WO2024060521A1 - 主动型负荷可调度潜力的计算方法、终端及存储介质 - Google Patents

主动型负荷可调度潜力的计算方法、终端及存储介质 Download PDF

Info

Publication number
WO2024060521A1
WO2024060521A1 PCT/CN2023/080502 CN2023080502W WO2024060521A1 WO 2024060521 A1 WO2024060521 A1 WO 2024060521A1 CN 2023080502 W CN2023080502 W CN 2023080502W WO 2024060521 A1 WO2024060521 A1 WO 2024060521A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
active
indicates
active loads
generalized
Prior art date
Application number
PCT/CN2023/080502
Other languages
English (en)
French (fr)
Inventor
李铁成
范辉
罗蓬
任江波
王献志
郭少飞
刘清泉
陈天英
Original Assignee
国网河北省电力有限公司电力科学研究院
国家电网有限公司
国网河北能源技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司电力科学研究院, 国家电网有限公司, 国网河北能源技术服务有限公司 filed Critical 国网河北省电力有限公司电力科学研究院
Publication of WO2024060521A1 publication Critical patent/WO2024060521A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the present invention relates to the technical field of power data processing, and in particular to a calculation method, terminal and storage medium for active load dispatchability potential.
  • the distribution network As one of the important links of the power grid, has gradually developed towards intelligence, and the interaction between users and the power grid has become more obvious.
  • active load components such as electric vehicles and interruptible loads in the distribution network are increasing year by year.
  • user-side power operators In order to utilize and manage these active load resources, user-side power operators generally use price guidance and contract management. model for demand-side management. On the one hand, it predicts the user's power consumption curve and changes the user's power consumption structure by changing the electricity price to achieve the purpose of peak shaving and valley filling. On the other hand, it signs a load management contract with the user based on the user's actual power consumption structure and remotely controls part of the load. Perform direct management to increase scheduling flexibility.
  • Distribution network dispatchers can use flexible network topology to adjust power flow changes, and distributed resources can provide auxiliary service support to the power system under different conditions based on reasonable regulatory policies and user access contracts.
  • Embodiments of the present invention provide a method, a terminal and a storage medium for calculating the schedulable potential of active loads, so as to solve the problem of one-sided evaluation of the schedulable potential caused by the calculation method of the schedulable potential of active loads in the prior art. Issues with actual overall scheduling.
  • embodiments of the present invention provide a method for calculating active load dispatchability potential, including:
  • the active loads are distributed active loads
  • the Minkowski summation method is used to aggregate the mathematical models of the behavioral characteristics of the different active loads to obtain the dispatchable potential data of active loads in units of smart buildings.
  • active loads include shiftable loads, cuttable loads and interruptible loads
  • the mathematical model of the behavioral characteristics of the translatable load is ;
  • the translatable load is in the time workload, Indicates the first The total amount of work that a translatable load needs to complete every day, Indicates the first The starting time of the working time interval specified by a shiftable load, Indicates the first The end time of the working time interval specified by a shiftable load;
  • the mathematical model of the behavioral characteristics that can reduce the load is ;
  • the load can be reduced in the Participate in subsidies corresponding to demand response at all times; Indicates the first The load can be reduced in the Momentarily reduced power; , Respectively represent the A subsidy coefficient corresponding to a load that can be reduced; Indicates the first The load can be reduced in the The original load power at the moment; Indicates the reduction limit ratio of the load that can be reduced;
  • the Minkowski summation method is used to aggregate the mathematical models of behavioral characteristics of the different active loads to obtain the dispatchable potential data of active loads in units of smart buildings, including :
  • Minkowski summation is performed on the constraints in the mathematical models of the behavioral characteristics of the different active loads, respectively, to obtain the generalized variables and generalized parameters of the active load in units of smart buildings;
  • the generalized variables of the active load in units of smart buildings are obtained, including:
  • the generalized parameters of the active load in units of smart buildings are obtained, including:
  • the active load dispatchable potential data in units of smart buildings is obtained based on the generalized variables and the generalized parameters, including:
  • the generalized variables and the generalized parameters are replaced with the variables and parameters in the corresponding mathematical models of the behavioral characteristics of different active loads to obtain active load dispatchable potential data in units of smart buildings.
  • the dispatchable potential data of the active loads in units of smart buildings is obtained.
  • Also includes:
  • a time series prediction method is used to predict the dispatchable potential data of the different active loads.
  • embodiments of the present invention provide a device for calculating active load dispatchability potential, including:
  • the model building module is used to establish mathematical models of behavioral characteristics of different active loads based on the behavioral characteristics of active loads in the distribution network, where the active loads are distributed active loads;
  • the aggregation module is used to aggregate the mathematical models of behavioral characteristics of different active loads using the Minkowski summation method to obtain active load dispatchable potential data in units of smart buildings.
  • embodiments of the present invention provide a terminal, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the The steps of the method for calculating the dispatchable potential of active load as described in the first aspect or any possible implementation of the first aspect.
  • embodiments of the present invention provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a processor, it implements the above first aspect or any of the first aspects.
  • a possible implementation method includes the steps of the method for calculating the dispatchable potential of active loads.
  • Embodiments of the present invention provide a method, device, terminal and storage medium for calculating the schedulable potential of active loads.
  • an aggregation method based on Minkowski sum the originally distributed active loads are aggregated and participate in the form of resource clusters.
  • Overall scheduling which aggregates scattered active loads into active load dispatchable potential data based on smart buildings, can retain the behavioral characteristics of active loads as much as possible while ensuring the convexity of the model, and improve the aggregation accuracy.
  • the calculation method of the active load dispatchability potential adopted in this embodiment is more objective and the data characteristics are more comprehensive.
  • FIG1 is an application scenario diagram of a method for calculating the dispatchable potential of active loads provided in an embodiment of the present invention
  • Figure 2 is a schematic diagram of the Minkowski summation process provided by an embodiment of the present invention.
  • Figure 3 is an implementation flow chart for obtaining the dispatchable potential data of active loads in units of smart buildings provided by the embodiment of the present invention
  • Figure 4 is a schematic structural diagram of a device for calculating active load dispatchability potential provided by an embodiment of the present invention
  • Figure 5 is a schematic structural diagram of a device for calculating active load dispatchability potential provided by another embodiment of the present invention.
  • Figure 6 is a schematic diagram of a terminal provided by an embodiment of the present invention.
  • Figure 1 is an implementation flow chart of a method for calculating active load dispatchability potential provided by an embodiment of the present invention. The details are as follows:
  • Step 101 Based on the behavioral characteristics of active loads in the distribution network, establish mathematical models of behavioral characteristics of different active loads. Active loads are distributed active loads.
  • active loads include shiftable loads, cuttable loads and interruptible loads. Different active loads also have different behavioral characteristics.
  • the behavioral characteristic of a shiftable load is that a fixed workload must be completed in a day.
  • the workload here can be the power of the shift load, but its working time period can be adjusted through a wireless switch, and its working time period must also be within a specified interval. Select within.
  • the total power of the shiftable load is a fixed value, and the working time can change according to the scheduling needs.
