WO2024059994A1 - Multi-stage bit-level constellation shaping - Google Patents

Multi-stage bit-level constellation shaping Download PDF

Info

Publication number
WO2024059994A1
WO2024059994A1 PCT/CN2022/119790 CN2022119790W WO2024059994A1 WO 2024059994 A1 WO2024059994 A1 WO 2024059994A1 CN 2022119790 W CN2022119790 W CN 2022119790W WO 2024059994 A1 WO2024059994 A1 WO 2024059994A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
vector
shaped
shaping
significant bit
Prior art date
Application number
PCT/CN2022/119790
Other languages
French (fr)
Inventor
Liangming WU
Wei Liu
Kexin XIAO
Changlong Xu
Kangqi LIU
Jian Li
Ori Shental
Thomas Joseph Richardson
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/119790 priority Critical patent/WO2024059994A1/en
Publication of WO2024059994A1 publication Critical patent/WO2024059994A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the following relates to wireless communications, including multi-stage bit-level constellation shaping.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support multi-stage bit-level constellation shaping.
  • the described techniques provide for shaping multiple bits of a bit vector.
  • a transmitter or a transmitting device may perform a shaping procedure to shape multiple bits in a bit vector.
  • the transmitting device may shape a first most-significant bit and a second most-significant bit in the bit vector by generating a first mask vector and a second mask vector.
  • the transmitting device may apply the mask vectors to the bit vector, shaping multiple bits (e.g., two or more most-significant bits) in the bit vector.
  • the transmitting device may shape more than one bit per symbol via an output of mask bits to multiple bit locations per symbol.
  • the transmitting device may generate one set of shaping bits and shape all of the information bits in the bit vector together.
  • the transmitting device may shape more than one bit sequentially using multiple encoders. For example, the transmitting device may generate a first set of shaping bits to generate a first mask vector and shape the first most-significant bit, then the transmitting device may generate a second set of shaping bits to generate a second mask vector and shape the second most-significant bit.
  • the transmitting device may jointly encode the shaped bit vector and the one or more shaping bits and map the shaped bit vector and shaping information to a symbol, which may result in a lower transmit power than the non-shaped bit vector. By indicating the shaping information (e.g., shaping bits) , a receiving device can decode the shaped bit vector.
  • a method for wireless communications at a first device may include generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the apparatus may include a processor and memory coupled to the processor, the memory including instructions executable by the processor to cause the apparatus to generate, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, apply a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, apply a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and transmit a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the apparatus may include means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • a non-transitory computer-readable medium storing code for wireless communications at a first device is described.
  • the code may include instructions executable by a processor to generate, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, apply a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, apply a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and transmit a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, where the second mask vector may be based on the second shaping bit and the second encoder of the first device.
  • generating the second shaping bit may include operations, features, means, or instructions for generating the first shaping bit at the first decoder based on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit and generating the second shaping bit at the second decoder based on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
  • the first decoder and the first encoder may be associated with a first shaping coder rate
  • the second decoder and the second encoder may be associated with a second shaping coder rate
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for concatenating a first portion of the shaped bit vector and a second portion of the shaped bit vector, where the first portion of the shaped bit vector may be generated based on applying the first mask vector, and the second portion of the shaped bit vector may be generated based on applying the second mask vector.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, where applying the first mask vector may be based on transmitting the message consuming less power than the transmission including the bit vector.
  • generating the first shaping bit may include operations, features, means, or instructions for generating the first shaping bit at the first decoder of the first device based on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
  • the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit
  • the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating the first message based on jointly encoding the first shaping bit and the shaped bit vector.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating the first message based on encoding the first shaping bit and encoding the shaped bit vector separately.
  • the first mask vector may be applied to a first portion of the bit vector
  • the second mask vector may be applied to a second portion of the bit vector
  • the bit vector may be mapped to a symbol, and the shaped bit vector may be mapped to a shaped symbol including the shaped first most-significant bit and the shaped second most-significant bit.
  • a method for wireless communications at a second device may include receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, decoding the shaped bit vector based on the first shaping bit, and applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • the apparatus may include a processor and memory coupled to the processor, the memory including instructions executable by the processor to cause the apparatus to receive a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, decode the shaped bit vector based on the first shaping bit, and apply a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • the apparatus may include means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, means for decoding the shaped bit vector based on the first shaping bit, and means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • a non-transitory computer-readable medium storing code for wireless communications at a second device is described.
