WO2024062096A1 - Device for detecting an anomaly in the wearing of a respiratory mask - Google Patents

Device for detecting an anomaly in the wearing of a respiratory mask Download PDF

Info

Publication number
WO2024062096A1
WO2024062096A1 PCT/EP2023/076216 EP2023076216W WO2024062096A1 WO 2024062096 A1 WO2024062096 A1 WO 2024062096A1 EP 2023076216 W EP2023076216 W EP 2023076216W WO 2024062096 A1 WO2024062096 A1 WO 2024062096A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
threshold
spectral power
characteristic
anomaly
Prior art date
Application number
PCT/EP2023/076216
Other languages
French (fr)
Inventor
Thomas Similowski
Capucine MORELOT-PANZINI
Philippe ROGUEDAS
Original Assignee
Oso-Ai
Sorbonne Universite
Iinstitut National De La Sante Et De La Recherche Medicale
Assistance Publique Hopitaux De Paris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oso-Ai, Sorbonne Universite, Iinstitut National De La Sante Et De La Recherche Medicale, Assistance Publique Hopitaux De Paris filed Critical Oso-Ai
Publication of WO2024062096A1 publication Critical patent/WO2024062096A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/13General characteristics of the apparatus with means for the detection of operative contact with patient, e.g. lip sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means