  • the movable load can be the power of a washing machine, an electric water heater, a dishwasher, etc. Based on regular life, the dishwasher works three times a day to clean tableware used for breakfast, lunch, and dinner. The times can be different, but the dishwasher works three times every day, so the total power is constant.
  • a mathematical model of the behavioral characteristics of the translatable load can be established.
  • the model is expressed in the form of constraints and can include workload constraints.
  • the mathematical model of the behavioral characteristics of the translatable load is ;
  • the translatable load is in the time workload, Indicates the first The total amount of work that a translatable load needs to complete every day, Indicates the first The starting time of the working time interval specified by a shiftable load, Indicates the first The end time of the working time interval specified by a shiftable load.
  • the translatable load can be in the working state or the shutdown state.
  • the working state that is, in the within the time interval
  • the shutdown state that is, in outside the time range .
  • the characteristic of the load-reducing behavior is that a part of the load power can be reduced through remote control without affecting normal use.
  • the dispatching of the reducible load needs to determine the reduction ratio according to the signed contract, which is equivalent to a contract for a certain user.
  • the power of some loads is limited, but compared with energy-saving behavior, load reduction can play an energy-saving role on the one hand, and more importantly, participate in dispatching, which can play a certain role in peak shaving.
  • the load that can be reduced can be the power of electric heaters, air conditioners, humidifiers, etc.
  • the model is expressed in the form of constraints and can include maximum power reduction constraints.
  • the mathematical model of the behavioral characteristics that can reduce the load is ;
  • the load can be reduced in the Participate in subsidies corresponding to demand response at all times; Indicates the first The load can be reduced in the Momentarily reduced power; , Respectively represent the A subsidy coefficient corresponding to a load that can be reduced; Indicates the first The load can be reduced in the The original load power at the moment; Indicates the reduction limit ratio of the load that can be reduced.
  • interruptible loads can be interrupted at any time according to the needs of the dispatch, but they need to be constrained according to the signed contract.
  • step 102 is adopted to aggregate the distributed active loads.
  • Step 102 Use Minkowski summation method to aggregate the mathematical models of behavioral characteristics of different active loads to obtain dispatchable potential data of active loads based on smart buildings.
  • the originally distributed active loads are aggregated into generalized active loads based on smart buildings, and the dispatchable potential of active loads is represented in the form of a data set.
  • Minkowski summation is the sum of point sets in two Euclidean geometric spaces, that is, based on one space body, it is expanded and expanded according to the shape of the other space body, thereby obtaining a new space body, which from a physical perspective It is an expanded set of two spaces.
  • the Minkowski sum of point set A and point set B is defined as ,in, , are the coordinates of the points in the Minkowski sum.
  • the Minkowski sum of point set A and point set B is to treat each point coordinate of point set B as a vector, and then point set A is translated along these vectors respectively, and the new point set obtained is Minkowski sum of point set A and point set B.
  • each variable being summed must have the same domain
  • the definition domain of most variables is within the time interval [1, 24] and has Minkowski additivity.
  • the domain of the maximum continuous interruption time constraint is from any time start, arrive ends, so it needs to be extended to the [1, 24] time scale.
  • Minkowski summation method to aggregate the mathematical models of behavioral characteristics of different active loads to obtain the dispatchable potential data of active loads based on smart buildings, which can include:
  • Step 301 Expand the definition domain of the maximum continuous interruption time constraint of the interruptible load to the same time domain as the time definition domain of the variables in the mathematical model of behavioral characteristics of the load that can be shifted and the mathematical model of the behavioral characteristics of the load that can be reduced.
  • the definition domain of the variables in the mathematical model of the behavioral characteristics of the shiftable load and the cuttable load is within the time interval [1, 24]. Therefore, it is necessary to extend the definition domain of the maximum continuous interruption time constraint of the interruptible load to the above within the time interval, ;
  • Step 302 Perform Minkowski summation on the constraints in the mathematical models of behavioral characteristics of different active loads to obtain generalized variables and generalized parameters of active loads in units of smart buildings.
  • Step 303 According to the generalized variables and generalized parameters, the active load dispatchable potential data in units of smart buildings is obtained.
  • the generalized variables and parameters are replaced with the variables and parameters in the corresponding mathematical models of behavioral characteristics of different active loads to obtain the dispatchable potential data of active loads in units of smart buildings.
  • the above-mentioned active load dispatchable potential data exists in the form of a data set, containing all useful decision-making and demand-side management decision-making information of smart buildings, and the active load dispatchable potential data ⁇ , , , , ⁇ To a certain extent, it determines the potential of smart buildings to participate in demand-side management as active loads, so the data can be collected ⁇ , , , , ⁇ Scheduling potential as active load.
  • Minkowski summation method After using the Minkowski summation method to aggregate the mathematical models of behavioral characteristics of different active loads, and obtaining the dispatchable potential data of active loads based on smart buildings, it can also include:
  • the time series prediction method is used to predict the dispatchable potential data of different active loads.
  • the CNN-LSTM time series prediction method can be used to predict the schedulable potential data of different active loads.
  • Historical data can be Data of different active loads in a smart building are generated using the Monte Carlo method. Right now , for the first data sets; Indicates the first kind of load data.
  • Smart buildings need to record data such as the total workload of each load, the original load power, and the maximum and minimum interruption power, that is, ,in,
  • the CNN-LSTM algorithm can be used for prediction to achieve a reasonable and optimal day-ahead scheduling strategy, so that various active loads in smart buildings can be fully utilized.
  • the CNN-LSTM network structure includes two convolutional layers, a maximum pooling layer, LSTM and a fully connected layer.
  • the two convolutional layers are a convolutional layer with 64 filters and a convolutional layer with 128 filters. layer.
  • the input sequence first undergoes convolution processing through a convolution layer with 64 filters, and then the processing results are input into a convolution layer with 128 filters to continue convolution processing. Since the features extracted through convolution operations usually have high dimensions, in order To reduce the training overhead, the convolution-processed data will be entered into the pooling layer to reduce the feature dimension.
  • the pooling layer not only reduces the feature dimension, but also improves the anti-noise ability of the entire network structure to a certain extent. After the data output by the pooling layer enters the LSTM, the output result enters the fully connected layer for processing, and the final output result is output by the output layer.
  • Embodiments of the present invention provide a method for calculating the dispatchability potential of active loads. Based on the behavioral characteristics of active loads in the distribution network, mathematical models of behavioral characteristics of different active loads are established respectively, using the Minkowski summation method. , aggregating the mathematical models of behavioral characteristics of different active loads to obtain dispatchable potential data of active loads based on smart buildings.
  • the originally distributed active loads are aggregated and participate in the overall scheduling in the form of resource clusters.
  • the dispersed active loads are aggregated into active loads that can be scheduled in units of smart buildings. Potential data can preserve the behavioral characteristics of active loads as much as possible while ensuring the convexity of the model, and improve the aggregation accuracy.
  • this embodiment uses The calculation method of active load dispatchability potential is more objective and the data characteristics are more comprehensive.
