WO2024060523A1 - 时域资源分配方法、装置、电子设备及存储介质 - Google Patents

时域资源分配方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024060523A1
WO2024060523A1 PCT/CN2023/080606 CN2023080606W WO2024060523A1 WO 2024060523 A1 WO2024060523 A1 WO 2024060523A1 CN 2023080606 W CN2023080606 W CN 2023080606W WO 2024060523 A1 WO2024060523 A1 WO 2024060523A1
Authority
WO
WIPO (PCT)
Prior art keywords
user group
base station
user
edge
time domain
Prior art date
Application number
PCT/CN2023/080606
Other languages
English (en)
French (fr)
Inventor
刘泽宁
黄永明
张铖
刘东杰
路万里
白枭
张筱进
尤肖虎
Original Assignee
网络通信与安全紫金山实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 网络通信与安全紫金山实验室 filed Critical 网络通信与安全紫金山实验室
Publication of WO2024060523A1 publication Critical patent/WO2024060523A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management

Definitions

  • the present disclosure relates to the technical field of wireless mobile communications, and in particular, to a time domain resource allocation method, device, electronic equipment and communication system storage medium.
  • 4G and 5G networks generally adopt a heterogeneous network deployment method, that is, a large number of other low power nodes (LPN) are deployed within the coverage of macro base stations (Macrocells), such as Micro base station (Picocell), home base station (Femtocell), remote radio frequency (Remote Radio Head/Remote Radio Unit, RRH/RRU), relay (Relay), etc.
  • macro base stations such as Micro base station (Picocell), home base station (Femtocell), remote radio frequency (Remote Radio Head/Remote Radio Unit, RRH/RRU), relay (Relay), etc.
  • RRH/RRU Remote Radio Head/Remote Radio Unit
  • Relay relay
  • co-frequency networking is generally used between macro base stations, between macro base stations and small base stations, and between small base stations and small base stations. That is, all The base station/cell operates in the same frequency band. Therefore, co-channel interference, that is, inter-cell interference, will occur between macro base stations, between macro base stations and small base stations, and between small base stations and small base stations, especially between macro base stations and small base stations. This is because there is a huge transmission power difference between macro base stations and small base stations, so macro base stations will cause serious interference to small base station users, especially small base station edge users.
  • RSRP maximum reference signal received power
  • ABS Almost Blank Subframe
  • normal subframes the macro base station normally schedules macro base station users, while the small base station only schedules cell center users.
  • ABS macro base stations need to remain silent or send data with low transmit power, while small base stations prioritize cell edge users. This achieves the purpose of protecting edge users of small base stations from interference from macro base stations.
  • edge users of base stations are not good, and the performance improvement of edge users of small base stations is not obvious.
  • small base stations are deployed flexibly and randomly, they generally cannot consider inter-cell interference issues at the beginning of deployment like macro base stations. Therefore, interference between small base stations may often be more complex and serious.
  • the present disclosure discloses a time domain resource allocation method, device, electronic device and storage medium, which divides users accessing each small base station into a central user group and multiple edge user groups , divide the users accessing the same macro base station into a macro base station user group, construct an edge user group interference graph based on the interference relationship and user grouping results, and then based on the edge user group interference graph, classify each user group as a unit Allocating virtual resources and further determining the time domain resources of each user group can coordinate the interference of macro base stations to small base station edge users, as well as the interference between small base stations, and improve resource utilization and the performance of small base station edge users.
  • a time domain resource allocation method for allocating time domain resources to macro base stations and small base stations deployed on the same frequency in a communication system includes:
  • users accessing the same small base station are divided into a central user group and multiple edge user groups, and users accessing the same macro base station are divided into a macro base station user group;
  • an edge user group interference map is constructed
  • virtual resources are allocated to all macro base station user groups, the central user group of the small base station, and the edge user group in user group units, where the edge user group of the small base station and the macro base station user group are allocated Different virtual resources, the central user group of the small base station and the user group of the macro base station are allocated the same virtual resources;
  • the time domain resource segments included in the virtual resources of the user group are determined as time domain resources allocated to each user group for actual scheduling.
  • a time domain resource allocation device configured to allocate time domain resources to macro base stations and small base stations deployed on the same frequency in a communication system, including:
  • the receiving module is configured to receive base station information and user information sent by all macro base stations and small base stations deployed on the same frequency;
  • the user group division module is configured to divide users accessing the same small base station into a central user group and multiple edge user groups based on the received base station information and user information, and divide them into edge users in the same edge user group.
  • the interference between them is less than the preset value; users accessing the same macro base station are divided into a macro base station user group;
  • the interference graph construction module is configured to construct an edge user group interference graph based on the edge user group division results of the small base station;
  • a virtual resource allocation module is configured to allocate virtual resources to all macro base station user groups, central user groups of small base stations, and edge user groups based on the edge user group interference graph, with user groups as units, wherein the edge user groups of small base stations and macro base station user groups are allocated different virtual resources, and the central user groups of small base stations and macro base station user groups are allocated the same virtual resources;
  • the time domain resource allocation module is configured to determine the time domain resource segments included in the virtual resources of the user group based on the allocation results of the virtual resources and user information, as time domain resources allocated to each user group for actual scheduling.
  • An electronic device the electronic device includes a processor and a memory; wherein the memory is configured to store a computer program, and the computer program is loaded and executed by the processor to implement any one of the preceding Domain resource allocation method.
  • a computer-readable storage medium configured to store a computer program; wherein when the computer program is executed by a processor, the time-domain resource allocation method as described in any one of the preceding items is implemented.
  • the method proposed in this disclosure divides users accessing each small base station into a central user group and multiple edge user groups based on base station information and user information, and divides users accessing the same macro base station into a macro base station user group.
  • an edge user group interference graph is constructed, and then based on the edge user group interference graph, virtual resources are allocated to each user group in units of user groups, combined with the allocation of virtual resources Results and user information, time domain resources are allocated to each user group on demand, which not only coordinates the interference of macro base stations to edge users of small base stations, but also coordinates the interference between small base stations, and improves resource utilization and Performance of small cell edge users.
  • FIG1 is a flow chart of a time domain resource allocation method proposed in Embodiment 1;
  • Figure 2 is a schematic diagram of the division of small base station user groups in Embodiment 1.
  • This embodiment proposes a time domain resource allocation method for allocating time domain resources to macro base stations and small base stations deployed on the same frequency in a communication system.
  • the method includes:
  • users accessing the same small base station are divided into a central user group and multiple edge user groups, and users accessing the same macro base station are divided into a macro base station user group;
  • an edge user group interference map is constructed
  • virtual resources are allocated to all macro base station user groups, the central user group of the small base station, and the edge user group in user group units, where the edge user group of the small base station and the macro base station user group are allocated Different virtual resources, the central user group of the small base station and the user group of the macro base station are allocated the same virtual resources;
  • the time domain resource segments included in the virtual resources of the user group are determined as the time domain resources allocated to each user group for actual scheduling.
  • the method proposed in this disclosure divides users accessing each small base station into a central user group and multiple edge user groups based on base station information and user information, and divides users accessing the same macro base station into a macro base station user group.
  • an edge user group interference graph is constructed, and then based on the edge user group interference graph, virtual resources are allocated to each user group in units of user groups, combined with the allocation of virtual resources Results and user information, time domain resources are allocated to each user group on demand, which not only coordinates the interference of macro base stations to edge users of small base stations, but also coordinates the interference between small base stations, and improves resource utilization and Performance of small cell edge users.
  • the base station information includes but is not limited to the following information: base station configuration information, base station location information and base station load information.
  • the user information includes but is not limited to the following information: user configuration information, user location information, user channel status information and user load information. .
  • users accessing the same small base station are divided into a central user group and multiple edge user groups, including:
  • users accessing the same small base station are divided into a central user group and an edge user group;
  • each edge user is represented as a data or point in the sample space, a clustering method is used to process the data or points, and the edge user group is divided into multiple edge users Group;
  • the first indicator includes but is not limited to the following: the distance from the user to the serving base station, the distance from the user to the adjacent base station deployed on the same frequency, the signal strength from the serving cell to the user, or the adjacent base station deployed on the same frequency.
  • the signal strength from the macro cell or adjacent small cell to the user includes but is not limited to the following: the distance from the user to the serving base station, the distance from the user to the adjacent base station deployed on the same frequency, the signal strength from the serving cell to the user, or the adjacent base station deployed on the same frequency.
  • an edge user group interference map is constructed, including:
  • the second indicator includes but Not limited to the following: the average distance from adjacent small cells deployed on the same frequency to all users in the user group, the average signal strength from adjacent small cells deployed on the same frequency to all users in the user group, or the user The average value of the difference between the signal strength from the serving cell where the group is located to all users in the user group and the signal strength from adjacent small cells deployed on the same frequency to all users in the user group;
  • An edge user group interference graph is constructed based on the interference relationship between each edge user group in the small base station and each adjacent small cell deployed on the same frequency.
  • the vertices in the edge user group interference graph are consistent with the edge user groups of all small base stations. In one correspondence, whether there is an edge connection between two vertices depends on whether the serving cell where any edge user group is located interferes with the other edge user group;
  • the serving base station is a small base station that provides base station services to users.
  • the adjacent small base station is deployed on the same frequency as the serving base station.
  • the serving cell is a cell generated and managed by the serving base station.
  • the adjacent macro cell refers to the adjacent macro base station.
  • Cells generated and managed, adjacent small cells refer to cells generated and managed by adjacent small base stations.
  • virtual resources are allocated to all macro base station user groups, small base station central user groups, and edge user groups based on user groups, including:
  • the edge user group interference graph is processed so that points connected by edges are colored in different colors. After statistical coloring is completed, the types of colors on the edge user group interference graph are the virtual resources allocated to the edge user group. quantity, and virtual resources are allocated to edge user groups corresponding to points in the edge user group interference graph based on the graph coloring results, and points with the same coloring are allocated the same virtual resources.