Definitions

  • the technical field of the invention is the monitoring of users wearing a respiratory mask.
  • a respiratory mask is common in the treatment of respiratory pathologies, for example chronic obstructive pulmonary disease, obesity-hypoventilation syndrome, so-called “restrictive” pulmonary conditions, or sleep apnea.
  • a possible function of such masks is to connect the patient wearing it to a respiratory assistance machine delivering excess pressure to the respiratory system by covering the nose, or even the nose and mouth.
  • This makes it possible, for example, to carry out treatment by non-invasive ventilation, which consists of providing mechanical assistance to breathing by supplying the mask with pressurized air cyclically. This helps to reduce the work of the respiratory muscles and improve gas exchange.
  • non-invasive ventilation which consists of providing mechanical assistance to breathing by supplying the mask with pressurized air cyclically. This helps to reduce the work of the respiratory muscles and improve gas exchange.
  • the air is pressurized in a non-cyclical manner, this modality, called “continuous positive pressure", can be used to treat sleep apnea.
  • the effectiveness of the treatment is subject to correct application of the mask to the face, particularly during phases during which the user's alertness is insufficient, for example during sleep.
  • the mask used may be a face mask, covering the mouth and nose, or a nasal mask, covering only the nose.
  • a first object of the invention is a method for detecting an anomaly in the wearing of a respiratory mask applied against the face of a user, comprising:
  • step b detection, by the processing unit, of the occurrence of an anomaly in wearing the mask.
  • Step c) may include:
  • Treatment may include:
  • the characteristic is a spectral power
  • the criterion is a spectral power threshold, so that the fault is detected when the spectral power, in the selected frequency band, exceeds the spectral power threshold.
  • the characteristic is a variation in spectral power
  • the criterion is a spectral power variation threshold, so that the fault is detected when the spectral power variation, in the selected frequency band, exceeds the spectral power variation threshold.
  • the criterion is a threshold
  • the mask is a face mask, configured to cover the mouth and nose of the user;
  • the frequency band is greater than 100 Hz.
  • the mask is a nasal mask, configured to cover the user's nose without covering the mouth;
  • the frequency band is between 300 Hz and 13000 Hz.
  • the frequency band extends from 1000 Hz, or from 1100 Hz, up to 10000 Hz or 13000 Hz.
  • the processing unit implements a supervised learning artificial intelligence algorithm
  • the supervised learning artificial intelligence algorithm is configured by a learning phase taking into account sounds detected in the absence and presence of an anomaly;
  • a second object is a device for monitoring the wearing of a respiratory mask by a user, the device comprising:
  • a microphone configured to record sounds of the user's breathing through the mask
  • processing unit programmed to receive the sounds recorded by the microphone, and to implement steps b) and c) of a method according to the first object of the invention.
  • Figure IA represents an example of a device according to the invention.
  • Figure IB shows the wearing of a face mask and possible air outlets.
  • Figure 2 represents a frequency decomposition of sounds produced by a facial mask worn by a user.
  • Figure 3A represents a nasal mask.
  • Figure 3B shows the wearing of a nasal mask.
  • Figure 4 represents a frequency decomposition of sounds produced by a nasal mask worn by a user.
  • Figure 5 schematizes the implementation steps of a device according to the invention.
  • Figure IA represents an example of a device according to the invention.
  • the device comprises a microphone 10, connected to a processing unit 11.
  • the microphone is configured to record sounds produced by a user wearing a face mask 20.
  • Figure IB shows the face mask 20 worn by a user.
  • the processing unit 11 is programmed to carry out processing of the sounds collected by the microphone 10. More precisely, these are sounds produced by the breathing of the user through the mask 20, during his inspiration and/or his expiry.
  • the inventors observed that when the mask is not correctly applied against the face, the sound resulting from the user's breathing, through the mask, varies. Thus, an analysis of the sound recorded by the microphone makes it possible to detect a possible defect in wearing the mask.
  • the respiratory mask comprises a bubble 21, generally flexible and transparent, delimited by a seal 22, for example a silicone type seal or foam.
  • the seal is intended to be applied against the user's skin. When the mask is worn correctly, the seal forms a waterproof barrier, or considered as such, preventing or limiting air circulation between the internal space, delimited by the bubble and the user's face, and the ambient air. , outside the bubble.
  • the mask can be moved from its correct position for use, causing air to pass through either side of the seal.
  • Such a leak is not desirable, because it compromises the possibility of establishing the desired pressure regime inside the bubble, which results in a reduction in the effectiveness of the treatment.
  • the processing unit 11 is configured to: process the sounds recorded by the microphone 10, so as to extract characteristics therefrom; compare the extracted characteristics with a criterion, the criterion being representative of a defect in wearing a mask; based on the comparison, determine the occurrence of an anomaly in wearing the mask.
  • the criterion representing the defect in wearing a mask is previously determined during a learning phase. It may be: a spectral power threshold, in a predetermined frequency band; a threshold for variation of the spectral power in a predetermined frequency band; an intensity threshold or an intensity variation threshold.
  • the criterion can be a passage of a periodic threshold, reflecting the fact that the characteristic studied exceeds the threshold periodically, according to a period compatible with a respiratory period, typically of the order of a few seconds or a few tens of seconds.
  • the sound processing is carried out by an artificial intelligence algorithm with supervised learning, as described below in connection with Figure 5.
  • the criterion is therefore “implicit”, in the sense that it is taken into account in the parameterization of the algorithm.
  • the output of the algorithm can be detection or non-detection of an anomaly.
  • Figure 2 represents a spectrogram of sounds recorded, in the audible range, during a test during which a user used a facial mask correctly during a first time interval Ati. An anomaly was then deliberately introduced, inducing an air leak, particularly during exhalations. The anomaly was maintained during a second time interval At 2 .
  • the x-axis corresponds to time.
  • the y axis corresponds to frequency (Hz).
  • the gray level corresponds to the spectral power.
  • the periodicity of breathing is observed by an alternation between light bands (high spectral power), which correspond to expirations, and dark bands (low spectral power), which correspond to inspirations.
  • the occurrence of an anomaly results in a periodic increase in spectral power, particularly during expirations.
  • the spectral power is increased in frequencies above 100 Hz.
  • a criterion forming a spectral power threshold can be established, for one or more frequencies greater than 100 Hz. When at least one of said frequencies, the measured spectral power exceeds the threshold, a fault is detected.
  • the method is more robust by simultaneously considering different spectral bands.
  • the processing unit is configured to detect the moments during which at least one characteristic extracted from the measured sound satisfies the criterion representative of the anomaly.
  • the processing unit can estimate a time period during which the characteristic satisfies the criterion.
  • the processing unit detects an anomaly. Taking the time period into account makes it possible to limit the occurrence of false detections.
  • the predetermined range can be between 2s (breathing rate of 30 cycles per minute) to 10s (breathing rate of 6 cycles per minute).
  • Figure 3A shows an example of a nasal mask 20 connected to a device according to the invention.
  • the nasal mask includes a bubble 21 covering only the nose and leaving the user's mouth free.
  • Figure 3B shows a nasal mask worn by a user.
  • the mouth should be kept closed, otherwise a leak will occur through the mouth.
  • An anomaly when wearing a mask may correspond to an opening of the mouth.
  • Figure 4 represents a spectrogram of sounds recorded during a test during which a user used a nasal mask correctly during a first time interval Ati.
  • a first anomaly was then voluntarily introduced, during a second time interval At 2 , corresponding to a slight opening of the mouth.
  • a second anomaly was then deliberately introduced, during a third Ata time interval, corresponding to a greater opening of the mouth.
  • Figure 4 is similar to Figure 2: the x-axis corresponds to time, the y-axis corresponds to frequency and the gray level corresponds to spectral power.
  • the intensity of the sound is modulated according to the respiratory rhythm, the spectral power during the expiration phases being greater than the spectral power during the inspiration phases.
  • the anomalies result in a variation of the spectrogram, and more precisely an increase in the spectral power in a frequency range between 300 Hz and 10,000 Hz.
  • the anomaly becomes more significant, we observe a marked increase in the spectral power between 1000 Hz and 8000 Hz.
  • the increase in spectral power concerns both the expiration and inspiration phases.
  • the box drawn in white during the Ata period delimits a frequency band of interest.
  • Figure 5 shows the main stages of sound processing implemented by the processing unit.
  • the processing unit 11 receives the sound detected by the microphone; during a step 110, the processing unit 11 extracts one or more characteristics of the detected sound; during a step 120, the processing unit 11 takes into account a criterion, previously determined during a learning phase 90.
  • the learning phase consists of carrying out tests for a type of mask, with and without anomaly, so as to determine the criterion(s) corresponding to an anomaly.
  • the processing unit 11 detects the occurrence of an anomaly when at least one extracted characteristic, or when each extracted characteristic, corresponds to an anomaly occurrence criterion. If an anomaly is detected, an alarm signal can be generated, so as to alert the user or a user monitoring team.
  • the criterion for the occurrence of an anomaly is determined by implementing an artificial intelligence algorithm with supervised learning, for example a neural network.
  • the algorithm is fed either by sound or by previously extracted sound characteristics.
  • the output of the algorithm is the occurrence, or not, of an anomaly.
  • the algorithm is configured during the learning phase, taking into account sounds recorded respectively in the presence and absence of defects. According to such an embodiment, the criterion is implicitly taken into account in the algorithm. Steps 110 and 120 are merged into a single step 110/120, which corresponds to the implementation of the algorithm.
  • the spectrograms shown in Figures 2 and 4 show that a leak results in a modification of the spectrum between 100 Hz and 13000 Hz. Between 100 Hz and 1000 Hz, certain fluctuations are detected in the absence of leaks. See for example the fluctuations observed during the Ati periods in Figures 2 and 4. Such fluctuations may correspond to everyday noises, corresponding to an activity carried out by the user, not linked to wearing the mask. It is therefore preferable for the spectral band to extend from a wavelength greater than 1000 Hz, for example beyond 1100 Hz, or 1200 Hz, or 1300 Hz, or 1400 Hz, or 1500 Hz, or 2000 Hz, and below 13000 Hz. Being above 1000 Hz or 1100 Hz makes it possible to limit the impact, on the detected sound, of user activities.
  • the invention can be implemented for monitoring users, both in a medical environment and at home. It does not require bulky or expensive equipment, which makes it particularly suitable for use at home.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A method for detecting an anomaly in the wearing of a respiratory mask fitted to the face of a user, comprising: - a) detection, by a microphone, of a sound produced, at different instants, by an expiration or inspiration of the user through the mask; - b) processing of the detected sound, by a processing unit, at each instant so as to extract therefrom at least one characteristic of the sound; - c) as a function of each characteristic extracted during step b), detection, by the processing unit, of an occurrence of an anomaly in the wearing of the mask.

