WO2024060601A1 - 报文发送方法及装置、存储介质及电子装置 - Google Patents

报文发送方法及装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2024060601A1
WO2024060601A1 PCT/CN2023/089040 CN2023089040W WO2024060601A1 WO 2024060601 A1 WO2024060601 A1 WO 2024060601A1 CN 2023089040 W CN2023089040 W CN 2023089040W WO 2024060601 A1 WO2024060601 A1 WO 2024060601A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
position offset
hopping
message
link
Prior art date
Application number
PCT/CN2023/089040
Other languages
English (en)
French (fr)
Inventor
朱向阳
喻敬海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024060601A1 publication Critical patent/WO2024060601A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level

Definitions

  • Embodiments of the present disclosure relate to the field of communications, and specifically, to a message sending method and device, a storage medium, and an electronic device.
  • the IETFDetNet working group proposed Cycle Specified Queuing and Forwarding (CSQF) and Large-scale Deterministic IP Network (LDN), which do not require time synchronization across the entire network, only frequency synchronization, and can Provide deterministic transmission services for critical businesses.
  • CQF Cycle Specified Queuing and Forwarding
  • LDN Large-scale Deterministic IP Network
  • the controller needs to obtain the precise delay of the physical link when planning the end-to-end path for deterministic services.
  • the optical fiber will be affected by environmental temperature and humidity, carrier frequency, curvature, etc. Influence of factors; in order to improve the measurement accuracy of link delay, special network optical frequency domain reflectometer (Optical Frequency Domain Reflectometer, OFDR) and other equipment are usually chosen to measure the physical delay of optical fiber.
  • OFDR Optical Frequency Domain Reflectometer
  • the optical equipment may automatically perform protection switching and switch the optical signal from one physical optical fiber to another physical optical fiber, that is, an optical fiber link jump occurs. change, as shown in Figure 4.
  • an optical fiber link jump occurs, the link delay may change, but at this time the user and the control plane cannot obtain and respond to the link jump in time, and the accuracy of end-to-end path planning cannot be guaranteed.
  • Embodiments of the present disclosure provide a message sending method and device, a storage medium, and an electronic device to at least solve the problem in the related art that when a link jump occurs, it cannot be detected in time.
  • a message sending method including: determining the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node; in the When the change value of the location offset is greater than the preset threshold, a link hopping notification message is sent, where the change value of the location offset is the difference between the location offset and the last determined location offset. The difference in values.
  • a message sending method including: sending a hopping detection message to a second communication node to instruct the second communication node to determine the hop sent by the first communication node. change the position offset of the detection message within the periodic template window of the second communication node, and when the change value of the position offset is greater than the preset threshold, send a link hopping notification message, wherein, the change value of the position offset is the difference between the position offset and the previous The difference between the previously determined position offset values.
  • a message sending device including: a determination module configured to determine the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node. Shift; the first sending module is configured to send a link hopping notification message when the change value of the position offset is greater than the preset threshold, wherein the change value of the position offset is the The difference between the above position offset and the last determined position offset value.
  • a message sending device including: a second sending module configured to send a hopping detection message to a second communication node to instruct the second communication node to determine the first The position offset of the hopping detection message sent by a communication node within the period template window of the second communication node, and when the change value of the position offset is greater than the preset threshold, the link is sent A hopping notification message, wherein the change value of the position offset is the difference between the position offset and the last determined position offset value.
  • a computer-readable storage medium is also provided.
  • a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the above methods when running. Steps in Examples.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above. Steps in method embodiments.
  • the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node is determined; and used for
  • a link hopping notification message is sent; thereby realizing that when a link jump occurs can be obtained in time; therefore, the problem in related technologies that cannot be detected in time when a link jump occurs can be solved, and the effect of being able to detect link jumps in time can be achieved.
  • Figure 1 is a hardware structure block diagram of a computer terminal according to a message sending method according to an embodiment of the present disclosure
  • Figure 2 is a flow chart of a message sending method according to an embodiment of the present disclosure
  • Figure 3 is a flow chart of another message sending method according to an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of an optional optical fiber link hopping according to an embodiment of the present disclosure
  • FIG5 is a schematic diagram of an optional link hopping detection principle according to an embodiment of the present disclosure.
  • Figure 6 is a flow chart of an optional link hopping detection according to an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of another optional optical fiber link hopping according to an embodiment of the present disclosure.
  • Figure 8 is a flow chart of another optional link hopping detection according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an optional encapsulation format of a link hopping notification message according to an embodiment of the present disclosure.
  • Figure 10 is a structural block diagram of an optional message sending device according to an embodiment of the present disclosure.
  • Figure 11 is a structural block diagram of another optional message sending device according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structure block diagram of a computer terminal of a message sending method according to an embodiment of the present disclosure.
  • the computer terminal may include one or more (only one is shown in Figure 1) processors 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above-mentioned computer terminal may also include a transmission device 106 for communication functions and an input and output device 108.
  • processors 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a memory 104 for storing data
  • the above-mentioned computer terminal may also include a transmission device 106 for communication functions and an input and output device 108.
  • Figure 1 is only illustrative, and it does not limit the structure of the above-mentioned computer terminal.
  • the computer terminal may also include more or fewer components than shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the message sending method in the embodiment of the present disclosure.
  • the processor 102 executes the computer program by running the computer program stored in the memory 104.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the computer terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the computer terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • FIG. 2 is a flow chart of the message sending method according to the embodiment of the present disclosure. As shown in Figure 2, the process includes the following steps:
  • Step S202 determine the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node;
  • the above-mentioned periodic template window is a periodic template supported by both the upstream node (equivalent to the above-mentioned first communication node) and the downstream node (equivalent to the above-mentioned second communication node).
