WO2024060600A1 - 废旧电池梯次使用的筛选方法 - Google Patents

废旧电池梯次使用的筛选方法 Download PDF

Info

Publication number
WO2024060600A1
WO2024060600A1 PCT/CN2023/088985 CN2023088985W WO2024060600A1 WO 2024060600 A1 WO2024060600 A1 WO 2024060600A1 CN 2023088985 W CN2023088985 W CN 2023088985W WO 2024060600 A1 WO2024060600 A1 WO 2024060600A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
batteries
screening
capacity
Prior art date
Application number
PCT/CN2023/088985
Other languages
English (en)
French (fr)
Inventor
谢英豪
余海军
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024060600A1 publication Critical patent/WO2024060600A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • This application relates to the technical field of energy storage equipment, for example, to a screening method for the sequential use of used batteries.
  • a Chinese patent discloses a screening method for the cascade use of waste batteries, which includes the following steps: preliminary evaluation of the power battery to be analyzed through appearance identification; testing the self-discharge of the battery cells; testing the consistency of the cells; testing the battery parameters and grading.
  • This method analyzes the characteristics of retired power batteries of electric vehicles and proposes a screening method suitable for the secondary use of power batteries, so as to give full play to the remaining performance of retired power batteries of electric vehicles and improve the economic efficiency of the secondary use of power batteries.
  • the technical difficulty in the echelon utilization of retired power batteries is firstly to evaluate the aging of the battery, and secondly to screen and classify the power batteries.
  • the retired power battery pack is disassembled to obtain the smallest unit single battery, and then based on the charging curve
  • the charging and discharging strategy of series batteries realizes capacity estimation and designs the screening method of battery internal resistance.
  • this direct screening method of classifying batteries by testing the basic parameters of the battery takes a long time, the cost is high, and the sorting Work efficiency is lower.
  • the present application provides a method for screening used batteries for sequential use to solve the problems mentioned in the above background technology, improve the efficiency of sorting, and reduce the time and cost of classifying batteries.
  • the present application provides a method for screening waste batteries for reuse, comprising:
  • Standard static inspection Conduct appearance inspection, polarity inspection and packaging inspection on the battery packs to be screened, remove the unqualified battery packs and recycle them, and obtain the qualified battery packs;
  • Battery pack capacity deviation reference amount P test P test is performed on the qualified battery pack, and the capacity deviation reference amount P is established for each qualified battery pack.
  • a is the weight of the reference quantity, with a value ranging from 0.4 to 0.6;
  • C is the measured capacity;
  • C_n is the nominal energy;
  • Qualified battery packs are screened based on the capacity deviation reference amount P: using the 3 ⁇ criterion and based on the relative relationship between multiple capacity deviation reference amounts P, the capacity deviation reference amount P exceeding the set threshold interval is selected into the battery pack corresponding to the capacity deviation reference amount P exceeding the set threshold interval. Qualified battery packs are eliminated and recycled to obtain a battery pack set with high consistency in the capacity deviation reference amount P;
  • Battery self-discharge screening After charging the batteries in the battery pack set, the batteries are screened for safety during use, subsequent charging of defective batteries is terminated, and the batteries that pass the screening are pulsed Discharge, extract the pulse parameters and input them into the equivalent circuit model database, and conduct electrochemical impedance spectroscopy EIS testing on the screened batteries that have passed the safety test after a short period of rest. After classifying the impedance curves according to the shape of the test curve, conduct Equivalent circuit fitting, the obtained equivalent parameters are also input into the equivalent circuit model database;
  • Battery reorganization Search in the equivalent circuit model database according to the grouping criteria, and the retired batteries within the specified range can be reorganized to achieve echelon utilization.
  • Figure 1 is a schematic structural diagram of a screening method for used batteries used in series according to the present application.
  • a screening method for used batteries in echelon use including the following steps:
  • Standard static inspection The battery packs to be screened are subjected to appearance inspection, polarity inspection and packaging inspection. After the appearance inspection, polarity inspection and packaging inspection, the battery packs that fail the inspection are removed and recycled to obtain battery packs that pass the inspection; the appearance inspection requires that the battery pack appearance must not be deformed or cracked, the surface must be flat, without external damage or dirt, and the surface markings of the battery pack (such as battery trademarks, product codes and other external markings) must be clear and correct; the polarity inspection requires that the polarity of the battery pack terminals should be correct, and there should be clear positive and negative pole markings; the packaging inspection requires that the battery pack has no leakage and no open flames.
  • the battery pack to be screened includes used batteries or retired batteries.
