WO2024060497A1 - 海上风电安全保障系统及其控制方法 - Google Patents

海上风电安全保障系统及其控制方法 Download PDF

Info

Publication number
WO2024060497A1
WO2024060497A1 PCT/CN2023/076323 CN2023076323W WO2024060497A1 WO 2024060497 A1 WO2024060497 A1 WO 2024060497A1 CN 2023076323 W CN2023076323 W CN 2023076323W WO 2024060497 A1 WO2024060497 A1 WO 2024060497A1
Authority
WO
WIPO (PCT)
Prior art keywords
offshore
module
equipment
wind farm
offshore wind
Prior art date
Application number
PCT/CN2023/076323
Other languages
English (en)
French (fr)
Inventor
朱嵘华
陶梓健
涂智圣
刘寒秋
张才亮
孙香
徐清富
Original Assignee
阳江海上风电实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳江海上风电实验室 filed Critical 阳江海上风电实验室
Publication of WO2024060497A1 publication Critical patent/WO2024060497A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/08Alarms for ensuring the safety of persons responsive to the presence of persons in a body of water, e.g. a swimming pool; responsive to an abnormal condition of a body of water
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/08Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems

Definitions

  • the present invention belongs to the field of offshore wind power safety assurance, and in particular relates to an offshore wind power safety assurance system and a control method thereof.
  • Offshore wind farms are currently in a stage of rapid development, with serious operational safety issues, poor implementation of life safety guarantees for workers, and a high incidence of accidents in wind farm construction, operation and maintenance, resulting in serious economic losses. Offshore wind power operation accidents occur frequently, causing serious threats to the safety of personnel and property. The two main reasons are unclear personnel vital signs and unclear personnel working positions.
  • the onshore wind farm dispatch command center cannot adjust operating personnel in real time according to the actual situation. The work process is poor and the resistance to occasional personnel safety issues in offshore wind farms is poor, and the countermeasures are easy to fail.
  • offshore wind power currently urgently needs a smart wearable terminal for life support of workers dedicated to offshore wind power, in order to achieve the purpose of knowing the vital signs and geographical location of workers at any time, so as to intelligently allocate workers' working hours and working locations. Schedule work with workers to strictly ensure the safety of workers.
  • a series of equipment used in offshore wind farms are usually managed by construction workers.
  • offshore wind farm equipment cannot be subject to any damage during use.
  • Offshore wind power equipment is damaged by salt spray or falls into the water due to errors by construction workers. In serious cases, it will affect the construction progress and may cause important economic losses to the wind farm when offshore supply is difficult.
  • the present invention proposes a comprehensive offshore wind power safety system based on the Internet of Things and human body intelligent terminals. Full protection system.
  • the present invention provides a technical solution for an offshore wind power safety assurance system and method.
  • Offshore wind power safety assurance system including:
  • Smart terminal which is worn by workers and used to monitor the status of workers in real time
  • the maritime equipment Internet of Things equipment is installed on the equipment in the field. It includes a field positioning module, an environmental condition collection module and an alarm module.
  • the field positioning module is used to collect the field where the equipment is currently located.
  • Position the environmental condition acquisition module is used to collect the environmental condition information where the equipment is located, the alarm module is used to determine whether the equipment positioning and environmental condition information are in a dangerous state, and issue an alarm to the offshore operator management network platform when necessary;
  • a data processing and dispatching platform which is used to interact with the onshore command center, and the interactive content includes offshore operator information, equipment information, and offshore dispatching decisions;
  • An offshore network high-speed information transceiver module and an onshore data transceiver module are arranged inside the offshore wind farm area, and the onshore data transceiver module is arranged on the shore. The two are connected by wireless communication to realize the wind farm area. Information exchange and transmission with shore.
  • the smart terminal is provided with one or more of a human body detection module, a terminal positioning module and a falling into water judgment module.
  • the human body detection module is used to monitor the heart rate, blood pressure and pulse of the human body in real time.
  • the terminal positioning module is used To achieve positioning, the falling water judgment module is used to detect workers falling into the water.
  • the smart terminal is one or more of a smart bracelet, a head-mounted terminal, and an arm-mounted terminal.
  • the environmental condition acquisition module includes a temperature sensor, a salinity sensor and a humidity sensor. one or more types of sensors.
  • the data processing and dispatching platform includes an offshore wind farm natural information database, an operator safety database, an offshore equipment safety database and a data processing and dispatching module;
  • the offshore wind farm natural information database includes sea state data of the offshore wind farm, which is used to supplement information for data processing;
  • the operator safety assurance database includes personnel information transmitted from the offshore wind farm
  • the offshore equipment safety assurance database includes equipment information
  • the data processing and dispatching module analyzes and processes the current personnel and equipment data through artificial intelligence based on the established offshore wind farm natural information database and operator safety information database, and provides a predictive dispatching solution.
  • the sea state data includes one or more of wave data, ocean current data, sea wind data, natural disaster data and weather prediction data.
  • the present invention also provides a control method for the system as described above, including the following steps:
  • Step 1 Each operator of the offshore wind farm is equipped with a smart terminal, and the equipment is equipped with a site positioning module, an environmental condition collection module and an alarm module.
  • the offshore network high-speed information transceiver module forms an offshore operator management network platform and offshore equipment Internet of Things equipment.
  • Step 2 The offshore operator management network platform and offshore equipment IoT devices regularly transmit the collected information to the shore command center;
  • Step 3 The onshore command center initially determines the abnormality of the original data, gives immediate feedback to the offshore wind farm staff, and transmits the information to the data processing and dispatching platform;
  • Step 4 The data processing and dispatching platform uses artificial intelligence to analyze and process the received data based on the database content to form a predictive plan, and transmits it to the shore command center;
  • Step 5 The onshore command center issues predictive task instructions to offshore wind farm staff based on the plan provided by the data processing and dispatching center, and the offshore operator management network platform conducts personnel and Internet of Things adjustment.
  • This invention is aimed at the field of offshore wind power safety assurance, and can effectively ensure the life safety of offshore wind farm workers and the safety of important wind farm equipment, reduce the incidence of safety accidents for offshore wind farm personnel, reduce the damage rate of important equipment, and reduce economic losses from accidents. ;
  • This invention comprehensively considers the two most important safety aspects of offshore operations, namely personnel safety and important equipment safety, and achieves comprehensive safety guarantee for offshore wind farms;
  • the onshore command center can receive information about each offshore wind farm operator and important offshore equipment in real time, and issue immediate commands to offshore staff based on the data to achieve rapid decision-making and avoid personnel and equipment conflicts due to difficulties in information transmission.
  • the safety guarantee system proposed by the present invention can withstand the harsh environment of offshore wind farms and long-term guarantee the safety of personnel and equipment and property;
  • the safety assurance system proposed by the present invention can long-term collect data such as life information, equipment information, environmental information and task information of offshore wind power operators, and can provide an information basis for subsequent scientific research projects.
  • Figure 1 is a schematic structural diagram of Embodiment 1;
  • Figure 2 is a flow chart of Embodiment 2.
  • the offshore wind power safety assurance system is used to realize the safety supervision of important equipment and operators in the entire operation process of offshore wind farms, including offshore operator management network platform, offshore equipment Internet of Things equipment13, shore command center and data processing. Scheduling platform.
  • the offshore operator management network platform is composed of all offshore personnel for a single offshore operation. Each team member is equipped with an intelligent terminal 1 and forms a local area network for communication and management within the offshore personnel group.
  • the site is equipped with offshore network high-speed information sending and receiving Module 5 is used to set up a local area network for the management network platform and exchange information with the shore command center.
  • the smart terminal 1 is worn on the worker and is used to monitor the worker's status in real time.
  • the smart terminal 1 is provided with a human body detection module 11, a terminal positioning module 12, a falling into the water judgment module 14, a terminal wireless communication module 15 and a terminal control module 16.
  • the human body detection module 11 is used to monitor the heart rate, blood pressure and pulse of the human body in real time.
  • the terminal The positioning module 12 is used to achieve high-precision positioning of plane and height positions, which is achieved through Beidou satellite high-precision positioning or dual positioning with GPS.
  • the falling-in-water judgment module 14 is used to detect workers falling into the water, which includes an acceleration sensor and a water immersion sensor.
  • the terminal wireless communication module 15 realizes the communication between the smart terminal 1 and the sea.
  • the terminal control module 16 is used to control the work of the smart terminal 1 for the information interaction of the network high-speed information transceiver module 5 .
  • the smart terminal 1 may also have a camera to realize the image collection function.
  • the smart terminal 1 is made of materials that can withstand the harsh salt spray physical environment at sea, and has a strong waterproof function. The waterproof level reaches IP57 or above, and it is not easy to fall off from the human body in sudden extreme situations.
  • the form of the smart terminal 1 is not limited to smart bracelets, head-mounted terminals, arm-mounted terminals, etc.
  • the offshore network high-speed information transceiver module 5 is a 5G communication module, which is fixedly built inside the offshore wind farm area and serves as the center for the construction of the local area network of the offshore operator management network platform and the information exchange with the onshore command center. A medium of exchange and transmission.
  • Personnel going overseas are managed by multi-level managers, and at least three levels of management and overseas assignments are arranged in advance before going overseas.
  • Senior managers should be given certain permissions in the system to view real-time information about personnel working at sea, receive task instructions from the shore command center, and carry out offshore operations according to the instructions. Managers will give feedback to the shore command center when changing operational tasks based on the actual conditions at the site.
  • the offshore equipment IoT device 13 is installed on the equipment, and includes a field positioning module 2, an environmental condition collection module 3, an alarm module 4, an IoT control module 17 and an IoT wireless communication module 18.