  • the above position offset can be recorded as offset, the measured offset value is stored in the downstream node, and the measurement accuracy of the offset value can reach the ns level.
  • Step S204 When the change value of the location offset is greater than a preset threshold, send a link hopping notification message, where the change value of the location offset is the difference between the location offset and the previous threshold. The difference in position offset values determined at one time.
  • the above preset threshold is calculated based on the selected period template. If the change in the offset value exceeds the preset threshold, it is considered that the fiber link may have jumped and a corresponding link jump will be issued. Notification message.
  • the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node is determined; and used for
  • a link hopping notification message is sent; thereby realizing that when a link jump occurs can be obtained in time; therefore, the problem in related technologies that cannot be detected in time when a link jump occurs can be solved, and the effect of being able to detect link jumps in time can be achieved.
  • step S202 before executing step S202: determining the position offset of the jump detection message sent by the first communication node within the periodic template window of the second communication node, the method further includes: receiving the jump detection message sent by the first communication node at the start time or end time of the periodic template window.
  • the method before performing the above step S202: before determining the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node, the method further includes: receiving the first communication The node sends multiple hopping detection messages in sequence according to a preset sending interval, wherein the preset sending interval is an integer multiple of the time slot length of the periodic template used by the first communication node.
  • the method further includes: after the hopping detection When the message is the first hopping detection message sent by the first communication node, the position offset is saved; when the hopping detection message is not the first hopping detection message sent by the first communication node If a hopping detection message is received and the change value of the position offset is less than or equal to the preset threshold, the position offset is compared with the last determined position offset value to determine The change value of the position offset.
  • the link hopping notification message sent includes: a first field used to identify the first communication node, a second field used to identify the second communication node, the periodic template window The time slot size, the last determined position offset value, the position offset amount, and the change value of the position offset amount.
  • FIG. 3 is a flow chart of another message sending method according to an embodiment of the present disclosure. As shown in Figure 3, the flow Includes the following steps:
  • Step S302 Send the hopping detection message to the second communication node to instruct the second communication node to determine the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node. amount, and when the change value of the position offset is greater than the preset threshold, a link hopping notification message is sent, wherein the change value of the position offset is the difference between the position offset and the previous The difference in position offset values determined at one time.
  • a jump detection message is sent to the second communication node to instruct the second communication node to determine the position offset of the jump detection message sent by the first communication node within the periodic template window of the second communication node, and a link jump notification message is sent when the change value of the position offset is greater than a preset threshold; the problem in the related art that a link jump cannot be detected in time, thereby achieving the effect of being able to detect a link jump in time.
  • the method before performing the above step S302: before sending the hopping detection message to the second communication node, the method further includes: determining multiple period templates supported by both the second communication node and the first communication node; Determine a target period template among the plurality of period templates, and determine a preset sending interval of the hopping detection message according to the target period template, where the preset sending interval is a time slot of the period template An integer multiple of the length.
  • performing the above step S302: sending the hopping detection message to the second communication node can be achieved by the following steps: sending the hopping detection at the beginning or end of the periodic template window of the first communication node message.
  • the link hopping notification message sent includes: a first field used to identify the first communication node, a second field used to identify the second communication node, the periodic template window The time slot size, the last determined position offset value, the position offset amount, and the change value of the position offset amount.
  • Figure 5 is a schematic diagram of an optional link hopping detection principle according to an embodiment of the present disclosure, as shown in Figure 5:
  • the offset value is calculated and stored according to the selected period template. As subsequent detection messages continue to arrive, the downstream node sets a threshold ⁇ according to the change in the offset value. If the offset value changes If the amount exceeds ⁇ , it is considered that the fiber link may have jumped, and a corresponding link hop notification message will be sent. It can be seen that in Figure 5, the values of offset1 and offset2 are less than ⁇ , so it is determined that no link hopping has occurred, while the value of offset3 is greater than ⁇ , so it is determined that a link hopping has occurred.
  • Figure 6 is a flow chart of an optional link hopping detection according to an embodiment of the present disclosure. As shown in Figure 6, it specifically includes: Follow these steps:
  • Step 1 Activate the link hopping detection function of the network device, specify the frequency of sending hopping detection messages and the selected period template;
  • the frequency of sending detection messages from the upstream node can be flexibly specified by the user.
  • the sending interval of detection messages must be an integer multiple of the time slot length T.
  • the measurement message sending frequency can be set to 20us, 40us, 60us, etc. This application does not limit this.
  • the window of the minimum period template can be selected as the benchmark to send detection packets. In this case, the selected period template needs to be carried in the detection packet.
  • Step 2 The upstream node constructs a link hopping detection message according to the specified period template
  • Step 3 The downstream node sends measurement packets at the beginning of the period template window according to the specified frequency
  • Step 4 The downstream node receives the detection message. If it is the first detection message, calculate the deviation value (equivalent to the above-mentioned position offset) within the specified period and save the jump difference value (equivalent to the above-mentioned position offset). offset) is set to 0, proceed to step 7; otherwise, calculate the offset value and compare it with the locally stored offset value;
  • Step 5 If the deviation value between the calculated offset value and the locally stored offset value does not exceed the threshold ⁇ , the jump difference value is set to 0 and step 7 is executed;
  • the formulation of the threshold ⁇ is related to the detection accuracy.
  • the value of ⁇ can be comprehensively determined based on actual environmental temperature and humidity changes, fiber load changes, fiber length, etc.
