WO2024060080A1 - Temperature sensor assembly for water bath and water bath - Google Patents

Temperature sensor assembly for water bath and water bath Download PDF

Info

Publication number
WO2024060080A1
WO2024060080A1 PCT/CN2022/120282 CN2022120282W WO2024060080A1 WO 2024060080 A1 WO2024060080 A1 WO 2024060080A1 CN 2022120282 W CN2022120282 W CN 2022120282W WO 2024060080 A1 WO2024060080 A1 WO 2024060080A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
thermal insulation
water
conductive member
sensor assembly
Prior art date
Application number
PCT/CN2022/120282
Other languages
French (fr)
Inventor
Tao Wang
Xiaoliang TIAN
Original Assignee
Leica Biosystems Nussloch Gmbh
Leica Microsystems Ltd., Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Biosystems Nussloch Gmbh, Leica Microsystems Ltd., Shanghai filed Critical Leica Biosystems Nussloch Gmbh
Priority to PCT/CN2022/120282 priority Critical patent/WO2024060080A1/en
Publication of WO2024060080A1 publication Critical patent/WO2024060080A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/02Water baths; Sand baths; Air baths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/12Thermometers specially adapted for specific purposes combined with sampling devices for measuring temperatures of samples of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors

Definitions

  • the present disclosure relate to histological processing technologies, and more particularly, to a temperature sensor assembly for a water bath and a water bath.
  • Water baths are used to heat paraffin tissue sections. Paraffin tissue sections are generally laid flat on a water surface in a water tray of the water baths. Thus, temperature control of the water surface is our concern. In order to control the temperature of the water surface, it should be precisely measured.
  • water immerged temperature sensors with software correction or indirect temperature sensors with software correction are employed to measure the temperature of the water surface in the water tray.
  • Embodiments of the present disclosure seek to solve at least one of the problems existing in the related art to at least some extent.
  • Embodiments of the present disclosure provide a temperature sensor assembly for a water bath.
  • the temperature sensor assembly includes: a thermal insulation holder, a temperature sensor, and a thermal conductive member.
  • the temperature sensor is coupled to the thermal insulation holder.
  • the thermal conductive member is coupled to the thermal insulation holder and in contact with the temperature sensor.
  • the thermal conductive member is configured to contact a bottom face of a water tray of the water bath.
  • the thermal insulation holder and the thermal conductive member cooperatively define a receiving chamber and the temperature sensor is received in the receiving chamber.
  • the thermal insulation holder and the thermal conductive member cooperatively define the receiving chamber, the temperature sensor is received in the receiving chamber; the thermal conductive member is in contact with the bottom face of the water tray.
  • the thermal conductive member is specially designed such that the temperature sensor has best thermal mass to match the water temperature gradient from the bottom face of the water tray to a water surface in the water tray during heating.
  • the temperature of the water surface in the water tray can be measured indirectly and precisely without software correction.
  • the thermal insulation holder defines a first groove in an end face of the thermal insulation holder facing the thermal conductive member
  • the thermal conductive member defines a second groove in an end face of the thermal conductive member facing the thermal insulation holder
  • the first groove and the second groove cooperate to form the receiving chamber.
  • the temperature sensor may be received in receiving chamber formed by the first groove and the second groove. That is, the receiving chamber is closed, and the temperature sensor is enclosed by the thermal conductive member and the thermal insulation holder and prevented from exposing to unexpected surrounding heat.
  • the thermal conductive member defines a third groove in communication with the second groove, and an end of the thermal insulation holder facing the thermal conductive member is fitted in the third groove.
  • the thermal conductive member may be firmly coupled to the thermal insulation holder.
  • the thermal insulation holder defines a channel in communication with the first groove, and the temperature sensor includes a cable passing through the channel.
  • the cable of the sensor may be well protected, and the temperature sensor may be connected to a controller via the cable.
  • the thermal conductive member includes an extension portion extending horizontally from an edge of the thermal conductive member and configured to contact the bottom face of the water tray.
  • contact area between the thermal conductive member and the bottom face of the water tray may be increased to improve the heat transfer efficiency.
  • the temperature sensor assembly further includes a thermal insulation sleeve surrounding the thermal insulation holder and the thermal conductive member.
  • a thermal insulation sleeve surrounding the thermal insulation holder and the thermal conductive member.
  • the temperature sensor assembly further includes a base and a cover coupled to the base to define a first accommodation chamber.
  • the thermal insulation holder is movably accommodated in the first accommodation chamber and protruded through the cover, and the thermal insulation sleeve is coupled to the cover.
  • the thermal insulation holder and the thermal insulation sleeve may be supported by the base and the cover.
  • the cover includes protruding portion and a through hole in the protruding portion, the through hole is in communication with the first accommodation chamber, the thermal insulation holder is protruded through the through hole and movable along an axis of the through hole, and the thermal insulation sleeve is fitted over the protruding portion.
  • the relative position between the thermal insulation sleeve and the thermal insulation holder may be determined.
  • the temperature sensor assembly further includes an elastic member arranged between the base and the thermal insulation holder and configured to bias the thermal insulation holder to protrude through the cover.
  • the thermal conductive member coupled to the thermal insulation holder may be pressed tightly on the bottom face of the water tray, to improve heat transfer efficiency.
  • the base includes a second accommodation chamber in communication with the first accommodation chamber, and the elastic member is accommodating in the second accommodation chamber.
  • the elastic member may be properly mounted.
  • the thermal conductive member and an inner wall of the thermal insulation sleeve define a gap
  • the cover defines a water hole
  • the base defines a water chamber
  • the gap, the water hole and the water chamber are in communication with one another to collect water spilled from the water tray.
  • the water spilled from the water tray may be collected and the prevented from being accumulated at the water tray, and prevented from leaking to inside circuits.
  • the base further defines a drain hole in a bottom of the water chamber.
  • the water hole is in communication with the first accommodation chamber, and the water chamber is in communication with the first accommodation chamber.
  • the first accommodation chamber may be fully used, and the structure of the temperature sensor assembly may be more compact.
  • Embodiments of the present disclosure further provide a water bath.
  • the water bath includes a water tray and a temperature sensor assembly according to any one of above-described embodiments.
  • the thermal conductive member is in contact with a bottom face of the water tray.
  • the thermal conductive member of the temperature sensor assembly is in contact with the bottom face of the water tray.
  • heat from the bottom face of the water tray can be transferred to the temperature sensor via the thermal conductive member, and the unexpected surrounding heat can be prevented by the thermal insulation holder from impacting on the temperature sensor.
  • the thermal conductive member is specially designed such that the temperature sensor has best thermal mass to match the water temperature gradient from the bottom face of the water tray to a water surface in the water tray during heating.
  • the temperature of the water surface in the water tray can be measured indirectly and precisely without software correction.
  • the water bath further includes a heating frame.
  • the heating frame defines an installation opening in a bottom of the heating frame, the water tray is accommodated in the heating frame, the temperature sensor assembly is coupled at the installation opening, and the thermal conductive member passes through the installation opening and contacts the bottom face of the water tray.
  • the temperature sensor assembly may be coupled to the heating frame, and the thermal conductive member may come into contact with the bottom face of the water tray through the installation opening of the heating frame.
  • FIG. 1 is an exploded view of a temperature sensor assembly according to an embodiment of the present disclosure.
  • FIG. 2 is a sectional view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state.
  • FIG. 3 is a perspective view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state.
  • FIG. 4 is a top view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state.
  • FIG. 5 is a partial perspective view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted.
  • FIG. 6 is a partial sectional view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted.
  • relative terms such as “central” , “longitudinal” , “lateral” , “front” , “rear” , “right” , “left” , “inner” , “outer” , “lower” , “upper” , “horizontal” , “vertical” , “above” , “below” , “up” , “top” , “bottom” as well as derivative thereof (e.g., “horizontally” , “downwardly” , “upwardly” , etc. ) should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the present disclosure be constructed or operated in a particular orientation.
  • first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
  • the feature defined with “first” and “second” may comprise one or more of this feature.
  • “a plurality of” means two or more than two, unless specified otherwise.
  • the terms “mounted, ” “connected, ” “coupled, ” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications or interactions of two elements, which can be understood by those skilled in the art according to specific situations.
  • Embodiments of the present disclosure provide a temperature sensor assembly 100 for a water bath 200.
  • the temperature sensor assembly 100 includes: a thermal insulation holder 20, a temperature sensor 30, and a thermal conductive member 70.
  • the temperature sensor 30 is coupled to the thermal insulation holder 20.
  • the thermal conductive member 70 is coupled to the thermal insulation holder 20 and in contact with the temperature sensor 30.
  • the thermal conductive member 70 is configured to contact a bottom face of a water tray 210 of the water bath 200.
  • the thermal insulation holder 20 and the thermal conductive member 70 cooperatively define a receiving chamber 95 and the temperature sensor 30 is received in the receiving chamber 95.
  • the thermal insulation holder 20 and the thermal conductive member 70 cooperatively define the receiving chamber 95, the temperature sensor 30 is received in the receiving chamber 95; the thermal conductive member 70 is in contact with the bottom face of the water tray 210.
  • heat from the bottom face of the water tray 210 can be transferred to the temperature sensor 30 via the thermal conductive member 70, and the unexpected surrounding heat can be prevented by the thermal insulation holder 20 from impacting on the temperature sensor 30.