Description

Description Description
DISPOSITIF DE DETECTION D’UNE ANOMALIE DANS LE PORT D’UN MASQUE RESPIRATOIRE DEVICE FOR DETECTING AN ANOMALY WHEN WEARING A RESPIRATORY MASK
DOMAINE TECHNIQUE TECHNICAL AREA
Le domaine technique de l'invention est la surveillance d'utilisateurs portant un masque respiratoire. The technical field of the invention is the monitoring of users wearing a respiratory mask.
ART ANTERIEUR PRIOR ART
Le recours à un masque respiratoire est usuel dans le traitement de pathologies respiratoires, par exemple la bronchopneumopathie chronique obstructive, le syndrome obésité- hypoventilation, les affections pulmonaires dites "restrictives", ou les apnées du sommeil.The use of a respiratory mask is common in the treatment of respiratory pathologies, for example chronic obstructive pulmonary disease, obesity-hypoventilation syndrome, so-called “restrictive” pulmonary conditions, or sleep apnea.
Une fonction possible de tels masques est de connecter le patient qui le porte à une machine d'assistance respiratoire délivrant une surpression au niveau de l'appareil respiratoire en couvrant le nez, voire le nez et la bouche. Cela permet par exemple d'effectuer un traitement par ventilation non invasive, qui consiste à apporter une aide mécanique à la respiration en alimentant le masque avec de l'air pressurisé de façon cyclique. Cela contribue à diminuer le travail des muscles respiratoires et à améliorer les échanges gazeux. Dans un autre type de traitement, l'air est pressurisé de façon non cyclique, cette modalité, dite "pression positive continue", pouvant être utilisée pour traiter les apnées du sommeil. A possible function of such masks is to connect the patient wearing it to a respiratory assistance machine delivering excess pressure to the respiratory system by covering the nose, or even the nose and mouth. This makes it possible, for example, to carry out treatment by non-invasive ventilation, which consists of providing mechanical assistance to breathing by supplying the mask with pressurized air cyclically. This helps to reduce the work of the respiratory muscles and improve gas exchange. In another type of treatment, the air is pressurized in a non-cyclical manner, this modality, called "continuous positive pressure", can be used to treat sleep apnea.
L'efficacité du traitement est soumise à une application correcte du masque sur le visage, notamment pendant des phases durant lesquelles la vigilance de l'utilisateur est insuffisante, par exemple durant le sommeil. En fonction du traitement, le masque utilisé peut être un masque facial, couvrant la bouche et le nez, ou un masque nasal, couvrant uniquement le nez.The effectiveness of the treatment is subject to correct application of the mask to the face, particularly during phases during which the user's alertness is insufficient, for example during sleep. Depending on the treatment, the mask used may be a face mask, covering the mouth and nose, or a nasal mask, covering only the nose.
Les documents WO2021243293, W02010091462, W02020118311 et WO2021245637 décrivent des masques respiratoires destinés à traiter l'apnée du sommeil. Dans WO2021243293, la détection d'un son est évoquée, à des fins de détection de fuite, dans une bande spectrale inférieure à 1000 Hz. Documents WO2021243293, WO2010091462, WO2020118311 and WO2021245637 describe respiratory masks intended to treat sleep apnea. In WO2021243293, the detection of a sound is mentioned, for leak detection purposes, in a spectral band below 1000 Hz.
On comprend qu'il est souhaitable de disposer d'un dispositif efficace, discret et simple d'utilisation, permettant de surveiller qu'un masque respiratoire est correctement utilisé. L'invention répond à ce besoin. We understand that it is desirable to have an effective, discreet and easy to use device, making it possible to monitor that a respiratory mask is correctly used. The invention meets this need.
EXPOSE DE L'INVENTION Un premier objet de l'invention est un procédé de détection d'une anomalie dans le port d'un masque respiratoire appliqué contre le visage d'un utilisateur, comportant : STATEMENT OF THE INVENTION A first object of the invention is a method for detecting an anomaly in the wearing of a respiratory mask applied against the face of a user, comprising:
- a) détection, par un microphone, d'un son produit, en différents instants, par une expiration ou une inspiration de l'utilisateur à travers le masque ; - a) detection, by a microphone, of a sound produced, at different times, by an exhalation or inspiration of the user through the mask;
- b) traitement du son détecté par une unité de traitement, à chaque instant de façon à en extraire au moins une caractéristique; - b) processing of the sound detected by a processing unit, at each moment so as to extract at least one characteristic;
- c) en fonction de chaque caractéristique extraite lors de l'étape b), détection, par l'unité de traitement, d'une survenue d'une anomalie dans le port du masque. - c) depending on each characteristic extracted during step b), detection, by the processing unit, of the occurrence of an anomaly in wearing the mask.
L'étape c) peut comporter : Step c) may include:
- cl) prise en compte d'au moins un critère préalablement mémorisé ; - cl) taking into account at least one previously memorized criterion;
- c2) confrontation de chaque caractéristique extraite lors de l'étape b) au critère ou à un des critères pris en compte lors de la sous-étape cl). - c2) comparison of each characteristic extracted during step b) with the criterion or one of the criteria taken into account during sub-step cl).
Le traitement peut comporter : Treatment may include:
- sélection d'au moins une bande de fréquence du son ; - selection of at least one frequency band of the sound;
- détermination d'une caractéristique dans la bande de fréquence sélectionnée. - determination of a characteristic in the selected frequency band.
Selon une possibilité : According to one possibility:
- la caractéristique est une puissance spectrale ; - the characteristic is a spectral power;
- le critère est un seuil de puissance spectrale, de façon que le défaut est détecté lorsque la puissance spectrale, dans la bande de fréquence sélectionnée, dépasse le seuil de puissance spectrale. - the criterion is a spectral power threshold, so that the fault is detected when the spectral power, in the selected frequency band, exceeds the spectral power threshold.
Selon une possibilité : According to one possibility:
- la caractéristique est une variation de puissance spectrale ; - the characteristic is a variation in spectral power;
- le critère est un seuil de variation puissance spectrale, de façon que le défaut est détecté lorsque la variation de puissance spectrale, dans la bande de fréquence sélectionnée, dépasse le seuil de variation puissance spectrale. - the criterion is a spectral power variation threshold, so that the fault is detected when the spectral power variation, in the selected frequency band, exceeds the spectral power variation threshold.
Selon une possibilité : According to one possibility:
- le critère est un seuil ; - the criterion is a threshold;
- la sous-étape cl) comporte : - sub-step cl) includes:
• prise en compte d'instants auxquels la caractéristique franchit le seuil ; • taking into account times at which the characteristic crosses the threshold;
• estimation d'une période temporelle de franchissement du seuil, selon laquelle la caractéristique franchit le seuil ; lors de la sous-étape c2), l'anomalie est détectée lorsque la période temporelle de franchissement du seuil est comprise dans une plage prédéterminée. Selon une possibilité : • estimation of a temporal period of crossing the threshold, according to which the characteristic crosses the threshold; during substep c2), the anomaly is detected when the time period of crossing the threshold is within a predetermined range. According to one possibility:
- le masque est un masque facial, configuré pour recouvrir la bouche et le nez de l'utilisateur ; - the mask is a face mask, configured to cover the mouth and nose of the user;
- la bande de fréquence est supérieure à 100 Hz. - the frequency band is greater than 100 Hz.
Selon une possibilité According to one possibility
- le masque est un masque nasal, configuré pour recouvrir le nez de l'utilisateur sans recouvrir la bouche ; - the mask is a nasal mask, configured to cover the user's nose without covering the mouth;
- la bande de fréquence est comprise entre 300 Hz et 13000 Hz. - the frequency band is between 300 Hz and 13000 Hz.
Selon une possibilité, la bande de fréquence s'étend à partir de 1000 Hz, ou à partir de 1100 Hz, jusqu'à 10000Hz ou 13000 Hz. According to one possibility, the frequency band extends from 1000 Hz, or from 1100 Hz, up to 10000 Hz or 13000 Hz.
Selon une possibilité : According to one possibility:
- l'unité de traitement met en oeuvre un algorithme d'intelligence artificielle à apprentissage supervisé ; - the processing unit implements a supervised learning artificial intelligence algorithm;
- l'algorithme d'intelligence artificielle à apprentissage supervisé est paramétré par une phase d'apprentissage prenant en compte des sons détectés en l'absence et en présence d'une anomalie ; - the supervised learning artificial intelligence algorithm is configured by a learning phase taking into account sounds detected in the absence and presence of an anomaly;
Un deuxième objet est un dispositif de surveillance du port d'un masque respiratoire par un utilisateur, le dispositif comportant : A second object is a device for monitoring the wearing of a respiratory mask by a user, the device comprising:
- un microphone, configuré pour enregistrer des sons de la respiration de l'utilisateur à travers le masque ; - a microphone, configured to record sounds of the user's breathing through the mask;
- une unité de traitement, programmée pour recevoir les sons enregistrés par le microphone, et pour mettre en oeuvre les étapes b) et c) d'un procédé selon le premier objet de l'invention. - a processing unit, programmed to receive the sounds recorded by the microphone, and to implement steps b) and c) of a method according to the first object of the invention.
L'invention sera mieux comprise à la lecture de l'exposé des exemples de réalisation présentés, dans la suite de la description, en lien avec les figures listées ci-dessous. The invention will be better understood on reading the presentation of the exemplary embodiments presented, in the remainder of the description, in connection with the figures listed below.
L'invention sera mieux comprise à la lecture de l'exposé des exemples de réalisation présentés, dans la suite de la description, en lien avec les figures listées ci-dessous. The invention will be better understood on reading the presentation of the exemplary embodiments presented, in the remainder of the description, in connection with the figures listed below.
FIGURES FIGURES
La figure IA représente une exemple de dispositif selon l'invention. Figure IA represents an example of a device according to the invention.
La figure IB schématise le port d'un masque facial, et d'éventuelles sorties d'air. Figure IB shows the wearing of a face mask and possible air outlets.
La figure 2 représente une décomposition fréquentielle de sons produits par un masque facial porté par un utilisateur. Figure 2 represents a frequency decomposition of sounds produced by a facial mask worn by a user.
La figure 3A représente un masque nasal. La figure 3B schématise le port d'un masque nasal. Figure 3A represents a nasal mask. Figure 3B shows the wearing of a nasal mask.
La figure 4 représente une décomposition fréquentielle de sons produits par un masque nasal porté par un utilisateur. Figure 4 represents a frequency decomposition of sounds produced by a nasal mask worn by a user.
La figure 5 schématise des étapes de mises en oeuvre d'un dispositif selon l'invention. Figure 5 schematizes the implementation steps of a device according to the invention.
EXPOSE DE MODES DE REALISATION PARTICULIERS PRESENTATION OF SPECIAL MODES OF REALIZATION
La figure IA représente un exemple de dispositif selon l'invention. Le dispositif comporte un microphone 10, relié à une unité de traitement 11. Le microphone est configuré pour enregistrer des sons produits par un utilisateur portant un masque facial 20. Figure IA represents an example of a device according to the invention. The device comprises a microphone 10, connected to a processing unit 11. The microphone is configured to record sounds produced by a user wearing a face mask 20.
La figure IB montre le masque facial 20 porté par un utilisateur. Figure IB shows the face mask 20 worn by a user.
L'unité de traitement 11 est programmée pour effectuer un traitement des sons collectés par le microphone 10. Plus précisément, il s'agit de sons produits par la respiration de l'utilisateur à travers le masque 20, durant son inspiration et/ou son expiration. The processing unit 11 is programmed to carry out processing of the sounds collected by the microphone 10. More precisely, these are sounds produced by the breathing of the user through the mask 20, during his inspiration and/or his expiry.
Les inventeurs ont observé que lorsque le masque n'est pas correctement appliqué contre le visage, le son résultant de la respiration de l'utilisateur, à travers le masque, varie. Ainsi, une analyse du son enregistré par le microphone permet de détecter un éventuel défaut dans le port du masque. The inventors observed that when the mask is not correctly applied against the face, the sound resulting from the user's breathing, through the mask, varies. Thus, an analysis of the sound recorded by the microphone makes it possible to detect a possible defect in wearing the mask.
Le masque respiratoire comporte une bulle 21, généralement souple et transparente, délimitée par un joint 22, par exemple un joint de type silicone ou une mousse. Le joint est destiné à être appliqué contre la peau de l'utilisateur. Lorsque le masque est porté correctement, le joint forme une barrière étanche, ou considérée comme telle, empêchant ou limitant une circulation d'air entre l'espace interne, délimité par la bulle et le visage de l'utilisateur, et l'air ambiant, à l'extérieur de la bulle. The respiratory mask comprises a bubble 21, generally flexible and transparent, delimited by a seal 22, for example a silicone type seal or foam. The seal is intended to be applied against the user's skin. When the mask is worn correctly, the seal forms a waterproof barrier, or considered as such, preventing or limiting air circulation between the internal space, delimited by the bubble and the user's face, and the ambient air. , outside the bubble.
Précisons qu'il existe également une sortie d'air calibrée intentionnelle à travers le masque permettant l'expiration libre de l'utilisateur. Note that there is also an intentional calibrated air outlet through the mask allowing the user to exhale freely.
Cependant, le masque peut être déplacé par rapport à sa position correcte d'utilisation, ce qui entraîne un passage d'air de part et d'autre du joint. Une telle fuite n'est pas souhaitable, car elle compromet la possibilité d'établir le régime de pression souhaité à l'intérieur de la bulle, ce qui se traduit par une diminution d'efficacité du traitement. However, the mask can be moved from its correct position for use, causing air to pass through either side of the seal. Such a leak is not desirable, because it compromises the possibility of establishing the desired pressure regime inside the bubble, which results in a reduction in the effectiveness of the treatment.
