WO2024061286A1 - 音频信号处理方法、装置、电子设备及可读存储介质 - Google Patents

音频信号处理方法、装置、电子设备及可读存储介质 Download PDF

Info

Publication number
WO2024061286A1
WO2024061286A1 PCT/CN2023/120137 CN2023120137W WO2024061286A1 WO 2024061286 A1 WO2024061286 A1 WO 2024061286A1 CN 2023120137 W CN2023120137 W CN 2023120137W WO 2024061286 A1 WO2024061286 A1 WO 2024061286A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
pass filter
audio signal
pass
target
Prior art date
Application number
PCT/CN2023/120137
Other languages
English (en)
French (fr)
Inventor
贺玉梁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024061286A1 publication Critical patent/WO2024061286A1/zh

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis

Definitions

  • This application belongs to the field of audio technology, and specifically relates to an audio signal processing method, device, electronic equipment and readable storage medium.
  • DRC dynamic range control
  • the collected audio signals can be divided into several sub-band information, and dynamic range control can be performed separately. That is, multi-band dynamic range control (MBDRC) technology can be used to control the collected audio signals. Audio signals are processed. Specifically, the above-mentioned process of using MBDRC technology to process the collected audio signals is: first, input the collected audio signals into different band-pass filters to obtain sub-band signals of different frequencies, and then use DRC The technology adjusts the amplitude of each sub-band signal separately, and then combines the processed multiple sub-band signals to obtain a processed audio signal.
  • MBDRC multi-band dynamic range control
  • the quality of the processed audio signal obtained is not high and distortion exists.
  • the purpose of the embodiments of the present application is to provide an audio signal processing method, device, electronic equipment and readable storage medium, which can solve the problem of the processed audio signal obtained after the filter used in the audio signal processing process processes the audio signal.
  • the quality is not high and there are distortion issues.
  • inventions of the present application provide an audio signal processing method.
  • the audio signal processing method includes: acquiring a first audio signal; inputting the first audio signal into a target bandpass filter bank for filtering processing to obtain a second audio signal.
  • Audio signal, the target band-pass filter group includes N first band-pass filters, and the N first band-pass filters are related to each other; perform signal processing on the above-mentioned second audio signal to obtain a third audio signal;
  • the above target bandpass filter group is a linear phase FIR bandpass filter group
  • the first bandpass filter is an even-order filter
  • the above target bandpass filter group is a nonlinear phase IIR bandpass
  • the first bandpass filter is designed according to the order of the first bandpass filter.
  • inventions of the present application provide an audio signal processing device.
  • the device includes: an acquisition module and a processing module; the acquisition module is used to acquire the first audio signal; the processing module is used to input the above-mentioned first audio signal into the target band-pass filter bank for filtering processing to obtain the second audio signal,
  • the above-mentioned target band-pass filter group includes N first band-pass filters, and the N first band-pass filters are related to each other; the above-mentioned processing module is also used to perform signal processing on the above-mentioned second audio signal to obtain the third audio signal.
  • the first band-pass filter is an even-order filter
  • the above-mentioned processing module is also used to perform the above-mentioned target band-pass filtering
  • the filter bank is a nonlinear phase IIR bandpass filter bank
  • the first bandpass filter is designed according to the order of the first bandpass filter.
  • inventions of the present application provide an electronic device.
  • the electronic device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the programs or instructions are processed by the processor.
  • the processor is executed, the steps of the method described in the first aspect are implemented.
  • embodiments of the present application provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the steps of the method described in the first aspect are implemented. .
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect. the method described.
  • embodiments of the present application provide a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the method as described in the first aspect.
  • a first audio signal is obtained; the first audio signal is input into a target bandpass filter group for filtering processing to obtain a second audio signal.
  • the target bandpass filter group includes N first bandpasses. filter, N first band-pass filters are correlated; perform signal processing on the above-mentioned second audio signal to obtain a third audio signal; wherein, the above-mentioned target band-pass filter group is a linear phase FIR band-pass filter
  • the first bandpass filter is an even-order filter; in the case where the above target bandpass filter bank is a nonlinear phase IIR bandpass filter bank, according to the order of the first bandpass filter , design the first bandpass filter.
  • Figure 1 is a schematic flow chart of an audio signal processing method provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an example of a prior art audio signal processing method provided by an embodiment of the present application
  • Figure 3 is one of the schematic flow diagrams of the design of a bandpass filter bank in an audio signal processing method provided by an embodiment of the present application;
  • Figure 4 is an illustration of the design flow of a bandpass filter bank in an audio signal processing method provided by an embodiment of the present application. Intention two;
  • Figure 5 is one example diagram of an audio signal processing method provided by an embodiment of the present application.
  • Figure 6 is a second example diagram of an audio signal processing method provided by an embodiment of the present application.
  • Figure 7 is the third example diagram of an audio signal processing method provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an audio signal processing device provided by an embodiment of the present application.
  • Figure 9 is one of the schematic diagrams of the hardware structure of an electronic device provided by an embodiment of the present application.
  • FIG. 10 is a second schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • the collected audio signal can be divided into several sub-band information, and dynamic range control can be performed respectively. That is, MBDRC technology can be used to process the collected audio signal.
  • MBDRC technology can be used to process the collected audio signal.
  • the above-mentioned process of using MBDRC technology to process the collected audio signals is: first, input the collected audio signals into different band-pass filters to obtain sub-bands of different frequencies. signal, and then use DRC technology to adjust the amplitude of each sub-band signal separately, and then combine the multiple processed sub-band signals to obtain a processed audio signal.
  • the N band-pass filters used in the above audio signal processing process are N independent infinite impulse response (IIR) band-pass filters. Although they have complexity advantages, due to the Each bandpass filter only considers its own center frequency and bandwidth, and is not related to the filter. Due to the perfect reconstruction characteristics of the waveguide group design, the quality of the processed audio signal is not high and it is easy to cause distortion. At the same time, each IIR bandpass filter in MBDRC lacks linear phase characteristics, and the frequency selection characteristics of low-order filters are also poor.
  • IIR infinite impulse response
  • a first audio signal is obtained; and the first audio signal is input into a target band-pass filter group for filtering processing to obtain a second audio signal.
  • the target band-pass filter group includes N first band-pass filter, N first band-pass filters are correlated; perform signal processing on the above-mentioned second audio signal to obtain a third audio signal; wherein, the above-mentioned target band-pass filter group is a linear phase FIR band
  • the first bandpass filter is an even-order filter; in the case of the above target bandpass filter bank being a nonlinear phase IIR bandpass filter bank, according to the order, design the first bandpass filter.
  • the execution subject of the audio signal processing method provided by the embodiment of the present application may be an audio signal processing device, and the audio signal processing device may be an electronic device or a functional module in the electronic device.
  • the audio signal processing method provided by this application will be described below by taking an audio signal processing device as an example.
  • FIG. 1 shows a flow chart of an audio signal processing method provided by an embodiment of the present application.
  • the audio signal processing method provided by the embodiment of the present application may include the following steps 201 to 203.
  • Step 201 Obtain the first audio signal.
  • the above-mentioned first audio signal can be obtained when the electronic device uses the recording function, can also be obtained in real time during the call process of the electronic device, or can be obtained when the electronic device uses the video recording function. There are no restrictions on applications.
  • Step 202 Input the above-mentioned first audio signal into the target band-pass filter bank for filtering processing to obtain a second audio signal.
  • the target bandpass filter group includes N first bandpass filters, where N is a positive integer.
  • the N first bandpass filters included in the above target bandpass filter are correlated with each other.
  • the N first bandpass filters may be linear phase bandpass filters or nonlinear phase bandpass filters.
  • the above linear phase bandpass filter may be a linear phase finite impulse response (Finite Impulse Response, FIR) bandpass filter.
  • FIR Finite Impulse Response
  • the above-mentioned nonlinear phase bandpass filter may be a nonlinear phase IIR bandpass filter.
  • the above-mentioned N first bandpass filter banks satisfy perfect reconstruction conditions.
  • the above-mentioned N first bandpass filter banks satisfy the first formula.
  • N is the number of band-pass filter banks
  • Step 203 Perform signal processing on the second audio signal to obtain a third audio signal.
  • the audio signal processing device performs DRC signal processing on the second audio signal to obtain a third audio signal.
  • the first bandpass filter is an even-order filter.
  • the first bandpass filter is designed according to the order of the first bandpass filter. .
  • a first audio signal is obtained; and the first audio signal is input into a target bandpass filter group for filtering processing to obtain a second audio signal.
  • the target bandpass filter group It includes N first band-pass filters, and the N first band-pass filters are related to each other; performs signal processing on the above-mentioned second audio signal to obtain a third audio signal; wherein, the above-mentioned target band-pass filter group is linear
  • the first bandpass filter is an even-order filter
  • in the case of the above target bandpass filter bank is a nonlinear phase IIR bandpass filter bank, according to the first bandpass The order of the filter, design the first bandpass filter.
  • the process of the above-mentioned step 202 of "inputting the above-mentioned first audio signal into the target band-pass filter bank for filtering processing to obtain the second audio signal" includes the following step 202a:
  • Step 202a According to N preset sub-bands, input the above-obtained first audio signal into the target band-pass filter bank for filtering processing to obtain a second audio signal.
  • N is a positive integer.
  • the second audio signal includes N subband signals corresponding to the N preset subbands, wherein one preset subband corresponds to a first bandpass filter.
  • the N preset subbands may be determined based on M divided frequencies within the frequency band corresponding to the first audio signal.
  • the above-mentioned preset sub-bands may be non-uniform divisions of the entire working frequency band of the first audio signal, or may be uniform divisions.
  • each of the N preset subbands corresponds to a subband signal.
  • the audio signal processing method provided by the embodiment of the present application also includes step 301:
  • Step 301 Determine M division frequencies as passband cutoff frequencies, and design M filter triples.
  • one segmentation frequency corresponds to one filter triplet.
  • the above-mentioned filter triplet includes: low-pass filter, high-pass filter and all-pass filter.
  • the above-mentioned N preset subbands correspond to M division frequencies.