  • the thermal conductive member 70 is specially designed such that the temperature sensor 30 has best thermal mass to match the water temperature gradient from the bottom face of the water tray 210 to a water surface in the water tray 210 during heating.
  • the temperature of the water surface in the water tray 210 can be measured indirectly and precisely without software correction.
  • the thermal insulation holder 20 may be made of good heat insulation materials, such as glass fiber, asbestos, rock wool, slag wool, silicate, diatomite, expanded vermiculite, expanded perlite, foamed clay, lightweight concrete, microporous calcium silicate, foamed glass, ceramic fiber, Bakelite, etc., which is not specifically limited by the present disclosure.
  • the thermal conductive member 70 may be made of good heat conduction materials, such as diamond, silver, gold, aluminium nitride, silicon carbide, aluminum, tungsten, graphite, zinc, red copper, etc., which is not specifically limited by the present disclosure.
  • the thermal conductivity of the material of the thermal conductive member 70 is 200-400 w /(m ⁇ K) , and preferably 400 w / (m ⁇ K) .
  • the thermal conductive member 70 has a mass between 7-15 grams, preferably 10 grams; and a contact area between the thermal conductive member 70 and the bottom face of a water tray 210 is 100-200 mm 2 , preferably 200 mm 2 .
  • the thermal conductive member 70 is shaped and sized to meet the requirements of the mass and the contact area.
  • the thermal insulation holder 20 defines a first groove 25 in an end face of the thermal insulation holder 20 facing the thermal conductive member 70
  • the thermal conductive member 70 defines a second groove 75 in an end face of the thermal conductive member 70 facing the thermal insulation holder 20
  • the first groove 25 and the second groove 75 cooperate to form the receiving chamber 95.
  • the temperature sensor 30 may be received in receiving chamber 95 formed by the first groove 25 and the second groove 75. That is, the receiving chamber 95 is closed, and the temperature sensor 30 is enclosed by the thermal conductive member 70 and the thermal insulation holder 20 and prevented from exposing to unexpected surrounding heat.
  • the thermal conductive member 70 defines a third groove 77 in communication with the second groove 75, and an end of the thermal insulation holder 20 facing the thermal conductive member 70 is fitted in the third groove 77.
  • the thermal conductive member 70 may be firmly coupled to the thermal insulation holder 20.
  • the thermal insulation holder 20 defines a channel 27 in communication with the first groove 25, and the temperature sensor 30 includes a cable 31 passing through the channel 27.
  • the cable 31 of the temperature sensor 30 may be well protected, and the temperature sensor may be connected to a controller via the cable.
  • the thermal conductive member 70 includes an extension portion 73 extending horizontally from an edge of the thermal conductive member 70 and configured to contact the bottom face of the water tray 210.
  • contact area between the thermal conductive member 70 and the bottom face of the water tray 210 may be increased to improve the heat transfer efficiency.
  • the temperature sensor assembly 100 further includes a thermal insulation sleeve 60 surrounding the thermal insulation holder 20 and the thermal conductive member 70.
  • a thermal insulation sleeve 60 surrounding the thermal insulation holder 20 and the thermal conductive member 70.
  • the thermal insulation sleeve 60 may be made of good heat insulation materials, such as glass fiber, asbestos, rock wool, slag wool, silicate, diatomite, expanded vermiculite, expanded perlite, foamed clay, lightweight concrete, microporous calcium silicate, foamed glass, ceramic fiber, Bakelite, etc., which is not specifically limited by the present disclosure.
  • the temperature sensor assembly 100 further includes a base 10 and a cover 40 coupled to the base 10 to define a first accommodation chamber 97.
  • the thermal insulation holder 20 is movably accommodated in the first accommodation chamber 97 and protruded through the cover 40, and the thermal insulation sleeve 60 is coupled to the cover 40.
  • the thermal insulation holder 20 and the thermal insulation sleeve 60 may be supported by the base 10 and the cover 40.
  • the cover 40 includes protruding portion 41 and a through hole 48 in the protruding portion 41, the through hole 48 is in communication with the first accommodation chamber 97, the thermal insulation holder 20 is protruded through the through hole 48 and movable along an axis of the through hole 48, and the thermal insulation sleeve 60 is fitted over the protruding portion 41.
  • the relative position between the thermal insulation sleeve 60 and the thermal insulation holder 20 may be determined.
  • the base 10 and the cover 40 may be made of good heat conduction materials, such as diamond, silver, gold, aluminium nitride, silicon carbide, aluminum, tungsten, graphite, zinc, etc.
  • the unexpected surrounding heat blocked by the thermal insulation sleeve 60 may be quickly guided and dismissed through the base 10 and the cover 40.
  • the cover 40 includes a plate portion 43 extending horizontally from a bottom edge of the protruding portion 41, and the plate portion 43 defines a clearance hole 45;
  • the base 10 defines an installation groove 11 in a top face of the base 10 and defines a thread hole 12 in a bottom of the installation groove 11 corresponding to the clearance hole 45;
  • the plate portion 43 is received in the installation groove 11 and fixed to the base 10 by a screw 80 passing through the clearance hole 45 and screwing into the thread hole 12.
  • the thermal insulation holder 20 includes a column portion 21 and a flange portion 23 extending radially from a bottom edge of the column portion 21, the column portion 21 is fitted in the through hole 48 of the cover 40, the flange portion 23 is fitted in the first accommodation chamber 97.
  • the thermal insulation holder 20 is movable along the axis of the through hole 48, and the flange portion 23 may prevent the thermal insulation holder 20 from coming out from the base 10 and the cover 40.
  • the temperature sensor assembly 100 further includes an elastic member 50 arranged between the base 10 and the thermal insulation holder 20 and configured to bias the thermal insulation holder 20 to protrude through the cover 40.
  • the thermal conductive member 70 coupled to the thermal insulation holder 20 may be pressed tightly on the bottom face of the water tray 210, to improve heat transfer efficiency.
  • the elastic member 50 may be a spiral spring 51.
  • the elastic member 50 may be a plate spring, a torsion bar spring, a gas spring, a rubber spring or the like, which is not specifically limited by the present disclosure.
  • the base 10 includes a second accommodation chamber 99 in communication with the first accommodation chamber 97, and the elastic member 50 is accommodating in the second accommodation chamber 99.
  • the elastic member 50 may be properly mounted.
  • the thermal conductive member 70 and an inner wall of the thermal insulation sleeve 60 define a gap 90
  • the cover 40 defines a water hole 49
  • the base 10 defines a water chamber 13
  • the gap 90, the water hole 49 and the water chamber 13 are in communication with one another to collect water spilled from the water tray 210.
  • the water spilled from the water tray 210 may be collected and the prevented from being accumulated at the water tray 210, and prevented from leaking to inside circuits.
  • the water hole 49 is defined in the protruding portion 41 of the cover 40, and the water hole 49 is in communication with the through hole 48.
  • the structure of the cover 40 may be more compact.
  • the base 10 further defines a drain hole 19 in a bottom of the water chamber 13.
  • the water spilled from the water tray 210 may be guided and discharged from the water bath 200 without damage to the water bath 200.
  • the water hole 49 is in communication with the first accommodation chamber 97, and the water chamber 13 is in communication with the first accommodation chamber 97.
  • the first accommodation chamber 97 may be fully used, and the structure of the temperature sensor assembly 100 may be more compact.
  • the water chamber 13 is in communication with the second accommodation chamber 99, and the base 10 defines a notch 15 in communication with the water chamber 13.
  • the structure of the base 10 may be compact, and the cable 31 of the temperature sensor 30 may extend from a bottom face of the sensor, passes through the second accommodation chamber 99 and the water chamber 13, and extends out of the base 10 via the notch 15.
  • Embodiments of the present disclosure further provide a water bath 200.
  • the water bath 200 includes a water tray 210 and a temperature sensor assembly 100 according to any one of above-described embodiments.
  • the thermal conductive member 70 is in contact with a bottom face of the water tray 210.
  • the thermal conductive member 70 of the temperature sensor assembly 100 is in contact with the bottom face of the water tray 210.
  • heat from the bottom face of the water tray 210 can be transferred to the temperature sensor 30 via the thermal conductive member 70, and the unexpected surrounding heat can be prevented by the thermal insulation holder 20 from impacting on the temperature sensor 30.
  • the thermal conductive member 70 is specially designed such that the temperature sensor 30 has best thermal mass to match the water temperature gradient from the bottom face of the water tray 210 to a water surface in the water tray 210 during heating.
  • the temperature of the water surface in the water tray 210 can be measured indirectly and precisely without software correction.
  • the water bath 200 further includes a heating frame 220.
  • the heating frame 220 defines an installation opening 221 in a bottom of the heating frame 220, the water tray 210 is accommodated in the heating frame 220, the temperature sensor assembly 100 is coupled at the installation opening 221, and the thermal conductive member 70 passes through the installation opening 221 and contacts the bottom face of the water tray 210.
  • the temperature sensor assembly 100 may be coupled to the heating frame 220, and the thermal conductive member 70 may come into contact with the bottom face of the water tray 210 through the installation opening 221 of the heating frame 220.
  • the water bath 200 further includes a bottom plate 230, and the temperature sensor assembly 100 is mounted between the heating frame 220 and the bottom plate 230.
  • the thermal insulation sleeve 60 includes a raised edge 63 matching a shape of the installation opening 221, and the raised edge 63 is fitted in the installation opening 221; the bottom plate 230 defines an aperture 231, the base 10 includes a projection portion 17 at a bottom of the base 10, and the projection portion 17 is fitted in the aperture 231.
  • the temperature sensor assembly 100 may be firmly mounted in the water bath 200.
  • the drain hole 19 is defined in the projection portion 17 of the base 10.
  • the water collected in the water chamber 13 may be discharged from the water bath 200 via the aperture 231 without damage to inside components of the water bath 200.
  • a temperature sensor assembly 100 for a water bath 200 will be described in detail below with reference to FIGS. 1 to 6.
  • FIG. 1 is an exploded view of a temperature sensor assembly according to an embodiment of the present disclosure.
  • the temperature sensor assembly 100 according to embodiments of the present disclosure includes a base 10, a thermal insulation holder 20, a temperature sensor 30, a cover 40, an elastic member 50, a thermal insulation sleeve 60, and a thermal conductive member 70.
  • the base 10 is a substantially rectangular solid.