  • the code may include instructions executable by a processor to receive a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, decode the shaped bit vector based on the first shaping bit, and apply a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • receiving the message may include operations, features, means, or instructions for receiving the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, where decoding the shaped bit vector may be based on the second shaping bit.
  • the first masking vector may be associated with a first shaping coder rate
  • the second masking vector may be associated with a second shaping coder rate
  • FIG. 1 illustrates an example of a wireless communications system that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIG. 3 illustrates an example of an encoding scheme that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIG. 4 illustrates an example of a multi-stage encoding scheme that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a UE that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a network entity that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • FIGs. 11 through 13 show flowcharts illustrating methods that support multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • a modulation scheme or modulation order may correspond to a number of bits carried by a symbol.
  • a most-significant bit in a symbol may greatly affect a transmit power for the symbol. For example, if the most-significant bit is a ‘0’ instead of a ‘1’ , the symbol may be transmitted with a lower transmit power.
  • Some systems support performing a bit shaping procedure on a bit vector prior to mapping the bit vector to a symbol, where a transmitter or a transmitting device modifies the most-significant bit in the bit sequence to use a lower transmit power.
  • the transmitting device may use a shaping encoder to mask the information bits (e.g., flip the most-significant bit so the symbol has lower power) , and jointly encode the shaped information bits and the information used to shape or mask the information bits.
  • a shaping encoder may be used to mask the information bits (e.g., flip the most-significant bit so the symbol has lower power) , and jointly encode the shaped information bits and the information used to shape or mask the information bits.
  • These systems may shape the most-significant bit in a symbol, as shaping the most-significant bit may provide the largest reduction in transmit power.
  • shaping one bit may limit shaping performance, such as when a larger shaping rate is used.
  • a transmitting device may perform a shaping procedure to shape multiple bits in a bit vector. For example, the transmitting device may shape a first most-significant bit and a second most-significant bit in the bit vector by generating a first mask vector and a second mask vector. The transmitting device may apply the mask vectors to the bit vector, shaping multiple bits (e.g., two or more most-significant bits) in the bit vector. In some examples, the transmitting device may shape more than one bit per symbol via an output of mask bits to multiple bit locations per symbol. For example, the transmitting device may generate one set of shaping bits and shape all of the information bits in the bit vector together.
  • the transmitting device may shape more than one bit sequentially using multiple encoders. For example, the transmitting device may generate a first set of shaping bits to generate a first mask vector and shape the first most-significant bit, then the transmitting device may generate a second set of shaping bits to generate a second mask vector and shape the second most-significant bit.
  • the transmitting device may jointly encode the shaped bit vector and the one or more shaping bits and map the shaped bit vector and shaping information to a symbol, which may result in a lower transmit power than the non-shaped bit vector. By indicating the shaping information (e.g., the one or more shaping bits) , a receiving device can decode the shaped bit vector.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to multi-stage bit-level constellation shaping.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities.
  • a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature.
  • network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) .
  • a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
  • a node of the wireless communications system 100 which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein.
  • a node may be a UE 115.
  • a node may be a network entity 105.
  • a first node may be configured to communicate with a second node or a third node.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a UE 115.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a network entity 105.
  • the first, second, and third nodes may be different relative to these examples.
  • reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node.
  • disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
  • network entities 105 may communicate with the core network 130, or with one another, or both.
  • network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) .
  • network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) .
  • network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof.
  • the backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof.
  • a UE 115 may communicate with the core network 130 via a communication link 155.
  • One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) .
  • a base station 140 e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be
  • a network entity 105 may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
  • a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) .
  • IAB integrated access backhaul
  • O-RAN open RAN
  • vRAN virtualized RAN
  • C-RAN cloud RAN
  • a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof.
  • An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) .
  • One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) .
  • one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
  • VCU virtual CU
  • VDU virtual DU
  • VRU virtual RU
  • the split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170.
  • functions e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof
  • a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack.
  • the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) .
  • the CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160.
  • L1 e.g., physical (PHY) layer
  • L2 e.g., radio link control (RLC) layer, medium access control (MAC) layer
  • a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack.
  • the DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) .
  • a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) .
  • a CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions.
  • CU-CP CU control plane
  • CU-UP CU user plane
  • a CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) .
