WO2024060178A1 - Relaying wireless communications between terrestrial and non-terrestrial networks - Google Patents

Relaying wireless communications between terrestrial and non-terrestrial networks Download PDF

Info

Publication number
WO2024060178A1
WO2024060178A1 PCT/CN2022/120752 CN2022120752W WO2024060178A1 WO 2024060178 A1 WO2024060178 A1 WO 2024060178A1 CN 2022120752 W CN2022120752 W CN 2022120752W WO 2024060178 A1 WO2024060178 A1 WO 2024060178A1
Authority
WO
WIPO (PCT)
Prior art keywords
communications
request
ntn
network
relay
Prior art date
Application number
PCT/CN2022/120752
Other languages
French (fr)
Inventor
Kangqi LIU
Wanshi Chen
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/120752 priority Critical patent/WO2024060178A1/en
Publication of WO2024060178A1 publication Critical patent/WO2024060178A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the following relates to wireless communication, including managing relayed communications.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
  • UE user equipment
  • a method for wireless communication at a UE may include transmitting, to a relay node associated with a non-terrestrial network (NTN) , a request to relay communications between the UE and a network entity associated with a terrestrial network, receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • NTN non-terrestrial network
  • the apparatus may include a processor, and memory coupled with the processor, the processor configured to transmit, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network, receive, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and communicate, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • the apparatus may include means for transmitting, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network, means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to transmit, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network, receive, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and communicate, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for failing to detect a synchronization signal block associated with the terrestrial network within a time duration and monitoring for one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN after the time duration and based on the failure to detect the synchronization signal block associated with the terrestrial network, the request to relay communications based on reception of one of the synchronization signal block or the discovery signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that may be based on a timing associated with a global satellite system.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by a second network entity associated with the terrestrial network.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that include a monitoring window having a time offset and a Doppler offset.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the request to relay communications according to a timing advance.
  • the timing advance may be based on an indicated time for reception of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN and a time at which the synchronization signal block associated with the NTN or the discovery signal associated with the NTN may be received.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the request to relay communications without a timing advance.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the request to relay communications using one or more resources that include a window having a time offset and a Doppler offset, the request to relay communications transmitted via a preamble and a message associated with the preamble.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a synchronization signal block associated with the terrestrial network after communicating the one or more messages via the relay node and refraining from communicating one or more additional messages with the network entity associated with the terrestrial network via the relay node associated with the NTN based on detecting the synchronization signal block associated with the terrestrial network.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the relay node associated with the NTN or from a second network entity associated with the terrestrial network, a second indication of a resource for transmitting the request to relay communications.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the relay node, feedback for the request to relay communications, the communicating the one or more messages via the relay node based on receiving the feedback.
  • the one or more messages communicated via the relay node comprise one or more uplink messages, one or more downlink messages, or both.
  • a method for wireless communication at a relay node associated with a NTN may include obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network, outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • the apparatus may include a processor, and memory coupled with the processor, the processor configured to obtain a request to relay communications between a UE and a network entity associated with a terrestrial network, output, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, output a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and relay one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • the apparatus may include means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network, means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • a non-transitory computer-readable medium storing code for wireless communication at a relay node associated with a NTN is described.
  • the code may include instructions executable by a processor to obtain a request to relay communications between a UE and a network entity associated with a terrestrial network, output, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, output a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and relay one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the request to relay communications based on the synchronization signal block or the discovery signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that may be based on a timing associated with a global satellite system.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by the network entity associated with the terrestrial network.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that include a time window having a time offset and a Doppler offset.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for obtaining, from the network entity associated with the terrestrial network, a third indication to transmit the synchronization signal block or the discovery signal associated with the NTN, the synchronization signal block or the discovery signal associated with the NTN based on the third indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting, to the UE, a fourth indication for the UE to apply a timing advance to transmission of the request to relay communications and obtaining the request to relay communications according to the timing advance based on the fourth indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting, to the UE, a fifth indication for the UE to transmit the request to relay communications without a timing advance and obtaining the request to relay communications without a timing advance based on the fifth indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for obtaining the request to relay communications using one or more resources that include a monitoring window having a time offset and a Doppler offset, the request to relay communications obtained via a preamble and a message associated with the preamble.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting a sixth indication of a resource for communicating the request to relay communications, the request to relay communications based on the sixth indication of the resource.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for obtaining, from the network entity associated with the terrestrial network, a seventh indication of a resource for communicating the request to relay communications, the request to relay communications based on the seventh indication of the resource.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting feedback for the request to relay communications, the relaying the one or more messages between the UE and the network entity associated with the terrestrial network based on the feedback.
  • the one or more messages communicated via the relay node comprise one or more uplink messages, one or more downlink messages, or both.
  • a method for wireless communication at a network entity associated with a terrestrial network may include obtaining, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to obtain, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and communicate one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • the apparatus may include means for obtaining, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • a non-transitory computer-readable medium storing code for wireless communication at a network entity associated with a terrestrial network is described.
  • the code may include instructions executable by a processor to obtain, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and communicate one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting a second indication of one or more resources for communication of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the one or more resources including a time window having a time offset and a Doppler offset, the request to relay communications based on the second indication of the one or more resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting a third indication of a resource for communicating the request to relay communications, the request to relay communications based on the third indication of the resource.
  • FIG. 1 illustrates an example of a wireless communications system that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 2 illustrates an example of a network architecture that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 3 illustrates an example of a wireless communications system that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIGs. 4A and 4B illustrate example timing diagrams that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 5A and 5B illustrate example timing diagrams that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process flow that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a device that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIGs. 11 and 12 show block diagrams of devices that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 13 shows a block diagram of a communications manager that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 14 shows a diagram of a system including a device that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIGs. 15 and 16 show block diagrams of devices that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 17 shows a block diagram of a communications manager that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIG. 18 shows a diagram of a system including a device that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • FIGs. 19 through 24 show flowcharts illustrating methods that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • an NTN may be a wireless communications network that includes one or more network nodes (e.g., wireless devices, UEs, network entities participating in the wireless communications network) that are not located on the ground (e.g., on a terrestrial surface) .
  • network nodes e.g., wireless devices, UEs, network entities participating in the wireless communications network
  • an NTN may include nodes such as aircraft, unmanned air vehicles (UAVs) , zeppelins, etc., or any combination thereof.
  • a UE e.g., a terrestrial or ground-based UE
  • a terrestrial network e.g., a wireless communications network having network nodes located on the ground or terrestrial surface
  • a UE may be located beyond a range of one or more network entities of the terrestrial network and may thus be unable to transmit or receive information via wireless communications (e.g., with the terrestrial network) .
  • emergency situations e.g., hikers in a risky environment, users outside without a weather forecast
  • a lack of information available at the UE may result in increased risk, damage, or the like for users of the UE.
  • the present disclosure provides techniques to support wireless communications (e.g., uplink or downlink signals, transmissions, messages) for a UE that is out of a coverage area of a terrestrial network.
  • a relay node of an NTN may relay one or more messages (e.g., wireless communications, signals, transmissions) between the UE and a network entity of the terrestrial network.
  • the relay node may represent a device (e.g., UAV, aircraft, satellite) that is a network node of the NTN and has the capability to perform wireless communications with the terrestrial network and the UE (e.g., the relay node has the capability to relay messages) .
  • relaying a message or communication may include obtaining a message or communication from a first wireless device (e.g., UE, network entity) and outputting the message or communication (e.g., as received) to a second wireless device (e.g., network entity, UE) .
  • the message or communication may be an uplink message, a downlink message, or a sidelink message.
  • the UE may monitor for a synchronization signal block (SSB) or a discovery signal from a relay node, such as an aircraft or UAV. If an SSB or a discovery signal is detected, the UE may request a relay node to relay one or more messages between the UE and a network entity of the terrestrial network. For example, if the UE is outside a coverage area supported by the terrestrial network, the UE may request to communicate with the terrestrial network via the relay node. In one or more examples, after receiving the request, the relay node may indicate, to a network entity of the terrestrial network, that a request has been made by the UE to communicate with the terrestrial network via the relay node.
  • SSB synchronization signal block
  • a discovery signal from a relay node
  • the UE may request a relay node to relay one or more messages between the UE and a network entity of the terrestrial network. For example, if the UE is outside a coverage area supported by the terrestrial network, the UE may request to communicate with the terrestrial network via
  • the network entity of the terrestrial network may authorize the relaying of communications via the relay node by transmitting an indication to the relay node.
  • the relay node may allocate resources (e.g., time resources, frequency resources, spatial resources for wireless signaling) used by the UE to transmit messages to or receive messages from (e.g., uplink or downlink messages) the terrestrial network entity via the relay node.
  • Such techniques may improve the wireless communication coverage for UEs operating outside of a coverage area supported by a terrestrial network.
  • a relay node may relay communications from the terrestrial network entity to the UE or from the UE to the terrestrial network entity to provide wireless communications and services to the UE, which may increase wireless communication efficiency and increase the likelihood of successful transmission and reception of messages (e.g., emergency messages, push services, downlink data messages, uplink data messages) between the UE and the terrestrial network.
  • messages e.g., emergency messages, push services, downlink data messages, uplink data messages
  • aspects of the disclosure are initially described in the context of wireless communications systems and a network architecture. Aspects of the disclosure are further illustrated by and described with reference to timing diagrams, a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to relaying wireless communications between terrestrial and NTNs.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities.
  • a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature.
  • network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) .
  • a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
  • a node of the wireless communications system 100 which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein.
  • a node may be a UE 115.
  • a node may be a network entity 105.
  • a first node may be configured to communicate with a second node or a third node.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a UE 115.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a network entity 105.
  • the first, second, and third nodes may be different relative to these examples.
  • reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node.
  • disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
  • network entities 105 may communicate with the core network 130, or with one another, or both.
  • network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) .
  • network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) .
  • network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof.
  • the backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof.
  • a UE 115 may communicate with the core network 130 via a communication link 155.
  • One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) .
  • a base station 140 e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be
  • a network entity 105 may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
  • a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) .
  • IAB integrated access backhaul
  • O-RAN open RAN
  • vRAN virtualized RAN
  • C-RAN cloud RAN
  • a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof.
  • An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) .
  • One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) .
  • one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
  • VCU virtual CU
  • VDU virtual DU
  • VRU virtual RU
  • the split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170.
  • functions e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof
  • a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack.
  • the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) .
  • the CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160.
  • L1 e.g., physical (PHY) layer
  • L2 e.g., radio link control (RLC) layer, medium access control (MAC) layer
  • a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack.
  • the DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) .
  • a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) .
  • a CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions.
  • CU-CP CU control plane
  • CU-UP CU user plane
  • a CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) .
  • a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
  • infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) .
  • IAB network one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other.
  • One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor.
  • One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) .
  • the one or more donor network entities 105 may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) .
  • IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor.
  • IAB-MT IAB mobile termination
  • An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) .
  • the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) .
  • one or more components of the disaggregated RAN architecture e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
  • an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115.
  • the IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor may refer to a RAN node with a wired or wireless connection to core network 130.
  • the IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a backhaul link) .
  • IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) .
  • the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
  • An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) .
  • a DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) .
  • an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
  • the DU interface e.g., DUs 165
  • IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both.
  • the IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104.
  • the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both.
  • the CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104. Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
  • one or more components of the disaggregated RAN architecture may be configured to support relaying wireless communications between terrestrial and NTNs as described herein.
  • some operations described as being performed by a UE 115 or a network entity 105 may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers.
  • the term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105.
  • the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105 may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
  • a network entity 105 e.g., a base station 140, a CU 160, a DU 165, a RU 170
  • Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related.
  • the quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication.
  • a wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots.
  • each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing.
  • Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., a quantity of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed for communication using a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • One or more control regions may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a network entity 105 may be movable and therefore provide communication coverage for a moving coverage area 110.
  • different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105.
  • the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105.
  • one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105.
  • groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group.
  • a network entity 105 may facilitate the scheduling of resources for D2D communications.
  • D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
  • a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
  • roadside infrastructure such as roadside units
  • network nodes e.g., network entities 105, base stations 140, RUs 170
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • IMS IP Multimedia Subsystem
  • the wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz may be known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • FR1 frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4–1 52.6 GHz – 71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4–1, and/or FR5, or may be within the EHF band.
  • the wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) .
  • Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a network entity 105 e.g., a base station 140, an RU 170
  • a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations.
  • a network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may include one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a node which may be referred to as a node, a network node, a network entity 105 (e.g., any network entity 105 described herein) , or a wireless node, may be a base station 140, a UE 115 (e.g., any UE 115 described herein) , a network controller, an apparatus, a device, a computing system, one or more components, and/or another suitable processing entity configured to perform any of the techniques described herein.
  • a network node may be a UE 115.
  • a network node may be a network entity 105.
  • a first network node may be configured to communicate with a second network node or a third network node.
  • the first network node may be a UE 115
  • the second network node may be a network entity 105
  • the third network node may be a UE 115.
  • the first network node may be a UE 115
  • the second network node may be a network entity 105
  • the third network node may be a network entity 105.
  • the first, second, and third network nodes may be different relative to these examples.
  • reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a network node.
  • a UE 115 is configured to receive information from a network entity 105 also discloses that a first network node is configured to receive information from a second network node.
  • a first network node is configured to receive information from a second network node.
  • the broader example of the narrower example may be interpreted in the reverse, but in a broad open-ended way.
  • a UE 115 being configured to receive information from a network entity 105 also discloses that a first network node being configured to receive information from a second network node
  • the first network node may refer to a first UE 115, a first network entity 105, a first apparatus, a first device, a first computing system, a first one or more components, a first processing entity, or the like configured to receive the information
  • the second network node may refer to a second UE 115, a second network entity 105, a second apparatus, a second device, a second computing system, a second one or more components, a second processing entity, or the like.
  • a first network node may be described as being configured to transmit information to a second network node.
  • disclosure that the first network node is configured to transmit information to the second network node includes disclosure that the first network node is configured to provide, send, output, communicate, or transmit information to the second network node.
  • disclosure that the first network node is configured to transmit information to the second network node includes disclosure that the second network node is configured to receive, obtain, or decode the information that is provided, sent, output, communicated, or transmitted by the first network node.
  • the wireless communications system 100 may support NTN communications between network nodes of the wireless communications system 100.
  • the wireless communications system 100 may be an example of an NTN that supports communications between NTN nodes and terrestrial network nodes.
  • a network entity 105 may refer to a terrestrial communication device (such as a base station 140) or a non-terrestrial communication device (such as a UAV, satellite 185, a balloon, a drone, a high-altitude platform (HAP) station, or another non-terrestrial device) .
  • a NTN network entity 105 may be connected to (e.g., communicate with) a terrestrial network entity 105 via a gateway 190.
  • a UE 115 may transmit a request to a relay node 180 of an NTN, indicating for the relay node 180 to relay one or more messages between the UE 115 and a network entity 105 of a terrestrial network.
  • the relay node 180 may output an indication of the request to the network entity 105, indicating that the UE 115 has requested the relayed communications.
  • the relay node 180 may output, for the UE 115, an indication of one or more resources to be used for relayed communications with the terrestrial network.
  • the UE 115 may use the one or more resources for communicating one or more messages with the terrestrial network entity 105 via the relay node 180.
  • a UE 115 may include a communications manager 101, a network entity 105 may include a communications manager 102, and a relay node 180 may include a communications manager 103 in accordance with examples as disclosed herein.
  • the communications manager 101 may be an example of aspects of a communications manager as described with reference to FIGs. 7 through 10.
  • the communications manager 103 may be an example of aspects of a communications manager as described with reference to FIGs. 11 through 14.
  • the communications manager 102 may be an example of aspects of a communications manager as described with reference to FIGs. 15 through 18.
  • the communications manager 101 may output or transmit, and the communications manager 103 may receive or obtain, a request to relay communications between the UE 115 and a network entity 105 associated with a terrestrial network.
  • the communications manager 103 may output or transmit, and the communications manager 102 may receive or obtain, a first indication of the request to relay communications between the UE 115 and the network entity 105 associated with the terrestrial network based on the request to relay communications.
  • the communications manager 103 may output or transmit, and the communications manager 101 may receive or obtain, a second indication of a resource for relaying communications between the UE 115 and the network entity 105 associated with the terrestrial network based on the request to relay communications.
  • the communications manager 102 and the communications manager 101 may communicate, via the communications manager 103 (e.g., relayed communications) , one or more messages using the resource.
  • the communications manager 101 and the communications manager 102 may exchange further signaling such that the UE 115 may effectively communicate with the network entity 105 or other communication devices in the wireless communications system 100 as described herein.
  • FIG. 2 illustrates an example of a network architecture 200 (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the network architecture 200 may illustrate an example for implementing one or more aspects of the wireless communications system 100.
  • the network architecture 200 may include one or more CUs 160-a that may communicate directly with a core network 130-a via a backhaul communication link 120-a, or indirectly with the core network 130-a through one or more disaggregated network entities 105 (e.g., a Near-RT RIC 175-b via an E2 link, or a Non-RT RIC 175-aassociated with an SMO 180-a (e.g., an SMO Framework) , or both) .
  • a CU 160-a may communicate with one or more DUs 165-a via respective midhaul communication links 162-a (e.g., an F1 interface) .
  • the DUs 165-a may communicate with one or more RUs 170-a via respective fronthaul communication links 168-a.
  • the RUs 170-a may be associated with respective coverage areas 110-a and may communicate with UEs 115-avia one or more communication links 125-a.
  • a UE 115-a may be simultaneously served by multiple RUs 170-a.
  • Each of the network entities 105 of the network architecture 200 may include one or more interfaces or may be coupled with one or more interfaces configured to receive or transmit signals (e.g., data, information) via a wired or wireless transmission medium.
  • Each network entity 105, or an associated processor (e.g., controller) providing instructions to an interface of the network entity 105 may be configured to communicate with one or more of the other network entities 105 via the transmission medium.
  • the network entities 105 may include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other network entities 105.
  • the network entities 105 may include a wireless interface, which may include a receiver, a transmitter, or transceiver (e.g., an RF transceiver) configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other network entities 105.
  • a wireless interface which may include a receiver, a transmitter, or transceiver (e.g., an RF transceiver) configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other network entities 105.
  • a CU 160-a may host one or more higher layer control functions. Such control functions may include RRC, PDCP, SDAP, or the like. Each control function may be implemented with an interface configured to communicate signals with other control functions hosted by the CU 160-a.
  • a CU 160-a may be configured to handle user plane functionality (e.g., CU-UP) , control plane functionality (e.g., CU-CP) , or a combination thereof.
  • a CU 160-a may be logically split into one or more CU-UP units and one or more CU-CP units.
  • a CU-UP unit may communicate bidirectionally with the CU-CP unit via an interface, such as an E1 interface when implemented in an O-RAN configuration.
  • a CU 160-a may be implemented to communicate with a DU 165-a for network control and signaling.
  • a DU 165-a may correspond to a logical unit that includes one or more functions (e.g., base station functions, RAN functions) to control the operation of one or more RUs 170-a.
  • a DU 165-a may host, at least partially, one or more of an RLC layer, a MAC layer, and one or more aspects of a PHY layer (e.g., a high PHY layer, such as modules for FEC encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3rd Generation Partnership Project (3GPP) .
  • a DU 165-a may further host one or more low PHY layers. Each layer may be implemented with an interface configured to communicate signals with other layers hosted by the DU 165-a, or with control functions hosted by a CU 160-a.
  • lower-layer functionality may be implemented by one or more RUs 170-a.
  • an RU 170-a controlled by a DU 165-a, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (e.g., performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower-layer functional split.
  • FFT fast Fourier transform
  • iFFT inverse FFT
  • PRACH physical random access channel extraction and filtering, or the like
  • an RU 170-a may be implemented to handle over the air (OTA) communication with one or more UEs 115-a.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 170-a may be controlled by the corresponding DU 165-a.
  • a configuration may enable a DU 165-a and a CU 160-a to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO 180-a may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network entities 105.
  • the SMO 180-a may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (e.g., an O1 interface) .
  • the SMO 180-a may be configured to interact with a cloud computing platform (e.g., an O-Cloud 205) to perform network entity life cycle management (e.g., to instantiate virtualized network entities 105) via a cloud computing platform interface (e.g., an O2 interface) .
  • a cloud computing platform e.g., an O-Cloud 205
  • network entity life cycle management e.g., to instantiate virtualized network entities 105
  • a cloud computing platform interface e.g., an O2 interface
  • Such virtualized network entities 105 can include, but are not limited to, CUs 160-a, DUs 165-a, RUs 170-a, and Near-RT RICs 175-b.
  • the SMO 180-a may communicate with components configured in accordance with a 4G RAN (e.g., via an O1 interface) . Additionally, or alternatively, in some implementations, the SMO 180-a may communicate directly with one or more RUs 170-a via an O1 interface.
  • the SMO 180-a also may include a Non-RT RIC 175-a configured to support functionality of the SMO 180-a.
  • the Non-RT RIC 175-a may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence (AI) or Machine Learning (ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 175-b.
  • the Non-RT RIC 175-a may be coupled to or communicate with (e.g., via an A1 interface) the Near-RT RIC 175-b.
  • the Near-RT RIC 175-b may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (e.g., via an E2 interface) connecting one or more CUs 160-a, one or more DUs 165-a, or both, as well as an O-eNB 210, with the Near-RT RIC 175-b.
  • an interface e.g., via an E2 interface
  • the Non-RT RIC 175-a may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 175-b and may be received at the SMO 180-a or the Non-RT RIC 175-a from non-network data sources or from network functions. In some examples, the Non-RT RIC 175-a or the Near-RT RIC 175-b may be configured to tune RAN behavior or performance.
  • the Non-RT RIC 175-a may monitor long-term trends and patterns for performance and employ AI or ML models to perform corrective actions through the SMO 180-a (e.g., reconfiguration via O1) or via generation of RAN management policies (e.g., A1 policies) .
  • AI or ML models to perform corrective actions through the SMO 180-a (e.g., reconfiguration via O1) or via generation of RAN management policies (e.g., A1 policies) .
  • FIG. 3 illustrates an example of a wireless communications system 300 that supports relaying wireless communications between terrestrial networks and NTNs in accordance with one or more aspects of the present disclosure.
  • Wireless communications system 300 may implement or be implemented by one or more aspects of wireless communications system 100 or network architecture 200.
  • wireless communications system 300 may include a UE 115-a and network entities 105-a and 105-b, which may be examples of a UE 115 and network entities 105 described with reference to FIGs. 1 and 2.
  • Wireless communications system 300 may also include a relay node 305, which may be an example of an NTN node (e.g., a network entity of an NTN) .
  • NTN node e.g., a network entity of an NTN
  • An NTN may include one or more network nodes that are not located on the ground (e.g., on a terrestrial surface) .
  • an NTN may include nodes such as one or more UAVs, one or more HAPs, one or more satellites (e.g., low earth orbit (LEO) satellite (s) , geosynchronous orbit (GEO) satellite (s) ) , or any combination thereof.
  • LEO low earth orbit
  • GEO geosynchronous orbit
  • an NTN may support, implement, or be implemented by an eMBB service, an IoT service (e.g., narrowband IoT, MTC) , or a combination thereof.
  • an NTN may support synchronization, scheduling, hybrid automatic repeat request (HARQ) feedback, mobility, or the like.
  • HARQ hybrid automatic repeat request
  • an NTN may be or include a three-dimensional network (e.g., a heterogeneous network, of different types of devices) , in which terrestrial infrastructure (e.g., network entities 105 and related devices or components) may be complemented or supplemented by nodes of an NTN.
  • a three-dimensional network e.g., a heterogeneous network, of different types of devices
  • terrestrial infrastructure e.g., network entities 105 and related devices or components
  • UE 115-a may be at a location where the UE 115-a is not within a coverage area 110-a of a terrestrial network entity 105-a.
  • a UE 115-a may be located beyond a range of one or more network entities 105-a and 105-b of the terrestrial network and may thus be unable to transmit or receive information via wireless communications.
  • emergency situations e.g., hikers in a risky environment, users outside without a weather forecast
  • a lack of information available at the UE 115-a may result in increased risk, damage, or other problems.
  • the present disclosure provides techniques to support wireless communications for a UE 115-a that is outside of a coverage area 110-a supported by terrestrial network entity 105-a.
  • a relay node 305 of an NTN may relay one or more messages between UE 115-a and a network entity 105-a of the terrestrial network.
  • the NTN may support an air-to-ground (ATG) network (e.g., communications between terrestrial nodes and non-terrestrial nodes) , such as for relaying (e.g., UAV relaying, aircraft relaying) in areas without cellular coverage.
  • ATG air-to-ground
  • the ATG network may coexist with an international mobile telecommunications (IMT) network and may support an increased communications capacity (e.g., based on a capacity of the relay node 305 to support increased terminal capacity) .
  • IMT international mobile telecommunications
  • the ATG network may also support relatively larger inter-site distances between nodes of the associated terrestrial or NTN (or both) , for example, based on relayed communications between nodes of the different networks.
  • UE 115-a may communicate with network entity 105-a (e.g., a node of the terrestrial network) via a relay node 305 of the NTN.
  • network entity 105-a e.g., a node of the terrestrial network
  • UE 115-a may send one or more SOS messages in an area without cellular coverage, may communicate data (e.g., uplink or downlink data, weather data, emergency data) in an area without cellular coverage, or may have coverage in a larger range of locations supported by the ATG network (e.g., universal coverage in almost any location) .
  • UE 115-a may fail to detect an SSB 310 from a network entity 105, such as SSB 310-a from a network entity 105-b.
  • UE 115-a may monitor for an SSB 310 (e.g., an SSB 310-b, if the relay node 305 acts as a network entity 105) or a discovery signal 355 (e.g., if the relay node 305 acts as a UE 115, such as a relay UE 115) from relay node 305.
  • an SSB 310 e.g., an SSB 310-b, if the relay node 305 acts as a network entity 105
  • a discovery signal 355 e.g., if the relay node 305 acts as a UE 115, such as a relay UE 115
  • One or more resources for monitoring for the SSB 310-b or discovery signal 355 may be based on (e.g., dependent on) an absolute time, such as a time related to a global satellite system (e.g., global navigation satellite system (GNSS) ) .
  • the one or more resources for monitoring for the SSB 310-b or discovery signal 355 may be configured by a network entity 105 (e.g., network entity 105-b) last connected with UE 115-a (e.g., last RRC_connected network entity 105) .
  • network entity 105-b may transmit, while connected with UE 115-a, an indication 315 of the one or more resources for monitoring for the SSB 310-b or the discovery signal 355.
  • the one or more resources for monitoring for the SSB 310-b or discovery signal 355 may be defined by a wireless communications standard and may be stored or otherwise configured at UE 115-a.
  • the resource (s) for monitoring for the SSB 310-b or discovery signal 355 may be different from other resources or monitoring occasions for other SSBs 310 (e.g., for the terrestrial network) , such that the SSB 310-b or the discovery signal 355 may not be confused with the other SSBs 310, which indicates to the UE 115-a that SSB 310-b or discovery signal 355 is associated with a relay node 305 and as such, the UE 115-amay send a request to the relay node 305 to relay communications between the UE 115-a and the terrestrial network entity.
  • the SSB 310-b or the discovery signal 355 may indicate that the SSB 310-b or the discovery signal 355 is associated with the relay node 305 of the NTN.
  • the SSB 310-b or the discovery signal 355 may indicate such via the resource (s) used for communication of the SSB 310-b or the discovery signal 355, or via an indication included in the SSB 310-b or the discovery signal 355.
  • the UE 115-a may monitor for the SSB 310-b or the discovery signal 355 using a time window, such as a monitoring window.