  • the above-mentioned first bandpass filter includes at least one target filter, wherein one target filter corresponds to one filter in a filter triplet.
  • the at least one target filter is at least two target filters
  • at least two filter triples corresponding to the at least two target filters are different.
  • H mL (z) is a low-pass filter
  • H mH (z) is a high-pass filter
  • m is the mth Default subband. That is to say, N filter triples are designed for N preset subbands.
  • the target bandpass filter bank is a linear phase FIR bandpass filter bank.
  • the audio signal processing method provided by the embodiment of the present application further includes the following steps 401 to 403:
  • Step 401 Design an even-order first low-pass filter corresponding to the first division frequency based on the target design method.
  • the M divided frequencies include the first divided frequencies
  • the M filter triples include the first filter triples
  • the first filter triplet comprises: a first low-pass filter, a first all-pass filter and a first high-pass filter.
  • the above target design method may be designed based on the fir1 function in Matlab, which is not limited by this application.
  • the second formula is used to calculate the first low-pass filter of the first filter triplet corresponding to the first division frequency. Group delay.
  • D m is the group delay of the first low-pass filter
  • L m is the order of the first low-pass filter.
  • Step 402 Design a first all-pass filter based on the group delay of the first low-pass filter.
  • the above-mentioned first all-pass filter is
  • Step 403 Design a first high-pass filter based on the above-mentioned first low-pass filter and the above-mentioned first all-pass filter.
  • the above high-pass filter is
  • the filter orders corresponding to the N preset sub-bands are proportional to the sub-band lengths of the N preset sub-bands.
  • the larger the length of the sub-band the higher the filter order that is set, that is, the frequency selection characteristics corresponding to the sub-band are steeper, and the corresponding filter order is larger.
  • step 202 of "inputting the first audio signal into the target bandpass filter bank for filtering to obtain the second audio signal" includes the following steps 202b and 202c:
  • Step 202b Perform series processing on the sub-filters in the target bandpass filter bank.
  • Step 202c Input the above-mentioned first audio signal into the above-mentioned target band-pass filter bank after series processing and perform filtering processing to obtain a second audio signal.
  • the above-mentioned first audio signals are respectively input into the target band-pass filter group, DRC signal processing is performed on each sub-band signal in the preset sub-band corresponding to the sub-filter in the target band-pass filter group, and then the The processed N subband signals are combined to obtain a processed second audio signal.
  • the above target bandpass filter bank is a nonlinear phase IIR bandpass filter bank.
  • the M filter triples include a second filter triple, and the filter order of the second filter triple is an odd number.
  • the audio signal processing method provided by the embodiment of the present application further includes the following steps 501 to 504:
  • Step 501 Design a first auxiliary filter bank based on the Butterworth filter design method.
  • the second filter triplet comprises: a second low-pass filter, a second all-pass filter and a second high-pass filter.
  • the above-mentioned Butterworth filter design method may be to use the butter function in Matlab.
  • the above-mentioned first auxiliary filter group includes a first auxiliary low-pass filter and a first auxiliary high-pass filter.
  • Step 502 Design a second low-pass filter based on the above-mentioned first auxiliary low-pass filter.
  • the second low-pass filter may be designed based on the first auxiliary low-pass filter order.
  • Step 503 Design a second high-pass filter based on the above-mentioned first auxiliary high-pass filter.
  • the second high-pass filter is set based on the third formula and the first auxiliary high-pass filter.
  • Step 504 Design a second all-pass filter based on the above-mentioned second low-pass filter and the above-mentioned second high-pass filter.
  • the second filter triplet is an odd-order filter
  • the order of the second filter triplet is the same as the order of the first auxiliary filter group
  • the second low-pass filter is the above-mentioned third An auxiliary low-pass filter
  • the second high-pass filter is the first auxiliary high-pass filter or the negative first auxiliary high-pass filter.
  • the above-mentioned target bandpass filter group is a nonlinear phase IIR bandpass filter group
  • the above-mentioned M filter triplet groups include a third filter triplet group
  • the third filter triplet group The filter order is an even number.
  • the audio signal processing method provided by the embodiment of the present application further includes the following steps 601 to 604:
  • Step 601 Design a second auxiliary filter bank based on the Butterworth filter design method.
  • the order of the second auxiliary filter bank is an even number
  • the filter order of the third filter triplet is twice the filter order of the second auxiliary filter bank.
  • the second auxiliary filter group includes a second auxiliary low-pass filter and a second auxiliary high-pass filter.
  • Step 602 Design a third low-pass filter based on the above-mentioned second auxiliary low-pass filter.
  • Step 603 Design a third high-pass filter based on the above-mentioned second auxiliary high-pass filter.
  • the third low-pass filter and the third high-pass filter are designed in combination with the fourth formula.
  • Step 604 Design a third all-pass filter based on the above-mentioned third low-pass filter and the above-mentioned third high-pass filter.
  • the above-mentioned third filter triplet includes: a third low-pass filter, a third all-pass filter and a third high-pass filter.
  • the third filter triplet is an even-order filter
  • the second auxiliary filter group is an even-order filter
  • the order of the third filter triplet is the second auxiliary filter group.
  • the third low-pass filter is the square of the second auxiliary low-pass filter
  • the third high-pass filter is the square of the second auxiliary high-pass filter.
  • the above-mentioned target bandpass filter group is a nonlinear phase IIR bandpass filter group
  • the above-mentioned M filter triplet groups include a fourth filter triplet group
  • the fourth filter triplet group The filter order is an even number.
  • the audio signal processing method provided by the embodiment of the present application further includes the following steps 701 to 704:
  • Step 701 Design a third auxiliary filter bank based on the Butterworth filter design method.
  • the order of the third auxiliary filter group is an odd number
  • the filter order of the fourth filter triplet is twice the filter order of the third auxiliary filter group.
  • the third auxiliary filter bank includes a third auxiliary low-pass filter and a third auxiliary high-pass filter.
  • Step 702 Design a fourth low-pass filter based on the above-mentioned third auxiliary low-pass filter.
  • Step 703 Design a fourth high-pass filter based on the above-mentioned third auxiliary high-pass filter.
  • the fourth low pass filter and the fourth high pass filter are designed by formula.
  • Step 704 Design a fourth all-pass filter based on the fourth low-pass filter and the fourth high-pass filter.
  • the above-mentioned fourth filter triplet includes: a fourth low-pass filter, a fourth all-pass filter, and a fourth high-pass filter.
  • the fourth filter triplet is an even-order filter
  • the third auxiliary filter group is an odd-order filter
  • the order of the fourth filter triplet is the third auxiliary filter.
  • the fourth low-pass filter is the square of the third auxiliary low-pass filter
  • the third high-pass filter is the negative square of the third auxiliary high-pass filter.
  • the above-mentioned target filter is a high-pass filter in the target filter triplet.
  • the audio signal processing method provided in the embodiment of the present application further includes the following steps 801:
  • Step 801 Replace the above target filter with the all-pass filter in the above target filter triplet.
  • the above target filter only includes a low-pass filter and an all-pass filter. filter, thereby reducing the complexity of bandpass filter bank design.
  • N first band-pass filters related to each other can be designed to divide the audio signal into N sub-band signals based on the preset sub-bands, and can perform DRC signal processing on the N sub-band signals respectively, so that the obtained The audio quality is higher.
  • FIG. 5 shows the FIR filter design results.
  • the equivalent filter i.e., the above target filter
  • H n (z) of each subband in the FIR filter bank, n 1, 2,..., N
  • the superposition "sum" of all sub-band filters is a pure delay filter, thus satisfying us lossless design requirements.
  • the audio signal processing method provided in the embodiment of the present application can be executed by an audio signal processing device or an electronic device, or a functional module or entity in the electronic device.
  • an audio signal processing device executing the audio signal processing method is taken as an example to illustrate the audio signal processing device provided in the embodiment of the present application.
  • FIG. 8 shows a possible structural diagram of the audio signal processing device involved in the embodiment of the present application.
  • the audio signal processing device 900 may include: an acquisition module 901 and a processing module 902;
  • the acquisition module 901 is used to acquire the first audio signal;
  • the processing module 902 is used to input the first audio signal into a target band-pass filter group for filtering processing to obtain a second audio signal.
  • the target band-pass filter group includes The N first band-pass filters are related to each other; the above-mentioned processing module 902 is also used to perform signal processing on the above-mentioned second audio signal to obtain a third audio signal; wherein, in the above-mentioned target When the band-pass filter bank is a linear phase FIR band-pass filter bank, the above-mentioned first band-pass filter is an even-order filter; the above-mentioned processing module 902 is also used when the above-mentioned target band-pass filter bank is non-linear. In the case of a phase IIR bandpass filter bank, the first bandpass filter is designed according to the order of the first bandpass filter.
  • the above-mentioned processing module 902 is specifically configured to input the above-mentioned first audio signal into a target band-pass filter bank for filtering processing according to N preset sub-bands to obtain a second audio signal;
  • the second audio signal includes N sub-band signals corresponding to the above-mentioned N preset sub-bands, and one preset sub-band corresponds to one first band-pass filter.
  • the above-mentioned processing module 902 is also used to determine M division frequencies as passband cutoff frequencies, and design M filter triples, with one division frequency corresponding to one filter triple.
  • the filter triplet includes: a low-pass filter, a high-pass filter and an all-pass filter; the above-mentioned first bandpass filter includes at least one target filter, and one of the above-mentioned target filters corresponds to one filter triplet.
  • a filter wherein, in the case where the at least one target filter is at least two target filters, at least two filter triples corresponding to the at least two target filters are different.
  • the above-mentioned processing module 902 is also used to: design an even-order first low-pass filter corresponding to the first division frequency based on the target design method; according to the group of the above-mentioned first low-pass filter time delay, design a first all-pass filter; design a first high-pass filter based on the above-mentioned first low-pass filter and the above-mentioned first all-pass filter; wherein, the above-mentioned M divided frequencies include the above-mentioned first frequency, and the above-mentioned M
  • the first filter triplet includes a first filter triplet, and the first filter triplet includes: the above-mentioned first low-pass filter, the above-mentioned first all-pass filter, and the above-mentioned first high-pass filter.
  • the above-mentioned processing module 902 is specifically configured to: perform series processing on the sub-filters in the target bandpass filter group; input the above-mentioned first audio signal into the above-mentioned target band after series processing. Perform filtering processing through the filter bank to obtain the second audio signal.
