WO2024060612A1 - 相位同步工作电路和方法 - Google Patents

相位同步工作电路和方法 Download PDF

Info

Publication number
WO2024060612A1
WO2024060612A1 PCT/CN2023/090375 CN2023090375W WO2024060612A1 WO 2024060612 A1 WO2024060612 A1 WO 2024060612A1 CN 2023090375 W CN2023090375 W CN 2023090375W WO 2024060612 A1 WO2024060612 A1 WO 2024060612A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic switch
switch module
load
module group
inverter
Prior art date
Application number
PCT/CN2023/090375
Other languages
English (en)
French (fr)
Inventor
徐彭飞
马颖江
张轶
杨萍
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024060612A1 publication Critical patent/WO2024060612A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Definitions

  • the present application relates to the field of circuit control technology, and in particular to a phase synchronized operating circuit and method.
  • Air bag massage uses a gas control device composed of three major components: air pump/air valve/air bag to achieve massage.
  • air pump/air valve/air bag For a double smart bed to achieve precise massage control, at least two air pumps are usually used to inflate the massage air bags.
  • the main purpose of this application is to provide a phase synchronization working circuit and method to solve the problem of poor load working effect.
  • the specific technical solutions are as follows:
  • a phase synchronization working circuit includes: a DC power supply, an inverter, an electronic switch module group and a controller: the DC output end of the DC power supply is connected to the DC input end of the inverter; The first AC output terminal of the inverter is connected to the input terminal of the electronic switch module group; the electronic switch module group includes at least two output terminals, and each output terminal of the electronic switch module group is connected to the second AC terminal of the inverter. The output end forms a load connection terminal group; the output end of the controller is connected to the control end of the electronic switch module group. The controller is used to control the opening and closing of the electronic switch module group to control each load connection terminal group through the electronic switch module group. Power on or off.
  • the phase synchronization working circuit also includes: a load, the load is connected to any load connection terminal group, and the load is used to operate when the electronic switch module group is closed; wherein there is at least one load.
  • the electronic switch module group includes multiple electronic switch modules, and each load corresponds to one electronic switch module.
  • the electronic switch module group includes one electronic switch module, and all loads correspond to one electronic switch module.
  • the electronic switch module includes: a relay, the input end of the relay is connected to the first AC output end of the inverter, the output end of the relay is connected to one end of the load, and one end of the coil of the relay is connected to the DC power supply.
  • Transistor the collector of the triode is connected to the other end of the coil of the relay, and the emitter of the triode is grounded;
  • the first bias resistor one end of the first bias resistor is connected to the output end of the controller, and the other end of the first bias resistor Connect the base of the triode;
  • the second bias resistor one end of the second bias resistor is connected to the other end of the first bias resistor and the base of the triode, and the other end of the second bias resistor is connected to ground.
  • the transistor when a high level is detected at the base of the transistor, the transistor is turned on; the relay is used to be powered on and closed when the transistor is turned on, so that the load is connected to the first AC output terminal of the inverter through the relay.
  • the first AC output terminal and the second AC output terminal of the inverter when the electronic switch module is closed, output two square waves with the same frequency and a phase difference of 180 degrees.
  • the first AC output terminal The terminal and the second AC output terminal are added to both ends of the load to form an AC signal to drive the load to work.
  • a phase synchronization working method includes: sending a closing signal to an electronic switch module group, so that the two AC output terminals of the inverter pass through the closed electronic switch module group at least two times.
  • An AC signal is formed at both ends of each load to drive the load to work.
  • the electronic switch module group is connected to at least one AC output end of the inverter, and the driving phases of at least two loads are the same.
  • the electronic switch module group includes multiple electronic switch modules, and each load corresponds to one electronic switch module.
  • the step of sending the closing signal to the electronic switch module group includes: determining at least two to be activated according to the control instruction. load; determine the electronic switch module corresponding to the load to be started; control the triode in the electronic switch module to conduct, so that the relay connected to the triode is powered on.
  • a phase synchronization working device in a third aspect, includes: a sending module for sending a closing signal to an electronic switch module group so that the two AC output terminals of the inverter pass through the closed electronic switch module. After the grouping, AC signals are formed at both ends of at least two loads to drive the loads to work, wherein the electronic switch module group is connected to at least one AC output end of the inverter, and the driving phases of at least two loads are the same.
  • an electronic device including a processor, a communication interface, a memory and a communication bus, wherein the communication bus is used between the processor and the communication interface, between the memory and the communication interface, and between the processor and the memory.
  • the memory is used to store computer programs; the processor is used to implement the above-mentioned phase synchronization working method when executing the program stored in the memory.
  • a computer-readable storage medium is provided.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program is executed by a processor, the above-mentioned phase synchronization working method is implemented.