  • the schedulable potential time series prediction method based on CNN-LSTM can comprehensively predict schedulable potential in the form of a set based on historical data, and the prediction results can assist the dispatching agency in decision-making analysis.
  • sequence number of each step in the above embodiment does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present invention.
  • Figure 4 shows a schematic structural diagram of a device for calculating active load schedulable potential provided by an embodiment of the present invention. For ease of explanation, only the parts related to the embodiment of the present invention are shown. The details are as follows:
  • the calculation device for active load dispatchability potential includes: a model building module 41 and an aggregation module 42.
  • the model building module 41 is used to establish mathematical models of behavioral characteristics of different active loads based on the behavioral characteristics of active loads in the distribution network.
  • the active loads are distributed active loads;
  • the aggregation module 42 is used to aggregate the mathematical models of behavioral characteristics of different active loads using the Minkowski summation method to obtain dispatchable potential data of active loads based on smart buildings.
  • active loads include shiftable loads, cuttable loads and interruptible loads
  • the mathematical model of the behavior characteristics of the translatable load established by the model building module 41 is: ;
  • the translatable load is in the time workload, Indicates the first The total amount of work that a translatable load needs to complete every day, Indicates the first The starting time of the working time interval specified by a shiftable load, Indicates the first The end time of the working time interval specified by a shiftable load;
  • the load-reducing behavior characteristic mathematical model established by the model building module 41 is: ;
  • the load can be reduced in the Participate in subsidies corresponding to demand response at all times; Indicates the first The load can be reduced in the Momentarily reduced power; , Respectively represent the A subsidy coefficient corresponding to a load that can be reduced; Indicates the first The load can be reduced in the The original load power at the moment; Indicates the reduction limit ratio of the load that can be reduced;
  • the mathematical model of the behavioral characteristics of the interruptible load established by the model building module 41 is: ;
  • the aggregation module 42 uses Minkowski summation to aggregate the mathematical models of behavioral characteristics of different active loads.
  • the definition domain of the maximum continuous interruption time constraint of the interruptible load is extended to be the same as the time definition domain of the variables in the mathematical model of the behavior characteristics of the shiftable load and the mathematical model of the behavior characteristics of the curtailable load;
  • Minkowski summation was performed on the constraints in the mathematical models of the behavioral characteristics of different active loads, and the generalized variables and parameters of the active load in units of smart buildings were obtained;
  • the dispatchable potential data of active load in units of smart buildings are obtained.
  • the aggregation module 42 when the aggregation module 42 obtains the generalized variable of the active load in units of the intelligent building, it is used to:
  • the aggregation module 42 obtains the generalized parameters of active loads in units of intelligent buildings, it is used to:
  • the aggregation module 42 obtains the active load dispatchable potential data in units of intelligent buildings according to the generalized variables and generalized parameters, it is used to:
  • the calculation device for active load dispatchability potential also includes a prediction module 43;
  • the prediction module 43 is used to:
  • the time series prediction method is used to predict the dispatchable potential data of different active loads.
  • the above-mentioned calculation device for the dispatchability potential of active loads establishes modules to separately establish mathematical models of the behavioral characteristics of different active loads based on the behavioral characteristics of active loads in the distribution network, and uses the Minkowski summation method to aggregate the modules.
  • the mathematical models of behavioral characteristics of different active loads are aggregated to obtain the dispatchable potential data of active loads based on smart buildings.
  • the originally distributed active loads are aggregated and participate in the overall scheduling in the form of resource clusters.
  • the dispersed active loads are aggregated into active loads that can be scheduled in units of smart buildings. Potential data can preserve the behavioral characteristics of active loads as much as possible while ensuring the convexity of the model, and improve the aggregation accuracy.
  • this embodiment uses The calculation method of active load dispatchability potential is more objective and the data characteristics are more comprehensive.
  • the prediction module is based on the CNN-LSTM schedulable potential time series prediction method, which can comprehensively predict schedulable potential in the form of a set based on historical data. The prediction results can assist the dispatching agency in decision-making analysis.
  • FIG6 is a schematic diagram of a terminal provided in an embodiment of the present invention.
  • the terminal 6 of this embodiment includes: a processor 60, a memory 61, and a computer program 62 stored in the memory 61 and executable on the processor 60.
  • the processor 60 executes the computer program 62
  • the steps in the above-mentioned embodiments of the method for calculating the dispatchable potential of active loads are implemented, such as steps 101 to 102 shown in FIG1 .
  • the processor 60 executes the computer program 62
  • the functions of the modules/units in the above-mentioned device embodiments are implemented, such as the functions of the modules/units 41 to 42 shown in FIG4 or the functions of the modules/units 41 to 43 shown in FIG6 .
  • the computer program 62 may be divided into one or more modules/units, the one or more modules/units are stored in the memory 61 and executed by the processor 60 to complete this invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of completing specific functions.
  • the instruction segments are used to describe the execution process of the computer program 62 in the terminal 6 .
  • the computer program 62 may be divided into the functions of the modules/units 41 to 42 shown in FIG. 4 or the modules/units 41 to 43 shown in FIG. 6 .
  • the terminal 6 may include, but is not limited to, a processor 60 and a memory 61 .
  • FIG. 6 is only an example of the terminal 6 and does not constitute a limitation on the terminal 6. It may include more or fewer components than shown in the figure, or combine certain components, or different components, such as
  • the terminal may also include input and output devices, network access devices, buses, etc.
  • the so-called processor 60 can be a central processing unit (CPU), or other general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory 61 may be an internal storage unit of the terminal 6 , such as a hard disk or memory of the terminal 6 .
  • the memory 61 may also be an external storage device of the terminal 6, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), or a secure digital (Secure Digital, SD) card equipped on the terminal 6. Flash Card, etc.
  • the memory 61 may also include both an internal storage unit of the terminal 6 and an external storage device.
  • the memory 61 is used to store the computer program and other programs and data required by the terminal.
  • the memory 61 can also be used to temporarily store data that has been output or is to be output.
  • Module completion means dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be hardware-based. It can also be implemented in the form of software functional units.
  • the specific names of each functional unit and module are only for the convenience of distinguishing each other and are not used to limit the scope of protection of the present application.
  • For the specific working processes of the units and modules in the above system please refer to the corresponding processes in the foregoing method embodiments, and will not be described again here.
  • the disclosed device/terminal and method can be implemented in other ways.
  • the device/terminal embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or units. Components may be combined or may be integrated into another system, or some features may be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated module/unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer program can be stored in a computer-readable storage medium.
  • the steps of the above embodiments of the method for calculating the schedulable potential of each active load can be implemented.
  • the computer program includes computer program code, which may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording media, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (Read-Only Memory, ROM) , random access memory (Random Access Memory, RAM), electrical carrier signals, telecommunications signals, and software distribution media, etc.