  • the monitoring window may include or be based on a timing offset (e.g., in a time domain) and a Doppler frequency offset (e.g., in a frequency domain) to account for propagation delay caused by the distance between the UE 115-a and the relay node 305 and to account for the speed at which the relay node 305 may be traveling.
  • the monitoring window may be based on a capability of UE 115-a. In some cases (e.g., if UE 115-a supports a larger transmission power) , a larger timing offset may be used for the monitoring window.
  • relay node 305 may indicate (e.g., via the SSB 310-b or via one or more indications 320) whether UE 115-a is to apply a TA when transmitting a request 325 to relay communications 340 between UE 115-a and a network entity 105 associated with the terrestrial network (e.g., network entity 105-a) .
  • the relay node 305 may indicate whether the TA is enabled or disabled.
  • UE 115-a may be indicated to apply a TA compensation (e.g., to account for propagation delay between the UE 115-a and the relay node 305) to transmit the request 325 and the relay node 305 may monitor for the request 325 in a configured resource.
  • the SSB 310-b or the indication (s) 320 may further indicate, to UE 115-a, information related to a speed and direction of travel 355 associated with the relay node 305 (e.g., for a gradual timing adjustment) . Further examples related to applying a TA to the request 325 are described herein with reference to FIG. 4.
  • UE 115-a may be indicated to not apply a TA compensation to transmit the request 325.
  • UE 115-a may use a preamble and data pattern (e.g., structure) for transmission of the request 325 and the relay node may monitor a preamble within a monitoring window, where the preamble may be followed by or otherwise associated with the request 325 (e.g., the data pattern following the preamble may include or be associated with the request 325) . Further examples related to transmitting the request 325 without a TA are described herein with reference to FIG. 5.
  • UE 115-b may receive (e.g., detect) the SSB 310-b or the discovery signal 355. Based on detecting the SSB 310-b or the discovery signal 355, UE 115-a may transmit a request 325 to relay communications 340 (e.g., for relay node 305 to relay communications) between UE 115-a and a network entity 105 associated with the terrestrial network (e.g., network entity 105-a) . In some cases, UE 115-a may transmit the request 325 based on one or more indications received via the SSB 310-b or the discovery signal 355, which may indicate that relay node 305 may support such relaying.
  • relay communications 340 e.g., for relay node 305 to relay communications
  • a resource used by UE 115-a for transmission of the request 325 may be indicated via the SSB 310-b or the discovery signal 355, may be indicated via another indication (e.g., indication (s) 320) , or may be defined in a wireless communications standard and may be stored or configured at UE 115-a.
  • the resource used by UE 115-a for transmission of the request 325 may be indicated or configured by a previously connected network entity 105 (e.g., network entity 105-b) .
  • relay node 305 may transmit, to UE 115-a, an indication 330 of one or more resources (e.g., unicast resource (s) ) to be used for relaying communications 340 between UE 115-a and the terrestrial network (e.g., network entity 105-a) .
  • relay node 305 may also transmit, to UE 115-a, feedback 335 associated with reception of the request 325, where the feedback 335 may be transmitted with the indication 330 or in a different transmission.
  • UE 115-a may monitor the resource (s) for a downlink transmission, or may transmit an uplink transmission via the resource (s) .
  • the requested communications 340 between UE 115-a and the terrestrial network may include push-like services, emergency message notification, downlink data, or a combination thereof, among other examples.
  • UE 115-a may refrain from relaying communications via the relay node 305 (e.g., via the NTN) and may attempt to establish a connection with the terrestrial network (e.g., or resume a connection with the terrestrial network) .
  • the UE 115-a may stop transmitting or receiving communications via the relay node and in some cases, may transmit to or receive from a network entity 105-aassociated with the terrestrial network.
  • a terrestrial network entity 105 may indicate that the relay node 305 is to transmit an SSB 310 or discovery signal 355, or may indicate that the relay node 305 is to not transmit an SSB 310 or discovery signal 355.
  • network entity 105-a may transmit one or more indications 345 to the relay node 305, where the one or more indications may indicate whether the relay node 305 is to transmit or not transmit the SSB 310 or the discovery signal 355.
  • the network entity 105-a may indicate whether the relay node 305 is to transmit or not transmit the SSB 310 or the discovery signal 355 based on a position (e.g., GNSS position) of the relay node 305.
  • the resources for transmitting the SSB 310 or the discovery signal 355, or both may be based on an absolute time (e.g., related to GNSS) .
  • the resources for transmitting the SSB 310 or the discovery signal 355, or both may be configured by the network entity 105-a (e.g., via the indication (s) 345) or may be defined by a wireless communications standard.
  • the relay node 305 may receive the request 325 from UE 115-a and may relay (e.g., forward) the request 325 (e.g., an indication 350 of the request 325) to the network entity 105-a (e.g., through an ATG link) . Based on the request 325 and the indication 350 of the request 325, the relay node 305 may receive data (e.g., communications) from the network entity 105-a or the UE 115-a for forwarding to the UE 115-a or the network entity 105-a, respectively.
  • data e.g., communications
  • the relay node 305 may receive some data (e.g., communications 340) from the network entity 105-a to be transmitted to the UE 115-a, and the relay node 305 may transmit the data (e.g., communications 340) to the UE 115-a via the resource (e.g., unicast resource) indicated to the UE 115-a.
  • the UE 115-a may communicate with the terrestrial network via the NTN, if the UE 115-a is located outside of a coverage area of the terrestrial network.
  • FIGs. 4A and 4B illustrate example timing diagrams 400-a and 400-b that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the timing diagrams 400-a and 400-b may implement or be implemented by one or more aspects of wireless communications system 300.
  • the timing diagram 400-a and 400-b may be implemented by a UE 115 and a relay node, which may be examples of the corresponding devices described with reference to at least FIG. 3.
  • the timing diagram 400-a may, for example, support reception of an SSB 405 or discovery signal 405 at the UE 115, from a relay node of an NTN.
  • the UE 115 may monitor for the SSB 405 or the discovery signal 405 within a monitoring window 410 (e.g., monitoring resources, in time and frequency) , where the monitoring window may be based on, or may include, a Doppler offset 415 and a propagation delay offset 420 (e.g., a maximum propagation delay, in time) .
  • the relay node may transmit (e.g., broadcast) the SSB 405 or the discovery signal 405 at a time 425 (e.g., T1) with respect to GNSS.
  • the UE 115 may receive the SSB 405 or the discovery signal 405.
  • the timing of 430 e.g., T2
  • T2 may be obtained by a measurement of the UE 115.
  • a difference 435 in time may exist between transmission of the SSB 405 or the discovery signal 405 at 425 (e.g., by the relay node) and the reception of the SSB 405 or the discovery signal 405 at 430 (e.g., by the UE 115) .
  • a difference in frequency may occur between transmission of the SSB 405 or the discovery signal 405 at time 425 (e.g., by the relay node) and the reception of the SSB 405 or the discovery signal 405 at time 430 (e.g., by the UE) .
  • a Doppler shift may occur (e.g., based on a movement of the relay node, such as an aircraft or UAV movement) that shifts the SSB 405 or the discovery signal 405 in the frequency domain to be received using resources 460.
  • Resources 460 may be shifted in the frequency domain relative to the frequency used for transmission of the SSB 405 or the discovery signal 405.
  • the resources 460 may be shifted in the frequency domain to be higher or lower in frequency relative to the frequency used for transmission of the SSB 405 or the discovery signal 405.
  • the Doppler offsets 415 of the monitoring window 410 may be configured such that the SSB 405 or the discovery signal 405 shifted in the frequency domain falls within the monitoring window 410.
  • a resource (e.g., broadcast resource) used for transmission of the SSB 405 or the discovery signal 405 may be configured for the UE 115 (e.g., with respect to GNSS) by a network entity 105 of a terrestrial network, such as a last RRC_connected network entity. Additionally, or alternatively, the resource used for transmission of the SSB 405 or the discovery signal 405 may be defined by a wireless communications standard. As such, the UE 115 may be aware of the time 425 at which the SSB 405 or the discovery signal 405 is transmitted.
  • the relay node may indicate (e.g., in the SSB 405 or the discovery signal 405, in another signal) or instruct the UE 115 to apply TA compensation when transmitting a request to relay communications. For example, as shown in timing diagram 400-b of FIG. 4B, a UE 115 may transmit a request using a TA 455 via resources 445.
  • the UE 115 may determine (e.g., initially determine) a value (e.g., time value) of the TA 455 as the timing difference between expected arrival time 430 and transmission time 425 of the SSB/Discovery Signal (which may be represented as T2-T1) .
  • the UE 115 may transmit the request to the relay node at time 440 such that the request may be received at the relay node at a time 450 (e.g., aligned with one or more other signals) , where the time 450 may align with a beginning of a resource 445 (e.g., configured or defined resource 445) used for transmission of the request.
  • a value e.g., time value
  • the UE 115 may transmit the request to the relay node at time 440 such that the request may be received at the relay node at a time 450 (e.g., aligned with one or more other signals) , where the time 450 may align with a beginning of a resource 445 (e.g.
  • the UE 115 may adjust the TA 455 by an additional time (e.g., T3) , where T3 may be a gradual timing adjustment that may be obtained based on direction and speed information associated with the relay node (e.g., an aircraft speed and direction) .
  • T3 may be a gradual timing adjustment that may be obtained based on direction and speed information associated with the relay node (e.g., an aircraft speed and direction) .
  • the TA 455 may be determined as being equal to T2-T1+T3.
  • the direction and speed information may be transmitted by the relay node to the UE 115, such as via the SSB 405 or the discovery signal 405, or via another signal (e.g., transmitted after the SSB 405 or the discovery signal 405) .
  • the UE 115 may, for example, use the direction and speed information to determine T3 and may use T3 to adjust the TA 455.
  • FIGs. 5A and 5B illustrate example timing diagrams 500-a and 500-b that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the timing diagrams 500-a and 500-b may implement or be implemented by one or more aspects of wireless communications system 300.
  • the timing diagrams 500-a and 500-b may be implemented by a UE 115 and a relay node, which may be examples of the corresponding devices described with reference to at least FIG. 3.
  • the timing diagram 500 may, for example, support reception of an SSB 505 or discovery signal 505 at the UE 115, from a relay node of an NTN.
  • the UE 115 may monitor for the SSB 505 or the discovery signal 505 within a time window, which may be a monitoring window 510 (e.g., monitoring resources, in time and frequency) .
  • the monitoring window may be based on, or may include, a Doppler offset 515 and a propagation delay offset 520 (e.g., a maximum propagation delay, in time) .
  • the relay node may transmit (e.g., broadcast) the SSB 505 or the discovery signal 505 at a time 525 (e.g., T1) with respect to GNSS and the UE 115 may receive the SSB 505 or the discovery signal 505 at time 527.
  • a time 525 e.g., T1
  • a resource (e.g., broadcast resource) used for transmission of the SSB 505 or the discovery signal 505 may be configured for the UE 115 (e.g., with respect to GNSS) by a network entity 105 of a terrestrial network, such as a last RRC_connected network entity. Additionally, or alternatively, the resource used for transmission of the SSB 505 or the discovery signal 505 may be defined by a wireless communications standard. As such, the UE 115 may be aware of the time 525 at which the SSB 505 or the discovery signal 505 is transmitted and may monitor the monitoring window 510 based on the time 525.
  • a difference in frequency may exist between transmission of the SSB 505 or the discovery signal 505 at 525 (e.g., by the relay node) and the reception of the SSB 505 or the discovery signal 505 (e.g., by the UE 115) .
  • a Doppler shift may occur (e.g., based on a movement of the relay node, such as an aircraft or UAV movement) that shifts the SSB 505 or the discovery signal 505 in the frequency domain to be received using resources 555.
  • Resources 555 may be shifted in the frequency domain relative to the frequency used for transmission of the SSB 505 or the discovery signal 505.
  • the resources 555 may be shifted in the frequency domain to be higher or lower in frequency relative to the frequency used for transmission of the SSB 505 or the discovery signal 505.
  • the Doppler offsets 515 of the monitoring window 510 may be configured such that the SSB 505 or the discovery signal 505 at 555 (e.g., or another frequency location) falls within the monitoring window 510.
  • the relay node may indicate for the UE 115 to transmit a request for relayed communications without a TA.
  • the relay node may indicate (e.g., via the SSB 505 or the discovery signal 505, via another signal) that the UE 115 is not to apply a TA compensation to transmit the request.
  • the UE 115 may transmit the request using a resource 530 (e.g., a configured resource 530, a defined resource 530) , which may have a beginning time 540 (e.g., a time dimension) that is defined with respect to an absolute time (e.g., related to GNSS) .
  • a resource 530 e.g., a configured resource 530, a defined resource 530
  • a beginning time 540 e.g., a time dimension
  • the UE 115 may, for example, use a preamble and a data message (e.g., a preamble and data pattern) to transmit the request at time 540, where the preamble may precede the data (e.g., and may indicate the transmission of the data) and the data may include the request.
  • a preamble and a data message e.g., a preamble and data pattern
  • the relay node may monitor for transmission of the request within a monitoring window 535 (e.g., monitoring resources, in time and frequency) , where the monitoring window 535 may be based on, or may include, a Doppler offset 545 and a propagation delay offset 550 (e.g., a maximum propagation delay, in time) .
  • the UE 115 may transmit (e.g., broadcast) the request at a time 540 with respect to GNSS and the relay node may receive the request at time 542.
  • a resource 530 used for transmission of the request may be configured for the UE 115 (e.g., with respect to GNSS) by the relay node or may be defined by a wireless communications standard.
  • the relay node may be aware of the time 540 at which the request is transmitted and may monitor the monitoring window 535 based on the time 540.
  • a difference in frequency may exist between transmission of the request 530 at 540 (e.g., by the UE 115) and the reception of the request 530 (e.g., by the relay node) .
  • a Doppler shift may occur (e.g., based on a movement of the relay node, such as an aircraft or UAV movement) that shifts the request 530 in the frequency domain to be received using resources 560.
  • Resources 560 may be shifted in the frequency domain relative to the frequency used for transmission of the request 530.
  • the resources 560 may be shifted in the frequency domain to be higher or lower in frequency relative to the frequency used for transmission of the request 530.
  • the Doppler offsets 545 of the monitoring window 535 may be configured such that the request 530 at 560 (e.g., or another frequency location) falls within the monitoring window 535.
  • the UE 115 and the relay node may switch between a TA enabled scheme (e.g., using a TA as in FIGs. 4A and 4B) and a TA disabled scheme (e.g., transmitting without a TA as in FIGs. 5A and 5B) , or vice versa.
  • a TA enabled scheme e.g., using a TA as in FIGs. 4A and 4B
  • a TA disabled scheme e.g., transmitting without a TA as in FIGs. 5A and 5B
  • the UE 115 and the relay node may switch between the TA enabled and TA disabled schemes (e.g., as indicated by the relay node to the UE 115) .
  • the TA disabled scheme may be more reliable, but the TA disabled scheme may also be associated with increased overhead (e.g., based on the preamble, based on using the resources of the monitoring window 535) .
  • the UE 115, the relay node, or both may identify a quantity of missed transmissions (e.g., NACKs) has satisfied a threshold quantity in the TA enabled scheme, which may be indicative that a TA offset error may be relatively large. In such cases, the UE 115 and the relay node may switch from the TA enabled scheme to the TA disabled scheme. In another example, if a threshold quantity of time has passed without receiving a request from the UE 115, the relay node may switch from the TA enabled scheme to the TA disabled scheme. Additionally, or alternatively, if the UE 115 transmits the request and receives no response from the relay node within a threshold quantity of time, the UE 115 may switch from the TA enabled scheme to the TA disabled scheme.
  • a threshold quantity of time e.g., NACKs
  • FIG. 6 illustrates an example of a process flow 600 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • process flow 600 may implement or be implemented by one or more aspects of wireless communications systems 100 or 300, network architecture 200, or one or more aspects of timing diagrams 400 or 500.
  • process flow 600 may be implemented by a UE 115-b, a network entity 105-c, and a relay node 605, which may be examples of a UE 115, a network entity 105, and a relay node described with reference to FIGs. 1–5. As described herein with reference to FIGs.
  • the network entity 105-c may be associated with a terrestrial network and the relay node 605 may be associated with an NTN.
  • UE 115-b may, in some cases, request relaying from the terrestrial network via the NTN (e.g., if UE 115-b is out of a coverage area of the terrestrial network) .
  • the operations may be performed in a different order than the order shown, or the operations performed by UE 115-b, network entity 105-c, and relay node 605 may be performed in different orders or at different times. For example, some operations may also be left out of process flow 600, or other operations may be added to process flow 600.
  • UE 115-b, network entity 105-c, and relay node 605 are shown performing the operations of process flow 600, some aspects of some operations may also be performed by one or more other wireless devices. For example, some actions shown as being performed by network entity 105-a or relay node 605 may be performed by another network entity 105 (e.g., a terrestrial network entity 105) .
  • network entity 105-c may transmit (e.g., broadcast) an SSB.
  • the SSB may be associated with the terrestrial network and may be received by the UE 115-b, for example, while the UE 115-b is in a coverage area of the terrestrial network.
  • the network entity 105-c may transmit one or more indications to the relay node 605. For example, as described with reference to FIG. 3, the network entity 105-c may transmit an indication of whether or not the relay node 605 is to transmit an SSB or a discovery signal. Additionally, or alternatively, the network entity 105-c may transmit an indication of resources for transmission of the SSB or discovery signal, an indication of a resource used for communicating a request to relay communications between the network entity 105-c and the UE 115-b, or any combination thereof.
  • UE 115-b may fail to detect the SSB from the terrestrial network.
  • UE 115-b may be located (e.g., temporarily located) outside of a coverage area of the terrestrial network (e.g., based on a movement of the UE 115-b) and may fail to detect the SSB based on the location of the UE 115-b.
  • UE 115-b may, for example, fail to detect the SSB within a time duration (e.g., a configured or defined time duration) from detecting a previous SSB, from a previous communication, or from a configured or defined time.
  • a time duration e.g., a configured or defined time duration
  • the relay node 605 may transmit (e.g., broadcast) an SSB or a discovery signal associated with the NTN. For example, the relay node 605 may transmit the SSB or the discovery signal based on the indication from the network entity 105-c of whether to transmit the SSB or the discovery signal. Based on failing to detect the SSB at 620, UE 115-b may monitor for the SSB or the discovery signal.
  • UE 115-b may monitor for the SSB or the discovery signal using a resource (e.g., a monitoring window) configured by a last connected network entity 105 (e.g., network entity 105-c or another network entity 105) or a resource defined by a wireless communications standard (e.g., and stored at the UE 115-b) .
  • a resource e.g., a monitoring window
  • a last connected network entity 105 e.g., network entity 105-c or another network entity 105
  • a resource defined by a wireless communications standard e.g., and stored at the UE 115-b
  • UE 115-b may receive the SSB or the discovery signal from the relay node 605. For example, at 630, UE 115-b may detect the SSB or the discovery signal from the relay node 605 (e.g., based on monitoring using the monitoring window) .
  • UE 115-b may transmit, to the relay node 605 (e.g., associated with the NTN) , a request to relay communications between UE 115-c and a network entity 105 associated with the terrestrial network (e.g., network entity 105-c) .
  • UE 115-b may transmit the request using a resource configured by a last connected network entity 105 (e.g., network entity 105-c or another network entity 105) , indicated by the relay node 605 (e.g., via the SSB or discovery signal) , or a resource defined by a wireless communications standard (e.g., and stored at the UE 115-b) .
  • a wireless communications standard e.g., and stored at the UE 115-b
  • UE 115-b may transmit the request using a TA, or without a TA (e.g., as indicated by the relay node 605, such as via the SSB or discovery signal) .
  • Relay node 605 may monitor for the request using a resource (e.g., monitoring window) configured by network entity 105-c (e.g., or another network entity 105) , indicated by the relay node 605 (e.g., via the SSB or discovery signal) , or using a resource defined by a wireless communications standard (e.g., and stored at the relay node 605) . Based on the monitoring, the relay node 605 may obtain the request.
  • a resource e.g., monitoring window
  • network entity 105-c e.g., or another network entity 105
  • the relay node 605 may obtain the request.
  • the relay node 605 may output, for the terrestrial network (e.g., for network entity 105-c of the terrestrial network) an indication of the request to relay communications, based on the obtaining the request to relay communications.
  • the relay node 605 may output the request, and the network entity 105-c may monitor for the request, using a resource configured by network entity 105-c (e.g., or another network entity 105) , indicated by the relay node 605, or a resource defined by a wireless communications standard.
  • the relay node 605 may output, for UE 115-b (e.g., may transmit to UE 115-b) , an indication of a resource for relaying communications between UE 115-b and network entity 105-c.
  • the relay node 605 may output, for the UE 115-b, feedback for the request to relay communications.
  • the feedback may indicate whether the relay node 605 has received the request, and UE 115-b may participate in communications with the relay node 605 and the network entity 105-c based on the feedback.
  • the feedback may be included in a same message or transmission as the indication of the resource for relaying communications. In some cases, the feedback may be included in a different message or transmission.
  • UE 115-b and network entity 105-c may communicate, via the relay node 605, one or more messages (e.g., uplink messages, downlink messages) using the resource for relaying communications.
  • the relay node 605 may relay the one or more messages (e.g., uplink messages, downlink messages) between UE 115-b and network entity 105-c, as described with reference to FIG. 3.
  • UE 115-b may detect an SSB associated with the terrestrial network (e.g., an SSB from network entity 105-c or another network entity 105) after communicating the one or more messages. Based on detecting the SSB, UE 115-b may refrain from communicating one or more additional messages with network entity 105-c via the relay node 605. For example, UE 115-b may reestablish a connection with the terrestrial network (e.g., with network entity 105-c or another network entity 105) based on detecting the SSB and cease communicating via relay node 605 (e.g., the UE 115-b may not transmit or receive messages via relay node 605) .
  • an SSB associated with the terrestrial network e.g., an SSB from network entity 105-c or another network entity 105
  • UE 115-b may refrain from communicating one or more additional messages with network entity 105-c via the relay node 605.
  • UE 115-b may reestablish a connection
  • FIG. 7 shows a block diagram 700 of a device 705 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a transmitter 715, and a communications manager 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) . Information may be passed on to other components of the device 705.
  • the receiver 710 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 715 may provide a means for transmitting signals generated by other components of the device 705.
  • the transmitter 715 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) .
  • the transmitter 715 may be co-located with a receiver 710 in a transceiver module.
  • the transmitter 715 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 720, the receiver 710, the transmitter 715, or various combinations thereof or various components thereof may be examples of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a
  • the communications manager 720 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 710, the transmitter 715, or both.
  • the communications manager 720 may receive information from the receiver 710, send information to the transmitter 715, or be integrated in combination with the receiver 710, the transmitter 715, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 720 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the communications manager 720 may be configured as or otherwise support a means for transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network.
  • the communications manager 720 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications.
  • the communications manager 720 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • the device 705 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105.
  • the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705 or a UE 115 as described herein.
  • the device 805 may include a receiver 810, a transmitter 815, and a communications manager 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) . Information may be passed on to other components of the device 805.
  • the receiver 810 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 815 may provide a means for transmitting signals generated by other components of the device 805.
  • the transmitter 815 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) .
  • the transmitter 815 may be co-located with a receiver 810 in a transceiver module.
  • the transmitter 815 may utilize a single antenna or a set of multiple antennas.
  • the device 805, or various components thereof may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 820 may include a relay request component 825, a resource indication component 830, a relayed communications component 835, or any combination thereof.
  • the communications manager 820 may be an example of aspects of a communications manager 720 as described herein.
  • the communications manager 820, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 810, the transmitter 815, or both.
  • the communications manager 820 may receive information from the receiver 810, send information to the transmitter 815, or be integrated in combination with the receiver 810, the transmitter 815, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 820 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the relay request component 825 may be configured as or otherwise support a means for transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network.
  • the resource indication component 830 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications.
  • the relayed communications component 835 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • FIG. 9 shows a block diagram 900 of a communications manager 920 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the communications manager 920 may be an example of aspects of a communications manager 720, a communications manager 820, or both, as described herein.
  • the communications manager 920, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 920 may include a relay request component 925, a resource indication component 930, a relayed communications component 935, an SSB monitoring component 940, a device discovery monitoring component 945, a feedback reception component 950, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 920 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the relay request component 925 may be configured as or otherwise support a means for transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network.
  • the resource indication component 930 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications.
  • the relayed communications component 935 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • the SSB monitoring component 940 may be configured as or otherwise support a means for failing to detect an SSB associated with the terrestrial network within a time duration.
  • the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for an SSB or a discovery signal associated with the NTN after the time duration and based on failing to detect the SSB associated with the terrestrial network, the transmitting the request to relay communications based on reception of the SSB or the discovery signal associated with the NTN.
  • the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for the SSB or the discovery signal associated with the NTN using a time resource that is based on a timing associated with a global satellite system.
  • the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for the SSB or the discovery signal associated with the NTN using a resource configured by a second network entity associated with the terrestrial network.
  • the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for the SSB or the discovery signal associated with the NTN using one or more resources that include a monitoring window having a time offset and a Doppler offset.
  • the relay request component 925 may be configured as or otherwise support a means for transmitting the request to relay communications according to a TA.
  • the TA is based on an indicated time for receiving an SSB or a discovery signal associated with the NTN and a time at which the SSB or the discovery signal associated with the NTN is received.
  • the relay request component 925 may be configured as or otherwise support a means for transmitting the request to relay communications without a TA.
  • the relay request component 925 may be configured as or otherwise support a means for transmitting the request to relay communications using one or more resources that include a window having a time offset and a Doppler offset, the request to relay communications transmitted via a preamble and a message associated with the preamble.
  • the device discovery monitoring component 945 may be configured as or otherwise support a means for detecting an SSB associated with the terrestrial network after communicating the one or more messages via the relay node.
  • the relayed communications component 935 may be configured as or otherwise support a means for refraining from communicating one or more additional messages with the network entity associated with the terrestrial network via the relay node associated with the NTN based on detecting the SSB associated with the terrestrial network.
  • the resource indication component 930 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN or from a second network entity associated with the terrestrial network, a second indication of a resource for transmitting the request to relay communications.
  • the feedback reception component 950 may be configured as or otherwise support a means for receiving, from the relay node, feedback for the request to relay communications, the communicating the one or more messages via the relay node based on receiving the feedback.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of a device 705, a device 805, or a UE 115 as described herein.
  • the device 1005 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1020, an input/output (I/O) controller 1010, a transceiver 1015, an antenna 1025, a memory 1030, code 1035, and a processor 1040. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1045) .
  • a bus 1045 e.g., a bus 1045
  • the I/O controller 1010 may manage input and output signals for the device 1005.
  • the I/O controller 1010 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1010 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1010 may utilize an operating system such as or another known operating system.
  • the I/O controller 1010 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1010 may be implemented as part of a processor, such as the processor 1040.
  • a user may interact with the device 1005 via the I/O controller 1010 or via hardware components controlled by the I/O controller 1010.
  • the device 1005 may include a single antenna 1025. However, in some other cases, the device 1005 may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 1015 may communicate bi-directionally, via the one or more antennas 1025, wired, or wireless links as described herein.
  • the transceiver 1015 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1015 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1025 for transmission, and to demodulate packets received from the one or more antennas 1025.
  • the transceiver 1015 may be an example of a transmitter 715, a transmitter 815, a receiver 710, a receiver 810, or any combination thereof or component thereof, as described herein.
  • the memory 1030 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed by the processor 1040, cause the device 1005 to perform various functions described herein.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1040 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting relaying wireless communications between terrestrial and NTNs) .
  • the device 1005 or a component of the device 1005 may include a processor 1040 and memory 1030 coupled with or to the processor 1040, the processor 1040 and memory 1030 configured to perform various functions described herein.
  • the communications manager 1020 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the communications manager 1020 may be configured as or otherwise support a means for transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network.
  • the communications manager 1020 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications.
  • the communications manager 1020 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • the device 1005 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105.
  • the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
  • the communications manager 1020 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1015, the one or more antennas 1025, or any combination thereof.
  • the communications manager 1020 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1020 may be supported by or performed by the processor 1040, the memory 1030, the code 1035, or any combination thereof.
  • the code 1035 may include instructions executable by the processor 1040 to cause the device 1005 to perform various aspects of relaying wireless communications between terrestrial and NTNs as described herein, or the processor 1040 and the memory 1030 may be otherwise configured to perform or support such operations.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a relay node as described herein.
  • the device 1105 may include a receiver 1110, a transmitter 1115, and a communications manager 1120.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • Information may be passed on to other components of the device 1105.
  • the receiver 1110 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 1110 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1115 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1105.
  • the transmitter 1115 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • the transmitter 1115 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1115 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1115 and the receiver 1110 may be co-located in a transceiver, which may include or be coupled with a modem.
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations thereof or various components thereof may be examples of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, a CPU, an ASIC, an FPGA or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a
  • the communications manager 1120 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1110, the transmitter 1115, or both.
  • the communications manager 1120 may receive information from the receiver 1110, send information to the transmitter 1115, or be integrated in combination with the receiver 1110, the transmitter 1115, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 1120 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein.
  • the communications manager 1120 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network.
  • the communications manager 1120 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the communications manager 1120 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the communications manager 1120 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • the device 1105 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105.
  • the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
  • FIG. 12 shows a block diagram 1200 of a device 1205 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a device 1105 or a relay node as described herein.
  • the device 1205 may include a receiver 1210, a transmitter 1215, and a communications manager 1220.
  • the device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1210 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • Information may be passed on to other components of the device 1205.
  • the receiver 1210 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 1210 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1215 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1205.
  • the transmitter 1215 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • the transmitter 1215 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1215 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1215 and the receiver 1210 may be co-located in a transceiver, which may include or be coupled with a modem.
  • the device 1205, or various components thereof may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 1220 may include a relay request component 1225, a relay indication component 1230, a resource indication component 1235, a relay component 1240, or any combination thereof.
  • the communications manager 1220 may be an example of aspects of a communications manager 1120 as described herein.
  • the communications manager 1220, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1210, the transmitter 1215, or both.
  • the communications manager 1220 may receive information from the receiver 1210, send information to the transmitter 1215, or be integrated in combination with the receiver 1210, the transmitter 1215, or both to obtain information, output information, or perform various other operations as described herem.
  • the communications manager 1220 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein.
  • the relay request component 1225 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network.
  • the relay indication component 1230 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the resource indication component 1235 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the relay component 1240 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • FIG. 13 shows a block diagram 1300 of a communications manager 1320 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the communications manager 1320 may be an example of aspects of a communications manager 1120, a communications manager 1220, or both, as described herein.
  • the communications manager 1320, or various components thereof may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 1320 may include a relay request component 1325, a relay indication component 1330, a resource indication component 1335, a relay component 1340, a device discovery component 1345, a TA component 1350, a feedback component 1355, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 1320 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein.
  • the relay request component 1325 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network.