  • the above-mentioned processing module 902 is also used to: design a first auxiliary filter group based on the Butterworth filter design method, the above-mentioned first auxiliary filter group includes a first auxiliary low-pass filter and a first auxiliary high-pass filter; according to the above-mentioned first auxiliary low-pass filter, design a second low-pass filter; according to the above-mentioned first auxiliary high-pass filter, design a second high-pass filter; according to the above-mentioned second low-pass filter and the above-mentioned second high-pass filter, and design a second all-pass filter; wherein the above-mentioned second filter triplet includes: the above-mentioned second low-pass filter, the above-mentioned second all-pass filter and the above-mentioned second high-pass filter filter; the second filter triplet above is odd A multi-order filter, the order of the above-mentioned second filter triplet is the same as
  • the above-mentioned processing module 902 is also used to: design a second auxiliary filter group based on the Butterworth filter design method, the above-mentioned second auxiliary filter group includes a second auxiliary low-pass filter and a second auxiliary high-pass filter; according to the above-mentioned second auxiliary low-pass filter, design a third low-pass filter; according to the above-mentioned second auxiliary high-pass filter, design a third high-pass filter; according to the above-mentioned third low-pass filter and the above-mentioned third high-pass filter, and design a third all-pass filter; wherein the above-mentioned third filter triplet includes: the above-mentioned third low-pass filter, the above-mentioned third all-pass filter and the above-mentioned third high-pass filter.
  • the above-mentioned third filter triplet is an even-order filter
  • the above-mentioned second auxiliary filter group is an even-
  • the above-mentioned processing module 902 is also used to: design a third auxiliary filter group based on the Butterworth filter design method.
  • the above-mentioned third auxiliary filter group includes a third auxiliary low-pass filter.
  • the above-mentioned fourth filter triplet includes: the above-mentioned fourth low-pass filter, the above-mentioned fourth all-pass filter and the above-mentioned fourth high-pass filter.
  • the above-mentioned fourth filter triplet is an even-order filter, the above-mentioned third auxiliary filter group is an odd-order filter, and the order of the above-mentioned fourth filter triplet is the order of the above-mentioned third auxiliary filter group. twice the number, the fourth low-pass filter is the square of the third auxiliary low-pass filter, and the third high-pass filter is
  • the above-mentioned processing module 902 is also configured to replace the above-mentioned target filter with the above-mentioned target filter when the above-mentioned target filter is a high-pass filter in the target filter triplet. All-pass filter in a triplet of filters.
  • a first audio signal is acquired; and the first audio signal is input into a target bandpass filter bank for filtering processing to obtain a second audio signal.
  • the target bandpass filter bank It includes N first band-pass filters, and the N first band-pass filters are related to each other; performs signal processing on the above-mentioned second audio signal to obtain a third audio signal; wherein, the above-mentioned target band-pass filter group is linear
  • the first bandpass filter is an even-order filter
  • in the case of the above target bandpass filter bank is a nonlinear phase IIR bandpass filter bank, according to the first bandpass The order of the filter, design the first bandpass filter.
  • the audio signal processing device in the embodiment of the present application may be an electronic device or a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a mobile internet device (Mobile Internet Device, MID), or augmented reality (AR)/virtual reality (VR).
  • the audio signal processing device in the embodiment of the present application may be a device with an operating system.
  • the operating system can be an Android operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of this application.
  • the audio signal processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 8. To avoid repetition, the details will not be described here.
  • this embodiment of the present application also provides an electronic device 1100, including a processor 1101 and a memory 1102.
  • the memory 1102 stores programs or instructions that can be run on the processor 1101.
  • the program or instruction is executed by the processor 1101, each step of the above audio signal processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 10 is a schematic diagram of the hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 100 includes but is not limited to: radio frequency unit 101, network module 102, audio output unit 103, input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, etc. part.
  • the electronic device 100 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 110 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the electronic device shown in Figure 10 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here. .
  • the processor 110 is used to obtain the first audio signal; the processor 110 is used to input the first audio signal into a target band-pass filter bank for filtering processing to obtain a second audio signal.
  • the target band-pass filter group package Including N first band-pass filters, and the N first band-pass filters are correlated; the above-mentioned processor 110 is also used to perform signal processing on the above-mentioned second audio signal to obtain a third audio signal; wherein, in the above-mentioned
  • the target band-pass filter bank is a linear phase FIR band-pass filter bank, the first band-pass filter is an even-order filter; the processor 110 is also used when the target band-pass filter bank is a non- In the case of a linear phase IIR bandpass filter bank, the first bandpass filter is designed according to the order of the first bandpass filter.
  • the above-mentioned processor 110 is specifically configured to input the above-mentioned first audio signal into a target band-pass filter bank for filtering processing according to N preset sub-bands to obtain a second audio signal;
  • the second audio signal includes N sub-band signals corresponding to the above-mentioned N preset sub-bands, and one preset sub-band corresponds to one first band-pass filter.
  • the above-mentioned processor 110 is also used to determine M division frequencies as passband cutoff frequencies, and design M filter triples, with one division frequency corresponding to one filter triple.
  • the filter triplet includes: a low-pass filter, a high-pass filter and an all-pass filter;
  • the above-mentioned first bandpass filter includes at least one target filter, and one of the above-mentioned target filters corresponds to one filter triplet.
  • a filter wherein, in the case where the at least one target filter is at least two target filters, at least two filter triples corresponding to the at least two target filters are different.
  • the above-mentioned processor 110 is also used to: design an even-order first low-pass filter corresponding to the first division frequency based on the target design method; according to the group of the above-mentioned first low-pass filter time delay, design a first all-pass filter; design a first high-pass filter based on the above-mentioned first low-pass filter and the above-mentioned first all-pass filter; wherein, the above-mentioned M divided frequencies include the above-mentioned first frequency, the above-mentioned M
  • the first filter triplet includes a first filter triplet, and the first filter triplet includes: the above-mentioned first low-pass filter, the above-mentioned first all-pass filter, and the above-mentioned first high-pass filter.
  • the above-mentioned processor 110 is specifically configured to: perform series processing on the sub-filters in the target bandpass filter group; and input the above-mentioned first audio signal into the above-mentioned target band after series processing. Perform filtering processing through the filter bank to obtain the second audio signal.
  • the above-mentioned processor 110 is also used to: design a first auxiliary filter group based on the Butterworth filter design method, the above-mentioned first auxiliary filter group includes a first auxiliary low-pass filter and a first auxiliary high-pass filter; according to the above-mentioned first auxiliary low-pass filter, design a second low-pass filter; according to the above-mentioned first auxiliary high-pass filter, design a second high-pass filter; according to the above-mentioned second low-pass filter and the above-mentioned second high-pass filter, and design a second all-pass filter; wherein the above-mentioned second filter triplet includes: the above-mentioned second low-pass filter, the above-mentioned second all-pass filter and the above-mentioned second high-pass filter.
  • the above-mentioned second filter triplet is an odd-order filter, the order of the above-mentioned second filter triplet is the same as
  • the above-mentioned processor 110 is also used to: design a second auxiliary filter bank based on the Butterworth filter design method, the above-mentioned second auxiliary filter bank includes a second auxiliary low-pass filter and a second auxiliary high-pass filter; according to the above-mentioned second auxiliary low-pass filter, design a third low-pass filter; according to the above-mentioned second auxiliary high-pass filter, design a third high-pass filter; according to the above-mentioned third low-pass filter and the above-mentioned third high-pass filter to design a third all-pass filter; wherein the above-mentioned third filter triplet includes: the above-mentioned third low-pass filter, the above-mentioned third all-pass filter and the above-mentioned third high-pass filter
  • the above-mentioned third filter triplet is an even-order filter
  • the above-mentioned second auxiliary filter group is an even-order filter
  • the above-mentioned processor 110 is also used to: design a third auxiliary filter group based on the Butterworth filter design method, the above-mentioned third auxiliary filter group includes a third auxiliary low-pass filter and a third auxiliary high-pass filter; according to the above-mentioned third auxiliary low-pass filter, a fourth low-pass filter is designed; according to the above-mentioned third auxiliary high-pass filter, a fourth high-pass filter is designed; according to the above-mentioned fourth low-pass filter and the above-mentioned fourth high-pass filter to design a fourth all-pass filter; wherein the above-mentioned fourth filter triplet includes: the above-mentioned fourth low-pass filter, the above-mentioned fourth all-pass filter and the above-mentioned fourth high-pass filter
  • the above-mentioned fourth filter triplet is an even-order filter, the above-mentioned third auxiliary filter group is an odd-order
  • the above-mentioned processor 110 is also configured to replace the above-mentioned target filter with the above-mentioned target filter when the above-mentioned target filter is a high-pass filter in the target filter triplet. All-pass filter in a triplet of filters.
  • a first audio signal is acquired; and the first audio signal is input into a target bandpass filter group for filtering processing to obtain a second audio signal.
  • the target bandpass filter group includes N Correlation between N first bandpass filters and N first bandpass filters; perform signal processing on the above-mentioned second audio signal to obtain a third audio signal; wherein, the above-mentioned target bandpass filter group is a linear phase FIR
  • the first band-pass filter is an even-order filter
  • in the case of the above-mentioned target band-pass filter bank is a nonlinear phase IIR band-pass filter bank, according to the first band-pass filter order, design the first bandpass filter.
  • the input unit 104 may include a graphics processor (Graphics processor).
  • GPU Graphics processor
  • the graphics processor 1041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and at least one of other input devices 1072 .
  • Touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • Memory 109 may be used to store software programs as well as various data.
  • the memory 109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 109 may include volatile memory or nonvolatile memory, or memory 109 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory
  • the processor 110 may include one or more processing units; optionally, the processor 110 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 110 .
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the audio signal processing method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement each process of the above audio signal processing method embodiment, and can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • Embodiments of the present application provide a computer program product.
  • the program product is stored in a storage medium.
  • the program product is executed by at least one processor to implement each process of the above audio signal processing method embodiment, and can achieve the same technology. The effect will not be described here to avoid repetition.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