  • the value of ⁇ can be an absolute value or a ratio. , this application does not limit this.
  • Step 6 Update the stored offset value and hop difference value, and send a link hop notification message
  • the downstream node when it detects that a hopping occurs, it can optionally notify the link hopping behavior and the hopping deviation value to the upstream node or controller, and then the upstream node or controller can trigger or notify the user to redo the process.
  • Measurement of fiber optic link delay the advertised information must at least include the address or interface that can identify the local network device, the address or interface that can identify the peer network device, cycle size, hopping mark and hopping difference, etc. This disclosure does not limit the method of information notification. For example, it can be advertised to other nodes in the network through extended IGP (OSPF, ISIS), BGP attributes, or reported through extended southbound interfaces (such as NETCONF, BGPCEP, BGP-LS, etc.) to the controller.
  • extended IGP OSPF, ISIS
  • BGP attributes such as NETCONF, BGPCEP, BGP-LS, etc.
  • Step 7 The transition detection is completed.
  • the position offset of the jump detection message sent by the upstream node within the periodic template window of the second communication node is determined, and when the change value of the position offset is greater than the preset threshold, a link jump notification message is sent; thereby, when a link jump occurs, it can be obtained in time; therefore, the problem in the related art that a link jump cannot be detected in time can be solved, and the effect of being able to detect the link jump in time can be achieved.
  • Figure 7 is a schematic diagram of another optional optical fiber link hopping according to an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of another optional optical fiber link hopping according to an embodiment of the present disclosure. Flowchart of an optional link hop detection.
  • N1 and N2 both support 3 period templates, namely A, B, and C.
  • the period template slot lengths are 10us, 20us, and 40us respectively.
  • N1 the time slot length of period template A is selected as the detection message sending interval, that is, the hopping detection message sending interval is 10us.
  • N2 set the threshold ⁇ for transition detection to 500ns.
  • the phase difference ⁇ between the two devices is 5us, and the fiber delay is 12us.
  • the link After N1 sends the second detection message, the link jumps. After the jump, the fiber delay is 18us.
  • the first three Detect the offset value of the packet arriving at the N2 node and falling within the window.
  • Step 1 Activate the N1 and N2 node hopping detection test function, set the message sending frequency to 10us, and select the period template as A template;
  • Step 2 The N1 node constructs and sends detection messages at 10us intervals at the beginning of the A template window;
  • Step 3 The N2 node receives the first detection message, calculates the offset value to be 7us, stores it locally, and sets the jump difference value to 0;
  • Step 5 Node N2 receives the third detection message and calculates the offset value to be 3us.
  • Step 6 Update the storage offset value to 3us, and update the jump deviation to 3us
  • Step 7 Send a link hop notification message.
  • the position offset of the jump detection message sent by the first communication node within the periodic template window of the second communication node is determined; and when the change value of the position offset indicating the difference between the position offset and the position offset determined last time is greater than a preset threshold, a link jump notification message is sent; thereby, when a link jump occurs, it can be obtained in time; therefore, the problem in the related art that when a link jump occurs, it cannot be detected in time can be solved, and the effect of being able to detect the link jump in time can be achieved.
  • Figure 9 is a schematic diagram of the encapsulation format of an optional link hopping notification message according to an embodiment of the present disclosure.
  • This embodiment gives an example of encapsulation of a link hopping information notification message.
  • OSPF can be extended to add a new link attribute sub-TLV called link-switch sub-TLV to carry the link association.
  • Information related to the link jump between the two devices including the offset value before and after the link jump and the jump deviation offset-deviation.
  • the encapsulation schematic format is shown in Figure 9:
  • the type field uses a specific value to indicate that this sub-TLV is a link hopping deviation attribute type.
  • the length field indicates the length of the data part of the sub-TLV.
  • the value is 8.
  • the cycle-template field is used to specify the selected cycle template.
  • the time slot length is, for example, 10us for period template A, and the field length is 20ctets; the pre-offset value before the jump accounts for 20ctets, the post-offset value after the jump accounts for 20ctets; the offset-deviation before and after the jump accounts for 20ctets.
  • the specific carrying position of the above-mentioned extended cycle-offset sub-TLV is not particularly limited. It can be a sub-TLV of link attributes or a sub-TLV of node attributes, as long as it contains the information that can identify the local node and the opposite node. information, as well as related link hopping deviation information.
  • the method according to the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a second node device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present disclosure.
  • module may be a combination of software and/or hardware that implements a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, implementation in hardware, or a combination of software and hardware, is also possible and contemplated.
  • Figure 10 is a structural block diagram of an optional message sending device according to an embodiment of the present disclosure. As shown in Figure 10, the device includes:
  • Determination module 1002 configured to determine the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node;
  • the first sending module 1004 is configured to send a link hopping notification message when the change value of the location offset is greater than the preset threshold, wherein the change value of the location offset is the location The difference between the offset and the last determined position offset value.
  • the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node is determined; and used for
  • a link hopping notification message is sent; thereby realizing that when a link jump occurs can be obtained in time; therefore, the problem in related technologies that cannot be detected in time when a link jump occurs can be solved, and the effect of being able to detect link jumps in time can be achieved.
  • the above-mentioned determination module 1002 is also configured to receive the position offset of the hopping detection message sent by the first communication node within the periodic template window of the second communication node.
  • the transition detection message is sent at the start time or end time of the periodic template window.
  • the above-mentioned determination module 1002 is also configured to receive the first communication node according to the predetermined position offset before determining the position offset of the hopping detection message sent by the first communication node within the period template window of the second communication node.
  • the preset sending interval is an integer multiple of the time slot length of the periodic template adopted by the first communication node.
