WO2024060783A1 - Organic electroluminescent device and organic electroluminescent display - Google Patents

Organic electroluminescent device and organic electroluminescent display Download PDF

Info

Publication number
WO2024060783A1
WO2024060783A1 PCT/CN2023/105237 CN2023105237W WO2024060783A1 WO 2024060783 A1 WO2024060783 A1 WO 2024060783A1 CN 2023105237 W CN2023105237 W CN 2023105237W WO 2024060783 A1 WO2024060783 A1 WO 2024060783A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
lens
lenses
electroluminescent device
Prior art date
Application number
PCT/CN2023/105237
Other languages
French (fr)
Inventor
Yasunori Kijima
Kabe MASAAKI
Koji Ishizaki
Chi Shun Chan
Morita SHINTARO
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2024060783A1 publication Critical patent/WO2024060783A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic electroluminescent device and an organic electroluminescent display.
  • an organic electroluminescent display has attracted attention as a display device that replaces a liquid crystal display device.
  • an organic electroluminescent device used for an organic electroluminescent display has a thickness of 1 ⁇ m or less.
  • the organic electroluminescent device has ideal characteristics as a self-luminous display device, such as surface emission by converting electric energy into light energy by injecting an electric current.
  • an organic electroluminescent device there is one in which an anode, a hole transport layer, an emission layer, an electron transport layer, and a cathode are sequentially formed on a substrate using, for example, a vacuum deposition method.
  • a direct-current voltage is selectively applied between the anode and the cathode, holes serving as carriers injected from the anode pass through the hole transport layer and electrons injected from the cathode pass through the electron transport layer to reach the emission layer and cause electron-hole recombination, and from here, intrinsic light emission depending on a molecular design of an organic material, which serves as a light emission center, constituting the light emitting layer is generated, and a current flows.
  • a portion of light generated in the emission layer becomes a plasmon loss mode occurring at interfaces of the anode and cathode in contact with the organic layer, and the other portion thereof becomes a waveguide mode in which the light is confined within each organic layer and cannot be extracted when a sealing layer on the cathode is taken as an example.
  • a light emission loss due to these modes is required to be reduced.
  • a technology for reducing the light emission loss due to the plasmon loss mode by replacing the electron transport layer with a layer of a semi-crystallized organic materials (SCO) having an uneven pattern has been disclosed.
  • the present invention has been made in view of the above-described circumstances, and an objective of the present invention is to provide an organic electroluminescent device in which a light emission loss in a sealing layer on a cathode is reduced and an external quantum efficiency is improved, and an organic electroluminescent display including the organic electroluminescent device.
  • the present invention employs the following methods.
  • An organic electroluminescent device includes a lens layer formed of a plurality of lenses and a cover layer covering the lens layer on a cathode, in which the plurality of lenses are disposed to be aligned in a plane direction perpendicular to a thickness direction of the lens layer, lens diameters and thicknesses of the lenses are randomly different at positions in the plane direction, and the cover layer is made of a material having a refractive index lower than a refractive index of the lens.
  • H1/D1 a ratio (H1/D1) is 0.5 or more and 1.0 or less, H1 being a maximum thickness among thicknesses of the plurality of lenses and D1 being an average value of the diameters of the lenses.
  • the lens layer preferably includes one or more lenses per 100 ⁇ m2 in the plane direction. In other words, it is necessary to dispose at least two or more lenses in one constructed pixel.
  • the diameters of the lenses are preferably 1.0 ⁇ m or more and 20.0 ⁇ m or less.
  • the lens diameter is set in this range, at least two or more lenses can be disposed in one pixel as described above for the emission layer, and alignment of the lens is unnecessary.
  • a lens shape as viewed from an upper surface is not circular but polygonal.
  • the lenses adjacent to each other are preferably disposed without a gap therebetween.
  • a sealing layer for sealing an organic light emitting layer is preferably laminated between the organic light emitting layer and the lens layer, and the sealing layer is preferably formed of only an inorganic layer made of an inorganic material or formed by alternately laminating the inorganic layer and an organic layer made of an organic material in a laminating direction.
  • An organic electroluminescent display includes an organic electroluminescent device having a top-emission structure according to the aspects described above.
  • an organic electroluminescent device in which a light emission loss in a sealing layer on a cathode is reduced and an external quantum efficiency is improved, and an organic electroluminescent display including the organic electroluminescent device.
  • Fig. 1 is a diagram schematically showing a laminated structure of an organic electroluminescent display according to one embodiment of the present invention.
  • Fig. 2 is a cross-sectional view of an organic electroluminescent device having a top-emission structure constituting the organic electroluminescent display of Fig. 1.
  • Fig. 3 is a diagram in which a configuration of a thin film sealing layer is changed in the organic electroluminescent display of Fig. 1.
  • Fig. 4 is a cross-sectional view of the organic electroluminescent device having a top-emission structure constituting the organic electroluminescent display of Fig. 3.
  • Fig. 5 (a) is a plan view of one pixel.
  • Fig. 5 (b) is a plan view of one lens.
  • Fig. 5 (c) is a plan view of a lens layer.
  • Fig. 6 is a graph showing a measurement result of an angular distribution of a light emission intensity in the configuration of the organic electroluminescent display of Fig. 1.
  • Fig. 1 is a diagram showing a laminated structure of an organic electroluminescent display 100A (100) according to one embodiment of the present invention.
  • Fig. 2 is a cross-sectional view of an organic electroluminescent device 130A (130) constituting the organic electroluminescent display 100A.
  • the organic electroluminescent display 100A mainly includes a backside barrier portion 110, a backplane portion 120, the organic electroluminescent device 130A, an adhesive layer 140, and a cover glass (and/or a flexible film (ultraviolet cut film or the like) ) 150 in that order in a laminating direction.
  • the backside barrier portion 110 includes a SiNx/SiOx layer, an organic substance/resin layer, and a SiNx/SiOx layer in that order.
  • the backplane portion 120 includes a substrate, and a planar layer (PLN) /thin film transistor (TFT) in that order.
  • the adhesive layer 140 includes an adhesive/touch panel (TP) /barrier layer (OCA) , and an adhesive layer in that order.
  • TP adhesive/touch panel
  • OCA barrier layer
  • the organic electroluminescent device 130A includes a front plane portion 131, a thin film sealing layer 132A (132) , a lens layer 133, and a cover layer 134 in that order in a laminating direction.
  • the front plane portion 131 includes an anode 131A, an organic layer 131E, and a cathode 131C in that order.
  • the organic layer 131E includes a hole injection layer (HIL) , a hole transport layer (HTL) , an emission layer, a hole barrier layer (HBL) , and an electron transport layer (ETL) in that order from the anode side toward the cathode side.
  • HIL hole injection layer
  • HTL hole transport layer
  • HBL hole barrier layer
  • ETL electron transport layer