L'unité de traitement 11 est configurée pour : traiter les sons enregistrés par le microphone 10, de façon à en extraire des caractéristiques ; comparer les caractéristiques extraites avec un critère, le critère étant représentatif d'un défaut dans le port du masque ; en fonction de la comparaison, déterminer la survenue d'une anomalie dans le port du masque. The processing unit 11 is configured to: process the sounds recorded by the microphone 10, so as to extract characteristics therefrom; compare the extracted characteristics with a criterion, the criterion being representative of a defect in wearing a mask; based on the comparison, determine the occurrence of an anomaly in wearing the mask.
Le critère représentatif du défaut dans le port du masque est préalablement déterminé au cours d'une phase d'apprentissage. Il peut s'agir : d'un seuil de puissance spectrale, dans une bande de fréquence prédéterminée ; d'un seuil de variation de la puissance spectrale dans une bande de fréquence prédéterminée ; d'un seuil d'intensité ou d'un seuil de variation de l'intensité. The criterion representing the defect in wearing a mask is previously determined during a learning phase. It may be: a spectral power threshold, in a predetermined frequency band; a threshold for variation of the spectral power in a predetermined frequency band; an intensity threshold or an intensity variation threshold.
Le critère peut être un passage d'un seuil périodique, traduisant le fait que la caractéristique étudiée dépasse le seuil périodiquement, selon une période compatible avec une période respiratoire, typiquement de l'ordre de quelques secondes ou quelques dizaines de secondes.The criterion can be a passage of a periodic threshold, reflecting the fact that the characteristic studied exceeds the threshold periodically, according to a period compatible with a respiratory period, typically of the order of a few seconds or a few tens of seconds.
Selon une possibilité, le traitement du son est effectué par un algorithme d'intelligence artificielle à apprentissage supervisé, comme décrit par la suite en lien avec la figure 5. Le critère est donc « implicite », au sens où il est pris en compte dans le paramétrage de l'algorithme. La sortie de l'algorithme peut être une détection ou une non détection d'une anomalie. According to one possibility, the sound processing is carried out by an artificial intelligence algorithm with supervised learning, as described below in connection with Figure 5. The criterion is therefore “implicit”, in the sense that it is taken into account in the parameterization of the algorithm. The output of the algorithm can be detection or non-detection of an anomaly.
La figure 2 représente un spectrogramme de sons enregistrés, dans le domaine audible, au cours d'un essai durant duquel un utilisateur a utilisé un masque facial de façon correcte durant une premier intervalle temporel Ati. Une anomalie a ensuite été volontairement introduite, induisant une fuite d'air, en particulier lors des expirations. L'anomalie a été maintenue durant un deuxième intervalle temporel At2. Figure 2 represents a spectrogram of sounds recorded, in the audible range, during a test during which a user used a facial mask correctly during a first time interval Ati. An anomaly was then deliberately introduced, inducing an air leak, particularly during exhalations. The anomaly was maintained during a second time interval At 2 .
L'axe des abscisses correspond au temps. L'axe des ordonnées correspond à la fréquence (Hz). Le niveau de gris correspond à la puissance spectrale. The x-axis corresponds to time. The y axis corresponds to frequency (Hz). The gray level corresponds to the spectral power.
Sur la figure 2, la périodicité de la respiration est observée par une alternance entre des bandes claires (puissance spectrale élevée), qui correspondent à des expirations et des bandes sombres (puissance spectrale faible), qui correspondent à des inspirations. La survenue d'une anomalie se traduit par une augmentation périodique de la puissance spectrale, en particulier lors des expirations. La puissance spectrale est augmentée dans les fréquences supérieures à 100 Hz.In Figure 2, the periodicity of breathing is observed by an alternation between light bands (high spectral power), which correspond to expirations, and dark bands (low spectral power), which correspond to inspirations. The occurrence of an anomaly results in a periodic increase in spectral power, particularly during expirations. The spectral power is increased in frequencies above 100 Hz.
Selon ce mode de réalisation, un critère formant un seuil de puissance spectrale peut être établi, pour une ou plusieurs fréquences supérieures à 100 Hz. Lorsqu'à au moins une desdites fréquences, la puissance spectrale mesurée dépasse le seuil, un défaut est détecté. Le procédé est plus robuste en considérant simultanément différentes bandes spectrales. According to this embodiment, a criterion forming a spectral power threshold can be established, for one or more frequencies greater than 100 Hz. When at least one of said frequencies, the measured spectral power exceeds the threshold, a fault is detected. The method is more robust by simultaneously considering different spectral bands.
Selon une possibilité, l'unité de traitement est configurée pour détecter les instants durant lesquels au moins une caractéristique extraite du son mesuré satisfait au critère représentatif de l'anomalie. L'unité de traitement peut estimer une période temporelle durant laquelle la caractéristique satisfait au critère. Lorsque la période temporelle se situe dans une plage prédéterminée, susceptible de correspondre à un rythme respiratoire, l'unité de traitement détecte une anomalie. La prise en compte de la période temporelle permet de limiter l'occurrence de fausses détections. La plage prédéterminée peut être comprise entre 2s (fréquence respiratoire de 30 cycles par minute) à 10 s (fréquence respiratoire de 6 cycles par minute). According to one possibility, the processing unit is configured to detect the moments during which at least one characteristic extracted from the measured sound satisfies the criterion representative of the anomaly. The processing unit can estimate a time period during which the characteristic satisfies the criterion. When the time period is within a predetermined range, likely to correspond to a respiratory rhythm, the processing unit detects an anomaly. Taking the time period into account makes it possible to limit the occurrence of false detections. The predetermined range can be between 2s (breathing rate of 30 cycles per minute) to 10s (breathing rate of 6 cycles per minute).
La figure 3A montre un exemple de masque nasal 20 relié à un dispositif selon l'invention. Le masque nasal comporte une bulle 21 ne couvrant que le nez et laissant la bouche de l'utilisateur libre. Figure 3A shows an example of a nasal mask 20 connected to a device according to the invention. The nasal mask includes a bubble 21 covering only the nose and leaving the user's mouth free.
La figure 3B schématise un masque nasal porté par un utilisateur. Lorsqu'on utilise ce type de masque, il convient de maintenir la bouche fermée, à défaut de quoi une fuite se produit par la bouche. Une anomalie dans le port du masque peut correspondre à une ouverture de la bouche.Figure 3B shows a nasal mask worn by a user. When using this type of mask, the mouth should be kept closed, otherwise a leak will occur through the mouth. An anomaly when wearing a mask may correspond to an opening of the mouth.