  • the above-mentioned determination module 1002 is also configured to determine the position offset of the hopping detection message sent by the first communication node within the periodic template window of the second communication node, and after the hopping detection message is When the first hopping detection message is sent by the first communication node, the position offset is saved; when the hopping detection message is not the first hopping message sent by the first communication node If the message is detected and the change value of the position offset is less than or equal to the preset threshold, the position offset is compared with the last determined position offset value to determine the position. The change value of the offset.
  • the above-mentioned first sending module 1004 is also set to a first field that identifies the first communication node, a second field that identifies the second communication node, the time slot size of the periodic template window, the The last determined position offset value, the position offset amount, and the change value of the position offset amount.
  • FIG 11 is a structural block diagram of another optional message sending device according to an embodiment of the present disclosure. As shown in Figure 11, the device includes:
  • the second sending module 1102 is configured to send the hopping detection message to the second communication node to instruct the second communication node to determine that the hopping detection message sent by the first communication node is within the period template window of the second communication node. within the location offset, and when the change value of the location offset is greater than the preset threshold, a link hopping notification message is sent, where the change value of the location offset is the location The difference between the offset and the last determined position offset value.
  • a jump detection message is sent to the second communication node to instruct the second communication node to determine the position offset of the jump detection message sent by the first communication node within the periodic template window of the second communication node, and a link jump notification message is sent when the change value of the position offset is greater than a preset threshold; the problem in the related art that a link jump cannot be detected in time, thereby achieving the effect of being able to detect a link jump in time.
  • the above-mentioned second sending module 1102 is also configured to determine multiple period templates supported by both the second communication node and the first communication node before sending the hopping detection message to the second communication node; from all A target period template is determined from the plurality of period templates, and a preset sending interval of the hopping detection message is determined according to the target period template, where the preset sending interval is the time slot length of the period template. an integer multiple of.
  • the above-mentioned second sending module 1102 is also configured to send the hopping detection message at the start time or end time of the periodic template window of the first communication node.
  • the above-mentioned second sending module 1102 is also set to a first field that identifies the first communication node, a second field that identifies the second communication node, the time slot size of the periodic template window, the The last determined position offset value, the position offset amount, and the change value of the position offset amount.
  • each of the above modules can be implemented through software or hardware.
  • it can be implemented in the following ways, but is not limited to this: the above modules are all located in the same processor; or the above modules can be implemented in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the above-mentioned storage medium may be configured to store a computer program for performing the following steps:
  • the above-mentioned storage medium can also be configured to store a computer program for performing the following steps:
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (ROM), random access memory (Random Access Memory, RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned processor may be configured to perform the following steps through a computer program:
  • the above-mentioned processor can also be configured to perform the following steps through a computer program:
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present disclosure can be implemented using general-purpose computing devices, and they can be concentrated on a single computing device, or distributed across a network composed of multiple computing devices. They may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases may be executed in a sequence different from that shown herein. Or the described steps can be implemented by making them into individual integrated circuit modules respectively, or by making multiple modules or steps among them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Abstract

本公开提供了一种报文发送方法及装置、存储介质及电子装置,方法包括:确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量(S202);在位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,位置偏移量的变化值为位置偏移量与上一次确定的位置偏移量的差值(S204);通过本公开,解决了在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。

Description

报文发送方法及装置、存储介质及电子装置
本公开要求于2022年9月23日提交中国专利局、申请号为202211167689.8、发明名称“报文发送方法及装置、存储介质及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种报文发送方法及装置、存储介质及电子装置。
背景技术
IETFDetNet工作组提出了指定周期排队转发(Cycle Specified Queuing and Forwarding,CSQF)和大规模确定性网络IP技术(Large-scale Deterministic IP Network,LDN),不要求全网时间同步,仅要求频率同步,能够为关键业务提供确定性传输服务。
在周期调度转发模型中,控制器在对确定性业务进行端到端路径规划时,需要获取物理链路精确时延,但在实际应用中,光纤会受环境温湿度、载波频率、弯曲度等因素的影响;为了提高链路时延的测量精度,通常选择使用专用的网络光频域反射仪(Optical Frequency Domain Reflectometer,OFDR)等设备来测量光纤物理时延,在光纤路径不发生跳变的情况下,该测量过程不需重复进行。
然而,在发生OTN网络光路发生变化、光模块器件损坏、光纤断裂等情况时,光设备可能自动进行保护倒换,将光信号从一条物理光纤切换到另一条物理光纤上去,即发生光纤链路跳变,如附图4所示。在光纤链路跳变发生时,链路时延可能会发生变化,但此时用户和控制面无法及时获取并响应链路跳变,进而无法保证端到端路径规划的准确性。
针对相关技术中,在链路发生跳变时,无法及时检测到等问题,尚未提供有效的解决方案。
发明内容
本公开实施例提供了一种报文发送方法及装置、存储介质及电子装置,以至少解决相关技术中在链路发生跳变时,无法及时检测到的问题。
根据本公开的一个实施例,提供了一种报文发送方法,包括:确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
根据本公开的另一个实施例,还提供了一种报文发送方法,包括:将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在所述第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一 次确定的位置偏移值的差值。
根据本公开的另一个实施例,提供了一种报文发送装置,包括:确定模块,设置为确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;第一发送模块,设置为在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
根据本公开的另一个实施例,提供了一种报文发送装置,包括:第二发送模块,设置为将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在所述第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
根据本公开的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本公开,通过在第一通信节点发送跳变检测报文时,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;并在用于指示位置偏移量与上一次确定的位置偏移量的差值的位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文;从而实现在链路发生跳变时,能够及时获取到;因此,可以解决相关技术中,在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。
附图说明
图1是根据本公开实施例的一种报文发送方法的计算机终端的硬件结构框图;
图2是根据本公开实施例的一种报文发送方法的流程图;
图3是根据本公开实施例的另一种报文发送方法的流程图
图4是根据本公开实施例的一种可选的光纤链路跳变的示意图;
图5是根据本公开实施例的一种可选的链路跳变检测原理示意图;
图6是根据本公开实施例的一种可选的链路跳变检测的流程图;
图7是根据本公开实施例的另一种可选的光纤链路跳变的示意图;
图8是根据本公开实施例的另一种可选的链路跳变检测的流程图;
图9是根据本公开实施例的一种可选的链路跳变通告报文的封装格式示意图;
图10是根据本公开实施例的一种可选的报文发送装置的结构框图;
图11是根据本公开实施例的另一种可选的报文发送装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在计算机终端或者类似的运算装置中执行。以 运行在计算机终端上为例,图1是本公开实施例的一种报文发送方法的计算机终端的硬件结构框图。如图1所示,计算机终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述计算机终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述计算机终端的结构造成限定。例如,计算机终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的报文发送方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述计算机终端的报文发送方法,图2是根据本公开实施例的报文发送方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;
需要说明的是,上述周期模板窗口为上游节点(相当于上述第一通信节点)和下游节点(相当于上述第二通信节点)同时支持的周期模板。
需要说明的是,上述位置偏移量可以记为offset,测量得到的offset值保存在下游节点,且offset值的测量精度可达到ns级别。
步骤S204,在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
需要说明的是,上述预设阈值是根据选用的周期模板计算得到的,若offset值的变化量超过了预设阈值,则认为光纤链路可能发生了跳变,并发出相应的链路跳变通告报文。