  • the field positioning module 2 includes a high-precision detection and positioning sensor located in the field.
  • the field positioning module 2 is a GPS and is used to collect the current position of the equipment in the field.
  • the environmental condition acquisition module 3 is used to collect temperature, salinity and humidity information in the environment where the equipment is located.
  • the environmental condition acquisition module 3 includes a temperature sensor, a salinity sensor and a humidity sensor.
  • the alarm module 4 is specifically an alarm analysis chip, which is used to determine whether the equipment positioning and environmental condition information are in a dangerous state, and to send an alarm to the offshore operator management network platform when necessary.
  • the Internet of Things control module 17 is used to realize information interaction between the maritime equipment Internet of Things equipment 13 and the maritime network high-speed information transceiver module 5.
  • the Internet of Things wireless communication module 18 is used to control the work of the offshore equipment Internet of Things equipment 13.
  • the information collected by the offshore equipment IoT device 13 is sent and received in the same manner as the offshore operator management network platform.
  • the shore command center includes a data transceiver module and command processing personnel.
  • the data transceiver module is used to receive personnel information from the offshore operator management network platform and equipment information from the offshore equipment Internet of Things device 13, and exchange information with the data processing and dispatching platform.
  • Professionals in the shore command center should conduct preliminary analysis and judgment based on the original operator information and offshore equipment IoT devices13, and make immediate feedback to the offshore operator management network platform, such as: replacing staff with abnormal information, adjusting parts Work The working time of personnel, emergency rescue of people who fell into the water, replacement of equipment in dangerous working environments, positioning and recovery of equipment that has completed work, etc.
  • the shore command center transmits the collected operator information and equipment information to the data processing and dispatching platform during a fixed period of time, and receives the task adjustment report from the data processing and dispatching platform; then the technicians perform adjustments based on the adjustment report of the data processing and dispatching platform.
  • the next phase of predictive safety assurance task decisions are fed back to the offshore operator management network platform, and the operators execute relevant tasks according to the decision.
  • the data processing and dispatching platform is used to interact with the onshore command center.
  • the interactive content includes offshore operator information, equipment information and offshore dispatch decisions. It includes offshore wind farm natural information database7, operator safety database8, and offshore equipment safety database. 9 and artificial intelligence-based data processing scheduling module 10.
  • the offshore wind farm natural information database 7 includes a number of sea condition data of the offshore wind farm, such as wave data, current data, sea breeze data, natural disaster (typhoon, Haiti earthquake) data and weather forecast data, etc., which are used to supplement the information for data processing.
  • sea condition data of the offshore wind farm such as wave data, current data, sea breeze data, natural disaster (typhoon, Haiti earthquake) data and weather forecast data, etc., which are used to supplement the information for data processing.
  • the operator safety database 8 and the offshore equipment safety database 9 mainly include personnel information and equipment information transmitted from the offshore wind farm, and are the main objects for data processing.
  • the data processing and scheduling module 10 analyzes and processes the current personnel and equipment data through artificial intelligence based on the established offshore wind farm natural information database 7 and operator safety information database 8, and quickly provides predictive scheduling processing. Plan, such as replacing some staff or replacing some equipment at a certain time in the next phase.
  • the predictive plan derived from the resulting data processing is adjusted by professionals on the data processing and dispatching platform and the plan with the most economic value and safety assurance is given and transmitted to the shore command center.
  • the offshore network high-speed information transceiver module is installed inside the offshore wind farm area, and the onshore data transceiver module is installed on the shore. The two are wirelessly connected to realize information exchange and transmission between the wind farm area and the shore.
  • Step 1 Each operator of the offshore wind farm is equipped with a smart terminal, and important equipment is equipped with an IoT module.
  • the offshore network high-speed information transceiver module forms an offshore operator management network platform and offshore equipment IoT equipment;
  • Step 2 The offshore personnel management network platform and the offshore equipment IoT devices regularly transmit the collected information to the onshore command center;
  • Step 3 The onshore command center initially determines the abnormality of the original data, gives immediate feedback to the offshore wind farm staff, and transmits the information to the data processing and dispatching platform;
  • Step 4 The data processing and dispatching platform analyzes and processes the received data through artificial intelligence based on the database content to form a predictive plan and transmits it to the onshore command center;
  • Step 5 The onshore command center issues predictive task instructions to offshore wind farm staff based on the plan provided by the data processing and dispatching center, and the offshore operator management network platform makes adjustments to personnel and the Internet of Things.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Alarm Systems (AREA)