  • the relay indication component 1330 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the resource indication component 1335 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the relay component 1340 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • the device discovery component 1345 may be configured as or otherwise support a means for outputting an SSB or a discovery signal associated with the NTN, the request to relay communications based on the SSB or the discovery signal associated with the NTN.
  • the device discovery component 1345 may be configured as or otherwise support a means for outputting the SSB or the discovery signal associated with the NTN using a time resource that is based on a timing associated with a global satellite system.
  • the device discovery component 1345 may be configured as or otherwise support a means for outputting the SSB or the discovery signal associated with the NTN using a resource configured by the network entity associated with the terrestrial network.
  • the device discovery component 1345 may be configured as or otherwise support a means for outputting the SSB or the discovery signal associated with the NTN using one or more resources that include a window having a time offset and a Doppler offset.
  • the device discovery component 1345 may be configured as or otherwise support a means for obtaining, from the network entity associated with the terrestrial network, a third indication to transmit the SSB or the discovery signal associated with the NTN, the SSB or the discovery signal associated with the NTN based on the third indication.
  • the TA component 1350 may be configured as or otherwise support a means for outputting, to the UE, a fourth indication for the UE to apply a TA to transmission of the request to relay communications. In some examples, the TA component 1350 may be configured as or otherwise support a means for obtaining the request to relay communications according to the TA based on the fourth indication.
  • the TA component 1350 may be configured as or otherwise support a means for outputting, to the UE, a fifth indication for the UE to transmit the request to relay communications without a TA. In some examples, the TA component 1350 may be configured as or otherwise support a means for obtaining the request to relay communications without a TA based on the fifth indication.
  • the TA component 1350 may be configured as or otherwise support a means for obtaining the request to relay communications using one or more resources that include a monitoring window having a time offset and a Doppler offset, the request to relay communications obtained via a preamble and a message associated with the preamble.
  • the resource indication component 1335 may be configured as or otherwise support a means for outputting a sixth indication of a resource for communicating the request to relay communications, the request to relay communications based on the sixth indication of the resource.
  • the resource indication component 1335 may be configured as or otherwise support a means for obtaining, from the network entity associated with the terrestrial network, a seventh indication of a resource for communicating the request to relay communications, the request to relay communications based on the seventh indication of the resource.
  • the feedback component 1355 may be configured as or otherwise support a means for outputting feedback for the request to relay communications, the relaying the one or more messages between the UE and the network entity associated with the terrestrial network based on the feedback.
  • FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 1405 may be an example of or include the components of a device 1105, a device 1205, or a relay node as described herein.
  • the device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1420, a transceiver 1410, an antenna 1415, a memory 1425, code 1430, and a processor 1435. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1440) .
  • buses e.g., a bus 1440
  • the transceiver 1410 may support bi-directional communications via wired links, wireless links, or both as described herein.
  • the transceiver 1410 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1410 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the device 1405 may include one or more antennas 1415, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) .
  • the transceiver 1410 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1415, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1415, from a wired receiver) , and to demodulate signals.
  • the transceiver 1410 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1415 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1415 that are configured to support various transmitting or outputting operations, or a combination thereof.
  • the transceiver 1410 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof.
  • the transceiver 1410, or the transceiver 1410 and the one or more antennas 1415, or the transceiver 1410 and the one or more antennas 1415 and one or more processors or memory components may be included in a chip or chip assembly that is installed in the device 1405.
  • the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
  • one or more communications links e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168 .
  • the memory 1425 may include RAM and ROM.
  • the memory 1425 may store computer-readable, computer-executable code 1430 including instructions that, when executed by the processor 1435, cause the device 1405 to perform various functions described herein.
  • the code 1430 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1430 may not be directly executable by the processor 1435 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1425 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1435 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) .
  • the processor 1435 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1435.
  • the processor 1435 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1425) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting relaying wireless communications between terrestrial and NTNs) .
  • the device 1405 or a component of the device 1405 may include a processor 1435 and memory 1425 coupled with the processor 1435, the processor 1435 and memory 1425 configured to perform various functions described herein.
  • the processor 1435 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1430) to perform the functions of the device 1405.
  • the processor 1435 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1405 (such as within the memory 1425) .
  • the processor 1435 may be a component of a processing system.
  • a processing system may refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1405) .
  • a processing system of the device 1405 may refer to a system including the various other components or subcomponents of the device 1405, such as the processor 1435, or the transceiver 1410, or the communications manager 1420, or other components or combinations of components of the device 1405.
  • the processing system of the device 1405 may interface with other components of the device 1405, and may process information received from other components (such as inputs or signals) or output information to other components.
  • a chip or modem of the device 1405 may include a processing system and one or more interfaces to output information, or to obtain information, or both.
  • the one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1405 may transmit information output from the chip or modem.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1405 may obtain information or signal inputs, and the information may be passed to the processing system.
  • a first interface also may obtain information or signal inputs
  • a second interface also may output information or signal outputs.
  • a bus 1440 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1440 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1405, or between different components of the device 1405 that may be co-located or located in different locations (e.g., where the device 1405 may refer to a system in which one or more of the communications manager 1420, the transceiver 1410, the memory 1425, the code 1430, and the processor 1435 may be located in one of the different components or divided between different components) .
  • a logical channel of a protocol stack e.g., between protocol layers of a protocol stack
  • the device 1405 may refer to a system in which one or more of the communications manager 1420, the transceiver 1410, the memory 1425, the code 1430, and the processor 1435 may be located in one of the different components
  • the communications manager 1420 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) .
  • the communications manager 1420 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the communications manager 1420 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105.
  • the communications manager 1420 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
  • the communications manager 1420 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein.
  • the communications manager 1420 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network.
  • the communications manager 1420 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the communications manager 1420 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the communications manager 1420 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • the device 1405 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105.
  • the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
  • the communications manager 1420 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1410, the one or more antennas 1415 (e.g., where applicable) , or any combination thereof.
  • the communications manager 1420 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1420 may be supported by or performed by the transceiver 1410, the processor 1435, the memory 1425, the code 1430, or any combination thereof.
  • the code 1430 may include instructions executable by the processor 1435 to cause the device 1405 to perform various aspects of relaying wireless communications between terrestrial and NTNs as described herein, or the processor 1435 and the memory 1425 may be otherwise configured to perform or support such operations.
  • FIG. 15 shows a block diagram 1500 of a device 1505 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 1505 may be an example of aspects of a network entity 105 as described herein.
  • the device 1505 may include a receiver 1510, a transmitter 1515, and a communications manager 1520.
  • the device 1505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1510 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • Information may be passed on to other components of the device 1505.
  • the receiver 1510 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 1510 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1515 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1505.
  • the transmitter 1515 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • the transmitter 1515 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1515 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1515 and the receiver 1510 may be co-located in a transceiver, which may include or be coupled with a modem.
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, a CPU, an ASIC, an FPGA or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a
  • the communications manager 1520 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1510, the transmitter 1515, or both.
  • the communications manager 1520 may receive information from the receiver 1510, send information to the transmitter 1515, or be integrated in combination with the receiver 1510, the transmitter 1515, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 1520 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein.
  • the communications manager 1520 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network.
  • the communications manager 1520 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • the device 1505 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105.
  • the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
  • FIG. 16 shows a block diagram 1600 of a device 1605 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 1605 may be an example of aspects of a device 1505 or a network entity 105 as described herein.
  • the device 1605 may include a receiver 1610, a transmitter 1615, and a communications manager 1620.
  • the device 1605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1610 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • Information may be passed on to other components of the device 1605.
  • the receiver 1610 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 1610 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1615 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1605.
  • the transmitter 1615 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • the transmitter 1615 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1615 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 1615 and the receiver 1610 may be co-located in a transceiver, which may include or be coupled with a modem.
  • the device 1605 may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 1620 may include a relay indication component 1625 a relayed communications component 1630, or any combination thereof.
  • the communications manager 1620 may be an example of aspects of a communications manager 1520 as described herein.
  • the communications manager 1620, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1610, the transmitter 1615, or both.
  • the communications manager 1620 may receive information from the receiver 1610, send information to the transmitter 1615, or be integrated in combination with the receiver 1610, the transmitter 1615, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 1620 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein.
  • the relay indication component 1625 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network.
  • the relayed communications component 1630 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • FIG. 17 shows a block diagram 1700 of a communications manager 1720 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the communications manager 1720 may be an example of aspects of a communications manager 1520, a communications manager 1620, or both, as described herein.
  • the communications manager 1720, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein.
  • the communications manager 1720 may include a relay indication component 1725, a relayed communications component 1730, a resource indication component 1735, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
  • the communications manager 1720 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein.
  • the relay indication component 1725 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network.
  • the relayed communications component 1730 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • the resource indication component 1735 may be configured as or otherwise support a means for outputting a second indication of one or more resources for communicating an SSB or a discovery signal associated with the NTN, the one or more resources including a window having a time offset and a Doppler offset, the request to relay communications based on the second indication of the one or more resources.
  • the resource indication component 1735 may be configured as or otherwise support a means for outputting a third indication of a resource for communicating the request to relay communications, the request to relay communications based on the third indication of the resource.
  • FIG. 18 shows a diagram of a system 1800 including a device 1805 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the device 1805 may be an example of or include the components of a device 1505, a device 1605, or a network entity 105 as described herein.
  • the device 1805 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless interfaces, or any combination thereof.
  • the device 1805 may include components that support outputting and obtaining communications, such as a communications manager 1820, a transceiver 1810, an antenna 1815, a memory 1825, code 1830, and a processor 1835. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1840) .
  • buses e
  • the transceiver 1810 may support bi-directional communications via wired links, wireless links, or both as described herein.
  • the transceiver 1810 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1810 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the device 1805 may include one or more antennas 1815, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) .
  • the transceiver 1810 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1815, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1815, from a wired receiver) , and to demodulate signals.
  • the transceiver 1810 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1815 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1815 that are configured to support various transmitting or outputting operations, or a combination thereof.
  • the transceiver 1810 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof.
  • the transceiver 1810, or the transceiver 1810 and the one or more antennas 1815, or the transceiver 1810 and the one or more antennas 1815 and one or more processors or memory components may be included in a chip or chip assembly that is installed in the device 1805.
  • the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
  • one or more communications links e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168 .
  • the memory 1825 may include RAM and ROM.
  • the memory 1825 may store computer-readable, computer-executable code 1830 including instructions that, when executed by the processor 1835, cause the device 1805 to perform various functions described herein.
  • the code 1830 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1830 may not be directly executable by the processor 1835 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1825 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1835 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) .
  • the processor 1835 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1835.
  • the processor 1835 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1825) to cause the device 1805 to perform various functions (e.g., functions or tasks supporting relaying wireless communications between terrestrial and NTNs) .
  • the device 1805 or a component of the device 1805 may include a processor 1835 and memory 1825 coupled with the processor 1835, the processor 1835 and memory 1825 configured to perform various functions described herein.
  • the processor 1835 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1830) to perform the functions of the device 1805.
  • the processor 1835 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1805 (such as within the memory 1825) .
  • the processor 1835 may be a component of a processing system.
  • a processing system may refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1805) .
  • a processing system of the device 1805 may refer to a system including the various other components or subcomponents of the device 1805, such as the processor 1835, or the transceiver 1810, or the communications manager 1820, or other components or combinations of components of the device 1805.
  • the processing system of the device 1805 may interface with other components of the device 1805, and may process information received from other components (such as inputs or signals) or output information to other components.
  • a chip or modem of the device 1805 may include a processing system and one or more interfaces to output information, or to obtain information, or both.
  • the one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1805 may transmit information output from the chip or modem.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1805 may obtain information or signal inputs, and the information may be passed to the processing system.
  • a first interface also may obtain information or signal inputs
  • a second interface also may output information or signal outputs.
  • a bus 1840 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1840 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1805, or between different components of the device 1805 that may be co-located or located in different locations (e.g., where the device 1805 may refer to a system in which one or more of the communications manager 1820, the transceiver 1810, the memory 1825, the code 1830, and the processor 1835 may be located in one of the different components or divided between different components) .
  • a logical channel of a protocol stack e.g., between protocol layers of a protocol stack
  • the device 1805 may refer to a system in which one or more of the communications manager 1820, the transceiver 1810, the memory 1825, the code 1830, and the processor 1835 may be located in one of the different
  • the communications manager 1820 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) .
  • the communications manager 1820 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the communications manager 1820 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105.
  • the communications manager 1820 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
  • the communications manager 1820 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein.
  • the communications manager 1820 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network.
  • the communications manager 1820 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • the device 1805 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105.
  • the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
  • the communications manager 1820 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1810, the one or more antennas 1815 (e.g., where applicable) , or any combination thereof.
  • the communications manager 1820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1820 may be supported by or performed by the transceiver 1810, the processor 1835, the memory 1825, the code 1830, or any combination thereof.
  • the code 1830 may include instructions executable by the processor 1835 to cause the device 1805 to perform various aspects of relaying wireless communications between terrestrial and NTNs as described herein, or the processor 1835 and the memory 1825 may be otherwise configured to perform or support such operations.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1900 may be implemented by a UE or its components as described herein.
  • the operations of the method 1900 may be performed by a UE 115 as described with reference to FIGs. 1 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network.
  • the operations of 1905 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1905 may be performed by a relay request component 925 as described with reference to FIG. 9.
  • the method may include receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications.
  • the operations of 1910 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1910 may be performed by a resource indication component 930 as described with reference to FIG. 9.
  • the method may include communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • the operations of 1915 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1915 may be performed by a relayed communications component 935 as described with reference to FIG. 9.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the operations of the method 2000 may be implemented by a UE or its components as described herein.
  • the operations of the method 2000 may be performed by a UE 115 as described with reference to FIGs. 1 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include failing to detect an SSB associated with the terrestrial network within a time duration.
  • the operations of 2005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2005 may be performed by an SSB monitoring component 940 as described with reference to FIG. 9.
  • the method may include monitoring for an SSB or a discovery signal associated with the NTN after the time duration and based on failing to detect the SSB associated with the terrestrial network, the transmitting the request to relay communications based on reception of the SSB or the discovery signal associated with the NTN.
  • the operations of 2010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2010 may be performed by a device discovery monitoring component 945 as described with reference to FIG. 9.
  • the method may include transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network.
  • the operations of 2015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2015 may be performed by a relay request component 925 as described with reference to FIG. 9.
  • the method may include receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications.
  • the operations of 2020 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2020 may be performed by a resource indication component 930 as described with reference to FIG. 9.
  • the method may include communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • the operations of 2025 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2025 may be performed by a relayed communications component 935 as described with reference to FIG. 9.
  • FIG. 21 shows a flowchart illustrating a method 2100 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the operations of the method 2100 may be implemented by a relay node or its components as described herein.
  • the operations of the method 2100 may be performed by a relay node as described with reference to FIGs. 1 through 6 and 11 through 14.
  • a relay node may execute a set of instructions to control the functional elements of the relay node to perform the described functions. Additionally, or alternatively, the relay node may perform aspects of the described functions using special-purpose hardware.
  • the method may include obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network.
  • the operations of 2105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2105 may be performed by a relay request component 1325 as described with reference to FIG. 13.
  • the method may include outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the operations of 2110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2110 may be performed by a relay indication component 1330 as described with reference to FIG. 13.
  • the method may include outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the operations of 2115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2115 may be performed by a resource indication component 1335 as described with reference to FIG. 13.
  • the method may include relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • the operations of 2120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2120 may be performed by a relay component 1340 as described with reference to FIG. 13.
  • FIG. 22 shows a flowchart illustrating a method 2200 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the operations of the method 2200 may be implemented by a relay node or its components as described herein.
  • the operations of the method 2200 may be performed by a relay node as described with reference to FIGs. 1 through 6 and 11 through 14.
  • a relay node may execute a set of instructions to control the functional elements of the relay node to perform the described functions. Additionally, or alternatively, the relay node may perform aspects of the described functions using special-purpose hardware.
  • the method may include outputting an SSB or a discovery signal associated with the NTN, the request to relay communications based on the SSB or the discovery signal associated with the NTN.
  • the operations of 2205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2205 may be performed by a device discovery component 1345 as described with reference to FIG. 13.
  • the method may include obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network.
  • the operations of 2210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2210 may be performed by a relay request component 1325 as described with reference to FIG. 13.
  • the method may include outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the operations of 2215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2215 may be performed by a relay indication component 1330 as described with reference to FIG. 13.
  • the method may include outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications.
  • the operations of 2220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2220 may be performed by a resource indication component 1335 as described with reference to FIG. 13.
  • the method may include relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • the operations of 2225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2225 may be performed by a relay component 1340 as described with reference to FIG. 13.
  • FIG. 23 shows a flowchart illustrating a method 2300 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the operations of the method 2300 may be implemented by a network entity or its components as described herein.
  • the operations of the method 2300 may be performed by a network entity as described with reference to FIGs. 1 through 6 and 15 through 18.
  • a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network.
  • the operations of 2305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2305 may be performed by a relay indication component 1725 as described with reference to FIG. 17.
  • the method may include communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • the operations of 2310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2310 may be performed by a relayed communications component 1730 as described with reference to FIG. 17.
  • FIG. 24 shows a flowchart illustrating a method 2400 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
  • the operations of the method 2400 may be implemented by a network entity or its components as described herein.
  • the operations of the method 2400 may be performed by a network entity as described with reference to FIGs. 1 through 6 and 15 through 18.
  • a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include outputting a second indication of one or more resources for communicating an SSB or a discovery signal associated with the NTN, the one or more resources including a window having a time offset and a Doppler offset, the request to relay communications based on the second indication of the one or more resources.
  • the operations of 2405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2405 may be performed by a resource indication component 1735 as described with reference to FIG. 17.
  • the method may include obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network.
  • the operations of 2410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2410 may be performed by a relay indication component 1725 as described with reference to FIG. 17.
  • the method may include communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
  • the operations of 2415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2415 may be performed by a relayed communications component 1730 as described with reference to FIG. 17.
  • a method for wireless communication at a UE comprising: transmitting, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network; receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based at least in part on transmitting the request to relay communications; and communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  • Aspect 2 The method of aspect 1, further comprising: failing to detect a synchronization signal block associated with the terrestrial network within a time duration; and monitoring for one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN after the time duration and based at least in part on the failure to detect the synchronization signal block associated with the terrestrial network, the request to relay communications based at least in part on reception of one of the synchronization signal block or the discovery signal.
  • Aspect 3 The method of aspect 2, the monitoring comprising: monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that is based at least in part on a timing associated with a global satellite system.
  • Aspect 4 The method of any of aspects 2 through 3, the monitoring comprising: monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by a second network entity associated with the terrestrial network.
  • Aspect 5 The method of any of aspects 2 through 4, the monitoring comprising: monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that comprise a monitoring window having a time offset and a Doppler offset.
  • Aspect 6 The method of any of aspects 1 through 5, the transmitting the request to relay communications comprising: transmitting the request to relay communications according to a timing advance.
  • Aspect 7 The method of aspect 6, wherein the timing advance is based at least in part on an indicated time for reception of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN and a time at which the synchronization signal block associated with the NTN or the discovery signal associated with the NTN is received.
  • Aspect 8 The method of any of aspects 1 through 7, the transmitting the request to relay communications comprising: transmitting the request to relay communications without a timing advance.
  • Aspect 9 The method of aspect 8, the transmitting the request to relay communications further comprising: transmitting the request to relay communications using one or more resources that comprise a window having a time offset and a Doppler offset, the request to relay communications transmitted via a preamble and a message associated with the preamble.
  • Aspect 10 The method of any of aspects 1 through 9, further comprising: detecting a synchronization signal block associated with the terrestrial network after communicating the one or more messages via the relay node; and refraining from communicating one or more additional messages with the network entity associated with the terrestrial network via the relay node associated with the NTN based at least in part on detecting the synchronization signal block associated with the terrestrial network.
  • Aspect 11 The method of any of aspects 1 through 10, further comprising: receiving, from the relay node associated with the NTN or from a second network entity associated with the terrestrial network, a second indication of a resource for transmitting the request to relay communications.
  • Aspect 12 The method of any of aspects 1 through 11, further comprising: receiving, from the relay node, feedback for the request to relay communications, the communicating the one or more messages via the relay node based at least in part on receiving the feedback.
  • Aspect 13 The method of any of aspects 1 through 12, the one or more messages communicated via the relay node comprising one or more uplink messages, one or more downlink messages, or both.
  • a method for wireless communication at a relay node associated with a NTN comprising: obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network; outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based at least in part on the request to relay communications; outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based at least in part on the request to relay communications; and relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  • Aspect 15 The method of aspect 14, further comprising: outputting one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the request to relay communications based at least in part on the synchronization signal block or the discovery signal.
  • Aspect 16 The method of aspect 15, the outputting the synchronization signal block or the discovery signal comprising: outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that is based at least in part on a timing associated with a global satellite system.
  • Aspect 17 The method of any of aspects 15 through 16, the outputting the synchronization signal block or the discovery signal comprising: outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by the network entity associated with the terrestrial network.
  • Aspect 18 The method of any of aspects 15 through 17, the outputting the synchronization signal block or the discovery signal comprising: outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that comprise a time window having a time offset and a Doppler offset.
  • Aspect 19 The method of any of aspects 15 through 18, further comprising: obtaining, from the network entity associated with the terrestrial network, a third indication to transmit the synchronization signal block or the discovery signal associated with the NTN, the synchronization signal block or the discovery signal associated with the NTN based at least in part on the third indication.
  • Aspect 20 The method of any of aspects 14 through 19, the obtaining the request to relay communications comprising: outputting, to the UE, a fourth indication for the UE to apply a timing advance to transmission of the request to relay communications; and obtaining the request to relay communications according to the timing advance based at least in part on the fourth indication.
  • Aspect 21 The method of any of aspects 14 through 20, the obtaining the request to relay communications comprising: outputting, to the UE, a fifth indication for the UE to transmit the request to relay communications without a timing advance; and obtaining the request to relay communications without a timing advance based at least in part on the fifth indication.
  • Aspect 22 The method of aspect 21, the obtaining the request to relay communications further comprising: obtaining the request to relay communications using one or more resources that comprise a monitoring window having a time offset and a Doppler offset, the request to relay communications obtained via a preamble and a message associated with the preamble.
  • Aspect 23 The method of any of aspects 14 through 22, further comprising: outputting a sixth indication of a resource for communicating the request to relay communications, the request to relay communications based at least in part on the sixth indication of the resource.
  • Aspect 24 The method of any of aspects 14 through 23, further comprising: obtaining, from the network entity associated with the terrestrial network, a seventh indication of a resource for communicating the request to relay communications, the request to relay communications based at least in part on the seventh indication of the resource.
  • Aspect 25 The method of any of aspects 14 through 24, further comprising: outputting feedback for the request to relay communications, the relaying the one or more messages between the UE and the network entity associated with the terrestrial network based at least in part on the feedback.
  • Aspect 26 The method of any of aspects 14 through 25, the one or more messages relayed between the UE and the network entity associated with the terrestrial network comprising one or more uplink messages, one or more downlink messages, or both.
  • a method for wireless communication at a network entity associated with a terrestrial network comprising: obtaining, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network; and communicating one or more messages with the UE via the relay node associated with the NTN based at least in part on the first indication of the request to relay communications.
  • Aspect 28 The method of aspect 27, further comprising: outputting a second indication of one or more resources for communication of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the one or more resources comprising a time window having a time offset and a Doppler offset, the request to relay communications based at least in part on the second indication of the one or more resources.
  • Aspect 29 The method of any of aspects 27 through 28, further comprising: outputting a third indication of a resource for communicating the request to relay communications, the request to relay communications based at least in part on the third indication of the resource.
  • Aspect 30 The method of any of aspects 27 through 29, the one or more messages communicated between the UE and the network entity associated with the terrestrial network comprising one or more uplink messages, one or more downlink messages, or both.
  • Aspect 31 An apparatus for wireless communication at a UE, comprising a processor; and memory coupled with the processor, the processor configured to perform a method of any of aspects 1 through 13.
  • Aspect 32 An apparatus for wireless communication at a UE, comprising at least one means for performing a method of any of aspects 1 through 13.
  • Aspect 33 A non-transitory computer-readable medium storing code for wireless communication at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 13.
  • Aspect 34 An apparatus for wireless communication at a relay node associated with a NTN, comprising a processor; and memory coupled with the processor, the processor configured to perform a method of any of aspects 14 through 26.
  • Aspect 35 An apparatus for wireless communication at a relay node associated with a NTN, comprising at least one means for performing a method of any of aspects 14 through 26.
  • Aspect 36 A non-transitory computer-readable medium storing code for wireless communication at a relay node associated with a NTN, the code comprising instructions executable by a processor to perform a method of any of aspects 14 through 26.
  • Aspect 37 An apparatus for wireless communication at a network entity associated with a terrestrial network, comprising a processor; and memory coupled with the processor, the processor configured to perform a method of any of aspects 27 through 30.
  • Aspect 38 An apparatus for wireless communication at a network entity associated with a terrestrial network, comprising at least one means for performing a method of any of aspects 27 through 30.
  • Aspect 39 A non-transitory computer-readable medium storing code for wireless communication at a network entity associated with a terrestrial network, the code comprising instructions executable by a processor to perform a method of any of aspects 27 through 30.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.