  • the thin film sealing layer 132A is this sealing layer disposed between the front plane portion (organic light emitting layer) 131 and the lens layer 133 and seals the front plane portion 131.
  • the thin film sealing layer 132A includes only an inorganic layer made of an inorganic material, specifically, only a SiNx/SiOx layer is illustrated.
  • Fig. 3 is a diagram schematically showing a laminated structure of an organic electroluminescent display 100B in which a configuration of the thin film sealing layer 132 is changed in the organic electroluminescent display 100A of Fig. 1.
  • Fig. 4 is a cross-sectional view of an organic electroluminescent device 130B (130) having a top-emission structure constituting the organic electroluminescent display 100B of Fig. 3.
  • a thin film sealing layer 132B may be formed by alternately laminating an inorganic layer and an organic layer made of an organic material in a laminating direction.
  • the thin film sealing layer 132B includes a SiNx/SiOx layer, an organic substance/resin layer, and a SiNx/SiOx layer in that order is illustrated.
  • the lens layer 133 is made of a plurality of lenses L formed on the front plane portion 131 (on the cathode 131C) .
  • the plurality of lenses L are disposed to be aligned in a plane direction S perpendicular to a thickness direction (laminating direction) T of the lens layer 133.
  • portions having surfaces with different curvatures on a side (upper side) of the cathode 131C opposite to the cathode 131C are regarded as different lenses L from each other. It is essential that adjacent lenses L among the plurality of lenses L are in contact with each other.
  • lens diameters D and thicknesses H of the lenses L are randomly different.
  • the lens diameter D is a size of each lens in the plane direction S, and is not particularly limited, but may be, for example, 1.0 ⁇ m or more and 20.0 ⁇ m or less.
  • the thickness H of the lens is a size of each lens in the thickness direction T, and when a maximum thickness among thicknesses of the plurality of lenses is H1, a ratio (H1/D1) of the maximum thickness H1 to an average value D1 of the lens diameters is preferably 0.5 or more and 1.0 or less.
  • a case in which the lens diameters D and the thicknesses H are randomly different means a case in which the lens diameters D and the thicknesses H of the lenses L are not uniform in a plan view from the thickness direction T.
  • a case in which variations from the average values are each 0%or more and 50%or less may be defined as a case in which the lens diameters D and thicknesses H are randomly different.
  • a distribution of the lens diameter D and the thickness H being random can be ascertained, for example, by an image (SEM image or the like) obtained in a plan view from the laminating direction.
  • the adjacent lenses are disposed without a gap.
  • the lenses having random diameters and thicknesses are aligned without gaps therebetween, occurrence of uneven luminance in light emitting pixels or in the plane can be suppressed.
  • Each lens L is made of a material having a refractive index of 1.4 or more and 2.1 or less.
  • a material for example, a siloxane-based polymer, a polymer in which ZrO, TiO2, and the like are dispersed, a mixture of inorganic substances containing ZrO and TiO2 as main components, a compound containing at least one of them as a main component, or the like can be mentioned.
  • a raw material of the lens L is preferably one that does not contain a solvent.
  • a ratio (H1/D1) of the maximum thickness H1 to the average value D1 of the lens diameters is preferably 0.5 or more and 1.0 or less.
  • the lens layer 133 includes one or more lenses L and preferably 1.8 or more and 50 or less lenses L per 100 ⁇ m2 in the plane direction S. Also, it is preferable that one or more lenses L be included in a region of the lens layer 133 that overlaps the emission layer in the laminating direction, and it is more preferable that four or more lenses L be included therein.
  • the lens layer 133 can be formed by, for example, a molding method using a mold including a nanoimprint, an inkjet method, a sputtering method, or the like.
  • the cover layer 134 covers a surface of the lens layer 133.
  • a surface of the cover layer 134 on a side (upper side) opposite to the lens layer 133 is planarized.
  • a total thickness of the lens layer 133 and the cover layer 134 is preferably about 10 to 20 ⁇ m.
  • the cover layer 134 is made of a material having a refractive index lower than that of the lens L.
  • a siloxane-based polymer, a methacrylic acid-based polymer, silicone, an acrylic-based polymer, a compound containing at least one of them as a main component, and the like can be mentioned. It is preferable that a filler of this do not contain a solvent.
  • the cover layer 134 is formed by, for example, filling a depletion layer (void) that is present on a surface of the lens layer 113 using a screen printing method or an inkjet method after the lens layer 133 is formed.
  • void depletion layer
  • the anode 131A is provided on a bottom surface of the organic layer.
  • the anode 131A may also have a function of a reflective layer. Thereby, a light emission efficiency of the organic electroluminescent device is improved.
  • a material of the anode 131A can include a single metal layer such as silver (Ag) , aluminum (Al) , chromium (Cr) , titanium (Ti) , iron (Fe) , cobalt (Co) , nickel (Ni) , molybdenum (Mo) , copper (Cu) , tantalum (Ta) , tungsten (W) , platinum (Pt) , neodymium (Nd) , or gold (Au) , or an alloy of these kinds of metals.
  • the anode 131A includes a first transparent electrode, a reflective electrode, and a second transparent electrode.
  • a material of the anode is, for example, ITO/Ag alloy/ITO.
  • ITO refers to a transparent electrode made of indium tin oxide.
  • the Ag alloy used may be an alloy of Ag, Pd, Cu, and the like in terms of stability, for example, an electrode made of an Al-based alloy can be used if the electrode has high reflectivity.
  • the ITO, the Ag alloy, and the ITO may have film thicknesses of 50 nm, 150 nm, and 10 nm, but the film thicknesses can be appropriately determined according to a design of the device. It does not necessarily have to be an alloy, and a metal alone may be used as long as a stable anode is formed. For example, a structure of ITO/Ag/ITO is also possible.
  • the cathode 131C is provided on an upper surface of the organic layer.
  • the cathode 131C is provided on a side opposite to the anode 131A.
  • cathode 131C needs to have transparency or semi-transparency.
  • a film thickness thereof can be several hundreds of nanometers, but, if in-plane conductivity and an equipotential surface can be formed, any film thickness can be selected according to a panel size or resolution.
  • a material of the cathode 131C may be a single metal layer such as aluminum (Al) , magnesium (Mg) , calcium (Ca) , or sodium (Na) , or an alloy of these metals. More specifically, a material of the cathode can be an alloy of magnesium and silver (Mg-Ag alloy) or an alloy of aluminum (Al) and lithium (Li) (Al-Li or a laminate of two layers thereof) . An electrode of any type or composition can be selected as the cathode 131C.
  • the emission layer is provided between the anode 131A and the cathode 131C.
  • the emission layer emits light due to excitons generated by recombination of holes and electrons injected from the anode 131A and the cathode 131C.
  • the emission layer emits light having a wavelength corresponding to the constituent materials.
  • the emission layer contains anthracene dinaphthyl (ADN) as a host material, and 2.0 mol%of a blue-light emitting 4,4’ -bis [2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl] biphenyl (DPVBi) mixed in as a guest material.
  • a thickness of the emission layer is, for example, 30 nm. However, a material and a thickness of the emission layer are not particularly limited.
  • the hole injection layer functions as a buffer layer for increasing an efficiency in injection of holes into the emission layer and preventing leakage.