  • the present application provides a phase synchronization working circuit, which includes: a DC power supply, an inverter, an electronic switch module group and a controller, wherein the DC output end of the DC power supply is connected to the DC input end of the inverter; the first AC output end of the inverter is connected to the input end of the electronic switch module group; the electronic switch module group includes at least two output ends, and each output end of the electronic switch module group forms a load connection end group with the second AC output end of the inverter; the output end of the controller is connected to the control end of the electronic switch module group, and the controller is used to control the opening and closing of the electronic switch module group so as to power on or off each load connection end group through the electronic switch module group.
  • the switch enable (electronic switch module group) of multiple loads is placed at the back end of the inverter, that is, multiple load connection terminal groups are controlled by the same inverter, and the inverter transmits power to each load connection terminal group.
  • the signal phases are all the same, so there is no phase difference when multiple loads are turned on, which improves the load working effect.
  • FIG. 1 is a load control block diagram provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of driving waveforms when different loads are turned on at different times according to an embodiment of the present application
  • FIG. 3 is a block diagram of two load control principles provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • an embodiment of a phase synchronized working circuit is provided.
  • FIG. 1 is a load control block diagram.
  • the phase synchronization working circuit includes: a DC power supply, an inverter, Electronic switch module group and controller (not shown in the figure).
  • the DC output terminal of the DC power supply is connected to the DC input terminal of the inverter.
  • the inverter includes a first AC output terminal AC1 and a second AC output terminal AC2.
  • the first AC output terminal AC1 is connected to the input terminal of the electronic switch module group.
  • the second AC output terminal AC2 includes at least two output terminals A1 and A2, and each output terminal of the electronic switch module group forms a load connection terminal group with the second AC output terminal AC2 of the inverter, thus forming at least two A load connection terminal group is used to connect the load.
  • the output end of the controller is connected to the control end of the electronic switch module group, and can control the opening and closing of the electronic switch module group to power or cut off power to each load connection end group through the electronic switch module group.
  • This application places the switch enable (electronic switch module group) of multiple loads at the back end of the inverter, that is, multiple load connection terminal groups are controlled by the same inverter, and the inverter transmits power to each load connection terminal.
  • the signal phases of the groups are all the same, so there is no phase difference when multiple loads are turned on, which improves the load working effect.
  • the phase synchronization working circuit also includes at least one load, each load is connected to any load connection terminal group, and the load operates when the electronic switch module group is closed.
  • the electronic switch module group may only include one electronic switch module, and all loads correspond to one electronic switch module. In this way, when the electronic switch module group is closed, multiple load connection end groups are powered at the same time, and multiple loads will work at the same time. , since the phase differences of multiple loads are the same, there will be no bad effects, such as resonance noise.
  • the electronic switch module group can also include multiple electronic switch modules, and each load corresponds to an electronic switch module.
  • the controller can control some of the electronic switch modules to close, and can also control the electronic switch modules to close at different times. Close, thereby controlling different load connection terminals to supply power at different times. In this way, even if multiple loads start working at different times, due to the use of a common inverter, the phase differences of multiple loads will be the same, improving the load working effect.
  • Figure 2 is a schematic diagram of the drive waveforms when different loads are turned on at different times.
  • the waveform at the top is the drive waveform for the first load to be turned on.
  • the waveform at the bottom is the drive waveform for the second load to be turned on.
  • the second waveform is for the second load to be turned on.
  • the electronic switch module includes a relay, a triode, a first bias resistor and a second bias resistor.
  • the input end of the relay is connected to the first AC output end of the inverter, and the output end of the relay is connected to one end of the load.
  • one end of the relay's coil is connected to the DC power supply.
  • the collector of the triode is connected to the other end of the relay's coil, and the emitter of the triode is grounded.
  • One end of the first bias resistor is connected to the output end of the controller, and the other end of the first bias resistor is connected to the base of the triode.
  • One end of the second bias resistor is connected to the other end of the first bias resistor and the base of the triode, and the other end of the second bias resistor is connected to ground.
  • FIG. 3 is a block diagram of two load control principles. It can be seen that the DC output terminal of the DC power supply is connected to the DC input terminal of the inverter.
  • the first AC output terminal AC1 of the inverter is connected to the common switches of relay K1 and relay K2 respectively. terminals are connected, the second AC output terminal AC2 of the inverter is connected to the other terminal of load 1 and the other terminal of load 2, and the relay K1 is very closed.
  • Contact A1 is connected to one end of load 1
  • non-closed contact A2 of relay K2 is connected to one end of load 2
  • one end of the coil of relay K1 and one end of the coil of relay K2 are connected to the DC power supply
  • the other end of the coil of relay K1 is connected to the collectors of transistor Q1 and transistor Q2 respectively.
  • the bases of transistor Q1 and transistor Q2 are connected to the GPIO (General-Purpose Input/Output Ports, General I/O) of the MCU through the first bias resistor R1. O port) is connected, and is also connected to ground through the second bias resistor R2.