  • the method of constructing an edge user group interference graph and the method of allocating virtual resources according to the edge user group interference graph proposed in this embodiment can allocate each small cell edge user based on the interference relationship between the small cell edge users and each adjacent small cell deployed on the same frequency.
  • the small cell edge users are further divided into multiple different edge user groups, and the small cell edge user group interference graph is constructed based on the interference relationship between them.
  • a graph theory algorithm is used to provide each edge user with
  • the virtual resources are allocated to each group, so that the macro base station user group and the small cell center user group are allocated the same virtual resources, and the virtual resources are different from all small cell edge user groups, and edge user groups with strong interference between each other are Different virtual resources are allocated to protect small cell edge users from interference from macro base stations deployed on the same frequency, while also protecting small cell edge users from interference from small base stations deployed on the same frequency.
  • determining the time domain resource segment included in the virtual resource of the user group according to the allocation result of the virtual resource and user information includes:
  • the second parameter used to determine the number of time domain resources corresponding to virtual resource Vn is calculated, that is,
  • the method for determining the time domain resource segments included in the virtual resources of each user group proposed in this embodiment takes into account user load information, such as the total number of users in the user group, the total traffic, and the total number of resources required, combined with the number of time domain resources that can be allocated within a configuration cycle, and the control parameters for controlling the degree of overlap of each time domain resource, so that time domain resources can be allocated according to the actual needs of each user group, thereby improving resource utilization.
  • this method is applicable to all user groups, without distinguishing whether it is a macro base station user group, or a central user group or an edge user group of a small base station.
  • the present disclosure provides a time domain resource allocation method, which is executed by a time domain resource allocation device.
  • the body includes the following steps 101 to 104:
  • Step 101 Receive base station information and user information sent by all macro base stations and small base stations deployed on the same frequency;
  • Step 102 According to the received base station information and user information, for each small base station, divide all users accessing the small base station into a central user group and multiple edge user groups, and divide the users accessing the same macro base station into Divided into a macro base station user group;
  • Step 103 Based on the received base station information and user information, as well as the edge user group division results of the above small base stations, construct an edge user group interference map for all small base stations;
  • Step 104 According to the received base station information and user information, as well as the above-mentioned edge user group interference map, allocate virtual resources to all macro base station user groups, small base station central user groups, and edge user groups in user group units. According to the virtual resources Further identify time domain resources.
  • the method proposed in this disclosure divides users accessing each small base station into a central user group and multiple edge user groups based on base station information and user information, and divides users accessing the same macro base station into a macro base station user group.
  • an edge user group interference graph is constructed, and then based on the edge user group interference graph, virtual resources are allocated to each user group in units of user groups, combined with the allocation of virtual resources Results and user information, time domain resources are allocated to each user group on demand, which not only coordinates the interference of macro base stations to edge users of small base stations, but also coordinates the interference between small base stations, and improves resource utilization and Performance of small cell edge users.
  • the base station information may include base station configuration information, base station location information and base station load information.
  • the base station configuration information refers to information related to the base station configuration, and may include the ID of the base station and/or cell, which is used to distinguish different base stations and/or cells.
  • the base station location information refers to information related to the location of the base station, which is used to divide user groups.
  • the location here can be either an absolute location, such as the longitude, latitude and altitude of the base station location, or a relative location, such as the distance from the base station to a reference point, the azimuth and pitch angle, etc.
  • the base station load information refers to information related to the base station load, and may include the number of users of all access users of the base station/cell, the total traffic of all access users, and the number of time-frequency resources required by all access users, such as physical resource blocks (PRBs), which are used to allocate time domain resources on demand.
  • PRBs physical resource blocks
  • a base station is a concept of a physical entity, which may be a specific communication facility, while in this disclosure, a cell is a virtual concept.
  • the base station and the cell are not in a one-to-one correspondence, and are related to the base station configuration. For example, for an omnidirectional antenna, one base station generates one cell, so one base station corresponds to one cell; while for a three-sector case, one base station corresponds to one cell.
  • One base station can generate three cells, so one base station corresponds to three cells.
  • each user only accesses one cell as its serving cell, and a physical entity such as a base station is responsible for the specific functions of the cell.
  • the serving base station refers to the small base station that provides services to users.
  • the adjacent base station refers to the adjacent macro base station or adjacent small base station relative to the serving base station.
  • the serving cell is the cell generated and managed by the serving base station.
  • the macro cell refers to the cell generated by the serving base station. Cells generated and managed by macro base stations. Small cells refer to cells generated and managed by small base stations.
  • Adjacent macro cells refer to cells generated and managed by adjacent macro base stations. Adjacent small cells refer to cells generated by adjacent small base stations. and managed communities. For the sake of convenience, this disclosure takes one base station corresponding to one cell as an example. However, the technical solution described in this disclosure is also applicable to the situation where one base station corresponds to multiple cells.
  • the user information may include user configuration information, user location information, user channel status information and user load information.
  • the user configuration information refers to user configuration-related information, which may include user IDs to distinguish different users.
  • the user location information refers to information related to the user's location and is used to divide user groups. The location here can be an absolute location, such as the longitude, latitude, and altitude of the user's location, or a relative location, such as the distance, azimuth, and pitch angles from the user to a certain reference point.
  • the user channel status information refers to user channel status related information and is used to divide user groups.
  • user channel state related information specifically includes the signal strength of the serving cell and the same-frequency neighbor cell to the user, such as the downlink serving cell reference signal received power (RSRP) and the downlink same-frequency neighbor cell RSRP, which can be determined by the user.
  • the measurement is reported.
  • the user load information refers to user load-related information, which may include user traffic and the number of time-frequency resources required by the user, and is used to allocate time domain resources on demand.
  • the central user group of the small base station refers to a set of users who are less interfered by other neighboring base stations (including macro base stations and small base stations) among all users accessing the small base station. They are often located in the cell. Center, that is, the location close to the base station.
  • the edge user group of the small base station refers to the set of users who are subject to greater interference from other neighboring base stations (including macro base stations and small base stations) among all users accessing the small base station. They are often located at the edge of the cell, that is, far away from the base station. s position.
  • Figure 2 shows a schematic diagram of small base station user group division.
  • edge user groups are subject to greater interference from other neighboring base stations, so they need to be protected from interference by neighboring base stations or reduce interference caused by neighboring base stations through time domain resource configuration.
  • the purpose of dividing the central user group and the edge user group in step 102 is to subsequently implement efficient and precise time-domain resource allocation in units of user groups.
  • Step 102 specifically includes the following steps 201 to 202:
  • Step 201 For each small base station, according to the received base station information and user information, all users accessing the small base station are divided into a central user group and an edge user group.
  • Step 202 For each small base station, further divide the above-mentioned edge user group into multiple edge user groups according to the received base station information and user information.
  • step 201 the distance from the user to the serving base station, the distance from the user to the adjacent base station deployed on the same frequency, the signal strength from the serving cell to the user, the adjacent cells (including macro cells and small cells) deployed on the same frequency,
  • the user's signal strength is divided into central user groups and edge user groups by judging the relationship between one or a combination of the above indicators and the decision threshold. For example, users whose distance to the serving base station is less than a certain decision threshold are classified as central users, and vice versa are classified as edge users. For another example, users whose distance to the serving base station is less than a certain judgment threshold and whose serving cell RSRP is greater than a certain judgment threshold are classified as central users, and vice versa as edge users.
  • users whose serving cell RSRP is greater than a certain judgment threshold and whose adjacent cells deployed on the same frequency have RSRP less than a certain judgment threshold are classified as central users, and vice versa as edge users.
  • users whose RSRP differences between the serving cell and all adjacent cells deployed on the same frequency are greater than a certain decision threshold are classified as central users, and vice versa as edge users.
  • the above distance or signal strength information can be directly obtained or calculated from the base station information and user information reported by the macro base station and the small base station. For example, the distance between the base station and the user can be calculated based on their location information.
  • the edge user group in the above step 201 can be classified according to the distance or signal strength from the serving base station/cell and the adjacent small base station/small cell deployed on the same frequency (only the small base station/small cell needs to be considered). It is further divided into multiple edge user groups, as shown in Figure 2.
  • the basis for dividing the edge user group according to the distance or signal strength from the serving base station/cell and the adjacent small base station/small cell deployed on the same frequency to the user is: the serving base station/cell and the adjacent small base station/small cell deployed on the same frequency to the user Edge users with similar distances or signal strengths also suffer similar interference from adjacent small base stations/small cells deployed on the same frequency.
  • the geographical location can be characterized by the distance from the serving base station/cell to the user, and the distance from the adjacent base station/cell deployed on the same frequency to the user.
  • the interference from small base stations/small cells deployed on the same frequency is similar.
  • the purposes or advantages of further dividing edge user groups in step 202 are: first, to finely allocate resources to coordinate interference between small base stations/small cells. For each small base station/small cell, since different edge users receive different interference from adjacent small base stations/small cells deployed on the same frequency, edge users need to be divided into different edge user groups based on the interference situation. , and implement fine resource allocation on a user group basis to coordinate interference between small base stations/small cells.
  • the second is to improve resource utilization. Allocating resources based on user groups instead of users avoids situations where a single user has no business needs to transmit or resource redundancy within the allocated resources, thereby improving resource utilization.
  • step 202 is to further divide edge user groups according to the interference situation between small base stations/small cells, Resources are allocated in units of user groups to coordinate interference between small base stations/small cells. Therefore, in step 202, only adjacent small base stations/small cells deployed on the same frequency need to be considered.