La figure 4 représente un spectrogramme de sons enregistrés au cours d'un essai durant duquel un utilisateur a utilisé un masque nasal de façon correcte durant un premier intervalle temporel Ati. Une première anomalie a ensuite été volontairement introduite, durant un deuxième intervalle temporel At2, correspondant à une légère ouverture de la bouche. Une deuxième anomalie a ensuite été volontairement introduite, durant un troisième intervalle temporel Ata, correspondant à une plus grande ouverture de la bouche. Figure 4 represents a spectrogram of sounds recorded during a test during which a user used a nasal mask correctly during a first time interval Ati. A first anomaly was then voluntarily introduced, during a second time interval At 2 , corresponding to a slight opening of the mouth. A second anomaly was then deliberately introduced, during a third Ata time interval, corresponding to a greater opening of the mouth.
La figure 4 est similaire à la figure 2 : l'axe des abscisses correspond au temps, l'axe des ordonnées correspond à la fréquence et le niveau de gris correspond à la puissance spectrale.Figure 4 is similar to Figure 2: the x-axis corresponds to time, the y-axis corresponds to frequency and the gray level corresponds to spectral power.
De même que sur la figure 2, l'intensité du son est modulée selon le rythme respiratoire, la puissance spectrale durant les phases d'expiration étant supérieure à la puissance spectrale durant les phases d'inspiration. On observe que les anomalies se traduisent par une variation du spectrogramme, et plus précisément une augmentation de la puissance spectrale dans une plage de fréquences comprise entre 300 Hz et 10000 Hz. Lorsque l'anomalie devient plus importante, on observe une augmentation marquée de la puissance spectrale entre 1000 Hz et 8000 Hz. On observe que l'augmentation de la puissance spectrale concerne à la fois les phases d'expiration et d'inspiration. Sur la figure 4, le cadre tracé en blanc durant la période Ata délimite une bande de fréquence d'intérêt. As in Figure 2, the intensity of the sound is modulated according to the respiratory rhythm, the spectral power during the expiration phases being greater than the spectral power during the inspiration phases. We observe that the anomalies result in a variation of the spectrogram, and more precisely an increase in the spectral power in a frequency range between 300 Hz and 10,000 Hz. When the anomaly becomes more significant, we observe a marked increase in the spectral power between 1000 Hz and 8000 Hz. We observe that the increase in spectral power concerns both the expiration and inspiration phases. In Figure 4, the box drawn in white during the Ata period delimits a frequency band of interest.
La figure 5 montre les principales étapes du traitement des sons mis en oeuvre par l'unité de traitement. au cours d'une étape 100, l'unité de traitement 11 reçoit le son détecté par le microphone ; au cours d'une étape 110, l'unité de traitement 11 effectue une extraction d'une ou plusieurs caractéristiques du son détecté; au cours d'une étape 120, l'unité de traitement 11 prend en compte un critère, préalablement déterminé au cours d'une phase d'apprentissage 90. La phase d'apprentissage consiste à effectuer des essais pour un type de masque, avec et sans anomalie, de façon à déterminer le ou les critères correspondant à une anomalie. au cours d'une étape 130, l'unité de traitement 11 détecte la survenue d'une anomalie lorsque au moins une caractéristique extraite, ou lorsque chaque caractéristique extraite, correspond à un critère de survenue d'anomalie. En cas de détection d'une anomalie, un signal d'alarme peut être généré, de façon à alerter l'utilisateur ou une équipe de surveillance de l'utilisateur. Figure 5 shows the main stages of sound processing implemented by the processing unit. during a step 100, the processing unit 11 receives the sound detected by the microphone; during a step 110, the processing unit 11 extracts one or more characteristics of the detected sound; during a step 120, the processing unit 11 takes into account a criterion, previously determined during a learning phase 90. The learning phase consists of carrying out tests for a type of mask, with and without anomaly, so as to determine the criterion(s) corresponding to an anomaly. during a step 130, the processing unit 11 detects the occurrence of an anomaly when at least one extracted characteristic, or when each extracted characteristic, corresponds to an anomaly occurrence criterion. If an anomaly is detected, an alarm signal can be generated, so as to alert the user or a user monitoring team.
Selon une possibilité, le critère de survenue d'une anomalie est déterminé en mettant en oeuvre un algorithme d'intelligence artificielle à apprentissage supervisé, par exemple un réseau de neurones. L'algorithme est alimenté par soit par le son, soit par des caractéristiques du son préalablement extraites. According to one possibility, the criterion for the occurrence of an anomaly is determined by implementing an artificial intelligence algorithm with supervised learning, for example a neural network. The algorithm is fed either by sound or by previously extracted sound characteristics.
La sortie de l'algorithme est la survenue, ou non, d'une anomalie. Le paramétrage de l'algorithme est effectué durant la phase d'apprentissage, en prenant en compte des sons enregistrés respectivement en présence et en l'absence de défauts. Selon un tel mode de réalisation, le critère est implicitement pris en compte dans l'algorithme. Les étapes 110 et 120 sont fusionnées en une même étape 110/120, qui correspond à la mise en oeuvre de l'algorithme. The output of the algorithm is the occurrence, or not, of an anomaly. The algorithm is configured during the learning phase, taking into account sounds recorded respectively in the presence and absence of defects. According to such an embodiment, the criterion is implicitly taken into account in the algorithm. Steps 110 and 120 are merged into a single step 110/120, which corresponds to the implementation of the algorithm.
Les spectrogrammes représentés sur les figures 2 et 4 montrent qu'une fuite se traduit par une modification du spectre entre 100 Hz et 13000 Hz. Entre 100 Hz et 1000 Hz, certaines fluctuations sont détectées en l'absence de fuites. Voir par exemple les fluctuations observées durant les périodes Ati sur les figures 2 et 4. De telles fluctuations peuvent correspondre à des bruits du quotidien, correspondant à une activité effectuée de l'utilisateur, non liée au port du masque. Il est donc préférable que la bande spectrale s'étende à partir d'une longueur d'onde supérieure à 1000 Hz, par exemple au-delà de 1100 Hz, ou 1200 Hz, ou 1300 Hz, ou 1400 Hz, ou 1500 Hz, ou 2000 Hz, et en deçà de 13000 Hz. Le fait d'être au-delà de 1000 Hz ou 1100 Hz permet de limiter l'impact, sur le son détecté, d'activités de l'utilisateur. The spectrograms shown in Figures 2 and 4 show that a leak results in a modification of the spectrum between 100 Hz and 13000 Hz. Between 100 Hz and 1000 Hz, certain fluctuations are detected in the absence of leaks. See for example the fluctuations observed during the Ati periods in Figures 2 and 4. Such fluctuations may correspond to everyday noises, corresponding to an activity carried out by the user, not linked to wearing the mask. It is therefore preferable for the spectral band to extend from a wavelength greater than 1000 Hz, for example beyond 1100 Hz, or 1200 Hz, or 1300 Hz, or 1400 Hz, or 1500 Hz, or 2000 Hz, and below 13000 Hz. Being above 1000 Hz or 1100 Hz makes it possible to limit the impact, on the detected sound, of user activities.
L'invention pourra être mise en oeuvre pour la surveillance d'utilisateurs, aussi bien dans un environnement médical qu'au domicile. Elle ne nécessite pas d'équipements encombrants ou coûteux, ce qui la rend particulièrement adaptée à une utilisation à domicile. The invention can be implemented for monitoring users, both in a medical environment and at home. It does not require bulky or expensive equipment, which makes it particularly suitable for use at home.