Abstract

本发明属于海上风电安全保障领域,具体涉及一种海上风电安全保障系统及其控制方法,包括智能终端、海上装备物联网设备、数据处理调度平台及海上网络高速信息收发模块和岸上数据收发模块,智能终端用以实时监测作业人员的状况,海上装备物联网设备包括场区定位模块、环境条件采集模块与警报模块,数据处理调度平台用以与岸上指挥中心进行交互,海上网络高速信息收发模块设置于海上风电场区内部,岸上数据收发模块设置于岸上,两者无线通信连接。本发明针对海上风电安全保障领域,能够有效保障海上风电场工作人员生命安全与风电场重要装备安全,降低海上风电场人员安全事故的发生率,降低重要装备的损坏率,降低事故经济损失。

Description

海上风电安全保障系统及其控制方法 技术领域
本发明属于海上风电安全保障领域,具体涉及一种海上风电安全保障系统及其控制方法。
背景技术
海上风电场目前处于飞速发展阶段,作业安全问题严重,作业人员生命安全保障落实到位情况差,风电场施工运维作业事故发生率高,造成严重经济损失后果。海上风电作业事故频发,造成人员生命财产安全受到严重威胁,其中最主要的两个原因就是人员生命体征不清晰与人员工作位置不清晰,陆上风场调度指挥中心无法根据实际情况实时调整作业人员的工作进程,对海上风电场的偶发性人员安全问题抗性差,应对措施易失效。所以,海上风电目前亟须一种专用于海上风电的作业人员生命保障智能穿戴终端,以达到随时知悉作业人员生命体征与地理位置的目的,从而做到智能调配作业人员工作时间、作业人员工作地点与作业人员工作调度,严格保障作业人员生命安全。
海上风电场所使用的一系列装备通常归由施工作业人员管理,但限于海上施工环境恶劣、施工进度要求高、施工难度大和施工人员专业性不强等原因,海上风电场装备在使用过程中无法受到全方位安全保障与管理。海上风电装备受盐雾影响损坏或因施工人员失误落水,严重时会影响施工进度,在海上补给困难的情况下可能造成风电场的重要经济损失。通过物联网形式将装备与网络联系起来,可以对海上风电重要装备进行统一管理安排与安全保障。
为保障海上作业人员生命安全和施工重要装备安全,降低海上风电事故严重经济后果,本发明提出了一种基于物联网与人体智能终端的海上风电综合安 全保障系统。
发明内容
为了弥补现有技术的不足,本发明提供一种海上风电安全保障系统及方法技术方案。
海上风电安全保障系统,包括:
智能终端,所述智能终端穿戴于作业人员身上,其用以实时监测作业人员的状况;
海上装备物联网设备,所述海上装备物联网设备安装于场区的装备上,其包括场区定位模块、环境条件采集模块与警报模块,所述场区定位模块用以采集装备目前所在场区位置,所述环境条件采集模块用以采集装备所处环境条件信息,所述警报模块用以判断装备定位与环境条件信息是否处于危险状态,并在需要时向海上作业人员管理网络平台发出警报;
数据处理调度平台,所述数据处理调度平台用以与岸上指挥中心进行交互,交互内容包括海上作业人员信息、装备信息以及海上调度决策;以及
海上网络高速信息收发模块和岸上数据收发模块,所述海上网络高速信息收发模块设置于海上风电场区内部,所述岸上数据收发模块设置于岸上,两者无线通信连接,用以实现风电场区与岸上的信息交换传输。
进一步地,所述智能终端设有人体检测模块、终端定位模块和落水判断模块其中一者或多种,所述人体检测模块用以实时监测人体的心率、血压和脉搏,所述终端定位模块用以实现定位,所述落水判断模块用以实现作业人员的落水检测。
进一步地,所述智能终端为智能手环、头戴式终端和臂挂式终端中的一种或多种。
进一步地,所述环境条件采集模块包括温度传感器、盐度传感器与湿度传 感器中的一种或多种。
进一步地,所述数据处理调度平台包括海上风电场自然信息数据库、作业人员安全保障数据库、海上装备安全保障数据库与数据处理调度模块;
所述海上风电场自然信息数据库包括海上风电场的海况数据,用于数据处理的信息补充;
所述作业人员安全保障数据库包括海上风电场传输来的人员信息;
所述海上装备安全保障数据库包括装备信息;