  • GPIO General-Purpose Input/Output Ports, General I/O
  • the transistor when the base of the transistor detects a high level, the transistor is turned on.
  • the relay is used to power up and pull in when the transistor is turned on, so that the load is connected to the first AC output terminal of the inverter through the relay.
  • the controller MCU controls the base of the transistor to be at a high level.
  • the transistor is turned on.
  • the relay is powered on and closed when the transistor is turned on.
  • the load is connected to the first AC output terminal AC1 of the inverter through the relay.
  • the electronic switch module When the electronic switch module is closed, the first AC output terminal and the second AC output terminal of the inverter output two square waves with the same frequency and a phase difference of 180 degrees.
  • An AC signal is formed at both ends of the load, thereby driving the load to work.
  • the two AC output terminals of the inverter both output a square wave of 50 Hz with a phase difference of 180 degrees, and the two AC output terminals are added to both ends of the load to form a 50 Hz AC signal.
  • the present application also provides a phase synchronization working method, which includes: sending a closing signal to an electronic switch module group so that the two AC output ends of the inverter form an AC signal at both ends of the load after passing through the closed electronic switch module group to drive the load to work, wherein the electronic switch module group is connected to at least one AC output end of the inverter, and the driving phases of at least two loads are the same.
  • the controller sends a closing signal to the electronic switch module group, the electronic switch module in the electronic switch module group is closed, and the two AC output ends of the inverter form an AC signal at both ends of the load after passing through the closed electronic switch module group. , works by driving the load. Since the electronic switch module group is connected to the AC output end of the inverter, the phase difference of the output of the same inverter is the same, so the driving phases of the loads are the same and no resonance noise will be generated.
  • the electronic switch module group includes multiple electronic switch modules, and each load corresponds to one electronic switch module.
  • the step of sending the closing signal to the electronic switch module group includes: determining at least two to be activated according to the control instruction. load; determine the electronic switch module corresponding to the load to be started; control the triode in the electronic switch module to conduct, so that the relay connected to the triode is powered on.
  • the controller determines at least two loads to be started, it determines the electronic switch module corresponding to each load, and then controls the triode in the electronic switch module to conduct.
  • the relay is powered on due to the conduction of the triode.
  • the load and The AC output terminals of the inverter are connected, and the two AC output terminals of the inverter form AC signals at both ends of the load, and the load starts to work.
  • each load is configured with an electronic switch module.
  • the controller can avoid damage to the electronic switch module group causing all loads to become unusable.
  • phase synchronization working device includes:
  • the sending module is used to send a closing signal to the electronic switch module group, so that the two AC output terminals of the inverter form an AC signal at both ends of at least two loads after passing through the closed electronic switch module group to drive the load to work,
  • the electronic switch module group is connected to at least one AC output terminal of the inverter, and the driving phases of at least two loads are the same.
  • the electronic switch module group includes multiple electronic switch modules, each load corresponds to one electronic switch module, and the sending module is used for:
  • this application provides an electronic device, as shown in Figure 4, including a memory 403, a processor 401, a communication interface 402 and a communication bus 404.
  • the memory 403 stores information that can be used in the processor 401.
  • communication occurs between the memory 403 and the communication interface 402, between the memory 403 and the processor 401, and between the processor 401 and the communication interface 402 through the communication bus 404.
  • the processor 401 executes the computer program, the above is achieved. Phase synchronization working method.
  • the memory and processor in the above electronic device communicate via a communication bus and a communication interface.
  • the communication bus may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus may be divided into an address bus, a data bus, a control bus, and the like.
  • the memory may include random access memory (Random Access Memory, RAM for short) or non-volatile memory (non-volatile memory), such as at least two disk memories.
  • RAM Random Access Memory
  • non-volatile memory non-volatile memory
  • the memory may also be at least two storage devices located far away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (Digital Signal Processing) , DSP for short), Application Specific Integrated Circuit (ASIC for short), Field-Programmable Gate Array (FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium having non-volatile program code executable by a processor is also provided.
  • the computer-readable storage medium is configured to store program code for the processor to execute the above-mentioned phase synchronization working method.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Device (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, and other electronic units used to perform the functions of this application or a combination thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology in this article can be implemented through units that perform the functions of this article.
  • Software code may be stored in memory and executed by a processor.
  • the memory can be implemented in the processor or external to the processor.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • Functions may be stored in a computer-readable storage medium when implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of this embodiment is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