  • a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
  • infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) .
  • IAB network one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other.
  • One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor.
  • One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) .
  • the one or more donor network entities 105 may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) .
  • IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor.
  • IAB-MT IAB mobile termination
  • An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) .
  • the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) .
  • one or more components of the disaggregated RAN architecture e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
  • an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115.
  • the IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor may refer to a RAN node with a wired or wireless connection to core network 130.
  • the IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a backhaul link) .
  • IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) .
  • the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
  • An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) .
  • a DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) .
  • an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
  • the DU interface e.g., DUs 165
  • IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both.
  • the IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104.
  • the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both.
  • the CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104. Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
  • one or more components of the disaggregated RAN architecture may be configured to support multi-stage bit-level constellation shaping as described herein.
  • some operations described as being performed by a UE 115 or a network entity 105 may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers.
  • the term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105.
  • the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105 may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
  • a network entity 105 e.g., a base station 140, a CU 160, a DU 165, a RU 170
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode, in which case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the network entities 105, the UEs 115, or both
  • the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related.
  • the quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication.
  • a wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, and a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots.
  • each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing.
  • Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., a quantity of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed for communication using a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • One or more control regions may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a network entity 105 may be movable and therefore provide communication coverage for a moving coverage area 110.
  • different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105.
  • the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 (e.g., a base station 140) without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that uses the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception concurrently) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating using a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105.
  • one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105.
  • groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group.
  • a network entity 105 may facilitate the scheduling of resources for D2D communications.
  • D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
  • a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
  • roadside infrastructure such as roadside units
  • network nodes e.g., network entities 105, base stations 140, RUs 170
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • IMS IP Multimedia Subsystem
  • the wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate using a super high frequency (SHF) region, which may be in the range of 3 GHz to 30 GHz, also known as the centimeter band, or using an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the network entities 105 (e.g., base stations 140, RUs 170) , and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas.
  • mmW millimeter wave
  • such techniques may facilitate using antenna arrays within a device.
  • EHF transmissions may be subject to even greater attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) .
  • Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a network entity 105 e.g., a base station 140, an RU 170
  • a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations.
  • a network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may include one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
  • the network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers.
  • Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations.
  • a network entity 105 e.g., a base station 140, an RU 170
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
  • a transmitting device such as a network entity 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) .
  • a single beam direction e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands.
  • the network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170)
  • a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device e.g., a network entity 105
  • signals such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • receive configuration directions e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or PDCP layer may be IP-based.
  • An RLC layer may perform packet segmentation and reassembly to communicate via logical channels.
  • a MAC layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer also may implement error detection techniques, error correction techniques, or both to support retransmissions to improve link efficiency.
  • an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data.
  • a PHY layer may map transport channels to physical channels.
  • the UEs 115 and the network entities 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly via a communication link (e.g., a communication link 125, a D2D communication link 135) .
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, in which case the device may provide HARQ feedback in a specific slot for data received via a previous symbol in the slot. In some other examples, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a bit-level and a symbol transmit power may be related. For example, bit 0, or a most-significant bit, may have more impact on a transmit power of the symbol than other bits. If, for example, the most-significant bit is set to ‘0’ , a transmit power used to transmit the symbol may be lower than if the most-significant bit were set to ‘1’ .
  • Some systems may modify the transmit bit sequence, which may lead to a lower transmit power.
  • a transmitting device may use a bitmask on the most-significant bit to reduce the transmit power.
  • the transmitting device may use a shaping encoder to mask the information bits and jointly encode the shaped information bits and information for shaping.
  • the decoder side may jointly decode the shaped information bits and the information for shaping, then reencode the bits to obtain the original information bits.
  • the transmitting device may input information bits to a log-likelihood ratio (LLR) generator to obtain LLR values for the information bits.
  • the transmitting device may use a channel decoder to obtain shaping bits from the LLR values.
  • the transmitting device may generate a bitmask from the shaping bits and apply the bitmask to the information bits to obtain shaped information bits.
  • the transmitting device may jointly encode the shaping bits and the shaped information bits and map the bits to a symbol to obtain a shaped symbol.
  • the transmitting device may transmit the shaped symbol over a wireless channel to a receiving device.
  • the receiving device may decode the bits from the shaped symbol to recover the shaped information and the shaping bits.