Abstract

Methods, systems, and devices for wireless communication are described to support wireless communications for a user equipment (UE) that is out of a coverage area of a terrestrial network. A UE may transmit a request to a relay node of an NTN, indicating for the relay node to relay one or more messages between the UE and a network entity of the terrestrial network. The relay node may output an indication of the request to the network entity, indicating that the UE has requested the relayed communications. The relay node may output, for the UE, an indication of one or more resources to be used for relayed communications with the terrestrial network. The UE may use the one or more resources for communicating one or more messages with the terrestrial network entity via the relay node.

Description

RELAYING WIRELESS COMMUNICATIONS BETWEEN TERRESTRIAL AND NON-TERRESTRIAL NETWORKS
INTRODUCTION
The following relates to wireless communication, including managing relayed communications.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
SUMMARY
A method for wireless communication at a UE is described. The method may include transmitting, to a relay node associated with a non-terrestrial network (NTN) , a request to relay communications between the UE and a network entity associated with a terrestrial network, receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, and memory coupled with the processor, the processor configured to transmit, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network, receive, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and communicate, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for transmitting, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network, means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to transmit, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network, receive, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications, and communicate, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for failing to detect a synchronization signal block associated with the terrestrial network within a time duration and monitoring for one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN  after the time duration and based on the failure to detect the synchronization signal block associated with the terrestrial network, the request to relay communications based on reception of one of the synchronization signal block or the discovery signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that may be based on a timing associated with a global satellite system.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by a second network entity associated with the terrestrial network.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that include a monitoring window having a time offset and a Doppler offset.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the request to relay communications according to a timing advance.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the timing advance may be based on an indicated time for reception of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN and a time at which the synchronization signal block associated with the NTN or the discovery signal associated with the NTN may be received.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or  instructions for transmitting the request to relay communications without a timing advance.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the request to relay communications using one or more resources that include a window having a time offset and a Doppler offset, the request to relay communications transmitted via a preamble and a message associated with the preamble.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a synchronization signal block associated with the terrestrial network after communicating the one or more messages via the relay node and refraining from communicating one or more additional messages with the network entity associated with the terrestrial network via the relay node associated with the NTN based on detecting the synchronization signal block associated with the terrestrial network.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the relay node associated with the NTN or from a second network entity associated with the terrestrial network, a second indication of a resource for transmitting the request to relay communications.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the relay node, feedback for the request to relay communications, the communicating the one or more messages via the relay node based on receiving the feedback.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more messages communicated via the relay node comprise one or more uplink messages, one or more downlink messages, or both.
A method for wireless communication at a relay node associated with a NTN is described. The method may include obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network, outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
An apparatus for wireless communication at a relay node associated with a NTN is described. The apparatus may include a processor, and memory coupled with the processor, the processor configured to obtain a request to relay communications between a UE and a network entity associated with a terrestrial network, output, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, output a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and relay one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
Another apparatus for wireless communication at a relay node associated with a NTN is described. The apparatus may include means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network, means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
A non-transitory computer-readable medium storing code for wireless communication at a relay node associated with a NTN is described. The code may include instructions executable by a processor to obtain a request to relay communications between a UE and a network entity associated with a terrestrial network, output, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, output a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications, and relay one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the request to relay communications based on the synchronization signal block or the discovery signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that may be based on a timing associated with a global satellite system.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by the network entity associated with the terrestrial network.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that include a time window having a time offset and a Doppler offset.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for obtaining, from the network entity associated with the terrestrial network, a third indication to transmit the synchronization signal block or the discovery signal associated with the NTN, the synchronization signal block or the discovery signal associated with the NTN based on the third indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting, to the UE, a fourth indication for the UE to apply a timing advance to transmission of the request to relay communications and obtaining the request to relay communications according to the timing advance based on the fourth indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting, to the UE, a fifth indication for the UE to transmit the request to relay communications without a timing advance and obtaining the request to relay communications without a timing advance based on the fifth indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for obtaining the request to relay communications using one or more resources that include a monitoring window having a time offset and a Doppler offset, the request to relay communications obtained via a preamble and a message associated with the preamble.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting a sixth indication of a resource for communicating the request to relay communications, the request to relay communications based on the sixth indication of the resource.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for obtaining, from the network entity associated with the terrestrial  network, a seventh indication of a resource for communicating the request to relay communications, the request to relay communications based on the seventh indication of the resource.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting feedback for the request to relay communications, the relaying the one or more messages between the UE and the network entity associated with the terrestrial network based on the feedback.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more messages communicated via the relay node comprise one or more uplink messages, one or more downlink messages, or both.
A method for wireless communication at a network entity associated with a terrestrial network is described. The method may include obtaining, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
An apparatus for wireless communication at a network entity associated with a terrestrial network is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to obtain, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and communicate one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
Another apparatus for wireless communication at a network entity associated with a terrestrial network is described. The apparatus may include means for obtaining, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and means for communicating one or more messages with the UE via the relay  node associated with the NTN based on the first indication of the request to relay communications.
A non-transitory computer-readable medium storing code for wireless communication at a network entity associated with a terrestrial network is described. The code may include instructions executable by a processor to obtain, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network and communicate one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting a second indication of one or more resources for communication of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the one or more resources including a time window having a time offset and a Doppler offset, the request to relay communications based on the second indication of the one or more resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for outputting a third indication of a resource for communicating the request to relay communications, the request to relay communications based on the third indication of the resource.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 2 illustrates an example of a network architecture that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 3 illustrates an example of a wireless communications system that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIGs. 4A and 4B illustrate example timing diagrams that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 5A and 5B illustrate example timing diagrams that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 6 illustrates an example of a process flow that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a device that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIGs. 11 and 12 show block diagrams of devices that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 13 shows a block diagram of a communications manager that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 14 shows a diagram of a system including a device that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIGs. 15 and 16 show block diagrams of devices that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 17 shows a block diagram of a communications manager that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIG. 18 shows a diagram of a system including a device that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
FIGs. 19 through 24 show flowcharts illustrating methods that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless devices may communicate via or form part of an NTN. As described herein, an NTN may be a wireless communications network that includes one or more network nodes (e.g., wireless devices, UEs, network entities participating in the wireless communications network) that are not located on the ground (e.g., on a terrestrial surface) . For example, an NTN may include nodes such as aircraft, unmanned air vehicles (UAVs) , zeppelins, etc., or any combination thereof. In some cases, a UE (e.g., a terrestrial or ground-based UE) may be at a location where the UE is not within a coverage area (e.g., area within a range for reception of signals) supported by a terrestrial network (e.g., a wireless communications network having network nodes located on the ground or terrestrial surface) . For example, a UE may be located beyond a range of one or more network entities of the terrestrial network and may thus be unable to transmit or receive information via wireless communications (e.g., with the terrestrial network) . In some cases, such as in emergency situations (e.g., hikers in a  risky environment, users outside without a weather forecast) , a lack of information available at the UE may result in increased risk, damage, or the like for users of the UE.
The present disclosure provides techniques to support wireless communications (e.g., uplink or downlink signals, transmissions, messages) for a UE that is out of a coverage area of a terrestrial network. For example, a relay node of an NTN may relay one or more messages (e.g., wireless communications, signals, transmissions) between the UE and a network entity of the terrestrial network. The relay node may represent a device (e.g., UAV, aircraft, satellite) that is a network node of the NTN and has the capability to perform wireless communications with the terrestrial network and the UE (e.g., the relay node has the capability to relay messages) . As described herein, relaying a message or communication may include obtaining a message or communication from a first wireless device (e.g., UE, network entity) and outputting the message or communication (e.g., as received) to a second wireless device (e.g., network entity, UE) . The message or communication may be an uplink message, a downlink message, or a sidelink message.
In some examples, if a UE is outside a coverage area supported by the terrestrial network, the UE may monitor for a synchronization signal block (SSB) or a discovery signal from a relay node, such as an aircraft or UAV. If an SSB or a discovery signal is detected, the UE may request a relay node to relay one or more messages between the UE and a network entity of the terrestrial network. For example, if the UE is outside a coverage area supported by the terrestrial network, the UE may request to communicate with the terrestrial network via the relay node. In one or more examples, after receiving the request, the relay node may indicate, to a network entity of the terrestrial network, that a request has been made by the UE to communicate with the terrestrial network via the relay node. The network entity of the terrestrial network may authorize the relaying of communications via the relay node by transmitting an indication to the relay node. Once approved, the relay node my allocate resources (e.g., time resources, frequency resources, spatial resources for wireless signaling) used by the UE to transmit messages to or receive messages from (e.g., uplink or downlink messages) the terrestrial network entity via the relay node.
Such techniques may improve the wireless communication coverage for UEs operating outside of a coverage area supported by a terrestrial network. For instance, a  relay node may relay communications from the terrestrial network entity to the UE or from the UE to the terrestrial network entity to provide wireless communications and services to the UE, which may increase wireless communication efficiency and increase the likelihood of successful transmission and reception of messages (e.g., emergency messages, push services, downlink data messages, uplink data messages) between the UE and the terrestrial network.
Aspects of the disclosure are initially described in the context of wireless communications systems and a network architecture. Aspects of the disclosure are further illustrated by and described with reference to timing diagrams, a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to relaying wireless communications between terrestrial and NTNs.
FIG. 1 illustrates an example of a wireless communications system 100 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
The network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities. In various examples, a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature. In some examples, network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) . For example, a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
As described herein, a node of the wireless communications system 100, which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein. For example, a node may be a UE 115. As another example, a node may be a network entity 105. As another example, a first node may be configured to communicate with a second node or a third node. In one aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a UE 115. In another aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a network entity 105. In yet other aspects of this example, the first, second, and third nodes may be different relative to these examples. Similarly, reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node. For example, disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
In some examples, network entities 105 may communicate with the core network 130, or with one another, or both. For example, network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) . In some examples, network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) . In some examples, network entities 105 may communicate  with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof. The backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof. A UE 115 may communicate with the core network 130 via a communication link 155.
One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) . In some examples, a network entity 105 (e.g., a base station 140) may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
In some examples, a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) . For example, a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof. An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) . One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more  components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) . In some examples, one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
The split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170. For example, a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack. In some examples, the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) . The CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160. Additionally, or alternatively, a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack. The DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) . In some cases, a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) . A CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions. A CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) . In some examples, a midhaul communication link 162 or a fronthaul communication link 168 may be  implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
In wireless communications systems (e.g., wireless communications system 100) , infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) . In some cases, in an IAB network, one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other. One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor. One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) . The one or more donor network entities 105 (e.g., IAB donors) may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) . IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor. An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) . In some examples, the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) . In such cases, one or more components of the disaggregated RAN architecture (e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
For instance, an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115. The IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor may refer to a RAN node with a wired or wireless connection to core network 130. The IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a  backhaul link) . IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) . Additionally, or alternatively, the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) . A DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) . Additionally, or alternatively, an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
For example, IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both. The IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104. For example, the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both. The CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104. Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
In the case of the techniques described herein applied in the context of a disaggregated RAN architecture, one or more components of the disaggregated RAN architecture may be configured to support relaying wireless communications between terrestrial and NTNs as described herein. For example, some operations described as being performed by a UE 115 or a network entity 105 (e.g., a base station 140) may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers. The term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control  signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers. Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105. For example, the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105, may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related. The quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication. A wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
The time intervals for the network entities 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, for which Δf max may represent a supported subcarrier spacing, and N f may represent a supported discrete Fourier transform (DFT)  size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots. Alternatively, each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing. Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., a quantity of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed for communication using a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a set of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel  candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a network entity 105 (e.g., a base station 140, an RU 170) may be movable and therefore provide communication coverage for a moving coverage area 110. In some examples, different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105. In some other examples, the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) . The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions. Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data. Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) . In some examples, one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105. In some examples, one or more UEs 115 of  such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105. In some examples, groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group. In some examples, a network entity 105 may facilitate the scheduling of resources for D2D communications. In some other examples, D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
In some systems, a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet,  Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
The wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . The region from 300 MHz to 3 GHz may be known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4–1 (52.6 GHz – 71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4–1, and/or FR5, or may be within the EHF band.
The wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. While operating using unlicensed RF spectrum bands, devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) . Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
A network entity 105 (e.g., a base station 140, an RU 170) or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations. A network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may include one or more antenna arrays that may support various  MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
As described herein, a node, which may be referred to as a node, a network node, a network entity 105 (e.g., any network entity 105 described herein) , or a wireless node, may be a base station 140, a UE 115 (e.g., any UE 115 described herein) , a network controller, an apparatus, a device, a computing system, one or more components, and/or another suitable processing entity configured to perform any of the techniques described herein. For example, a network node may be a UE 115. As another example, a network node may be a network entity 105. As another example, a first network node may be configured to communicate with a second network node or a third network node. In one aspect of this example, the first network node may be a UE 115, the second network node may be a network entity 105, and the third network node may be a UE 115. In another aspect of this example, the first network node may be a UE 115, the second network node may be a network entity 105, and the third network node may be a network entity 105. In yet other aspects of this example, the first, second, and third network nodes may be different relative to these examples. Similarly, reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may  include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a network node.
For example, disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first network node is configured to receive information from a second network node. Consistent with this disclosure, once a specific example is broadened in accordance with this disclosure (e.g., a UE 115 is configured to receive information from a network entity 105 also discloses that a first network node is configured to receive information from a second network node) , the broader example of the narrower example may be interpreted in the reverse, but in a broad open-ended way. In the example above where a UE 115 being configured to receive information from a network entity 105 also discloses that a first network node being configured to receive information from a second network node, the first network node may refer to a first UE 115, a first network entity 105, a first apparatus, a first device, a first computing system, a first one or more components, a first processing entity, or the like configured to receive the information; and the second network node may refer to a second UE 115, a second network entity 105, a second apparatus, a second device, a second computing system, a second one or more components, a second processing entity, or the like.
As described herein, communication of information (e.g., any information, signal, or the like) may be described in various aspects using different terminology. Disclosure of one communication term includes disclosure of other communication terms. For example, a first network node may be described as being configured to transmit information to a second network node. In this example and consistent with this disclosure, disclosure that the first network node is configured to transmit information to the second network node includes disclosure that the first network node is configured to provide, send, output, communicate, or transmit information to the second network node. Similarly, in this example and consistent with this disclosure, disclosure that the first network node is configured to transmit information to the second network node includes disclosure that the second network node is configured to receive, obtain, or decode the information that is provided, sent, output, communicated, or transmitted by the first network node.
The wireless communications system 100 may support NTN communications between network nodes of the wireless communications system 100. For example, the wireless communications system 100 may be an example of an NTN that supports communications between NTN nodes and terrestrial network nodes. For instance, as described herein, a network entity 105 may refer to a terrestrial communication device (such as a base station 140) or a non-terrestrial communication device (such as a UAV, satellite 185, a balloon, a drone, a high-altitude platform (HAP) station, or another non-terrestrial device) . A NTN network entity 105 may be connected to (e.g., communicate with) a terrestrial network entity 105 via a gateway 190.
UE 115 may transmit a request to a relay node 180 of an NTN, indicating for the relay node 180 to relay one or more messages between the UE 115 and a network entity 105 of a terrestrial network. The relay node 180 may output an indication of the request to the network entity 105, indicating that the UE 115 has requested the relayed communications. The relay node 180 may output, for the UE 115, an indication of one or more resources to be used for relayed communications with the terrestrial network. The UE 115 may use the one or more resources for communicating one or more messages with the terrestrial network entity 105 via the relay node 180.
UE 115 may include a communications manager 101, a network entity 105 may include a communications manager 102, and a relay node 180 may include a communications manager 103 in accordance with examples as disclosed herein. The communications manager 101 may be an example of aspects of a communications manager as described with reference to FIGs. 7 through 10. The communications manager 103 may be an example of aspects of a communications manager as described with reference to FIGs. 11 through 14. The communications manager 102 may be an example of aspects of a communications manager as described with reference to FIGs. 15 through 18.
The communications manager 101 may output or transmit, and the communications manager 103 may receive or obtain, a request to relay communications between the UE 115 and a network entity 105 associated with a terrestrial network. The communications manager 103 may output or transmit, and the communications manager 102 may receive or obtain, a first indication of the request to relay communications between the UE 115 and the network entity 105 associated with the terrestrial network  based on the request to relay communications. The communications manager 103 may output or transmit, and the communications manager 101 may receive or obtain, a second indication of a resource for relaying communications between the UE 115 and the network entity 105 associated with the terrestrial network based on the request to relay communications. The communications manager 102 and the communications manager 101 may communicate, via the communications manager 103 (e.g., relayed communications) , one or more messages using the resource. In accordance with information provided via the one or more messages, the communications manager 101 and the communications manager 102 may exchange further signaling such that the UE 115 may effectively communicate with the network entity 105 or other communication devices in the wireless communications system 100 as described herein.
FIG. 2 illustrates an example of a network architecture 200 (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The network architecture 200 may illustrate an example for implementing one or more aspects of the wireless communications system 100. The network architecture 200 may include one or more CUs 160-a that may communicate directly with a core network 130-a via a backhaul communication link 120-a, or indirectly with the core network 130-a through one or more disaggregated network entities 105 (e.g., a Near-RT RIC 175-b via an E2 link, or a Non-RT RIC 175-aassociated with an SMO 180-a (e.g., an SMO Framework) , or both) . A CU 160-a may communicate with one or more DUs 165-a via respective midhaul communication links 162-a (e.g., an F1 interface) . The DUs 165-a may communicate with one or more RUs 170-a via respective fronthaul communication links 168-a. The RUs 170-a may be associated with respective coverage areas 110-a and may communicate with UEs 115-avia one or more communication links 125-a. In some implementations, a UE 115-a may be simultaneously served by multiple RUs 170-a.
Each of the network entities 105 of the network architecture 200 (e.g., CUs 160-a, DUs 165-a, RUs 170-a, Non-RT RICs 175-a, Near-RT RICs 175-b, SMOs 180-a, Open Clouds (O-Clouds) 205, Open eNBs (O-eNBs) 210) may include one or more interfaces or may be coupled with one or more interfaces configured to receive or transmit signals (e.g., data, information) via a wired or wireless transmission medium.  Each network entity 105, or an associated processor (e.g., controller) providing instructions to an interface of the network entity 105, may be configured to communicate with one or more of the other network entities 105 via the transmission medium. For example, the network entities 105 may include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other network entities 105. Additionally, or alternatively, the network entities 105 may include a wireless interface, which may include a receiver, a transmitter, or transceiver (e.g., an RF transceiver) configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other network entities 105.
In some examples, a CU 160-a may host one or more higher layer control functions. Such control functions may include RRC, PDCP, SDAP, or the like. Each control function may be implemented with an interface configured to communicate signals with other control functions hosted by the CU 160-a. A CU 160-a may be configured to handle user plane functionality (e.g., CU-UP) , control plane functionality (e.g., CU-CP) , or a combination thereof. In some examples, a CU 160-a may be logically split into one or more CU-UP units and one or more CU-CP units. A CU-UP unit may communicate bidirectionally with the CU-CP unit via an interface, such as an E1 interface when implemented in an O-RAN configuration. A CU 160-a may be implemented to communicate with a DU 165-a for network control and signaling.
A DU 165-a may correspond to a logical unit that includes one or more functions (e.g., base station functions, RAN functions) to control the operation of one or more RUs 170-a. In some examples, a DU 165-a may host, at least partially, one or more of an RLC layer, a MAC layer, and one or more aspects of a PHY layer (e.g., a high PHY layer, such as modules for FEC encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3rd Generation Partnership Project (3GPP) . In some examples, a DU 165-a may further host one or more low PHY layers. Each layer may be implemented with an interface configured to communicate signals with other layers hosted by the DU 165-a, or with control functions hosted by a CU 160-a.
In some examples, lower-layer functionality may be implemented by one or more RUs 170-a. For example, an RU 170-a, controlled by a DU 165-a, may correspond  to a logical node that hosts RF processing functions, or low-PHY layer functions (e.g., performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower-layer functional split. In such an architecture, an RU 170-a may be implemented to handle over the air (OTA) communication with one or more UEs 115-a. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 170-amay be controlled by the corresponding DU 165-a. In some examples, such a configuration may enable a DU 165-a and a CU 160-a to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO 180-a may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network entities 105. For non-virtualized network entities 105, the SMO 180-a may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (e.g., an O1 interface) . For virtualized network entities 105, the SMO 180-a may be configured to interact with a cloud computing platform (e.g., an O-Cloud 205) to perform network entity life cycle management (e.g., to instantiate virtualized network entities 105) via a cloud computing platform interface (e.g., an O2 interface) . Such virtualized network entities 105 can include, but are not limited to, CUs 160-a, DUs 165-a, RUs 170-a, and Near-RT RICs 175-b. In some implementations, the SMO 180-a may communicate with components configured in accordance with a 4G RAN (e.g., via an O1 interface) . Additionally, or alternatively, in some implementations, the SMO 180-a may communicate directly with one or more RUs 170-a via an O1 interface. The SMO 180-a also may include a Non-RT RIC 175-a configured to support functionality of the SMO 180-a.
