FB axial force".
 FF軸力算出部30は、操舵角δ又は目標転舵角θt(すなわち転舵指令値)と、及び車速Vと、に基づいて、操舵角δに応じた操舵反力を与えるステアリングラック軸力であるFF軸力Fffを算出する。ステアリングラック軸力とは、ステアリングラック10aに加わるラック軸力である。例えばFF軸力算出部30は、操舵角δと車速Vに基づいて算出された目標転舵角θtと、ステアリング機構のピニオン及びラックのピニオン剛性、ピニオン粘性、ラック慣性、ラック粘性に基づいてFF軸力Fffを算出してよい。例えばFF軸力Fffは、目標転舵角θtに応じた比例成分と転舵角速度に応じたダンピング成分とを少なくとも含んだ、ステアリングラックに加わる軸力であってよい。FF軸力算出部30は、算出したFF軸力Fffを乗算器34に出力する。 The FF axial force calculation unit 30 calculates the FF axial force Fff, which is a steering rack axial force that provides a steering reaction force according to the steering angle δ, based on the steering angle δ or the target steering angle θt (i.e., the steering command value) and the vehicle speed V. The steering rack axial force is the rack axial force applied to the steering rack 10a. For example, the FF axial force calculation unit 30 may calculate the FF axial force Fff based on the target steering angle θt calculated based on the steering angle δ and the vehicle speed V, and the pinion stiffness, pinion viscosity, rack inertia, and rack viscosity of the pinion and rack of the steering mechanism. For example, the FF axial force Fff may be an axial force applied to the steering rack that includes at least a proportional component according to the target steering angle θt and a damping component according to the steering angular speed. The FF axial force calculation unit 30 outputs the calculated FF axial force Fff to the multiplier 34.
 FB軸力算出部31は、横方向加速度Gy、転舵電流Itm、目標転舵角速度ωt及び車速Vに基づいて、FB軸力Ffbを算出する。FB軸力Ffbは、路面からの力を操舵反力としてステアリングホイール1aに与えて運転者に返すステアリングラック軸力である。FB軸力算出部31の構成及び機能については後述する。
 混合率設定部32は、FF軸力FffとFB軸力Ffbとを混合して混合軸力を算出するための混合率Gf:(1-Gf)を設定する。例えば混合率設定部32は、FF軸力FffとFB軸力Ffbとの間の軸力差分に応じて混合率Gf:(1-Gf)を設定してよい。
 減算器33と、乗算器34及び35と、加算器36は、FF軸力FffとFB軸力Ffbとを混合率Gf:(1-Gf)で混合することにより、次式(1)で与えられる混合軸力を算出する。
 混合軸力=Fff×Gf+Ffb×(1-Gf) … (1)
The FB axial force calculation unit 31 calculates the FB axial force Ffb based on the lateral acceleration Gy, the steering current Itm, the target turning angular velocity ωt, and the vehicle speed V. The FB axial force Ffb is a steering rack axial force that applies force from the road surface as a steering reaction force to the steering wheel 1a and returns it to the driver. The configuration and function of the FB axial force calculation unit 31 will be described later.
The mixing ratio setting unit 32 sets a mixing ratio Gf: (1-Gf) for calculating a mixed axial force by mixing the FF axial force Fff and the FB axial force Ffb. For example, the mixing ratio setting section 32 may set the mixing ratio Gf: (1-Gf) according to the axial force difference between the FF axial force Fff and the FB axial force Ffb.
The subtracter 33, multipliers 34 and 35, and adder 36 mix the FF axial force Fff and the FB axial force Ffb at a mixing ratio Gf: (1-Gf) to obtain the result given by the following equation (1). Calculate the mixed axial force.
Mixed axial force = Fff×Gf+Ffb×(1-Gf)… (1)
 変換部37は、減算器33と、乗算器34及び35と、加算器36が算出した混合軸力に基づいて目標操舵反力を算出する。目標操舵反力とは、操舵反力の目標値である。例えば、変換部37は、車速V及び軸力に対応した目標操舵反力を定義した軸力-操舵反力変換マップを用いて混合軸力を目標操舵反力に変換してよい。
 目標反力電流演算部38は、変換部37が算出した目標操舵反力に基づき、次式(2)に従って目標反力電流Istを算出する。目標反力電流演算部38は、算出結果を反力モータ駆動部9Cに出力する。
 目標反力電流Ist=目標操舵反力×ゲイン … (2)
The converter 37 calculates the target steering reaction force based on the mixed axial force calculated by the subtracter 33, the multipliers 34 and 35, and the adder 36. The target steering reaction force is a target value of the steering reaction force. For example, the conversion unit 37 may convert the mixed axial force into a target steering reaction force using an axial force-steering reaction force conversion map that defines a target steering reaction force corresponding to the vehicle speed V and the axial force.
The target reaction force current calculation section 38 calculates the target reaction force current Ist based on the target steering reaction force calculated by the conversion section 37 according to the following equation (2). The target reaction force current calculation section 38 outputs the calculation result to the reaction force motor drive section 9C.
Target reaction force current Ist = target steering reaction force x gain... (2)
 図4は、FB軸力算出部31の機能構成例のブロック図である。FB軸力算出部31は、第1電流軸力換算部40と、第1補正部41と、第2電流軸力換算部42と、第2補正部43と、横G軸力変換部44と、第1混合軸力算出部45と、第2混合軸力算出部46と、軸力切替部47と、を備える。
 第1電流軸力換算部40は、転舵電流Itmに正効率トルク定数Nfを乗算することにより、転舵電流Itmを正効率電流軸力Fcf0=Itm×Nfに換算する。ステアリングホイール1aの操舵状態が切り増し状態である場合には正効率電流軸力Fcf0に基づいてFB軸力Ffbが推定される。正効率トルク定数Nf及び正効率電流軸力Fcf0はそれぞれ特許請求の範囲に記載の「第1係数」及び「第1電流推定軸力」の一例である。
FIG. 4 is a block diagram of an example of the functional configuration of the FB axial force calculation unit 31. The FB axial force calculation unit 31 includes a first current axial force conversion unit 40, a first correction unit 41, a second current axial force conversion unit 42, a second correction unit 43, and a lateral G-axis force conversion unit 44. , a first mixed axial force calculation section 45, a second mixed axial force calculation section 46, and an axial force switching section 47.
The first current axial force conversion unit 40 converts the steering current Itm into a positive efficiency current axial force Fcf0=Itm×Nf by multiplying the steering current Itm by a positive efficiency torque constant Nf. When the steering state of the steering wheel 1a is an increased turning state, the FB axial force Ffb is estimated based on the positive efficiency current axial force Fcf0. The positive efficiency torque constant Nf and the positive efficiency current axial force Fcf0 are examples of a "first coefficient" and a "first estimated current axial force", respectively, described in the claims.