Abstract

本发明提供一种主动型负荷可调度潜力的计算方法、装置、终端及存储介质。该方法包括:基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,所述主动型负荷为分布式主动型负荷;采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。本发明能够通过基于闵可夫斯基和的聚合方法,将原本分布式主动型负荷聚合为以智能楼宇为单位的主动负荷可调度潜力数据,可以保留主动型负荷的行为特征,提高聚合准确度,计算方式更为客观,数据特征更加全面。

Description

主动型负荷可调度潜力的计算方法、终端及存储介质 技术领域
本发明涉及电力数据处理技术领域,尤其涉及一种主动型负荷可调度潜力的计算方法、终端及存储介质。
背景技术
随着智能电网建设的不断深入和推进,配电网作为电网的重要环节之一也逐步向智能化发展,用户与电网之间的互动更为明显。相对于传统负荷而言,配电网中电动汽车、可中断负荷等主动型负荷成分逐年增多,为了对这些主动型负荷资源进行利用和管理,用户侧的电力运营商一般通过价格引导以及合同管理的模式进行需求侧管理。一方面预测用户的用电曲线,通过改变电价的方式改变用户的用电结构,达到削峰填谷的目的;另一方面根据用户的实际用电结构与用户签订负荷管理合同,远程对部分负荷进行直接管理,增加调度的灵活性。同时,主动配电网控制系统的提出和发展,使得配电网可以灵活调度各类分布式资源,包括分布式发电和各类主动型负荷。配电网的调度人员能够使用灵活的网络拓扑结构来调整潮流的变化情况,分布式的资源可以根据合理的监管政策以及用户接入合同,向电力系统提供不同条件下的辅助服务支撑。
但是,现阶段主动型负荷可调度潜力计算和预测方法存在以下问题:
(1)现有的针对主动型负荷可调度潜力计算方法大多通过权重将各项指标统一为一个单一指标来表示,仅具有评价功能,很难与实际的调度过程相结合,且评估较片面;
(2)在实际的市场和调度中,主动型负荷大多以聚合商或智能楼宇的形式聚合参数需求侧响应和调度,其多聚焦于单一分散负荷的建模和可调度潜力分析和计算,无法参与整体调度,缺乏实际的应用价值。
发明内容
本发明实施例提供了一种主动型负荷可调度潜力的计算方法、终端及存储介质,以解决现有技术中主动型负荷可调度潜力计算方法,导致的对可调度潜力进行片面的评估,无法与实际的整体的调度的问题。
第一方面,本发明实施例提供了一种主动型负荷可调度潜力的计算方法,包括:
基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,所述主动型负荷为分布式主动型负荷;
采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。
在一种可能的实现方式中,主动型负荷包括可平移负荷、可削减负荷和可中断负荷;
所述可平移负荷的行为特性数学模型为
其中, 表示第 个可平移负荷在第 时刻的工作量, 表示第 个可平移负荷每天需要完成的总工作量, 表示第 个可平移负荷指定的工作时间区间的起始时间, 表示第 个可平移负荷指定的工作时间区间的结束时间;
所述可削减负荷的行为特性数学模型为
其中, 表示第 个可削减负荷在第 时刻参与需求响应对应的补贴; 表示第 个可削减负荷在第 时刻削减的功率; 分别表示第 个可削减负荷对应的补贴系数; 表示第 个可削减负荷在第 时刻的原负荷功率; 表示可削减负荷的削减极限比例;
所述可中断负荷的行为特性数学模型为
其中, 表示第 个可中断负荷在 时的中断功率, 表示第 个可中断负荷在第 时刻的最小中断功率, 表示第 个可中断负荷在第 时刻的最大中断功率, 表示第 个可中断负荷在第 时刻的中断状态, 表示第 个可中断负荷在第 时刻的中断状态, 表示可中断负荷的最大连续中断时间, 表示第 个可中断负荷一天之内最多中断次数。
在一种可能的实现方式中,所述采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据,包括:
将所述可中断负荷的最大连续中断时间约束的定义域扩展到与所述可平移负荷的行为特性数学模型、所述可削减负荷的行为特性数学模型中的变量的时间定义域相同;
分别对所述不同主动型负荷的行为特性数学模型中的约束进行闵可夫斯基求和,得到以智能楼宇为单位的主动负荷的广义变量和广义参数;
根据所述广义变量和所述广义参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
在一种可能的实现方式中,得到以智能楼宇为单位的主动负荷的广义变量,包括:
根据 得到以智能楼宇为单位的主动负荷的广义变量;
其中, 表示第 个智能楼宇在第 时刻的广义可平移负荷工作状态; 表示第 个智能楼宇在第 时刻的广义可削减负荷削减功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷中断功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷的中断次数; 表示第 个智能楼宇在第 时刻的广义可中断负荷在第 时刻的中断状态, 表示第 个可中断负荷在第 时刻从在第 时刻的中断状态,其中, 分别为第 个智能楼宇中的可平移负荷、可削减负荷和可中断负荷的数量。
在一种可能的实现方式中,得到以智能楼宇为单位的主动负荷的广义参数,包括:
根据 得到以智能楼宇为单位的主动负荷的广义参数数;
其中, 为第 个智能楼宇在第 时刻的广义可平移负荷的总工作量; 为第 个智能楼宇在第 时刻的广义可削减负荷的原有负荷功率; 分别为第 个智能楼宇在第 时刻的广义可中断负荷的最小中断功率、最大中断功率; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大中断次数; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大连续可中断时间。
在一种可能的实现方式中,所述根据所述广义变量和所述广义参数,得到以智能楼宇为单位的主动负荷可调度潜力数据,包括:
将所述广义变量和所述广义参数替换对应的所述不同主动型负荷的行为特性数学模型中的变量和参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
在一种可能的实现方式中,在所述采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据之后,还包括:
采集每个智能楼宇中不同主动型负荷对应的历史数据;
基于所述历史数据,采用时间序列预测方法对所述不同主动负荷的可调度潜力数据进行预测。
第二方面,本发明实施例提供了一种主动型负荷可调度潜力的计算装置,包括:
模型建立模块,用于基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,所述主动型负荷为分布式主动型负荷;
聚合模块,用于采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。
第三方面,本发明实施例提供了一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面或第一方面的任一种可能的实现方式所述的主动型负荷可调度潜力的计算方法的步骤。
第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上第一方面或第一方面的任一种可能的实现方式所述的主动型负荷可调度潜力的计算方法的步骤。
本发明实施例提供一种主动型负荷可调度潜力的计算方法、装置、终端及存储介质,通过基于闵可夫斯基和的聚合方法,将原本分布式主动型负荷进行聚合,以资源集群的形式参与整体调度,将分散的主动型负荷聚合为以智能楼宇为单位的主动负荷可调度潜力数据,可以在保证模型的凸性的同时,尽可能保留主动型负荷的行为特征,提高聚合准确度,相比于现有技术中使用单一指标对可调度潜力进行评估,本实施例采用的主动型负荷可调度潜力的计算方式更为客观,数据特征更加全面。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的主动型负荷可调度潜力的计算方法的应用场景图;
图2是本发明实施例提供的闵可夫斯基求和过程示意图;