  • the capacity efficiency and energy efficiency parameters of the battery pack are also very important.
  • the efficiency of the battery pack's charge and discharge cycles reflects the internal resistance of the battery pack. Battery packs with poor efficiency should be eliminated, and the screening method can also adopt the 3 ⁇ criterion method.
  • Battery pack capacity deviation reference amount P test (P represents a significant level parameter in statistics): After completing step S1, establish a capacity deviation reference amount P for each qualified battery pack, and battery pack capacity deviation reference amount P test At 20 ⁇ 2 degrees Celsius (°C), discharge at a constant current of C n /5, measure the initial capacity C 1 of the battery pack, charge the battery pack at a constant current of 1.0 times (C) to full load, and then charge the battery pack at a constant current of C 1 / 5. Constant current discharge to the end voltage of 2.50V. The discharged power is the measured capacity C of the battery pack.
  • a is the weight of the reference quantity, with a value ranging from 0.4 to 0.6; C is the measured capacity; C n is the nominal energy.
  • the nominal energy C n of the battery pack refers to the amount of current that the battery pack can output when fully charged to the end-of-discharge voltage under specified conditions.
  • the nominal energy is a parameter given by the battery manufacturer. Generally, Can be known directly. In practical applications, since the total discharge energy of the battery pack is affected by factors such as power and external environment, the actual energy released by the battery pack is different from the nominal energy.
  • the measured capacity C of the battery pack can be determined according to the preset measurement method. The measured capacity C of the battery pack can also be called the maximum available capacity of the battery pack.
  • the battery pack collect and record the current total voltage and current total current of the battery pack to be tested at a fixed time interval of 2.0 to 3.0 seconds (s), and obtain the current total voltage released by the battery pack through integral calculation. Energy, thereby obtaining the measured capacity C and measured energy of each power battery pack in a batch.
  • the 3 ⁇ criterion is used for judgment, and the relative relationship between the capacity deviation reference amount P of the battery pack is used to eliminate the qualified battery pack corresponding to the capacity deviation reference amount P that exceeds the set threshold interval, that is, Among them, the battery packs with obvious deviations are eliminated and then recycled to obtain a battery pack set with high consistency of the capacity deviation reference amount P.
  • the set threshold interval of the capacity deviation reference amount P is [1, 3]. If the capacity deviation reference amount P exceeds 3, it is an obviously deviated battery pack and can be directly eliminated.
  • the 3 ⁇ criterion is that when the data set has a normal distribution law, the probability that the absolute value v i of the difference between the actual capacity and the rated capacity falls outside 3 ⁇ is 0.28 to 0.32%; if a battery pack v i > 3 ⁇ , it can be considered that the The battery pack fails.
  • This application divides the decommissioned battery system into three levels.
  • the first level is the cascade utilization of battery packs
  • the second level is the cascade utilization of battery packs
  • the third level is the cascade utilization of single battery levels.
  • the development of related technologies has evolved from single cells to The dismantling of batteries has developed into the recycling and use of battery packs and battery packs.
  • the condition for the first-level battery pack echelon utilization stage is that the battery capacity is greater than or equal to 80%, that is, the power battery is used in the car as a normal energy battery; when When the battery pack is abnormal, the battery pack must be inspected and evaluated to replace the entire battery pack. Under normal circumstances, after the battery pack is decommissioned, the entire battery pack will not be eliminated. In order to improve the utilization value and ensure safety, the entire battery pack will not be replaced. Instead of using the overall battery pack again, the battery pack is disassembled into multiple battery packs, and then the battery packs are screened and disassembled again to screen the battery cells.
  • Battery self-discharge screening When properly charging the removed unclassified batteries (i.e., cells) from the battery pack, screen the cells for safety during use and terminate subsequent charging of defective cells.
  • Safety screening during the use of battery cells is a static shelf voltage screening method based on the common types of defects inside the battery cells and the microscopic changes in the internal structure of the battery cells at each stage of charging to identify defective cells; common types of defects inside the battery cells include screening diaphragms Punctures, metal foreign objects, dust particles.
  • the static shelving voltage screening method is to collect the voltage after the short-term charging of the battery cell during the initial charging period, and upload it to the database. Based on the comparison with the normal battery cell charging end voltage, if the test battery cell charging end voltage is small, there will be a problem due to the charging process.
  • the positive and negative electrodes of the battery core with perforated separators are in contact with micro-breaks, which consumes charging power and chemical reactions to form films and decompose internal trace moisture, which consumes power. Then there is a perforation in the internal separator;