通过上述步骤,通过在第一通信节点发送跳变检测报文时,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;并在用于指示位置偏移量与上一次确定的位置偏移量的差值的位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文;从而实现在链路发生跳变时,能够及时获取到;因此,可以解决相关技术中,在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。
可选的,执行上述步骤S202:确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之前,所述方法还包括:接收所述第一通信节点在所述周期模板窗口的开始时刻或结束时刻发送的所述跳变检测报文。
可选的,执行上述步骤S202:确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之前,所述方法还包括:接收所述第一通信节点按照预设发送间隔依次发送的多个跳变检测报文,其中,所述预设发送间隔为所述第一通信节点采用的周期模板的时隙长度的整数倍。
可选的,执行上述步骤S202:确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之后,所述方法还包括:在所述跳变检测报文为所述第一通信节点发送的第一个跳变检测报文的情况下,保存所述位置偏移量;在所述跳变检测报文不是所述第一通信节点发送的第一个跳变检测报文,且所述位置偏移量的变化值小于或等于所述预设阈值的情况下,将所述位置偏移量与上一次确定的位置偏移值进行比较,以确定所述位置偏移量的变化值。
可选的,发送的所述链路跳变通告报文,包括:用于标识所述第一通信节点的第一字段,用于标识第二通信节点的第二字段,所述周期模板窗口的时隙大小,所述上一次确定的位置偏移值,所述位置偏移量,所述位置偏移量的变化值。
在本实施例中还提供了另一种运行于上述计算机终端的报文发送方法,图3是根据本公开实施例的另一种报文发送方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302:将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
通过上述步骤,通过将跳变检测报文发送给第二通信节点指示该第二通信节点确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量,并在该位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文;解决了相关技术中,在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。
可选的,执行上述步骤S302:将跳变检测报文发送至第二通信节点之前,所述方法还包括:确定所述第二通信节点和第一通信节点均支持的多个周期模板;从所述多个周期模板中确定出目标周期模板,并根据所述目标周期模板确定所述跳变检测报文的预设发送间隔,其中,所述预设发送间隔为所述周期模板的时隙长度的整数倍。
可选的,执行上述步骤S302:将跳变检测报文发送至第二通信节点,可以通过以下步骤来实现:在第一通信节点的周期模板窗口的开始时刻或结束时刻发送所述跳变检测报文。
可选的,发送的所述链路跳变通告报文,包括:用于标识第一通信节点的第一字段,用于标识所述第二通信节点的第二字段,所述周期模板窗口的时隙大小,所述上一次确定的位置偏移值,所述位置偏移量,所述位置偏移量的变化值。
以下结合附图5对上述链路跳变检测过程的原理进行描述,图5是根据本公开实施例的一种可选的链路跳变检测原理示意图,如图5所示:
跳变检测报文在到达下游节点时,根据选用的周期模板计算和存储offset值,随着后续检测报文持续到达,下游节点根据offset值的变化情况,设置一个阈值δ,如果offset值的变化量超过δ,则认为光纤链路可能发生了跳变,并发出相应的链路跳变通告报文。可见,图5中offset1和offset2的值小于δ,因此认定没有发生链路跳变,而offset3的值大于δ,因此认定发生了链路跳变。
进一步地,以下结合附图6对链路跳变检测的流程进行说明,图6是根据本公开实施例的一种可选的链路跳变检测的流程图,如图6所示,具体包括如下步骤:
步骤1:激活网络设备的链路跳变检测功能,指定跳变检测报文的发送频率以及选用的周期模板;
需要说明的是,上游节点检测报文的发送频率可由用户灵活指定,特别的由于检测报文需要在窗口的开始或结束时刻发送,因此检测报文的发送间隔必须是时隙长度T的整数倍,例如当T=20us时,测量报文发送频率可以设置为20us,40us,60us等,本申请对此不作限制。
需要说明的是,如果上下游设备同时支持多个周期模板,则为了提高测量频率,可以选择最小周期模板的窗口为基准发送检测报文,此时需在检测报文中携带选用的周期模板。
步骤2:上游节点按照指定的周期模板构造链路跳变检测报文;
步骤3:下游节点按照指定频率在周期模板窗口的开始时刻发送测量报文;
步骤4:下游节点接收检测报文,如果是第一个检测报文,则计算在指定周期内的偏差值(相当于上述位置偏移量)并保存,跳变差值(相当于上述位置偏移量)置为0,执行步骤7;否则,计算出offset的值并与本地存储的offset值进行比较;
步骤5:如果计算的offset值和本地存储的offset值的偏差值不超过阈值δ,则跳变差值置0,执行步骤7;
需要说明的是,阈值δ的制定与检测精度有关,可以根据实际环境温湿度变化、光纤负载变化、光纤长度等情况综合决定δ的值,δ的值可以是一个绝对值,也可以是一个比例,本申请对此不作限制。
步骤6:更新存储的offset值和跳变差值,发出链路跳变通告报文;
需要说明的是,在下游节点检测到跳变发生时,可选的将链路跳变行为、跳变偏差值通告到上游节点或控制器,然后上游节点或控制器可触发或通知用户重新进行光纤链路时延的测量。具体地,通告的信息,至少要包含能够标识本端网络设备的地址或者接口,能够标识对端网络设备的地址或者接口,周期大小、跳变标记和跳变差值等。本公开对信息通告的方式不做限制,例如可以通过扩展IGP(OSPF、ISIS)、BGP的属性通告到网络其它节点,也可通过扩展南向接口(如NETCONF、BGPCEP、BGP-LS等)上报到控制器。
步骤7:跳变检测结束。
通过上述步骤,在上游节点发送跳变检测报文时,确定上游节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量,在位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文;从而实现在链路发生跳变时,能够及时获取到;因此,可以解决相关技术中,在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。
为了帮助更好地理解技术方案,本申请还提供了以下实施例来对技术方案进行进一步描述。
实施例1
以下结合图7和图8对实施例1的方案进行描述说明,图7是根据本公开实施例的另一种可选的光纤链路跳变的示意图,图8是根据本公开实施例的另一种可选的链路跳变检测的流程图。
如图7所示,在本实施例中,假设有两台网络设备N1和N2,两设备间频率同步但时间不同步,在业务方向N1->N2上,A是上游设备节点,N2是下游设备节点,N1和N2设备都支持3个周期模板,分别为A、B、C,周期模板时隙长度分别为10us,20us和40us。在N1中,选择周期模板A的时隙长度作为检测报文发送间隔,即跳变检测报文发送间隔为10us。在N2中,设置跳变检测的阈值δ为500ns。两台设备间的相位差Δ为5us,光纤时延为12us,在N1发出第2个检测报文后,链路跳变,跳变后光纤时延为18us,根据已有技术,前三个检测报文到达N2节点落在窗口内的偏移值offset。
此时跳变检测总的流程如图8所示,包括如下步骤:
步骤1:激活N1和N2节点跳变检测测试功能,报文发送频率为10us,选用周期模板为A模板;
步骤2:N1节点在A模板窗口开始时刻以10us为间隔构造发送检测报文;
步骤3:N2节点收到第1个检测报文,计算得到offset值为7us,存储到本地,跳变差值置0;
步骤4:N2节点收到第2个检测报文,计算得到offset值为7us,计算与存储offset值的偏差,未超过阈值δ=500ns;
步骤5:N2节点收到第3个检测报文,计算得到offset值为3us,计算与存储offset的偏差值为4us,超过阈值δ=500ns;
步骤6:更新存储offset值为3us,跳变偏差更新为3us;
步骤7:发出链路跳变通告报文。
通过上述步骤,通过在第一通信节点发送跳变检测报文时,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;并在用于指示位置偏移量与上一次确定的位置偏移量的差值的位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文;从而实现在链路发生跳变时,能够及时获取到;因此,可以解决相关技术中,在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。
实施例2
以下结合图9对本实施例进行说明,图9是根据本公开实施例的一种可选的链路跳变通告报文的封装格式示意图;