  • the receiving device may generate a demasking vector from the shaping bits and apply the demasking vector to the shaped information bits to recover the original information bits.
  • the transmitting device may generate a cover code that maximizes a power saving after bit-masking.
  • the LLR values may be generated according to how much power is saved by flipping each bit. For example, if the original transmit bits (u 0 , u 1 ) are set to (1, 1) , transmitting bit u 0 without flipping may have an associated transmit power of 25. Flipping the u 0 bit may result in a transmit power of 9. Therefore, flipping the u 0 bit may have an associated transmit power change of ‘16’ , or flipping the u 0 bit may have a transmit power reduction of ’16’ , so the LLR for the first bit may be 16.
  • the channel decoder may perform a lossy data compression. In some examples, the channel decoder may perform the lossy data compression based on a low-density parity check code, a low density generator matrix, or a polar code. Using a code to generate a targeting codeword may be an example of a lossy data compression problem.
  • a channel code to perform shaping with that minimizes a delta with W tar where W tar is a soft metric for a power reduction vector, G s is a channel metric based on the shaping bits, and u s is the information bit vector.
  • a power reduction vector may correspond to a shaping power change (e.g., an ideal shaping power change) by changing an original transmitted symbol’s dominant (e.g., most-significant) bit.
  • the transmitting device may attempt to generate a Bernoulli distribution ‘1’ and ‘0’s of W tar , which may correspond to a codework-like signal in space while reducing a gap (e.g., a hamming distance) of the output codeword to the target codeword.
  • soft metrics may be considered.
  • the W tar may be a power reduction vector like [-48, 48, 16, 16, -48, -48, 16, -16, -16, ...] , where -48 may correspond to an increase of 48 if outputting a ‘1’ for the symbol.
  • Some systems may support shaping a single bit, such as the most-significant bit.
  • Bit-level shaping may shape the symbols, but shaping a single bit may limit a shaping performance, such has when a larger shaping rate is employed.
  • shaping a single bit may limit shaping performance when there is a Maxwell-Boltzmann distribution with larger v parameters.
  • Wireless communications systems described herein may support techniques to improve shaping performance by performing a shaping procedure on multiple bits.
  • the wireless communications system 100 may support performing shaping on multiple bits via an output of mask bits to multiple bit locations per symbol.
  • a transmitting device may use a binary or non-binary decoder and encoder to shape all information bits together.
  • the wireless communications system 100 may support performing shaping on multiple bits sequentially, such as by using multiple encoders.
  • the transmitting device may shape multiple bits per symbol using binary encoders (e.g., multiple binary encoders) .
  • the information bits may be shaped sequentially.
  • different shaping coder rates may be applied or used by different shaping decoder and encoder pairs.
  • sequentially shaping bits may minimize a total number of shaping bits while improving shaping gain.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 200 may include a UE 115-a and a network entity 105-a, which may be respective examples of a UE 115 and a network entity 105 as described herein.
  • the UE 115-a may be an example of a transmitter or a transmitting device which may perform techniques to shape multiple information bits using the techniques described herein.
  • the network entity 105-a may be an example of a transmitter or a transmitting device which may perform techniques to shape multiple information bits using the techniques described herein.
  • the wireless communications system 200 may support techniques to shape multiple information bits in a transmission.
  • the wireless communications system 200 may support techniques for a transmitting device to shape multiple information bits per symbol.
  • the transmitting device may shape two or more bits (e.g., two or more most-significant bits) of a bit vector, which may reduce a transmit power used to transmit the bit vector after mapping to a symbol.
  • the transmitting device may shape multiple information bits using a one-stage shaping procedure.
  • the transmitting device may use a binary or non-binary decoder and encoder pair to shape all bits of a bit vector together.
  • the transmitting device may perform a shaping procedure on a bit vector of length 2N.
  • the transmitting device may input LLR values for multiple most-significant bits (e.g., the two most-significant bits) of the bit vector to the decoder and encoder and output a mask vector and a shaping bit vector.
  • the mask vector include a bit which flips a most-significant bits of the bit vector if flipping the bit results in a lower transmit power for the bit vector.
  • the mask vector may include a bit which flips the most-significant bit of the bit vector.
  • the mask vector may include one or more additional bits which may flip corresponding one or more additional most-significant bits if flipping the corresponding one or more additional bits reduces the transmit power for transmitting the bit vector.