本申请公开了一种音频信号处理方法、装置、电子设备及可读存储介质,属于音频技术领域。该方法包括:获取第一音频信号;将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个所述第一带通滤波器之间相关;对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计所述第一带通滤波器。

Description

音频信号处理方法、装置、电子设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年09月23日在中国提交的申请号为202211170641.2的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于音频技术领域,具体涉及一种音频信号处理方法、装置、电子设备及可读存储介质。
背景技术
目前,在通话、录音以及录像等音频信号收录过程中,可以通过对采集到的音频信号进行音频处理,以提升采集到的音频信号的信号质量。其中,动态范围控制(Dynamic range control,DRC)广泛应用于音频信号处理领域,是一种信号幅度调节方式,可以使声音听起来更柔和/或更响亮。
在相关技术中,可以将采集到的音频信号划分为若干子带信息,分别地进行动态范围控制,即可以采用多带动态范围控制(Multi-band Dynamic Range Control,MBDRC)技术来对采集到的音频信号进行处理。具体地,上述采用MBDRC技术来对采集到的音频信号进行处理的过程为:首先,将采集到的音频信号输入到不同的带通滤波器中,得到不同频率的子带信号,然后,采用DRC技术分别调整每个子带信号的振幅,然后,将处理后的多个子带信号进行组合,得到处理后的音频信号。
然而,上述音频信号处理过程中所使用滤波器对音频信号进行处理后,所得到处理后的音频信号质量不高,存在失真。
发明内容
本申请实施例的目的是提供一种音频信号处理方法、装置、电子设备及可读存储介质,能够解决音频信号处理过程中所使用滤波器对音频信号进行处理后,所得到处理后的音频信号质量不高,存在失真的问题。
第一方面,本申请实施例提供了一种音频信号处理方法,该音频信号处理方法包括:获取第一音频信号;将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个所述第一带通滤波器之间相关;对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计所述第一带通滤波器。
第二方面,本申请实施例提供了一种音频信号处理装置,该音频信号处理。装置包括:获取模块和处理模块;该获取模块,用于获取第一音频信号;该处理模块,用于将上述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,上述目标带通滤波器组包括N个第一带通滤波器,N个第一带通滤波器之间相关;上述处理模块,还用于对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;上述处理模块,还用于在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计第一带通滤波器。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法。
在本申请实施例中,获取第一音频信号;将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个所述第一带通滤波器之间相关;对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计所述第一带通滤波器。如此,由于本申请实施例中目标带通滤波器中的N组第一带通滤波器组间是相关的,而非独立的,从而得到信号质量更高的音频信号质量,有效减小音频信号在处理过程中音质的损失。
附图说明
图1是本申请实施例提供的一种音频信号处理方法的流程示意图;
图2是本申请实施例提供的一种现有技术音频信号处理方法实例示意图;
图3是本申请实施例提供的一种音频信号处理方法中带通滤波器组的设计流程示意图之一;
图4是本申请实施例提供的一种音频信号处理方法中带通滤波器组的设计流程示 意图之二;
图5是本申请实施例提供的一种音频信号处理方法的示例图之一;
图6是本申请实施例提供的一种音频信号处理方法的示例图之二;
图7是本申请实施例提供的一种音频信号处理方法的示例图之三;
图8是本申请实施例提供的一种音频信号处理装置的结构示意图;
图9是本申请实施例提供的一种电子设备的硬件结构示意图之一;
图10是本申请实施例提供的一种电子设备的硬件结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的音频信号处理方法、装置、电子设备及可读存储介质进行详细地说明。
目前,在通话、录音以及录像等音频信号收录过程中,可以通过对采集到的音频信号进行音频处理,以提升采集到的音频信号的信号质量。其中,DRC广泛应用于音频信号处理领域,是一种信号幅度调节方式,可以使声音听起来更柔或更响亮。
在相关技术中,可以将采集到的音频信号划分为若干子带信息,分别地进行动态范围控制,即可以采用MBDRC技术来对采集到的音频信号进行处理。具体地,如图2所示,上述采用MBDRC技术来对采集到的音频信号进行处理的过程为:首先,将采集到的音频信号输入到不同的带通滤波器中,得到不同频率的子带信号,然后,采用DRC技术分别调整每个子带信号的振幅,然后,将处理后的多个子带信号进行组合,得到处理后的音频信号。
然而,上述音频信号处理过程中所使用的N个带通滤波器为N个独立的无限长冲激响应(Infinite Impulse Response,IIR)带通滤波器,虽然具有复杂度优势,但是由于MBDRC中的各带通滤波器只考虑自身的中心频率和带宽,并无关联,没有考虑滤 波器组设计的完美重构特性,因此,导致经处理后的音频信号质量不高,容易造成失真现象。同时,MBDRC中的各IIR带通滤波器缺乏线性相位特性,低阶滤波器的频率选择特性也较差。
而在本申请实施例中,获取第一音频信号;并将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个所述第一带通滤波器之间相关;对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计所述第一带通滤波器。如此,由于本申请实施例中目标带通滤波器中的N组第一带通滤波器组间是相关的,而非独立的,从而得到信号质量更高的音频信号质量,有效减小音频信号在处理过程中音质的损失。
本申请实施例提供的音频信号处理方法的执行主体可以为音频信号处理装置,该音频信号处理装置可以为电子设备,也可以为该电子设备中的功能模块。
以下将以音频信号处理装置为例对本申请提供的音频信号处理方法进行说明。
本申请实施例提供一种音频信号处理方法,图1示出了本申请实施例提供的一种音频信号处理方法的流程图。如图1所示,本申请实施例提供的音频信号处理方法可以包括下述的步骤201至步骤203。
步骤201、获取第一音频信号。
在本申请实施例中,上述第一音频信号可以是电子设备使用录音功能时获取的,也可以是在电子设备进行通话过程中实时获取的,也可以是电子设备使用录像功能时获取的,本申请不作限制。
步骤202、将上述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号。
在本申请实施例中,上述目标带通滤波器组包括N个第一带通滤波器,其中,N为正整数。
在本申请实施例中,上述目标带通滤波器中所包括的N个第一带通滤波器之间相关。
在本申请实施例中,上述N个第一带通滤波器可以为线性相位带通滤波器,也可以为非线性相位带通滤波器。
示例性地,上述线性相位带通滤波器可以为线性相位有限长冲激响应(Finite Impulse Response,FIR)带通滤波器。
示例性地,上述非线性相位带通滤波器可以为非线性相位IIR带通滤波器。
在本申请实施例中,上述N个第一带通滤波器组满足完美重构条件。
示例性地,上述N个第一带通滤波器组满足第一公式。
示例性地,上述第一公式为:
其中,N为带通滤波器组的数目;
Hn(z),n=1,2,...,N是为相应子带的滤波器频率响应;
为全通滤波器。
示例性地,在FIR设计下,是一纯时延滤波器;在IIR设计下,通常是一非纯时延滤波器。
步骤203、对上述第二音频信号进行信号处理,得到第三音频信号。
在本申请实施例中,音频信号处理装置对上述第二音频信号进行DRC信号处理,得到第三音频信号。
在一种可能的实施例中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器。
在另一种可能的实施例中,在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计第一带通滤波器。
在本申请实施例提供的音频信号处理方法中,获取第一音频信号;并将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个第一带通滤波器之间相关;对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计第一带通滤波器。如此,由于本申请实施例中目标带通滤波器中的N组第一带通滤波器组间是相关的,而非独立的,从而得到信号质量更高的音频信号质量,有效减小音频信号在处理过程中音质的损失。
可选地,在本申请实施例中,上述步骤202“将上述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号”的过程中,包括以下步骤202a:
步骤202a、按照N个预设子带,将上述获取到的第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号。
其中,N为正整数。
示例性地,上述第二音频信号包括上述N个预设子带对应的N个子带信号,其中,一个预设子带与一个第一带通滤波器对应。
示例性地,上述N个预设子带可以是:基于第一音频信号对应的频段内的M个分割频率确定的。
示例性地,上述预设子带可以是将整个第一音频信号的工作频带非均匀分割,也可以是均匀分割的。
示例性地,上述N个预设子带中的每个预设子带对应一个子带信号。
可选地,在本申请实施例中,上述步骤202a“按照N个预设子带,将上述获取到的第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号”之前,本申请实施例提供的音频信号处理方法还包括步骤301:
步骤301、将M个分割频率确定为通带截止频率,设计M个滤波器三元组。
示例性地,一个分割频率对应一个滤波器三元组。
示例性地,上述滤波器三元组包括:低通滤波器、高通滤波器和全通滤波器。
示例性地,上述N个预设子带对应M个分割频率。其中,M=N-1,换句话说,分割频率的数量比预设子带的数量少一个。
示例性地,上述第一带通滤波器包括至少一个目标滤波器,其中,一个目标滤波器对应一个滤波器三元组中的一个滤波器。
示例性地,在上述至少一个目标滤波器为至少两个目标滤波器的情况下,上述至少两个目标滤波器对应的至少两个滤波器三元组不同。
举例说明,可以为每个预设子带设计一个滤波器三元组(HmL(z),HmH(z),HmAP(z)),m=1,2,...,N。其中HmL(z)是低通滤波器,HmH(z)是高通滤波器,HmAP(z)=HmL(z)+HmH(z)是全通滤波器,m为第m个预设子带。也就是说,为N个预设子带设计N个滤波器三元组。
以下以五种可能的实施例为例,对设计本申请提供的音频信号处理方法的目标带通滤波器组进行说明。
在一些可能的实施例中:
在本申请实施例中,目标带通滤波器组为线性相位FIR带通滤波器组。
可选地,在本申请实施例中,本申请实施例提供的音频信号处理方法还包括以下步骤401至步骤403:
步骤401、基于目标设计方式设计第一分割频率对应的偶数阶第一低通滤波器。
示例性地,上述M个分割频率包括第一分割频率,上述M个滤波器三元组包括第一滤波器三元组。
示例性地,上述第一滤波器三元组包括:第一低通滤波器、第一全通滤波器和第一高通滤波器。