本实施例给出了一种链路跳变信息通告报文的封装示例,例如可以扩展OSPF,新增一种链路属性sub-TLV叫做link-switch sub-TLV,用来携带该链路关联的两台设备之间的链路发生跳变的相关信息,包括链路跳变前后的offset值和跳变偏差offset-deviation,封装示意格式如附图9所示:
其中,type字段用一个特定的数值表示此sub-TLV为链路跳变偏差属性类型,length字段表示该sub-TLV数据部分的长度,值为8,cycle-template字段用来指定选用的周期模板时隙长度大小,例如对周期模板A为10us,字段长度为20ctets;跳变前pre-offset值,占20ctets,跳变后post-offset值占20ctets;跳变前后偏差offset-deviation占20ctets。
对上述扩展的cycle-offset sub-TLV的具体携带位置不做特别限定,可以是链路属性的sub-TLV,也可以是节点属性的sub-TLV,只要包含能够标识本端节点和对端节点的信息,以及相关的链路跳变偏差信息即可。
需要说明的是,本申请实施例只给出了扩展OSPF的示例,其他协议(如IS-IS,BGP-LS) 的扩展也与上述方案相似,本申请对此不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台第二节点设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种报文发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本公开实施例的一种可选的报文发送装置的结构框图,如图10所示,该装置包括:
确定模块1002:设置为确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;
第一发送模块1004:设置为在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
通过上述装置,通过在第一通信节点发送跳变检测报文时,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;并在用于指示位置偏移量与上一次确定的位置偏移量的差值的位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文;从而实现在链路发生跳变时,能够及时获取到;因此,可以解决相关技术中,在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。
可选的,上述确定模块1002,还设置为确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之前,接收所述第一通信节点在所述周期模板窗口的开始时刻或结束时刻发送的所述跳变检测报文。
可选的,上述确定模块1002,还设置为确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之前,接收所述第一通信节点按照预设发送间隔依次发送的多个跳变检测报文,其中,所述预设发送间隔为所述第一通信节点采用的周期模板的时隙长度的整数倍。
可选的,上述确定模块1002,还设置为确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之后,在所述跳变检测报文为所述第一通信节点发送的第一个跳变检测报文的情况下,保存所述位置偏移量;在所述跳变检测报文不是所述第一通信节点发送的第一个跳变检测报文,且所述位置偏移量的变化值小于或等于所述预设阈值的情况下,将所述位置偏移量与上一次确定的位置偏移值进行比较,以确定所述位置偏移量的变化值。
可选的,上述第一发送模块1004,还设置为标识所述第一通信节点的第一字段,设置为标识第二通信节点的第二字段,所述周期模板窗口的时隙大小,所述上一次确定的位置偏移值,所述位置偏移量,所述位置偏移量的变化值。
图11是根据本公开实施例的另一种可选的报文发送装置的结构框图,如图11所示,该装置包括:
第二发送模块1102:设置为将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
通过上述装置,通过将跳变检测报文发送给第二通信节点指示该第二通信节点确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量,并在该位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文;解决了相关技术中,在链路发生跳变时,无法及时检测到的问题,达到能够及时检测到链路跳变的效果。
可选的,上述第二发送模块1102,还设置为将跳变检测报文发送至第二通信节点之前,确定所述第二通信节点和第一通信节点均支持的多个周期模板;从所述多个周期模板中确定出目标周期模板,并根据所述目标周期模板确定所述跳变检测报文的预设发送间隔,其中,所述预设发送间隔为所述周期模板的时隙长度的整数倍。
可选的,上述第二发送模块1102,还设置为在第一通信节点的周期模板窗口的开始时刻或结束时刻发送所述跳变检测报文。
可选的,上述第二发送模块1102,还设置为标识第一通信节点的第一字段,设置为标识所述第二通信节点的第二字段,所述周期模板窗口的时隙大小,所述上一次确定的位置偏移值,所述位置偏移量,所述位置偏移量的变化值。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;
S2,在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
可选的,在本实施例中,上述存储介质还可以被设置为存储用于执行以下步骤的计算机程序:
S1,将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;
S2,在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
可选地,在本实施例中,上述处理器还可以被设置为通过计算机程序执行以下步骤:
S1,将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种报文发送方法,包括:
    确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;
    在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
  2. 根据权利要求1所述的报文发送方法,其中,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之前,所述方法还包括:
    接收所述第一通信节点在所述周期模板窗口的开始时刻或结束时刻发送的所述跳变检测报文。
  3. 根据权利要求1所述的报文发送方法,其中,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之前,所述方法还包括:
    接收所述第一通信节点按照预设发送间隔依次发送的多个跳变检测报文,其中,所述预设发送间隔为所述第一通信节点采用的周期模板的时隙长度的整数倍。
  4. 根据权利要求1所述的报文发送方法,其中,确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量之后,所述方法还包括:
    在所述跳变检测报文为所述第一通信节点发送的第一个跳变检测报文的情况下,保存所述位置偏移量;
    在所述跳变检测报文不是所述第一通信节点发送的第一个跳变检测报文,且所述位置偏移量的变化值小于或等于所述预设阈值的情况下,将所述位置偏移量与上一次确定的位置偏移值进行比较,以确定所述位置偏移量的变化值。
  5. 根据权利要求1至4任一项所述的报文发送方法,其中,发送的所述链路跳变通告报文,包括:用于标识所述第一通信节点的第一字段,用于标识第二通信节点的第二字段,所述周期模板窗口的时隙大小,所述上一次确定的位置偏移值,所述位置偏移量,所述位置偏移量的变化值。
  6. 一种报文发送方法,包括:
    将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在所述第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
  7. 根据权利要求6所述的报文发送方法,其中,将跳变检测报文发送至第二通信节点之前,所述方法还包括:
    确定所述第二通信节点和第一通信节点均支持的多个周期模板;
    从所述多个周期模板中确定出目标周期模板,并根据所述目标周期模板确定所述跳变检 测报文的预设发送间隔,其中,所述预设发送间隔为所述周期模板的时隙长度的整数倍。
  8. 根据权利要求6所述的报文发送方法,其中,将跳变检测报文发送至第二通信节点,包括:
    在第一通信节点的周期模板窗口的开始时刻或结束时刻发送所述跳变检测报文。
  9. 根据权利要求6至8任一项所述的报文发送方法,其中,发送的所述链路跳变通告报文,包括:用于标识第一通信节点的第一字段,用于标识所述第二通信节点的第二字段,所述周期模板窗口的时隙大小,所述上一次确定的位置偏移值,所述位置偏移量,所述位置偏移量的变化值。
  10. 一种报文发送装置,包括:
    确定模块,设置为确定第一通信节点发送的跳变检测报文在第二通信节点的周期模板窗口内的位置偏移量;