所述数据处理调度模块根据建立的海上风电场自然信息数据库和作业人员安全保障信息数据库,通过人工智能方式对现阶段人员与装备数据进行分析处理,给出预测性的调度处理方案。
进一步地,所述海况数据包括海浪数据、海流数据、海风数据、自然灾害数据以及天气预测数据中的一种或多种。
本发明还提供一种如上所述系统的控制方法,包括以下步骤:
步骤1,海上风电场通过作业人员每人配备智能终端,装备配备场区定位模块、环境条件采集模块与警报模块,通过海上网络高速信息收发模块形成海上作业人员管理网络平台与海上装备物联网设备;
步骤2,海上作业人员管理网络平台与海上装备物联网设备定时将收集到的信息传输至岸上指挥中心;
步骤3,岸上指挥中心初步判断原始数据的异常情况,给予海上风电场工作人员即时性反馈,并将信息传输至数据处理调度平台;
步骤4,数据处理调度平台根据数据库内容,通过人工智能对收到的数据进行分析处理形成预测性方案,并传输给岸上指挥中心;
步骤5,岸上指挥中心根据数据处理调度中心提供的方案对海上风电场工作人员下达预测性任务指令,并由海上作业人员管理网络平台进行人员及物联网 的调整。
本发明的有益效果是:
1)本发明针对海上风电安全保障领域,能够有效保障海上风电场工作人员生命安全与风电场重要装备安全,降低海上风电场人员安全事故的发生率,降低重要装备的损坏率,降低事故经济损失;
2)本发明综合考虑了海上作业最重要的两大安全,即人员安全与重要装备安全,实现了对海上风电场的全面安全保障;
3)岸上指挥中心可以实时接收每一个海上风电场作业人员信息与海上重要装备信息,并根据数据对海上工作人员下达即时性指挥工作,做到快速决策,避免了因信息传输困难导致的人员与装备安全问题;
4)本发明提出的安全保障系统能够抵抗海上风电场的恶劣环境,长效保障人员生命安全与装备财产安全;
5)本发明提出的安全保障系统能够长期收集海上风电作业人员生命信息、装备信息、环境信息与任务信息等数据,可以供后续科研项目提供信息基础。
附图说明
图1为实施例1结构示意图;
图2为实施例2流程图。
具体实施方式
在本发明的描述中,需要理解的是,术语“一端”、“另一端”、“外侧”、“上”、“内侧”、“水平”、“同轴”、“中央”、“端部”、“长度”、“外端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
下面结合附图对本发明作进一步说明。
实施例1
请参阅图1,海上风电安全保障系统,用于实现海上风电场全作业流程的重要装备与作业人员安全监管,包括海上作业人员管理网络平台、海上装备物联网设备13、岸上指挥中心与数据处理调度平台。
海上作业人员管理网络平台由单次出海作业的所有出海人员组成,每个组员配备一个智能终端1并形成局域网络,用于出海人员组内通信与管理,场区内配备海上网络高速信息收发模块5用于组建管理网络平台的局域网和与岸上指挥中心的信息交流。
智能终端1穿戴于作业人员身上,其用以实时监测作业人员的状况。其中,智能终端1设有人体检测模块11、终端定位模块12、落水判断模块14、终端无线通信模块15和终端控制模块16,人体检测模块11用以实时监测人体的心率、血压和脉搏,终端定位模块12用以实现平面和高度位置高精度定位,通过北斗卫星高精度定位或配合GPS双定位实现,,落水判断模块14用以实现作业人员的落水检测,其包括加速度传感器和水浸传感器,若加速度传感器检测到落体运动,之后水浸传感器检测到入水,落水判断模块14会将佩戴者状态识别为落水,并将报警信号以及定位信息传输出去,终端无线通信模块15实现智能终端1与海上网络高速信息收发模块5的信息交互,终端控制模块16用于对智能终端1的工作进行控制。
此外,智能终端1还可具有摄像头,实现图像采集功能。智能终端1采用满足抵抗海上恶劣盐雾物理环境的材料,且具有较强的防水功能,防水等级达到IP57以上,且在突发极端情况下不易从人体脱落。
智能终端1的形式不局限于智能手环、头戴式终端和臂挂式等。
海上网络高速信息收发模块5为5G通信模块,固定建设在海上风电场区内部,作为海上作业人员管理网络平台局域网构建的中心和与岸上指挥中心信息 交换传输的媒介。