  • the negative electrode sheet continues to expand due to the embedded lithium.
  • the metal foreign matter or dust particles present in the battery core pierce the diaphragm, causing micro short circuit points inside, causing the battery core voltage to drop faster during the resting process. If the battery is tested, If the voltage of the core decreases gradually and accelerates after charging is completed, there are metal foreign matter or dust particles inside.
  • the static shelving voltage screening method is first carried out, which not only saves the manpower and electricity consumed in subsequent charge and discharge tests of internal defective cells, but also reduces the probability of safety accidents in internal defective cells.
  • Pulse discharge is performed on the screened cells that are qualified for safety, and the pulse parameters are extracted and input into the equivalent circuit model database.
  • the electrochemical impedance spectroscopy (EIS) test is performed. The shape of the test curve is used to conduct the test.
  • equivalent circuit fitting is performed on the impedance curve, and the equivalent parameters obtained are also input into the equivalent circuit model database for later use; the equivalent electrical
  • the circuit model is a composite component composed of equivalent components to fit the EIS curve of each frequency band. The measured battery system when the frequency response curve is consistent with the measured battery EIS curve.
  • the pulse parameters include pulse on time (pulse width), pulse off time (pulse interval), and pulse current density (peak current density).
  • the current and voltage sampling frequency is 1 Hz (Hz)
  • the potential value is set to the open circuit voltage
  • the AC voltage amplitude is 4 millivolts (mV)
  • the scanning frequency range is 2kHz ⁇ 0.01Hz.
  • Equivalent components include inductance, resistance, capacitance, constant phase components and impedance in electrical components; the expression of the equivalent circuit model is as follows:
  • the dimension of Q is ⁇ -1 ⁇ cm -2 ⁇ s, taking a positive value; j represents the imaginary part sign, ⁇ represents the angular frequency, n represents the constant phase element index, and the value range is 0 ⁇ n ⁇ 1; represents the phase angle; ⁇ is the Weber constant; Y represents the number of batteries that have passed the screening and W represents the dynamic resistance of the cells that have passed the screening.
  • the screening method in the present application is to disassemble the whole pack of batteries eliminated from the first level to form multiple battery groups.
  • the cost of battery group cascade utilization mainly depends on the size of the available capacity of the battery group.
  • the capacity of the entire string depends on the single battery with the smallest capacity in the string. Therefore, in order to pursue screening efficiency, a classification method based on capacity interval segmentation is used in the battery group.
  • the number of battery groups to be reserved in a group is calculated in advance, and then the capacity interval is divided according to the optimal principle of the available capacity of the battery group until the final segmentation result meets the requirement of the minimum number of battery groups.
  • the battery groups that meet the requirements for reuse are screened out in advance, and then the battery groups with an overall capacity lower than the battery group threshold are distinguished and the battery cells are split.
  • the cyclic charge and discharge static method is used, that is, each retired battery cell is first subjected to multiple charge and discharge tests to determine the capacity and then left to stand for many days.
  • the single cells with very close remaining capacity, terminal voltage and DC internal resistance are screened out and reorganized to form a new battery group for cascade utilization, which saves a lot of charge and discharge determination and long standing time.
  • This application disassembles the entire pack of batteries that have been eliminated from the first level to form multiple battery packs, and uses a battery pack based on capacity interval division.
  • Classification method after calculating in advance the number of battery packs that need to be reserved in a group, the capacity range is divided according to the principle of optimal battery pack available capacity until the final segmentation result meets the minimum number of battery packs, which will be eligible for reuse. After the battery packs are screened out in advance, the battery packs whose overall capacity is lower than the battery pack threshold are then separated into battery cells. After the battery cells are split, a static shelving voltage screening method is performed before the charge and discharge test, which saves internal defective cells for subsequent follow-up.
  • the manpower and electricity consumed in charge and discharge tests reduce the probability of safety accidents in internal defective cells.
  • the cyclic charge and discharge static method is then used to screen out single cells with very close remaining capacity, terminal voltage and DC internal resistance for reorganization. After a new battery pack is formed, it is utilized in an echelon manner. By grading the battery packs and battery cells and using corresponding detection methods, it not only shortens the echelon utilization screening time between multiple battery packs, but also saves a lot of time in screening single cells.
  • the fixed capacity of charging and discharging and the long resting time improve the efficiency of sorting and reduce the time and cost of classifying batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种废旧电池梯次使用的筛选方法,包括:标准静态检查;电池组容量偏差参考量P测试;根据容量偏差参考量P筛选合格的电池组;电池自放电筛选;电池重组。