 第1補正部41は、正効率電流軸力Fcf0から、操向輪2の転舵に伴うフリクション成分を除去することにより正効率電流軸力Fcf0を補正し、補正後の正効率電流軸力Fcfを出力する。例えば、補正前の正効率電流軸力Fcf0の符号が正である場合に、所定のフリクション成分(定数)を正効率電流軸力Fcf0から減算し、正効率電流軸力Fcf0の符号が負である場合に、正効率電流軸力Fcf0にフリクション成分を加算して補正後の正効率電流軸力Fcfを算出する。補正後の正効率電流軸力Fcfは特許請求の範囲に記載の「第1電流推定軸力に基づく第2軸力成分」の一例である。
 正効率トルク定数Nfとフリクション成分とは、切り増し操舵状態において正効率電流軸力Fcfと実際にステアリングラック10aに加わるステアリングラック軸力とが概ね一致するように設定されている。
The first correction unit 41 corrects the positive efficiency current axial force Fcf0 by removing the friction component accompanying the steering of the steering wheels 2 from the positive efficiency current axial force Fcf0, and corrects the positive efficiency current axial force Fcf0. Output. For example, when the sign of the positive efficiency current axial force Fcf0 before correction is positive, a predetermined friction component (constant) is subtracted from the positive efficiency current axial force Fcf0, and the sign of the positive efficiency current axial force Fcf0 is negative. In this case, the corrected positive efficiency current axial force Fcf is calculated by adding the friction component to the positive efficiency current axial force Fcf0. The corrected positive efficiency current axial force Fcf is an example of the "second axial force component based on the first estimated current axial force" described in the claims.
The positive efficiency torque constant Nf and the friction component are set so that the positive efficiency current axial force Fcf and the steering rack axial force actually applied to the steering rack 10a generally match in the increased steering state.
 図5は、一定のトルク定数を転舵電流に乗じて算出した電流軸力と実際のステアリングラック軸力の関係を示す特性図である。切り増し操舵状態では、セルフアライニングトルクが転舵モータ8Aの回転方向と反対方向に働き、切り戻し操舵状態ではセルフアライニングトルクが転舵モータ8Aの回転方向と同じ方向に働く。このため、切り増し操舵状態に比べて切り戻し操舵状態の方が、実際のステアリングラック軸力に対する電流軸力の比(傾き)が小さくなる。
 また、フリクション成分は操向輪2の転舵に伴って(すなわち転舵モータ8Aが回転しているときに)転舵モータ8Aの回転方向と常に反対方向に働く。このため、転舵角の絶対値が減少して中立位置を通過するときに実際のステアリングラック軸力が「0」になるタイミングと電流軸力が「0」になるタイミングとの間にずれが生じる。この結果、電流軸力と実際のステアリングラック軸力の関係は図5に示すようにヒステリシス特性を有し、ステアリングラック軸力が大きくなるほど切り増し操舵状態における電流軸力と切り戻し操舵状態における電流軸力との間の乖離が大きくなる。また、図5の特性図において縦軸との交点が「0」からずれている。
FIG. 5 is a characteristic diagram showing the relationship between the current axial force calculated by multiplying the steering current by a constant torque constant and the actual steering rack axial force. In the additional steering state, the self-aligning torque acts in the opposite direction to the rotation direction of the steering motor 8A, and in the return steering state, the self-aligning torque acts in the same direction as the rotation direction of the steering motor 8A. Therefore, the ratio (inclination) of the current axial force to the actual steering rack axial force is smaller in the reverse steering state than in the additional steering state.
Furthermore, the friction component always acts in the opposite direction to the rotational direction of the steering motor 8A as the steering wheel 2 is turned (that is, when the steering motor 8A is rotating). For this reason, there is a difference between the timing when the actual steering rack axial force becomes "0" and the timing when the current axial force becomes "0" when the absolute value of the steering angle decreases and passes the neutral position. arise. As a result, the relationship between the current axial force and the actual steering rack axial force has a hysteresis characteristic as shown in FIG. The deviation between the axial force and the axial force increases. Further, in the characteristic diagram of FIG. 5, the intersection with the vertical axis is shifted from "0".
 図6は、正効率電流軸力Fcfと実際のステアリングラック軸力の関係を示す特性図である。切り増し操舵状態において実際のステアリングラック軸力に対する正効率電流軸力Fcf0の傾き(すなわち比(正効率電流軸力Fcf0/実際のステアリングラック軸力))が「1」となるように正効率トルク定数Nfを設定しつつ、第1補正部41でフリクション成分を除去することによって、切り増し操舵状態において正効率電流軸力Fcfと実際のステアリングラック軸力と概ね一致させることができる。 FIG. 6 is a characteristic diagram showing the relationship between the positive efficiency current axial force Fcf and the actual steering rack axial force. The positive efficiency torque is adjusted so that the slope of the positive efficiency current axial force Fcf0 with respect to the actual steering rack axial force (that is, the ratio (positive efficiency current axial force Fcf0/actual steering rack axial force)) is "1" in the increased steering state. By removing the friction component in the first correction unit 41 while setting the constant Nf, it is possible to make the positive efficiency current axial force Fcf substantially coincide with the actual steering rack axial force in the increased steering state.
 図4を参照する。第2電流軸力換算部42は、転舵電流Itmに逆効率トルク定数Nrを乗算することにより、転舵電流Itmを逆効率電流軸力Fcr0=Itm×Nrに換算する。ステアリングホイール1aの操舵状態が切り戻し状態である場合には逆効率電流軸力Fcr0に基づいてFB軸力Ffbが推定される。逆効率トルク定数Nr及び逆効率電流軸力Fcr0はそれぞれ特許請求の範囲に記載の「第2係数」及び「第2電流推定軸力」の一例である。
 上記のとおり、切り戻し操舵状態ではセルフアライニングトルクが転舵モータ8Aの回転方向と同じ方向に働くため、切り増し操舵状態に比べて転舵電流Itmが小さくなる。したがって、切り戻し操舵状態におけるFB軸力Ffbの推定に使用する逆効率トルク定数Nrを、切り増し操舵状態におけるFB軸力Ffbの推定に使用する正効率トルク定数Nfと同じ大きさにすると、逆効率電流軸力Fcr0が過小になる。このため、逆効率トルク定数Nrは正効率トルク定数Nfよりも大きな値に設定する。
See FIG. 4. The second current axial force conversion unit 42 converts the steering current Itm into a reverse efficiency current axial force Fcr0=Itm×Nr by multiplying the steering current Itm by a reverse efficiency torque constant Nr. When the steering state of the steering wheel 1a is the reversed state, the FB axial force Ffb is estimated based on the reverse efficiency current axial force Fcr0. The reverse efficiency torque constant Nr and the reverse efficiency current axial force Fcr0 are examples of a "second coefficient" and a "second estimated current axial force", respectively, described in the claims.
As described above, in the reverse steering state, the self-aligning torque acts in the same direction as the rotational direction of the steering motor 8A, so the steering current Itm is smaller than in the additional steering state. Therefore, if the reverse efficiency torque constant Nr used to estimate the FB axial force Ffb in the reverse steering state is made the same as the positive efficiency torque constant Nf used to estimate the FB axial force Ffb in the additional steering state, Efficiency current axial force Fcr0 becomes too small. Therefore, the reverse efficiency torque constant Nr is set to a larger value than the positive efficiency torque constant Nf.