  • the base 10 defines an installation groove 11 in a top face of the base 10 for installation of the cover 40.
  • the base 10 defines two thread holes 12 in a bottom of the installation groove 11.
  • the base 10 also defines a water chamber 13 and a cylindrical chamber 14 in communication with the water chamber 13.
  • the water chamber 13 is configured to collect water spilled from a water tray 210 of the water bath 200.
  • the cylindrical chamber 14 (as an example of the second accommodation chamber 99) is configured to receive the elastic member 50.
  • the base 10 also includes a notch 15 in communication with the water chamber 13 for passage of a cable 31 of the temperature sensor 30.
  • the base 10 is made of good heat conductor, e.g. aluminum.
  • the thermal insulation holder 20 has a substantially cylindrical shape.
  • the thermal insulation holder 20 includes a column portion 21 and a flange portion 23 extending radially from a bottom edge of the column portion 21.
  • the thermal insulation holder 20 is made of good thermal insulation material, such as Bakelite.
  • the temperature sensor 30 has a cylindrical shape.
  • the temperature sensor 30 is coupled to a controller via the cable 31.
  • the cover 40 is substantially rectangular block.
  • the cove 40 includes a protruding portion 41 and a plate portion 43 extending horizontally from a bottom edge of the protruding portion 41.
  • the plate portion 43 is substantially rectangular, and diagonally defines two clearance holes 45 corresponding to the two thread holes 12 of the base 10 for passage of screws 80.
  • the cover 40 defines an accommodation groove 47 in a bottom face of the cover 40 as well as a through hole 48 and a water hole 49 in a top face of the protruding portion 41.
  • the through hole 48 and the water hole 49 are in communication with the accommodation groove 47, and the through hole 48 and the water hole 49 are also in communication with each other.
  • the cover 40 is made of good heat conductor, e.g. aluminum.
  • the elastic member 50 is a spiral spring 51.
  • the spiral spring 51 is arranged between the thermal insulation holder 20 and the base 10, and bias the flange portion 23 of the thermal insulation holder 20 to abut against the cover 40.
  • the thermal insulation sleeve 60 is substantially rectangular block.
  • the thermal insulation sleeve 60 defines a hollow cavity 61 extending through a top face and a bottom face of the thermal insulation sleeve 60.
  • the thermal insulation sleeve 60 includes a raised edge 63 at a top opening of the hollow cavity 61.
  • the thermal insulation sleeve 20 is made of good thermal insulation material, such as Bakelite.
  • the thermal conductive member 70 includes a body portion 71 and an extension portion 73 extending horizontally from a top edge of the body portion 71.
  • the body portion 71 is a substantially rectangular block.
  • the thermal conductive member 70 is made of good thermal conduction material, such as red copper.
  • FIG. 2 is a sectional view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state. As illustrated in FIG. 2, the plate portion 43 of the cover 40 is received in the installation groove 11 of the base 10, and is coupled to base 10 via two screws 80 that pass through the clearance holes 45 of the cover 40 and screw into the thread holes 12 of the base 10, respectively.
  • the thermal insulation holder 20 is arranged between the base 10 and the cover 40. Specifically, the column portion 21 of the thermal insulation holder 20 passes through the through hole 48 of cover 40, and the flange portion 23 of the thermal insulation holder 20 is received in the accommodation groove 47 (as an example of the first accommodation chamber 97) of the cover 40. A radial size of the flange portion 23 of the thermal insulation holder 20 is greater than a diameter of the through hole 48 of the cover 40. Thus, the thermal insulation holder 20 is prevented from coming out from the base 10 and the cover 40.
  • the thermal insulation holder 20 is movably along an axis of the through hole 48 of the cover 40.
  • the radial size of the flange portion 23 of the thermal insulation holder 20 is greater than a diameter of the cylindrical chamber 14 of the base 10.
  • the thermal insulation holder 20 is prevented from entering the cylindrical chamber 14 of the base 10. That is, the thermal insulation holder 20 is movable along the through hole 48 of the cover 40 between a bottom of the accommodation groove 47 of the cover 40 and the bottom of the installation groove 11 of the base 10.
  • the spiral spring 51 is received in the cylindrical chamber 14. An axis of the cylindrical chamber 14 is aligned with the axis of the through hole 48 of the cover 40. The spiral spring 51 biases the flange portion 23 of the thermal insulation holder 20 to the bottom of the accommodation groove 47.
  • the base 10 further includes a step portion 16 at a bottom of the cylindrical chamber 14. A bottom end of the spiral spring 51 is placed on the step portion 16, and thus is spaced from a bottom of the water chamber 13 to prevent the cable 31 of the temperature sensor 30 from pressing by the spiral spring 51.
  • the thermal insulation holder 20 includes a first groove 25 defined in a top end face of the thermal insulation holder 20 and a channel 27 extending through the thermal insulation holder 20 in an axial direction of the thermal insulation holder 20.
  • a size of the channel 27 is smaller than a size of the first groove 25.
  • the temperature sensor 30 is mounted in the first groove 25 of the thermal insulation holder 20.
  • the cable 31 extends from a bottom end face of the temperature sensor 30, passes through the channel 27 of the thermal insulation holder 20, a hollow portion of the spiral spring 51, the water chamber 13 sequentially, and extends out via the notch 15 of the base 10.
  • a heat shrink tube 33 is fitted over and shrunk on a portion of the cable 31 in the channel 27 of the thermal insulation holder 20 and the hollow portion of spiral spring 51 to protect the cable 31.
  • the thermal conductive member 70 defines a second groove 75 in a bottom end face of the body portion 71, and the second groove 75 of the thermal conductive member 70 is fitted over the temperature sensor 30. That is, the first groove 25 of the thermal insulation holder 20 and the second groove 75 of the thermal conductive member 70 collectively form a closed receiving chamber 95 for the temperature sensor 30.
  • the thermal conductive member 70 defines a third groove 77 in communication with the second groove 75.
  • a diameter of the third groove 77 is greater than a diameter of the second groove 75, and a top end of the thermal insulation holder 20 is fitted in the third groove 77.
  • the thermal conductive member 70 is firmly coupled to the thermal insulation member.
  • the temperature sensor 30 is enclosed by the thermal insulation holder 20 and the thermal conductive member 70 and prevented from being exposed to the surroundings directly.
  • the thermal insulation sleeve 60 defines a stepped groove 65 in the hollow cavity 61, and the stepped groove 65 is fitted over the protruding portion 41 of the cover 40. Thus, the thermal insulation sleeve 60 is firmly coupled to the cover 40.
  • the thermal insulation sleeve 60 surrounds the thermal insulation holder 20, and the thermal conductive member 70. Thus, the thermal insulation sleeve 60 prevents most of unexpected heat of surrounding heating area from impacting on the temperature sensor 30.
  • the thermal conductive member 70 and an inner wall of the thermal insulation sleeve 60 define a gap 90.
  • the gap 90 is in communication with the water hole 49 in the cover 40 via the hollow cavity 61 of the thermal insulation sleeve 60.
  • the water hole 49 is in communication with the water chamber 13 in the base 10 via the accommodation groove 47 of the cover 40.
  • FIG. 3 is a perspective view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state.
  • the base 10 further includes a projection portion 17 at the bottom, and defines a drain hole 19 in the projection portion 17.
  • the drain hole 19 is in communication with the water chamber 13, and the water collected in the water chamber 13 can be discharged through the drain hole 19.
  • FIG. 4 is a top view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state. As illustrated in FIG. 4, the gap 90 between the periphery of the thermal conductive member 70 and the inner wall of the thermal insulation sleeve 60 is clearly illustrated.
  • a water bath 200 according to embodiments of the present disclosure will be described in detail below with reference to FIGS. 5 and 6.
  • FIG. 5 is a partial perspective view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted.
  • a water bath 200 includes a water tray 210, a heating frame 220, a temperature sensor assembly 100 and a bottom plate 230.
  • FIG. 6 is a partial sectional view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted.
  • the water tray 210 is mounted in the heating frame 220.
  • the water tray 210 is configured to contain water, and the heating frame 220 is configured to heat the water tray 210.
  • the bottom plate 230 is configured to mount various components of the water bath 200, such as circuits, electronics, etc.
  • the temperature sensor assembly 100 is mounted between the heating frame 220 and the bottom plate 230.
  • the heating frame 220 defines an installation opening 221 in a bottom of the heating frame 220; the temperature sensor assembly 100 is coupled at the installation opening 221, and the thermal conductive member 70 passes through the installation opening 221 and comes into contact with the bottom face of the water tray 210.
  • the raised edge 63 of the thermal insulation sleeve 60 is fitted with the installation opening 221 of the heating frame 220.
  • the bottom plate 230 defines an aperture 231, and the projection portion 17 of the base 10 is inserted into the aperture 231.
  • thermo insulation sleeve 60 there are two heat transfer paths bounded by the thermal insulation sleeve 60.
  • a first heat transfer path the heat from the bottom face of the water tray 210 is conducted through the thermal conductive member 70 to the temperature sensor 30.
  • the thermal conductive member 70 is made of good heat conductive material.
  • the thermal conductive member 70 has specially selected material, mass, shape, dimension and contacting area with the bottom face of the water tray 210 such that the temperature sensor 30 has best thermal mass to match water temperature gradient from the bottom face of the water tray 210 to a water surface in the water tray 210 during heating.
  • the temperature of the water surface in the water tray 210 can be measured indirectly and precisely without software correction.
  • the unexpected heat is prevented by the thermal insulation sleeve 60 from accessing the thermal conductive member 70 and the thermal insulation holder 20.
  • the impact of the unexpected surrounding heat on the temperature sensor 30 is greatly lightened.
  • the base 10 and the cover 40 are made of aluminum which is good heat conductor, and the unexpected surrounding heat can be quickly dismissed through the base 10 and the cover 40. Thus, the accuracy of the temperature measurement can be ensured.
  • the spilled water between the heating frame 220 and the water tray 210 can flow into the water chamber 13 of the base 10 via the gap 90 between the thermal conductive member 70 and the inner wall of the thermal insulation sleeve 60, the hollow cavity 61 of the thermal insulation sleeve 60, the water hole 49 in the cover 40 and the accommodation groove 47 of the cover 40, and can be discharged via the drain hole 19 in the projection portion 17 of the base 10.
  • the spilled water can be discharged from the water bath 200 via the aperture 231 of the bottom plate 230.
  • the spilled water can be prevented from being accumulated between the heating frame 220 and the water tray 210, and prevented from leaking to inside circuits.