  • the hole injection layer has an aromatic amine structure.
  • the hole injection layer may contain any one of 4, 4’ , 4” -tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA) and 4, 4’, 4”-tris (2-naphthylphenylamino) triphenylamine (2-TNATA) .
  • a film thickness of the hole injection layer is 5 nm or more.
  • a film thickness of the hole injection layer is 10 nm.
  • the hole injection layer may be doped with P-type dopants.
  • the hole transport layer is provided between the emission layer and the anode 131A.
  • the hole transport layer increases an efficiency in transport of holes into the emission layer.
  • the hole transport layer has an aromatic amine structure.
  • a typical material for the hole transport layer is bis [ (N-naphthyl) -N-phenyl] benzidine ( ⁇ -NPD) .
  • a film thickness of the hole transport layer may be 5 nm or more and 130 nm or less.
  • a film thickness of the hole transport layer is 10 nm.
  • the hole transport layer may be doped with P-type dopants.
  • the hole barrier layer prevents holes injected from a hole transport region into the emission layer from moving to an electron transport region side.
  • the hole barrier layer can adjust a carrier number density of the emission layer, and can increase an exciton generation efficiency due to a carrier confinement effect.
  • a material of the hole barrier layer can be selected according to materials of the emission layer and the electron transport layer.
  • the hole barrier layer is a material that has a lower HOMO level (that is, a higher ionization potential) than the emission layer. In this way, the hole barrier layer can suppress movement of holes from the emission layer and improve a probability of recombination.
  • the hole barrier layer is preferably formed of a material whose LUMO level is close to a LUMO level of the electron transport layer. Thereby, a charge injection barrier is reduced.
  • the electron transport layer is provided between the cathode 131C and the emission layer.
  • the electron transport layer increases an efficiency in transport of electrons into the emission layer.
  • a material of the electron transport layer is not particularly limited as long as the electron transport layer is formed of a material having electron transport properties.
  • the electron transport layer may contain an aryl pyridine derivative, a benzimidazole derivative, or the like.
  • the electron transport layer may be doped with N-type dopants. Further, the electron transport layer may contain an alkali metal, an alkaline earth metal, and a rare earth metal, and oxides, complex oxides, fluorides, carbonates, and the like thereof.
  • the organic electroluminescent devices adjacent to each other are partitioned by a pixel divided layer (PDL) .
  • PDL pixel divided layer
  • a black material having a high resistivity is used as a material of the pixel define layer, a decrease in surface reflection can be suppressed even without a polarizer.
  • the organic electroluminescent device is covered with the thin film sealing layer, furthermore a substrate such as glass is laminated together over the entire surface of the thin film sealing layer with the adhesive layer interposed therebetween, and thereby the organic electroluminescent device is sealed.
  • the organic electroluminescent display including the organic electroluminescent device of the present embodiment when shapes and sizes of the lenses are randomly different at positions of the lens layer, since light incident on the lens layer is reflected in random directions and generation of a diffraction pattern in the sealing layer immediately below is hindered, light in a waveguide mode is reduced. Also, when a low refractive index material for improving light extraction is used as a material of the cover layer, light extraction from an inside of the lens is improved. Therefore, a light emission loss due to the waveguide mode of the sealing layer on the cathode can be reduced, light extracted as a substrate mode can be increased, and thus an external quantum efficiency can be improved.
  • an average value of the lens diameters was set to 1.5 ⁇ m, and a maximum value of the lens thickness was set to 1.0 ⁇ m.
  • an average value of the lens diameters was set to 2.0 ⁇ m, and a maximum value of the lens thickness was set to 1.5 ⁇ m.
  • an average value of the lens diameters was set to 3.0 ⁇ m, and a maximum value of the lens thickness was set to 2.0 ⁇ m.
  • an average value of the lens diameters was set to 5.0 ⁇ m, and a maximum value of the lens thickness was set to 3.3 ⁇ m.
  • an average value of the lens diameters was set to 5.0 ⁇ m, and a maximum value of the lens thickness was set to 2.6 ⁇ m.
  • an average value of the lens diameters was set to 7.5 ⁇ m, and a maximum value of the lens thickness was set to 5.0 ⁇ m.
  • an average value of the lens diameters was set to 10.0 ⁇ m, and a maximum value of the lens thickness was set to 8.0 ⁇ m.
  • microlenses were unified to have a lens diameter of 22.0 ⁇ m and a thickness of 17.0 ⁇ m.
  • Other conditions were the same as those in example 1.
  • microlenses were unified to have a lens diameter of 5.0 ⁇ m and a thickness of 2.0 ⁇ m.
  • Other conditions were the same as those in example 1.
  • microlenses were unified to have a lens diameter of 5.0 ⁇ m and a thickness of 1.5 ⁇ m.
  • Other conditions were the same as those in example 1.
  • examples 1 to 7 due to a lens effect satisfying the range of the ratio of H1/D1 (0.5 or more and 1.0 or less) of the present invention, an improvement in light emission illuminance with respect to the reference example can be seen. This is because diffraction can be prevented by aligning lenses with random diameters and heights (thicknesses) without gaps therebetween. On the other hand, in comparative examples 2 and 3, the light emission illuminance is lower than that of the reference example because diffraction occurs due to a regularity in lens configuration.
  • Fig. 5 (a) is a plan view (top view) of one pixel when a light emission region is a quadrangle.
  • Fig. 5 (b) is a plan view of a lens constituting the lens layer.
  • Fig. 5 (c) is a plan view of the lens layer.
  • the lens density is 4.0 or less, and the lens diameter D needs to be smaller than a length P of one side of one pixel. It is preferable that at least one lens be included in an area of one pixel.
  • Fig. 6 is a graph showing an angular distribution of a light emission intensity measured in the configuration of the organic electroluminescent display of example 8 and reference example.
  • the horizontal axis of the graph represents an angle formed by a laminating direction of the organic electroluminescent display and a traveling direction of light generated in the emission layer.
  • the vertical axis of the graph represents a light emission intensity.
  • Example 8 shows higher light emission intensity than the reference example over the entire angle range.
  • the light emission intensity obtained in example 8 is 110 to 120%of the light emission intensity obtained in the reference example.
  • the light emission intensity obtained in example 8 is about 120%of the light emission intensity obtained in the reference example.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are an organic electroluminescent device in which a light emission loss in a sealing layer on a cathode is reduced and an external quantum efficiency is improved, and an organic electroluminescent display including the organic electroluminescent device. An organic electroluminescent device 130 of the present invention includes a lens layer 133 formed of a plurality of lenses L and a cover layer 134 covering the lens layer 133 on a cathode, in which the plurality of lenses L are disposed to be aligned in a plane direction S perpendicular to a thickness direction T of the lens layer 133, lens diameters D and thicknesses H of the lenses L are randomly different at positions in the plane direction S, and the cover layer 134 is made of a material having a refractive index lower than a refractive index of the lens L.