    第一发送模块,设置为在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
  11. 一种报文发送装置,包括:
    第二发送模块,设置为将跳变检测报文发送至第二通信节点,以指示所述第二通信节点确定第一通信节点发送的跳变检测报文在所述第二通信节点的周期模板窗口内的位置偏移量,并在所述位置偏移量的变化值大于预设阈值的情况下,发送链路跳变通告报文,其中,所述位置偏移量的变化值为所述位置偏移量与上一次确定的位置偏移值的差值。
  12. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至5任一项中所述的方法,或所述权利要求6至9任一项中所述的方法。
  13. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至5任一项中所述的方法,或所述权利要求6至9任一项中所述的方法。
PCT/CN2023/089040 2022-09-23 2023-04-18 报文发送方法及装置、存储介质及电子装置 WO2024060601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211167689.8A CN117811962A (zh) 2022-09-23 2022-09-23 报文发送方法及装置、存储介质及电子装置
CN202211167689.8 2022-09-23

Publications (1)

Publication Number Publication Date
WO2024060601A1 true WO2024060601A1 (zh) 2024-03-28

Family

ID=90424093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089040 WO2024060601A1 (zh) 2022-09-23 2023-04-18 报文发送方法及装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN117811962A (zh)
WO (1) WO2024060601A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552998B1 (en) * 1997-04-04 2003-04-22 Nec Corporation Two-way communication system, and delay and transmission level methods
CN101800676A (zh) * 2010-02-20 2010-08-11 中兴通讯股份有限公司 链路检测方法、装置和系统
WO2013049981A1 (zh) * 2011-10-08 2013-04-11 中兴通讯股份有限公司 一种基于共享通道的混合环网保护方法及系统
CN106375143A (zh) * 2016-08-29 2017-02-01 杭州华三通信技术有限公司 一种链路检测报文发送方法及装置
CN110808873A (zh) * 2019-10-21 2020-02-18 锐捷网络股份有限公司 一种检测链路故障的方法及装置
US20200169943A1 (en) * 2016-02-03 2020-05-28 Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. Method, terminal and system for updating transmission paths
WO2022092632A2 (ko) * 2020-10-30 2022-05-05 한국항공대학교산학협력단 종단간 주기적 저지연 트래픽 전송을 위한 오프셋 기반의 전송 경로 및 슬롯 탐색 방법과 그를 수행하는 제어 장치
CN115037399A (zh) * 2021-03-03 2022-09-09 中兴通讯股份有限公司 报文转发方法、电子设备和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552998B1 (en) * 1997-04-04 2003-04-22 Nec Corporation Two-way communication system, and delay and transmission level methods
CN101800676A (zh) * 2010-02-20 2010-08-11 中兴通讯股份有限公司 链路检测方法、装置和系统
WO2013049981A1 (zh) * 2011-10-08 2013-04-11 中兴通讯股份有限公司 一种基于共享通道的混合环网保护方法及系统
US20200169943A1 (en) * 2016-02-03 2020-05-28 Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. Method, terminal and system for updating transmission paths
CN106375143A (zh) * 2016-08-29 2017-02-01 杭州华三通信技术有限公司 一种链路检测报文发送方法及装置
CN110808873A (zh) * 2019-10-21 2020-02-18 锐捷网络股份有限公司 一种检测链路故障的方法及装置
WO2022092632A2 (ko) * 2020-10-30 2022-05-05 한국항공대학교산학협력단 종단간 주기적 저지연 트래픽 전송을 위한 오프셋 기반의 전송 경로 및 슬롯 탐색 방법과 그를 수행하는 제어 장치
CN115037399A (zh) * 2021-03-03 2022-09-09 中兴通讯股份有限公司 报文转发方法、电子设备和存储介质

Also Published As

Publication number Publication date
CN117811962A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN102273136B (zh) 隧道多业务性能检测方法和装置
US20150195162A1 (en) Multi-Master Selection in a Software Defined Network
EP4044516A1 (en) Fault locating method, apparatus and device, and storage medium
WO2015170201A1 (en) A method for robust ptp synchronization with default 1588v2 profile
KR20180035145A (ko) 통신 네트워크들 내의 에러 검출
US20210028982A1 (en) Method, device, and system for deploying static routes
CN103139002A (zh) 网元间的1588时间误差检测方法及装置
CN104521192A (zh) 用于网络拓扑结构中的链路状态协议的洪泛优化的技术
CN103516612B (zh) 分布式路由器中生成路由表项的方法及分布式路由器
CN103684923A (zh) 一种丢包测量的方法及网络设备
CN111030296B (zh) 一种基于lldp协议的智能变电站网络拓扑逐级嗅探方法
EP3474493A1 (en) Network performance measurement method and detection device
CN108924044A (zh) 链路维持方法、pe设备及可读存储介质
WO2015017967A1 (en) Method and apparatus for operating routing device and relevant routing device
WO2016110084A1 (zh) 聚合网络精确时间协议时间同步方法、装置和系统
US9385930B2 (en) Method to detect suboptimal performance in boundary clocks
JP2018528680A (ja) アンカーマスターam管理方法およびノード
WO2024060601A1 (zh) 报文发送方法及装置、存储介质及电子装置
CN110601786B (zh) 一种时间同步方法、中继设备及装置
CN104506369A (zh) 一种丢包位置的检测方法和设备
CN113489613B (zh) 报文转发方法及装置
CN113904972B (zh) 路径检测方法、装置、控制器及pe设备
US11777863B2 (en) Optimized route for time-critical traffic in mesh network
CN111130871B (zh) 保护切换方法、装置和网络设备
US9930627B2 (en) Metered interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866898

Country of ref document: EP

Kind code of ref document: A1