Claims

REVENDICATIONS Dispositif de surveillance du port d'un masque respiratoire par un utilisateur, le dispositif comportant : CLAIMS Device for monitoring the wearing of a respiratory mask by a user, the device comprising:
- un microphone (10), configuré pour enregistrer des sons de l'expiration ou de l'inspiration de l'utilisateur à travers le masque ; - a microphone (10), configured to record sounds of the user's exhalation or inspiration through the mask;
- une unité de traitement (11), programmée pour - a processing unit (11), programmed to
- a) recevoir les sons enregistrés par le microphone, en différents instants ; - a) receive the sounds recorded by the microphone, at different times;
- b) traiter le son détecté, à chaque instant de façon à en extraire au moins une caractéristique; - b) process the detected sound, at each moment so as to extract at least one characteristic;
- c) en fonction de chaque caractéristique extraite lors de l'étape b), détecter une survenue d'une anomalie dans le port du masque. Dispositif selon la revendication 1, dans lequel l'unité de traitement est programmée pour que l'étape c) comporte : - c) depending on each characteristic extracted during step b), detect the occurrence of an anomaly in wearing the mask. Device according to claim 1, in which the processing unit is programmed so that step c) comprises:
- cl) prise en compte d'au moins un critère préalablement mémorisé ; - cl) taking into account at least one previously memorized criterion;
- c2) confrontation de chaque caractéristique extraite lors de l'étape b) au critère à un des critères pris en compte lors de la sous-étape cl). Dispositif selon la revendication 2, dans lequel l'unité de traitement est programmée pour :- c2) comparison of each characteristic extracted during step b) with the criterion with one of the criteria taken into account during sub-step cl). Device according to claim 2, in which the processing unit is programmed to:
- sélectionner d'au moins une bande de fréquence du son ; - select at least one frequency band of the sound;
- déterminer une caractéristique dans la bande de fréquence sélectionnée. Dispositif selon la revendication 3, dans lequel : - determine a characteristic in the selected frequency band. Device according to claim 3, in which:
- la caractéristique est une puissance spectrale ; - the characteristic is a spectral power;
- le critère est un seuil de puissance spectrale, de façon que le défaut est détecté lorsque la puissance spectrale, dans la bande de fréquence sélectionnée, dépasse le seuil de puissance spectrale. Dispositif selon la revendication 3, dans lequel : - the criterion is a spectral power threshold, so that the fault is detected when the spectral power, in the selected frequency band, exceeds the spectral power threshold. Device according to claim 3, in which:
- la caractéristique est une variation de puissance spectrale ; - the characteristic is a variation in spectral power;
- le critère est un seuil de variation puissance spectrale, de façon que le défaut est détecté lorsque la variation de puissance spectrale, dans la bande de fréquence sélectionnée, dépasse le seuil de variation puissance spectrale. Dispositif selon l'une quelconque des revendications 2 à 5, dans lequel : - the criterion is a spectral power variation threshold, so that the fault is detected when the spectral power variation, in the selected frequency band, exceeds the spectral power variation threshold. Device according to any one of claims 2 to 5, in which:
- le critère est un seuil ; - the criterion is a threshold;
- la sous-étape cl) comporte : - sub-step cl) includes:
• prise en compte d'instants auxquels la caractéristique franchit le seuil ; • taking into account times at which the characteristic crosses the threshold;
• estimation d'une période temporelle de franchissement du seuil, selon laquelle la caractéristique franchit le seuil ; • estimation of a temporal period of crossing the threshold, according to which the characteristic crosses the threshold;
- lors de la sous-étape c2), l'anomalie est détectée lorsque la période temporelle de franchissement du seuil est comprise dans une plage prédéterminée. Dispositif selon l'une quelconque des revendications 3 à 6, dans lequel : - during substep c2), the anomaly is detected when the time period of crossing the threshold is within a predetermined range. Device according to any one of claims 3 to 6, in which:
- le masque est un masque facial, configuré pour recouvrir la bouche et le nez de l'utilisateur ; - the mask is a face mask, configured to cover the mouth and nose of the user;
- la bande de fréquence est supérieure à 100 Hz. Dispositif selon l'une quelconque des revendications 3 à 6, dans lequel : - the frequency band is greater than 100 Hz. Device according to any one of claims 3 to 6, in which:
- le masque est un masque nasal, configuré pour recouvrir le nez de l'utilisateur sans recouvrir la bouche ; - the mask is a nasal mask, configured to cover the user's nose without covering the mouth;
- la bande de fréquence est comprise entre 300 Hz et 13000 Hz. Dispositif selon l'une quelconque des revendications précédentes, dans lequel : - the frequency band is between 300 Hz and 13000 Hz. Device according to any one of the preceding claims, in which:
- l'unité de traitement met en oeuvre un algorithme d'intelligence artificielle à apprentissage supervisé ; - the processing unit implements a supervised learning artificial intelligence algorithm;
- l'algorithme d'intelligence artificielle à apprentissage supervisé est paramétré par une phase d'apprentissage prenant en compte des sons détectés en l'absence et en présence d'une anomalie. - the supervised learning artificial intelligence algorithm is configured by a learning phase taking into account sounds detected in the absence and presence of an anomaly.
PCT/EP2023/076216 2022-09-22 2023-09-22 Device for detecting an anomaly in the wearing of a respiratory mask WO2024062096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2209633 2022-09-22
FR2209633A FR3139994A1 (en) 2022-09-22 2022-09-22 Method for detecting an anomaly when wearing a respiratory mask