  • the mask vector may be demultiplexed into two length N vectors or two masking sub-vectors.
  • the transmitting device may apply a first masking sub-vector to a first portion of the bit vector and a second masking sub-vector to a second portion of the bit vector to mask the most-significant bits.
  • the first masking sub-vector may flip a first most-significant bit of the first portion of the bit vector (e.g., if flipping the first most-significant bit reduces the transmit power)
  • the second masking sub-vector may flip a second most-significant bit of the second portion of the bit vector (e.g., if flipping the second most-significant bit reduces the transmit power) .
  • Applying the first masking sub-vector may generate a first shaped portion of the bit vector, and applying the second masking sub-vector may generate a second shaped portion of the bit vector.
  • the transmitting device may concatenate the first shaped portion of the bit vector and the second shaped portion of the bit vector to generate a shaped bit vector.
  • the transmitting device may shape multiple information bits using a multi-stage shaping procedure.
  • the transmitting device may use multiple decoder and encoder pairs to sequentially shape multiple bits of a bit vector.
  • the transmitting device may perform a shaping procedure on a bit vector of length 2N.
  • the transmitting device may input LLR values for multiple most-significant bits (e.g., the two most-significant bits) of the bit vector to a first decoder and encoder pair and output a first mask vector and a first shaping bit vector.
  • the transmitting device may apply the first masking vector to a first portion of the bit vector to obtain a first shaped portion of the bit vector.
  • the transmitting device may then input LLR values for the first shaped portion of the bit vector and a second portion of the bit vector to a second decoder and encoder pair and output a second mask vector and a second shaping bit vector.
  • the transmitting device may apply the second masking vector to a second portion of the bit vector to obtain a second shaped portion of the bit vector.
  • the transmitting device may concatenate the first shaped portion of the bit vector and the second shaped portion of the bit vector to obtain a shaped bit vector.
  • the transmitting device may jointly encode the shaped bit vector and the shaping bits to generate a shaped message 205.
  • the transmitting device may map the jointly encoded shaped bit vector and shaping bits to one or more symbols.
  • the transmitting device may transmit the shaped message 205 via the one or more symbols to a receiving device.
  • the UE 115-a may be an example of the transmitting device, and the UE 115-a may transmit the shaped message 205 to the network entity 105-a.
  • the network entity 105-a may be an example of the transmitting device, and the network entity 105-a may transmit the shaped message 205 to the UE 115-a.
  • the shaped message 205 may include one or more shaped symbols, each including multiple shaped bits.
  • the transmitting device may transmit the shaped message 205 using a lower transmit power. For example, transmitting a message including the bit vector without performing the shaping procedure may use a higher transmit power than transmitting the shaped message 205.
  • the receiving device may receive the shaped message 205 including the jointly encoded shaped bit vector and shaping bits.
  • the receiving device may decode the shaped message to obtain the shaping bits and the shaped bit vector.
  • the receiving device may recover the information bits (e.g., the bit vector) using a channel encoder. For example, the receiving device may determine a demasking vector based on the shaping bits and apply the demasking vector to the shaped bit vector to recover the original bit vector.
  • the receiving device may recover the original bit vector without any lost information.
  • FIG. 3 illustrates an example of a single-stage shaping procedure 300 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the single-stage shaping procedure 300 may be implemented by a transmitting device such as a UE 115 or a network entity 105 as described with reference to FIGs. 1 and 2.
  • the transmitting device may have a bit vector 305, u, to transmit to a receiver or a receiving device.
  • the bit vector 305 may be a bit vector of length 2N.
  • the transmitting device may demultiplex the bit vector 305 into two sub-vectors, u 1 and u 2 , each of length N.
  • a first sub-vector e.g., u 1
  • a second sub-vector e.g., u 2
  • the first most-significant bit may have a largest impact on transmit power for the bit vector 305
  • the second most-significant bit may have a second largest impact on transmit power for the bit vector 305. While the example of the single-stage shaping procedure 300 is described with reference to shaping two most-significant bits, these or similar techniques may be implemented to shape other quantities of bits.
  • the transmitting device may generate LLR values for the first sub-vector and the second sub-vector. For example, the transmitting device may input the first sub-vector and the second sub-vector to an LLR mapper.
  • the LLR mapper may determine at least a first LLR value for the first most-significant bit and a second LLR value for the second most-significant bit.