本申请提供了一种相位同步工作电路和方法,相位同步工作电路包括:直流电源、逆变器、电子开关模块组和控制器:直流电源的直流输出端与逆变器的直流输入端连接;逆变器的第一交流输出端与电子开关模块组的输入端相连接;电子开关模块组包括至少两个输出端,且电子开关模块组的每个输出端均与逆变器的第二交流输出端组成一个负载连接端组;控制器的输出端和电子开关模块组的控制端相连接,控制器用于控制电子开关模块组的开闭,以通过电子开关模块组对每个负载连接端组进行供电或断电。本申请避免负载在不同相位下工作导致工作效果不好。

Description

相位同步工作电路和方法
本申请要求于2022年9月23日提交至中国国家知识产权局、申请号为202211167751.3、申请名称为一种相位同步工作电路和方法的专利申请的优先权。
技术领域
本申请涉及电路控制技术领域,尤其涉及一种相位同步工作电路和方法。
背景技术
一些负载在工作时需要采用交流电,那么就需要逆变器将直流电能转换为交流电,若每个负载分别采用一个逆变器,每个负载的控制单元本身存在差异,由于每个逆变器开启和关闭的时间是有差异的,则每个负载的相位有差异,导致负载工作效果不好。
例如,为了打造智能睡眠的环境,促进人体睡眠,市面上各种类型和功能的智能床逐渐流行推广,其中气囊按摩功能作为智能床新的功能成为高端智能床的主代表功能。气囊按摩采用气泵/气阀/气囊三大组件构成的气体控制装置实现按摩。对于双人智能床要实现精确按摩控制,通常至少要采用两个气泵对按摩气囊进行充气。现有气泵装置工作时,由于相位差异多个气泵启动存在共振噪声,用户按摩时噪音过大。
目前没有良好的方法能够消除由于相位差导致负载工作效果不好的问题。
申请内容
本申请的主要目的在于提供一种相位同步工作电路和方法,以解决负载工作效果不好的问题。具体技术方案如下:
第一方面,提供了一种相位同步工作电路,相位同步工作电路包括:直流电源、逆变器、电子开关模块组和控制器:直流电源的直流输出端与逆变器的直流输入端连接;逆变器的第一交流输出端与电子开关模块组的输入端相连接;电子开关模块组包括至少两个输出端,且电子开关模块组的每个输出端均与逆变器的第二交流输出端组成一个负载连接端组;控制器的输出端和电子开关模块组的控制端相连接,控制器用于控制电子开关模块组的开闭,以通过电子开关模块组对每个负载连接端组进行供电或断电。
在一个可选的实施例中,相位同步工作电路还包括:负载,负载与任意一个负载连接端组相连接,且负载用于在电子开关模块组闭合时进行工作;其中,负载至少为一个。
在一个可选的实施例中,电子开关模块组包括多个电子开关模块,每个负载对应一个电子开关模块。
在一个可选的实施例中,电子开关模块组包括一个电子开关模块,全部负载对应一个电子开关模块。
在一个可选的实施例中,电子开关模块包括:继电器,继电器的输入端与逆变器的第一交流输出端连接,继电器的输出端与负载的一端连接,继电器的线圈的一端连接直流电源;三极管,三极管的集电极和继电器的线圈的另一端连接,三极管的发射极接地;第一偏压电阻,第一偏压电阻的一端连接控制器的输出端,第一偏压电阻的另一端连接三极管的基极;第二偏压电阻,第二偏压电阻的一端与第一偏压电阻的另一端和三极管的基极均连接,第二偏压电阻的另一端接地。
在一个可选的实施例中,在三极管的基极检测到高电平的情况下,三极管导通;继电器用于在三极管导通时上电吸合,以使负载通过继电器与逆变器的第一交流输出端连通。
在一个可选的实施例中,在电子开关模块闭合时,逆变器的第一交流输出端和第二交流输出端输出频率相同、相位差为180度的两个方波,第一交流输出端和第二交流输出端加在负载两端以形成交流信号,从而驱动负载工作。
第二方面,提供了一种相位同步工作方法,相位同步工作方法包括:发送闭合信号至电子开关模块组,以使逆变器的两个交流输出端经过闭合的电子开关模块组后在至少两个负载的两端形成交流信号,以驱动负载工作,其中,电子开关模块组和逆变器的至少一个交流输出端连接,至少两个负载的驱动相位均相同。
在一个可选的实施例中,电子开关模块组包括多个电子开关模块,每个负载对应一个电子开关模块,发送闭合信号至电子开关模块组的步骤包括:根据控制指令确定待启动的至少两个负载;确定待启动的负载对应的电子开关模块;控制电子开关模块中的三极管导通,以使与三极管连接的继电器上电吸合。
第三方面,提供了一种相位同步工作装置,相位同步工作装置包括:发送模块,用于发送闭合信号至电子开关模块组,以使逆变器的两个交流输出端经过闭合的电子开关模块组后在至少两个负载的两端形成交流信号,以驱动负载工作,其中,电子开关模块组和逆变器的至少一个交流输出端连接,至少两个负载的驱动相位均相同。
第四方面,提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器和通信接口之间、存储器和通信接口之间、处理器和存储器之间均通过通信总线进行通信;存储器用于存放计算机程序;处理器用于在执行存储器上所存放的程序时实现上述的相位同步工作方法。