Abstract

A temperature sensor assembly (100) for a water bath (200) includes a thermal insulation holder (20), a temperature sensor (30), and a thermal conductive member (70). The temperature sensor (30) is coupled to the thermal insulation holder (20). The thermal conductive member (70) is coupled to the thermal insulation holder (20) and in contact with the temperature sensor (30). The thermal conductive member (70) is configured to contact a bottom face of a water tray (210) of the water bath (200). The thermal insulation holder (20) and the thermal conductive member (70) cooperatively define a receiving chamber (95) and the temperature sensor (30) is received in the receiving chamber (95).A water bath (200) is also provided.

Description

TEMPERATURE SENSOR ASSEMBLY FOR WATER BATH AND WATER BATH FIELD
The present disclosure relate to histological processing technologies, and more particularly, to a temperature sensor assembly for a water bath and a water bath.
BACKGROUND
Water baths are used to heat paraffin tissue sections. Paraffin tissue sections are generally laid flat on a water surface in a water tray of the water baths. Thus, temperature control of the water surface is our concern. In order to control the temperature of the water surface, it should be precisely measured.
In related art, water immerged temperature sensors with software correction or indirect temperature sensors with software correction are employed to measure the temperature of the water surface in the water tray.
Because of the water temperature gradient during heating, water immerged temperature sensors or normal indirect temperature sensors can’ t measure the temperature of the water surface directly without software correction. Meantime this software correction always has deviation under different conditions and has to be dynamic matched by software and it takes great efforts to get the correction parameters.
SUMMARY
Embodiments of the present disclosure seek to solve at least one of the problems existing in the related art to at least some extent.
Embodiments of the present disclosure provide a temperature sensor assembly for a water bath. The temperature sensor assembly includes: a thermal insulation holder, a temperature sensor, and a thermal conductive member. The temperature sensor is coupled to the thermal insulation holder. The thermal conductive member is coupled to the thermal insulation holder and in contact with the temperature sensor. The thermal conductive member is configured to contact a bottom face of a water tray of the water bath. The thermal insulation holder and the thermal conductive member cooperatively define a receiving chamber and the temperature sensor is received in the receiving chamber.
In the temperature sensor assembly according to embodiments of the present disclosure, the thermal insulation holder and the thermal conductive member cooperatively define the receiving chamber, the temperature sensor is received in the receiving chamber; the thermal conductive member is in contact with the bottom face of the water tray. Thus, heat from the bottom face of the water tray can be transferred to the temperature sensor via the thermal conductive member, and the unexpected surrounding heat can be prevented by the thermal insulation holder from impacting on the temperature sensor. Furthermore, the thermal conductive member is specially designed such that the temperature sensor has best thermal mass to match the water temperature gradient from the bottom face of the water tray to a water surface in the water tray during heating. Thus, the temperature of the water surface in the water tray can be measured indirectly and precisely without software correction.
In some embodiments, the thermal insulation holder defines a first groove in an end face of the thermal insulation holder facing the thermal conductive member, the thermal conductive member defines a second groove in an end face of the thermal conductive member facing the thermal insulation holder, and the first groove and the second groove cooperate to form the receiving chamber. Thus, the temperature sensor may be received in receiving chamber formed by the first groove and the second groove. That is, the receiving chamber is closed, and the temperature sensor is enclosed by the thermal conductive member and the thermal insulation holder and prevented from exposing to unexpected surrounding heat.
In some embodiments, the thermal conductive member defines a third groove in communication with the second groove, and an end of the thermal insulation holder facing the thermal conductive member is fitted in the third groove. Thus, the thermal conductive member may be firmly coupled to the thermal insulation holder.
In some embodiments, the thermal insulation holder defines a channel in communication with the first groove, and the temperature sensor includes a cable passing through the channel. Thus, the cable of the sensor may be well protected, and the temperature sensor may be connected to a controller via the cable.
In some embodiments, the thermal conductive member includes an extension portion extending horizontally from an edge of the thermal conductive member and configured to contact the bottom face of the water tray. Thus, contact area between the thermal conductive member and the bottom face of the water tray may be increased to improve the heat transfer efficiency.
In some embodiments, the temperature sensor assembly further includes a thermal insulation sleeve surrounding the thermal insulation holder and the thermal conductive member. Thus, unexpected surrounding heat may be prevented by the thermal insulation sleeve from impacting on the thermal conductive member and the thermal insulation holder, to ensure accuracy of measurement of the temperature sensor.
In some embodiments, the temperature sensor assembly further includes a base and a cover coupled to the base to define a first accommodation chamber. The thermal insulation holder is movably accommodated in the first accommodation chamber and protruded through the cover, and the thermal insulation sleeve is coupled to the cover. Thus, the thermal insulation holder and the thermal insulation sleeve may be supported by the base and the cover.
In some embodiments, the cover includes protruding portion and a through hole in the protruding portion, the through hole is in communication with the first accommodation chamber, the thermal insulation holder is protruded through the through hole and movable along an axis of the through hole, and the thermal insulation sleeve is fitted over the protruding portion. Thus, the relative position between the thermal insulation sleeve and the thermal insulation holder may be determined.
In some embodiments, the temperature sensor assembly further includes an elastic member arranged between the base and the thermal insulation holder and configured to bias the thermal insulation holder to protrude through the cover. Thus, the thermal conductive member coupled to the thermal insulation holder may be pressed tightly on the bottom face of the water tray, to improve heat transfer efficiency.
In some embodiments, the base includes a second accommodation chamber in communication with the first accommodation chamber, and the elastic member is accommodating in the second accommodation chamber. Thus, the elastic member may be properly mounted.
In some embodiments, the thermal conductive member and an inner wall of the thermal insulation sleeve define a gap, the cover defines a water hole, the base defines a water chamber, and the gap, the water hole and the water chamber are in communication with one another to collect water spilled from the water tray. Thus, the water spilled from the water tray may be collected and the prevented from being accumulated at the water tray, and prevented from leaking to inside circuits.
In some embodiments, the base further defines a drain hole in a bottom of the water chamber.  Thus, the water spilled from the water tray may be guided and discharged from the water bath without damage to the water bath.
In some embodiments, the water hole is in communication with the first accommodation chamber, and the water chamber is in communication with the first accommodation chamber. Thus, the first accommodation chamber may be fully used, and the structure of the temperature sensor assembly may be more compact.
Embodiments of the present disclosure further provide a water bath. The water bath includes a water tray and a temperature sensor assembly according to any one of above-described embodiments. The thermal conductive member is in contact with a bottom face of the water tray.
In the water bath according to embodiments of the present disclosure, the thermal conductive member of the temperature sensor assembly is in contact with the bottom face of the water tray. Thus, heat from the bottom face of the water tray can be transferred to the temperature sensor via the thermal conductive member, and the unexpected surrounding heat can be prevented by the thermal insulation holder from impacting on the temperature sensor. Furthermore, the thermal conductive member is specially designed such that the temperature sensor has best thermal mass to match the water temperature gradient from the bottom face of the water tray to a water surface in the water tray during heating. Thus, the temperature of the water surface in the water tray can be measured indirectly and precisely without software correction.
In some embodiments, the water bath further includes a heating frame. The heating frame defines an installation opening in a bottom of the heating frame, the water tray is accommodated in the heating frame, the temperature sensor assembly is coupled at the installation opening, and the thermal conductive member passes through the installation opening and contacts the bottom face of the water tray. Thus, the temperature sensor assembly may be coupled to the heating frame, and the thermal conductive member may come into contact with the bottom face of the water tray through the installation opening of the heating frame.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects and advantages of embodiments of the present disclosure will  become apparent and more readily appreciated from the following descriptions made with reference to the drawings, in which:
FIG. 1 is an exploded view of a temperature sensor assembly according to an embodiment of the present disclosure.
FIG. 2 is a sectional view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state.
FIG. 3 is a perspective view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state.
FIG. 4 is a top view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state.
FIG. 5 is a partial perspective view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted.
FIG. 6 is a partial sectional view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted.
DETAILED DESCRIPTION
Reference will be made in detail to embodiments of the present disclosure. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure. The same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions.
In the specification, unless specified or limited otherwise, relative terms such as “central” , “longitudinal” , “lateral” , “front” , “rear” , “right” , “left” , “inner” , “outer” , “lower” , “upper” , “horizontal” , “vertical” , “above” , “below” , “up” , “top” , “bottom” as well as derivative thereof (e.g., “horizontally” , “downwardly” , “upwardly” , etc. ) should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the present disclosure be constructed or operated in a particular orientation.
In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” may comprise one  or more of this feature. In the description of the present invention, “a plurality of” means two or more than two, unless specified otherwise.
In the present invention, unless specified or limited otherwise, the terms “mounted, ” “connected, ” “coupled, ” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications or interactions of two elements, which can be understood by those skilled in the art according to specific situations.
Embodiments of the present disclosure provide a temperature sensor assembly 100 for a water bath 200. As illustrated in FIGS. 1 and 2, the temperature sensor assembly 100 includes: a thermal insulation holder 20, a temperature sensor 30, and a thermal conductive member 70. The temperature sensor 30 is coupled to the thermal insulation holder 20. The thermal conductive member 70 is coupled to the thermal insulation holder 20 and in contact with the temperature sensor 30. The thermal conductive member 70 is configured to contact a bottom face of a water tray 210 of the water bath 200. The thermal insulation holder 20 and the thermal conductive member 70 cooperatively define a receiving chamber 95 and the temperature sensor 30 is received in the receiving chamber 95.
In the temperature sensor assembly according to embodiments of the present disclosure, the thermal insulation holder 20 and the thermal conductive member 70 cooperatively define the receiving chamber 95, the temperature sensor 30 is received in the receiving chamber 95; the thermal conductive member 70 is in contact with the bottom face of the water tray 210. Thus, heat from the bottom face of the water tray 210 can be transferred to the temperature sensor 30 via the thermal conductive member 70, and the unexpected surrounding heat can be prevented by the thermal insulation holder 20 from impacting on the temperature sensor 30. Furthermore, the thermal conductive member 70 is specially designed such that the temperature sensor 30 has best thermal mass to match the water temperature gradient from the bottom face of the water tray 210 to a water surface in the water tray 210 during heating. Thus, the temperature of the water surface in the water tray 210 can be measured indirectly and precisely without software correction.
In some examples, the thermal insulation holder 20 may be made of good heat insulation materials, such as glass fiber, asbestos, rock wool, slag wool, silicate, diatomite, expanded vermiculite, expanded perlite, foamed clay, lightweight concrete, microporous calcium silicate,  foamed glass, ceramic fiber, Bakelite, etc., which is not specifically limited by the present disclosure. The thermal conductive member 70 may be made of good heat conduction materials, such as diamond, silver, gold, aluminium nitride, silicon carbide, aluminum, tungsten, graphite, zinc, red copper, etc., which is not specifically limited by the present disclosure. In some examples, the thermal conductivity of the material of the thermal conductive member 70 is 200-400 w /(m ·K) , and preferably 400 w / (m ·K) .
In some examples, the thermal conductive member 70 has a mass between 7-15 grams, preferably 10 grams; and a contact area between the thermal conductive member 70 and the bottom face of a water tray 210 is 100-200 mm 2, preferably 200 mm 2. The thermal conductive member 70 is shaped and sized to meet the requirements of the mass and the contact area.
In some embodiments, as illustrated in FIG. 2, the thermal insulation holder 20 defines a first groove 25 in an end face of the thermal insulation holder 20 facing the thermal conductive member 70, the thermal conductive member 70 defines a second groove 75 in an end face of the thermal conductive member 70 facing the thermal insulation holder 20, and the first groove 25 and the second groove 75 cooperate to form the receiving chamber 95. Thus, the temperature sensor 30 may be received in receiving chamber 95 formed by the first groove 25 and the second groove 75. That is, the receiving chamber 95 is closed, and the temperature sensor 30 is enclosed by the thermal conductive member 70 and the thermal insulation holder 20 and prevented from exposing to unexpected surrounding heat.
In some embodiments, as illustrated in FIG. 2, the thermal conductive member 70 defines a third groove 77 in communication with the second groove 75, and an end of the thermal insulation holder 20 facing the thermal conductive member 70 is fitted in the third groove 77. Thus, the thermal conductive member 70 may be firmly coupled to the thermal insulation holder 20.
In some embodiments, as illustrated in FIG. 2, the thermal insulation holder 20 defines a channel 27 in communication with the first groove 25, and the temperature sensor 30 includes a cable 31 passing through the channel 27. Thus, the cable 31 of the temperature sensor 30 may be well protected, and the temperature sensor may be connected to a controller via the cable.
In some embodiments, as illustrated in FIGS. 1 and 2, the thermal conductive member 70 includes an extension portion 73 extending horizontally from an edge of the thermal conductive member 70 and configured to contact the bottom face of the water tray 210. Thus, contact area between the thermal conductive member 70 and the bottom face of the water tray 210 may be  increased to improve the heat transfer efficiency.
In some embodiments, as illustrated in FIGS. 1 and 2, the temperature sensor assembly 100 further includes a thermal insulation sleeve 60 surrounding the thermal insulation holder 20 and the thermal conductive member 70. Thus, unexpected surrounding heat may be prevented by the thermal insulation sleeve 60 from impacting on the thermal conductive member 70 and the thermal insulation holder 20, to ensure accuracy of measurement of the temperature sensor 30. In some examples, the thermal insulation sleeve 60 may be made of good heat insulation materials, such as glass fiber, asbestos, rock wool, slag wool, silicate, diatomite, expanded vermiculite, expanded perlite, foamed clay, lightweight concrete, microporous calcium silicate, foamed glass, ceramic fiber, Bakelite, etc., which is not specifically limited by the present disclosure.
In some embodiments, as illustrated in FIGS. 1 and 2, the temperature sensor assembly 100 further includes a base 10 and a cover 40 coupled to the base 10 to define a first accommodation chamber 97. The thermal insulation holder 20 is movably accommodated in the first accommodation chamber 97 and protruded through the cover 40, and the thermal insulation sleeve 60 is coupled to the cover 40. Thus, the thermal insulation holder 20 and the thermal insulation sleeve 60 may be supported by the base 10 and the cover 40.
In some embodiments, as illustrated in FIGS. 1 and 2, the cover 40 includes protruding portion 41 and a through hole 48 in the protruding portion 41, the through hole 48 is in communication with the first accommodation chamber 97, the thermal insulation holder 20 is protruded through the through hole 48 and movable along an axis of the through hole 48, and the thermal insulation sleeve 60 is fitted over the protruding portion 41. Thus, the relative position between the thermal insulation sleeve 60 and the thermal insulation holder 20 may be determined. In some examples, the base 10 and the cover 40 may be made of good heat conduction materials, such as diamond, silver, gold, aluminium nitride, silicon carbide, aluminum, tungsten, graphite, zinc, etc. Thus, the unexpected surrounding heat blocked by the thermal insulation sleeve 60 may be quickly guided and dismissed through the base 10 and the cover 40.
In some embodiments, as illustrated in FIGS. 1 and 2, the cover 40 includes a plate portion 43 extending horizontally from a bottom edge of the protruding portion 41, and the plate portion 43 defines a clearance hole 45; the base 10 defines an installation groove 11 in a top face of the base 10 and defines a thread hole 12 in a bottom of the installation groove 11 corresponding to the clearance hole 45; the plate portion 43 is received in the installation groove 11 and fixed to the  base 10 by a screw 80 passing through the clearance hole 45 and screwing into the thread hole 12.
In some examples, as illustrated in FIGS. 1 and 2, the thermal insulation holder 20 includes a column portion 21 and a flange portion 23 extending radially from a bottom edge of the column portion 21, the column portion 21 is fitted in the through hole 48 of the cover 40, the flange portion 23 is fitted in the first accommodation chamber 97. Thus, the thermal insulation holder 20 is movable along the axis of the through hole 48, and the flange portion 23 may prevent the thermal insulation holder 20 from coming out from the base 10 and the cover 40.