The Non-RT RIC 175-a may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence (AI) or Machine Learning (ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 175-b. The Non-RT RIC 175-a may be coupled to or communicate with (e.g., via an A1 interface) the Near-RT RIC 175-b. The Near-RT RIC 175-b may be configured to include a logical function that enables near-real-time control and optimization of RAN  elements and resources via data collection and actions over an interface (e.g., via an E2 interface) connecting one or more CUs 160-a, one or more DUs 165-a, or both, as well as an O-eNB 210, with the Near-RT RIC 175-b.
In some examples, to generate AI/ML models to be deployed in the Near-RT RIC 175-b, the Non-RT RIC 175-a may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 175-b and may be received at the SMO 180-a or the Non-RT RIC 175-a from non-network data sources or from network functions. In some examples, the Non-RT RIC 175-a or the Near-RT RIC 175-b may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 175-a may monitor long-term trends and patterns for performance and employ AI or ML models to perform corrective actions through the SMO 180-a (e.g., reconfiguration via O1) or via generation of RAN management policies (e.g., A1 policies) .
FIG. 3 illustrates an example of a wireless communications system 300 that supports relaying wireless communications between terrestrial networks and NTNs in accordance with one or more aspects of the present disclosure. Wireless communications system 300 may implement or be implemented by one or more aspects of wireless communications system 100 or network architecture 200. For example, wireless communications system 300 may include a UE 115-a and network entities 105-a and 105-b, which may be examples of a UE 115 and network entities 105 described with reference to FIGs. 1 and 2. Wireless communications system 300 may also include a relay node 305, which may be an example of an NTN node (e.g., a network entity of an NTN) .
An NTN may include one or more network nodes that are not located on the ground (e.g., on a terrestrial surface) . For example, an NTN may include nodes such as one or more UAVs, one or more HAPs, one or more satellites (e.g., low earth orbit (LEO) satellite (s) , geosynchronous orbit (GEO) satellite (s) ) , or any combination thereof. In some cases, an NTN may support, implement, or be implemented by an eMBB service, an IoT service (e.g., narrowband IoT, MTC) , or a combination thereof. In some cases, an NTN may support synchronization, scheduling, hybrid automatic repeat request (HARQ) feedback, mobility, or the like. In some cases, an NTN may be or include a three-dimensional network (e.g., a heterogeneous network, of different  types of devices) , in which terrestrial infrastructure (e.g., network entities 105 and related devices or components) may be complemented or supplemented by nodes of an NTN.
In some cases, UE 115-a may be at a location where the UE 115-a is not within a coverage area 110-a of a terrestrial network entity 105-a. For example, a UE 115-a may be located beyond a range of one or more network entities 105-a and 105-b of the terrestrial network and may thus be unable to transmit or receive information via wireless communications. In some cases, such as in emergency situations (e.g., hikers in a risky environment, users outside without a weather forecast) , a lack of information available at the UE 115-a may result in increased risk, damage, or other problems.
The present disclosure provides techniques to support wireless communications for a UE 115-a that is outside of a coverage area 110-a supported by terrestrial network entity 105-a. For example, a relay node 305 of an NTN may relay one or more messages between UE 115-a and a network entity 105-a of the terrestrial network. The NTN may support an air-to-ground (ATG) network (e.g., communications between terrestrial nodes and non-terrestrial nodes) , such as for relaying (e.g., UAV relaying, aircraft relaying) in areas without cellular coverage. The ATG network may coexist with an international mobile telecommunications (IMT) network and may support an increased communications capacity (e.g., based on a capacity of the relay node 305 to support increased terminal capacity) . The ATG network may also support relatively larger inter-site distances between nodes of the associated terrestrial or NTN (or both) , for example, based on relayed communications between nodes of the different networks.
Using, or based on, the ATG network, UE 115-a may communicate with network entity 105-a (e.g., a node of the terrestrial network) via a relay node 305 of the NTN. For example, UE 115-a may send one or more SOS messages in an area without cellular coverage, may communicate data (e.g., uplink or downlink data, weather data, emergency data) in an area without cellular coverage, or may have coverage in a larger range of locations supported by the ATG network (e.g., universal coverage in almost any location) .
For example, in some cases (e.g., based on a location of UE 115-a) , if UE 115-a determines to request data communications 340 with the terrestrial network (e.g., uplink or downlink data) , UE 115-a may fail to detect an SSB 310 from a network entity 105, such as SSB 310-a from a network entity 105-b. In such cases, UE 115-a may monitor for an SSB 310 (e.g., an SSB 310-b, if the relay node 305 acts as a network entity 105) or a discovery signal 355 (e.g., if the relay node 305 acts as a UE 115, such as a relay UE 115) from relay node 305.
One or more resources (e.g., time, frequency, spatial resources) for monitoring for the SSB 310-b or discovery signal 355 may be based on (e.g., dependent on) an absolute time, such as a time related to a global satellite system (e.g., global navigation satellite system (GNSS) ) . In some cases, the one or more resources for monitoring for the SSB 310-b or discovery signal 355 may be configured by a network entity 105 (e.g., network entity 105-b) last connected with UE 115-a (e.g., last RRC_connected network entity 105) . For example, network entity 105-b may transmit, while connected with UE 115-a, an indication 315 of the one or more resources for monitoring for the SSB 310-b or the discovery signal 355. In some cases, the one or more resources for monitoring for the SSB 310-b or discovery signal 355 may be defined by a wireless communications standard and may be stored or otherwise configured at UE 115-a.
The resource (s) for monitoring for the SSB 310-b or discovery signal 355 may be different from other resources or monitoring occasions for other SSBs 310 (e.g., for the terrestrial network) , such that the SSB 310-b or the discovery signal 355 may not be confused with the other SSBs 310, which indicates to the UE 115-a that SSB 310-b or discovery signal 355 is associated with a relay node 305 and as such, the UE 115-amay send a request to the relay node 305 to relay communications between the UE 115-a and the terrestrial network entity. In some cases, the SSB 310-b or the discovery signal 355 may indicate that the SSB 310-b or the discovery signal 355 is associated with the relay node 305 of the NTN. For example, the SSB 310-b or the discovery signal 355 may indicate such via the resource (s) used for communication of the SSB 310-b or the discovery signal 355, or via an indication included in the SSB 310-b or the discovery signal 355.
UE 115-a may monitor for the SSB 310-b or the discovery signal 355 using a time window, such as a monitoring window. The monitoring window may include or be based on a timing offset (e.g., in a time domain) and a Doppler frequency offset (e.g., in a frequency domain) to account for propagation delay caused by the distance between the UE 115-a and the relay node 305 and to account for the speed at which the relay node 305 may be traveling. In some examples, the monitoring window may be based on a capability of UE 115-a. In some cases (e.g., if UE 115-a supports a larger transmission power) , a larger timing offset may be used for the monitoring window.
In some cases, relay node 305 may indicate (e.g., via the SSB 310-b or via one or more indications 320) whether UE 115-a is to apply a TA when transmitting a request 325 to relay communications 340 between UE 115-a and a network entity 105 associated with the terrestrial network (e.g., network entity 105-a) . For example, the relay node 305 may indicate whether the TA is enabled or disabled. If the TA is enabled, UE 115-a may be indicated to apply a TA compensation (e.g., to account for propagation delay between the UE 115-a and the relay node 305) to transmit the request 325 and the relay node 305 may monitor for the request 325 in a configured resource. In some cases, the SSB 310-b or the indication (s) 320 may further indicate, to UE 115-a, information related to a speed and direction of travel 355 associated with the relay node 305 (e.g., for a gradual timing adjustment) . Further examples related to applying a TA to the request 325 are described herein with reference to FIG. 4. If the TA is disabled, UE 115-a may be indicated to not apply a TA compensation to transmit the request 325. In such cases, UE 115-a may use a preamble and data pattern (e.g., structure) for transmission of the request 325 and the relay node may monitor a preamble within a monitoring window, where the preamble may be followed by or otherwise associated with the request 325 (e.g., the data pattern following the preamble may include or be associated with the request 325) . Further examples related to transmitting the request 325 without a TA are described herein with reference to FIG. 5.
Based on monitoring for the SSB 310-b or the discovery signal 355 (e.g., from the relay node 305 of the NTN) , UE 115-b may receive (e.g., detect) the SSB 310-b or the discovery signal 355. Based on detecting the SSB 310-b or the discovery signal 355, UE 115-a may transmit a request 325 to relay communications 340 (e.g., for relay node 305 to relay communications) between UE 115-a and a network entity 105  associated with the terrestrial network (e.g., network entity 105-a) . In some cases, UE 115-a may transmit the request 325 based on one or more indications received via the SSB 310-b or the discovery signal 355, which may indicate that relay node 305 may support such relaying.
A resource used by UE 115-a for transmission of the request 325 may be indicated via the SSB 310-b or the discovery signal 355, may be indicated via another indication (e.g., indication (s) 320) , or may be defined in a wireless communications standard and may be stored or configured at UE 115-a. In some cases, the resource used by UE 115-a for transmission of the request 325 may be indicated or configured by a previously connected network entity 105 (e.g., network entity 105-b) .
Based on reception of the request 325 from UE 115-a, relay node 305 may transmit, to UE 115-a, an indication 330 of one or more resources (e.g., unicast resource (s) ) to be used for relaying communications 340 between UE 115-a and the terrestrial network (e.g., network entity 105-a) . In some cases, relay node 305 may also transmit, to UE 115-a, feedback 335 associated with reception of the request 325, where the feedback 335 may be transmitted with the indication 330 or in a different transmission. Based on the indication 330 of the resource (s) for relaying communications 340, UE 115-a may monitor the resource (s) for a downlink transmission, or may transmit an uplink transmission via the resource (s) . The requested communications 340 between UE 115-a and the terrestrial network may include push-like services, emergency message notification, downlink data, or a combination thereof, among other examples.
In some cases, if UE 115-a detects an SSB 310 (e.g., SSB 310-a) from the terrestrial network, UE 115-a may refrain from relaying communications via the relay node 305 (e.g., via the NTN) and may attempt to establish a connection with the terrestrial network (e.g., or resume a connection with the terrestrial network) . For example, the UE 115-a may stop transmitting or receiving communications via the relay node and in some cases, may transmit to or receive from a network entity 105-aassociated with the terrestrial network.
terrestrial network entity 105, such as network entity 105-a, may indicate that the relay node 305 is to transmit an SSB 310 or discovery signal 355, or may  indicate that the relay node 305 is to not transmit an SSB 310 or discovery signal 355. For example, network entity 105-a may transmit one or more indications 345 to the relay node 305, where the one or more indications may indicate whether the relay node 305 is to transmit or not transmit the SSB 310 or the discovery signal 355. In one example, the network entity 105-a may indicate whether the relay node 305 is to transmit or not transmit the SSB 310 or the discovery signal 355 based on a position (e.g., GNSS position) of the relay node 305.
In some cases, the resources for transmitting the SSB 310 or the discovery signal 355, or both, may be based on an absolute time (e.g., related to GNSS) . The resources for transmitting the SSB 310 or the discovery signal 355, or both, may be configured by the network entity 105-a (e.g., via the indication (s) 345) or may be defined by a wireless communications standard.
Based on transmitting the SSB 310 or the discovery signal 355, the relay node 305 may receive the request 325 from UE 115-a and may relay (e.g., forward) the request 325 (e.g., an indication 350 of the request 325) to the network entity 105-a (e.g., through an ATG link) . Based on the request 325 and the indication 350 of the request 325, the relay node 305 may receive data (e.g., communications) from the network entity 105-a or the UE 115-a for forwarding to the UE 115-a or the network entity 105-a, respectively. For example, the relay node 305 may receive some data (e.g., communications 340) from the network entity 105-a to be transmitted to the UE 115-a, and the relay node 305 may transmit the data (e.g., communications 340) to the UE 115-a via the resource (e.g., unicast resource) indicated to the UE 115-a. Based on the techniques described herein, the UE 115-a may communicate with the terrestrial network via the NTN, if the UE 115-a is located outside of a coverage area of the terrestrial network.
FIGs. 4A and 4B illustrate example timing diagrams 400-a and 400-b that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The timing diagrams 400-a and 400-b may implement or be implemented by one or more aspects of wireless communications system 300. For example, the timing diagram 400-a and 400-b may be implemented by a UE 115 and a relay node, which may be examples of the corresponding devices described with reference to at least FIG. 3.
In FIG. 4A, the timing diagram 400-a may, for example, support reception of an SSB 405 or discovery signal 405 at the UE 115, from a relay node of an NTN. For example, the UE 115 may monitor for the SSB 405 or the discovery signal 405 within a monitoring window 410 (e.g., monitoring resources, in time and frequency) , where the monitoring window may be based on, or may include, a Doppler offset 415 and a propagation delay offset 420 (e.g., a maximum propagation delay, in time) . The relay node may transmit (e.g., broadcast) the SSB 405 or the discovery signal 405 at a time 425 (e.g., T1) with respect to GNSS. At a time 430 (e.g., with respect to GNSS) , the UE 115 may receive the SSB 405 or the discovery signal 405. The timing of 430 (e.g., T2) , with respect to GNSS, may be obtained by a measurement of the UE 115. A difference 435 in time may exist between transmission of the SSB 405 or the discovery signal 405 at 425 (e.g., by the relay node) and the reception of the SSB 405 or the discovery signal 405 at 430 (e.g., by the UE 115) .
In some cases, a difference in frequency may occur between transmission of the SSB 405 or the discovery signal 405 at time 425 (e.g., by the relay node) and the reception of the SSB 405 or the discovery signal 405 at time 430 (e.g., by the UE) . For example, a Doppler shift may occur (e.g., based on a movement of the relay node, such as an aircraft or UAV movement) that shifts the SSB 405 or the discovery signal 405 in the frequency domain to be received using resources 460. Resources 460 may be shifted in the frequency domain relative to the frequency used for transmission of the SSB 405 or the discovery signal 405. In some examples, the resources 460 may be shifted in the frequency domain to be higher or lower in frequency relative to the frequency used for transmission of the SSB 405 or the discovery signal 405. The Doppler offsets 415 of the monitoring window 410 may be configured such that the SSB 405 or the discovery signal 405 shifted in the frequency domain falls within the monitoring window 410.
A resource (e.g., broadcast resource) used for transmission of the SSB 405 or the discovery signal 405 may be configured for the UE 115 (e.g., with respect to GNSS) by a network entity 105 of a terrestrial network, such as a last RRC_connected network entity. Additionally, or alternatively, the resource used for transmission of the SSB 405 or the discovery signal 405 may be defined by a wireless communications standard. As such, the UE 115 may be aware of the time 425 at which the SSB 405 or the discovery signal 405 is transmitted.
After detecting the SSB 405 or the discovery signal 405, , the relay node may indicate (e.g., in the SSB 405 or the discovery signal 405, in another signal) or instruct the UE 115 to apply TA compensation when transmitting a request to relay communications. For example, as shown in timing diagram 400-b of FIG. 4B, a UE 115 may transmit a request using a TA 455 via resources 445. If the UE 115 is indicated to use a TA 455, the UE 115 may determine (e.g., initially determine) a value (e.g., time value) of the TA 455 as the timing difference between expected arrival time 430 and transmission time 425 of the SSB/Discovery Signal (which may be represented as T2-T1) . As such, the UE 115 may transmit the request to the relay node at time 440 such that the request may be received at the relay node at a time 450 (e.g., aligned with one or more other signals) , where the time 450 may align with a beginning of a resource 445 (e.g., configured or defined resource 445) used for transmission of the request.
In some cases, the UE 115 may adjust the TA 455 by an additional time (e.g., T3) , where T3 may be a gradual timing adjustment that may be obtained based on direction and speed information associated with the relay node (e.g., an aircraft speed and direction) . For example, the TA 455 may be determined as being equal to T2-T1+T3. The direction and speed information may be transmitted by the relay node to the UE 115, such as via the SSB 405 or the discovery signal 405, or via another signal (e.g., transmitted after the SSB 405 or the discovery signal 405) . The UE 115 may, for example, use the direction and speed information to determine T3 and may use T3 to adjust the TA 455.
FIGs. 5A and 5B illustrate example timing diagrams 500-a and 500-b that support relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The timing diagrams 500-a and 500-b may implement or be implemented by one or more aspects of wireless communications system 300. For example, the timing diagrams 500-a and 500-b may be implemented by a UE 115 and a relay node, which may be examples of the corresponding devices described with reference to at least FIG. 3.
In FIG. 5A, the timing diagram 500 may, for example, support reception of an SSB 505 or discovery signal 505 at the UE 115, from a relay node of an NTN. For example, the UE 115 may monitor for the SSB 505 or the discovery signal 505 within a  time window, which may be a monitoring window 510 (e.g., monitoring resources, in time and frequency) . The monitoring window may be based on, or may include, a Doppler offset 515 and a propagation delay offset 520 (e.g., a maximum propagation delay, in time) . The relay node may transmit (e.g., broadcast) the SSB 505 or the discovery signal 505 at a time 525 (e.g., T1) with respect to GNSS and the UE 115 may receive the SSB 505 or the discovery signal 505 at time 527.
A resource (e.g., broadcast resource) used for transmission of the SSB 505 or the discovery signal 505 may be configured for the UE 115 (e.g., with respect to GNSS) by a network entity 105 of a terrestrial network, such as a last RRC_connected network entity. Additionally, or alternatively, the resource used for transmission of the SSB 505 or the discovery signal 505 may be defined by a wireless communications standard. As such, the UE 115 may be aware of the time 525 at which the SSB 505 or the discovery signal 505 is transmitted and may monitor the monitoring window 510 based on the time 525.
In some cases, a difference in frequency may exist between transmission of the SSB 505 or the discovery signal 505 at 525 (e.g., by the relay node) and the reception of the SSB 505 or the discovery signal 505 (e.g., by the UE 115) . For example, a Doppler shift may occur (e.g., based on a movement of the relay node, such as an aircraft or UAV movement) that shifts the SSB 505 or the discovery signal 505 in the frequency domain to be received using resources 555. Resources 555 may be shifted in the frequency domain relative to the frequency used for transmission of the SSB 505 or the discovery signal 505. In some examples, the resources 555 may be shifted in the frequency domain to be higher or lower in frequency relative to the frequency used for transmission of the SSB 505 or the discovery signal 505. The Doppler offsets 515 of the monitoring window 510 may be configured such that the SSB 505 or the discovery signal 505 at 555 (e.g., or another frequency location) falls within the monitoring window 510.
After detecting the SSB or discovery signal, the relay node may indicate for the UE 115 to transmit a request for relayed communications without a TA. For example, in the timing diagram 500-b of FIG. 5B, the relay node may indicate (e.g., via the SSB 505 or the discovery signal 505, via another signal) that the UE 115 is not to apply a TA compensation to transmit the request. In such cases, the UE 115 may  transmit the request using a resource 530 (e.g., a configured resource 530, a defined resource 530) , which may have a beginning time 540 (e.g., a time dimension) that is defined with respect to an absolute time (e.g., related to GNSS) . The UE 115 may, for example, use a preamble and a data message (e.g., a preamble and data pattern) to transmit the request at time 540, where the preamble may precede the data (e.g., and may indicate the transmission of the data) and the data may include the request.
The relay node may monitor for transmission of the request within a monitoring window 535 (e.g., monitoring resources, in time and frequency) , where the monitoring window 535 may be based on, or may include, a Doppler offset 545 and a propagation delay offset 550 (e.g., a maximum propagation delay, in time) . The UE 115 may transmit (e.g., broadcast) the request at a time 540 with respect to GNSS and the relay node may receive the request at time 542. As described with reference to FIG. 3, a resource 530 used for transmission of the request may be configured for the UE 115 (e.g., with respect to GNSS) by the relay node or may be defined by a wireless communications standard. As such, the relay node may be aware of the time 540 at which the request is transmitted and may monitor the monitoring window 535 based on the time 540.
In some cases, a difference in frequency may exist between transmission of the request 530 at 540 (e.g., by the UE 115) and the reception of the request 530 (e.g., by the relay node) . For example, a Doppler shift may occur (e.g., based on a movement of the relay node, such as an aircraft or UAV movement) that shifts the request 530 in the frequency domain to be received using resources 560. Resources 560 may be shifted in the frequency domain relative to the frequency used for transmission of the request 530. In some examples, the resources 560 may be shifted in the frequency domain to be higher or lower in frequency relative to the frequency used for transmission of the request 530. The Doppler offsets 545 of the monitoring window 535 may be configured such that the request 530 at 560 (e.g., or another frequency location) falls within the monitoring window 535.
In some cases, the UE 115 and the relay node may switch between a TA enabled scheme (e.g., using a TA as in FIGs. 4A and 4B) and a TA disabled scheme (e.g., transmitting without a TA as in FIGs. 5A and 5B) , or vice versa. For example, based on one or more conditions (e.g., identified by the relay node, by the UE 115, or  both) , the UE 115 and the relay node may switch between the TA enabled and TA disabled schemes (e.g., as indicated by the relay node to the UE 115) . In some cases, the TA disabled scheme may be more reliable, but the TA disabled scheme may also be associated with increased overhead (e.g., based on the preamble, based on using the resources of the monitoring window 535) .
In one example, the UE 115, the relay node, or both, may identify a quantity of missed transmissions (e.g., NACKs) has satisfied a threshold quantity in the TA enabled scheme, which may be indicative that a TA offset error may be relatively large. In such cases, the UE 115 and the relay node may switch from the TA enabled scheme to the TA disabled scheme. In another example, if a threshold quantity of time has passed without receiving a request from the UE 115, the relay node may switch from the TA enabled scheme to the TA disabled scheme. Additionally, or alternatively, if the UE 115 transmits the request and receives no response from the relay node within a threshold quantity of time, the UE 115 may switch from the TA enabled scheme to the TA disabled scheme.
FIG. 6 illustrates an example of a process flow 600 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. In some examples, process flow 600 may implement or be implemented by one or more aspects of  wireless communications systems  100 or 300, network architecture 200, or one or more aspects of timing diagrams 400 or 500. For example, process flow 600 may be implemented by a UE 115-b, a network entity 105-c, and a relay node 605, which may be examples of a UE 115, a network entity 105, and a relay node described with reference to FIGs. 1–5. As described herein with reference to FIGs. 3–5, the network entity 105-c may be associated with a terrestrial network and the relay node 605 may be associated with an NTN. UE 115-b may, in some cases, request relaying from the terrestrial network via the NTN (e.g., if UE 115-b is out of a coverage area of the terrestrial network) .
In the following description of process flow 600, the operations may be performed in a different order than the order shown, or the operations performed by UE 115-b, network entity 105-c, and relay node 605 may be performed in different orders or at different times. For example, some operations may also be left out of process flow 600, or other operations may be added to process flow 600. Although UE 115-b,  network entity 105-c, and relay node 605 are shown performing the operations of process flow 600, some aspects of some operations may also be performed by one or more other wireless devices. For example, some actions shown as being performed by network entity 105-a or relay node 605 may be performed by another network entity 105 (e.g., a terrestrial network entity 105) .
At 610, network entity 105-c (e.g., or another network entity 105) may transmit (e.g., broadcast) an SSB. The SSB may be associated with the terrestrial network and may be received by the UE 115-b, for example, while the UE 115-b is in a coverage area of the terrestrial network.
At 615, the network entity 105-c (e.g., or another network entity 105) may transmit one or more indications to the relay node 605. For example, as described with reference to FIG. 3, the network entity 105-c may transmit an indication of whether or not the relay node 605 is to transmit an SSB or a discovery signal. Additionally, or alternatively, the network entity 105-c may transmit an indication of resources for transmission of the SSB or discovery signal, an indication of a resource used for communicating a request to relay communications between the network entity 105-c and the UE 115-b, or any combination thereof.
At 620, in some cases, UE 115-b may fail to detect the SSB from the terrestrial network. For example, as described with reference to FIG. 3, UE 115-b may be located (e.g., temporarily located) outside of a coverage area of the terrestrial network (e.g., based on a movement of the UE 115-b) and may fail to detect the SSB based on the location of the UE 115-b. UE 115-b may, for example, fail to detect the SSB within a time duration (e.g., a configured or defined time duration) from detecting a previous SSB, from a previous communication, or from a configured or defined time.
At 625, the relay node 605 may transmit (e.g., broadcast) an SSB or a discovery signal associated with the NTN. For example, the relay node 605 may transmit the SSB or the discovery signal based on the indication from the network entity 105-c of whether to transmit the SSB or the discovery signal. Based on failing to detect the SSB at 620, UE 115-b may monitor for the SSB or the discovery signal. For example, UE 115-b may monitor for the SSB or the discovery signal using a resource (e.g., a monitoring window) configured by a last connected network entity 105 (e.g.,  network entity 105-c or another network entity 105) or a resource defined by a wireless communications standard (e.g., and stored at the UE 115-b) .
Based on the monitoring, UE 115-b may receive the SSB or the discovery signal from the relay node 605. For example, at 630, UE 115-b may detect the SSB or the discovery signal from the relay node 605 (e.g., based on monitoring using the monitoring window) .
At 635, UE 115-b may transmit, to the relay node 605 (e.g., associated with the NTN) , a request to relay communications between UE 115-c and a network entity 105 associated with the terrestrial network (e.g., network entity 105-c) . UE 115-b may transmit the request using a resource configured by a last connected network entity 105 (e.g., network entity 105-c or another network entity 105) , indicated by the relay node 605 (e.g., via the SSB or discovery signal) , or a resource defined by a wireless communications standard (e.g., and stored at the UE 115-b) . As described herein with reference to FIGs. 3–5, UE 115-b may transmit the request using a TA, or without a TA (e.g., as indicated by the relay node 605, such as via the SSB or discovery signal) . Relay node 605 may monitor for the request using a resource (e.g., monitoring window) configured by network entity 105-c (e.g., or another network entity 105) , indicated by the relay node 605 (e.g., via the SSB or discovery signal) , or using a resource defined by a wireless communications standard (e.g., and stored at the relay node 605) . Based on the monitoring, the relay node 605 may obtain the request.
At 640, the relay node 605 may output, for the terrestrial network (e.g., for network entity 105-c of the terrestrial network) an indication of the request to relay communications, based on the obtaining the request to relay communications. The relay node 605 may output the request, and the network entity 105-c may monitor for the request, using a resource configured by network entity 105-c (e.g., or another network entity 105) , indicated by the relay node 605, or a resource defined by a wireless communications standard.
Based on obtaining the request to relay communications, at 645, the relay node 605 may output, for UE 115-b (e.g., may transmit to UE 115-b) , an indication of a resource for relaying communications between UE 115-b and network entity 105-c.
At 650, the relay node 605 may output, for the UE 115-b, feedback for the request to relay communications. For example, the feedback may indicate whether the relay node 605 has received the request, and UE 115-b may participate in communications with the relay node 605 and the network entity 105-c based on the feedback. In some cases, the feedback may be included in a same message or transmission as the indication of the resource for relaying communications. In some cases, the feedback may be included in a different message or transmission.
At 655, UE 115-b and network entity 105-c may communicate, via the relay node 605, one or more messages (e.g., uplink messages, downlink messages) using the resource for relaying communications. For example, the relay node 605 may relay the one or more messages (e.g., uplink messages, downlink messages) between UE 115-b and network entity 105-c, as described with reference to FIG. 3.
At 660, in some cases, UE 115-b may detect an SSB associated with the terrestrial network (e.g., an SSB from network entity 105-c or another network entity 105) after communicating the one or more messages. Based on detecting the SSB, UE 115-b may refrain from communicating one or more additional messages with network entity 105-c via the relay node 605. For example, UE 115-b may reestablish a connection with the terrestrial network (e.g., with network entity 105-c or another network entity 105) based on detecting the SSB and cease communicating via relay node 605 (e.g., the UE 115-b may not transmit or receive messages via relay node 605) .
FIG. 7 shows a block diagram 700 of a device 705 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a transmitter 715, and a communications manager 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) .  Information may be passed on to other components of the device 705. The receiver 710 may utilize a single antenna or a set of multiple antennas.
The transmitter 715 may provide a means for transmitting signals generated by other components of the device 705. For example, the transmitter 715 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) . In some examples, the transmitter 715 may be co-located with a receiver 710 in a transceiver module. The transmitter 715 may utilize a single antenna or a set of multiple antennas.
The communications manager 720, the receiver 710, the transmitter 715, or various combinations thereof or various components thereof may be examples of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a  processor, the functions of the communications manager 720, the receiver 710, the transmitter 715, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 720 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 710, the transmitter 715, or both. For example, the communications manager 720 may receive information from the receiver 710, send information to the transmitter 715, or be integrated in combination with the receiver 710, the transmitter 715, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 720 may support wireless communication at a UE in accordance with examples as disclosed herein. For example, the communications manager 720 may be configured as or otherwise support a means for transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network. The communications manager 720 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications. The communications manager 720 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
By including or configuring the communications manager 720 in accordance with examples as described herein, the device 705 (e.g., a processor controlling or otherwise coupled with the receiver 710, the transmitter 715, the communications manager 720, or a combination thereof) may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105. For example, the UE 115  may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
FIG. 8 shows a block diagram 800 of a device 805 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 805 may be an example of aspects of a device 705 or a UE 115 as described herein. The device 805 may include a receiver 810, a transmitter 815, and a communications manager 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) . Information may be passed on to other components of the device 805. The receiver 810 may utilize a single antenna or a set of multiple antennas.