Description

ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DISPLAY Technical Field
The present invention relates to an organic electroluminescent device and an organic electroluminescent display.
Background Art
In recent years, an organic electroluminescent display has attracted attention as a display device that replaces a liquid crystal display device. Generally, an organic electroluminescent device used for an organic electroluminescent display has a thickness of 1 μm or less. The organic electroluminescent device has ideal characteristics as a self-luminous display device, such as surface emission by converting electric energy into light energy by injecting an electric current.
As an example of a conventional organic electroluminescent device, there is one in which an anode, a hole transport layer, an emission layer, an electron transport layer, and a cathode are sequentially formed on a substrate using, for example, a vacuum deposition method. When a direct-current voltage is selectively applied between the anode and the cathode, holes serving as carriers injected from the anode pass through the hole transport layer and electrons injected from the cathode pass through the electron transport layer to reach the emission layer and cause electron-hole recombination, and from here, intrinsic light emission depending on a molecular design of an organic material, which serves as a light emission center, constituting the light emitting layer is generated, and a current flows.
In a top-emission structure in which light is extracted from an upper part of a device, a portion of light generated in the emission layer becomes a plasmon loss mode occurring at interfaces of the anode and cathode in contact with the organic layer, and the other portion thereof becomes a waveguide mode in which the light is confined within each organic layer and cannot be extracted when a sealing layer on the cathode is taken as an example. From a viewpoint of improving an external quantum efficiency of the organic electroluminescent device, a light emission loss due to these modes is required to be reduced. For example, a technology for reducing the light emission loss due to the plasmon loss mode by replacing the electron transport layer with a layer of a semi-crystallized organic materials (SCO) having an uneven pattern has been disclosed.
Summary [Technical Problem]
The present invention has been made in view of the above-described circumstances, and an objective of the present invention is to provide an organic electroluminescent device in which a light emission loss in a sealing layer on a cathode is reduced and an external quantum efficiency is improved, and an organic electroluminescent display including the organic electroluminescent device.
[Solution to Problem]
In order to solve the above-described problems, the present invention employs the following methods.
(1) An organic electroluminescent device according to one aspect of the present invention includes a lens layer formed of a plurality of lenses and a cover layer covering the lens layer on a cathode, in which the plurality of lenses are disposed to be aligned in a plane direction perpendicular to a thickness direction of the lens layer, lens diameters and thicknesses of the lenses are randomly different at positions in the plane direction, and the cover layer is made of a material having a refractive index lower than a refractive index of the lens.
When shapes and sizes of the lens are randomly different at positions of the lens layer, since light incident on the lens layer is reflected in random directions and generation of a diffraction pattern in the sealing layer immediately below is hindered, light  in a waveguide mode is reduced. Also, when a low refractive index material for improving light extraction is used as a material of the cover layer, light extraction from an inside of the lens is improved. Therefore, a light emission loss due to the waveguide mode of the sealing layer on the cathode can be reduced, light extracted as a substrate mode can be increased, and thus an external quantum efficiency can be improved.
(2) In the organic electroluminescent device according to the aspect described above, wherein a ratio (H1/D1) is 0.5 or more and 1.0 or less, H1 being a maximum thickness among thicknesses of the plurality of lenses and D1 being an average value of the diameters of the lenses.
When the ratio (H1/D1) is set in this range, a light condensing rate in a forward direction can be improved and light extraction on a front surface can be improved.
(3) In the organic electroluminescent device according to the aspect described above, the lens layer preferably includes one or more lenses per 100 μm2 in the plane direction. In other words, it is necessary to dispose at least two or more lenses in one constructed pixel.
When a number density of the lenses is set in this range, since generation of a diffraction pattern can be more strongly hindered by an effect of lens irregularities and alignment is unnecessary when the lens layer is attached from the outside, an alignment yield in a manufacturing process can be greatly improved, and an overall yield can be greatly improved.
(4) In the organic electroluminescent device according to the aspect described above, the diameters of the lenses are preferably 1.0 μm or more and 20.0 μm or less.
When the lens diameter is set in this range, at least two or more lenses can be disposed in one pixel as described above for the emission layer, and alignment of the lens is unnecessary.
Also, it is important that the disposed lenses be aligned without gaps therebetween, and therefore, a lens shape as viewed from an upper surface is not circular but polygonal.
(5) In the organic electroluminescent device according to the aspect described above, the lenses adjacent to each other are preferably disposed without a gap therebetween.
When the lenses having random diameters and thicknesses are aligned without gaps therebetween, occurrence of uneven luminance in light emitting pixels or in the plane can be suppressed.
(6) In the organic electroluminescent device according to the aspect described above, a sealing layer for sealing an organic light emitting layer is preferably laminated between the organic light emitting layer and the lens layer, and the sealing layer is preferably formed of only an inorganic layer made of an inorganic material or formed by alternately laminating the inorganic layer and an organic layer made of an organic material in a laminating direction.
(7) An organic electroluminescent display according to one aspect of the present invention includes an organic electroluminescent device having a top-emission structure according to the aspects described above.
With this configuration, it is possible to provide an organic electroluminescent display in which a light emission loss is reduced and an external quantum efficiency is improved.
[Advantageous Effects of Invention] 
According to the present invention, it is possible to provide an organic electroluminescent device in which a light emission loss in a sealing layer on a cathode is reduced and an external quantum efficiency is improved, and an organic electroluminescent display including the organic electroluminescent device.
Brief Description of Drawings
Fig. 1 is a diagram schematically showing a laminated structure of an organic electroluminescent display according to one  embodiment of the present invention.
Fig. 2 is a cross-sectional view of an organic electroluminescent device having a top-emission structure constituting the organic electroluminescent display of Fig. 1.
Fig. 3 is a diagram in which a configuration of a thin film sealing layer is changed in the organic electroluminescent display of Fig. 1.