In some embodiments, as illustrated in FIGS. 1 and 2, the temperature sensor assembly 100 further includes an elastic member 50 arranged between the base 10 and the thermal insulation holder 20 and configured to bias the thermal insulation holder 20 to protrude through the cover 40. Thus, the thermal conductive member 70 coupled to the thermal insulation holder 20 may be pressed tightly on the bottom face of the water tray 210, to improve heat transfer efficiency. For example, the elastic member 50 may be a spiral spring 51. In other examples, the elastic member 50 may be a plate spring, a torsion bar spring, a gas spring, a rubber spring or the like, which is not specifically limited by the present disclosure.
In some embodiments, as illustrated in FIGS. 1 and 2, the base 10 includes a second accommodation chamber 99 in communication with the first accommodation chamber 97, and the elastic member 50 is accommodating in the second accommodation chamber 99. Thus, the elastic member 50 may be properly mounted.
In some embodiments, as illustrated in FIGS. 2 and 4, the thermal conductive member 70 and an inner wall of the thermal insulation sleeve 60 define a gap 90, the cover 40 defines a water hole 49, the base 10 defines a water chamber 13, and the gap 90, the water hole 49 and the water chamber 13 are in communication with one another to collect water spilled from the water tray 210. Thus, the water spilled from the water tray 210 may be collected and the prevented from being accumulated at the water tray 210, and prevented from leaking to inside circuits.
In some examples, as illustrated in FIGS. 1 and 2, the water hole 49 is defined in the protruding portion 41 of the cover 40, and the water hole 49 is in communication with the through hole 48. Thus, the structure of the cover 40 may be more compact.
In some embodiments, as illustrated in FIGS. 2 and 3, the base 10 further defines a drain hole 19 in a bottom of the water chamber 13. Thus, the water spilled from the water tray 210 may be guided and discharged from the water bath 200 without damage to the water bath 200.
In some embodiments, as illustrated in FIGS. 1 and 2, the water hole 49 is in communication with the first accommodation chamber 97, and the water chamber 13 is in communication with the first accommodation chamber 97. Thus, the first accommodation chamber 97 may be fully used, and the structure of the temperature sensor assembly 100 may be more compact.
In some examples, as illustrated in FIGS. 1 and 2, the water chamber 13 is in communication with the second accommodation chamber 99, and the base 10 defines a notch 15 in communication with the water chamber 13. Thus, the structure of the base 10 may be compact, and the cable 31 of the temperature sensor 30 may extend from a bottom face of the sensor, passes through the second accommodation chamber 99 and the water chamber 13, and extends out of the base 10 via the notch 15.
Embodiments of the present disclosure further provide a water bath 200. As illustrated in FIGS. 5 and 6, the water bath 200 includes a water tray 210 and a temperature sensor assembly 100 according to any one of above-described embodiments. The thermal conductive member 70 is in contact with a bottom face of the water tray 210.
In the water bath 200 according to embodiments of the present disclosure, the thermal conductive member 70 of the temperature sensor assembly 100 is in contact with the bottom face of the water tray 210. Thus, heat from the bottom face of the water tray 210 can be transferred to the temperature sensor 30 via the thermal conductive member 70, and the unexpected surrounding heat can be prevented by the thermal insulation holder 20 from impacting on the temperature sensor 30. Furthermore, the thermal conductive member 70 is specially designed such that the temperature sensor 30 has best thermal mass to match the water temperature gradient from the bottom face of the water tray 210 to a water surface in the water tray 210 during heating. Thus, the temperature of the water surface in the water tray 210 can be measured indirectly and precisely without software correction.
In some embodiments, as illustrated in FIGS. 5 and 6, the water bath 200 further includes a heating frame 220. The heating frame 220 defines an installation opening 221 in a bottom of the heating frame 220, the water tray 210 is accommodated in the heating frame 220, the temperature sensor assembly 100 is coupled at the installation opening 221, and the thermal conductive member 70 passes through the installation opening 221 and contacts the bottom face of the water tray 210. Thus, the temperature sensor assembly 100 may be coupled to the heating frame 220, and the thermal conductive member 70 may come into contact with the bottom face of the water tray  210 through the installation opening 221 of the heating frame 220.
In some examples, the water bath 200 further includes a bottom plate 230, and the temperature sensor assembly 100 is mounted between the heating frame 220 and the bottom plate 230. For example, the thermal insulation sleeve 60 includes a raised edge 63 matching a shape of the installation opening 221, and the raised edge 63 is fitted in the installation opening 221; the bottom plate 230 defines an aperture 231, the base 10 includes a projection portion 17 at a bottom of the base 10, and the projection portion 17 is fitted in the aperture 231. Thus, the temperature sensor assembly 100 may be firmly mounted in the water bath 200.
In some examples, the drain hole 19 is defined in the projection portion 17 of the base 10. Thus, the water collected in the water chamber 13 may be discharged from the water bath 200 via the aperture 231 without damage to inside components of the water bath 200.
temperature sensor assembly 100 for a water bath 200 according to a specific embodiment of the present disclosure will be described in detail below with reference to FIGS. 1 to 6.
FIG. 1 is an exploded view of a temperature sensor assembly according to an embodiment of the present disclosure. As illustrated in FIG. 1, the temperature sensor assembly 100 according to embodiments of the present disclosure includes a base 10, a thermal insulation holder 20, a temperature sensor 30, a cover 40, an elastic member 50, a thermal insulation sleeve 60, and a thermal conductive member 70.
The base 10 is a substantially rectangular solid. The base 10 defines an installation groove 11 in a top face of the base 10 for installation of the cover 40. The base 10 defines two thread holes 12 in a bottom of the installation groove 11. The base 10 also defines a water chamber 13 and a cylindrical chamber 14 in communication with the water chamber 13. The water chamber 13 is configured to collect water spilled from a water tray 210 of the water bath 200. The cylindrical chamber 14 (as an example of the second accommodation chamber 99) is configured to receive the elastic member 50. The base 10 also includes a notch 15 in communication with the water chamber 13 for passage of a cable 31 of the temperature sensor 30. The base 10 is made of good heat conductor, e.g. aluminum.
The thermal insulation holder 20 has a substantially cylindrical shape. The thermal insulation holder 20 includes a column portion 21 and a flange portion 23 extending radially from a bottom edge of the column portion 21. The thermal insulation holder 20 is made of good thermal insulation material, such as Bakelite.
The temperature sensor 30 has a cylindrical shape. The temperature sensor 30 is coupled to a controller via the cable 31.
The cover 40 is substantially rectangular block. The cove 40 includes a protruding portion 41 and a plate portion 43 extending horizontally from a bottom edge of the protruding portion 41. The plate portion 43 is substantially rectangular, and diagonally defines two clearance holes 45 corresponding to the two thread holes 12 of the base 10 for passage of screws 80. The cover 40 defines an accommodation groove 47 in a bottom face of the cover 40 as well as a through hole 48 and a water hole 49 in a top face of the protruding portion 41. The through hole 48 and the water hole 49 are in communication with the accommodation groove 47, and the through hole 48 and the water hole 49 are also in communication with each other. The cover 40 is made of good heat conductor, e.g. aluminum.
The elastic member 50 is a spiral spring 51. The spiral spring 51 is arranged between the thermal insulation holder 20 and the base 10, and bias the flange portion 23 of the thermal insulation holder 20 to abut against the cover 40.
The thermal insulation sleeve 60 is substantially rectangular block. The thermal insulation sleeve 60 defines a hollow cavity 61 extending through a top face and a bottom face of the thermal insulation sleeve 60. The thermal insulation sleeve 60 includes a raised edge 63 at a top opening of the hollow cavity 61. The thermal insulation sleeve 20 is made of good thermal insulation material, such as Bakelite.
The thermal conductive member 70 includes a body portion 71 and an extension portion 73 extending horizontally from a top edge of the body portion 71. The body portion 71 is a substantially rectangular block. The thermal conductive member 70 is made of good thermal conduction material, such as red copper.
FIG. 2 is a sectional view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state. As illustrated in FIG. 2, the plate portion 43 of the cover 40 is received in the installation groove 11 of the base 10, and is coupled to base 10 via two screws 80 that pass through the clearance holes 45 of the cover 40 and screw into the thread holes 12 of the base 10, respectively.