图3是本发明实施例提供的得到以智能楼宇为单位的主动负荷可调度潜力数据的实现流程图;
图4是本发明实施例提供的主动型负荷可调度潜力的计算装置的结构示意图;
图5是本发明另一实施例提供的主动型负荷可调度潜力的计算装置的结构示意图;
图6是本发明实施例提供的终端的示意图。
实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。
图1为本发明实施例提供的一种主动型负荷可调度潜力的计算方法的实现流程图,详述如下:
步骤101,基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,主动型负荷为分布式主动型负荷。
在本实施例中,主动型负荷包括可平移负荷、可削减负荷和可中断负荷。不同主动型负荷的行为特性也不同。
其中,可平移负荷的行为特征是一天中必须完成固定的工作量,这里工作量即可平移负荷的功率,但是可以通过无线开关调节其工作时间段,其工作时间段也必须在规定的区间之内选取。可平移负荷的总功率为固定值,工作时间可以随调度需求变化。例如可平移负荷可以为洗衣机、电热水器和洗碗机等的功率,以规律生活为基础,洗碗机每天工作三次,分别用于清洗早餐、中餐以及晚餐使用过的餐具,每天早餐中餐以及晚餐的时间可以是不同的,但是每天洗碗机都工作三次,因此总功率一定。
因此,对于某智能楼宇中,可以建立可平移负荷的行为特性数学模型,模型通过约束形式表示,可以包括工作量约束。
可平移负荷的行为特性数学模型为
其中, 表示第 个可平移负荷在第 时刻的工作量, 表示第 个可平移负荷每天需要完成的总工作量, 表示第 个可平移负荷指定的工作时间区间的起始时间, 表示第 个可平移负荷指定的工作时间区间的结束时间。
根据可平移负荷的行为特征,我们可以得到可平移负荷可以处于工作状态或停机状态,当其处于工作状态时,即在 时间区间内时 ,当其处于停机状态时,即在 时间区间外时
可削减负荷的行为特点是可以在不影响正常使用的情况下,通过远程控制削减一部分的负荷功率,可削减负荷的调度需要根据所签订合同确定削减的比例,相当于通过合同的方式对用户某些负荷的功率进行限定,但相比于节能的行为,可削减负荷一方面起到节能的作用,更重要的是参与调度,可以起到一定的削峰的作用。例如可削减负荷可以为电暖气、空调和加湿器等等的功率。
因此,对于某智能楼宇中,可以建立可削减负荷的行为特性数学模型,模型通过约束形式表示,可以包括最大削减功率约束。
可削减负荷的行为特性数学模型为
其中, 表示第 个可削减负荷在第 时刻参与需求响应对应的补贴; 表示第 个可削减负荷在第 时刻削减的功率; 分别表示第 个可削减负荷对应的补贴系数; 表示第 个可削减负荷在第 时刻的原负荷功率; 表示可削减负荷的削减极限比例。
可中断负荷的行为特点是可以根据调度的需求随时中断,但是需要根据所签订的合同进行约束。首先,中断的总功率有临界值;其次,不能连续地中断过长时间,会影响正常的用电;最后,一天之内的中断次数不能过多。在满足这些约束的条件下,根据调度需要进行中断,并需要给予相应补偿。
可中断负荷的行为特性数学模型为
其中, 表示第 个可中断负荷在 时的中断功率, 表示第 个可中断负荷在第 时刻的最小中断功率, 表示第 个可中断负荷在第 时刻的最大中断功率, 表示第 个可中断负荷在第 时刻的中断状态, 为1时表示可中断负荷处于中断状态, 为0时表示可中断负荷未处于中断状态, 表示第 个可中断负荷在第 时刻的中断状态, 表示第 个可中断负荷的最大连续中断时间, 表示可中断负荷的最大连续中断时间, 表示可中断负荷的连续中断时间, 表示时间参数, 表示第 个可中断负荷一天之内最多中断次数。
需要说明的是,上述不同主动型负荷为分布式的主动负荷,是一种离散状态,无法确定其可调度潜力,对其进行统一调度,因此采用步骤102,将分布式的主动型负荷进行聚合。
步骤102,采用闵可夫斯基求和的方式,对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。
在本步骤中,以智能楼宇为单位,将原本分布式的主动型负荷聚合为广义的主动负荷,以数据集的形式表示主动型负荷可调度潜力。
闵可夫斯基求和是两个欧式几何空间中的点集的和,即在一个空间体的基础上按照另一个空间体的形状进行膨胀扩展,从而得到一个新的空间体,其在物理角度上就是两个空间的膨胀集合。例如点集A和点集B的闵可夫斯基和被定义为 ,其中, 为闵可夫斯基和中的点的坐标。如图2所示,点集A和点集B的闵可夫斯基和就是将点集B的每个点坐标当作一个向量,然后点集A分别沿着这些向量平移,得到新的点集就是点集A与点集B的闵可夫斯基和。
但是,闵可夫斯基求和有一定的前提条件:
第一,求和的各变量必须具有同样的定义域;
第二,在扩展定义域时需要考虑到边界条件的存在,对不同的边界条件进行分类计算。
在本实施例的主动型负荷的行为特性数学模型中,大部分变量的定义域都是在[1,24]这一时间区间内,具有闵可夫斯基可加性。然而可中断负荷模型中,最大连续中断时间约束的定义域是从任意时间 开始,到  结束,因此需要将其扩展到[1,24]时间尺度上。
可选的,参见图3,采用闵可夫斯基求和的方式,对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据,可以包括:
步骤301,将可中断负荷的最大连续中断时间约束的定义域扩展到与可平移负荷的行为特性数学模型、可削减负荷的行为特性数学模型中的变量的时间定义域相同。
可平移负荷和可削减负荷的行为特性数学模型中的变量的定义域都是在[1,24]这一时间区间内,因此需要将可中断负荷的最大连续中断时间约束的定义域扩展到上述时间区间内,
表示第 个可中断负荷在第 时刻从在第 时刻的中断状态,其中, 
通过上述扩展时间区间的处理,就可以对不同主动型负荷的行为特性数学模型中的约束进行闵可夫斯基求和。
步骤302,分别对不同主动型负荷的行为特性数学模型中的约束进行闵可夫斯基求和,得到以智能楼宇为单位的主动负荷的广义变量和广义参数。
其中,以智能楼宇为单位,在第 个智能楼宇中分别对每一种主动型负荷进行闵可夫斯基求和,得到以智能楼宇为单位的主动负荷的广义变量,包括:
根据 得到以智能楼宇为单位的主动负荷的广义变量;
其中, 可以采用以下公式表示:
其中, 表示第 个智能楼宇在第 时刻的广义可平移负荷工作状态; 表示第 个智能楼宇在第 时刻的广义可削减负荷削减功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷中断功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷的中断次数; 表示第 个智能楼宇在第 时刻的广义可中断负荷在第 时刻的中断状态, 分别为第 个智能楼宇中的可平移负荷、可削减负荷和可中断负荷的数量。
得到以智能楼宇为单位的主动负荷的广义参数,包括:
根据 得到以智能楼宇为单位的主动负荷的广义参数;
其中, 为第 个智能楼宇在第 时刻的广义可平移负荷的总工作量; 为第 个智能楼宇在第 时刻的广义可削减负荷的原有负荷功率; 分别为第 个智能楼宇在第 时刻的广义可中断负荷的最小中断功率、最大中断功率; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大中断次数; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大连续可中断时间。
步骤303,根据广义变量和广义参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
在本实施例中,将广义变量和广义参数替换对应的不同主动型负荷的行为特性数学模型中的变量和参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
针对第 个智能楼宇,可以得到:
上述主动负荷可调度潜力数据是以数据集的形式存在,含有智能楼宇的所有有用决策和需求侧管理决策信息,而主动负荷可调度潜力数据{  }一定程度上决定了智能楼宇作为主动型负荷参与需求侧管理的潜力,因此可以将数据集合{  }作为主动型负荷的可调度潜力。
在采用闵可夫斯基求和的方式,对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据之后,还可以包括:
采集每个智能楼宇中不同主动型负荷对应的历史数据;
基于历史数据,采用时间序列预测方法对不同主动负荷的可调度潜力数据进行预测。在本实施例中,可以采用CNN-LSTM时间序列预测方法对不同主动负荷的可调度潜力数据进行预测。
历史数据可以为第 个智能楼宇中不同主动型负荷的数据,采用蒙特卡洛方法生成。即 为第 个数据集; 表示第 种负荷的第 个数据。
智能楼宇需要记录下每种负荷的总工作量、原本负荷功率和最大最小中断功率等数据,即 ,其中,
根据智能楼宇记录的 ,即可采用CNN-LSTM算法进行预测,实现合理的最优的日前调度策略,使智能楼宇中的多种主动负荷得到充分利用。
参见图3,将获取的智能楼宇记录的 ,作为输入序列输入CNN-LSTM网络结构中进行负荷预测。CNN-LSTM网络结构包括两个卷积层、一个最大池化层、LSTM和一个全连接层,其中两个卷积层分别为有64个过滤器的卷积层和128个过滤器的卷积层。输入序列首先经过有64个过滤器的卷积层进行卷积处理,然后处理结果输入128个过滤器的卷积层继续进行卷积处理,由于通过卷积操作提取的特征通常维度很高,为了降低训练开销,会将卷积处理后的数据进入池化层进行特征维度降低的处理,池化层对特征进行降维处理的同时,还在一定程度上提升整个网络结构的抗噪能力。池化层输出的数据进入LSTM后,输出结果进入全连接层处理,得到最终的输出结果由输出层输出。
本发明实施例提供一种主动型负荷可调度潜力的计算方法,通过基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,采用闵可夫斯基求和的方式,对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。本实施例中将原本分布式主动型负荷进行聚合,以资源集群的形式参与整体调度,基于闵可夫斯基和的聚合方法,将分散的主动型负荷聚合为以智能楼宇为单位的主动负荷可调度潜力数据,可以在保证模型的凸性的同时,尽可能保留主动型负荷的行为特征,提高聚合准确度,相比于现有技术中使用单一指标对可调度潜力进行评估,本实施例采用的主动型负荷可调度潜力的计算方式更为客观,数据特征更加全面。基于CNN-LSTM的可调度潜力时序预测方法,能够根据历史数据,以集合的形式对可调度潜力进行全面的预测,预测结果能够辅助调度机构进行决策分析。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
以下为本发明的装置实施例,对于其中未详尽描述的细节,可以参考上述对应的方法实施例。
图4示出了本发明实施例提供的主动型负荷可调度潜力的计算装置的结构示意图,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
如图4所示,主动型负荷可调度潜力的计算装置包括:模型建立模块41和聚合模块42。
模型建立模块41,用于基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,主动型负荷为分布式主动型负荷;
聚合模块42,用于采用闵可夫斯基求和的方式,对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。
在一种可能的实现方式中,主动型负荷包括可平移负荷、可削减负荷和可中断负荷;
模型建立模块41建立的可平移负荷的行为特性数学模型为
其中, 表示第 个可平移负荷在第 时刻的工作量, 表示第 个可平移负荷每天需要完成的总工作量, 表示第 个可平移负荷指定的工作时间区间的起始时间, 表示第 个可平移负荷指定的工作时间区间的结束时间;
模型建立模块41建立的可削减负荷的行为特性数学模型为
其中, 表示第 个可削减负荷在第 时刻参与需求响应对应的补贴; 表示第 个可削减负荷在第 时刻削减的功率; 分别表示第 个可削减负荷对应的补贴系数; 表示第 个可削减负荷在第 时刻的原负荷功率; 表示可削减负荷的削减极限比例;
模型建立模块41建立的可中断负荷的行为特性数学模型为
其中, 表示第 个可中断负荷在 时的中断功率, 表示第 个可中断负荷在第 时刻的最小中断功率, 表示第 个可中断负荷在第 时刻的最大中断功率, 表示第 个可中断负荷在第 时刻的中断状态, 表示第 个可中断负荷在第 时刻的中断状态, 表示可中断负荷的最大连续中断时间, 表示第 个可中断负荷一天之内最多中断次数。
在一种可能的实现方式中,聚合模块42采用闵可夫斯基求和的方式,对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据时,用于:
将可中断负荷的最大连续中断时间约束的定义域扩展到与可平移负荷的行为特性数学模型、可削减负荷的行为特性数学模型中的变量的时间定义域相同;
分别对不同主动型负荷的行为特性数学模型中的约束进行闵可夫斯基求和,得到以智能楼宇为单位的主动负荷的广义变量和广义参数;
根据广义变量和广义参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
在一种可能的实现方式中,聚合模块42得到以智能楼宇为单位的主动负荷的广义变量时,用于:
根据 得到以智能楼宇为单位的主动负荷的广义变量;
其中, 表示第 个智能楼宇在第 时刻的广义可平移负荷工作状态; 表示第 个智能楼宇在第 时刻的广义可削减负荷削减功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷中断功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷的中断次数; 表示第 个智能楼宇在第 时刻的广义可中断负荷在第 时刻的中断状态, 表示第 个可中断负荷在第 时刻从在第 时刻的中断状态,其中, 分别为第 个智能楼宇中的可平移负荷、可削减负荷和可中断负荷的数量。
在一种可能的实现方式中,聚合模块42得到以智能楼宇为单位的主动负荷的广义参数时,用于:
根据 得到以智能楼宇为单位的主动负荷的广义参数;
其中, 为第 个智能楼宇在第 时刻的广义可平移负荷的总工作量; 为第 个智能楼宇在第 时刻的广义可削减负荷的原有负荷功率; 分别为第 个智能楼宇在第 时刻的广义可中断负荷的最小中断功率、最大中断功率; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大中断次数; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大连续可中断时间。
在一种可能的实现方式中,聚合模块42根据广义变量和广义参数,得到以智能楼宇为单位的主动负荷可调度潜力数据时,用于:
将广义变量和广义参数替换对应的不同主动型负荷的行为特性数学模型中的变量和参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
如图5所示,主动型负荷可调度潜力的计算装置还包括预测模块43;
在聚合模块42采用闵可夫斯基求和的方式,对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据之后,预测模块43用于:
采集每个智能楼宇中不同主动型负荷对应的历史数据;
基于历史数据,采用时间序列预测方法对不同主动负荷的可调度潜力数据进行预测。
上述主动型负荷可调度潜力的计算装置,通过基于配电网中主动型负荷的行为特性,建立模块分别建立不同主动型负荷的行为特性数学模型,采用闵可夫斯基求和的方式,聚合模块对不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。本实施例中将原本分布式主动型负荷进行聚合,以资源集群的形式参与整体调度,基于闵可夫斯基和的聚合方法,将分散的主动型负荷聚合为以智能楼宇为单位的主动负荷可调度潜力数据,可以在保证模型的凸性的同时,尽可能保留主动型负荷的行为特征,提高聚合准确度,相比于现有技术中使用单一指标对可调度潜力进行评估,本实施例采用的主动型负荷可调度潜力的计算方式更为客观,数据特征更加全面。预测模块基于CNN-LSTM的可调度潜力时序预测方法,能够根据历史数据,以集合的形式对可调度潜力进行全面的预测,预测结果能够辅助调度机构进行决策分析。