第五方面,提供了一种计算机可读存储介质,计算机可读存储介质内存储有计算机程序,计算机程序被处理器执行时实现上述的相位同步工作方法。
本申请有益效果:
本申请提供了一种相位同步工作电路,相位同步工作电路包括:直流电源、逆变器、电子开关模块组和控制器,直流电源的直流输出端与逆变器的直流输入端连接;逆变器的第一交流输出端与电子开关模块组的输入端相连接;电子开关模块组包括至少两个输出端,且电子开关模块组的每个输出端均与逆变器的第二交流输出端组成一个负载连接端组;控制器的输出端和电子开关模块组的控制端相连接,控制器用于控制电子开关模块组的开闭,以通过电子开关模块组对每个负载连接端组进行供电或断电。
本申请将多个负载的开关使能(电子开关模块组)放在逆变器后端,即多个负载连接端组采用同一个逆变器控制,逆变器输给每个负载连接端组的信号相位都是一样的,那么多个负载在开启时不存在相位差,提高负载工作效果。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上的所有优点。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请的实施例提供的负载控制框图;
图2为本申请的实施例提供的不同负载在不同时刻开启时的驱动波形示意图;
图3为本申请的实施例提供的两个负载控制原理框图;
图4为本申请的实施例提供的一种电子设备的结构示意图。
其中,上述附图包括以下附图标记:
401、处理器;402、通信接口;403、存储器;404、通信总线。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本申请中,在未作相反说明的情况下,使用的方位词如“上、下”通常是针对附图所示的方向而言的,或者是针对竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本申请。
为了解决背景技术中提及的问题,根据本实施例的一方面,提供了一种相位同步工作电路的实施例。
下面将结合具体实施方式,对本实施例提供的一种相位同步工作电路进行详细的说明,图1为负载控制框图,如图1所示,相位同步工作电路包括:包括直流电源、逆变器、电子开关模块组和控制器(图中未画出)。直流电源的直流输出端与逆变器的直流输入端相连,逆变器包括第一交流输出端AC1和第二交流输出端AC2,第一交流输出端AC1与电子开关模块组的输入端相连接,第二交流输出端AC2包括至少两个输出端A1和A2,且电子开关模块组的每个输出端均与逆变器的第二交流输出端AC2组成一个负载连接端组,这样构成至少两个负载连接端组,负载连接端组用于连接负载。控制器的输出端与电子开关模块组的控制端相连接,能够控制电子开关模块组的开闭,以通过电子开关模块组对每个负载连接端组进行的供电或断电。
本申请将多个负载的开关使能(电子开关模块组)放在逆变器的后端,即多个负载连接端组采用同一个逆变器控制,逆变器输给每个负载连接端组的信号相位都是一样的,那么多个负载在开启时不存在相位差,提高负载工作效果。
可选地,相位同步工作电路还包括至少一个负载,每个负载与任意一个负载连接端组相连接,在电子开关模块组闭合时负载进行工作。
其中,多个负载采用同一个电子开关模块组进行控制。
在一种实施例中,电子开关模块组可以只包括一个电子开关模块,全部负载对应一个电子开关模块,这样电子开关模块组闭合时,多个负载连接端组同时供电,多个负载会同时工作,由于多个负载的相位差相同,不会产生不好的影响,例如共振噪声。
在另一种实施例中,电子开关模块组还可以包括多个电子开关模块,每个负载对应一个电子开关模块,控制器可以控制部分电子开关模块闭合,还可以控制电子开关模块在不同的时刻闭合,从而控制不同的负载连接端在不同时刻供电,这样即使多个负载在不同时刻开始工作,由于采用共同的一个逆变器,多个负载的相位差也是相同的,提高负载工作效果。
图2为不同负载在不同时刻开启时的驱动波形示意图,图中位于上方的波形为第一个开启负载的驱动波形,图中位于下方的波形为第二个开启负载的驱动波形,第二个负载在任意时刻开启其相位都能和第一个负载的相位保持一致。
在本实施例中,电子开关模块包括继电器、三极管、第一偏压电阻和第二偏压电阻,继电器的输入端与逆变器的第一交流输出端连接,继电器的输出端与负载的一端连接,继电器的线圈的一端连接直流电源。三极管的集电极和继电器的线圈的另一端连接,三极管的发射极接地。第一偏压电阻的一端连接控制器的输出端,第一偏压电阻的另一端连接三极管的基极。第二偏压电阻的一端与第一偏压电阻的另一端和三极管的基极均连接,第二偏压电阻的的另一端接地。