The transmitter 815 may provide a means for transmitting signals generated by other components of the device 805. For example, the transmitter 815 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to relaying wireless communications between terrestrial and NTNs) . In some examples, the transmitter 815 may be co-located with a receiver 810 in a transceiver module. The transmitter 815 may utilize a single antenna or a set of multiple antennas.
The device 805, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 820 may include a relay request component 825, a resource indication component 830, a relayed communications component 835, or any combination thereof. The communications manager 820 may be an example of aspects of a communications manager 720 as described herein. In some examples, the communications manager 820, or various components thereof, may be configured to perform various operations (e.g.,  receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 810, the transmitter 815, or both. For example, the communications manager 820 may receive information from the receiver 810, send information to the transmitter 815, or be integrated in combination with the receiver 810, the transmitter 815, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 820 may support wireless communication at a UE in accordance with examples as disclosed herein. The relay request component 825 may be configured as or otherwise support a means for transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network. The resource indication component 830 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications. The relayed communications component 835 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
FIG. 9 shows a block diagram 900 of a communications manager 920 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The communications manager 920 may be an example of aspects of a communications manager 720, a communications manager 820, or both, as described herein. The communications manager 920, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 920 may include a relay request component 925, a resource indication component 930, a relayed communications component 935, an SSB monitoring component 940, a device discovery monitoring component 945, a feedback reception component 950, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 920 may support wireless communication at a UE in accordance with examples as disclosed herein. The relay request component 925 may be configured as or otherwise support a means for transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network. The resource indication component 930 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications. The relayed communications component 935 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
In some examples, the SSB monitoring component 940 may be configured as or otherwise support a means for failing to detect an SSB associated with the terrestrial network within a time duration. In some examples, the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for an SSB or a discovery signal associated with the NTN after the time duration and based on failing to detect the SSB associated with the terrestrial network, the transmitting the request to relay communications based on reception of the SSB or the discovery signal associated with the NTN.
In some examples, the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for the SSB or the discovery signal associated with the NTN using a time resource that is based on a timing associated with a global satellite system.
In some examples, the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for the SSB or the discovery signal associated with the NTN using a resource configured by a second network entity associated with the terrestrial network.
In some examples, the device discovery monitoring component 945 may be configured as or otherwise support a means for monitoring for the SSB or the discovery  signal associated with the NTN using one or more resources that include a monitoring window having a time offset and a Doppler offset.
In some examples, the relay request component 925 may be configured as or otherwise support a means for transmitting the request to relay communications according to a TA.
In some examples, the TA is based on an indicated time for receiving an SSB or a discovery signal associated with the NTN and a time at which the SSB or the discovery signal associated with the NTN is received.
In some examples, the relay request component 925 may be configured as or otherwise support a means for transmitting the request to relay communications without a TA.
In some examples, the relay request component 925 may be configured as or otherwise support a means for transmitting the request to relay communications using one or more resources that include a window having a time offset and a Doppler offset, the request to relay communications transmitted via a preamble and a message associated with the preamble.
In some examples, the device discovery monitoring component 945 may be configured as or otherwise support a means for detecting an SSB associated with the terrestrial network after communicating the one or more messages via the relay node. In some examples, the relayed communications component 935 may be configured as or otherwise support a means for refraining from communicating one or more additional messages with the network entity associated with the terrestrial network via the relay node associated with the NTN based on detecting the SSB associated with the terrestrial network.
In some examples, the resource indication component 930 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN or from a second network entity associated with the terrestrial network, a second indication of a resource for transmitting the request to relay communications.
In some examples, the feedback reception component 950 may be configured as or otherwise support a means for receiving, from the relay node, feedback for the request to relay communications, the communicating the one or more messages via the relay node based on receiving the feedback.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 1005 may be an example of or include the components of a device 705, a device 805, or a UE 115 as described herein. The device 1005 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1020, an input/output (I/O) controller 1010, a transceiver 1015, an antenna 1025, a memory 1030, code 1035, and a processor 1040. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1045) .
The I/O controller 1010 may manage input and output signals for the device 1005. The I/O controller 1010 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1010 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1010 may utilize an operating system such as
Figure PCTCN2022120752-appb-000001
Figure PCTCN2022120752-appb-000002
or another known operating system. Additionally, or alternatively, the I/O controller 1010 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1010 may be implemented as part of a processor, such as the processor 1040. In some cases, a user may interact with the device 1005 via the I/O controller 1010 or via hardware components controlled by the I/O controller 1010.
In some cases, the device 1005 may include a single antenna 1025. However, in some other cases, the device 1005 may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 1015 may communicate bi-directionally, via the one or more antennas 1025, wired, or wireless links as described herein. For example, the transceiver 1015  may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1015 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1025 for transmission, and to demodulate packets received from the one or more antennas 1025. The transceiver 1015, or the transceiver 1015 and one or more antennas 1025, may be an example of a transmitter 715, a transmitter 815, a receiver 710, a receiver 810, or any combination thereof or component thereof, as described herein.
The memory 1030 may include random access memory (RAM) and read-only memory (ROM) . The memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed by the processor 1040, cause the device 1005 to perform various functions described herein. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting relaying wireless communications between terrestrial and NTNs) . For example, the device 1005 or a component of the device 1005 may include a processor 1040 and memory 1030 coupled with or to the processor 1040, the processor 1040 and memory 1030 configured to perform various functions described herein.
The communications manager 1020 may support wireless communication at a UE in accordance with examples as disclosed herein. For example, the communications manager 1020 may be configured as or otherwise support a means for  transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network. The communications manager 1020 may be configured as or otherwise support a means for receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications. The communications manager 1020 may be configured as or otherwise support a means for communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
By including or configuring the communications manager 1020 in accordance with examples as described herein, the device 1005 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105. For example, the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
In some examples, the communications manager 1020 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1015, the one or more antennas 1025, or any combination thereof. Although the communications manager 1020 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1020 may be supported by or performed by the processor 1040, the memory 1030, the code 1035, or any combination thereof. For example, the code 1035 may include instructions executable by the processor 1040 to cause the device 1005 to perform various aspects of relaying wireless communications between terrestrial and NTNs as described herein, or the processor 1040 and the memory 1030 may be otherwise configured to perform or support such operations.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 1105 may be an example of aspects of a relay node as described herein. The device 1105 may include a receiver 1110, a transmitter 1115, and a communications manager 1120. The device 1105 may also  include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . Information may be passed on to other components of the device 1105. In some examples, the receiver 1110 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 1110 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
The transmitter 1115 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1105. For example, the transmitter 1115 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . In some examples, the transmitter 1115 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1115 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof. In some examples, the transmitter 1115 and the receiver 1110 may be co-located in a transceiver, which may include or be coupled with a modem.
The communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations thereof or various components thereof may be examples of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a DSP, a CPU, an ASIC, an FPGA or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 1120 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1110, the transmitter 1115, or both. For example, the communications manager 1120 may receive information from the receiver 1110, send information to the transmitter 1115, or be integrated in combination with the receiver 1110, the transmitter 1115, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 1120 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein. For example, the communications manager 1120 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a  network entity associated with a terrestrial network. The communications manager 1120 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The communications manager 1120 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The communications manager 1120 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
By including or configuring the communications manager 1120 in accordance with examples as described herein, the device 1105 (e.g., a processor controlling or otherwise coupled with the receiver 1110, the transmitter 1115, the communications manager 1120, or a combination thereof) may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105. For example, the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
FIG. 12 shows a block diagram 1200 of a device 1205 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 1205 may be an example of aspects of a device 1105 or a relay node as described herein. The device 1205 may include a receiver 1210, a transmitter 1215, and a communications manager 1220. The device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1210 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . Information may be passed on to other components of the device 1205. In some examples, the receiver 1210  may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 1210 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
The transmitter 1215 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1205. For example, the transmitter 1215 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . In some examples, the transmitter 1215 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1215 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof. In some examples, the transmitter 1215 and the receiver 1210 may be co-located in a transceiver, which may include or be coupled with a modem.
The device 1205, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 1220 may include a relay request component 1225, a relay indication component 1230, a resource indication component 1235, a relay component 1240, or any combination thereof. The communications manager 1220 may be an example of aspects of a communications manager 1120 as described herein. In some examples, the communications manager 1220, or various components thereof, may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1210, the transmitter 1215, or both. For example, the communications manager 1220 may receive information from the receiver 1210, send information to the transmitter 1215, or be integrated in combination with the receiver 1210, the transmitter 1215, or both to obtain information, output information, or perform various other operations as described herem.
The communications manager 1220 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein. The relay request component 1225 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network. The relay indication component 1230 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The resource indication component 1235 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The relay component 1240 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
FIG. 13 shows a block diagram 1300 of a communications manager 1320 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The communications manager 1320 may be an example of aspects of a communications manager 1120, a communications manager 1220, or both, as described herein. The communications manager 1320, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 1320 may include a relay request component 1325, a relay indication component 1330, a resource indication component 1335, a relay component 1340, a device discovery component 1345, a TA component 1350, a feedback component 1355, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 1320 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein. The relay request component 1325 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a network entity  associated with a terrestrial network. The relay indication component 1330 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The resource indication component 1335 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The relay component 1340 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
In some examples, the device discovery component 1345 may be configured as or otherwise support a means for outputting an SSB or a discovery signal associated with the NTN, the request to relay communications based on the SSB or the discovery signal associated with the NTN.
In some examples, the device discovery component 1345 may be configured as or otherwise support a means for outputting the SSB or the discovery signal associated with the NTN using a time resource that is based on a timing associated with a global satellite system.
In some examples, the device discovery component 1345 may be configured as or otherwise support a means for outputting the SSB or the discovery signal associated with the NTN using a resource configured by the network entity associated with the terrestrial network.
In some examples, the device discovery component 1345 may be configured as or otherwise support a means for outputting the SSB or the discovery signal associated with the NTN using one or more resources that include a window having a time offset and a Doppler offset.
In some examples, the device discovery component 1345 may be configured as or otherwise support a means for obtaining, from the network entity associated with the terrestrial network, a third indication to transmit the SSB or the discovery signal  associated with the NTN, the SSB or the discovery signal associated with the NTN based on the third indication.
In some examples, the TA component 1350 may be configured as or otherwise support a means for outputting, to the UE, a fourth indication for the UE to apply a TA to transmission of the request to relay communications. In some examples, the TA component 1350 may be configured as or otherwise support a means for obtaining the request to relay communications according to the TA based on the fourth indication.
In some examples, the TA component 1350 may be configured as or otherwise support a means for outputting, to the UE, a fifth indication for the UE to transmit the request to relay communications without a TA. In some examples, the TA component 1350 may be configured as or otherwise support a means for obtaining the request to relay communications without a TA based on the fifth indication.
In some examples, the TA component 1350 may be configured as or otherwise support a means for obtaining the request to relay communications using one or more resources that include a monitoring window having a time offset and a Doppler offset, the request to relay communications obtained via a preamble and a message associated with the preamble.
In some examples, the resource indication component 1335 may be configured as or otherwise support a means for outputting a sixth indication of a resource for communicating the request to relay communications, the request to relay communications based on the sixth indication of the resource.
In some examples, the resource indication component 1335 may be configured as or otherwise support a means for obtaining, from the network entity associated with the terrestrial network, a seventh indication of a resource for communicating the request to relay communications, the request to relay communications based on the seventh indication of the resource.
In some examples, the feedback component 1355 may be configured as or otherwise support a means for outputting feedback for the request to relay  communications, the relaying the one or more messages between the UE and the network entity associated with the terrestrial network based on the feedback.
FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 1405 may be an example of or include the components of a device 1105, a device 1205, or a relay node as described herein. The device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1420, a transceiver 1410, an antenna 1415, a memory 1425, code 1430, and a processor 1435. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1440) .
The transceiver 1410 may support bi-directional communications via wired links, wireless links, or both as described herein. In some examples, the transceiver 1410 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1410 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver. In some examples, the device 1405 may include one or more antennas 1415, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) . The transceiver 1410 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1415, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1415, from a wired receiver) , and to demodulate signals. In some implementations, the transceiver 1410 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1415 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1415 that are configured to support various transmitting or outputting operations, or a combination thereof. In some implementations, the transceiver 1410 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals  for transmission or other outputting, or any combination thereof. In some implementations, the transceiver 1410, or the transceiver 1410 and the one or more antennas 1415, or the transceiver 1410 and the one or more antennas 1415 and one or more processors or memory components (for example, the processor 1435, or the memory 1425, or both) , may be included in a chip or chip assembly that is installed in the device 1405. In some examples, the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
The memory 1425 may include RAM and ROM. The memory 1425 may store computer-readable, computer-executable code 1430 including instructions that, when executed by the processor 1435, cause the device 1405 to perform various functions described herein. The code 1430 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1430 may not be directly executable by the processor 1435 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1425 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1435 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) . In some cases, the processor 1435 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1435. The processor 1435 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1425) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting relaying wireless communications between terrestrial and NTNs) . For example, the device 1405 or a component of the device 1405 may include a processor 1435 and memory 1425 coupled with the processor 1435, the processor 1435 and memory 1425 configured to perform various functions described herein. The processor 1435 may be an example of a cloud-computing platform (e.g., one or more physical  nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1430) to perform the functions of the device 1405. The processor 1435 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1405 (such as within the memory 1425) . In some implementations, the processor 1435 may be a component of a processing system. A processing system may refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1405) . For example, a processing system of the device 1405 may refer to a system including the various other components or subcomponents of the device 1405, such as the processor 1435, or the transceiver 1410, or the communications manager 1420, or other components or combinations of components of the device 1405. The processing system of the device 1405 may interface with other components of the device 1405, and may process information received from other components (such as inputs or signals) or output information to other components. For example, a chip or modem of the device 1405 may include a processing system and one or more interfaces to output information, or to obtain information, or both. The one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations. In some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1405 may transmit information output from the chip or modem. Additionally, or alternatively, in some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1405 may obtain information or signal inputs, and the information may be passed to the processing system. A person having ordinary skill in the art will readily recognize that a first interface also may obtain information or signal inputs, and a second interface also may output information or signal outputs.
In some examples, a bus 1440 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1440 may support  communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1405, or between different components of the device 1405 that may be co-located or located in different locations (e.g., where the device 1405 may refer to a system in which one or more of the communications manager 1420, the transceiver 1410, the memory 1425, the code 1430, and the processor 1435 may be located in one of the different components or divided between different components) .
In some examples, the communications manager 1420 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) . For example, the communications manager 1420 may manage the transfer of data communications for client devices, such as one or more UEs 115. In some examples, the communications manager 1420 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105. In some examples, the communications manager 1420 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
The communications manager 1420 may support wireless communication at a relay node associated with an NTN in accordance with examples as disclosed herein. For example, the communications manager 1420 may be configured as or otherwise support a means for obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network. The communications manager 1420 may be configured as or otherwise support a means for outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The communications manager 1420 may be configured as or otherwise support a means for outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The communications manager 1420 may be configured as or otherwise support a means for relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
By including or configuring the communications manager 1420 in accordance with examples as described herein, the device 1405 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105. For example, the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
In some examples, the communications manager 1420 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1410, the one or more antennas 1415 (e.g., where applicable) , or any combination thereof. Although the communications manager 1420 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1420 may be supported by or performed by the transceiver 1410, the processor 1435, the memory 1425, the code 1430, or any combination thereof. For example, the code 1430 may include instructions executable by the processor 1435 to cause the device 1405 to perform various aspects of relaying wireless communications between terrestrial and NTNs as described herein, or the processor 1435 and the memory 1425 may be otherwise configured to perform or support such operations.
FIG. 15 shows a block diagram 1500 of a device 1505 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 1505 may be an example of aspects of a network entity 105 as described herein. The device 1505 may include a receiver 1510, a transmitter 1515, and a communications manager 1520. The device 1505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1510 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . Information may be passed on to other components of the device 1505. In some examples, the receiver 1510 may support obtaining information by receiving signals via one or more antennas.  Additionally, or alternatively, the receiver 1510 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
The transmitter 1515 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1505. For example, the transmitter 1515 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . In some examples, the transmitter 1515 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1515 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof. In some examples, the transmitter 1515 and the receiver 1510 may be co-located in a transceiver, which may include or be coupled with a modem.
The communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a DSP, a CPU, an ASIC, an FPGA or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the  functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 1520 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1510, the transmitter 1515, or both. For example, the communications manager 1520 may receive information from the receiver 1510, send information to the transmitter 1515, or be integrated in combination with the receiver 1510, the transmitter 1515, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 1520 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein. For example, the communications manager 1520 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network. The communications manager 1520 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
By including or configuring the communications manager 1520 in accordance with examples as described herein, the device 1505 (e.g., a processor  controlling or otherwise coupled with the receiver 1510, the transmitter 1515, the communications manager 1520, or a combination thereof) may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105. For example, the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
FIG. 16 shows a block diagram 1600 of a device 1605 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 1605 may be an example of aspects of a device 1505 or a network entity 105 as described herein. The device 1605 may include a receiver 1610, a transmitter 1615, and a communications manager 1620. The device 1605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1610 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . Information may be passed on to other components of the device 1605. In some examples, the receiver 1610 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 1610 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
The transmitter 1615 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 1605. For example, the transmitter 1615 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . In some examples, the transmitter 1615 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 1615 may support outputting information by transmitting  signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof. In some examples, the transmitter 1615 and the receiver 1610 may be co-located in a transceiver, which may include or be coupled with a modem.
The device 1605, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 1620 may include a relay indication component 1625 a relayed communications component 1630, or any combination thereof. The communications manager 1620 may be an example of aspects of a communications manager 1520 as described herein. In some examples, the communications manager 1620, or various components thereof, may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 1610, the transmitter 1615, or both. For example, the communications manager 1620 may receive information from the receiver 1610, send information to the transmitter 1615, or be integrated in combination with the receiver 1610, the transmitter 1615, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 1620 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein. The relay indication component 1625 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network. The relayed communications component 1630 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
FIG. 17 shows a block diagram 1700 of a communications manager 1720 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The communications manager 1720 may be an example of aspects of a communications manager 1520, a communications manager 1620, or both, as described herein. The communications  manager 1720, or various components thereof, may be an example of means for performing various aspects of relaying wireless communications between terrestrial and NTNs as described herein. For example, the communications manager 1720 may include a relay indication component 1725, a relayed communications component 1730, a resource indication component 1735, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
The communications manager 1720 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein. The relay indication component 1725 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network. The relayed communications component 1730 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
In some examples, the resource indication component 1735 may be configured as or otherwise support a means for outputting a second indication of one or more resources for communicating an SSB or a discovery signal associated with the NTN, the one or more resources including a window having a time offset and a Doppler offset, the request to relay communications based on the second indication of the one or more resources.
In some examples, the resource indication component 1735 may be configured as or otherwise support a means for outputting a third indication of a resource for communicating the request to relay communications, the request to relay communications based on the third indication of the resource.
FIG. 18 shows a diagram of a system 1800 including a device 1805 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The device 1805 may be an example of or include the components of a device 1505, a device 1605, or a network entity 105 as described herein. The device 1805 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless interfaces, or any combination thereof. The device 1805 may include components that support outputting and obtaining communications, such as a communications manager 1820, a transceiver 1810, an antenna 1815, a memory 1825, code 1830, and a processor 1835. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1840) .
The transceiver 1810 may support bi-directional communications via wired links, wireless links, or both as described herein. In some examples, the transceiver 1810 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1810 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver. In some examples, the device 1805 may include one or more antennas 1815, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) . The transceiver 1810 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1815, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1815, from a wired receiver) , and to demodulate signals. In some implementations, the transceiver 1810 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1815 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1815 that are configured to support various transmitting or outputting operations, or a combination thereof. In some implementations, the transceiver 1810 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals  for transmission or other outputting, or any combination thereof. In some implementations, the transceiver 1810, or the transceiver 1810 and the one or more antennas 1815, or the transceiver 1810 and the one or more antennas 1815 and one or more processors or memory components (for example, the processor 1835, or the memory 1825, or both) , may be included in a chip or chip assembly that is installed in the device 1805. In some examples, the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