 第2補正部43は、逆効率電流軸力Fcr0にから、操向輪2の転舵に伴うフリクション成分を除去することにより逆効率電流軸力Fcr0を補正し、補正後の逆効率電流軸力Fcrを出力する。例えば、補正前の逆効率電流軸力Fcr0の符号が正である場合に、所定のフリクション成分(定数)を逆効率電流軸力Fcr0に加算し、逆効率電流軸力Fcr0の符号が負である場合に、逆効率電流軸力Fcr0からフリクション成分を減算して補正後の補正後の逆効率電流軸力Fcrを算出する。補正後の逆効率電流軸力Fcrは特許請求の範囲に記載の「第2電流推定軸力に基づく第2軸力成分」の一例である。
 逆効率トルク定数Nrとフリクション成分とは、切り戻し操舵状態において逆効率電流軸力Fcrと実際にステアリングラック10aに加わるステアリングラック軸力とが概ね一致するように設定されている。
The second correction unit 43 corrects the reverse efficiency current axial force Fcr0 by removing the friction component accompanying the steering of the steering wheel 2 from the reverse efficiency current axial force Fcr0, and corrects the reverse efficiency current axial force Fcr0 after correction. Output Fcr. For example, when the sign of the reverse efficiency current axial force Fcr0 before correction is positive, a predetermined friction component (constant) is added to the reverse efficiency current axial force Fcr0, and the sign of the reverse efficiency current axial force Fcr0 is negative. In this case, the corrected reverse efficiency current axial force Fcr is calculated by subtracting the friction component from the reverse efficiency current axial force Fcr0. The corrected reverse efficiency current axial force Fcr is an example of the "second axial force component based on the second current estimated axial force" described in the claims.
The reverse efficiency torque constant Nr and the friction component are set so that the reverse efficiency current axial force Fcr and the steering rack axial force actually applied to the steering rack 10a generally match in the reverse steering state.
 図7は、逆効率電流軸力Fcrと実際のステアリングラック軸力の関係を示す特性図である。切り戻し操舵状態において実際のステアリングラック軸力に対する逆効率電流軸力Fcr0の傾き(すなわち比(逆効率電流軸力Fcr0/実際のステアリングラック軸力))が「1」となるように逆効率トルク定数Nrを設定しつつ、第2補正部43でフリクション成分を除去することによって、切り戻し操舵状態において逆効率電流軸力Fcrと実際のステアリングラック軸力と概ね一致させることができる。 FIG. 7 is a characteristic diagram showing the relationship between the reverse efficiency current axial force Fcr and the actual steering rack axial force. The reverse efficiency torque is adjusted so that the slope of the reverse efficiency current axial force Fcr0 with respect to the actual steering rack axial force (i.e., the ratio (reverse efficiency current axial force Fcr0/actual steering rack axial force)) is "1" in the reverse steering state. By removing the friction component in the second correction unit 43 while setting the constant Nr, it is possible to make the reverse efficiency current axial force Fcr substantially coincide with the actual steering rack axial force in the reverse steering state.
 図4を参照する。横G軸力変換部44は、車両に作用する横加速度に応じたステアリングラック軸力である横G軸力Ftを算出する。例えば横G軸力変換部44は、車速Vに応じた係数であるゲインを横方向加速度Gyに乗算することにより横G軸力Ftを算出してよい。
 第1混合軸力算出部45は、第1電流軸力換算部40が算出した補正前の正効率電流軸力Fcf0と、横G軸力変換部44が算出した横G軸力Ftとを所定の比率で混合することにより第1混合軸力Fm1を算出する。第1混合軸力Fm1は、特許請求の範囲に記載の「第1軸力成分」の一例である。
See FIG. 4. The lateral G-axis force converter 44 calculates the lateral G-axis force Ft, which is the steering rack axial force according to the lateral acceleration acting on the vehicle. For example, the lateral G-axis force conversion unit 44 may calculate the lateral G-axis force Ft by multiplying the lateral acceleration Gy by a gain that is a coefficient according to the vehicle speed V.
The first mixed axial force calculation section 45 predetermines the positive efficiency current axial force Fcf0 before correction calculated by the first current axial force conversion section 40 and the lateral G axial force Ft calculated by the lateral G axial force conversion section 44. The first mixed axial force Fm1 is calculated by mixing at a ratio of . The first mixed axial force Fm1 is an example of a "first axial force component" described in the claims.
 第2混合軸力算出部46は、逆効率電流軸力Fcrと第1混合軸力Fm1とを混合することにより第2混合軸力Fm2を算出する。
 図8の「切り戻し操舵状態」の範囲を参照されたい。第2混合軸力算出部46は、目標転舵角速度ωtが「0」以上第1転舵角速度ω1未満である場合に、第1混合軸力Fm1を第2混合軸力Fm2として出力する。目標転舵角速度ωtが第1転舵角速度ω1よりも大きな第2転舵角速度ω2以上である場合に、逆効率電流軸力Fcrを第2混合軸力Fm2として出力する。目標転舵角速度ωtが第1転舵角速度ω1以上第2転舵角速度ω2未満である場合には、第1混合軸力Fm1と逆効率電流軸力Fcrを、目標転舵角速度ωtに応じた混合比率で混合することにより第2混合軸力Fm2を算出する。第2混合軸力算出部46は、目標転舵角速度ωtが高いほど逆効率電流軸力Fcrの混合比率を高くする。
The second mixed axial force calculation unit 46 calculates the second mixed axial force Fm2 by mixing the reverse efficiency current axial force Fcr and the first mixed axial force Fm1.
Please refer to the range of "return steering state" in FIG. The second mixed axial force calculation unit 46 outputs the first mixed axial force Fm1 as the second mixed axial force Fm2 when the target turning angular velocity ωt is greater than or equal to "0" and less than the first steered angular velocity ω1. When the target turning angular speed ωt is equal to or higher than the second turning angular speed ω2, which is larger than the first turning angular speed ω1, the reverse efficiency current axial force Fcr is output as the second mixed axial force Fm2. When the target turning angular speed ωt is greater than or equal to the first turning angular speed ω1 and less than the second turning angular speed ω2, the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr are mixed according to the target turning angular speed ωt. The second mixed axial force Fm2 is calculated by mixing at the ratio. The second mixed axial force calculation unit 46 increases the mixing ratio of the reverse efficiency current axial force Fcr as the target turning angular velocity ωt increases.
 図4を参照する。軸力切替部47は、ステアリングホイール1aの操舵状態が切り増し操舵状態であるか切り戻し状態であるかを判定する。例えば軸力切替部47は、転舵電流Itmの符号と目標転舵角速度ωtの符号とが同じである場合に切り増し操舵状態であると判定し、転舵電流Itmの符号と目標転舵角速度ωtの符号とが異なる場合に切り戻し操舵状態であると判定してよい。転舵電流Itmに代えて正効率電流軸力Fcf0の符号と目標転舵角速度ωtの符号とが同じである場合に切り増し操舵状態であると判定してもよい。 Refer to Figure 4. The axial force switching unit 47 determines whether the steering state of the steering wheel 1a is an additional steering state or a reverse steering state. For example, the axial force switching unit 47 determines that the steering current is in the additional steering state when the sign of the steering current Itm and the sign of the target turning angular velocity ωt are the same, and If the sign of ωt is different from that of ωt, it may be determined that the vehicle is in the reverse steering state. Instead of the steering current Itm, it may be determined that the additional steering state is present when the sign of the positive efficiency current axial force Fcf0 and the sign of the target turning angular velocity ωt are the same.
 軸力切替部47は、操舵状態と目標転舵角速度ωtとに基づいて、正効率電流軸力Fcfと第2混合軸力Fm2との間で、FB軸力Ftbとして出力する軸力を切り替える。
 例えば、切り戻し操舵状態の場合には軸力切替部47は第2混合軸力Fm2をFB軸力Ftbとして出力する。このため図8に示すように、操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが第2転舵角速度ω2以上である場合には、逆効率電流軸力FcrをFB軸力Ftbとして出力する。また、操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが第1転舵角速度ω1以上第2転舵角速度ω2未満である場合には、第1混合軸力Fm1と逆効率電流軸力Fcrを、目標転舵角速度ωtに応じた混合比率で混合した軸力を、FB軸力Ftbとして出力する。また、操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが「0」以上第1転舵角速度ω1未満である場合には、第1混合軸力Fm1をFB軸力Ftbとして出力する。
The axial force switching unit 47 switches the axial force output as the FB axial force Ftb between the positive efficiency current axial force Fcf and the second mixed axial force Fm2 based on the steering state and the target turning angular velocity ωt.