Fig. 4 is a cross-sectional view of the organic electroluminescent device having a top-emission structure constituting the organic electroluminescent display of Fig. 3.
Fig. 5 (a) is a plan view of one pixel. Fig. 5 (b) is a plan view of one lens. Fig. 5 (c) is a plan view of a lens layer.
Fig. 6 is a graph showing a measurement result of an angular distribution of a light emission intensity in the configuration of the organic electroluminescent display of Fig. 1.
Description of Embodiments
Hereinafter, an organic electroluminescent device and an organic electroluminescent display according to an embodiment to which the present invention is applied will be described in detail with reference to the drawings. Further, in the drawings used in the following description, there are cases in which characteristic portions are appropriately enlarged for convenience of illustration so that characteristics of the present invention can be easily understood, and dimensional proportions and the like between respective constituent device may not be the same as the actual ones. Also, materials, dimensions, and the like illustrated in the following description are merely examples, and the present invention is not limited thereto and can be implemented with appropriate modifications within a range not changing the gist of the present invention. Also, Figs. 1 to 4 are examples of a top-emission structure in which light is extracted from an upper part of a substrate, but the present invention is not limited to the top emission.
Fig. 1 is a diagram showing a laminated structure of an organic electroluminescent display 100A (100) according to one embodiment of the present invention. Fig. 2 is a cross-sectional view of an organic electroluminescent device 130A (130) constituting the organic electroluminescent display 100A. The organic electroluminescent display 100A mainly includes a backside barrier portion 110, a backplane portion 120, the organic electroluminescent device 130A, an adhesive layer 140, and a cover glass (and/or a flexible film (ultraviolet cut film or the like) ) 150 in that order in a laminating direction.
The backside barrier portion 110 includes a SiNx/SiOx layer, an organic substance/resin layer, and a SiNx/SiOx layer in that order. The backplane portion 120 includes a substrate, and a planar layer (PLN) /thin film transistor (TFT) in that order.
The adhesive layer 140 includes an adhesive/touch panel (TP) /barrier layer (OCA) , and an adhesive layer in that order.
As illustrated in Fig. 2, the organic electroluminescent device 130A includes a front plane portion 131, a thin film sealing layer 132A (132) , a lens layer 133, and a cover layer 134 in that order in a laminating direction. The front plane portion 131 includes an anode 131A, an organic layer 131E, and a cathode 131C in that order. The organic layer 131E includes a hole injection layer (HIL) , a hole transport layer (HTL) , an emission layer, a hole barrier layer (HBL) , and an electron transport layer (ETL) in that order from the anode side toward the cathode side.
The thin film sealing layer 132A is this sealing layer disposed between the front plane portion (organic light emitting layer) 131 and the lens layer 133 and seals the front plane portion 131. Here, a case in which the thin film sealing layer 132A includes only an inorganic layer made of an inorganic material, specifically, only a SiNx/SiOx layer is illustrated.
Fig. 3 is a diagram schematically showing a laminated structure of an organic electroluminescent display 100B in which a configuration of the thin film sealing layer 132 is changed in the organic electroluminescent display 100A of Fig. 1. Fig. 4 is a cross-sectional view of an organic electroluminescent device 130B (130) having a top-emission structure constituting the organic  electroluminescent display 100B of Fig. 3. A thin film sealing layer 132B may be formed by alternately laminating an inorganic layer and an organic layer made of an organic material in a laminating direction. Here, a case in which the thin film sealing layer 132B includes a SiNx/SiOx layer, an organic substance/resin layer, and a SiNx/SiOx layer in that order is illustrated.
The lens layer 133 is made of a plurality of lenses L formed on the front plane portion 131 (on the cathode 131C) . The plurality of lenses L are disposed to be aligned in a plane direction S perpendicular to a thickness direction (laminating direction) T of the lens layer 133. In the lens layer 133, portions having surfaces with different curvatures on a side (upper side) of the cathode 131C opposite to the cathode 131C are regarded as different lenses L from each other. It is essential that adjacent lenses L among the plurality of lenses L are in contact with each other.
At positions in the plane direction S, lens diameters D and thicknesses H of the lenses L are randomly different. The lens diameter D is a size of each lens in the plane direction S, and is not particularly limited, but may be, for example, 1.0 μm or more and 20.0 μm or less. The thickness H of the lens is a size of each lens in the thickness direction T, and when a maximum thickness among thicknesses of the plurality of lenses is H1, a ratio (H1/D1) of the maximum thickness H1 to an average value D1 of the lens diameters is preferably 0.5 or more and 1.0 or less.
In the present embodiment, a case in which the lens diameters D and the thicknesses H are randomly different means a case in which the lens diameters D and the thicknesses H of the lenses L are not uniform in a plan view from the thickness direction T. For example, in the same plan view, for the lens diameters D and the thicknesses H of the lenses L included in an area of 1 mm2, a case in which variations from the average values are each 0%or more and 50%or less may be defined as a case in which the lens diameters D and thicknesses H are randomly different. Further, a distribution of the lens diameter D and the thickness H being random can be ascertained, for example, by an image (SEM image or the like) obtained in a plan view from the laminating direction.
The adjacent lenses are disposed without a gap. When the lenses having random diameters and thicknesses are aligned without gaps therebetween, occurrence of uneven luminance in light emitting pixels or in the plane can be suppressed.
Each lens L is made of a material having a refractive index of 1.4 or more and 2.1 or less. As such a material, for example, a siloxane-based polymer, a polymer in which ZrO, TiO2, and the like are dispersed, a mixture of inorganic substances containing ZrO and TiO2 as main components, a compound containing at least one of them as a main component, or the like can be mentioned. Also, a raw material of the lens L is preferably one that does not contain a solvent.
When a lens diameter is D and a maximum thickness of the thicknesses H of the plurality of lens is H1, a ratio (H1/D1) of the maximum thickness H1 to the average value D1 of the lens diameters is preferably 0.5 or more and 1.0 or less. Thereby, a light condensing rate in a forward direction can be improved and light extraction on a front surface can be improved.
The lens layer 133 includes one or more lenses L and preferably 1.8 or more and 50 or less lenses L per 100 μm2 in the plane direction S. Also, it is preferable that one or more lenses L be included in a region of the lens layer 133 that overlaps the emission layer in the laminating direction, and it is more preferable that four or more lenses L be included therein.
The lens layer 133 can be formed by, for example, a molding method using a mold including a nanoimprint, an inkjet method, a sputtering method, or the like.