示例性地,上述目标设计方式可以是基于Matlab中的fir1函数设计,本申请不作限制。
示例性地,基于第一分割频率对应的偶数阶第一低通滤波器的阶数,利用第二公式计算该第一分割频率对应的第一滤波器三元组的第一低通滤波器的群时延。
示例性地,上述第二公式为Dm=Lm/2。
其中,Dm为第一低通滤波器的群时延;
Lm为第一低通滤波器的阶数。
步骤402、根据上述第一低通滤波器的群时延,设计第一全通滤波器。
示例性地,上述第一全通滤波器为
步骤403、根据上述第一低通滤波器和上述第一全通滤波器,设计第一高通滤波器。
示例性地,上述高通滤波器为
举例说明,首先,设计低通滤波器HmL(z),m=1,2,...,N,具体地,根据低通滤波器的阶数Lm(该阶数为偶数阶)设计,接着通过公式Dm=Lm/2计算出低通滤波器的群时延,并基于该群时延得到相应的全通滤波器最后,得出高通滤波器HmH(z)=HmAP(z)-HmL(z)。例如,假设N为4,其对应4个带通滤波器组的设计过程,可以参照图3所示的设计流程来实现。
应注意的是,上述N个预设子带对应的滤波器阶数与N个预设子带的子带长度成正比。换句话说,子带长度越大对应设置的滤波器阶数越高,即子带对应的频率选择特性越陡峭,与之相对应的滤波器阶数越大。反之,子带长度越小对应设置的滤波器阶数越低。
可选地,在本申请实施例中,在目标带通滤波器组为线性相位FIR带通滤波器组的情况下,上述步骤202“将上述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号”的过程中,包括以下步骤202b和步骤202c:
步骤202b、对目标带通滤波器组中的子滤波器进行串联处理。
步骤202c、将上述第一音频信号输入串联处理后的上述目标带通滤波器组进行滤波处理,得到第二音频信号。
示例性地,将上述第一音频信号分别输入目标带通滤波器组,根据目标带通滤波器组中子滤波器对应的预设子带中的每个子带信号分别进行DRC信号处理,然后将处理后的N个子带信号进行组合,得到处理后的第二音频信号。
在一些可能的实施例中:
在本申请实施例中,上述目标带通滤波器组为非线性相位IIR带通滤波器组,上 述M个滤波器三元组包括第二滤波器三元组,且第二滤波器三元组的滤波器阶数为奇数。
可选地,在本申请实施例中,本申请实施例提供的音频信号处理方法还包括以下步骤501至步骤504:
步骤501、基于巴特沃斯滤波器设计方式设计第一辅助滤波器组。
示例性地,上述第二滤波器三元组包括:第二低通滤波器、第二全通滤波器和第二高通滤波器。
示例性地,上述巴特沃斯滤波器设计方式可以是利用Matlab中的butter函数。
示例性地,上述第一辅助滤波器组包括第一辅助低通滤波器和第一辅助高通滤波器。
步骤502、根据上述第一辅助低通滤波器,设计第二低通滤波器。
示例性地,在上述第二滤波器三元组的滤波器阶数为奇数的情况下,由于第一辅助低通滤波器阶数与第二滤波器三元组的滤波器阶数相同,因此可以基于第一辅助低通滤波器阶数设计第二低通滤波器。
步骤503、根据上述第一辅助高通滤波器,设计第二高通滤波器。
示例性地,在上述第二滤波器三元组的滤波器阶数为奇数的情况下,基于第三公式以及第一辅助高通滤波器设置第二高通滤波器。
示例性地,第三公式为HmH(z)=±H′mH(z),HmL(z)=H′mL(z)。
步骤504、根据上述第二低通滤波器和上述第二高通滤波器,设计第二全通滤波器。
示例性地,在设置好第二低通滤波器和第二高通滤波器后,可以基于该低通滤波器和高通滤波器确定全通滤波器。例如,HmAP(z)=HmL(z)+HmH(z)。
需要说明的是,第二滤波器三元组为奇数阶滤波器,该第二滤波器三元组的阶数与第一辅助滤波器组的阶数相同,第二低通滤波器为上述第一辅助低通滤波器,上述第二高通滤波器为上述第一辅助高通滤波器或者负的上述第一辅助高通滤波器。
在一些可能的实施例中:
在本申请实施例中,上述目标带通滤波器组为非线性相位IIR带通滤波器组,上述M个滤波器三元组包括第三滤波器三元组,且第三滤波器三元组的滤波器阶数为偶数。
可选地,在本申请实施例中,本申请实施例提供的音频信号处理方法还包括以下步骤601至步骤604:
步骤601、基于巴特沃斯滤波器设计方式设计第二辅助滤波器组。
示例性地,第二辅助滤波器组阶数为偶数,且第三滤波器三元组的滤波器阶数为第二辅助滤波器组的滤波器阶数的二倍。
示例性地,上述第二辅助滤波器组包括第二辅助低通滤波器和第二辅助高通滤波器。
步骤602、根据上述第二辅助低通滤波器,设计第三低通滤波器。
步骤603、根据上述第二辅助高通滤波器,设计第三高通滤波器。
示例性地,基于上述第二辅助低通滤波器和第二辅助高通滤波器阶数,结合第四公式设计第三低通滤波器和第三高通滤波器。
示例性地,第四公式为HmL(z)=H′mL(z)2,HmH(z)=H′mH(z)2
步骤604、根据上述第三低通滤波器和上述第三高通滤波器,设计第三全通滤波器。
示例性地,在设置好第三低通滤波器和第三高通滤波器后,可以基于该低通滤波器和高通滤波器确定全通滤波器。例如,HmAP(z)=HmL(z)+HmH(z)。
示例性地,上述第三滤波器三元组包括:第三低通滤波器、第三全通滤波器和第三高通滤波器。
一种示例中,第三滤波器三元组为偶数阶滤波器,上述第二辅助滤波器组为偶数阶滤波器,上述第三滤波器三元组的阶数为上述第二辅助滤波器组的阶数的二倍,上述第三低通滤波器为上述第二辅助低通滤波器的平方,上述第三高通滤波器为上述第二辅助高通滤波器的平方。
在一些可能的实施例中:
在本申请实施例中,上述目标带通滤波器组为非线性相位IIR带通滤波器组,上述M个滤波器三元组包括第四滤波器三元组,且第四滤波器三元组的滤波器阶数为偶数。
可选地,在本申请实施例中,本申请实施例提供的音频信号处理方法还包括以下步骤701至步骤704:
步骤701、基于巴特沃斯滤波器设计方式设计第三辅助滤波器组。
示例性地,第三辅助滤波器组阶数为奇数,且第四滤波器三元组的滤波器阶数为第三辅助滤波器组的滤波器阶数的二倍。
示例性地,第三辅助滤波器组包括第三辅助低通滤波器和第三辅助高通滤波器。
步骤702、根据上述第三辅助低通滤波器,设计第四低通滤波器。
步骤703、根据上述第三辅助高通滤波器,设计第四高通滤波器。
示例性地,基于上述第三辅助低通滤波器和第三辅助高通滤波器阶数,结合第五 公式设计第四低通滤波器和第四高通滤波器。
示例性地,第五公式为HmL(z)=H′mL(z)2,HmH(z)=-H′mH(z)2
步骤704、根据上述第四低通滤波器和上述第四高通滤波器,设计第四全通滤波器。
示例性地,在设置好第四低通滤波器和第四高通滤波器后,可以基于该低通滤波器和高通滤波器确定全通滤波器。例如,HmAP(z)=HmL(z)+HmH(z)。
示例性地,上述第四滤波器三元组包括:第四低通滤波器、第四全通滤波器和第四高通滤波器。
一种示例中,上述第四滤波器三元组为偶数阶滤波器,上述第三辅助滤波器组为奇数阶滤波器,上述第四滤波器三元组的阶数为上述第三辅助滤波器组的阶数的二倍,上述第四低通滤波器为上述第三辅助低通滤波器的平方,上述第三高通滤波器为负的上述第三辅助高通滤波器平方。
举例说明,设计辅助的非线性相位IIR低通和高通滤波器(H′mL(z),H′mH(z)),m=1,2,...,M,采用巴特沃斯滤波器设计方法(如利用Matlab中的butter函数),阶数可以是奇数或偶数。由于同一截止频率的巴特沃斯低通和高通滤波器具有功率互补特性,即当初始滤波器阶数为Lm时,若 那么|A′mL(ω)|2+|A′mH(ω)|2=1。所以经过理论分析可知,当L′m为偶数时(即上述第二辅助滤波器组的滤波器阶数),H′mL(z)2+H′mH(z)2是一全通滤波器,因而可以取HmL(z)=H′mL(z)2,HmH(z)=H′mH(z)2分别构成偶数阶Lm=2L′m(即上述第三滤波器三元组的滤波器阶数)滤波器;当L′m为奇数时(即上述第三辅助滤波器组的滤波器阶数),H′mL(z)2-H′mH(z)2是一全通滤波器,因而可以取HmL(z)=H′mL(z)2,HmH(z)=-H′mH(z)2分别构成偶数阶Lm=2L′m滤波器(即上述第四滤波器三元组的滤波器阶数);同时,L′m为奇数时(即上述第一辅助滤波器组的滤波器阶数),H′mL(z)±H′mH(z)是一全通滤波器,因而可以取HmL(z)=H′mL(z),HmH(z)=±H′mH(z)分别构成奇数阶Lm=L′m滤波器(即上述第二滤波器三元组的滤波器阶数)。例如,假设N为4,其对应4个带通滤波器组的设计过程,可以参照图3所示的设计流程来实现。
在一些可能的实施例中:
在本申请实施例中,上述目标滤波器为目标滤波器三元组中的高通滤波器。
可选地,在本申请实施例中,本申请实施例提供的音频信号处理方法还包括以下步骤801:
步骤801、将上述目标滤波器替换为上述目标滤波器三元组中的全通滤波器。
也就是说,参考图4,在本实施例中,上述目标滤波器仅包括低通滤波器和全通 滤波器,从而降低带通滤波器组设计时的复杂度。
如此,可以设计出相互关联的N个第一带通滤波器基于预设子带,来将音频信号分割成N个子带信号,并能分别对N个子带信号进行DRC信号处理,从而使得得到的音频质量更高。
以下以音频信号的工作频带在24kHz内为例举例说明。设定MBDRC的分解子带数,以及分割频率:1kHz,2kHz,5kHz,10kHz。
一种可能实施例中,以FIR型实现,其总阶数L≤1024-“帧移长度”,以便能利用1024点FFT的快速算法实现。图5为FIR滤波器设计结果。基于图5的示例结果,FIR滤波器组中每个子带的等效滤波器(即上述目标滤波器)Hn(z),n=1,2,...,N具有较为陡峭的频率选择特性,若忽略相位谱的π翻转,则所有相位谱曲线是完全重合的,具有完全相同的常数群时延,所有子带滤波器的叠加“sum”是一纯时延滤波器,因而满足我们的无损设计需求。
一种可能实施例中,以IIR型实现,M个低通滤波器的阶数为Lm=3,m=1,2,...,M和Lm=4,图6为奇数阶Lm=3的IIR滤波器组设计结果;图7为偶数阶Lm=4的IIR滤波器组设计结果。
如图6和图7所示,相比FIR设计,IIR每个子带的等效滤波器的频率选择特性变差,也失去了线性相位特性,但优势是可以比FIR型更低的复杂度实现,尤其是图4的间接型实现结构进一步降低了复杂度。此外可以看到,相邻阶的IIR滤波器组实现中,奇数阶的频率选择特性优于偶数阶的,但相位谱的一致性劣于偶数阶的。这两者均实现了我们的无损滤波器组设计需求(忽略相位谱变化)。
如此可知:在音频的非均匀多带分解和综合(无损)处理效果上,“本申请实施例FIR滤波器组”>“本申请实施例IIR滤波器组”>“独立设计若干IIR带通滤波器”;而通常在复杂度上,是一个相反的顺序。因而在实际应用中存在一个高保真和复杂度间的权衡问题。
需要说明的是,不管是FIR型还是IIR型的设计过程也都支持奇偶混合阶数的设定。
需要说明的是,本申请实施例提供的音频信号处理方法,执行主体可以为音频信号处理装置,或者电子设备,还可以为电子设备中的功能模块或实体。本申请实施例中以音频信号处理装置执行音频信号处理方法为例,说明本申请实施例提供的音频信号处理装置。
图8示出了本申请实施例中涉及的音频信号处理装置的一种可能的结构示意图。如图8所示,该音频信号处理装置900可以包括:获取模块901和处理模块902;该 获取模块901,用于获取第一音频信号;该处理模块902,用于将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个第一带通滤波器之间相关;上述处理模块902,还用于对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,上述第一带通滤波器为偶数阶滤波器;上述处理模块902,还用于在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据上述第一带通滤波器的阶数,设计第一带通滤波器。
可选地,在本申请实施例中,上述处理模块902,具体用于按照N个预设子带,将上述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号;其中,第二音频信号包括上述N个预设子带对应的N个子带信号,一个预设子带与一个第一带通滤波器对应。