For example, in the case of the return steering state, the axial force switching unit 47 outputs the second mixed axial force Fm2 as the FB axial force Ftb. Therefore, as shown in FIG. 8, when the steering state is the return steering state and the target turning angular velocity ωt is equal to or higher than the second turning angular velocity ω2, the reverse efficiency current axial force Fcr is output as the FB axial force Ftb. do. In addition, when the steering state is a reverse steering state and the target turning angular velocity ωt is greater than or equal to the first turning angular velocity ω1 and less than the second turning angular velocity ω2, the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr The axial force obtained by mixing these at a mixing ratio according to the target turning angular velocity ωt is output as the FB axial force Ftb. Further, when the steering state is the return steering state and the target turning angular velocity ωt is greater than or equal to “0” and less than the first turning angular velocity ω1, the first mixed axial force Fm1 is output as the FB axial force Ftb.
 一方で、操舵状態が切り増し操舵状態であり、目標転舵角速度ωtが第3転舵角速度ω3以上である場合には、軸力切替部47は正効率電流軸力FcfをFB軸力Ftbとして出力する。操舵状態が切り増し操舵状態であり目標転舵角速度ωtが「0」以上第3転舵角速度ω3未満である場合には、第2混合軸力Fm2と正効率電流軸力Fcfを、目標転舵角速度ωtに応じた混合比率で混合した軸力を、FB軸力Ftbとして出力する。軸力切替部47は、目標転舵角速度ωtが高いほど正効率電流軸力Fcfの混合比率を高くする。 On the other hand, when the steering state is an additional steering state and the target turning angular velocity ωt is equal to or higher than the third turning angular velocity ω3, the axial force switching unit 47 changes the positive efficiency current axial force Fcf to the FB axial force Ftb. Output. When the steering state is an additional steering state and the target turning angular velocity ωt is greater than or equal to “0” and less than the third turning angular velocity ω3, the second mixed axial force Fm2 and the positive efficiency current axial force Fcf are set to the target turning angular velocity ωt. The axial force mixed at a mixing ratio according to the angular velocity ωt is output as the FB axial force Ftb. The axial force switching unit 47 increases the mixing ratio of the positive efficiency current axial force Fcf as the target turning angular velocity ωt increases.
 第3転舵角速度ω3の値は、例えば第1転舵角速度ω1と同じ値に設定してもよい。上記のとおり目標転舵角速度ωtが「0」以上第1転舵角速度ω1未満である場合に、第2混合軸力算出部46は第1混合軸力Fm1を第2混合軸力Fm2として出力する。
 したがって軸力切替部47は、操舵状態が切り増し操舵状態であり目標転舵角速度ωtが「0」以上第3転舵角速度ω3未満である場合には、第1混合軸力Fm1と正効率電流軸力Fcfを、目標転舵角速度ωtに応じた混合比率で混合した軸力を、FB軸力Ftbとして出力する。
The value of the third turning angular velocity ω3 may be set to the same value as the first turning angular velocity ω1, for example. As described above, when the target turning angular velocity ωt is greater than or equal to "0" and less than the first turning angular velocity ω1, the second mixed axial force calculation unit 46 outputs the first mixed axial force Fm1 as the second mixed axial force Fm2. .
Therefore, when the steering state is the additional steering state and the target turning angular velocity ωt is greater than or equal to "0" and less than the third turning angular velocity ω3, the axial force switching unit 47 selects the first mixed axial force Fm1 and the positive efficiency current. An axial force obtained by mixing the axial force Fcf at a mixing ratio according to the target turning angular velocity ωt is output as the FB axial force Ftb.
 なお、第3転舵角速度ω3の値を、例えば第1転舵角速度ω1と異なる値に設定してもよい。この場合、例えばFB軸力算出部31に、第1混合軸力Fm1と正効率電流軸力Fcfとを混合した第3混合軸力を算出する第3混合軸力算出部(図示せず)を追加してもよい。
 第3混合軸力算出部は、目標転舵角速度ωtが第3転舵角速度ω3以上である場合には、正効率電流軸力Fcfを第3混合軸力として出力する。目標転舵角速度ωtが「0」以上第3転舵角速度ω3未満である場合には、第1混合軸力Fm1と正効率電流軸力Fcfを、目標転舵角速度ωtに応じた混合比率で混合した軸力を、第3混合軸力として出力する。第3混合軸力算出部は、目標転舵角速度ωtが高いほど正効率電流軸力Fcfの混合比率を高くする。
 軸力切替部47は、切り増し操舵状態の場合に第3混合軸力をFB軸力Ftbとして出力し、切り戻し操舵状態の場合に第2混合軸力をFB軸力Ftbとして出力する。
Note that the value of the third turning angular velocity ω3 may be set to a value different from the first turning angular velocity ω1, for example. In this case, for example, the FB axial force calculation unit 31 includes a third mixed axial force calculation unit (not shown) that calculates a third mixed axial force that is a mixture of the first mixed axial force Fm1 and the positive efficiency current axial force Fcf. May be added.
The third mixed axial force calculation unit outputs the positive efficiency current axial force Fcf as the third mixed axial force when the target turning angular velocity ωt is equal to or higher than the third turning angular velocity ω3. When the target turning angular speed ωt is greater than or equal to “0” and less than the third turning angular speed ω3, the first mixed axial force Fm1 and the positive efficiency current axial force Fcf are mixed at a mixing ratio according to the target turning angular speed ωt. The resulting axial force is output as a third mixed axial force. The third mixed axial force calculation unit increases the mixing ratio of the positive efficiency current axial force Fcf as the target turning angular velocity ωt increases.
The axial force switching unit 47 outputs the third mixed axial force as the FB axial force Ftb in the additional steering state, and outputs the second mixed axial force as the FB axial force Ftb in the reverse steering state.
 以上のようにFB軸力Ffbを生成することにより、FB軸力Ffbに含まれる軸力の混合率は図8に示すようになる。
 ステアリングホイール1aの操舵状態が切り増し操舵状態であり目標転舵角速度ωtが第3転舵角速度ω3以上である場合には、正効率電流軸力FcfがFB軸力Ffbとして出力される。
 また、ステアリングホイール1aの操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが第2転舵角速度ω2以上である場合には、逆効率電流軸力FcrがFB軸力Ffbとして出力される。
By generating the FB axial force Ffb as described above, the mixing ratio of the axial forces included in the FB axial force Ffb becomes as shown in FIG. 8.
When the steering state of the steering wheel 1a is the additional steering state and the target turning angular velocity ωt is equal to or higher than the third turning angular velocity ω3, the positive efficiency current axial force Fcf is output as the FB axial force Ffb.
Further, when the steering state of the steering wheel 1a is the return steering state and the target turning angular velocity ωt is equal to or higher than the second turning angular velocity ω2, the reverse efficiency current axial force Fcr is output as the FB axial force Ffb.