The cover layer 134 covers a surface of the lens layer 133. A surface of the cover layer 134 on a side (upper side) opposite to the lens layer 133 is planarized. A total thickness of the lens layer 133 and the cover layer 134 is preferably about 10 to 20 μm. The cover layer 134 is made of a material having a refractive index lower than that of the lens L. As such a material, for example, a siloxane-based polymer, a methacrylic acid-based polymer, silicone, an acrylic-based polymer, a  compound containing at least one of them as a main component, and the like can be mentioned. It is preferable that a filler of this do not contain a solvent.
The cover layer 134 is formed by, for example, filling a depletion layer (void) that is present on a surface of the lens layer 113 using a screen printing method or an inkjet method after the lens layer 133 is formed.
When a voltage is applied to the organic layer by the two electrodes (the anode 131A and the cathode 131C) of the front plane portion 131, holes and electrons injected into the organic layer from the electrodes recombine in the emission layer to generate excitons and enter an excited state, and thereby producing light as energy released when returning to a ground state. (Spin theory, Organic electroluminescence (EL) phenomenon) .
The anode 131A is provided on a bottom surface of the organic layer. The anode 131A may also have a function of a reflective layer. Thereby, a light emission efficiency of the organic electroluminescent device is improved. A material of the anode 131A can include a single metal layer such as silver (Ag) , aluminum (Al) , chromium (Cr) , titanium (Ti) , iron (Fe) , cobalt (Co) , nickel (Ni) , molybdenum (Mo) , copper (Cu) , tantalum (Ta) , tungsten (W) , platinum (Pt) , neodymium (Nd) , or gold (Au) , or an alloy of these kinds of metals.
As an example, the anode 131A includes a first transparent electrode, a reflective electrode, and a second transparent electrode. A material of the anode is, for example, ITO/Ag alloy/ITO. ITO refers to a transparent electrode made of indium tin oxide. Although the Ag alloy used may be an alloy of Ag, Pd, Cu, and the like in terms of stability, for example, an electrode made of an Al-based alloy can be used if the electrode has high reflectivity. The ITO, the Ag alloy, and the ITO may have film thicknesses of 50 nm, 150 nm, and 10 nm, but the film thicknesses can be appropriately determined according to a design of the device. It does not necessarily have to be an alloy, and a metal alone may be used as long as a stable anode is formed. For example, a structure of ITO/Ag/ITO is also possible.
The cathode 131C is provided on an upper surface of the organic layer. The cathode 131C is provided on a side opposite to the anode 131A. In a case of the top-emission structure, generally, light needs to be emitted from the cathode 131C side. Therefore, cathode 131C needs to have transparency or semi-transparency. In a case in which the cathode 131C is formed by a transparent electrode such as ITO, IZO, or the like, a film thickness thereof can be several hundreds of nanometers, but, if in-plane conductivity and an equipotential surface can be formed, any film thickness can be selected according to a panel size or resolution. When a metal electrode is used, a large film thickness thereof is not preferable because transparency is impaired, and therefore, the film thickness of the cathode 131C is preferably 15 nm or less. A material of the cathode 131C may be a single metal layer such as aluminum (Al) , magnesium (Mg) , calcium (Ca) , or sodium (Na) , or an alloy of these metals. More specifically, a material of the cathode can be an alloy of magnesium and silver (Mg-Ag alloy) or an alloy of aluminum (Al) and lithium (Li) (Al-Li or a laminate of two layers thereof) . An electrode of any type or composition can be selected as the cathode 131C.
The emission layer is provided between the anode 131A and the cathode 131C. The emission layer emits light due to excitons generated by recombination of holes and electrons injected from the anode 131A and the cathode 131C. The emission layer emits light having a wavelength corresponding to the constituent materials. For example, when the emission layer emits blue light, the emission layer contains anthracene dinaphthyl (ADN) as a host material, and 2.0 mol%of a blue-light emitting 4,4’ -bis [2- {4- (N, N-diphenylamino) phenyl} vinyl] biphenyl (DPVBi) mixed in as a guest material. A thickness of the emission layer is, for example, 30 nm. However, a material and a thickness of the emission layer are not particularly limited.
The hole injection layer functions as a buffer layer for increasing an efficiency in injection of holes into the emission layer and preventing leakage. As an example, the hole injection layer has an aromatic amine structure. The hole injection layer may contain any one of 4, 4’ , 4” -tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA) and  4, 4’, 4”-tris (2-naphthylphenylamino) triphenylamine (2-TNATA) . As an example, a film thickness of the hole injection layer is 5 nm or more. For example, a film thickness of the hole injection layer is 10 nm. The hole injection layer may be doped with P-type dopants.
The hole transport layer is provided between the emission layer and the anode 131A. The hole transport layer increases an efficiency in transport of holes into the emission layer. As an example, the hole transport layer has an aromatic amine structure. A typical material for the hole transport layer is bis [ (N-naphthyl) -N-phenyl] benzidine (α-NPD) . As an example, a film thickness of the hole transport layer may be 5 nm or more and 130 nm or less. For example, a film thickness of the hole transport layer is 10 nm. The hole transport layer may be doped with P-type dopants.
The hole barrier layer prevents holes injected from a hole transport region into the emission layer from moving to an electron transport region side. The hole barrier layer can adjust a carrier number density of the emission layer, and can increase an exciton generation efficiency due to a carrier confinement effect. A material of the hole barrier layer can be selected according to materials of the emission layer and the electron transport layer. For example, the hole barrier layer is a material that has a lower HOMO level (that is, a higher ionization potential) than the emission layer. In this way, the hole barrier layer can suppress movement of holes from the emission layer and improve a probability of recombination. Further, the hole barrier layer is preferably formed of a material whose LUMO level is close to a LUMO level of the electron transport layer. Thereby, a charge injection barrier is reduced.
The electron transport layer is provided between the cathode 131C and the emission layer. The electron transport layer increases an efficiency in transport of electrons into the emission layer. A material of the electron transport layer is not particularly limited as long as the electron transport layer is formed of a material having electron transport properties. The electron transport layer may contain an aryl pyridine derivative, a benzimidazole derivative, or the like. The electron transport layer may be doped with N-type dopants. Further, the electron transport layer may contain an alkali metal, an alkaline earth metal, and a rare earth metal, and oxides, complex oxides, fluorides, carbonates, and the like thereof.
The organic electroluminescent devices adjacent to each other are partitioned by a pixel divided layer (PDL) . When a black material having a high resistivity is used as a material of the pixel define layer, a decrease in surface reflection can be suppressed even without a polarizer. Also, the organic electroluminescent device is covered with the thin film sealing layer, furthermore a substrate such as glass is laminated together over the entire surface of the thin film sealing layer with the adhesive layer interposed therebetween, and thereby the organic electroluminescent device is sealed.