Description

废旧电池梯次使用的筛选方法
本公开要求在2022年9月23日提交中国专利局、申请号为202211165501.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能设备技术领域,例如涉及一种废旧电池梯次使用的筛选方法。
背景技术
随着电动汽车产业的快速发展,动力电池得到了广泛应用,今后几年退役的动力电池数量将快速增加。对动力电池的梯次利用,一方面能够减少处理退役动力电池产生的污染和不必要的能量损失;另一方面,梯次利用退役动力电池能减少生产新的动力电池所需的大量能量和材料,有利于降低生产成本,和减少碳排放和污染的产生。若缺乏有效的回收与梯次利用体系和筛选方法,将会影响电动汽车产业可持续发展和国家节能减排战略的实施,造成严重的资源浪费和环境问题。在梯次利用退役动力电池体系中,退役动力电池的一致性很差,如果不经筛选直接利用,极易造成安全事故。
如中国专利(公开号:CN104362395B)公开的一种废旧电池梯次使用的筛选方法,其包括如下步骤:通过外观辨识对待分析的动力电池进行初步评估;测试电池单体的自放电;单体一致性测试;测试电池参数并分级。此方法通过分析电动汽车退役动力电池的特性,提出适用于动力电池二次利用的筛选方法,以发挥电动汽车退役动力电池的剩余性能,提高动力电池二次利用的经济性。
相关技术中,退役动力电池梯次利用的技术难点首先在于评估电池的老化情况,其次是对动力电池进行筛选分类,通常是将退役动力电池组拆解,得到最小单元单体电池,再根据充电曲线和串联电池的充放电策略实现了容量估计和设计了电池内阻的筛选方法,但这种直接筛选通过测试电池的基本参数,对电池进行分类的方法耗费时间长、所用成本较高、分选工作效率较低。
发明内容
本申请提供一种废旧电池梯次使用的筛选方法,以解决上述背景技术中提到的问题,提升分选工作效率,减小对电池进行分类的耗费时间和所用成本。
本申请实施例提供一种废旧电池梯次使用的筛选方法,包括:
标准静态检查:对待筛选的电池组进行外观检查、极性检查和封装检查,将检查不合格的电池组剔除并进行回收处理,获得检查合格的电池组;
电池组容量偏差参考量P测试:对所述合格的电池组进行P测试,为每个所述合格的电池组建立容量偏差参考量P,所述容量偏差参考量P的计算公式如下:
P=a×(C/Cn)+(1-a)×(C/Cn);
式中,a为参考量权重,取值范围为0.4~0.6;C为测得容量;C_n为标称能量;
根据容量偏差参考量P筛选合格的电池组:利用3σ准则,根据多个所述容量偏差参考量P之间的相对关系,将超过设定阈值区间的所述容量偏差参考量P对应的所述合格的电池组剔除并进行回收处理,获得容量偏差参考量P一致性较高的电池组集合;
电池自放电筛选:在对所述电池组集合中的电池进行充电之后,对所述电池进行使用过程中的安全性筛选,并终止缺陷电池后续充电,对筛选后的安全性合格的电池进行脉冲放电,并提取脉冲参数输入等效电路模型数据库,以及经短暂静置后对筛选后的安全性合格的电池进行电化学阻抗谱EIS测试,通过测试曲线的形状进行类别区分后,对阻抗曲线进行等效电路拟合,将得到的等效参数也输入所述等效电路模型数据库;
电池重组:按照分组标准在所述等效电路模型数据库中检索,搜寻到指定范围内的退役电池即可重组实现梯次利用。
附图说明
图1为本申请一种废旧电池梯次使用的筛选方法的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施条例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
当动力电池容量衰减到标称容量的80%以下时,考虑到里程焦虑和充电频繁等因素,将不再适用于电动车,但仍可用于一些小型且对电池性能要求较低的 储能场合,如便携式备用电源、电动叉车电源、电网调峰调频及可再生能源储能等,进而实现动力电池的梯次利用。然而,退役电动汽车动力电池能量特性及功率特性会发生衰减,且电池单体间性能参数差异大,为实现不同性能表现电池应用价值的最大化,保证电池再次应用时的可靠性和安全性,必须对电池进行筛选,实现电池的分级梯次应用。