图6是本发明实施例提供的终端的示意图。如图6所示,该实施例的终端6包括:处理器60、存储器61以及存储在所述存储器61中并可在所述处理器60上运行的计算机程序62。所述处理器60执行所述计算机程序62时实现上述各个主动型负荷可调度潜力的计算方法实施例中的步骤,例如图1所示的步骤101至步骤102。或者,所述处理器60执行所述计算机程序62时实现上述各装置实施例中各模块/单元的功能,例如图4所示模块/单元41至42的功能或图6所示模块/单元41至43的功能。
示例性的,所述计算机程序62可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器61中,并由所述处理器60执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序62在所述终端6中的执行过程。例如,所述计算机程序62可以被分割成图4所示的模块/单元41至42或图6所示模块/单元41至43的功能。
所述终端6可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是终端6的示例,并不构成对终端6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端还可以包括输入输出设备、网络接入设备、总线等。
所称处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器61可以是所述终端6的内部存储单元,例如终端6的硬盘或内存。所述存储器61也可以是所述终端6的外部存储设备,例如所述终端6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器61还可以既包括所述终端6的内部存储单元也包括外部存储设备。所述存储器61用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个主动型负荷可调度潜力的计算方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1.  一种主动型负荷可调度潜力的计算方法,其特征在于,包括:
    基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,所述主动型负荷为分布式主动型负荷;
    采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。
  2.  根据权利要求1所述的主动型负荷可调度潜力的计算方法,其特征在于,主动型负荷包括可平移负荷、可削减负荷和可中断负荷;
    所述可平移负荷的行为特性数学模型为
    其中, 表示第 个可平移负荷在第 时刻的工作量, 表示第 个可平移负荷每天需要完成的总工作量, 表示第 个可平移负荷指定的工作时间区间的起始时间, 表示第 个可平移负荷指定的工作时间区间的结束时间;
    所述可削减负荷的行为特性数学模型为
    其中, 表示第 个可削减负荷在第 时刻参与需求响应对应的补贴; 表示第 个可削减负荷在第 时刻削减的功率; 分别表示第 个可削减负荷对应的补贴系数; 表示第 个可削减负荷在第 时刻的原负荷功率; 表示可削减负荷的削减极限比例;
    所述可中断负荷的行为特性数学模型为
    其中, 表示第 个可中断负荷在 时的中断功率, 表示第 个可中断负荷在第 时刻的最小中断功率, 表示第 个可中断负荷在第 时刻的最大中断功率, 表示第 个可中断负荷在第 时刻的中断状态, 表示第 个可中断负荷在第 时刻的中断状态, 表示可中断负荷的最大连续中断时间, 表示第 个可中断负荷一天之内最多中断次数。
  3.  根据权利要求2所述的主动型负荷可调度潜力的计算方法,其特征在于,所述采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据,包括:
    将所述可中断负荷的最大连续中断时间约束的定义域扩展到与所述可平移负荷的行为特性数学模型、所述可削减负荷的行为特性数学模型中的变量的时间定义域相同;
    分别对所述不同主动型负荷的行为特性数学模型中的约束进行闵可夫斯基求和,得到以智能楼宇为单位的主动负荷的广义变量和广义参数;
    根据所述广义变量和所述广义参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
  4.  根据权利要求3所述的主动型负荷可调度潜力的计算方法,其特征在于,得到以智能楼宇为单位的主动负荷的广义变量,包括:
    根据 得到以智能楼宇为单位的主动负荷的广义变量;
    其中, 表示第 个智能楼宇在第 时刻的广义可平移负荷工作状态; 表示第 个智能楼宇在第 时刻的广义可削减负荷削减功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷中断功率; 表示第 个智能楼宇在第 时刻的广义可中断负荷的中断次数; 表示第 个智能楼宇在第 时刻的广义可中断负荷在第 时刻的中断状态, 表示第 个可中断负荷在第 时刻从在第 时刻的中断状态,其中, 分别为第 个智能楼宇中的可平移负荷、可削减负荷和可中断负荷的数量。
  5.  根据权利要求3所述的主动型负荷可调度潜力的计算方法,其特征在于,得到以智能楼宇为单位的主动负荷的广义参数,包括:
    根据 得到以智能楼宇为单位的主动负荷的广义参数数;
    其中, 为第 个智能楼宇在第 时刻的广义可平移负荷的总工作量; 为第 个智能楼宇在第 时刻的广义可削减负荷的原有负荷功率; 分别为第 个智能楼宇在第 时刻的广义可中断负荷的最小中断功率、最大中断功率; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大中断次数; 为第 个智能楼宇在第 时刻的广义可中断负荷的最大连续可中断时间。
  6.  根据权利要求3所述的主动型负荷可调度潜力的计算方法,其特征在于,所述根据所述广义变量和所述广义参数,得到以智能楼宇为单位的主动负荷可调度潜力数据,包括:
    将所述广义变量和所述广义参数替换对应的所述不同主动型负荷的行为特性数学模型中的变量和参数,得到以智能楼宇为单位的主动负荷可调度潜力数据。
  7.  根据权利要求1-6中任一项所述的主动型负荷可调度潜力的计算方法,其特征在于,在所述采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据之后,还包括:
    采集每个智能楼宇中不同主动型负荷对应的历史数据;
    基于所述历史数据,采用时间序列预测方法对所述不同主动负荷的可调度潜力数据进行预测。
  8.  一种主动型负荷可调度潜力的计算装置,其特征在于,包括:
    模型建立模块,用于基于配电网中主动型负荷的行为特性,分别建立不同主动型负荷的行为特性数学模型,所述主动型负荷为分布式主动型负荷;
    聚合模块,用于采用闵可夫斯基求和的方式,对所述不同主动型负荷的行为特性数学模型进行聚合,得到以智能楼宇为单位的主动负荷可调度潜力数据。
  9.  一种终端,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上的权利要求1至7中任一项所述的主动型负荷可调度潜力的计算方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上的权利要求1至7中任一项所述的主动型负荷可调度潜力的计算方法的步骤。
PCT/CN2023/080502 2022-09-21 2023-03-09 主动型负荷可调度潜力的计算方法、终端及存储介质 WO2024060521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211149799.1 2022-09-21
CN202211149799.1A CN115577913A (zh) 2022-09-21 2022-09-21 主动型负荷可调度潜力的计算方法、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2024060521A1 true WO2024060521A1 (zh) 2024-03-28