  • the first LLR value may correspond to a transmit power change for flipping the first most-significant bit
  • the second LLR value may correspond to a transmit power change for flipping the second most-significant bit.
  • the transmitting device may determine the LLR values based on different error considerations.
  • the transmitting device may assume each bit in the bit vector operates independently.
  • the transmitting device may determine an LLR value for a most-significant bit based on an assumption that the most-significant bit is shaped without error by the shaping procedure. Therefore, the transmitting device may determine the LLR value for a most-significant bit corresponds to a power reduction from successfully flipping the bit. Therefore, an LLR value for the first most-significant bit may be a predicted power reduction from flipping the first most-significant bit, and an LLR value for the second most-significant bit may be a predicted power reduction from flipping the second most-significant bit.
  • the transmitting device may consider a bit error of the most-significant bits for the flip power calculation process or when determining the LLR values. For example, the transmitting device may consider the first most-significant bit, the second most-significant bit, and a block error rate.
  • the block error rate may be determined from a rate-distortion curve of coding rates. For a block error rate with a soft metric input of different symbols, the transmitting device may perform iterative processing to determine the block error rate.
  • the first most- significant bit and the second most-significant bit may have different block error rates.
  • the transmitting device may determine or calculate an energy reduction from flipping the first most-significant bit based on the block error rate, and the transmitting device may determine or calculate an energy reduction from flipping the second most-significant bit based on the block error rate.
  • the transmitting device may input the LLR values to a decoder to generate a first set of shaping bits 310, s.
  • the first set of shaping bits 310 may be a vector of one or more shaping bits and correspond to information of how the first most-significant bit and the second most-significant bit are shaped, such as whether the shaping procedure is to flip the first most-significant bit or the second most-significant bit, or both.
  • the transmitting device may input the first set of shaping bits 310 to an encoder to generate a masking vector 315, V.
  • the masking vector 315 may be equal to s*G, where G is a generator matrix for a wireless channel.
  • G may be a generator matrix with a size of (K, 2N) , where K is a code rate of the decoder and encoder.
  • the transmitting device may input the masking vector 315 to a demultiplexer.
  • the demultiplexer may generate a first masking sub-vector 320 and a second masking sub-vector 325, each with length N.
  • the transmitting device may apply the masking sub-vectors to corresponding bit sub-vectors.
  • the transmitting device may apply the first masking sub-vector 320 to the first sub-vector u 1 to generate a first shaped sub-vector 330 and apply the second masking sub-vector 325 to the second sub-vector u 2 to generate a second shaped sub-vector 335
  • Applying the masking sub-vectors may shape the bits of the sub-vectors. For example, if flipping the most-significant bit in the first sub-vector results in a lower transmit power based on the LLR value, applying the first masking sub-vector 320 may flip the most-significant bit in the first sub-vector.
  • the transmitting device may concatenate the first shaped sub-vector 330 and the second shaped sub-vector 335 to obtain a shaped bit vector,
  • the transmitting device may jointly encode the shaped bit vector and the first set of shaping bits 310 together to obtain a shaped message and map the shaped message to one or more symbols.
  • the transmitting device may transmit the shaped message including the shaped bit vector, and the first set of shaping bits 310, s, via the wireless channel to the receiving device.
  • FIG. 4 illustrates an example of a multi-stage shaping procedure 400 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the multi-stage shaping procedure 400 may be implemented by a transmitting device such as a UE 115 or a network entity 105 as described with reference to FIGs. 1 and 2.
  • the transmitting device may have a bit vector 405, u, to transmit to a receiving device.
  • the bit vector 405 may be a bit vector of length 2N.
  • the transmitting device may demultiplex the bit vector 405 into two sub-vectors, u 1 and u 2 , each of length N.
  • a first sub-vector e.g., u 1
  • a second sub-vector e.g., u 2
  • the first most-significant bit may have a largest impact on transmit power for the bit vector 405, and the second most-significant bit may have a second largest impact on transmit power for the bit vector 405.
  • the multi-stage shaping procedure 400 is described with reference to shaping two most-significant bits, these or similar techniques may be implemented to shape other quantities of bits.
  • the multi-stage shaping procedure 400 may use multiple pairs of encoders and decoders to sequentially shape the bits.
  • the different decoder and encoder pairs may have different code rates or different shaping coder rates.