可选地,在本申请实施例中,上述处理模块902,还用于将M个分割频率确定为通带截止频率,设计M个滤波器三元组,一个分割频率对应一个滤波器三元组,该滤波器三元组包括:低通滤波器、高通滤波器和全通滤波器;上述第一带通滤波器包括至少一个目标滤波器,一个上述目标滤波器对应一个滤波器三元组中的一个滤波器;其中,在上述至少一个目标滤波器为至少两个目标滤波器的情况下,上述至少两个目标滤波器对应的至少两个滤波器三元组不同。
可选地,在本申请实施例中,上述处理模块902,还用于:基于目标设计方式设计第一分割频率对应的偶数阶第一低通滤波器;根据上述第一低通滤波器的群时延,设计第一全通滤波器;根据上述第一低通滤波器和上述第一全通滤波器,设计第一高通滤波器;其中,上述M个分割频率包括上述第一频率,上述M个滤波器三元组包括第一滤波器三元组,该第一滤波器三元组包括:上述第一低通滤波器、上述第一全通滤波器和上述第一高通滤波器。
可选地,在本申请实施例中,上述处理模块902,具体用于:对目标带通滤波器组中的子滤波器进行串联处理;将上述第一音频信号输入串联处理后的上述目标带通滤波器组进行滤波处理,得到第二音频信号。
可选地,在本申请实施例中,上述处理模块902,还用于:基于巴特沃斯滤波器设计方式设计第一辅助滤波器组,上述第一辅助滤波器组包括第一辅助低通滤波器和第一辅助高通滤波器;根据上述第一辅助低通滤波器,设计第二低通滤波器;根据上述第一辅助高通滤波器,设计第二高通滤波器;根据上述第二低通滤波器和上述第二高通滤波器,设计第二全通滤波器;其中,上述第二滤波器三元组包括:上述第二低通滤波器、上述第二全通滤波器和上述第二高通滤波器;上述第二滤波器三元组为奇 数阶滤波器,上述第二滤波器三元组的阶数与上述第一辅助滤波器组的阶数相同,上述第二低通滤波器为上述第一辅助低通滤波器,上述第二高通滤波器为上述第一辅助高通滤波器或者负的上述第一辅助高通滤波器。
可选地,在本申请实施例中,上述处理模块902,还用于:基于巴特沃斯滤波器设计方式设计第二辅助滤波器组,上述第二辅助滤波器组包括第二辅助低通滤波器和第二辅助高通滤波器;根据上述第二辅助低通滤波器,设计第三低通滤波器;根据上述第二辅助高通滤波器,设计第三高通滤波器;根据上述第三低通滤波器和上述第三高通滤波器,设计第三全通滤波器;其中,上述第三滤波器三元组包括:上述第三低通滤波器、上述第三全通滤波器和上述第三高通滤波器;上述第三滤波器三元组为偶数阶滤波器,上述第二辅助滤波器组为偶数阶滤波器,上述第三滤波器三元组的阶数为上述第二辅助滤波器组的阶数的二倍,上述第三低通滤波器为上述第二辅助低通滤波器的平方,上述第三高通滤波器为上述第二辅助高通滤波器的平方。
可选地,在本申请实施例中,上述处理模块902,还用于:基于巴特沃斯滤波器设计方式设计第三辅助滤波器组,上述第三辅助滤波器组包括第三辅助低通滤波器和第三辅助高通滤波器;根据上述第三辅助低通滤波器,设计第四低通滤波器;根据上述第三辅助高通滤波器,设计第四高通滤波器;根据上述第四低通滤波器和上述第四高通滤波器,设计第四全通滤波器;其中,上述第四滤波器三元组包括:上述第四低通滤波器、上述第四全通滤波器和上述第四高通滤波器;上述第四滤波器三元组为偶数阶滤波器,上述第三辅助滤波器组为奇数阶滤波器,上述第四滤波器三元组的阶数为上述第三辅助滤波器组的阶数的二倍,上述第四低通滤波器为上述第三辅助低通滤波器的平方,上述第三高通滤波器为负的上述第三辅助高通滤波器平方。
可选地,在本申请实施例中,上述处理模块902,还用于在上述目标滤波器为目标滤波器三元组中的高通滤波器的情况下,将上述目标滤波器替换为上述目标滤波器三元组中的全通滤波器。
在本申请实施例提供的音频信号处理装置中,获取第一音频信号;并将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个第一带通滤波器之间相关;对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计第一带通滤波器。如此,由于本申请实施例中目标带通滤波器中的N组第一带通滤波器组间是相关的,而非独立的,从而得到信号质量更高的音频信号质量,有效减小音频信号在 处理过程中音质的损失。
本申请实施例中的音频信号处理装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的音频信号处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的音频信号处理装置能够实现图8的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图9所示,本申请实施例还提供一种电子设备1100,包括处理器1101和存储器1102,存储器1102上存储有可在所述处理器1101上运行的程序或指令,该程序或指令被处理器1101执行时实现上述音频信号处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图10为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等部件。
本领域技术人员可以理解,电子设备100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器110,用于获取第一音频信号;该处理器110,用于将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包 括N个第一带通滤波器,N个第一带通滤波器之间相关;上述处理器110,还用于对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,上述第一带通滤波器为偶数阶滤波器;上述处理器110,还用于在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据上述第一带通滤波器的阶数,设计第一带通滤波器。
可选地,在本申请实施例中,上述处理器110,具体用于按照N个预设子带,将上述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号;其中,第二音频信号包括上述N个预设子带对应的N个子带信号,一个预设子带与一个第一带通滤波器对应。
可选地,在本申请实施例中,上述处理器110,还用于将M个分割频率确定为通带截止频率,设计M个滤波器三元组,一个分割频率对应一个滤波器三元组,该滤波器三元组包括:低通滤波器、高通滤波器和全通滤波器;上述第一带通滤波器包括至少一个目标滤波器,一个上述目标滤波器对应一个滤波器三元组中的一个滤波器;其中,在上述至少一个目标滤波器为至少两个目标滤波器的情况下,上述至少两个目标滤波器对应的至少两个滤波器三元组不同。
可选地,在本申请实施例中,上述处理器110,还用于:基于目标设计方式设计第一分割频率对应的偶数阶第一低通滤波器;根据上述第一低通滤波器的群时延,设计第一全通滤波器;根据上述第一低通滤波器和上述第一全通滤波器,设计第一高通滤波器;其中,上述M个分割频率包括上述第一频率,上述M个滤波器三元组包括第一滤波器三元组,该第一滤波器三元组包括:上述第一低通滤波器、上述第一全通滤波器和上述第一高通滤波器。
可选地,在本申请实施例中,上述处理器110,具体用于:对目标带通滤波器组中的子滤波器进行串联处理;将上述第一音频信号输入串联处理后的上述目标带通滤波器组进行滤波处理,得到第二音频信号。
可选地,在本申请实施例中,上述处理器110,还用于:基于巴特沃斯滤波器设计方式设计第一辅助滤波器组,上述第一辅助滤波器组包括第一辅助低通滤波器和第一辅助高通滤波器;根据上述第一辅助低通滤波器,设计第二低通滤波器;根据上述第一辅助高通滤波器,设计第二高通滤波器;根据上述第二低通滤波器和上述第二高通滤波器,设计第二全通滤波器;其中,上述第二滤波器三元组包括:上述第二低通滤波器、上述第二全通滤波器和上述第二高通滤波器;上述第二滤波器三元组为奇数阶滤波器,上述第二滤波器三元组的阶数与上述第一辅助滤波器组的阶数相同,上述第二低通滤波器为上述第一辅助低通滤波器,上述第二高通滤波器为上述第一辅助高 通滤波器或者负的上述第一辅助高通滤波器。
可选地,在本申请实施例中,上述处理器110,还用于:基于巴特沃斯滤波器设计方式设计第二辅助滤波器组,上述第二辅助滤波器组包括第二辅助低通滤波器和第二辅助高通滤波器;根据上述第二辅助低通滤波器,设计第三低通滤波器;根据上述第二辅助高通滤波器,设计第三高通滤波器;根据上述第三低通滤波器和上述第三高通滤波器,设计第三全通滤波器;其中,上述第三滤波器三元组包括:上述第三低通滤波器、上述第三全通滤波器和上述第三高通滤波器;上述第三滤波器三元组为偶数阶滤波器,上述第二辅助滤波器组为偶数阶滤波器,上述第三滤波器三元组的阶数为上述第二辅助滤波器组的阶数的二倍,上述第三低通滤波器为上述第二辅助低通滤波器的平方,上述第三高通滤波器为上述第二辅助高通滤波器的平方。
可选地,在本申请实施例中,上述处理器110,还用于:基于巴特沃斯滤波器设计方式设计第三辅助滤波器组,上述第三辅助滤波器组包括第三辅助低通滤波器和第三辅助高通滤波器;根据上述第三辅助低通滤波器,设计第四低通滤波器;根据上述第三辅助高通滤波器,设计第四高通滤波器;根据上述第四低通滤波器和上述第四高通滤波器,设计第四全通滤波器;其中,上述第四滤波器三元组包括:上述第四低通滤波器、上述第四全通滤波器和上述第四高通滤波器;上述第四滤波器三元组为偶数阶滤波器,上述第三辅助滤波器组为奇数阶滤波器,上述第四滤波器三元组的阶数为上述第三辅助滤波器组的阶数的二倍,上述第四低通滤波器为上述第三辅助低通滤波器的平方,上述第三高通滤波器为负的上述第三辅助高通滤波器平方。
可选地,在本申请实施例中,上述处理器110,还用于在上述目标滤波器为目标滤波器三元组中的高通滤波器的情况下,将上述目标滤波器替换为上述目标滤波器三元组中的全通滤波器。
在本申请实施例提供的电子设备中,获取第一音频信号;并将该第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,该目标带通滤波器组包括N个第一带通滤波器,N个第一带通滤波器之间相关;对上述第二音频信号进行信号处理,得到第三音频信号;其中,在上述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,第一带通滤波器为偶数阶滤波器;在上述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据第一带通滤波器的阶数,设计第一带通滤波器。如此,由于本申请实施例中目标带通滤波器中的N组第一带通滤波器组间是相关的,而非独立的,从而得到信号质量更高的音频信号质量,有效减小音频信号在处理过程中音质的损失。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics  Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072中的至少一种。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括易失性存储器或非易失性存储器,或者,存储器109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器109包括但不限于这些和任意其它适合类型的存储器。
处理器110可包括一个或多个处理单元;可选的,处理器110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述音频信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接 口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述音频信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述音频信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (16)