出海人员有多级管理人员进行管理,出海前提前安排好至少3级管理和出海任务。在系统中应给予高级管理人员一定权限,用于查看出海作业人员的实时信息与接收岸上指挥中心下达的任务指示,并根据指示开展海上作业。管理人员根据场区实际情况,在改变作业任务时给予岸上指挥中心反馈。
海上装备物联网设备13安装于装备上,其包括场区定位模块2、环境条件采集模块3、警报模块4、物联网控制模块17和物联网无线通信模块18。
其中,场区定位模块2包括位于场区内的高精度检测定位传感器,场区定位模块2为GPS,用于采集装备目前所在场区位置。
其中,环境条件采集模块3用以采集装备所处环境中的温度、盐度和湿度信息,环境条件采集模块3包括温度传感器、盐度传感器与湿度传感器。
其中,警报模块4具体为报警分析芯片,用以判断装备定位与环境条件信息是否处于危险状态,并在需要时向海上作业人员管理网络平台发出警报。
其中,物联网控制模块17用于实现海上装备物联网设备13与海上网络高速信息收发模块5的信息交互。
其中,物联网无线通信模块18用于对海上装备物联网设备13的工作进行控制。
海上装备物联网设备13收集的信息的收发方式与海上作业人员管理网络平台相同。
岸上指挥中心包括数据收发模块与指挥处理人员,数据收发模块用于接收来自海上作业人员管理网络平台的人员信息与海上装备物联网设备13的装备信息、与数据处理调度平台进行信息交流。岸上指挥中心的专业人士应根据原始作业人员信息和海上装备物联网设备13进行初步分析与判断,对海上作业人员管理网络平台做出即时性反馈,如:换下信息异常的工作人员、调整部分工作 人员的作业时间、对落水人员展开紧急救援、替换处于危险工作环境的装备、定位回收已完成工作的装备等。岸上指挥中心在固定时间段,将收集到的作业人员信息和装备信息传输至数据处理调度平台,并接收来自数据处理调度平台的任务调整报告;然后由技术人员根据数据处理调度平台的调整报告进行下一阶段的预测性安全保障任务决策,并反馈给海上作业人员管理网络平台,由作业人员按照决策执行相关任务。
数据处理调度平台用以与岸上指挥中心进行交互,交互内容包括海上作业人员信息、装备信息以及海上调度决策,其包括海上风电场自然信息数据库7、作业人员安全保障数据库8、海上装备安全保障数据库9与基于人工智能的数据处理调度模块10。
其中,海上风电场自然信息数据库7包括海上风电场的多项海况数据,如海浪数据、海流数据、海风数据、自然灾害(台风、海地地震)数据以及天气预测数据等,用于数据处理的信息补充。
其中,作业人员安全保障数据库8与海上装备安全保障数据库9主要包括海上风电场传输来的人员信息与装备信息,用于数据处理的主要对象。
其中,数据处理调度模块10,根据建立的海上风电场自然信息数据库7和作业人员安全保障信息数据库8,通过人工智能方式对现阶段人员与装备数据进行分析处理,快速给出预测性的调度处理方案,如在下一阶段某时间段换下部分工作人员或调换部分装备。结果数据处理所得出的预测性方案由数据处理调度平台的专业人士进行调整并给出最具经济价值和安全保障性质的方案,传输给岸上指挥中心。
海上网络高速信息收发模块设置于海上风电场区内部,岸上数据收发模块设置于岸上,两者无线通信连接,用以实现风电场区与岸上的信息交换传输。
实施例2
请参阅图2,一种如实施例1所述系统的控制方法,包括以下步骤:
步骤1,海上风电场通过作业人员每人配备智能终端,重要装备配备物联网模组,通过海上网络高速信息收发模块形成海上作业人员管理网络平台与海上装备物联网设备;
步骤2,海上作业人员管理网络平台与海上装备物联网设备定时将收集到的信息传输至岸上指挥中心;
步骤3,岸上指挥中心初步判断原始数据的异常情况,给予海上风电场工作人员即时性反馈,并将信息传输至数据处理调度平台;
步骤4,数据处理调度平台根据数据库内容,通过人工智能对收到的数据进行分析处理形成预测性方案,并传输给岸上指挥中心;
步骤5,岸上指挥中心根据数据处理调度中心提供的方案对海上风电场工作人员下达预测性任务指令,并由海上作业人员管理网络平台进行人员及物联网的调整。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