  • each edge user corresponds to a data or point in the sample space, and each edge user is composed of serving base station/cell and co-frequency
  • the distance or signal strength from the deployed adjacent small base station/small cell to the user is uniquely determined and represented. Therefore, many clustering methods or algorithms can be used to implement step 202, such as k-means, spectral clustering, graph cutting, etc. Therefore, the technical solution proposed in this disclosure does not specifically limit the method of implementing step 202, and any method that can be used to solve the above clustering problem should be within the scope of application and protection of the technical solution proposed in this disclosure.
  • the present disclosure provides a method for dividing edge user groups based on spectral clustering, which specifically includes:
  • Step (1) calculate the similarity between edge users.
  • the similarity between each pair of edge users is calculated based on the distance or signal strength from the serving base station/cell and adjacent small base stations/small cells deployed on the same frequency to the user.
  • edge user i the RSRP of the serving cell and co-frequency neighbor cell of edge user i is in Indicates the RSRP of the serving cell reported by edge user i, Indicates the RSRP of the first neighboring small cell deployed on the same frequency reported by edge user i, Indicates the RSRP of the second neighboring small cell deployed on the same frequency reported by edge user i, and so on.
  • the similarity between edge user i and edge user j can be calculated through the following Gaussian kernel function (Radial Basis Function, RBF):
  • is a parameter that controls the scope of the Gaussian kernel function. The larger its value, the greater the local scope of influence of the Gaussian kernel function.
  • Step (2) Construct an edge user similarity graph based on the similarity between edge users.
  • the edge user similarity graph is constructed.
  • the adjacency matrix W corresponding to the edge user similarity graph can be expressed as:
  • edges connecting the vertices corresponding to any two edge users there are edges connecting the vertices corresponding to any two edge users, and the weight on the edge is the similarity between the two edge users.
  • Step (3) Divide edge users into multiple edge user groups based on edge user similarity graphs.
  • spectral clustering algorithm such as the normalized spectral clustering algorithm
  • all edge users are clustered into multiple classes based on the edge user similarity graph, that is, divided into multiple edge user groups.
  • edge user similarity graph that is, divided into multiple edge user groups.
  • the edge user group interference graph represents the interference relationship between the edge user groups in the above step 102 in a graphical manner.
  • the construction rules are as follows: (1) The vertices in the edge user group interference graph correspond to the edge user groups of all small base stations; (2) There are edge connections between any two edge user groups belonging to the same cell; (3) ) For any two edge user groups belonging to different cells, if there is at least one edge user group whose serving cell will cause interference to another edge user group, then there is an edge connection between the two edge user groups.
  • the relationship between the combination and the decision threshold determines whether adjacent small base stations/small cells deployed on the same frequency will cause interference to the user group.
  • the neighboring small base station/small cell deployed on the same frequency is considered to be responsible for User groups do not interfere.
  • the average distance from a neighboring small cell deployed on the same frequency to all users in a user group is higher than a certain decision threshold, and the distance between the neighboring small cell deployed on the same frequency and all users in the user group is If the average value of the user's signal strength is lower than a certain decision threshold, then it is considered that the adjacent small base station/small cell deployed on the same frequency will not cause interference to the user group.
  • the purpose of constructing the edge user group interference graph in step 103 is to model the interference relationship between edge user groups, thereby assisting in the implementation of time domain resource allocation based on user groups to coordinate interference between small base stations/small cells. Specifically, any two edge user groups with edge connections cannot use the same period of time domain resources to avoid interference with each other.
  • the time domain resource may be an OFDM symbol, a time slot, a subframe, a half frame, or a system frame, which is determined by the system configuration.
  • the subframe configuration period is 20ms, that is, 2 radio frames have a total of 20 subframes, of which the downlink subframes in these 20 subframes are The total number is 12. Therefore, there are 12 subframes available for allocation or configuration in each configuration period.
  • the subframe configuration period is 40ms, that is, 4 radio frames have a total of 40 subframes, of which the total number of downlink subframes in these 40 subframes is 40. Therefore, there are 40 subframes available for allocation or configuration in each configuration period.
  • Step 104 specifically includes the following steps 301 to 302:
  • Step 301 According to the edge user group interference map, allocate virtual resources to all macro base stations and small base stations in user group units.
  • Step 302 Determine the specific time domain resources included in each virtual resource based on the above virtual resource allocation results and base station and user load information.
  • the virtual resources are relative to the last actually allocated time domain resources, and the latter is determined by the virtual resource allocation result combined with the load information of the base station and the user. Since the central user groups of all small base stations will not be interfered by adjacent macro base stations and small base stations deployed on the same frequency, they and adjacent macro base stations deployed on the same frequency can use the same virtual resources.
  • This resource allocation method is similar to traditional ABS, that is, on normal subframes, macro base stations normally schedule macro base station users, while small base stations only schedule cell center users. Since the edge user groups of all remaining small base stations may interfere with each other and be interfered by adjacent macro base stations deployed on the same frequency, virtual resources need to be allocated to them based on the interference relationship between them, so that there is a possibility of interference with each other.
  • Different virtual resources are allocated between edge user groups, and the virtual resources are different from the virtual resources allocated by adjacent macro base stations deployed on the same frequency, so as to protect edge users of small base stations from adjacent small base stations deployed on the same frequency. While reducing interference, it also protects edge users of small base stations from interference from adjacent macro base stations deployed on the same frequency.
  • the resource allocation problem of the edge user group described in the above step 301 can be transformed into a type of the most common graph coloring problem.
  • Each point on the edge user group interference graph represents an edge user group.
  • the above resource allocation problem is equivalent to coloring the points on the edge user group interference graph so that any two points connected by edges cannot be colored with the same color, that is, the same resources are allocated (color represents resources). Therefore, the above resource allocation problem can be solved by various graph coloring algorithms, such as the DSATUR algorithm, the Welsh Powell algorithm, the maximum independent set algorithm, etc., which will not be repeated here.
  • the technical solution proposed in the present disclosure does not make specific restrictions on the method for implementing step 301. Any method that can be used to solve the above graph coloring problem should be within the scope of application and protection of the technical solution proposed in the present disclosure.
  • step 302 based on the virtual resource allocation results in step 301, it is necessary to consider the loads of different user groups, such as the number of users, total traffic, and total amount of resources required, and allocate resources to each user group as needed. time domain resources.
  • the user group set composed of all macro base station users and small base station users is G, including the central user group and edge user group of each small base station, and each macro base station user constitutes a macro base station user group.
  • the virtual resources allocated to the small base station center user group and macro base station users are V 0
  • the virtual resources allocated to all small base station edge user groups are V 1 , V 2 ,..., V N-1 , a total of N virtual resources resource.
  • V ⁇ V 0 , V 2 , ..., V N-1 ⁇ .
  • the virtual resources allocated to user group g ⁇ G are represented as a(g), a(g) ⁇ V.
  • ⁇ >0 is a control parameter that controls the overlap degree of each time domain resource segment, and is used to compensate for the reduction in the number of available resources for each user (group) due to resource allocation.
  • the larger ⁇ is, the more time domain resources each time domain resource segment contains and the more resources available to each user (group). However, the more time domain resources overlap between each time domain resource segment. , so the protection effect for edge users of small base stations is also weakened.
  • can be dynamically configured and adjusted according to the actual performance of the network through the upper-layer management plane of the network. Generally speaking, ⁇ can be set to 0 for low load conditions.
  • I g represents the weight factor of user group g when participating in resource allocation.
  • I g is determined based on the user load information in the user information, such as the number of users, total traffic and total resources required for all users in the user group. number.
  • User load information can be obtained through statistics of reported user load information, or can be estimated through reported base station load information.
  • the physical meaning of the above equation (6) is that the larger the weight factor I g, the more resources should be allocated to the user group. Therefore, all T resources can be divided proportionally according to the weight factor I g . Since multiple different user groups may be assigned to the same resource segment, the user group with the largest weight factor I g among the user groups to which the resource segment is assigned needs to be considered when allocating resources.
  • the central user group of small base station 1, the central user group of small base station 2, and the macro base station user group are allocated virtual resources V 0
  • the edge user group 1 of small base station 1 and the edge users of small base station 2 Group 2 is allocated virtual resource V 1
  • edge user group 2 of small base station 1 and edge user group 3 of small base station 2 are allocated virtual resource V 2
  • edge user group 3 of small base station 1 is allocated virtual resource V 3
  • the edge user group 1 of the small base station 2 is allocated virtual resource V 4 .
  • the weight factor of edge user group 3 of small base station 1 when participating in resource allocation is 4, so the calculation factor of virtual resource V 3 is 4.
  • the weight factor of edge user group 1 of small base station 2 when participating in resource allocation is 2, so the calculation factor of virtual resource V 4 is 2.
  • the first parameter of the virtual resource V 0 the first parameters L1 , L2 , L3 , L4 of virtual resources V1 , V2 , V3, V4 are 3, 3, 4 , 2 respectively.
  • the second parameters of virtual resources V0 , V1 , V2 , V3 , V4 are 0, 7, 10, 13, 17 respectively.
  • the control parameter ⁇ of the degree of overlap of time domain resource segments is 0.
  • the time domain resource segments corresponding to virtual resources V1 , V2 , V3 , V4 can be calculated according to the formula.