Publications (1)

Publication Number Publication Date
WO2024062096A1 true WO2024062096A1 (en) 2024-03-28

Family

ID=85222015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/076216 WO2024062096A1 (en) 2022-09-22 2023-09-22 Device for detecting an anomaly in the wearing of a respiratory mask

Country Status (2)

Country Link
FR (1) FR3139994A1 (en)
WO (1) WO2024062096A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091462A1 (en) 2009-02-11 2010-08-19 Resmed Ltd Acoustic detection for respiratory treatment apparatus
WO2020118311A1 (en) 2018-12-07 2020-06-11 Resmed Inc. Intelligent setup and recommendation system for sleep apnea device
WO2021243293A1 (en) 2020-05-29 2021-12-02 Resmed Sensor Technologies Limited Systems and methods for locating user interface leak
WO2021245637A1 (en) 2020-06-05 2021-12-09 Resmed Sensor Technologies Limited Systems and methods for identifying a user interface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091462A1 (en) 2009-02-11 2010-08-19 Resmed Ltd Acoustic detection for respiratory treatment apparatus
WO2020118311A1 (en) 2018-12-07 2020-06-11 Resmed Inc. Intelligent setup and recommendation system for sleep apnea device
WO2021243293A1 (en) 2020-05-29 2021-12-02 Resmed Sensor Technologies Limited Systems and methods for locating user interface leak
WO2021245637A1 (en) 2020-06-05 2021-12-09 Resmed Sensor Technologies Limited Systems and methods for identifying a user interface

Also Published As

Publication number Publication date
FR3139994A1 (en) 2024-03-29

Similar Documents

Publication Publication Date Title
EP3634218B1 (en) System for determining cardiac rhythm and/or respiratory
Martin et al. In-ear audio wearable: Measurement of heart and breathing rates for health and safety monitoring
JP4468447B2 (en) Method and apparatus for equalizing audio signals generated within a self-contained breathing apparatus system
Ren et al. Fine-grained sleep monitoring: Hearing your breathing with smartphones
JP6580497B2 (en) Apparatus, device, program and method for identifying facial expression with high accuracy using myoelectric signal
JP5580943B2 (en) Personal EEG monitoring device with electrode validation
EP2846690B1 (en) Sound-based spirometric device
KR101951815B1 (en) Ear wearing type health care monitoring system
MXPA06015231A (en) Method and apparatus for characterizing inhalation noise and calculating parameters based on the characterization.
JP2008505356A (en) Method and apparatus for detecting and attenuating intake noise in a communication system
CA2553590A1 (en) Distance measuring device
Vanheusden et al. Improved detection of vowel envelope frequency following responses using Hotelling’s T2 analysis
CN105380655A (en) Emotion early-warning method and device of mobile terminal and mobile terminal
Dafna et al. Breathing rate estimation during sleep using audio signal analysis
CA2806710A1 (en) System for electroencephalographic detection of an inadequateness between the state of a patient placed under respiratory assistance and the control of the machine used for this assistance, and use of this detection to adjust the control
WO2024062096A1 (en) Device for detecting an anomaly in the wearing of a respiratory mask
EP3407986B1 (en) Altitude acclimatisation device and method for operating said device
EP4149350A1 (en) Deriving insights into health through analysis of audio data generated by digital stethoscopes
US20230210464A1 (en) Ear-wearable system and method for detecting heat stress, heat stroke and related conditions
US20140371554A1 (en) Method for improved oxygen saturation estimation in the presence of noise
EP3643229A1 (en) Cardiac monitoring apparatus for cardiopulmonary resuscitation with display of maximum or average co2 content
EP4027874B1 (en) Method for determining respiratory rate
CN110033772B (en) Non-acoustic voice information detection device based on PPG signal
CN113907756A (en) Wearable system of physiological data based on multiple modalities
US20240165356A1 (en) Respirator mask with physiological monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773319

Country of ref document: EP

Kind code of ref document: A1