  1. 一种音频信号处理方法,所述方法包括:
    获取第一音频信号;
    将所述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,所述目标带通滤波器组包括N个第一带通滤波器,N个所述第一带通滤波器之间相关;
    对所述第二音频信号进行信号处理,得到第三音频信号;
    其中,在所述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,所述第一带通滤波器为偶数阶滤波器;
    在所述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据所述第一带通滤波器的阶数,设计所述第一带通滤波器。
  2. 根据权利要求1所述的方法,其中,所述将所述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,包括:
    按照N个预设子带,将所述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号;
    其中,所述第二音频信号包括所述N个预设子带对应的N个子带信号,一个所述预设子带与一个所述第一带通滤波器对应。
  3. 根据权利要求2所述的方法,其中,所述N个预设子带对应M个分割频率,所述将所述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号之前,还包括:
    将所述M个分割频率确定为通带截止频率,设计M个滤波器三元组,一个所述分割频率对应一个滤波器三元组,所述滤波器三元组包括:低通滤波器、高通滤波器和全通滤波器;
    所述第一带通滤波器包括至少一个目标滤波器,一个所述目标滤波器对应一个滤波器三元组中的一个滤波器;
    其中,在所述至少一个目标滤波器为至少两个目标滤波器的情况下,所述至少两个目标滤波器对应的至少两个滤波器三元组不同。
  4. 根据权利要求3所述的方法,其中,所述目标带通滤波器组为线性相位FIR带通滤波器组,所述方法还包括:
    基于目标设计方式设计第一分割频率对应的偶数阶第一低通滤波器;
    根据所述第一低通滤波器的群时延,设计第一全通滤波器;
    根据所述第一低通滤波器和所述第一全通滤波器,设计第一高通滤波器;
    其中,所述M个分割频率包括所述第一频率,所述M个滤波器三元组包括第一 滤波器三元组,所述第一滤波器三元组包括:所述第一低通滤波器、所述第一全通滤波器和所述第一高通滤波器。
  5. 根据权利要求4所述的方法,其中,所述将所述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号包括:
    对目标带通滤波器组中的子滤波器进行串联处理;
    将所述第一音频信号输入串联处理后的所述目标带通滤波器组进行滤波处理,得到第二音频信号。
  6. 根据权利要求3所述的方法,其中,所述目标带通滤波器组为非线性相位IIR带通滤波器组,所述M个滤波器三元组包括第二滤波器三元组,所述方法还包括:
    基于巴特沃斯滤波器设计方式设计第一辅助滤波器组,所述第一辅助滤波器组包括第一辅助低通滤波器和第一辅助高通滤波器;
    根据所述第一辅助低通滤波器,设计第二低通滤波器;
    根据所述第一辅助高通滤波器,设计第二高通滤波器;
    根据所述第二低通滤波器和所述第二高通滤波器,设计第二全通滤波器;
    其中,所述第二滤波器三元组包括:所述第二低通滤波器、所述第二全通滤波器和所述第二高通滤波器;
    所述第二滤波器三元组为奇数阶滤波器,所述第二滤波器三元组的阶数与所述第一辅助滤波器组的阶数相同,所述第二低通滤波器为所述第一辅助低通滤波器,所述第二高通滤波器为所述第一辅助高通滤波器或者负的所述第一辅助高通滤波器。
  7. 根据权利要求3所述的方法,其中,所述目标带通滤波器组为非线性相位IIR带通滤波器组,所述M个滤波器三元组包括第三滤波器三元组,所述方法还包括:
    基于巴特沃斯滤波器设计方式设计第二辅助滤波器组,所述第二辅助滤波器组包括第二辅助低通滤波器和第二辅助高通滤波器;
    根据所述第二辅助低通滤波器,设计第三低通滤波器;
    根据所述第二辅助高通滤波器,设计第三高通滤波器;
    根据所述第三低通滤波器和所述第三高通滤波器,设计第三全通滤波器;
    其中,所述第三滤波器三元组包括:所述第三低通滤波器、所述第三全通滤波器和所述第三高通滤波器;
    所述第三滤波器三元组为偶数阶滤波器,所述第二辅助滤波器组为偶数阶滤波器,所述第三滤波器三元组的阶数为所述第二辅助滤波器组的阶数的二倍,所述第三低通滤波器为所述第二辅助低通滤波器的平方,所述第三高通滤波器为所述第二辅助高通滤波器的平方。
  8. 根据权利要求3所述的方法,其中,所述目标带通滤波器组为非线性相位IIR带通滤波器组,所述M个滤波器三元组包括第四滤波器三元组,所述方法还包括:
    基于巴特沃斯滤波器设计方式设计第三辅助滤波器组,所述第三辅助滤波器组包括第三辅助低通滤波器和第三辅助高通滤波器;
    根据所述第三辅助低通滤波器,设计第四低通滤波器;
    根据所述第三辅助高通滤波器,设计第四高通滤波器;
    根据所述第四低通滤波器和所述第四高通滤波器,设计第四全通滤波器;
    其中,所述第四滤波器三元组包括:所述第四低通滤波器、所述第四全通滤波器和所述第四高通滤波器;
    所述第四滤波器三元组为偶数阶滤波器,所述第三辅助滤波器组为奇数阶滤波器,所述第四滤波器三元组的阶数为所述第三辅助滤波器组的阶数的二倍,所述第四低通滤波器为所述第三辅助低通滤波器的平方,所述第三高通滤波器为负的所述第三辅助高通滤波器平方。
  9. 根据权利要求6-8中任一项所述的方法,其中,所述方法还包括:
    在所述目标滤波器为目标滤波器三元组中的高通滤波器的情况下,将所述目标滤波器替换为所述目标滤波器三元组中的全通滤波器。
  10. 一种音频信号处理装置,所述装置包括:获取模块和处理模块;
    所述获取模块,用于获取第一音频信号;
    所述处理模块,用于将所述获取模块获取的所述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号,所述目标带通滤波器组包括N个第一带通滤波器,N个所述第一带通滤波器之间相关;
    所述处理模块,还用于对所述第二音频信号进行信号处理,得到第三音频信号;
    其中,在所述目标带通滤波器组为线性相位FIR带通滤波器组的情况下,所述第一带通滤波器为偶数阶滤波器;
    所述处理模块,还用于在所述目标带通滤波器组为非线性相位IIR带通滤波器组的情况下,根据所述第一带通滤波器的阶数,设计所述第一带通滤波器。
  11. 根据权利要求10所述的装置,其中,
    所述处理模块,具体用于按照N个预设子带,将所述获取模块获取的所述第一音频信号输入目标带通滤波器组进行滤波处理,得到第二音频信号;
    其中,所述第二音频信号包括所述N个预设子带对应的N个子带信号,一个所述预设子带与一个所述第一带通滤波器对应。
  12. 根据权利要求11所述的装置,其中,
    所述处理模块,还用于将所述M个分割频率确定为通带截止频率,设计M个滤波器三元组,一个所述分割频率对应一个滤波器三元组,所述滤波器三元组包括:低通滤波器、高通滤波器和全通滤波器;
    所述第一带通滤波器包括至少一个目标滤波器,一个所述目标滤波器对应一个滤波器三元组中的一个滤波器;
    其中,在所述至少一个目标滤波器为至少两个目标滤波器的情况下,所述至少两个目标滤波器对应的至少两个滤波器三元组不同。
  13. 一种电子设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9中任一项所述的音频信号处理方法的步骤。
  14. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至9中任一项所述的音频信号处理方法的步骤。
  15. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至9中任一项所述的音频信号处理方法的步骤。
  16. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至9中任一项所述的音频信号处理方法的步骤。
PCT/CN2023/120137 2022-09-23 2023-09-20 音频信号处理方法、装置、电子设备及可读存储介质 WO2024061286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211170641.2A CN115547350A (zh) 2022-09-23 2022-09-23 音频信号处理方法、装置、电子设备及可读存储介质
CN202211170641.2 2022-09-23