As described above, in the organic electroluminescent display including the organic electroluminescent device of the present embodiment, when shapes and sizes of the lenses are randomly different at positions of the lens layer, since light incident on the lens layer is reflected in random directions and generation of a diffraction pattern in the sealing layer immediately below is hindered, light in a waveguide mode is reduced. Also, when a low refractive index material for improving light extraction is used as a material of the cover layer, light extraction from an inside of the lens is improved. Therefore, a light emission loss due to the waveguide mode of the sealing layer on the cathode can be reduced, light extracted as a substrate mode can be increased, and thus an external quantum efficiency can be improved.
[Examples]
Hereinafter, effects of the present invention will become apparent by examples. Further, the present invention is not limited to the following examples and can be implemented with appropriate modifications within a range not changing the gist thereof.
(Example 1)
For the lenses constituting the lens layer of the organic electroluminescent display of the embodiment described above, an  average value of the lens diameters was set to 1.5 μm, and a maximum value of the lens thickness was set to 1.0 μm. A sample in which the number of lenses per 100 μm2 was 44.4 was prepared.
(Example 2)
For the lenses constituting the lens layer of the organic electroluminescent display of the embodiment described above, an average value of the lens diameters was set to 2.0 μm, and a maximum value of the lens thickness was set to 1.5 μm. A sample in which the number of lenses per 100 μm2 was 25.0 was prepared.
(Example 3)
For the lenses constituting the lens layer of the organic electroluminescent display of the embodiment described above, an average value of the lens diameters was set to 3.0 μm, and a maximum value of the lens thickness was set to 2.0 μm. A sample in which the number of lenses per 100 μm2 was 11.1 was prepared.
(Example 4)
For the lenses constituting the lens layer of the organic electroluminescent display of the embodiment described above, an average value of the lens diameters was set to 5.0 μm, and a maximum value of the lens thickness was set to 3.3 μm. A sample in which the number of lenses per 100 μm2 was 4.0 was prepared.
(Example 5)
For the lenses constituting the lens layer of the organic electroluminescent display of the embodiment described above, an average value of the lens diameters was set to 5.0 μm, and a maximum value of the lens thickness was set to 2.6 μm. A sample in which the number of lenses per 100 μm2 was 4.0 was prepared.
(Example 6)
For the lenses constituting the lens layer of the organic electroluminescent display of the embodiment described above, an average value of the lens diameters was set to 7.5 μm, and a maximum value of the lens thickness was set to 5.0 μm. A sample in which the number of lenses per 100 μm2 was 0.67 was prepared.
(Example 7)
For the lenses constituting the lens layer of the organic electroluminescent display of the embodiment described above, an average value of the lens diameters was set to 10.0 μm, and a maximum value of the lens thickness was set to 8.0 μm. A sample in which the number of lenses per 100 μm2 was 0.80 was prepared.
(Reference example)
In the organic electroluminescent display of example 1, a sample was prepared as a reference example with a configuration in which a lens was not provided.
(Comparative example 1)
For lens constituting a lens layer of a conventional organic electroluminescent display, microlenses were unified to have a lens diameter of 22.0 μm and a thickness of 17.0 μm. A sample in which the number of lenses per 100 μm2 was 0.2 was prepared. Other conditions were the same as those in example 1.
(Comparative example 2)
For lens constituting a lens layer of the conventional organic electroluminescent display, microlenses were unified to have a lens diameter of 5.0 μm and a thickness of 2.0 μm. A sample in which the number of lenses per 100 μm2 was 4.0 was prepared. Other conditions were the same as those in example 1.
(Comparative example 3)
For lens constituting a lens layer of the conventional organic electroluminescent display, microlenses were unified to have a lens diameter of 5.0 μm and a thickness of 1.5 μm. A sample in which the number of lenses per 100 μm2 was 4.0 was prepared. Other conditions were the same as those in example 1.
Measurement results of the reference examples, examples 1 to 7, and comparative examples 1 to 3 are shown in Table 1.
[Table 1]
In examples 1 to 7, due to a lens effect satisfying the range of the ratio of H1/D1 (0.5 or more and 1.0 or less) of the present invention, an improvement in light emission illuminance with respect to the reference example can be seen. This is because diffraction can be prevented by aligning lenses with random diameters and heights (thicknesses) without gaps therebetween. On the other hand, in comparative examples 2 and 3, the light emission illuminance is lower than that of the reference example because diffraction occurs due to a regularity in lens configuration.
Fig. 5 (a) is a plan view (top view) of one pixel when a light emission region is a quadrangle. Fig. 5 (b) is a plan view of a lens constituting the lens layer. Fig. 5 (c) is a plan view of the lens layer.
For lenses and pixels of various sizes, the number of lenses included in a region overlapping one pixel, that is, a lens density was measured. An average value of measurement results are shown in Table 2.
[Table 2]
The lens density is 4.0 or less, and the lens diameter D needs to be smaller than a length P of one side of one pixel. It is preferable that at least one lens be included in an area of one pixel.
(Example 8)
Measurements were performed in the configuration of the organic electroluminescent display of the above-described embodiment. For the lenses constituting the lens layer, an average value of the lens diameters was set to 7.5 μm, and a maximum value of the lens thickness was set to 7.0 μm.
Fig. 6 is a graph showing an angular distribution of a light emission intensity measured in the configuration of the organic electroluminescent display of example 8 and reference example. The horizontal axis of the graph represents an angle formed by a laminating direction of the organic electroluminescent display and a traveling direction of light generated in the emission layer. The vertical axis of the graph represents a light emission intensity.
Example 8 shows higher light emission intensity than the reference example over the entire angle range. In a direction of an angle of 0 degrees, that is, in a direction immediately above the emission layer, the light emission intensity obtained in example 8 is 110 to 120%of the light emission intensity obtained in the reference example. Also, in a direction of an angle of 45 degrees, the light emission intensity obtained in example 8 is about 120%of the light emission intensity obtained in the reference example.
[Reference Signs List]
100A, 100B, 100 Organic electroluminescent display
110 Backside barrier portion
120 Backplane portion
130A, 130B, 130 Organic electroluminescent device
131 Front plane portion
131A Anode
131C Cathode
131E Organic layer
132A, 132B, 132 Thin film sealing layer
133 Lens layer
134 Cover layer
140 Adhesive layer
150 Cover glass
L lens
D Lens diameter
D1 Average value of lens diameters
H Lens thickness
H1 Maximum value of lens thickness
S Plane direction
T Thickness direction