参照图1所示:一种废旧电池梯次使用的筛选方法,包括以下步骤:
S1、标准静态检查:对待筛选的电池组进行外观检查、极性检查和封装检查,经外观检查、极性检查、封装检查后,将待筛选的电池组中检查不合格的电池组剔除并进行回收处理,获得检查合格的电池组;外观检查要求电池组外观不得有变形及破裂,表面平整、无外伤及无污物,且电池组表面标志(如电池商标、产品码等外部标志)清晰、正确;极性检查要求电池组端子极性应正确,且有清晰的正负极标识;封装检查要求电池组无漏液、无明火。
在一实施例中,待筛选的电池组包括废旧电池或退役电池。电池组的容量效率与能量效率参数也十分重要,电池组充放电循环的效率反映了电池组内阻情况。效率较差的电池组应予剔除,筛选方法也可采取3σ准则方法。
S2、电池组容量偏差参考量P测试(P表示统计学中的显著水平参数):在完成步骤S1后,为每个合格的电池组建立容量偏差参考量P,电池组容量偏差参考量P测试时,在20±2摄氏度(℃)下,以Cn/5恒流放电,测得电池组的初次容量C1,将电池组以1.0倍率(C)恒流充电满载后,以C1/5恒流放电至终止电压2.50V,放出的电量即为此电池组的测得容量C,计算公式如下:
P=a×(C/Cn)+(1-a)×(C/Cn);
式中,a为参考量权重,取值范围为0.4~0.6;C为测得容量;Cn为标称能量。
在一实施例中,电池组的标称能量Cn是指电池组在规定的条件下,充满电到放电终止电压所能输出的电流量,标称能量是电池生产厂商给出的参数,一般可直接获知。在实际应用中,由于电池组的总放电能量受功率、外界环境等因素影响,电池组实际放出的能量和标称能量有区别,可以根据预设测量方法确定电池组的测得容量C。电池组的测得容量C也可以称为电池组的最大可用容量。
可选地,电池组在充放电的过程中,按固定时间间隔2.0~3.0秒(s)对待测电池组当前总电压、当前总电流进行采集并记录,并通过积分运算,获取电池组放出的能量,从而获取一个批次中每个动力电池组的测得容量C和测得能量。
S3、根据容量偏差参考量P筛选合格的电池组:计算所得的电池组容量偏差 参考量P后,利用3σ准则进行判别,利用电池组的容量偏差参考量P的相对关系,将超过设定阈值区间的所述容量偏差参考量P对应的所述合格的电池组剔除,也即将其中明显偏差的电池组剔除,再进行回收,获得容量偏差参考量P一致性高的电池组集合。例如,容量偏差参考量P的设定阈值区间为[1,3],容量偏差参考量P超过3的即为明显偏差电池组,可直接剔除。3σ准则为当数据组具有正态分布规律时,实际容量与额定容量之差的绝对值vi落在3σ以外的概率为0.28~0.32%;若一电池组vi>3σ,则可认为该电池组不合格。
本申请将退役电池系统分为三级,例如第一级是电池包梯次利用、第二级为电池组梯次利用、第三级为单体电池级的梯次利用,相关技术发展上已从单体电池的拆解,发展成为电池组及电池包的回收使用,而第一级电池包梯次利用阶段的条件是电池容量大于或等于80%,即动力电池作为正常能源电池在车中被使用;当电池包异常时,要对电池包进行检测评估,从而对整个电池包进行替换,一般情况下,电池包退役后,不会淘汰整个电池包,且为提升利用价值和保障安全性,也不会再次使用整体的电池包,而是将电池包拆解成多个电池组后,进行电池组间的筛选和再次拆解,进行电池单体中的筛选。
S4、电池自放电筛选:对剔除出的电池组未分类电池(也即电芯)进行适当充电时,对电芯进行使用过程中的安全性筛选,并终止缺陷电芯后续充电。电芯使用过程中的安全性筛选为针对电芯内部常见缺陷类型以及充电各阶段电芯内部结构微观变化特征的静态搁置电压筛选方法,以识别缺陷电芯;电芯内部常见缺陷类型包括筛选隔膜穿孔、金属异物、粉尘颗粒。
静态搁置电压筛选方法为采集电芯首次充电初期短时充电结束后的电压,并上传至数据库,根据对比正常电芯充电结束电压,若测试电芯充电结束电压较小,会因在充电过程中隔膜穿孔的电芯正负极片接触微断路,消耗了充电电量和化学反应成膜及内部痕量水分分解消耗电量,则内部隔膜存在穿孔;