  • This embodiment proposes a time domain resource allocation device, which is configured to allocate time domain resources to macro base stations and small base stations deployed on the same frequency in a communication system, including:
  • the receiving module is configured to receive base station information and user information sent by all macro base stations and small base stations deployed on the same frequency;
  • the user group division module is configured to divide users accessing the same small base station into a central user group and multiple edge user groups according to the received base station information and user information, and the interference between edge users divided into the same edge user group is less than a preset value; and divide users accessing the same macro base station into a macro base station user group;
  • the interference graph construction module is configured to construct an edge user group interference graph based on the edge user group division results of the small base station;
  • the virtual resource allocation module is configured to allocate virtual resources to all macro base station user groups, the central user group of the small base station, and the edge user group based on the edge user group interference map, in user group units, where the edge users of the small base station
  • the central user group of the small base station and the macro base station user group are allocated different virtual resources; the central user group of the small base station and the macro base station user group are allocated the same virtual resources;
  • the time domain resource allocation module is configured to determine the time domain resource segments included in the virtual resources of the user group based on the allocation results of the virtual resources and user information, as time domain resources allocated to each user group for actual scheduling.
  • the base station information includes base station configuration information, base station location information and base station load information
  • the user information includes user configuration information, user location information, user channel status information and user load information.
  • users accessing the same small base station are divided into a central user group and multiple edge user groups, including:
  • users accessing the same small base station are divided into a central user group and an edge user group;
  • each edge user is represented as a data or point in the sample space, and the data or point is processed by a clustering method to divide the edge user group into multiple edge user groups;
  • the first indicator includes the distance from the user to the serving base station, the distance from the user to the adjacent base station deployed on the same frequency, the signal strength from the serving cell to the user, the distance from the adjacent macro cell or adjacent small cell deployed on the same frequency to the user. signal strength.
  • an edge user group interference map based on the edge user group division results of the small base station including:
  • the interference relationship between each edge user group in the small base station and each adjacent small cell deployed on the same frequency is judged, wherein the third The second indicator includes: the average distance from adjacent small cells deployed on the same frequency to all users in the edge user group, the average signal strength from adjacent small cells deployed on the same frequency to all users in the edge user group, the average signal strength of the edge user group From the service area to edge users The average value of the difference between the signal strength of all users in the group and the signal strength of all users in the adjacent small cells deployed on the same frequency to the edge user group;
  • An edge user group interference graph is constructed based on the interference relationship between each edge user group in the small base station and each adjacent small cell deployed on the same frequency.
  • edge user group interference map allocate virtual resources to all macro base station user groups, the central user group of small base stations, and edge user groups in user group units, including:
  • edge user group interference graph so that points connected by edges are lit with different colors.
  • the types of colors on the edge user group interference graph are counted as the number of virtual resources allocated to the edge user group. , and allocate virtual resources to the edge user group corresponding to the point in the edge user group interference graph based on the graph coloring result.
  • determine the time domain resource segments included in the virtual resources of the user group based on the allocation results of the virtual resources and user information including:
  • the second parameter used to determine the number of time domain resources corresponding to virtual resource Vn is calculated, that is,
  • G represents the user group set composed of all macro base station users and small base station users
  • g represents the user group, g ⁇ G
  • a(g) represents the virtual resource V n allocated to the user group g.
  • the time domain resource is any one of OFDM symbols, time slots, subframes, half frames and system frames.
  • This embodiment provides an electronic device, which includes a processor and a memory; wherein the memory is configured to store a computer program, and the computer program is loaded and executed by the processor to implement any of the time domain resource allocation methods described above.