 一方で、操舵状態が切り増し操舵状態であり目標転舵角速度ωtが「0」以上第3転舵角速度ω3未満である場合には、第1混合軸力Fm1と正効率電流軸力Fcfを目標転舵角速度ωtに応じた混合比率で混合した軸力がFB軸力Ftbとして出力される。操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが「0」以上第1転舵角速度ω1未満である場合には、第1混合軸力Fm1がFB軸力Ffbとして出力される。
 これにより、操舵速度が低い状態(例えば保舵状態)におけるFB軸力Ffbの推定誤差を減少できる。すなわち、操舵速度が低い状態における電流軸力のチャタリングを防止するために、操舵速度が低い状態では常に正効率電流軸力Fcfに基づいて推定ステアリングラック軸力を算出すると、算出結果が過小になることがある。横加速度に応じた横G軸力Ftを混合することにより、誤差を低減して推定精度を向上できる。
On the other hand, when the steering state is an additional steering state and the target turning angular velocity ωt is greater than or equal to "0" and less than the third turning angular velocity ω3, the first mixed axial force Fm1 and the positive efficiency current axial force Fcf are set as the targets. The axial force mixed at a mixing ratio according to the steering angular velocity ωt is output as the FB axial force Ftb. When the steering state is the return steering state and the target turning angular velocity ωt is greater than or equal to “0” and less than the first turning angular velocity ω1, the first mixed axial force Fm1 is output as the FB axial force Ffb.
As a result, it is possible to reduce the estimation error of the FB axial force Ffb in a state where the steering speed is low (for example, in a state where the steering is held). That is, if the estimated steering rack axial force is always calculated based on the positive efficiency current axial force Fcf when the steering speed is low in order to prevent chatter of the current axial force when the steering speed is low, the calculation result will be too small. Sometimes. By mixing the lateral G-axis force Ft according to the lateral acceleration, errors can be reduced and estimation accuracy can be improved.
 さらに、操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが第1転舵角速度ω1以上第2転舵角速度ω2未満である場合には、第1混合軸力Fm1と逆効率電流軸力Fcrを、目標転舵角速度ωtに応じた混合比率で混合した軸力を、FB軸力Ftbとして出力される。
 これにより、操舵状態が切り増し操舵状態と切り戻し操舵状態との間で切り替わる際にFB軸力Ffbの推定結果が急変しないように、目標転舵角速度ωtが第2転舵角速度ω2に至るまで緩やかにFB軸力Ffbを切り替えることができる。
Furthermore, when the steering state is a reverse steering state and the target turning angular velocity ωt is greater than or equal to the first turning angular velocity ω1 and less than the second turning angular velocity ω2, the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr The axial force obtained by mixing these at a mixing ratio according to the target turning angular velocity ωt is output as the FB axial force Ftb.
This prevents the estimation result of the FB axial force Ffb from changing suddenly when the steering state switches between the additional steering state and the reverse steering state, until the target turning angular velocity ωt reaches the second turning angular velocity ω2. The FB axial force Ffb can be changed gently.
 図9は、FB軸力Ffbと実際のステアリングラック軸力の関係を示す特性図である。切り増し操舵状態のFB軸力Ffbの推定結果と切り戻し操舵状態とFB軸力Ffbの推定結果との間の差が低減されるとともに、フリクション成分が除去されることにより、FB軸力Ffbと実際のステアリングラック軸力とがよく一致していることが分かる。
 特に、ステアリングラック軸力が大きい領域における切り増し操舵状態のFB軸力Ffbの推定結果と切り戻し操舵状態とFB軸力Ffbの推定結果との間の乖離が小さくなり、ヒステリシス特性の膨らみを低減できる。
 また、横G軸力FtをFB軸力Ffbに含める目標転舵角速度ωtを低い転舵角速度範囲に限定することにより、正効率電流軸力Fcf及び逆効率電流軸力Fcrに対する横G軸力Ftの位相遅れによりFB軸力Ffbの推定精度が低下するのを抑制できる。
FIG. 9 is a characteristic diagram showing the relationship between the FB axial force Ffb and the actual steering rack axial force. The difference between the estimation result of the FB axial force Ffb in the additional steering state and the estimation result of the FB axial force Ffb in the reverse steering state is reduced, and the friction component is removed, so that the FB axial force Ffb and It can be seen that the actual steering rack axial force matches well.
In particular, the discrepancy between the estimated result of the FB axial force Ffb in the increased steering state and the estimated result of the FB axial force Ffb in the reverse steered state in the region where the steering rack axial force is large is reduced, and the bulge in the hysteresis characteristic is reduced. can.
In addition, by limiting the target steering angular velocity ωt that includes the lateral G-axis force Ft in the FB axial force Ffb to a low steering angular velocity range, the lateral G-axis force Ft with respect to the positive efficiency current axial force Fcf and the reverse efficiency current axial force Fcr It is possible to suppress a decrease in the estimation accuracy of the FB axial force Ffb due to the phase delay.
 (動作)
 図10は、実施形態の操舵制御方法の一例のフローチャートである。
 ステップS1において目標転舵角演算部11Aは、転舵角θの目標値である目標転舵角θtを算出する。
 ステップS2において転舵モータ駆動部8Cは、目標転舵角θtと操向輪2の実際の転舵角との差に基づいて転舵モータ8Aを駆動する。
 ステップS3において第1電流軸力換算部40と第1補正部41は、正効率電流軸力Fcfを算出する。
(motion)
FIG. 10 is a flowchart of an example of the steering control method according to the embodiment.
In step S1, the target turning angle calculation unit 11A calculates a target turning angle θt, which is a target value of the turning angle θ.
In step S2, the steering motor drive unit 8C drives the steering motor 8A based on the difference between the target steering angle θt and the actual steering angle of the steered wheels 2.
In step S3, the first current axial force conversion section 40 and the first correction section 41 calculate the positive efficiency current axial force Fcf.
 ステップS4において第2電流軸力換算部42と第2補正部43は、逆効率電流軸力Fcrを算出する。
 ステップS5において軸力切替部47は、ステアリングホイール1aの操舵状態が切り増し操舵状態であるか切り戻し状態であるかを判定する。操舵状態が切り増し操舵状態である場合に処理はステップS6へ進む。操舵状態が切り戻し状態である場合に処理はステップS7へ進む。
 ステップS6において第2混合軸力算出部46と軸力切替部47は、正効率電流軸力FcfをFB軸力Ftbとして算出する。ただし、目標転舵角速度ωtが「0」以上第3転舵角速度ω3未満である場合には、第1混合軸力Fm1と正効率電流軸力Fcfを目標転舵角速度ωtに応じた混合比率で混合した軸力をFB軸力Ftbとして算出する。その後に処理はステップS8へ進む。
In step S4, the second current axial force conversion section 42 and the second correction section 43 calculate the reverse efficiency current axial force Fcr.
In step S5, the axial force switching unit 47 determines whether the steering state of the steering wheel 1a is an additional steering state or a reverse steering state. If the steering state is the additional steering state, the process advances to step S6. If the steering state is the steering state, the process advances to step S7.
In step S6, the second mixed axial force calculation unit 46 and the axial force switching unit 47 calculate the positive efficiency current axial force Fcf as the FB axial force Ftb. However, if the target turning angular speed ωt is greater than or equal to "0" and less than the third turning angular speed ω3, the first mixed axial force Fm1 and the positive efficiency current axial force Fcf are mixed at a mixing ratio according to the target turning angular speed ωt. The mixed axial force is calculated as FB axial force Ftb. Thereafter, the process proceeds to step S8.