电芯充电过程中,负极片因嵌锂而不断膨胀,电芯内存在的金属异物或粉尘颗粒刺破隔膜,内部产生微短路点,导致静置过程中,电芯电压下降加快,若测试电芯的电压当结束充电后下降逐步加快,则内部存在金属异物或粉尘颗粒。对充放电测试前,首先进行静态搁置电压筛选方法,不仅节约了内部缺陷电芯进行后续充放电测试所消耗的人力、电力,还可降低内部缺陷电芯发生安全事故的概率。
对筛选后的安全性合格电芯,进行脉冲放电,并提取脉冲参数输入等效电路模型数据库,短暂静置后接着进行电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)测试,通过测试曲线的形状进行类别区分后,对阻抗曲线进行等效电路拟合,将得到的等效参数也输入等效电路模型数据库待用;等效电 路模型是通过等效元件组成的复合元件来拟合每个频段的EIS曲线,频响曲线与所测电池EIS曲线一致时的所测电池系统。
在一实施例中,脉冲参数包括脉冲导通时间(脉冲宽度)、脉冲关断时间(脉冲间隔)和脉冲电流密度(峰值电流密度)。
S5、电池重组:搜寻指定范围内的退役电池时,电流电压采样频率为1赫兹(Hz),设定电位值为开路电压,采用交流电压幅值为4毫伏(mV),扫描频率范围为2kHz~0.01Hz,在进行电池组重组前,按照分组标准在等效电路模型数据库中检索,搜寻到指定范围内的退役电池后即可重组实现梯次利用。
等效元件包括电学元件中的电感、电阻、电容、恒相位元件和阻抗;等效电路模型的表达式,如下所示:
其中,Q的量纲为Ω-1·cm-2·s,取正值;j表示虚部符号,ω表示角频率,n表示常相位元件指数,取值范围为0<n<1;表示相位角;σ为韦伯常数;Y表示筛选后的安全性合格的电池数量,W表示筛选后的安全性合格的电池动态电阻。经过测试与EIS曲线的曲线分类、阻抗数据拟合以及脉冲参数提取后,退役动力电池的各类数据均存在于分类数据库中。基于多因子的退役动力电池重组方法即根据成组需求动态选择分类标准,这样重组出来的退役电池模组具有一致性强、健康状况良好以及成组率高的优势。
本申请中的筛选方法是将从第一级淘汰下的整包电池进行拆解,形成多个电池组,从经济成本上来看,电池组梯次利用的成本主要取决于电池组可用容量大小,当电池组串联使用后,整组串容量取决于该组串中最小容量的单体电池,因此,为追求筛选效率,在电池组中使用了基于容量区间分割的分类方法,提前计算出一个分组中需预留多少电池组,然后根据电池组可用容量最优原则对容量区间进行分割,直至最终细分结果满足最低电池组数量的要求,将符合再次利用的电池组提前分区筛选出,再将整体容量低于电池组阈值的电池组区分出进行电池单体拆分后,使用的循环充放电静置法,即对每节退役电池单体先进行多次充放电测试定容后静置多日,最后筛选出剩余容量、端电压以及直流内阻非常接近的单体电池重组,形成新的电池组后进行梯次利用,节省了大量的充放电定容和漫长的静置时间。
与相关技术相比,本申请的有益效果是:本申请是将从第一级淘汰下的整包电池进行拆解,形成多个电池组,并在电池组中使用了基于容量区间分割的 分类方法,提前计算出一个分组中需预留电池组数量后,根据电池组可用容量最优原则对容量区间进行分割,直至最终细分结果满足最低电池组数量的要求,将符合再次利用的电池组提前分区筛选出后,再将整体容量低于电池组阈值的电池组区分出进行电池单体拆分后,对充放电测试前,进行静态搁置电压筛选方法,节约了内部缺陷电芯进行后续充放电测试所消耗的人力、电力,降低内部缺陷电芯发生安全事故的概率,再使用的循环充放电静置法,筛选出剩余容量、端电压以及直流内阻非常接近的单体电池重组,形成新的电池组后进行梯次利用,通过将电池组和电池单体分级使用与之对应的检测方法,不仅缩短了多个电池组间的梯次利用筛选时间,还节省了筛选单体电池大量的充放电定容和漫长的静置时间,提升了分选工作效率,减小了对电池进行分类的耗费时间和所用成本。