  • a computer-readable storage medium configured to store a computer program; wherein when the computer program is executed by a processor, the time-domain resource allocation method as described in any one of the preceding items is implemented.
  • the solution provided in the embodiment of the present application can be applied to the field of wireless mobile communication technology.
  • users accessing each small base station are divided into a central user group and multiple edge user groups according to base station information and user information
  • users accessing the same macro base station are divided into a macro base station user group.
  • an edge user group interference graph is constructed.
  • virtual resources are allocated to each user group on a user group basis.
  • time domain resources are allocated to each user group on demand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种时域资源分配方法、装置、电子设备及存储介质,方法包括:接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组;构建边缘用户组干扰图;为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源;确定各用户组的虚拟资源所包含的时域资源段。本公开以用户组为单位按需分配时域资源,能够协调宏基站对小基站边缘用户的干扰,以及小基站与小基站之间的干扰,提升资源利用率和小基站边缘用户的性能。

Description

时域资源分配方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求享有2022年9月21日提交的发明名称为“时域资源分配方法、装置、电子设备及存储介质”的中国专利申请No.202211150188.9的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分或全部。
技术领域
本公开涉及无线移动通信技术领域,尤其涉及一种时域资源分配方法、装置、电子设备及通信系统存储介质。
背景技术
为提升网络覆盖、系统容量和频谱效率,4G和5G网络一般采用异构网络的网络部署方式,即在宏基站(Macrocell)覆盖范围内部署大量其他低功率节点(Low Power Node,LPN),如微基站(Picocell)、家庭基站(Femtocell)、射频拉远(Remote Radio Head/Remote Radio Unit,RRH/RRU)、中继(Relay)等。为方便起见,将上述低功率节点统称为小基站。与宏基站相比,小基站具有体积小、功耗低、成本低、灵活方便等特点。由于无线频谱资源的匮乏以及出于经济考虑,宏基站与宏基站之间,宏基站与小基站之间,以及小基站与小基站之间一般都采用同频组网的组网方式,即所有基站/小区工作在同一频段。因此,宏基站与宏基站之间,宏基站与小基站之间,以及小基站与小基站之间均会产生同频干扰,即小区间干扰,尤其是宏基站与小基站之间。这是因为宏基站和小基站之间存在巨大的发射功率差,所以宏基站会对小基站用户,尤其是小基站边缘用户产生严重的干扰。而且,在宏基站和小基站共同部署的异构网络中,为了平衡宏基站和小基站之间的负载,用户在基于最大参考信号接收功率(Reference Signal Received Power,RSRP)准则判断其应该接入宏基站还是小基站时,会在接收到的来自小基站的RSRP的基础上加上一个正的偏移量,使得原本应该接入宏基站的用户可以接入小基站,即小区范围拓展(Cell Range Extension,CRE)。小区范围拓展虽然可以有效平衡宏基站和小基站之间的负载,但是也进一步加剧了宏基站对小基站边缘用户所造成的干扰。这是因为小区范围拓展区域内的小基站边缘用户实际收到的来自宏基站的信号强度要高于来自小基站的信号强度。
几乎空白子帧(Almost Blank Subframe,ABS)是一种用于协调宏基站和小基站之 间干扰的代表性时域技术。在ABS中,子帧被划分为正常子帧和ABS两类。在正常子帧上,宏基站正常调度宏基站用户,而小基站只调度小区中心用户。在ABS上,宏基站需保持静默或以低发射功率发送数据,而小基站则优先调度小区边缘用户。这样从而达到保护小基站边缘用户免受宏基站干扰的目的。现有技术方案在配置ABS时,往往仅考虑宏基站和小基站之间的干扰,而忽略了小基站和小基站之间的干扰,从而导致在某些小基站密集部署的场景下,ABS对小基站边缘用户的保护效果不佳,小基站边缘用户性能提升不明显。区别于宏基站,由于小基站部署灵活且随机,其一般无法像宏基站那样在部署之初就考虑小区间干扰问题,因此小基站之间的干扰往往可能更加复杂且严重。
发明内容
技术目的:针对上述技术问题,本公开公开了一种时域资源分配方法、装置、电子设备及存储介质,其将接入每个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组,依据干扰关系和用户分组结果,构建边缘用户组干扰图,然后依据边缘用户组干扰图,以用户组为单位为各个用户组分配虚拟资源,进一步确定各个用户组的时域资源,能够协调宏基站对小基站边缘用户的干扰,以及小基站与小基站之间的干扰,提升资源利用率和小基站边缘用户的性能。
技术方案:为实现上述技术目的,本公开采用了如下技术方案:一种时域资源分配方法,用于为通信系统中同频部署的宏基站和小基站分配时域资源,方法包括:
接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;
根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组;
根据小基站的边缘用户组划分结果,以及基站信息和用户信息,构建边缘用户组干扰图;
根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,其中,小基站的边缘用户组与宏基站用户组分配不同的虚拟资源,小基站的中心用户组与宏基站用户组分配相同的虚拟资源;
根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,作为分配给各个用户组的供实际调度使用的时域资源。
一种时域资源分配装置,设置为为通信系统中同频部署的宏基站和小基站分配时域资源,包括:
接收模块,设置为接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;
用户组划分模块,设置为根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,划分到同一个边缘用户组中的边缘用户之间的干扰小于预设值;将接入同一个宏基站的用户划分为一个宏基站用户组;
干扰图构建模块,设置为根据小基站的边缘用户组划分结果,构建边缘用户组干扰图;
虚拟资源分配模块,设置为根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,其中,小基站的边缘用户组与宏基站用户组分配不同的虚拟资源,小基站的中心用户组与宏基站用户组分配相同的虚拟资源;
时域资源分配模块,设置为根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,作为分配给各个用户组的供实际调度使用的时域资源。
一种电子设备,所述电子设备包括处理器和存储器;其中,所述存储器设置为存储计算机程序,所述计算机程序由所述处理器加载并执行以实现如前述的任一项所述的时域资源分配方法。
一种计算机可读存储介质,设置为存储计算机程序;其中所述计算机程序被处理器执行时实现如前述的任一项所述的时域资源分配方法。
有益效果:与现有技术相比,本公开具有如下技术效果:
本公开提出的方法根据基站信息和用户信息,将接入每个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组,并根据小基站边缘用户组之间的干扰关系以及用户信息,构建边缘用户组干扰图,然后依据边缘用户组干扰图,以用户组为单位为各个用户组分配虚拟资源,结合虚拟资源的分配结果和用户信息,为各个用户组按需分配时域资源,在协调了宏基站对小基站边缘用户干扰的同时,也协调了小基站与小基站之间的干扰,并提升了资源利用率和小基站边缘用户的性能。
附图说明
图1为实施例一提出的一种时域资源分配方法的流程图;
图2为实施例一中的小基站用户组划分的示意图。
具体实施方式
实施例一
本实施例提出一种时域资源分配方法,用于为通信系统中同频部署的宏基站和小基站分配时域资源,方法包括:
接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;
根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组;
根据小基站的边缘用户组划分结果,以及基站信息和用户信息,构建边缘用户组干扰图;
根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,其中,小基站的边缘用户组与宏基站用户组分配不同的虚拟资源,小基站的中心用户组与宏基站用户组分配相同的虚拟资源;
根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,作为分配给各个用户组的供实际调度使用的时域资源。
本公开提出的方法根据基站信息和用户信息,将接入每个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组,并根据小基站边缘用户组之间的干扰关系以及用户信息,构建边缘用户组干扰图,然后依据边缘用户组干扰图,以用户组为单位为各个用户组分配虚拟资源,结合虚拟资源的分配结果和用户信息,为各个用户组按需分配时域资源,在协调了宏基站对小基站边缘用户干扰的同时,也协调了小基站与小基站之间的干扰,并提升了资源利用率和小基站边缘用户的性能。
所述基站信息包括但不限于以下信息:基站配置信息、基站位置信息和基站负载信息,所述用户信息包括但不限于以下信息:用户配置信息、用户位置信息、用户信道状态信息和用户负载信息。
其中,根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,包括:
通过判断一种或几种第一指标的组合与第一判决门限的关系,将接入同一个小基站的用户划分为中心用户组和边缘用户组;
根据所述第一指标中的任一种,将每个边缘用户表示为样本空间的一个数据或点,采用聚类方法对所述数据或点进行处理,将边缘用户组划分为多个边缘用户组;
其中,所述第一指标包括但不限于以下几种:用户到服务基站的距离、用户到同频部署的相邻基站的距离、服务小区到用户的信号强度,或者,同频部署的相邻宏小区或相邻小小区到用户的信号强度
其中,根据接收到的基站信息和用户信息,以及小基站的边缘用户组划分结果,构建边缘用户组干扰图,包括:
通过判断一种或几种第二指标的组合与判决门限的关系,判断小基站中的各个边缘用户组与同频部署的各个相邻小小区之间的干扰关系,所述第二指标包括但不限于以下几种:同频部署的相邻小基站到用户组中所有用户的距离的平均值、同频部署的相邻小小区到用户组中所有用户的信号强度的平均值,或者,用户组所在服务小区到用户组中所有用户的信号强度与同频部署的相邻小小区到用户组中所有用户信号强度的差值的平均值;
根据所述小基站中的各个边缘用户组与同频部署的各个相邻小小区之间的干扰关系构建边缘用户组干扰图,边缘用户组干扰图中的顶点与所有小基站的边缘用户组一一对应,两个顶点之间是否有边连接,取决于其中任一个边缘用户组所在的服务小区是否对另一个边缘用户组产生干扰;
其中,所述服务基站是为用户提供基站服务的小基站,相邻小基站与服务基站同频部署,服务小区是由服务基站产生和管理的小区,相邻宏小区是指由相邻宏基站产生和管理的小区,相邻小小区是指由相邻小基站产生和管理的小区。