Claims (7)

  1. An organic electroluminescent device comprising a lens layer formed of a plurality of lenses and a cover layer covering the lens layer on a cathode, wherein
    the plurality of lenses are disposed to be aligned in a plane direction perpendicular to a thickness direction of the lens layer,
    diameters and thicknesses of the lenses are randomly different at positions in the plane direction, and
    the cover layer is made of a material having a refractive index lower than a refractive index of the lens.
  2. The organic electroluminescent device according to claim 1,
    wherein a ratio (H1/D1) is 0.5 or more and 1.0 or less, H1 being a maximum thickness among thicknesses of the plurality of lenses and D1 being an average value of the diameters of the lenses.
  3. The organic electroluminescent device according to claim 1 or 2,
    wherein the lens layer includes one or more lenses per 100 μm2 in the plane direction.
  4. The organic electroluminescent device according to claim 1 or 2,
    wherein the diameters of the lenses are 1.0 μm or more and 20.0 μm or less.
  5. The organic electroluminescent device according to claim 1 or 2,
    wherein the lenses adjacent to each other are disposed without a gap therebetween.
  6. The organic electroluminescent device according to claim 1 or 2,
    wherein a sealing layer for sealing an organic electroluminescent layer is laminated between the organic electroluminescent layer and the lens layer, and
    the sealing layer is formed of only an inorganic layer made of an inorganic material or formed by alternately laminating an inorganic layer and an organic layer made of an organic material in a laminating direction.
  7. An organic electroluminescent display comprising an organic electroluminescent device having a top-emission structure according to claim 1 or 2.
PCT/CN2023/105237 2022-09-21 2023-06-30 Organic electroluminescent device and organic electroluminescent display WO2024060783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-150414 2022-09-21
JP2022150414 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060783A1 true WO2024060783A1 (en) 2024-03-28

Family

ID=90453837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105237 WO2024060783A1 (en) 2022-09-21 2023-06-30 Organic electroluminescent device and organic electroluminescent display

Country Status (1)

Country Link
WO (1) WO2024060783A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719955A (en) * 2004-07-09 2006-01-11 精工爱普生株式会社 Method for manufacturing microlens and method for manufacturing organic electroluminescence element
JP2015088418A (en) * 2013-11-01 2015-05-07 昭和電工株式会社 Organic el element, and image display apparatus and illumination apparatus including the same
CN106848071A (en) * 2015-10-30 2017-06-13 吴忠帜 Electro photo-luminescent apparatus
CN110021648A (en) * 2019-03-27 2019-07-16 武汉华星光电半导体显示技术有限公司 Display panel
CN111883684A (en) * 2020-08-07 2020-11-03 湖北长江新型显示产业创新中心有限公司 Organic light-emitting display panel and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719955A (en) * 2004-07-09 2006-01-11 精工爱普生株式会社 Method for manufacturing microlens and method for manufacturing organic electroluminescence element
JP2015088418A (en) * 2013-11-01 2015-05-07 昭和電工株式会社 Organic el element, and image display apparatus and illumination apparatus including the same
CN106848071A (en) * 2015-10-30 2017-06-13 吴忠帜 Electro photo-luminescent apparatus
CN110021648A (en) * 2019-03-27 2019-07-16 武汉华星光电半导体显示技术有限公司 Display panel
CN111883684A (en) * 2020-08-07 2020-11-03 湖北长江新型显示产业创新中心有限公司 Organic light-emitting display panel and display device

Similar Documents

Publication Publication Date Title
US10622411B2 (en) Organic light-emitting device and organic light-emitting display device using the same
KR101363960B1 (en) Display device
US10056571B2 (en) Organic light emitting display device
KR101703343B1 (en) Organic light emitting display device and method for manufacturing thereof
KR102410499B1 (en) Organic light emitting display device
JP5677434B2 (en) Organic EL device
WO2019095565A1 (en) Tandem quantum-dot light-emitting device, panel and display
US10529781B2 (en) Organic light-emitting diode display panel and organic light-emitting diode display device
WO2016188041A1 (en) Electroluminescent component, manufacturing method therefor, display substrate, and display device
US9748316B2 (en) Organic electroluminescent panel
WO2017210927A1 (en) Self-illuminating display device
KR101973207B1 (en) Anode including metal oxides and an organic light emitting device having the anode
JP7201442B2 (en) Display panel and its manufacturing method, electroluminescence device and display device
KR101686808B1 (en) Quantum dot luminescent display device
US10910443B2 (en) Organic electroluminescence display device
US10050088B2 (en) Organic light-emitting diode display panel having the hole transport units corresponding to the light emitting devices of two different colors have different mobility
KR102498648B1 (en) Organic light emitting display device
KR102265805B1 (en) Inorganic Electroluminescent Device
KR20110107447A (en) Flexible organic light emitting diode and manufacturing method for the same
WO2024060783A1 (en) Organic electroluminescent device and organic electroluminescent display
US10700135B2 (en) Organic light-emitting diode display panel and organic light-emitting diode display device
KR20220103844A (en) Display device and method of manufacturing the same
KR102410031B1 (en) Organic light emitting diode, manufacturing method for the same, and organic light emitting display device having the organic light emitting diode
WO2022227051A1 (en) Organic electroluminescent display
WO2024040464A1 (en) Display substrate, manufacturing method therefor, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867078

Country of ref document: EP

Kind code of ref document: A1