 ステップS7において第2混合軸力算出部46と軸力切替部47は、逆効率電流軸力FcrをFB軸力Ftbとして算出する。ただし、目標転舵角速度ωtが「0」以上第1転舵角速度ω1未満である場合には、第1混合軸力Fm1をFB軸力Ffbとして算出する。目標転舵角速度ωtが第1転舵角速度ω1以上第2転舵角速度ω2未満である場合には、第1混合軸力Fm1と逆効率電流軸力Fcrを、目標転舵角速度ωtに応じた混合比率で混合した軸力をFB軸力Ftbとして算出する。その後に処理はステップS8へ進む。 In step S7, the second mixed axial force calculation unit 46 and the axial force switching unit 47 calculate the reverse efficiency current axial force Fcr as the FB axial force Ftb. However, if the target turning angular velocity ωt is greater than or equal to "0" and less than the first turning angular velocity ω1, the first mixed axial force Fm1 is calculated as the FB axial force Ffb. When the target turning angular speed ωt is greater than or equal to the first turning angular speed ω1 and less than the second turning angular speed ω2, the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr are mixed according to the target turning angular speed ωt. The axial force mixed in the ratio is calculated as the FB axial force Ftb. Thereafter, the process proceeds to step S8.
 ステップS8において目標操舵反力演算部11B(図3)の変換部37は、FF軸力FffとFB軸力Ffbとを混合して得られる混合軸力に基づいて目標操舵反力を算出する。目標反力電流演算部38は、目標操舵反力に基づき目標反力電流Istを算出する。
 ステップS9において反力モータ駆動部9Cは、目標反力電流Istに基づいて反力モータ9Aを駆動する。
 その後に処理は終了する。
In step S8, the conversion unit 37 of the target steering reaction force calculation unit 11B (FIG. 3) calculates the target steering reaction force based on the mixed axial force obtained by mixing the FF axial force Fff and the FB axial force Ffb. The target reaction force current calculation unit 38 calculates the target reaction force current Ist based on the target steering reaction force.
In step S9, the reaction motor drive unit 9C drives the reaction motor 9A based on the target reaction current Ist.
The process then ends.
 (変形例)
 (1)上記の実施形態のFB軸力算出部31は、操舵状態が切り増し操舵状態であり目標転舵角速度ωtが「0」以上第3転舵角速度ω3未満である場合には、第1混合軸力Fm1と正効率電流軸力Fcfを、目標転舵角速度ωtに応じた混合比率で混合した軸力を、FB軸力Ftbとして出力する。これに代えて、操舵状態が切り増し操舵状態であり目標転舵角速度ωtが「0」以上第3転舵角速度ω3未満である場合には、第1混合軸力Fm1をFB軸力Ftbとして出力してもよい。
(Modified example)
(1) The FB axial force calculation unit 31 of the above embodiment calculates the first An axial force obtained by mixing the mixed axial force Fm1 and the positive efficiency current axial force Fcf at a mixing ratio according to the target turning angular velocity ωt is output as the FB axial force Ftb. Instead, if the steering state is an additional steering state and the target turning angular velocity ωt is greater than or equal to "0" and less than the third turning angular velocity ω3, the first mixed axial force Fm1 is output as the FB axial force Ftb. You may.
 (2)上記の実施形態のFB軸力算出部31は、操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが第1転舵角速度ω1以上第2転舵角速度ω2未満である場合には、第1混合軸力Fm1と逆効率電流軸力Fcrを、目標転舵角速度ωtに応じた混合比率で混合した軸力を、FB軸力Ftbとして出力する。これに代えて、操舵状態が切り戻し操舵状態であり目標転舵角速度ωtが第1転舵角速度ω1以上第2転舵角速度ω2未満である場合には、逆効率電流軸力FcrをFB軸力Ftbとして出力してもよい。 (2) The FB axial force calculation unit 31 of the above embodiment calculates that when the steering state is the return steering state and the target turning angular velocity ωt is greater than or equal to the first turning angular velocity ω1 and less than the second turning angular velocity ω2, , the first mixed axial force Fm1 and the reverse efficiency current axial force Fcr are mixed at a mixing ratio according to the target turning angular velocity ωt, and an axial force is output as the FB axial force Ftb. Alternatively, if the steering state is the return steering state and the target turning angular velocity ωt is greater than or equal to the first turning angular velocity ω1 and less than the second turning angular velocity ω2, the reverse efficiency current axial force Fcr is set to the FB axial force. It may also be output as Ftb.
 (実施形態の効果)
 (1)操舵制御方法では、操向輪と機械的に分離したステアリングホイールの操舵角に基づいて操向輪の転舵角の目標値である目標転舵角を算出し、目標転舵角と操向輪の実際の転舵角との差に基づいて操向輪を転舵する転舵モータを駆動し、転舵モータを駆動する電流である転舵電流に第1係数を乗じることによりステアリングラック軸力である第1電流推定軸力を推定し、転舵電流に第1係数よりも大きな第2係数を乗じることによりステアリングラック軸力である第2電流推定軸力を推定し、ステアリングホイールの操舵状態が切り増し操舵状態である場合には第1電流推定軸力に基づいて推定ステアリングラック軸力を算出するとともに、操舵状態が切り戻し操舵状態である場合には第2電流推定軸力に基づいて推定ステアリングラック軸力を算出し、推定した推定ステアリングラック軸力に基づいてステアリングホイールに操舵反力を付与する反力モータを駆動する電流の目標値である目標反力電流を算出し、推定した目標反力電流に基づいて反力モータを駆動する。
 これにより、操舵状態が切り増し操舵状態である場合と切り戻し操舵状態でそれぞれの特定に合わせた係数を乗じて電流軸力を推定できるので、いずれの操舵状態においてもステアリングラック軸力の推定精度を向上できる。
(Effects of embodiment)
(1) In the steering control method, a target steering angle, which is a target value of the steering angle of the steered wheels, is calculated based on the steering angle of a steering wheel that is mechanically separated from the steered wheels. Steering is performed by driving a steering motor that steers the steering wheel based on the difference between the actual steering angle of the steering wheel and multiplying the steering current, which is the current that drives the steering motor, by a first coefficient. The first current estimated axial force, which is the rack axial force, is estimated, and the steering current is multiplied by a second coefficient, which is larger than the first coefficient, to estimate the second current estimated axial force, which is the steering rack axial force. When the steering state is an additional steering state, the estimated steering rack axial force is calculated based on the first current estimated axial force, and when the steering state is a reverse steering state, the second current estimated axial force is calculated. The estimated steering rack axial force is calculated based on the estimated steering rack axial force, and the target reaction force current, which is the target value of the current that drives the reaction force motor that applies a steering reaction force to the steering wheel, is calculated based on the estimated steering rack axial force. , the reaction force motor is driven based on the estimated target reaction force current.
As a result, the current axial force can be estimated by multiplying the current axial force by a coefficient tailored to each specific state when the steering state is an additional steering state or a reverse steering state, so the estimation accuracy of the steering rack axial force is accurate in both steering states. can be improved.
 (2)操舵状態が切り戻し状態であり且つ転舵速度が所定の転舵速度未満の場合は、車両に作用する横加速度に応じたステアリングラック軸力と第1電流推定軸力とを加えて得られる軸力に基づいて推定ステアリングラック軸力を算出してもよい。
 例えば、操舵状態が切り増し操舵状態であり且つ転舵速度が所定の転舵速度未満の場合は、車両に作用する横加速度に応じたステアリングラック軸力と第1電流推定軸力に加えて得られる第1軸力成分と、第1電流推定軸力に基づく第2軸力成分と、を混合した軸力に基づいて推定ステアリングラック軸力を算出し、転舵速度が高い場合には低い場合よりも第2軸力成分の混合比率を高くしてもよい。
 操舵速度が低い状態(例えば保舵状態)における電流軸力のチャタリングを防止するために、操舵速度が低い状態では常に第1電流推定軸力に基づいて推定ステアリングラック軸力を算出すると、算出結果が過小になることがある。横加速度に応じたステアリングラック軸力を混合することにより、誤差を低減して推定精度を向上できる。
(2) When the steering state is in a return state and the steering speed is less than a predetermined steering speed, the estimated steering rack axial force may be calculated based on the axial force obtained by adding the steering rack axial force corresponding to the lateral acceleration acting on the vehicle and the first current estimated axial force.