其中,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,包括:
对所述边缘用户组干扰图进行处理,使得相互之间有边连接的点着不同的颜色,统计着色完成之后边缘用户组干扰图上的颜色的种类,即为分配给边缘用户组的虚拟资源数量,且基于图染色的结果为所述边缘用户组干扰图中的点对应的边缘用户组分配虚拟资源,着色相同的点分配的虚拟资源相同。
本实施例提出的构建边缘用户组干扰图的方法以及根据边缘用户组干扰图分配虚拟资源的方法,可以依据小小区边缘用户与同频部署的各个相邻小小区之间的干扰关系将每个小小区边缘用户进一步划分为多个不同的边缘用户组,并根据它们之间的干扰关系构建小小区边缘用户组干扰图,并在边缘用户组干扰图的基础上采用图论算法为各个边缘用户组分配虚拟资源,使得宏基站用户组和小小区中心用户组分配相同的虚拟资源,且该虚拟资源区别于所有的小小区边缘用户组,而彼此之间存在强干扰的边缘用户组之间被分配不同的虚拟资源,从而在保护小小区边缘用户免受同频部署的宏基站干扰的同时,也保护了小小区边缘用户免受同频部署的小基站的干扰。
其中,根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,包括:
根据用户信息中的用户负载信息,确定各个用户组在参与资源分配时的权重因子Ig
计算各个虚拟资源的计算因子占所有虚拟资源的计算因子之和的比例,结合所述比例与一个配置周期内可分配的时域资源的数量T,计算得到用于确定各个虚拟资源Vn对应的时域资源数量的第一参数Ln,其中,针对分配到同一个虚拟资源的所有用户组,取用户组中最大的权重因子作为虚拟资源计算因子;
根据虚拟资源Vn的前n-1个虚拟资源的第一参数,计算得到用于确定虚拟资源Vn对应的时域资源数量的第二参数,即
根据控制参数α、第一参数Ln、第二参数以及一个配置周期内可分配的时域资源的数量T,计算起始索引和结束索引进而确定虚拟资源Vn对应的时域资源为其中,可分配的T个时域资源表示为R={R0,R1,...,RT-1}。
本实施例提出的确定各用户组的虚拟资源所包含的时域资源段方法,考虑了用户负载信息,如用户组中用户的总数量、总流量和所需的总资源数,结合一个配置周期内可分配的时域资源的数量,以及用于控制每个时域资源重叠程度的控制参数,能够实现按各个用户组实际所需分配时域资源,提高资源的利用率。而且该方法适用于所有用户组,无需区分是宏基站用户组,还是小基站的中心用户组或边缘用户组。
下面结合附图对本实施例的方法做详细的说明。
如图1所示,本公开提供了一种时域资源分配方法,由时域资源分配设备执行,具 体包括如下步骤101至步骤104:
步骤101、接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;
步骤102、根据接收到的基站信息和用户信息,针对每个小基站,将所有接入该小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组;
步骤103、根据接收到的基站信息和用户信息,以及上述小基站的边缘用户组划分结果,针对所有小基站,构建边缘用户组干扰图;
步骤104、根据接收到的基站信息和用户信息,以及上述边缘用户组干扰图,以用户组为单位为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,根据虚拟资源进一步确定时域资源。
本公开提出的方法根据基站信息和用户信息,将接入每个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组,并根据小基站边缘用户组之间的干扰关系以及用户信息,构建边缘用户组干扰图,然后依据边缘用户组干扰图,以用户组为单位为各个用户组分配虚拟资源,结合虚拟资源的分配结果和用户信息,为各个用户组按需分配时域资源,在协调了宏基站对小基站边缘用户干扰的同时,也协调了小基站与小基站之间的干扰,并提升了资源利用率和小基站边缘用户的性能。
在步骤101中,所述基站信息可以包括基站配置信息、基站位置信息和基站负载信息。所述基站配置信息是指基站配置相关信息,可以包括基站和/或小区的id,用于区分不同的基站和/或小区。所述基站位置信息是指基站所在位置的相关信息,用于划分用户组。这里的位置既可以是绝对位置,例如基站所在位置的经度、纬度和海拔,也可以是相对位置,例如基站到某一参考点的距离、方位角和俯仰角等。所述基站负载信息是指基站负载相关信息,可以包括基站/小区所有接入用户的用户数,所有接入用户的总流量,和所有接入用户所需要的时频资源数,如物理资源块(Physical Resource Block,PRB),用于按需分配时域资源。
本公开中,基站是物理实体的概念,可以是具体的通信设施,而本公开中,小区是一种虚拟的概念。基站和小区并非一一对应的关系,和基站配置有关。例如,对于全向天线,一个基站产生一个小区,因此一个基站对应一个小区;而对于三扇区的情况,一 个基站可以产生三个小区,从而一个基站对应三个小区。一般情况下,每个用户只接入一个小区作为其服务小区,负责小区具体功能的是由基站这样的物理实体。服务基站是指为用户提供服务的小基站,相邻基站是指相对服务基站而言的相邻宏基站或相邻小基站,服务小区是由服务基站产生和管理的小区,宏小区是指由宏基站产生和管理的小区,小小区是指由小基站产生和管理的小区,相邻宏小区是指由相邻宏基站产生和管理的小区,相邻小小区是指由相邻小基站产生和管理的小区。本公开为方便起见,以一个基站对应一个小区为例。但是本公开所述技术方案同样适用于一个基站对应多个小区的情况。
在步骤101中,所述用户信息可以包括用户配置信息、用户位置信息、用户信道状态信息和用户负载信息。所述用户配置信息是指用户配置相关信息,可以包括用户的id,用于区分不同的用户。所述用户位置信息是指用户所在位置的相关信息,用于划分用户组。这里的位置既可以是绝对位置,例如用户所在位置的经度、纬度和海拔,也可以是相对位置,例如用户到某一参考点的距离、方位角和俯仰角等。所述用户信道状态信息是指用户信道状态相关信息,用于划分用户组。在本公开中用户信道状态相关信息具体包括服务小区和同频邻区到用户的信号强度,例如下行服务小区参考信号接收功率(Reference Signal Received Power,RSRP)和下行同频邻区RSRP,可由用户测量上报得到。所述用户负载信息是指用户负载相关信息,可以包括用户流量,和用户所需要的时频资源数,用于按需分配时域资源。
在步骤102中,所述小基站的中心用户组是指接入该小基站的所有用户中所受其他相邻基站(包括宏基站和小基站)干扰较小的用户的集合,其往往位于小区中心,即靠近基站的位置。所述小基站的边缘用户组是指接入该小基站的所有用户中所受其他相邻基站(包括宏基站和小基站)干扰较大的用户的集合,其往往位于小区边缘,即远离基站的位置。图2示出了小基站用户组划分示意图。一般地,边缘用户组由于其所受其他相邻基站干扰较大,因此需通过时域资源配置的方式保护其免受相邻基站的干扰或降低相邻基站对它造成的干扰。步骤102划分中心用户组和边缘用户组的目的在于后续以用户组为单位实施高效精细的时域资源分配。
步骤102具体包括下述步骤201至步骤202:
步骤201、针对每个小基站,根据接收到的基站信息和用户信息,将所有接入该小基站的用户划分为一个中心用户组和一个边缘用户组。
步骤202、针对每个小基站,根据接收到的基站信息和用户信息,将上述边缘用户组进一步划分为多个边缘用户组。
在步骤201中,可以根据用户到服务基站的距离、用户到同频部署的相邻基站的距离、服务小区到用户的信号强度、同频部署的相邻小区(包括宏小区和小小区)到用户的信号强度,通过判断上述一种或几种指标的组合与判决门限的关系,划分中心用户组和边缘用户组。例如,将到服务基站距离小于某一判决门限的用户划分为中心用户,反之为边缘用户。又例如,将到服务基站距离小于某一判决门限,且服务小区RSRP大于某一判决门限的用户划分为中心用户,反之为边缘用户。又例如,将服务小区RSRP大于某一判决门限,且同频部署的相邻小区RSRP小于某一判决门限的用户划分为中心用户,反之为边缘用户。又例如,将服务小区RSRP与所有同频部署的相邻小区RSRP的差值都大于某一判决门限的用户划分为中心用户,反之为边缘用户。上述距离或信号强度信息可以通过宏基站和小基站上报的基站信息和用户信息直接得到或计算得到。例如,可以通过基站和用户的位置信息,计算得到它们之间的距离。
在步骤202中,可以根据服务基站/小区以及同频部署的相邻小基站/小小区(只需考虑小基站/小小区)到用户的距离或信号强度,将上述步骤201中的边缘用户组进一步划分为多个边缘用户组,如图2所示。根据服务基站/小区以及同频部署的相邻小基站/小小区到用户的距离或信号强度划分边缘用户组的依据在于:服务基站/小区以及同频部署的相邻小基站/小小区到用户的距离或信号强度相似的边缘用户所受来自同频部署的相邻小基站/小小区的干扰情况也类似。由于路损效应的存在,在地理位置上接近的边缘用户(地理位置可以通过服务基站/小区到该用户的距离,以及同频部署的相邻基站/小区到该用户的距离所表征)之间所受来自同频部署的小基站/小小区的干扰情况类似。
步骤202进一步划分边缘用户组的目的或优点在于:一是精细地分配资源以协调小基站/小小区之间的干扰。针对每个小基站/小小区,由于不同的边缘用户所受来自同频部署的相邻小基站/小小区的干扰情况并不相同,因此需要根据干扰情况将边缘用户划分为不同的边缘用户组,并以用户组为单位实施精细的资源分配以协调小基站/小小区之间的干扰。二是提升资源利用率。以用户组而非用户为单位分配资源避免了单个用户在其所分配的资源内没有业务需要传输或资源冗余等情况,从而提升了资源利用率。需要说明的是,由于步骤202是为了根据小基站/小小区之间的干扰情况进一步划分边缘用户组, 并以用户组为单位分配资源以协调小基站/小小区之间的干扰,因此在步骤202中只需要考虑同频部署的相邻小基站/小小区。
上述步骤202中的边缘用户组划分问题可以转化为机器学习中一类最常见的聚类问题:每个边缘用户对应样本空间的一个数据或点,每个边缘用户由服务基站/小区以及同频部署的相邻小基站/小小区到用户的距离或信号强度,唯一确定和表示。因此,很多聚类方法或算法均可用于实现该步骤202,例如k-means、谱聚类、图形切割等。因此,本公开所提技术方案不对实现该步骤202的方法做出具体限制,任何可用于解决上述聚类问题的方法都应在本公开所提技术方案所适用和保护的范围之内。
作为示例,本公开提供了一种基于谱聚类的边缘用户组划分方法,其具体包括:
步骤(1)、计算边缘用户之间的相似度。
根据服务基站/小区以及同频部署的相邻小基站/小小区到用户的距离或信号强度,计算每对边缘用户之间的相似度。
下面,以RSRP为例,详细介绍边缘用户之间相似度的计算方式。假设边缘用户i的服务小区和同频邻区RSRP为其中表示边缘用户i测量上报的服务小区RSRP,表示边缘用户i测量上报的第一个同频部署的相邻小小区RSRP,表示边缘用户i测量上报的第二个同频部署的相邻小小区RSRP,依此类推。那么,可以通过以下高斯核函数(Radial Basis Function,RBF)计算边缘用户i和边缘用户j之间的相似度:
其中σ是控制高斯核函数作用范围的参数,其值越大,高斯核函数的局部影响范围就越大。
步骤(2)、根据边缘用户之间的相似度,构建边缘用户相似图。
根据边缘用户之间的相似度,并基于∈-近邻图、k-近邻图或全连接图等构建规则,构建边缘用户相似图。
以全连接图为例,边缘用户相似图所对应的邻接矩阵W可以表示为:
即任意两个边缘用户所对应的顶点之间都有边连接,且边上的权重为这两个边缘用户之间的相似度。
步骤(3)、根据边缘用户相似图,将边缘用户划分为多个边缘用户组。
利用谱聚类算法,如归一化谱聚类算法,根据边缘用户相似图将所有边缘用户聚为多个类,即划分为多个边缘用户组。关于谱聚类算法,在此不再展开赘述。
在步骤103中,所述边缘用户组干扰图是用图的方式表示上述步骤102中边缘用户组之间的干扰关系。其构建规则如下:(1)边缘用户组干扰图中的顶点与所有小基站的边缘用户组一一对应;(2)同属同一小区的任意两个边缘用户组之间都有边连接;(3)对于分属不同小区的任意两个边缘用户组,如果存在至少一个边缘用户组,其所在的服务小区会对另一边缘用户组产生干扰,那么这两个边缘用户组之间有边连接。
和判定中心用户和边缘用户类似,可以根据同频部署的相邻小基站到用户组中所有用户的距离的平均值、同频部署的相邻小小区到用户组中所有用户的信号强度的平均值、用户组所在服务小区到用户组中所有用户的信号强度与同频部署的相邻小小区到用户组中所有用户信号强度的差值的平均值,通过判断上述一种或几种指标的组合与判决门限的关系,判断同频部署的相邻小基站/小小区是否会对用户组产生干扰。例如,如果某个同频部署的相邻小基站到某个用户组中所有用户的距离的平均值高于某一判决门限,那么则认为该同频部署的相邻小基站/小小区对该用户组不会产生干扰。又例如,如果某个同频部署的相邻小基站到某个用户组中所有用户的距离的平均值高于某一判决门限,且该同频部署的相邻小小区到该用户组中所有用户的信号强度的平均值低于某一判决门限,那么则认为该同频部署的相邻小基站/小小区对该用户组不会产生干扰。