Family

ID=84581658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080502 WO2024060521A1 (zh) 2022-09-21 2023-03-09 主动型负荷可调度潜力的计算方法、终端及存储介质

Country Status (2)

Country Link
CN (1) CN115577913A (zh)
WO (1) WO2024060521A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115577913A (zh) * 2022-09-21 2023-01-06 国网河北省电力有限公司电力科学研究院 主动型负荷可调度潜力的计算方法、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150261892A1 (en) * 2014-03-12 2015-09-17 Nec Laboratories America, Inc. Integrated optimal placement, sizing, and operation of energy storage devices in electric distribution networks
CN112949942A (zh) * 2021-04-08 2021-06-11 湘潭大学 基于多目标多元宇宙优化算法的智能楼宇负荷优化调度方法
CN114692965A (zh) * 2022-03-25 2022-07-01 国网湖北省电力有限公司电力科学研究院 基于数模混合驱动的电动汽车集群可调度潜力预测方法及装置
CN115577913A (zh) * 2022-09-21 2023-01-06 国网河北省电力有限公司电力科学研究院 主动型负荷可调度潜力的计算方法、终端及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150261892A1 (en) * 2014-03-12 2015-09-17 Nec Laboratories America, Inc. Integrated optimal placement, sizing, and operation of energy storage devices in electric distribution networks
CN112949942A (zh) * 2021-04-08 2021-06-11 湘潭大学 基于多目标多元宇宙优化算法的智能楼宇负荷优化调度方法
CN114692965A (zh) * 2022-03-25 2022-07-01 国网湖北省电力有限公司电力科学研究院 基于数模混合驱动的电动汽车集群可调度潜力预测方法及装置
CN115577913A (zh) * 2022-09-21 2023-01-06 国网河北省电力有限公司电力科学研究院 主动型负荷可调度潜力的计算方法、终端及存储介质

Also Published As

Publication number Publication date
CN115577913A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
Alam et al. Peer-to-peer energy trading among smart homes
Bahmanyar et al. Multi-objective scheduling of IoT-enabled smart homes for energy management based on Arithmetic Optimization Algorithm: A Node-RED and NodeMCU module-based technique
Zhou et al. Game-theoretical energy management for energy Internet with big data-based renewable power forecasting
Yang et al. Parallel load schedule optimization with renewable distributed generators in smart grids
Hansen et al. Heuristic optimization for an aggregator-based resource allocation in the smart grid
Rajasekhar et al. Collaborative energy management for a residential community: A non-cooperative and evolutionary approach
Rao et al. Hedging against uncertainty: A tale of internet data center operations under smart grid environment
Iria et al. A cluster-based optimization approach to support the participation of an aggregator of a larger number of prosumers in the day-ahead energy market
Roy et al. A hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimization
Saber et al. Developing a multi-objective framework for expansion planning studies of distributed energy storage systems (DESSs)
WO2024060521A1 (zh) 主动型负荷可调度潜力的计算方法、终端及存储介质
US11068820B2 (en) Avoiding peak energy demand times by managing consumer energy consumption
Batchu et al. Residential demand response algorithms: state-of-the-art, key issues and challenges
CN113205263B (zh) 一种基于能源互联网的精准电力需求侧管理方法及系统
Bae et al. User-friendly demand side management for smart grid networks
Jia et al. Analysis on demand-side interactive response capability for power system dispatch in a smart grid framework
Li et al. Negotiation-based task scheduling to minimize user’s electricity bills under dynamic energy prices
CN111864742B (zh) 一种主动配电系统扩展规划方法、装置及终端设备
CN112508306A (zh) 一种电力生产配置的自适应方法及系统
Ji et al. Multi-area interchange scheduling under uncertainty
Zhou et al. Many-criteria optimality of coordinated demand response with heterogeneous households
CN110392414A (zh) 无线网络连接方法及终端设备
Xu et al. A combined neurodynamic approach to optimize the real-time price-based demand response management problem using mixed zero-one programming
Zhang et al. Stochastic unit commitment with air conditioning loads participating in reserve service
Chao et al. A fair energy resource allocation strategy for micro grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866824

Country of ref document: EP

Kind code of ref document: A1