The memory 1825 may include RAM and ROM. The memory 1825 may store computer-readable, computer-executable code 1830 including instructions that, when executed by the processor 1835, cause the device 1805 to perform various functions described herein. The code 1830 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1830 may not be directly executable by the processor 1835 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1825 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1835 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) . In some cases, the processor 1835 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1835. The processor 1835 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1825) to cause the device 1805 to perform various functions (e.g., functions or tasks supporting relaying wireless communications between terrestrial and NTNs) . For example, the device 1805 or a component of the device 1805 may include a processor 1835 and memory 1825 coupled with the processor 1835, the processor 1835 and memory 1825 configured to perform various functions described herein. The processor 1835 may be an example of a cloud-computing platform (e.g., one or more physical  nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1830) to perform the functions of the device 1805. The processor 1835 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1805 (such as within the memory 1825) . In some implementations, the processor 1835 may be a component of a processing system. A processing system may refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1805) . For example, a processing system of the device 1805 may refer to a system including the various other components or subcomponents of the device 1805, such as the processor 1835, or the transceiver 1810, or the communications manager 1820, or other components or combinations of components of the device 1805. The processing system of the device 1805 may interface with other components of the device 1805, and may process information received from other components (such as inputs or signals) or output information to other components. For example, a chip or modem of the device 1805 may include a processing system and one or more interfaces to output information, or to obtain information, or both. The one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations. In some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1805 may transmit information output from the chip or modem. Additionally, or alternatively, in some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1805 may obtain information or signal inputs, and the information may be passed to the processing system. A person having ordinary skill in the art will readily recognize that a first interface also may obtain information or signal inputs, and a second interface also may output information or signal outputs.
In some examples, a bus 1840 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1840 may support  communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1805, or between different components of the device 1805 that may be co-located or located in different locations (e.g., where the device 1805 may refer to a system in which one or more of the communications manager 1820, the transceiver 1810, the memory 1825, the code 1830, and the processor 1835 may be located in one of the different components or divided between different components) .
In some examples, the communications manager 1820 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) . For example, the communications manager 1820 may manage the transfer of data communications for client devices, such as one or more UEs 115. In some examples, the communications manager 1820 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105. In some examples, the communications manager 1820 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
The communications manager 1820 may support wireless communication at a network entity associated with a terrestrial network in accordance with examples as disclosed herein. For example, the communications manager 1820 may be configured as or otherwise support a means for obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network. The communications manager 1820 may be configured as or otherwise support a means for communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications.
By including or configuring the communications manager 1820 in accordance with examples as described herein, the device 1805 may support techniques for relaying communications between a UE 115 and a network entity 105 while the UE 115 is located outside of a coverage area of the network entity 105. For example, the UE 115 may experience coverage for wireless communications outside of a coverage area of a terrestrial network associated with the network entity 105.
In some examples, the communications manager 1820 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1810, the one or more antennas 1815 (e.g., where applicable) , or any combination thereof. Although the communications manager 1820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1820 may be supported by or performed by the transceiver 1810, the processor 1835, the memory 1825, the code 1830, or any combination thereof. For example, the code 1830 may include instructions executable by the processor 1835 to cause the device 1805 to perform various aspects of relaying wireless communications between terrestrial and NTNs as described herein, or the processor 1835 and the memory 1825 may be otherwise configured to perform or support such operations.
FIG. 19 shows a flowchart illustrating a method 1900 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The operations of the method 1900 may be implemented by a UE or its components as described herein. For example, the operations of the method 1900 may be performed by a UE 115 as described with reference to FIGs. 1 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1905, the method may include transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network. The operations of 1905 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1905 may be performed by a relay request component 925 as described with reference to FIG. 9.
At 1910, the method may include receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications. The operations of 1910 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the  operations of 1910 may be performed by a resource indication component 930 as described with reference to FIG. 9.
At 1915, the method may include communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource. The operations of 1915 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1915 may be performed by a relayed communications component 935 as described with reference to FIG. 9.
FIG. 20 shows a flowchart illustrating a method 2000 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The operations of the method 2000 may be implemented by a UE or its components as described herein. For example, the operations of the method 2000 may be performed by a UE 115 as described with reference to FIGs. 1 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 2005, the method may include failing to detect an SSB associated with the terrestrial network within a time duration. The operations of 2005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2005 may be performed by an SSB monitoring component 940 as described with reference to FIG. 9.
At 2010, the method may include monitoring for an SSB or a discovery signal associated with the NTN after the time duration and based on failing to detect the SSB associated with the terrestrial network, the transmitting the request to relay communications based on reception of the SSB or the discovery signal associated with the NTN. The operations of 2010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2010 may be performed by a device discovery monitoring component 945 as described with reference to FIG. 9.
At 2015, the method may include transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network. The operations of 2015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2015 may be performed by a relay request component 925 as described with reference to FIG. 9.
At 2020, the method may include receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on transmitting the request to relay communications. The operations of 2020 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2020 may be performed by a resource indication component 930 as described with reference to FIG. 9.
At 2025, the method may include communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource. The operations of 2025 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2025 may be performed by a relayed communications component 935 as described with reference to FIG. 9.
FIG. 21 shows a flowchart illustrating a method 2100 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The operations of the method 2100 may be implemented by a relay node or its components as described herein. For example, the operations of the method 2100 may be performed by a relay node as described with reference to FIGs. 1 through 6 and 11 through 14. In some examples, a relay node may execute a set of instructions to control the functional elements of the relay node to perform the described functions. Additionally, or alternatively, the relay node may perform aspects of the described functions using special-purpose hardware.
At 2105, the method may include obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network. The operations of 2105 may be performed in accordance with examples as  disclosed herein. In some examples, aspects of the operations of 2105 may be performed by a relay request component 1325 as described with reference to FIG. 13.
At 2110, the method may include outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The operations of 2110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2110 may be performed by a relay indication component 1330 as described with reference to FIG. 13.
At 2115, the method may include outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The operations of 2115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2115 may be performed by a resource indication component 1335 as described with reference to FIG. 13.
At 2120, the method may include relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource. The operations of 2120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2120 may be performed by a relay component 1340 as described with reference to FIG. 13.
FIG. 22 shows a flowchart illustrating a method 2200 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The operations of the method 2200 may be implemented by a relay node or its components as described herein. For example, the operations of the method 2200 may be performed by a relay node as described with reference to FIGs. 1 through 6 and 11 through 14. In some examples, a relay node may execute a set of instructions to control the functional elements of the relay node to perform the described functions. Additionally, or alternatively, the relay node may perform aspects of the described functions using special-purpose hardware.
At 2205, the method may include outputting an SSB or a discovery signal associated with the NTN, the request to relay communications based on the SSB or the  discovery signal associated with the NTN. The operations of 2205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2205 may be performed by a device discovery component 1345 as described with reference to FIG. 13.
At 2210, the method may include obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network. The operations of 2210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2210 may be performed by a relay request component 1325 as described with reference to FIG. 13.
At 2215, the method may include outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The operations of 2215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2215 may be performed by a relay indication component 1330 as described with reference to FIG. 13.
At 2220, the method may include outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based on the request to relay communications. The operations of 2220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2220 may be performed by a resource indication component 1335 as described with reference to FIG. 13.
At 2225, the method may include relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource. The operations of 2225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2225 may be performed by a relay component 1340 as described with reference to FIG. 13.
FIG. 23 shows a flowchart illustrating a method 2300 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The operations of the method 2300 may be implemented by a network entity or its components as described herein. For example,  the operations of the method 2300 may be performed by a network entity as described with reference to FIGs. 1 through 6 and 15 through 18. In some examples, a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
At 2305, the method may include obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network. The operations of 2305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2305 may be performed by a relay indication component 1725 as described with reference to FIG. 17.
At 2310, the method may include communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications. The operations of 2310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2310 may be performed by a relayed communications component 1730 as described with reference to FIG. 17.
FIG. 24 shows a flowchart illustrating a method 2400 that supports relaying wireless communications between terrestrial and NTNs in accordance with one or more aspects of the present disclosure. The operations of the method 2400 may be implemented by a network entity or its components as described herein. For example, the operations of the method 2400 may be performed by a network entity as described with reference to FIGs. 1 through 6 and 15 through 18. In some examples, a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
At 2405, the method may include outputting a second indication of one or more resources for communicating an SSB or a discovery signal associated with the NTN, the one or more resources including a window having a time offset and a Doppler offset, the request to relay communications based on the second indication of the one or more resources. The operations of 2405 may be performed in accordance with examples  as disclosed herein. In some examples, aspects of the operations of 2405 may be performed by a resource indication component 1735 as described with reference to FIG. 17.
At 2410, the method may include obtaining, from an NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network. The operations of 2410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2410 may be performed by a relay indication component 1725 as described with reference to FIG. 17.
At 2415, the method may include communicating one or more messages with the UE via the relay node associated with the NTN based on the first indication of the request to relay communications. The operations of 2415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2415 may be performed by a relayed communications component 1730 as described with reference to FIG. 17.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communication at a UE, comprising: transmitting, to a relay node associated with a NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network; receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based at least in part on transmitting the request to relay communications; and communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
Aspect 2: The method of aspect 1, further comprising: failing to detect a synchronization signal block associated with the terrestrial network within a time duration; and monitoring for one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN after the time duration and based at least in part on the failure to detect the synchronization signal block associated with the terrestrial network, the request to relay communications based at least in part on reception of one of the synchronization signal block or the discovery signal.
Aspect 3: The method of aspect 2, the monitoring comprising: monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that is based at least in part on a timing associated with a global satellite system.
Aspect 4: The method of any of aspects 2 through 3, the monitoring comprising: monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by a second network entity associated with the terrestrial network.
Aspect 5: The method of any of aspects 2 through 4, the monitoring comprising: monitoring for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that comprise a monitoring window having a time offset and a Doppler offset.
Aspect 6: The method of any of aspects 1 through 5, the transmitting the request to relay communications comprising: transmitting the request to relay communications according to a timing advance.
Aspect 7: The method of aspect 6, wherein the timing advance is based at least in part on an indicated time for reception of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN and a time at which the synchronization signal block associated with the NTN or the discovery signal associated with the NTN is received.
Aspect 8: The method of any of aspects 1 through 7, the transmitting the request to relay communications comprising: transmitting the request to relay communications without a timing advance.
Aspect 9: The method of aspect 8, the transmitting the request to relay communications further comprising: transmitting the request to relay communications using one or more resources that comprise a window having a time offset and a Doppler offset, the request to relay communications transmitted via a preamble and a message associated with the preamble.
Aspect 10: The method of any of aspects 1 through 9, further comprising: detecting a synchronization signal block associated with the terrestrial network after  communicating the one or more messages via the relay node; and refraining from communicating one or more additional messages with the network entity associated with the terrestrial network via the relay node associated with the NTN based at least in part on detecting the synchronization signal block associated with the terrestrial network.
Aspect 11: The method of any of aspects 1 through 10, further comprising: receiving, from the relay node associated with the NTN or from a second network entity associated with the terrestrial network, a second indication of a resource for transmitting the request to relay communications.
Aspect 12: The method of any of aspects 1 through 11, further comprising: receiving, from the relay node, feedback for the request to relay communications, the communicating the one or more messages via the relay node based at least in part on receiving the feedback.
Aspect 13: The method of any of aspects 1 through 12, the one or more messages communicated via the relay node comprising one or more uplink messages, one or more downlink messages, or both.
Aspect 14: A method for wireless communication at a relay node associated with a NTN, comprising: obtaining a request to relay communications between a UE and a network entity associated with a terrestrial network; outputting, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based at least in part on the request to relay communications; outputting a second indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based at least in part on the request to relay communications; and relaying one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
Aspect 15: The method of aspect 14, further comprising: outputting one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the request to relay communications based at least in part on the synchronization signal block or the discovery signal.
Aspect 16: The method of aspect 15, the outputting the synchronization signal block or the discovery signal comprising: outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that is based at least in part on a timing associated with a global satellite system.
Aspect 17: The method of any of aspects 15 through 16, the outputting the synchronization signal block or the discovery signal comprising: outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by the network entity associated with the terrestrial network.
Aspect 18: The method of any of aspects 15 through 17, the outputting the synchronization signal block or the discovery signal comprising: outputting one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that comprise a time window having a time offset and a Doppler offset.
Aspect 19: The method of any of aspects 15 through 18, further comprising: obtaining, from the network entity associated with the terrestrial network, a third indication to transmit the synchronization signal block or the discovery signal associated with the NTN, the synchronization signal block or the discovery signal associated with the NTN based at least in part on the third indication.
Aspect 20: The method of any of aspects 14 through 19, the obtaining the request to relay communications comprising: outputting, to the UE, a fourth indication for the UE to apply a timing advance to transmission of the request to relay communications; and obtaining the request to relay communications according to the timing advance based at least in part on the fourth indication.
Aspect 21: The method of any of aspects 14 through 20, the obtaining the request to relay communications comprising: outputting, to the UE, a fifth indication for the UE to transmit the request to relay communications without a timing advance; and obtaining the request to relay communications without a timing advance based at least in part on the fifth indication.
Aspect 22: The method of aspect 21, the obtaining the request to relay communications further comprising: obtaining the request to relay communications using one or more resources that comprise a monitoring window having a time offset and a Doppler offset, the request to relay communications obtained via a preamble and a message associated with the preamble.
Aspect 23: The method of any of aspects 14 through 22, further comprising: outputting a sixth indication of a resource for communicating the request to relay communications, the request to relay communications based at least in part on the sixth indication of the resource.
Aspect 24: The method of any of aspects 14 through 23, further comprising: obtaining, from the network entity associated with the terrestrial network, a seventh indication of a resource for communicating the request to relay communications, the request to relay communications based at least in part on the seventh indication of the resource.
Aspect 25: The method of any of aspects 14 through 24, further comprising: outputting feedback for the request to relay communications, the relaying the one or more messages between the UE and the network entity associated with the terrestrial network based at least in part on the feedback.
Aspect 26: The method of any of aspects 14 through 25, the one or more messages relayed between the UE and the network entity associated with the terrestrial network comprising one or more uplink messages, one or more downlink messages, or both.
Aspect 27: A method for wireless communication at a network entity associated with a terrestrial network, comprising: obtaining, from a NTN, a first indication of a request for a relay node of the NTN to relay communications between a UE and the network entity associated with the terrestrial network; and communicating one or more messages with the UE via the relay node associated with the NTN based at least in part on the first indication of the request to relay communications.
Aspect 28: The method of aspect 27, further comprising: outputting a second indication of one or more resources for communication of one of a synchronization  signal block associated with the NTN or a discovery signal associated with the NTN, the one or more resources comprising a time window having a time offset and a Doppler offset, the request to relay communications based at least in part on the second indication of the one or more resources.
Aspect 29: The method of any of aspects 27 through 28, further comprising: outputting a third indication of a resource for communicating the request to relay communications, the request to relay communications based at least in part on the third indication of the resource.
Aspect 30: The method of any of aspects 27 through 29, the one or more messages communicated between the UE and the network entity associated with the terrestrial network comprising one or more uplink messages, one or more downlink messages, or both.
Aspect 31: An apparatus for wireless communication at a UE, comprising a processor; and memory coupled with the processor, the processor configured to perform a method of any of aspects 1 through 13.
Aspect 32: An apparatus for wireless communication at a UE, comprising at least one means for performing a method of any of aspects 1 through 13.
Aspect 33: A non-transitory computer-readable medium storing code for wireless communication at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 13.
Aspect 34: An apparatus for wireless communication at a relay node associated with a NTN, comprising a processor; and memory coupled with the processor, the processor configured to perform a method of any of aspects 14 through 26.
Aspect 35: An apparatus for wireless communication at a relay node associated with a NTN, comprising at least one means for performing a method of any of aspects 14 through 26.
Aspect 36: A non-transitory computer-readable medium storing code for wireless communication at a relay node associated with a NTN, the code comprising  instructions executable by a processor to perform a method of any of aspects 14 through 26.
Aspect 37: An apparatus for wireless communication at a network entity associated with a terrestrial network, comprising a processor; and memory coupled with the processor, the processor configured to perform a method of any of aspects 27 through 30.
Aspect 38: An apparatus for wireless communication at a network entity associated with a terrestrial network, comprising at least one means for performing a method of any of aspects 27 through 30.
Aspect 39: A non-transitory computer-readable medium storing code for wireless communication at a network entity associated with a terrestrial network, the code comprising instructions executable by a processor to perform a method of any of aspects 27 through 30.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic  waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed using a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,  or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
The term “determine” or “determining” encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first  reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor; and
    memory coupled with the processor, the processor configured to:
    transmit, to a relay node associated with a non-terrestrial network (NTN) , a request to relay communications between the UE and a network entity associated with a terrestrial network;
    receive, from the relay node associated with the NTN, a first indication of a resource for relayed communications between the UE and the network entity associated with the terrestrial network based at least in part on transmission of the request to relay communications; and
    communicate, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
  2. The apparatus of claim 1, the processor further configured to:
    fail to detect a synchronization signal block associated with the terrestrial network within a time duration; and
    monitor for one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN after the time duration and based at least in part on the failure to detect the synchronization signal block associated with the terrestrial network, the request to relay communications based at least in part on reception of one of the synchronization signal block or the discovery signal.
  3. The apparatus of claim 2, the processor further configured to:
    monitor for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that is based at least in part on a timing associated with a global satellite system.
  4. The apparatus of claim 2, the processor further configured to:
    monitor for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by a second network entity associated with the terrestrial network.
  5. The apparatus of claim 2, the processor further configured to:
    monitor for one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that comprise a monitoring window having a time offset and a Doppler offset.
  6. The apparatus of claim 1, the processor further configured to:
    transmit, via an antenna, the request to relay communications according to a timing advance.
  7. The apparatus of claim 6, wherein the timing advance is based at least in part on an indicated time for reception of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN and a time at which the synchronization signal block associated with the NTN or the discovery signal associated with the NTN is received.
  8. The apparatus of claim 1, the processor further configured to:
    transmit, via an antenna, the request to relay communications without a timing advance.
  9. The apparatus of claim 8, the processor further configured to:
    transmit the request to relay communications using one or more resources that comprise a time window having a time offset and a Doppler offset, the request to relay communications transmitted via a preamble and a message associated with the preamble.
  10. The apparatus of claim 1, the processor further configured to:
    detect a synchronization signal block associated with the terrestrial network after communication of the one or more messages via the relay node; and
    refrain from communication of one or more additional messages with the network entity associated with the terrestrial network via the relay node associated with  the NTN based at least in part on detection of the synchronization signal block associated with the terrestrial network.
  11. The apparatus of claim 1, the processor further configured to:
    receive, from the relay node associated with the NTN or from a second network entity associated with the terrestrial network, a second indication of a resource for transmission of the request to relay communications.
  12. The apparatus of claim 1, the processor further configured to:
    receive, from the relay node, feedback for the request to relay communications, the communication of the one or more messages via the relay node based at least in part on reception of the feedback.
  13. The apparatus of claim 1, the one or more messages communicated via the relay node comprising one or more uplink messages, one or more downlink messages, or both.
  14. An apparatus for wireless communication at a relay node associated with a non-terrestrial network (NTN) , comprising:
    a processor; and
    memory coupled with the processor, the processor configured to:
    obtain a request to relay communications between a user equipment (UE) and a network entity associated with a terrestrial network;
    output, for the terrestrial network, a first indication of the request to relay communications between the UE and the network entity associated with the terrestrial network based at least in part on the request to relay communications;
    output a second indication of a resource for relayed communications between the UE and the network entity associated with the terrestrial network based at least in part on the request to relay communications; and
    relay one or more messages between the UE and the network entity associated with the terrestrial network using the resource.
  15. The apparatus of claim 14, the processor further configured to:
    output, via an antenna, one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the request to relay communications based at least in part on the synchronization signal block or the discovery signal.
  16. The apparatus of claim 15, the processor further configured to:
    output one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a time resource that is based at least in part on a timing associated with a global satellite system.
  17. The apparatus of claim 15, the processor further configured to:
    output one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using a resource configured by the network entity associated with the terrestrial network.
  18. The apparatus of claim 15, the processor further configured to:
    output one of the synchronization signal block associated with the NTN or the discovery signal associated with the NTN using one or more resources that comprise a time window having a time offset and a Doppler offset.
  19. The apparatus of claim 15, the processor further configured to:
    obtain, from the network entity associated with the terrestrial network, a third indication to transmit the synchronization signal block associated with the NTN or the discovery signal associated with the NTN, the synchronization signal block or the discovery signal based at least in part on the third indication.
  20. The apparatus of claim 14, the processor further configured to:
    output, to the UE, a fourth indication for the UE to apply a timing advance to transmission of the request to relay communications; and
    obtain the request to relay communications according to the timing advance based at least in part on the fourth indication.
  21. The apparatus of claim 14, the processor further configured to:
    output, to the UE, a fifth indication for the UE to transmit the request to relay communications without a timing advance; and
    obtain the request to relay communications without a timing advance based at least in part on the fifth indication.
  22. The apparatus of claim 21, the processor further configured to:
    obtain the request to relay communications using one or more resources that comprise a monitoring window having a time offset and a Doppler offset, the request to relay communications obtained via a preamble and a message associated with the preamble.
  23. The apparatus of claim 14, the processor further configured to:
    output a sixth indication of a resource for communication of the request to relay communications, the request to relay communications based at least in part on the sixth indication of the resource.
  24. The apparatus of claim 14, the processor further configured to:
    obtain, from the network entity associated with the terrestrial network, a seventh indication of a resource for communication of the request to relay communications, the request to relay communications based at least in part on the seventh indication of the resource.
  25. The apparatus of claim 14, the processor further configured to:
    output feedback for the request to relay communications, the one or more messages relayed between the UE and the network entity associated with the terrestrial network based at least in part on the feedback.
  26. The apparatus of claim 14, the one or more messages relayed between the UE and the network entity associated with the terrestrial network comprising one or more uplink messages, one or more downlink messages, or both.
  27. An apparatus for wireless communication at a network entity associated with a terrestrial network, comprising:
    a processor; and
    memory coupled with the processor, the processor configured to:
    obtain, from a non-terrestrial network (NTN) , a first indication of a request for a relay node of the NTN to relay communications between a user  equipment (UE) and the network entity associated with the terrestrial network; and
    communicate one or more messages with the UE via the relay node associated with the NTN based at least in part on the first indication of the request to relay communications.
  28. The apparatus of claim 27, the processor further configured to:
    output, via an antenna, a second indication of one or more resources for communication of one of a synchronization signal block associated with the NTN or a discovery signal associated with the NTN, the one or more resources comprising a time window having a time offset and a Doppler offset, the request to relay communications based at least in part on the second indication of the one or more resources.
  29. The apparatus of claim 27, the processor further configured to:
    output a third indication of a resource for communication of the request to relay communications, the request to relay communications based at least in part on the third indication of the resource.
  30. A method for wireless communication at a user equipment (UE) , comprising:
    transmitting, to a relay node associated with an NTN, a request to relay communications between the UE and a network entity associated with a terrestrial network;
    receiving, from the relay node associated with the NTN, a first indication of a resource for relaying communications between the UE and the network entity associated with the terrestrial network based at least in part on transmitting the request to relay communications; and
    communicating, via the relay node associated with the NTN, one or more messages with the network entity associated with the terrestrial network using the resource.
PCT/CN2022/120752 2022-09-23 2022-09-23 Relaying wireless communications between terrestrial and non-terrestrial networks WO2024060178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120752 WO2024060178A1 (en) 2022-09-23 2022-09-23 Relaying wireless communications between terrestrial and non-terrestrial networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120752 WO2024060178A1 (en) 2022-09-23 2022-09-23 Relaying wireless communications between terrestrial and non-terrestrial networks