图3为两个负载控制原理框图,可以看出,直流电源的直流输出端与逆变器的直流输入端相连,逆变器的第一交流输出端AC1分别与继电器K1、继电器K2的公共开关端相连,逆变器的第二交流输出端AC2与负载1的另一端、负载2的另一端相连,继电器K1的非常闭 触点A1与负载1的一端相连、继电器K2的非常闭触点A2与负载2的一端相连,继电器K1的线圈的一端、继电器K2的线圈的一端连接直流电源,继电器K1的线圈的另外一端、继电器K2的线圈的另外一端分别与三极管Q1、三极管Q2的集电极相连,三极管Q1、三极管Q2的基极通过第一偏压电阻R1与MCU的GPIO(General-Purpose Input/Output Ports,通用I/O端口)相连,还通过第二偏压电阻R2接地。
具体地,在三极管的基极检测到高电平的情况下,三极管导通。继电器用于在三极管导通时上电吸合,以使负载通过继电器与逆变器的第一交流输出端连通。这样,控制器MCU控制三极管的基极为高电平,此时三极管导通,继电器在三极管导通时上电吸合,负载通过继电器与逆变器的第一交流输出端AC1连通。在电子开关模块闭合时,逆变器的第一交流输出端和第二交流输出端输出频率相同、相位差为180度的两个方波,第一交流输出端和第二交流输出端加在负载的两端形成交流信号,从而驱动负载工作。示例性地,逆变器的两个交流输出端都输出50zH的相位差为180度的方波,两个交流输出端加在负载的两端形成一个50zH的交流信号。
作为一种可选的实施方式,本申请还提供了一种相位同步工作方法,相位同步工作方法包括:发送闭合信号至电子开关模块组,以使逆变器的两个交流输出端经过闭合的电子开关模块组后在负载的两端形成交流信号,以驱动负载工作,其中,电子开关模块组和逆变器的至少一个交流输出端连接,至少两个负载的驱动相位均相同。
具体地,控制器发送闭合信号至电子开关模块组,电子开关模块组中的电子开关模块闭合,逆变器的两个交流输出端经过闭合的电子开关模块组后在负载的两端形成交流信号,以驱动负载工作,由于电子开关模块组和逆变器的交流输出端连接,同一个逆变器输出的相位差相同,因此负载的驱动相位均相同,不会产生共振噪声。
作为一种可选的实施方式,电子开关模块组包括多个电子开关模块,每个负载对应一个电子开关模块,发送闭合信号至电子开关模块组的步骤包括:根据控制指令确定待启动的至少两个负载;确定待启动的负载对应的电子开关模块;控制电子开关模块中的三极管导通,以使和三极管连接的继电器上电吸合。
具体地,控制器确定待启动的至少两个负载后,确定每个负载对应的电子开关模块,然后控制电子开关模块中的三极管导通,继电器由于三极管导通从而上电吸合,该负载和逆变器的交流输出端连通,逆变器的两个交流输出端在负载两端形成交流信号,负载开始工作。
具体地,每个负载配置一个电子开关模块,控制器通过对每个负载的电子开关模块进行单独控制,可以避免电子开关模块组损坏导致全部负载都无法使用。
基于相同的技术构思,本实施例还提供了一种相位同步工作装置,该相位同步工作装置包括:
发送模块,用于发送闭合信号至电子开关模块组,以使逆变器的两个交流输出端经过闭合的电子开关模块组后在至少两个负载的两端形成交流信号,以驱动负载工作,其中,电子开关模块组和逆变器的至少一个交流输出端连接,至少两个负载的驱动相位均相同。
在一个可选的实施例中,电子开关模块组包括多个电子开关模块,每个负载对应一个电子开关模块,发送模块用于:
根据控制指令确定待启动的至少两个负载;确定待启动的负载对应的电子开关模块;
控制电子开关模块中的三极管导通,以使和三极管连接的继电器上电吸合。
根据本实施例的另一方面,本申请提供了一种电子设备,如图4所示,包括存储器403、处理器401、通信接口402及通信总线404,存储器403中存储有可在处理器401上运行的计算机程序,存储器403和通信接口402之间、存储器403和处理器401之间、处理器401和通信接口402之间均通过通信总线404进行通信,处理器401执行计算机程序时实现上述的相位同步工作方法。
可选的,上述电子设备中的存储器、处理器通过通信总线和通信接口进行通信。通信总线可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。
可选的,存储器可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少两个磁盘存储器。
可选的,存储器还可以是至少两个位于远离前述处理器的存储装置。
可选的,上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
根据本实施例的又一方面还提供了一种具有处理器可执行的非易失的程序代码的计算机可读存储介质。
在一个可选的实施例中,在本实施例中,计算机可读存储介质被设置为存储用于处理器执行上述的相位同步工作方法的程序代码。
在一个可选的实施例中,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