For example, when the steering state is an add-on steering state and the steering speed is less than a predetermined steering speed, the estimated steering rack axial force may be calculated based on an axial force obtained by mixing the steering rack axial force corresponding to the lateral acceleration acting on the vehicle and a first axial force component obtained by adding the first current estimated axial force and a second axial force component based on the first current estimated axial force, and the mixing ratio of the second axial force component may be made higher when the steering speed is high than when the steering speed is low.
If the estimated steering rack axial force is always calculated based on the first current estimated axial force in order to prevent chattering of the current axial force when the steering speed is low (e.g., when the steering wheel is held), the calculation result may be too small. By mixing the steering rack axial force according to the lateral acceleration, the error can be reduced and the estimation accuracy can be improved.
 (3)操舵状態が切り戻し操舵状態であり、かつ転舵速度が所定の第1転舵速度以上且つ所定の第2転舵速度未満である場合は、車両に作用する横加速度に応じたステアリングラック軸力を第1電流推定軸力に加えて得られる第1軸力成分と、第2電流推定軸力に基づく第2軸力成分と、を混合した軸力に基づいて推定ステアリングラック軸力を算出し、転舵速度が高い場合には低い場合よりも第2軸力成分の混合比率を高くしてもよい。
 これにより、操舵状態が切り増し操舵状態と切り戻し操舵状態との間で切り替わる際に推定ステアリングラック軸力が急変しないように、転舵速度が第2転舵速度に至るまで緩やかに推定ステアリングラック軸力を切り替えることができる。
(3) If the steering state is a reverse steering state and the steering speed is greater than or equal to the predetermined first steering speed and less than the predetermined second steering speed, the steering is performed according to the lateral acceleration acting on the vehicle. The steering rack axial force is estimated based on the axial force that is a mixture of the first axial force component obtained by adding the rack axial force to the first current estimated axial force, and the second axial force component based on the second current estimated axial force. When the steering speed is high, the mixing ratio of the second axial force component may be set higher than when the steering speed is low.
As a result, in order to prevent the estimated steering rack axial force from changing suddenly when the steering state switches between the additional steering state and the reverse steering state, the estimated steering rack is gradually adjusted until the steering speed reaches the second steering speed. Axial force can be switched.
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。 All examples and conditional terms herein are provided for educational purposes and to assist the reader in understanding the invention and the concepts presented by the inventor for the advancement of the technology. The foregoing examples and conditions are specifically described and should be construed without limitation to the construction of the examples herein with respect to demonstrating the advantages and disadvantages of the present invention. It is something. Although embodiments of the invention have been described in detail, it should be understood that various changes, substitutions, and modifications can be made thereto without departing from the spirit and scope of the invention.
 1a…ステアリングホイール、1b…ステアリングシャフト、2…前輪、3…操舵角センサ、4…転舵角センサ、5…車速センサ、6…加速度センサ、8…転舵制御部、8A…転舵モータ、8B…転舵電流検出部、8C…転舵モータ駆動部、9…反力制御部、9A…反力モータ、9B…反力電流検出部、9C…反力モータ駆動部、10a…ステアリングラック、10b、10d…ピニオンシャフト、10c、10e…ピニオンギア、11…コントローラ、12…バックアップクラッチ、20…プロセッサ、21…記憶装置 1a... Steering wheel, 1b... Steering shaft, 2... Front wheel, 3... Steering angle sensor, 4... Steering angle sensor, 5... Vehicle speed sensor, 6... Acceleration sensor, 8... Steering control unit, 8A... Steering motor, 8B... Steering current detection section, 8C... Steering motor drive section, 9... Reaction force control section, 9A... Reaction force motor, 9B... Reaction force current detection section, 9C... Reaction force motor drive section, 10a... Steering rack, 10b, 10d... Pinion shaft, 10c, 10e... Pinion gear, 11... Controller, 12... Backup clutch, 20... Processor, 21... Storage device

Claims (5)

  1.  操向輪と機械的に分離したステアリングホイールの操舵角に基づいて操向輪の転舵角の目標値である目標転舵角を算出し、
     前記目標転舵角と前記操向輪の実際の転舵角との差に基づいて前記操向輪を転舵する転舵モータを駆動し、
     前記転舵モータを駆動する電流である転舵電流に第1係数を乗じることによりステアリングラック軸力である第1電流推定軸力を推定し、
     前記転舵電流に前記第1係数よりも大きな第2係数を乗じることによりステアリングラック軸力である第2電流推定軸力を推定し、
     前記ステアリングホイールの操舵状態が切り増し操舵状態である場合には前記第1電流推定軸力に基づいて推定ステアリングラック軸力を算出するとともに、前記操舵状態が切り戻し操舵状態である場合には前記第2電流推定軸力に基づいて前記推定ステアリングラック軸力を算出し、
     推定した前記推定ステアリングラック軸力に基づいて前記ステアリングホイールに操舵反力を付与する反力モータを駆動する電流の目標値である目標反力電流を算出し、
     推定した前記目標反力電流に基づいて前記反力モータを駆動する、
     ことを特徴とする操舵制御方法。
    A target steering angle, which is a target value of the steering angle of the steering wheel, is calculated based on the steering angle of the steering wheel, which is mechanically separated from the steering wheel.
    driving a steering motor that steers the steered wheels based on a difference between the target steered angle and the actual steered angle of the steered wheels;
    Estimating a first current estimated axial force, which is a steering rack axial force, by multiplying a steering current, which is a current that drives the steering motor, by a first coefficient;
    estimating a second current estimated axial force that is a steering rack axial force by multiplying the steering current by a second coefficient larger than the first coefficient;
    When the steering state of the steering wheel is an additional steering state, the estimated steering rack axial force is calculated based on the first current estimated axial force, and when the steering state is a reverse steering state, the estimated steering rack axial force is calculated. Calculating the estimated steering rack axial force based on the second current estimated axial force,
    Calculating a target reaction force current that is a target value of a current that drives a reaction force motor that applies a steering reaction force to the steering wheel based on the estimated steering rack axial force;
    driving the reaction motor based on the estimated target reaction current;
    A steering control method characterized by:
  2.  前記操舵状態が切り戻し操舵状態であり且つ転舵速度が所定の転舵速度未満の場合は、車両に作用する横加速度に応じたステアリングラック軸力と前記第1電流推定軸力とを加えて得られる軸力に基づいて、前記推定ステアリングラック軸力を算出することを特徴とする請求項1に記載の操舵制御方法。 When the steering state is a reverse steering state and the steering speed is less than a predetermined steering speed, the steering rack axial force corresponding to the lateral acceleration acting on the vehicle and the first current estimated axial force are added. The steering control method according to claim 1, wherein the estimated steering rack axial force is calculated based on the obtained axial force.