Claims (10)

  1. 一种废旧电池梯次使用的筛选方法,包括:
    标准静态检查:对待筛选的电池组进行外观检查、极性检查和封装检查,将检查不合格的电池组剔除并进行回收处理,获得检查合格的电池组;
    电池组容量偏差参考量P测试:对所述合格的电池组进行P测试,为每个所述合格的电池组建立容量偏差参考量P,所述容量偏差参考量P的计算公式如下:
    P=a×(C/Cn)+(1-a)×(C/Cn);
    式中,a为参考量权重,取值范围为0.4~0.6;C为测得容量;Cn为标称能量;
    根据容量偏差参考量P筛选合格的电池组:利用3σ准则,根据多个所述容量偏差参考量P之间的相对关系,将超过设定阈值区间的所述容量偏差参考量P对应的所述合格的电池组剔除并进行回收处理,获得容量偏差参考量P一致性较高的电池组集合;
    电池自放电筛选:在对所述电池组集合中的电池进行充电之后,对所述电池进行使用过程中的安全性筛选,并终止缺陷电池后续充电,对筛选后的安全性合格的电池进行脉冲放电,并提取脉冲参数输入等效电路模型数据库,以及经短暂静置后对筛选后的安全性合格的电池进行电化学阻抗谱EIS测试,通过测试曲线的形状进行类别区分后,对阻抗曲线进行等效电路拟合,将得到的等效参数也输入所述等效电路模型数据库;
    电池重组:按照分组标准在所述等效电路模型数据库中检索,搜寻到指定范围内的退役电池即可重组实现梯次利用。
  2. 根据权利要求1所述的一种废旧电池梯次使用的筛选方法,其中,所述外观检查要求所述电池组外观不得有变形及破裂,所述电池组表面平整、无外伤及无污物,且所述电池组表面标志清晰、正确;所述极性检查要求所述电池组的端子极性正确,且有清晰的正负极标识;所述封装检查要求所述电池组无漏液、无明火。
  3. 根据权利要求1所述的一种废旧电池梯次使用的筛选方法,其中,所述测得容量C根据以下方式确定:在20±2摄氏度下,以Cn/5恒流放电,测得所述电池组的初次容量C1,将所述电池组以1.0倍率恒流充电满载后,以C1/5恒流放电至终止电压2.50伏特,所述电池组放出的电量即为所述电池组的测得容量C。
  4. 根据权利要求3所述的一种废旧电池梯次使用的筛选方法,所述方法还包括:
    所述电池组在充放电的过程中,按固定时间间隔2.0~3.0秒对所述电池组的当前总电压、当前总电流进行采集并记录,并通过积分运算,获取所述电池组放出的电量。
  5. 根据权利要求1所述的一种废旧电池梯次使用的筛选方法,其中,所述3σ准则为当多个所述容量偏差参考量P数据组具有正态分布规律时,电池组的实际容量与额定容量之差的绝对值vi落在3σ以外的概率为0.28%~0.32%;若一电池组vi>3σ,则可认为该电池组不合格。
  6. 根据权利要求1所述的一种废旧电池梯次使用的筛选方法,其中,所述等效电路模型是通过等效元件组成的复合元件来拟合每个频段的EIS曲线,频响曲线与所测电池EIS曲线一致时的所测电池系统。
  7. 根据权利要求6所述的一种废旧电池梯次使用的筛选方法,其中,所述等效元件包括电学元件中的电感、电阻、电容、恒相位元件和阻抗;所述等效电路模型的表达式,如下所示:
    其中,Q的量纲为Ω-1·cm-2·s,取正值;j表示虚部符号,ω表示角频率,n表示常相位元件指数,取值范围为0<n<1;表示相位角;σ为韦伯常数;Y表示筛选后的安全性合格的电池数量;W表示筛选后的安全性合格的电池动态电阻。
  8. 根据权利要求1所述的一种废旧电池梯次使用的筛选方法,其中,搜寻指定范围内的退役电池时,电流电压采样频率为1赫兹,设定电位值为开路电压,采用交流电压幅值为4毫伏,扫描频率范围为0.01赫兹~2000赫兹。
  9. 根据权利要求1所述的一种废旧电池梯次使用的筛选方法,其中,所述电池使用过程中的安全性筛选为针对电池内部常见缺陷类型以及充电每个阶段电池内部结构微观变化特征的静态搁置电压筛选方法,以识别缺陷电池;所述电池内部常见缺陷类型包括筛选隔膜穿孔、金属异物和粉尘颗粒。
  10. 根据权利要求9所述的一种废旧电池梯次使用的筛选方法,其中,所述静态搁置电压筛选方法为采集一测试电池首次充电初期短时充电结束后的电压,根据对比正常电池充电结束电压,基于所述测试电池充电结束电压小于正常电池充电结束电压的比对结果,所述测试电池内部隔膜存在穿孔;当结束充电后,在所述测试电池的电压下降逐步加快的情况下,所述测试电池内部存在 金属异物或粉尘颗粒。
PCT/CN2023/088985 2022-09-23 2023-04-18 废旧电池梯次使用的筛选方法 WO2024060600A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211165501.6A CN115602949A (zh) 2022-09-23 2022-09-23 一种废旧电池梯次使用的筛选方法
CN202211165501.6 2022-09-23

Publications (1)

Publication Number Publication Date
WO2024060600A1 true WO2024060600A1 (zh) 2024-03-28

Family

ID=84844220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088985 WO2024060600A1 (zh) 2022-09-23 2023-04-18 废旧电池梯次使用的筛选方法

Country Status (2)