本实施例在具体实现时,可以参阅上述各个实施例,具有相应的技术效果。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文功能的单元来实现本文的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种相位同步工作电路,其特征在于,所述相位同步工作电路包括直流电源、逆变器、电子开关模块组和控制器:
    所述直流电源的直流输出端与所述逆变器的直流输入端连接;
    所述逆变器的第一交流输出端与所述电子开关模块组的输入端相连接;
    所述电子开关模块组包括至少两个输出端,且所述电子开关模块组的每个所述输出端均与所述逆变器的第二交流输出端组成一个负载连接端组;
    所述控制器的输出端和所述电子开关模块组的控制端相连接,所述控制器用于控制所述电子开关模块组的开闭,以通过所述电子开关模块组对每个所述负载连接端组进行供电或断电。
  2. 根据权利要求1所述的相位同步工作电路,其特征在于,所述相位同步工作电路还包括:
    负载,所述负载与任意一个负载连接端组相连接,且所述负载用于在电子开关模块组闭合时进行工作;其中,所述负载至少为一个。
  3. 根据权利要求2所述的相位同步工作电路,其特征在于,所述电子开关模块组包括多个电子开关模块,每个负载对应一个电子开关模块。
  4. 根据权利要求2所述的相位同步工作电路,其特征在于,所述电子开关模块组包括一个电子开关模块,全部所述负载对应一个所述电子开关模块。
  5. 根据权利要求3或4所述的相位同步工作电路,其特征在于,所述电子开关模块包括:
    继电器,所述继电器的输入端与逆变器的第一交流输出端连接,所述继电器的输出端与所述负载的一端连接,所述继电器的线圈的一端连接所述直流电源;
    三极管,所述三极管的集电极和所述继电器的线圈的另一端连接,所述三极管的发射极接地;
    第一偏压电阻,所述第一偏压电阻的一端连接所述控制器的输出端,所述第一偏压电阻的另一端连接所述三极管的基极;
    第二偏压电阻,所述第二偏压电阻的一端与所述第一偏压电阻的另一端和所述三极管的基极均连接,所述第二偏压电阻的另一端接地。
  6. 根据权利要求5所述的相位同步工作电路,其特征在于,
    在所述三极管的基极检测到高电平的情况下,所述三极管导通;
    所述继电器用于在所述三极管导通时上电吸合,以使所述负载通过所述继电器与所述逆变器的第一交流输出端连通。
  7. 根据权利要求3或4所述的相位同步工作电路,其特征在于,
    在所述电子开关模块闭合时,所述逆变器的第一交流输出端和第二交流输出端输出频率相同、相位差为180度的两个方波,所述第一交流输出端和所述第二交流输出端加在所述负载的两端以形成交流信号,从而驱动所述负载工作。
  8. 一种相位同步工作方法,其特征在于,所述相位同步工作方法包括:
    发送闭合信号至电子开关模块组,以使逆变器的两个交流输出端经过闭合的所述电子开关模块组后在至少两个负载的两端形成交流信号,以驱动所述负载工作,其中,所述电子开关模块组和所述逆变器的至少一个交流输出端连接,至少两个所述负载的驱动相位均相同。
  9. 根据权利要求8所述的相位同步工作方法,其特征在于,所述电子开关模块组包括多个电子开关模块,每个负载对应一个所述电子开关模块,所述发送闭合信号至电子开关模块组的步骤包括:
    根据控制指令确定待启动的至少两个负载;
    确定待启动的负载对应的电子开关模块;
    控制所述电子开关模块中的三极管导通,以使与所述三极管连接的继电器上电吸合。
  10. 一种相位同步工作装置,其特征在于,所述相位同步工作装置包括:
    发送模块,用于发送闭合信号至电子开关模块组,以使逆变器的两个交流输出端经过闭合的电子开关模块组后在至少两个负载的两端形成交流信号,以驱动所述负载工作,其中,所述电子开关模块组和所述逆变器的至少一个交流输出端连接,至少两个所述负载的驱动相位均相同。
  11. 一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,所述处理器和所述通信接口之间、所述存储器和所述通信接口之间、所述处理器和所述存储器之间均通过所述通信总线进行通信;
    所述存储器用于存放计算机程序;
    所述处理器用于在执行所述存储器上所存放的程序时实现权利要求8或9所述的相位同步工作方法。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求8或9所述的相位同步工作方法。
PCT/CN2023/090375 2022-09-23 2023-04-24 相位同步工作电路和方法 WO2024060612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211167751.3A CN115441761A (zh) 2022-09-23 2022-09-23 一种相位同步工作电路和方法
CN202211167751.3 2022-09-23