Publications (1)

Publication Number Publication Date
WO2024060178A1 true WO2024060178A1 (en) 2024-03-28

Family

ID=90453658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120752 WO2024060178A1 (en) 2022-09-23 2022-09-23 Relaying wireless communications between terrestrial and non-terrestrial networks

Country Status (1)

Country Link
WO (1) WO2024060178A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109490A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Polarization indications for synchronization signal block, coreset, and beam footprint
WO2022082744A1 (en) * 2020-10-23 2022-04-28 Apple Inc. Time offset maintenance for non-terrestrial network (ntn)
US20220217658A1 (en) * 2021-01-07 2022-07-07 Qualcomm Incorporated Synchronization signal block monitoring occasion design for non-terrestrial communications
US20220225335A1 (en) * 2021-01-13 2022-07-14 Qualcomm Incorporated Interference estimation for resource availability determination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109490A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Polarization indications for synchronization signal block, coreset, and beam footprint
WO2022082744A1 (en) * 2020-10-23 2022-04-28 Apple Inc. Time offset maintenance for non-terrestrial network (ntn)
US20220217658A1 (en) * 2021-01-07 2022-07-07 Qualcomm Incorporated Synchronization signal block monitoring occasion design for non-terrestrial communications
US20220225335A1 (en) * 2021-01-13 2022-07-14 Qualcomm Incorporated Interference estimation for resource availability determination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Solutions for NR to support non-terrestrial networks (NTN) (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.821, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V0.5.0, 13 July 2019 (2019-07-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 58, XP051754697 *

Similar Documents

Publication Publication Date Title
US11632735B2 (en) Change of tracking area code for wireless networks
US20240040597A1 (en) Default beam for communication networks
US11849362B2 (en) Retransmission after bandwidth part switching
US20230232384A1 (en) Bandwidth part configuration for communication networks
WO2023239996A1 (en) User equipment (ue) mobility between a non-terrestrial network (ntn) and a terrestrial network (tn)
US20230269656A1 (en) Conditional authorization of mobile nodes
US11909502B2 (en) Timing configuration management for network entities
WO2024060178A1 (en) Relaying wireless communications between terrestrial and non-terrestrial networks
US20240064679A1 (en) Techniques for timing adjustment
US20240031963A1 (en) Priority-based timing advance (ta) adjustment
US20230262687A1 (en) Uplink timing management in communications systems
WO2024060169A1 (en) Techniques for joint non-terrestrial networks and aircraft relaying networks
US11728880B2 (en) Relaying broadcast messages to out-of-coverage user equipment
US20240080800A1 (en) Paging message communication in a non-terrestrial network
US20230198610A1 (en) Techniques for sequential uplink transmissions-based positioning for nonterrestrial networks
US20240064698A1 (en) Paging early indications in non-terrestrial networks
WO2023206215A1 (en) Interference measurement and uplink power control enhancements for emergency message relaying
US20240121671A1 (en) Reconfiguration for lower layer mobility
WO2023123015A1 (en) Techniques for aircraft relaying
WO2023201559A1 (en) Emergency messaging using mobile relay
WO2024050711A1 (en) Enhancement for aircraft relaying continuity
WO2024077590A1 (en) Enhanced radio link failure recovery in ue-to-ue relay
US20220361187A1 (en) Uplink pre-compensation in wireless communications systems
US20240040615A1 (en) Maintaining channel occupancy time across sidelink synchronization signal block slots in unlicensed sidelink
US20220232491A1 (en) Delay-based cell selection or cell reselection for communication networks