Publications (1)

Publication Number Publication Date
WO2024061286A1 true WO2024061286A1 (zh) 2024-03-28

Family

ID=84729165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120137 WO2024061286A1 (zh) 2022-09-23 2023-09-20 音频信号处理方法、装置、电子设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN115547350A (zh)
WO (1) WO2024061286A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115547350A (zh) * 2022-09-23 2022-12-30 维沃移动通信有限公司 音频信号处理方法、装置、电子设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334173A (ja) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd オーディオ信号の帯域を拡張するための装置および信号処理プログラム
CN109524016A (zh) * 2018-10-16 2019-03-26 广州酷狗计算机科技有限公司 音频处理方法、装置、电子设备及存储介质
CN112637741A (zh) * 2020-12-30 2021-04-09 广州酷狗计算机科技有限公司 音频信号处理方法、装置、芯片、电子设备及存储介质
CN113299313A (zh) * 2021-01-28 2021-08-24 维沃移动通信有限公司 音频处理方法、装置及电子设备
CN115547350A (zh) * 2022-09-23 2022-12-30 维沃移动通信有限公司 音频信号处理方法、装置、电子设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334173A (ja) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd オーディオ信号の帯域を拡張するための装置および信号処理プログラム
CN109524016A (zh) * 2018-10-16 2019-03-26 广州酷狗计算机科技有限公司 音频处理方法、装置、电子设备及存储介质
CN112637741A (zh) * 2020-12-30 2021-04-09 广州酷狗计算机科技有限公司 音频信号处理方法、装置、芯片、电子设备及存储介质
CN113299313A (zh) * 2021-01-28 2021-08-24 维沃移动通信有限公司 音频处理方法、装置及电子设备
CN115547350A (zh) * 2022-09-23 2022-12-30 维沃移动通信有限公司 音频信号处理方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN115547350A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2024061286A1 (zh) 音频信号处理方法、装置、电子设备及可读存储介质
US7839434B2 (en) Video communication systems and methods
US9143862B2 (en) Correlation based filter adaptation
WO2020052088A1 (zh) 恢复音频信号的方法和装置
TWI528837B (zh) 用以產生幻像低音之系統及方法
DE112015000950T5 (de) Abwärtskompatible Einrichtung und abwärtskompatibles Verfahren zum Bereitstellen von Video mit sowohl Standard- als auch hohem Dynamikbereich
WO2016124122A1 (zh) 一种手持式电子设备图片缩放及播放内容切换的方法及装置
US11849211B2 (en) Video processing method, terminal device and storage medium
CN108880700B (zh) 时钟信号的频率跳变方法、频率跳变装置及移动终端
WO2019084788A1 (zh) 用于神经网络的运算装置、电路及相关方法
WO2022001648A1 (zh) 图像处理方法、装置、设备及介质
WO2021143273A1 (zh) 直播流采样方法、装置及电子设备
CN113010063A (zh) 文件预览方法、装置、电子设备及存储介质
US11615607B2 (en) Convolution calculation method, convolution calculation apparatus, and terminal device
WO2023274005A1 (zh) 图像处理方法、装置、电子设备和存储介质
WO2024001907A1 (zh) 射频控制方法、装置及电子设备
WO2022222922A1 (zh) 语音信号的处理方法和装置
WO2023179385A1 (zh) 一种视频超分方法、装置、设备及存储介质
WO2023103682A1 (zh) 图像处理方法、装置、设备及介质
CN109584898B (zh) 一种语音信号的处理方法、装置、存储介质及电子设备
CN111754435A (zh) 图像处理方法、装置、终端设备及计算机可读存储介质
WO2022194211A1 (zh) 图像处理方法、装置、电子设备及可读存储介质
CN110705653A (zh) 图像分类方法、图像分类装置及终端设备
TWI799265B (zh) 超解析度裝置及方法
CN112019961A (zh) 降噪耳机的降噪参数调试方法、降噪参数调试装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867572

Country of ref document: EP

Kind code of ref document: A1