Publications (1)

Publication Number Publication Date
WO2024060612A1 true WO2024060612A1 (zh) 2024-03-28

Family

ID=84249265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090375 WO2024060612A1 (zh) 2022-09-23 2023-04-24 相位同步工作电路和方法

Country Status (2)

Country Link
CN (1) CN115441761A (zh)
WO (1) WO2024060612A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441761A (zh) * 2022-09-23 2022-12-06 珠海格力电器股份有限公司 一种相位同步工作电路和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124781A (ja) * 2005-10-27 2007-05-17 Omron Corp 電源装置、無停電電源装置および電力出力制御方法
CN102625548A (zh) * 2012-04-26 2012-08-01 重庆大学 一种多路输出大功率led恒流驱动电源
JP2015128354A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 配電制御装置および配電制御方法
CN109120060A (zh) * 2018-09-27 2019-01-01 东莞市广荣电子制品有限公司 一种eps分时下电电路
CN115441761A (zh) * 2022-09-23 2022-12-06 珠海格力电器股份有限公司 一种相位同步工作电路和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124781A (ja) * 2005-10-27 2007-05-17 Omron Corp 電源装置、無停電電源装置および電力出力制御方法
CN102625548A (zh) * 2012-04-26 2012-08-01 重庆大学 一种多路输出大功率led恒流驱动电源
JP2015128354A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 配電制御装置および配電制御方法
CN109120060A (zh) * 2018-09-27 2019-01-01 东莞市广荣电子制品有限公司 一种eps分时下电电路
CN115441761A (zh) * 2022-09-23 2022-12-06 珠海格力电器股份有限公司 一种相位同步工作电路和方法

Also Published As

Publication number Publication date
CN115441761A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024060612A1 (zh) 相位同步工作电路和方法
US8604915B2 (en) Smart power sockets, boards, and plugs
US6738834B1 (en) System for reconfiguring a peripheral device using configuration residing on the peripheral device by electronically simulating a physical disconnection and reconnection to a host device
WO2011113349A1 (zh) 上网模块电源管理的方法和装置
US9535875B2 (en) Methods and apparatus for reducing power consumption within embedded systems
EP3425296A1 (en) Starting circuit for starting air conditioner, and air conditioner
TW201250459A (en) Method of operating a heterogneous computer system
TW201028838A (en) Standby power-saving system and computer power-on & power-off method thereof
WO2019203797A1 (en) Firmware setup menu options for docking stations
TW201928927A (zh) 觸控顯示驅動電路
US7415626B2 (en) Methods, devices and circuits for activating a communication device connected to an external bus
CN108628792B (zh) 通信接口防电流泄漏系统及方法
JP2001195156A (ja) コンピュータの電源立ち上げ装置
CN105352121A (zh) 一种基于手机终端的遥控系统及方法
EP2180394A2 (en) Embedded system with powersaving functions and powersaving method thereof
CN103777733B (zh) 电脑装置及通用连接端口模块的供电方法
WO2020069639A1 (zh) 设备控制方法、控制装置及采用该控制装置的设备
WO2012142757A1 (zh) 一种自动配置多种类型接口的电机控制器
JP2000207814A (ja) 電子機器およびそのシステム起動方法
WO2014187268A1 (zh) 一种移动热点ufi设备及开机方法
CN105446912A (zh) 一种cpu通过hsic总线接口控制wifi模块的方法及装置
CN108923715B (zh) 振动马达控制系统及电子设备
TWI616888B (zh) 電子裝置及其電源管理方法
CN204926090U (zh) 基于动态口令和usbkey的控制系统
JP2004348662A (ja) 電子機器、電源制御装置および電源制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866909

Country of ref document: EP

Kind code of ref document: A1