The thermal insulation holder 20 is arranged between the base 10 and the cover 40. Specifically, the column portion 21 of the thermal insulation holder 20 passes through the through hole 48 of cover 40, and the flange portion 23 of the thermal insulation holder 20 is received in the  accommodation groove 47 (as an example of the first accommodation chamber 97) of the cover 40. A radial size of the flange portion 23 of the thermal insulation holder 20 is greater than a diameter of the through hole 48 of the cover 40. Thus, the thermal insulation holder 20 is prevented from coming out from the base 10 and the cover 40. The thermal insulation holder 20 is movably along an axis of the through hole 48 of the cover 40. The radial size of the flange portion 23 of the thermal insulation holder 20 is greater than a diameter of the cylindrical chamber 14 of the base 10. Thus, the thermal insulation holder 20 is prevented from entering the cylindrical chamber 14 of the base 10. That is, the thermal insulation holder 20 is movable along the through hole 48 of the cover 40 between a bottom of the accommodation groove 47 of the cover 40 and the bottom of the installation groove 11 of the base 10.
The spiral spring 51 is received in the cylindrical chamber 14. An axis of the cylindrical chamber 14 is aligned with the axis of the through hole 48 of the cover 40. The spiral spring 51 biases the flange portion 23 of the thermal insulation holder 20 to the bottom of the accommodation groove 47. The base 10 further includes a step portion 16 at a bottom of the cylindrical chamber 14. A bottom end of the spiral spring 51 is placed on the step portion 16, and thus is spaced from a bottom of the water chamber 13 to prevent the cable 31 of the temperature sensor 30 from pressing by the spiral spring 51.
The thermal insulation holder 20 includes a first groove 25 defined in a top end face of the thermal insulation holder 20 and a channel 27 extending through the thermal insulation holder 20 in an axial direction of the thermal insulation holder 20. A size of the channel 27 is smaller than a size of the first groove 25. The temperature sensor 30 is mounted in the first groove 25 of the thermal insulation holder 20. The cable 31 extends from a bottom end face of the temperature sensor 30, passes through the channel 27 of the thermal insulation holder 20, a hollow portion of the spiral spring 51, the water chamber 13 sequentially, and extends out via the notch 15 of the base 10. A heat shrink tube 33 is fitted over and shrunk on a portion of the cable 31 in the channel 27 of the thermal insulation holder 20 and the hollow portion of spiral spring 51 to protect the cable 31.
The thermal conductive member 70 defines a second groove 75 in a bottom end face of the body portion 71, and the second groove 75 of the thermal conductive member 70 is fitted over the temperature sensor 30. That is, the first groove 25 of the thermal insulation holder 20 and the second groove 75 of the thermal conductive member 70 collectively form a closed receiving  chamber 95 for the temperature sensor 30.
The thermal conductive member 70 defines a third groove 77 in communication with the second groove 75. A diameter of the third groove 77 is greater than a diameter of the second groove 75, and a top end of the thermal insulation holder 20 is fitted in the third groove 77. Thus, the thermal conductive member 70 is firmly coupled to the thermal insulation member.
The temperature sensor 30 is enclosed by the thermal insulation holder 20 and the thermal conductive member 70 and prevented from being exposed to the surroundings directly.
The thermal insulation sleeve 60 defines a stepped groove 65 in the hollow cavity 61, and the stepped groove 65 is fitted over the protruding portion 41 of the cover 40. Thus, the thermal insulation sleeve 60 is firmly coupled to the cover 40.
The thermal insulation sleeve 60 surrounds the thermal insulation holder 20, and the thermal conductive member 70. Thus, the thermal insulation sleeve 60 prevents most of unexpected heat of surrounding heating area from impacting on the temperature sensor 30.
The thermal conductive member 70 and an inner wall of the thermal insulation sleeve 60 define a gap 90. The gap 90 is in communication with the water hole 49 in the cover 40 via the hollow cavity 61 of the thermal insulation sleeve 60. The water hole 49 is in communication with the water chamber 13 in the base 10 via the accommodation groove 47 of the cover 40. Thus, water spilled from the water tray 210 can be collected from the gap 90 to the water chamber 13.
FIG. 3 is a perspective view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state. As illustrated in FIG. 3, the base 10 further includes a projection portion 17 at the bottom, and defines a drain hole 19 in the projection portion 17. The drain hole 19 is in communication with the water chamber 13, and the water collected in the water chamber 13 can be discharged through the drain hole 19.
FIG. 4 is a top view of a temperature sensor assembly according to an embodiment of the present disclosure in an assembled state. As illustrated in FIG. 4, the gap 90 between the periphery of the thermal conductive member 70 and the inner wall of the thermal insulation sleeve 60 is clearly illustrated.
water bath 200 according to embodiments of the present disclosure will be described in detail below with reference to FIGS. 5 and 6.
FIG. 5 is a partial perspective view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted. As illustrated in FIG. 5, a water  bath 200 includes a water tray 210, a heating frame 220, a temperature sensor assembly 100 and a bottom plate 230.
FIG. 6 is a partial sectional view of a water bath according to an embodiment of the present disclosure in an assembled state with some components omitted. The water tray 210 is mounted in the heating frame 220. The water tray 210 is configured to contain water, and the heating frame 220 is configured to heat the water tray 210. The bottom plate 230 is configured to mount various components of the water bath 200, such as circuits, electronics, etc.
The temperature sensor assembly 100 is mounted between the heating frame 220 and the bottom plate 230. Specifically, the heating frame 220 defines an installation opening 221 in a bottom of the heating frame 220; the temperature sensor assembly 100 is coupled at the installation opening 221, and the thermal conductive member 70 passes through the installation opening 221 and comes into contact with the bottom face of the water tray 210. The raised edge 63 of the thermal insulation sleeve 60 is fitted with the installation opening 221 of the heating frame 220. The bottom plate 230 defines an aperture 231, and the projection portion 17 of the base 10 is inserted into the aperture 231.
According to the present disclosure, there are two heat transfer paths bounded by the thermal insulation sleeve 60.
In a first heat transfer path, the heat from the bottom face of the water tray 210 is conducted through the thermal conductive member 70 to the temperature sensor 30.
The thermal conductive member 70 is made of good heat conductive material. The thermal conductive member 70 has specially selected material, mass, shape, dimension and contacting area with the bottom face of the water tray 210 such that the temperature sensor 30 has best thermal mass to match water temperature gradient from the bottom face of the water tray 210 to a water surface in the water tray 210 during heating. Thus, the temperature of the water surface in the water tray 210 can be measured indirectly and precisely without software correction.
In a second heat transfer path, the unexpected heat is prevented by the thermal insulation sleeve 60 from accessing the thermal conductive member 70 and the thermal insulation holder 20. Thus, the impact of the unexpected surrounding heat on the temperature sensor 30 is greatly lightened. Furthermore, the base 10 and the cover 40 are made of aluminum which is good heat conductor, and the unexpected surrounding heat can be quickly dismissed through the base 10 and the cover 40. Thus, the accuracy of the temperature measurement can be ensured.
Additionally, a water path is formed. The spilled water between the heating frame 220 and the water tray 210 can flow into the water chamber 13 of the base 10 via the gap 90 between the thermal conductive member 70 and the inner wall of the thermal insulation sleeve 60, the hollow cavity 61 of the thermal insulation sleeve 60, the water hole 49 in the cover 40 and the accommodation groove 47 of the cover 40, and can be discharged via the drain hole 19 in the projection portion 17 of the base 10. Thus, the spilled water can be discharged from the water bath 200 via the aperture 231 of the bottom plate 230. The spilled water can be prevented from being accumulated between the heating frame 220 and the water tray 210, and prevented from leaking to inside circuits.
Reference throughout this specification to “an embodiment, ” “some embodiments, ” “one embodiment” , “another example, ” “an example, ” “a specific example, ” or “some examples, ” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as “in some embodiments, ” “in one embodiment” , “in an embodiment” , “in another example, ” “in an example, ” “in a specific example, ” or “in some examples, ” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure.
References list:
100 temperature sensor assembly
10 base
11 installation groove
12 thread hole
13 water chamber
14 cylindrical chamber
15 notch
16 step portion
17 projection portion
19 drain hole
20 thermal insulation holder
21 column portion
23 flange portion
25 first groove
27 channel
30 temperature sensor
31 cable
33 heat shrink tube
40 cover
41 protruding portion
43 plate portion
45 clearance hole
47 accommodation groove
48 through hole
49 water hole
50 elastic member
51 spiral spring
60 thermal insulation sleeve
61 hollow cavity
63 raised edge
65 stepped groove
70 thermal conductive member
71 body portion
73 extension portion
75 second groove
77 third groove
80 screw
90 gap
95 receiving chamber
97 first accommodation chamber
99 second accommodation chamber
200 water bath
210 water tray
220 heating frame
221 installation opening
230 bottom plate
231 aperture