Country Link
CN (1) CN115602949A (zh)
WO (1) WO2024060600A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970159A (zh) * 2024-04-02 2024-05-03 深圳深汕特别合作区乾泰技术有限公司 基于大数据的废旧电池可用性评估方法、系统和介质
CN117970159B (zh) * 2024-04-02 2024-06-07 深圳深汕特别合作区乾泰技术有限公司 基于大数据的废旧电池可用性评估方法、系统和介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602949A (zh) * 2022-09-23 2023-01-13 广东邦普循环科技有限公司(Cn) 一种废旧电池梯次使用的筛选方法
CN116780002A (zh) * 2023-08-21 2023-09-19 合肥工业大学 退役电池模组再重组方法、系统、设备及存储介质
CN117096476B (zh) * 2023-10-20 2024-01-30 珠海中力新能源科技有限公司 一种电池的分组方法、装置、电子设备及存储介质
CN117644062B (zh) * 2024-01-30 2024-04-05 江苏华友能源科技有限公司 一种梯次利用动力电池的快速分选方法
CN117872165B (zh) * 2024-03-01 2024-05-10 天科新能源有限责任公司 一种基于数据分析的固态电池性能测试系统
CN117936953B (zh) * 2024-03-25 2024-05-24 深圳市杰成镍钴新能源科技有限公司 一种废旧电池的批次放电智能控制方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190207269A1 (en) * 2016-05-09 2019-07-04 Spiers New Technologies, Inc. Reconditioned battery pack and method of making same
CN111495800A (zh) * 2020-04-20 2020-08-07 江苏省新能源开发股份有限公司 一种动力电池组梯次再利用的筛选分组方法
CN113238157A (zh) * 2020-12-09 2021-08-10 北京大学深圳研究生院 一种通过对电动汽车退役电池进行ai检测来筛选的方法
CN114280479A (zh) * 2021-12-23 2022-04-05 中山大学·深圳 一种基于电化学阻抗谱的退役电池快速分选方法
CN115602949A (zh) * 2022-09-23 2023-01-13 广东邦普循环科技有限公司(Cn) 一种废旧电池梯次使用的筛选方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190207269A1 (en) * 2016-05-09 2019-07-04 Spiers New Technologies, Inc. Reconditioned battery pack and method of making same
CN111495800A (zh) * 2020-04-20 2020-08-07 江苏省新能源开发股份有限公司 一种动力电池组梯次再利用的筛选分组方法
CN113238157A (zh) * 2020-12-09 2021-08-10 北京大学深圳研究生院 一种通过对电动汽车退役电池进行ai检测来筛选的方法
CN114280479A (zh) * 2021-12-23 2022-04-05 中山大学·深圳 一种基于电化学阻抗谱的退役电池快速分选方法
CN115602949A (zh) * 2022-09-23 2023-01-13 广东邦普循环科技有限公司(Cn) 一种废旧电池梯次使用的筛选方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970159A (zh) * 2024-04-02 2024-05-03 深圳深汕特别合作区乾泰技术有限公司 基于大数据的废旧电池可用性评估方法、系统和介质
CN117970159B (zh) * 2024-04-02 2024-06-07 深圳深汕特别合作区乾泰技术有限公司 基于大数据的废旧电池可用性评估方法、系统和介质

Also Published As

Publication number Publication date
CN115602949A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2024060600A1 (zh) 废旧电池梯次使用的筛选方法
CN106785178B (zh) 电池模组再利用检测、筛选配组方法及装置
CN107732337B (zh) 一种退役电池模块分选方法
CN105304954B (zh) 一种电池的配组方法及其配组系统
CN109731808B (zh) 一种对锂电池梯次利用的检测分选方法
CN110614236B (zh) 一种退役电池梯次利用的筛选方法
CN106443475A (zh) 基于运营大数据的退役动力电池无拆解再次利用筛选方法
CN106356554B (zh) 电池配组方法及装置
CN109078871B (zh) 一种面向梯次利用的退役电池并联模块的剔除方法
CN108490366B (zh) 电动汽车退役电池模块健康状态的快速评估方法
CN103579700B (zh) 一种锂离子电池分选配组方法
CN104617339A (zh) 锂离子电池配组方法
CN113369287B (zh) 一种退役电池模组再利用的分选方法及系统
CN112051512B (zh) 一种梯次利用分选方法及储能系统
CN103487758B (zh) 一种锂离子电池配组方法
CN107377422A (zh) 一种单体电池的分选方法
CN115121507B (zh) 一种低测试成本的退役动力电池分选方法
CN111001588A (zh) 电池组梯次回收利用方法
CN114833097B (zh) 一种退役动力电池梯次利用的分选方法及装置
CN105728352A (zh) 一种电池分选方法
CN111580005A (zh) 一种梯次利用动力电池的快速分选方法及装置
CN110808416A (zh) 一种可规模化生产的磷酸铁锂电池化成分容工艺
CN102814292A (zh) 锂离子电池一致性配组方法和系统
CN113759254B (zh) 电池重组方法、装置、设备及存储介质
CN116736159A (zh) 一种退役动力电池梯次利用快速一致性筛分方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866897

Country of ref document: EP

Kind code of ref document: A1