步骤103构建边缘用户组干扰图的目的在于建模边缘用户组之间的干扰关系,从而辅助实施以用户组为单位的时域资源分配,以协调小基站/小小区之间的干扰。具体地,任意两个有边连接的边缘用户组之间不能使用同一段时域资源,以避免对彼此产生干扰。
在步骤104中,所述时域资源可以是OFDM符号、时隙、子帧、半帧、系统帧,具体由系统配置决定。以子帧为例,在LTE中,对于TDD制式,当子帧配置为1~5时,子帧配置周期为20ms,即2个无线帧共计20个子帧,其中这20个子帧中的下行子帧 总数为12。因此,在每个配置周期内共有12个子帧可供分配或配置。对于FDD制式,子帧配置周期为40ms,即4个无线帧共计40个子帧,其中这40个子帧中的下行子帧总数为40。因此,在每个配置周期内共有40个子帧可供分配或配置。
步骤104具体包括下述步骤301至步骤302:
步骤301、根据边缘用户组干扰图,以用户组为单位为所有宏基站和小基站分配虚拟资源。
步骤302、根据上述虚拟资源分配结果以及基站和用户负载信息,确定各个虚拟资源具体所包含的时域资源。
在步骤301中,所述虚拟资源是相对于最后实际分配的时域资源而言,后者由虚拟资源分配结果结合基站和用户的负载信息共同确定。由于所有小基站的中心用户组都不会受到同频部署的相邻宏基站和小基站的干扰,因此它们和同频部署的相邻宏基站可以使用同一虚拟资源。这样的资源分配方式类似于传统ABS,即在正常子帧上,宏基站正常调度宏基站用户,而小基站只调度小区中心用户。而由于剩余所有小基站的边缘用户组之间彼此可能存在干扰,且受到同频部署的相邻宏基站的干扰,因此需要根据它们之间的干扰关系为其分配虚拟资源,使得彼此存在干扰的边缘用户组之间分配得到不同的虚拟资源,且该虚拟资源不同于同频部署的相邻宏基站所分配得到的虚拟资源,以在保护小基站边缘用户免受同频部署的相邻小基站干扰的同时,也保护小基站边缘用户免受同频部署的相邻宏基站干扰。
上述步骤301中所述边缘用户组资源分配问题可以转化为一类最常见的图染色问题。边缘用户组干扰图上的每个点代表一个边缘用户组,上述资源分配问题相当于给边缘用户组干扰图上的点进行着色,使得任意两个有边连接的点之间不能着相同的颜色,即分配相同的资源(颜色代表资源)。因此,上述资源分配问题可以通过各种图染色算法得到解决,如DSATUR算法、Welsh Powell算法、最大独立集算法等,在此不再赘述。本公开所提技术方案不对实现该步骤301的方法做出具体限制,任何可用于解决上述图染色问题的方法都应在本公开所提技术方案所适用和保护的范围之内。
在步骤302中,需要在上述步骤301中的虚拟资源分配结果的基础上,考虑不同用户组的负载,如用户数、总流量和所需要的总的资源量等,按需为各个用户组分配时域资源。
具体地,假设所有宏基站用户和小基站用户构成的用户组集合为G,包含每个小基站的中心用户组、边缘用户组,以及每个宏基站用户构成一个宏基站用户组。假设分配给小基站中心用户组和宏基站用户的虚拟资源为V0,分配给所有小基站边缘用户组的虚拟资源为V1,V2,...,VN-1,共计N个虚拟资源。将所有虚拟资源的集合记作V={V0,V2,...,VN-1}。用户组g∈G分配的虚拟资源表示为a(g),a(g)∈V。假设在一个配置周期内,所有可用的时域资源为R={R0,R1,...,RT-1},共计T个时域资源。那么,可以根据下式确定每个虚拟资源具体所包含的时域资源,


其中Ln的计算方式如下
上式中,是虚拟资源Vn所包含的时域资源段起始时域资源的索引,是虚拟资源Vn所包含的时域资源段结束时域资源的索引,0≤n≤N-1。
上式中,α>0是控制每段时域资源段重叠程度的控制参数,用于补偿由于资源分配导致的每个用户(组)可用资源数的减少。α越大,每个时域资源段所包含的时域资源越多,每个用户(组)可用资源数越多,但相应的每个时域资源段之间重叠的时域资源也越多,因此对于小基站边缘用户的保护效果也减弱。α可以通过网络上层管理面根据网络实际性能表现进行动态配置和调整。一般来说,对于低负载的情况,α可设置为0。
上式中,Ig表示用户组g在参与资源分配时的权重因子,Ig根据用户信息中的用户负载信息确定,如用户组中所有用户的用户数量、总流量以及所需要的总的资源数。用户负载信息可以通过上报的用户负载信息统计得到,也可以通过上报的基站负载信息估算得到。上式(6)的物理含义是权重因子Ig越大的用户组应该被分配的资源数也越多, 因此可以根据权重因子Ig按比例划分所有T个资源。由于多个不同的用户组可能被分配到同一个资源段,因此在分配资源时需考虑该资源段被分配的用户组中权重因子Ig最大的用户组,针对分配到同一个虚拟资源的所有用户组,可以取用户组中最大的权重因子作为虚拟资源计算因子,即上式(6)中的通过上式(6)可以根据每个用户组实际的负载大小,按需分配时域资源。
以图2为例,假设小基站1的中心用户组、小基站2的中心用户组以及宏基站用户组被分配了虚拟资源V0,小基站1的边缘用户组1和小基站2的边缘用户组2被分配了虚拟资源V1,小基站1的边缘用户组2和小基站2的边缘用户组3被分配了虚拟资源V2,小基站1的边缘用户组3被分配了虚拟资源V3,小基站2的边缘用户组1被分配了虚拟资源V4。假设在一个资源配置周期内,所有可用的时域资源为R={R0,R1,...,R18},共计19个时域资源。下面以用户组中的用户数作为用户组在参与资源分配时的权重因子为例。小基站1的中心用户组、小基站2的中心用户组以及宏基站用户组在参与资源分配时的权重因子分别为3、3和7,因此虚拟资源V0的计算因子为max{3,3,7}=7。小基站1的边缘用户组1和小基站2的边缘用户组2在参与资源分配时的权重因子分别为3和2,因此虚拟资源V1的计算因子为max{3,2}=3。小基站1的边缘用户组2和小基站2的边缘用户组3在参与资源分配时的权重因子分别为2和3,因此虚拟资源V2的计算因子为max{2,3}=3。小基站1的边缘用户组3在参与资源分配时的权重因子为4,因此虚拟资源V3的计算因子为4。小基站2的边缘用户组1在参与资源分配时的权重因子为2,因此虚拟资源V4的计算因子为2。
因此,虚拟资源V0的第一参数以此类推,虚拟资源V1、V2、V3、V4的第一参数L1、L2、L3、L4分别为3、3、4、2。那么,虚拟资源V0、V1、V2、V3、V4的第二参数分别为0、7、10、13、17。假设时域资源段重叠程度的控制参数α=0。那么虚拟资源V0所对应的时域资源段的起始索引和结束索引分别为0和6,即V0=[R0,R6]。以此类推,可以根据公式计算得到虚拟资源V1、V2、V3、V4分别所对应的时域资源段。
实施例二
本实施例提出一种时域资源分配装置,设置为为通信系统中同频部署的宏基站和小基站分配时域资源,包括:
接收模块,设置为接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;
用户组划分模块,设置为根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,划分到同一个边缘用户组中的边缘用户之间的干扰小于预设值;将接入同一个宏基站的用户划分为一个宏基站用户组;
干扰图构建模块,设置为根据小基站的边缘用户组划分结果,构建边缘用户组干扰图;
虚拟资源分配模块,设置为根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,其中,小基站的边缘用户组与宏基站用户组分配不同的虚拟资源,小基站的中心用户组与宏基站用户组分配相同的虚拟资源;
时域资源分配模块,设置为根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,作为分配给各个用户组的供实际调度使用的时域资源。
可选地,所述基站信息包括基站配置信息、基站位置信息和基站负载信息,所述用户信息包括用户配置信息、用户位置信息、用户信道状态信息和用户负载信息。
可选地,根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,包括:
通过判断一种或几种第一指标的组合与第一判决门限的关系,将接入同一个小基站的用户划分为中心用户组和边缘用户组;
根据所述第一指标中的任一种,将每个边缘用户表示为样本空间的一个数据或点,采用聚类方法对所述数据或点进行处理,将边缘用户组划分为多个边缘用户组;
其中,所述第一指标包括用户到服务基站的距离、用户到同频部署的相邻基站的距离、服务小区到用户的信号强度、同频部署的相邻宏小区或相邻小小区到用户的信号强度。
可选地,根据小基站的边缘用户组划分结果,构建边缘用户组干扰图,包括:
通过判断一种或几种第二指标的组合与第二判决门限的关系,判断小基站中的各个边缘用户组与同频部署的各个相邻小小区之间的干扰关系,其中,所述第二指标包括:同频部署的相邻小基站到边缘用户组中所有用户的距离的平均值、同频部署的相邻小小区到边缘用户组中所有用户的信号强度的平均值、边缘用户组所在服务小区到边缘用户 组中所有用户的信号强度与同频部署的相邻小小区到边缘用户组中所有用户信号强度的差值的平均值;
根据所述小基站中的各个边缘用户组与同频部署的各个相邻小小区之间的干扰关系构建边缘用户组干扰图。
可选地,根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,包括:
对所述边缘用户组干扰图进行处理,使得相互之间有边连接的点着不同的颜色,统计着色完成之后边缘用户组干扰图上的颜色的种类,作为分配给边缘用户组的虚拟资源数量,且基于图染色的结果为所述边缘用户组干扰图中的点对应的边缘用户组分配虚拟资源。
可选地,根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,包括:
根据用户信息中的用户负载信息,确定各个用户组在参与资源分配时的权重因子Ig
计算各个虚拟资源的计算因子占所有虚拟资源的计算因子之和的比例,结合所述比例与一个配置周期内可分配的时域资源的数量T,计算得到用于确定各个虚拟资源Vn对应的时域资源数量的第一参数Ln,其中,针对分配到同一个虚拟资源的所有用户组,取用户组中最大的权重因子作为虚拟资源计算因子;
根据虚拟资源Vn的前n-1个虚拟资源的第一参数,计算得到用于确定虚拟资源Vn对应的时域资源数量的第二参数,即
根据控制参数α、第一参数Ln、第二参数以及一个配置周期内可分配的时域资源的数量T,计算起始索引和结束索引进而确定虚拟资源Vn对应的时域资源为其中,可分配的T个时域资源表示为R={R0,R1,...,RT-1}。
可选地,根据下式,计算起始索引和结束索引
其中,G表示所有宏基站用户和小基站用户构成的用户组集合,g表示用户组,g∈G;a(g)表示为用户组g分配的虚拟资源Vn
可选地,所述时域资源是OFDM符号、时隙、子帧、半帧和系统帧中的任一种。
实施例三
本实施例提出一种电子设备,所述电子设备包括处理器和存储器;其中,所述存储器设置为存储计算机程序,所述计算机程序由所述处理器加载并执行以实现如前述的任一项所述的时域资源分配方法。
一种计算机可读存储介质,设置为存储计算机程序;其中所述计算机程序被处理器执行时实现如前述的任一项所述的时域资源分配方法。
以上所述仅是本公开的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
工业实用性
本申请实施例提供的方案可应用于无线移动通信技术领域,在本申请实施例中,根据基站信息和用户信息,将接入每个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组,并根据小基站边缘用户组之间的干扰关系以及用户信息,构建边缘用户组干扰图,然后依据边缘用户组干扰图,以用户组为单位为各个用户组分配虚拟资源,结合虚拟资源的分配结果和用户信息,为各个用户组按需分配时域资源,在协调了宏基站对小基站边缘用户干扰的同时,也协调了小基站与小基站之间的干扰,取得了提升了资源利用率和小基站边缘用户的性能技术效果。

Claims (11)

  1. 一种时域资源分配方法,用于为通信系统中同频部署的宏基站和小基站分配时域资源,方法包括:
    接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;
    根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,将接入同一个宏基站的用户划分为一个宏基站用户组;
    根据小基站的边缘用户组划分结果,以及基站信息和用户信息,构建边缘用户组干扰图;
    根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,其中,小基站的边缘用户组与宏基站用户组分配不同的虚拟资源,小基站的中心用户组与宏基站用户组分配相同的虚拟资源;
    根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,作为分配给各个用户组的供实际调度使用的时域资源。
  2. 根据权利要求1所述的时域资源分配方法,其中:所述基站信息包括基站配置信息、基站位置信息和基站负载信息,所述用户信息包括用户配置信息、用户位置信息、用户信道状态信息和用户负载信息。