Claims (15)

  1. A temperature sensor assembly for a water bath, comprising:
    a thermal insulation holder,
    a temperature sensor coupled to the thermal insulation holder, and
    a thermal conductive member coupled to the thermal insulation holder and in contact with the temperature sensor, the thermal conductive member being configured to contact a bottom face of a water tray of the water bath,
    wherein the thermal insulation holder and the thermal conductive member cooperatively define a receiving chamber and the temperature sensor is received in the receiving chamber.
  2. The temperature sensor assembly according to claim 1, wherein the thermal insulation holder defines a first groove in an end face of the thermal insulation holder facing the thermal conductive member, the thermal conductive member defines a second groove in an end face of the thermal conductive member facing the thermal insulation holder, and the first groove and the second groove cooperate to form the receiving chamber.
  3. The temperature sensor assembly according to claim 2, wherein the thermal conductive member defines a third groove in communication with the second groove, and an end of the thermal insulation holder facing the thermal conductive member is fitted in the third groove.
  4. The temperature sensor assembly according to claim 2 or 3, wherein the thermal insulation holder defines a channel in communication with the first groove, and the temperature sensor comprises a cable passing through the channel.
  5. The temperature sensor assembly according to any one of claims 1 to 4, wherein the thermal conductive member comprise an extension portion extending horizontally from an edge of the thermal conductive member and configured to contact the bottom face of the water tray.
  6. The temperature sensor assembly according to any one of claims 1 to 5, further comprising:
    a thermal insulation sleeve surrounding the thermal insulation holder and the thermal conductive member.
  7. The temperature sensor assembly according to claim 6, further comprising:
    a base; and
    a cover coupled to the base to define a first accommodation chamber,
    wherein the thermal insulation holder is movably accommodated in the first accommodation chamber and protruded through the cover, and the thermal insulation sleeve is coupled to the cover.
  8. The temperature sensor assembly according to claim 7, wherein the cover comprises protruding portion and a through hole 48 in the protruding portion, the through hole 48 is in communication with the first accommodation chamber, the thermal insulation holder is protruded through the through hole 48 and movable along an axis of the through hole 48, and the thermal insulation sleeve is fitted over the protruding portion.
  9. The temperature sensor assembly according to claim 7 or 8, further comprising:
    an elastic member arranged between the base and the thermal insulation holder and configured to bias the thermal insulation holder to protrude through the cover.
  10. The temperature sensor assembly according to claim 9, wherein the base comprises a second accommodation chamber in communication with the first accommodation chamber, and the elastic member is accommodating in the second accommodation chamber.
  11. The temperature sensor assembly according to any one of claims 7 to 10, wherein the thermal conductive member and an inner wall of the thermal insulation sleeve define a gap, the cover defines a water hole, the base defines a water chamber, and the gap, the water hole and the water chamber are in communication with one another to collect water spilled from the water tray.
  12. The temperature sensor assembly according to claim 11, wherein the base further defines a drain hole in a bottom of the water chamber.
  13. The temperature sensor assembly according to claim 11 or 12, wherein the water hole is in communication with the first accommodation chamber, and the water chamber is in communication with the first accommodation chamber.
  14. A water bath, comprising:
    a water tray; and
    a temperature sensor assembly according to any one of claims 1-13,
    wherein the thermal conductive member is in contact with a bottom face of the water tray.
  15. The water bath according to claim 14, further comprising:
    a heating frame, wherein the heating frame defines an installation opening in a bottom of the heating frame, the water tray is accommodated in the heating frame, the temperature sensor assembly is coupled at the installation opening, and the thermal conductive member passes  through the installation opening and contacts the bottom face of the water tray.
PCT/CN2022/120282 2022-09-21 2022-09-21 Temperature sensor assembly for water bath and water bath WO2024060080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120282 WO2024060080A1 (en) 2022-09-21 2022-09-21 Temperature sensor assembly for water bath and water bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120282 WO2024060080A1 (en) 2022-09-21 2022-09-21 Temperature sensor assembly for water bath and water bath

Publications (1)

Publication Number Publication Date
WO2024060080A1 true WO2024060080A1 (en) 2024-03-28

Family

ID=90453718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120282 WO2024060080A1 (en) 2022-09-21 2022-09-21 Temperature sensor assembly for water bath and water bath

Country Status (1)

Country Link
WO (1) WO2024060080A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933146A (en) * 1986-07-11 1990-06-12 Beckman Instruments, Inc. Temperature control apparatus for automated clinical analyzer
DE19521947C1 (en) * 1995-06-16 1996-08-22 Medipro Medizinische Diagnosti Vibrating water bath assembly with at least two individually temp.-controlled positions
CN106455862A (en) * 2014-05-16 2017-02-22 比奥新有限公司 Systems, devices, and methods for automated sample thawing
CN208187577U (en) * 2018-06-01 2018-12-04 佛山市顺德区美的电热电器制造有限公司 sensor and electric heater
CN111829684A (en) * 2019-04-19 2020-10-27 深圳市敏杰电子科技有限公司 Temperature measuring system of induction cooker and induction cooker
CN214224375U (en) * 2021-01-27 2021-09-17 一恒生命科学仪器(昆山)有限公司 Surface temperature sensor for heating pipe of water bath kettle
CN214916234U (en) * 2020-12-30 2021-11-30 宜兴市拜奥精核生物科技有限公司 Constant-temperature metal bath with good heating effect

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933146A (en) * 1986-07-11 1990-06-12 Beckman Instruments, Inc. Temperature control apparatus for automated clinical analyzer
DE19521947C1 (en) * 1995-06-16 1996-08-22 Medipro Medizinische Diagnosti Vibrating water bath assembly with at least two individually temp.-controlled positions
CN106455862A (en) * 2014-05-16 2017-02-22 比奥新有限公司 Systems, devices, and methods for automated sample thawing
CN208187577U (en) * 2018-06-01 2018-12-04 佛山市顺德区美的电热电器制造有限公司 sensor and electric heater
CN111829684A (en) * 2019-04-19 2020-10-27 深圳市敏杰电子科技有限公司 Temperature measuring system of induction cooker and induction cooker
CN214916234U (en) * 2020-12-30 2021-11-30 宜兴市拜奥精核生物科技有限公司 Constant-temperature metal bath with good heating effect
CN214224375U (en) * 2021-01-27 2021-09-17 一恒生命科学仪器(昆山)有限公司 Surface temperature sensor for heating pipe of water bath kettle

Similar Documents

Publication Publication Date Title
KR970030620A (en) Wafer heater assembly
JP4053130B2 (en) Apparatus for measuring pedestal temperature in semiconductor wafer processing equipment
JP2011527107A (en) RF transmission system for semiconductor devices
GB2260060A (en) Vacuum-tube microphone with active cooling
JP2007033460A (en) Polarimeter
KR20080012329A (en) Heated pressure transducer
WO2024060080A1 (en) Temperature sensor assembly for water bath and water bath
JP2018516366A (en) Thermally insulated electrical contact probe
TW202121578A (en) Cryogenic electrostatic chuck
US20030089457A1 (en) Apparatus for controlling a thermal conductivity profile for a pedestal in a semiconductor wafer processing chamber
KR20010014867A (en) Antenna coil assemblies for substrate processing chambers
TW202027216A (en) Cryogenic electrostatic chuck
US6414277B1 (en) Ultra-high-temperature heat treatment apparatus
CZ294580B6 (en) Probe for controlling a medium
US4680945A (en) Cooling chamber for processing specimens for microscopic and electron-microscopic investigations
CN100380573C (en) Mounting assembly for high output electrodeless lamp
TW202123401A (en) Temperature control showerhead assembly having heating device
JP4081928B2 (en) Heater replacement device for melting tank
US20200381270A1 (en) Wafer pedestal with contact array
CN110702947B (en) High temperature resistant accelerometer calibration is with connecting piece
KR100302114B1 (en) Device for Making Semiconductor Element by Using Plasma
EP1968352B1 (en) Thermostat and testing machine provided with the same
US4308008A (en) Method for differential thermal analysis
JPH1131724A (en) Thermochuck and circuit board inspecting device
CN117268523A (en) Weighing device and evaporation equipment