  1. 海上风电安全保障系统,其特征在于,包括:
    智能终端,所述智能终端穿戴于作业人员身上,其用以实时监测作业人员的生命体征状况;
    海上装备物联网设备,所述海上装备物联网设备安装于场区的装备上,其包括场区定位模块、环境条件采集模块与警报模块,所述场区定位模块用以采集装备目前所在场区位置,所述环境条件采集模块用以采集装备所处环境条件信息,所述警报模块用以判断装备定位与环境条件信息是否处于危险状态,并在需要时向海上作业人员管理网络平台发出警报;
    数据处理调度平台,所述数据处理调度平台用以与岸上指挥中心进行交互,交互内容包括海上作业人员信息、装备信息以及海上调度决策;以及
    海上网络高速信息收发模块和岸上数据收发模块,所述海上网络高速信息收发模块设置于海上风电场区内部,所述岸上数据收发模块设置于岸上,两者无线通信连接,用以实现风电场区与岸上的信息交换传输。
  2. 根据权利要求1所述的海上风电安全保障系统,其特征在于,所述智能终端设有人体检测模块、终端定位模块和落水判断模块其中一者或多种,所述人体检测模块用以实时监测人体的心率、血压和脉搏,所述终端定位模块用以实现定位,所述落水判断模块用以实现作业人员的落水检测。
  3. 根据权利要求1所述的海上风电安全保障系统,其特征在于,所述智能终端为智能手环、头戴式终端和臂挂式终端中的一种或多种。
  4. 根据权利要求1所述的海上风电安全保障系统,其特征在于,所述环境条件采集模块包括温度传感器、盐度传感器与湿度传感器中的一种或多种。
  5. 根据权利要求1所述的海上风电安全保障系统,其特征在于,所述数据 处理调度平台包括海上风电场自然信息数据库、作业人员安全保障数据库、海上装备安全保障数据库与数据处理调度模块;
    所述海上风电场自然信息数据库包括海上风电场的海况数据,用于数据处理的信息补充;
    所述作业人员安全保障数据库包括海上风电场传输来的人员信息;
    所述海上装备安全保障数据库包括装备信息;
    所述数据处理调度模块根据建立的海上风电场自然信息数据库和作业人员安全保障信息数据库,通过人工智能方式对现阶段人员与装备数据进行分析处理,给出预测性的调度处理方案。
  6. 根据权利要求5所述的海上风电安全保障系统,其特征在于,所述海况数据包括海浪数据、海流数据、海风数据、自然灾害数据以及天气预测数据中的一种或多种。
  7. 一种如权利要求1-6中任一所述系统的控制方法,其特征在于,包括以下步骤:
    步骤1,海上风电场通过作业人员每人配备智能终端,装备配备场区定位模块、环境条件采集模块与警报模块,通过海上网络高速信息收发模块形成海上作业人员管理网络平台与海上装备物联网设备;
    步骤2,海上作业人员管理网络平台与海上装备物联网设备定时将收集到的信息传输至岸上指挥中心;
    步骤3,岸上指挥中心初步判断原始数据的异常情况,给予海上风电场工作人员即时性反馈,并将信息传输至数据处理调度平台;
    步骤4,数据处理调度平台根据数据库内容,通过人工智能对收到的数据进行分析处理形成预测性方案,并传输给岸上指挥中心;
    步骤5,岸上指挥中心根据数据处理调度中心提供的方案对海上风电场工作 人员下达预测性任务指令,并由海上作业人员管理网络平台进行人员及物联网的调整。
PCT/CN2023/076323 2022-09-22 2023-02-16 海上风电安全保障系统及其控制方法 WO2024060497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211158708.0A CN115662068A (zh) 2022-09-22 2022-09-22 海上风电安全保障系统及其控制方法
CN202211158708.0 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024060497A1 true WO2024060497A1 (zh) 2024-03-28