  3. 根据权利要求1所述的时域资源分配方法,其中,根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,包括:
    通过判断一种或几种第一指标的组合与第一判决门限的关系,将接入同一个小基站的用户划分为中心用户组和边缘用户组;
    根据所述第一指标中的任一种,将每个边缘用户表示为样本空间的一个数据或点,采用聚类方法对所述数据或点进行处理,将边缘用户组划分为多个边缘用户组;
    其中,所述第一指标包括用户到服务基站的距离、用户到同频部署的相邻基站的距离、服务小区到用户的信号强度、同频部署的相邻宏小区或相邻小小区到用户的信号强度。
  4. 根据权利要求1所述的时域资源分配方法,其中,根据小基站的边缘用户组划分结果,构建边缘用户组干扰图,包括:
    通过判断一种或几种第二指标的组合与第二判决门限的关系,判断小基站中的各个边缘用户组与同频部署的各个相邻小小区之间的干扰关系,其中,所述第二指标包括: 同频部署的相邻小基站到边缘用户组中所有用户的距离的平均值、同频部署的相邻小小区到边缘用户组中所有用户的信号强度的平均值、边缘用户组所在服务小区到边缘用户组中所有用户的信号强度与同频部署的相邻小小区到边缘用户组中所有用户信号强度的差值的平均值;
    根据所述小基站中的各个边缘用户组与同频部署的各个相邻小小区之间的干扰关系构建边缘用户组干扰图。
  5. 根据权利要求1所述的时域资源分配方法,其中,根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,包括:
    对所述边缘用户组干扰图进行处理,使得相互之间有边连接的点着不同的颜色,统计着色完成之后边缘用户组干扰图上的颜色的种类,作为分配给边缘用户组的虚拟资源数量,且基于图染色的结果为所述边缘用户组干扰图中的点对应的边缘用户组分配虚拟资源。
  6. 根据权利要求1所述的时域资源分配方法,其中,根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,包括:
    根据用户信息中的用户负载信息,确定各个用户组在参与资源分配时的权重因子Ig
    计算各个虚拟资源的计算因子占所有虚拟资源的计算因子之和的比例,结合所述比例与一个配置周期内可分配的时域资源的数量T,计算得到用于确定各个虚拟资源Vn对应的时域资源数量的第一参数Ln,其中,针对分配到同一个虚拟资源的所有用户组,取用户组中最大的权重因子作为虚拟资源计算因子;
    根据虚拟资源Vn的前n-1个虚拟资源的第一参数,计算得到用于确定虚拟资源Vn对应的时域资源数量的第二参数,即
    根据控制参数α、第一参数Ln、第二参数以及一个配置周期内可分配的时域资源的数量T,计算起始索引和结束索引进而确定虚拟资源Vn对应的时域资源为其中,可分配的T个时域资源表示为R={R0,R1,…,RT-1}。
  7. 根据权利要求6所述的时域资源分配方法,其中,根据下式,计算起始索引和结束索引
    其中,G表示所有宏基站用户和小基站用户构成的用户组集合,g表示用户组,g∈G;a(g)表示为用户组g分配的虚拟资源Vn
  8. 根据权利要求1至7任一所述的时域资源分配方法,其中,所述时域资源是OFDM符号、时隙、子帧、半帧和系统帧中的任一种。
  9. 一种时域资源分配装置,设置为为通信系统中同频部署的宏基站和小基站分配时域资源,包括:
    接收模块,设置为接收同频部署的所有宏基站和小基站发送的基站信息和用户信息;
    用户组划分模块,设置为根据接收到的基站信息和用户信息,将接入同一个小基站的用户划分为一个中心用户组和多个边缘用户组,划分到同一个边缘用户组中的边缘用户之间的干扰小于预设值;将接入同一个宏基站的用户划分为一个宏基站用户组;
    干扰图构建模块,设置为根据小基站的边缘用户组划分结果,构建边缘用户组干扰图;
    虚拟资源分配模块,设置为根据所述边缘用户组干扰图,以用户组为单位,为所有宏基站用户组、小基站的中心用户组、边缘用户组分配虚拟资源,其中,小基站的边缘用户组与宏基站用户组分配不同的虚拟资源,小基站的中心用户组与宏基站用户组分配相同的虚拟资源;
    时域资源分配模块,设置为根据所述虚拟资源的分配结果和用户信息,确定用户组的虚拟资源所包含的时域资源段,作为分配给各个用户组的供实际调度使用的时域资源。
  10. 一种电子设备,所述电子设备包括处理器和存储器;其中,所述存储器设置为存储计算机程序,所述计算机程序由所述处理器加载并执行以实现如权利要求1至8任一项所述的时域资源分配方法。
  11. 一种计算机可读存储介质,设置为存储计算机程序;其中,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述的时域资源分配方法。
PCT/CN2023/080606 2022-09-21 2023-03-09 时域资源分配方法、装置、电子设备及存储介质 WO2024060523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211150188.9A CN115568023A (zh) 2022-09-21 2022-09-21 时域资源分配方法、装置、电子设备及存储介质
CN202211150188.9 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060523A1 true WO2024060523A1 (zh) 2024-03-28

Family

ID=84740601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080606 WO2024060523A1 (zh) 2022-09-21 2023-03-09 时域资源分配方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115568023A (zh)
WO (1) WO2024060523A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115568023A (zh) * 2022-09-21 2023-01-03 网络通信与安全紫金山实验室 时域资源分配方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100120438A1 (en) * 2008-11-12 2010-05-13 Industrial Technology Research Institute Communication network method and apparatus including macro base station and femto base station
CN104159235A (zh) * 2014-08-26 2014-11-19 重庆邮电大学 一种异构无线网络的小区间干扰协调方法
CN107592640A (zh) * 2017-08-31 2018-01-16 中国科学院计算技术研究所 异构网络中的干扰协调方法
CN108924934A (zh) * 2018-07-06 2018-11-30 西安电子科技大学 基于多维资源分配的异构网络干扰管理方法
CN115568023A (zh) * 2022-09-21 2023-01-03 网络通信与安全紫金山实验室 时域资源分配方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100120438A1 (en) * 2008-11-12 2010-05-13 Industrial Technology Research Institute Communication network method and apparatus including macro base station and femto base station
CN104159235A (zh) * 2014-08-26 2014-11-19 重庆邮电大学 一种异构无线网络的小区间干扰协调方法
CN107592640A (zh) * 2017-08-31 2018-01-16 中国科学院计算技术研究所 异构网络中的干扰协调方法
CN108924934A (zh) * 2018-07-06 2018-11-30 西安电子科技大学 基于多维资源分配的异构网络干扰管理方法
CN115568023A (zh) * 2022-09-21 2023-01-03 网络通信与安全紫金山实验室 时域资源分配方法、装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IAESI, FAIRSPECTRUM: "Network graphs supporting central coordination as 5G design target", 3GPP DRAFT; R2-162230 (NETWORK GRAPHS FOR CENTRAL COORDINATION), 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Dubrovnik, Croatia; 20160411 - 20160415, 1 April 2016 (2016-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051082015 *

Also Published As

Publication number Publication date
CN115568023A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2015127880A1 (zh) 一种基站频率资源配置方法及网络设备
CN101964980B (zh) 一种小区间干扰协调方法和装置
CN103814596B (zh) 传输数据的方法、装置和系统
CN104902431B (zh) 一种lte网络中跨小区d2d通信频谱分配方法
WO2024060523A1 (zh) 时域资源分配方法、装置、电子设备及存储介质
CN102026379B (zh) 家庭基站选择载波的方法及家庭基站
Ullah et al. Voronoi cell geometry based dynamic fractional frequency reuse for OFDMA cellular networks
CN103338453B (zh) 一种用于分层无线网络的动态频谱接入方法及系统
CN104378785B (zh) 一种微小区的上下行子帧重配置方法和装置
Panahi et al. Stochastic geometry based analytical modeling of cognitive heterogeneous cellular networks
CN104486767B (zh) 异构蜂窝网络中基于分簇的动态abs干扰抑制方法
CN109156010B (zh) 电子设备和用于电子设备的方法
Challita et al. Holistic small cell traffic balancing across licensed and unlicensed bands
CN105992219A (zh) 一种获取异构网的管理策略的方法和装置
Basloom et al. Resource allocation using graph coloring for dense cellular networks
Wu et al. A novel coordinated spectrum assignment scheme for densely deployed enterprise LTE femtocells
WO2019095705A1 (zh) 一种小区间干扰协调方法及网络设备
CN113115401B (zh) 一种蜂窝网络中最大化满意用户数的接入控制方法
Li et al. Queue-aware resource allocation scheme in hybrid macrocell-femtocell networks
CN103957529A (zh) 一种基于学习的无定形小区的多准则用户选择方法
Khalil et al. Coexistence management for heterogeneous networks in white spaces
CN109041016B (zh) 一种密集场景下5g通信系统终端接入数量的优化方法
CN108134623B (zh) 超密集网络中基于单频段分簇的干扰消减方法
CN105979591A (zh) 低功耗大连接场景下基于最小有效sinr最优的用户调度方法
CN109155916B (zh) 电子设备和用于电子设备的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866826

Country of ref document: EP

Kind code of ref document: A1