  3.  前記操舵状態が切り増し操舵状態であり且つ転舵速度が所定の転舵速度未満の場合は、車両に作用する横加速度に応じたステアリングラック軸力と前記第1電流推定軸力に加えて得られる第1軸力成分と、前記第1電流推定軸力に基づく第2軸力成分と、を混合した軸力に基づいて前記推定ステアリングラック軸力を算出し、
     前記転舵速度が高い場合には低い場合よりも前記第2軸力成分の混合比率を高くする、
     ことを特徴とする請求項1に記載の操舵制御方法。
    When the steering state is an additional steering state and the steering speed is less than a predetermined steering speed, the steering rack axial force corresponding to the lateral acceleration acting on the vehicle and the first current estimated axial force are added to the steering rack axial force and the first current estimated axial force. Calculating the estimated steering rack axial force based on an axial force that is a mixture of a first axial force component based on the first current estimated axial force and a second axial force component based on the first current estimated axial force,
    When the steering speed is high, the mixing ratio of the second axial force component is made higher than when it is low.
    The steering control method according to claim 1, characterized in that:
  4.  前記操舵状態が切り戻し操舵状態であり、かつ転舵速度が所定の第1転舵速度以上且つ所定の第2転舵速度未満である場合は、車両に作用する横加速度に応じたステアリングラック軸力を前記第1電流推定軸力に加えて得られる第1軸力成分と、前記第2電流推定軸力に基づく第2軸力成分と、を混合した軸力に基づいて前記推定ステアリングラック軸力を算出し、
     前記転舵速度が高い場合には低い場合よりも前記第2軸力成分の混合比率を高くする、
     ことを特徴とする請求項1に記載の操舵制御方法。
    When the steering state is a reverse steering state and the steering speed is greater than or equal to a predetermined first steering speed and less than a predetermined second steering speed, the steering rack axis is adjusted according to the lateral acceleration acting on the vehicle. The estimated steering rack shaft is adjusted based on an axial force that is a mixture of a first axial force component obtained by adding a force to the first current estimated axial force and a second axial force component based on the second current estimated axial force. Calculate the force,
    When the steering speed is high, the mixing ratio of the second axial force component is made higher than when it is low.
    The steering control method according to claim 1, characterized in that:
  5.  操向輪と機械的に分離したステアリングホイールの操舵角を検出する操舵角センサと、
     前記操向輪を転舵する転舵モータと、
     前記ステアリングホイールに操舵反力を付与する反力モータと、
     前記操舵角に基づいて前記操向輪の転舵角の目標値である目標転舵角を算出し、前記目標転舵角と前記操向輪の実際の転舵角との差に基づいて前記転舵モータを駆動し、前記転舵モータを駆動する電流である転舵電流に第1係数を乗じることによりステアリングラック軸力である第1電流推定軸力を推定し、前記転舵電流に前記第1係数よりも大きな第2係数を乗じることによりステアリングラック軸力である第2電流推定軸力を推定し、前記ステアリングホイールの操舵状態が切り増し操舵状態である場合には前記第1電流推定軸力に基づいて推定ステアリングラック軸力を算出するとともに、前記操舵状態が切り戻し操舵状態である場合には前記第2電流推定軸力に基づいて前記推定ステアリングラック軸力を算出し、推定した前記推定ステアリングラック軸力に基づいて前記ステアリングホイールに操舵反力を付与する反力モータを駆動する電流の目標値である目標反力電流を算出し、推定した前記目標反力電流に基づいて前記反力モータを駆動するコントローラと、
     をことを特徴とする操舵制御装置。
    a steering angle sensor that detects the steering angle of a steering wheel that is mechanically separated from the steered wheels;
    a steering motor that steers the steering wheel;
    a reaction force motor that applies a steering reaction force to the steering wheel;
    A target steering angle, which is a target value of the steering angle of the steering wheel, is calculated based on the steering angle, and the steering angle is calculated based on the difference between the target steering angle and the actual steering angle of the steering wheel. A first current estimated axial force, which is a steering rack axial force, is estimated by driving a steering motor, and a first current estimated axial force, which is a steering rack axial force, is estimated by multiplying a steering current, which is a current that drives the steering motor, by a first coefficient. A second current estimated axial force, which is the steering rack axial force, is estimated by multiplying by a second coefficient larger than the first coefficient, and when the steering state of the steering wheel is an additional steering state, the first current estimation is performed. An estimated steering rack axial force is calculated based on the axial force, and when the steering state is a reverse steering state, the estimated steering rack axial force is calculated and estimated based on the second current estimated axial force. A target reaction force current, which is a target value of a current for driving a reaction force motor that applies a steering reaction force to the steering wheel, is calculated based on the estimated steering rack axial force, and the target reaction force current is calculated based on the estimated target reaction force current. a controller that drives a reaction force motor;
    A steering control device characterized by:
PCT/JP2022/034905 2022-09-20 2022-09-20 Steering control method and steering control device WO2024062514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034905 WO2024062514A1 (en) 2022-09-20 2022-09-20 Steering control method and steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034905 WO2024062514A1 (en) 2022-09-20 2022-09-20 Steering control method and steering control device

Publications (1)

Publication Number Publication Date
WO2024062514A1 true WO2024062514A1 (en) 2024-03-28

Family

ID=90453972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034905 WO2024062514A1 (en) 2022-09-20 2022-09-20 Steering control method and steering control device

Country Status (1)

Country Link
WO (1) WO2024062514A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226346A (en) * 1997-02-12 1998-08-25 Koyo Seiko Co Ltd Steering device for automobile
JP2006240398A (en) * 2005-03-01 2006-09-14 Nissan Motor Co Ltd Steering controller
WO2014108983A1 (en) * 2013-01-11 2014-07-17 日産自動車株式会社 Steering control device
JP2021017153A (en) * 2019-07-22 2021-02-15 株式会社デンソー Steering control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226346A (en) * 1997-02-12 1998-08-25 Koyo Seiko Co Ltd Steering device for automobile
JP2006240398A (en) * 2005-03-01 2006-09-14 Nissan Motor Co Ltd Steering controller
WO2014108983A1 (en) * 2013-01-11 2014-07-17 日産自動車株式会社 Steering control device
JP2021017153A (en) * 2019-07-22 2021-02-15 株式会社デンソー Steering control device

Similar Documents

Publication Publication Date Title
EP3321149B1 (en) Electric power steering device
EP3453592B1 (en) Electric power steering device
US6570352B2 (en) Control unit for electric power steering apparatus
US7739001B2 (en) Vehicle steering apparatus
JP4984110B2 (en) Electric power steering device
JP5286982B2 (en) Vehicle steering control apparatus and method
KR100605792B1 (en) Steering control device
EP3461721A2 (en) Vehicle control apparatus
JP5338491B2 (en) Vehicle steering apparatus and vehicle steering method
JP2008120343A (en) Electric power steering device
JPH0629033B2 (en) Motor control device for electric power steering device
JP5206170B2 (en) Vehicle steering control apparatus and method
EP3517408A1 (en) Steering control device
US20230278630A1 (en) Control apparatus, steering device, and control method
JP2020029194A (en) Steering control device
WO2010013298A1 (en) Motor-driven power steering control device
US11192579B2 (en) Actuator control device used in steering of vehicle
JPWO2020115973A1 (en) Vehicle steering device
WO2024062514A1 (en) Steering control method and steering control device
JP4228946B2 (en) Electric power steering control device
JP7147553B2 (en) electric power steering device
WO2022085536A1 (en) Steering device
WO2023203812A1 (en) Control device for vehicle steering system
WO2023042532A1 (en) Steering reactive force control device, steering reactive force control method, and steering reactive force control system
WO2023228454A1 (en) Vehicle steering system control device