Family

ID=84984703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076323 WO2024060497A1 (zh) 2022-09-22 2023-02-16 海上风电安全保障系统及其控制方法

Country Status (2)

Country Link
CN (1) CN115662068A (zh)
WO (1) WO2024060497A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115662068A (zh) * 2022-09-22 2023-01-31 阳江海上风电实验室 海上风电安全保障系统及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170352010A1 (en) * 2016-06-02 2017-12-07 Doosan Heavy Industries & Construction Co., Ltd. Wind farm supervision monitoring system
CN107822612A (zh) * 2017-12-01 2018-03-23 大唐国信滨海海上风力发电有限公司 一种海上作业人员落水监测系统
CN210006086U (zh) * 2018-12-25 2020-01-31 中国能源建设集团广东省电力设计研究院有限公司 海上风电场调度管理系统
CN115662068A (zh) * 2022-09-22 2023-01-31 阳江海上风电实验室 海上风电安全保障系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170352010A1 (en) * 2016-06-02 2017-12-07 Doosan Heavy Industries & Construction Co., Ltd. Wind farm supervision monitoring system
CN107822612A (zh) * 2017-12-01 2018-03-23 大唐国信滨海海上风力发电有限公司 一种海上作业人员落水监测系统
CN210006086U (zh) * 2018-12-25 2020-01-31 中国能源建设集团广东省电力设计研究院有限公司 海上风电场调度管理系统
CN115662068A (zh) * 2022-09-22 2023-01-31 阳江海上风电实验室 海上风电安全保障系统及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, LIANG; YANG, XI; YANG, YUAN: "Definition, Architecture and Constructive Route of Intelligent Offshore Wind Farm", SOUTHERN ENERGY CONSTRUCTION, CN, vol. 7, no. 3, 25 September 2020 (2020-09-25), CN, pages 62 - 69, XP009554073, ISSN: 2095-8676, DOI: 10.16516/j.gedi.issn2095-8676.2020.03.008 *

Also Published As

Publication number Publication date
CN115662068A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN110222850A (zh) 一种海上风电场智能调度管理系统及管理方法
CN107748945A (zh) 一种智慧工地人员管理系统
WO2024060497A1 (zh) 海上风电安全保障系统及其控制方法
CN110957811B (zh) 一种临时接地线全流程智能监控方法与系统
CN107582035A (zh) 一种矿工生理指标安全预警系统
CN208314500U (zh) 环境监测系统
CN206584222U (zh) 一种区域电厂集中监控系统
CN207473032U (zh) 多旋翼双机系统无人机巡检故障诊断系统
CN213582239U (zh) 一种变压器实时监测系统
CN106791721A (zh) 基于红外图像的掘进机异常工作及灾害井下报警系统
CN101976889A (zh) 变电站视频及环境监控站端系统
CN103064352A (zh) 钻井平台信息集成处理系统
CN218214363U (zh) 一种智慧多用途的智慧桩终端设备
CN116862710A (zh) 一种智慧燃气管理平台
CN105373888A (zh) 输电线路物理信息融合多图层管控方法及系统
CN115953278A (zh) 一种基于bim的市政工程智慧工地管理系统
CN206059137U (zh) 一种800kVA以下的智能变压器
CN210381311U (zh) 一种崩塌监测设备及其组网系统
CN114961857A (zh) 基于物联网的矿井神经网络感知与智能预警方法
CN209707952U (zh) 基于超宽带网络的综合管廊集成监控系统
CN113891269A (zh) 基于4g、5g、wifi6和uwb的井下无线网络数据实时传输系统
CN203858258U (zh) 一种核电站气象信息应急预警成套设备
CN208796288U (zh) 基于机器人技术的变电站现场作业安全管控系统
CN207115496U (zh) 基于全域变频定位与自识别系统及智慧工地管理系统
CN111741064A (zh) 一种人力资源劳务派遣监控用移动终端及其监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866801

Country of ref document: EP

Kind code of ref document: A1