  • a first decoder and a first encoder may have a code rate of K 1
  • a second decoder and a second encoder may have a code rate of K 2 .
  • the transmitting device may shape a first most-significant bit then shape a second most-significant bit.
  • the transmitting device may generate a first set of shaping bits 410 (s 1 ) using a first encoder.
  • the transmitting device may generate the first set of shaping bits 410 based on LLR values of the first most-significant bit or the second most-significant bit, or both, as described in more detail with reference to FIG. 3.
  • the transmitting device may generate a first mask vector 415 based on the first set of shaping bits 410.
  • the transmitting device may apply the first mask vector 415 to the first sub-vector u 1 to obtain a first shaped sub-vector
  • the transmitting device may then generate a second set of shaping bits 420 after generating the first set of shaping bits 410.
  • the transmitting device may input the first shaped sub-vector 430 and the second sub-vector to the second decoder.
  • the transmitting device may input LLR values for the first shaped most-significant bit and the second most-significant bit to the second decoder.
  • the transmitting device may generate a second set of shaping bits 420 based on the input to the decoder.
  • the transmitting device may generate a second mask vector 425 based on the second set of shaping bits 420.
  • the transmitting device may apply the second mask vector 425 to the second sub-vector to generate a second shaped sub-vector 435
  • the transmitting device may concatenate the first shaped sub-vector 430 and the second shaped sub-vector 435 to obtain a shaped bit vector,
  • the transmitting device may jointly encode the shaped bit vector, the first set of shaping bits 410, and the second set of shaping bits 420 together to obtain a shaped message and map the shaped message to one or more symbols.
  • the transmitting device may transmit the shaped message including the shaped bit vector, the first set of shaping bits 410, s 1 , and the second set of shaping bits 420, s 2 , via the wireless channel to the receiving device.
  • FIG. 5 illustrates an example of a process flow 500 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the process flow 500 may be implemented by a transmitting device 505 or a receiving device 510, or both, each of which may be an example of a UE 115 or a network entity 105 as described with reference to FIG. 1.
  • the process flow 500 may be implemented for a single-stage bit-level constellation shaping procedure or a multi-stage bit-level constellation shaping procedure.
  • An example of a single-stage bit-level constellation shaping procedure, or a single-stage shaping procedure may be described in more detail with reference to FIG. 3, and an example of a multi-stage bit-level constellation shaping procedure, or a multi-stage shaping procedure, may be described in more detail with reference to FIG. 4.
  • the transmitting device 505 may have information bits to transmit to the receiving device 510.
  • the transmitting device 505 may have one or more bit vectors to transmit to the receiving device 510.
  • the transmitting device 505 may perform a shaping procedure on multiple bits of the bit sequence to transmit a shaped message to the receiving device 510.
  • the transmitting device 505 may generate, using a first decoder of the transmitting device, a first shaping bit associated with a first most-significant bit of the bit vector and a second most-significant bit of the bit vector.
  • the first shaping bit may correspond to a shaping bit vector or one or more shaping bits.
  • the transmitting device 505 may generate a first set of shaping bits at 515.
  • the first shaping bit may be used to generate at least a first mask vector.
  • the first mask vector may flip the first most-significant bit if flipping the first most-significant bit results in a lower transmit power for the bit vector.
  • the transmitting device 505 may determine an LLR value for the first most-significant bit or the second most-significant bit, or both. An LLR value may correspond to a power reduction for flipping the bit.
  • the transmitting device 505 may apply the first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the transmitting device 505 may perform a bitwise operation on a first portion or subset of the bit vector with the first mask vector. In some cases, applying the first mask vector may shape the first subset of the bit vector.
  • the transmitting device 505 may generate a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device at 525.
  • the transmitting device may perform a multi-stage shaping procedure, which may sequentially shape the information bits of the bit vector.
  • the transmitting device 505 may generate a second set of shaping bits at 525.
  • the second encoder and the second decoder may use a different coding rate or shaping coder rate than the first encoder and the first decoder.
  • the transmitting device 505 may apply a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most- significant bit. For example, the transmitting device 505 may perform a bitwise operation on a second portion or subset of the bit vector with the second mask vector. In some cases, applying the second mask vector may shape the second subset of the bit vector. In some cases, the transmitting device 505 may concatenate a shaped first portion of the bit vector and a shaped second portion of the bit vector to generate a shaped bit vector.
  • the transmitting device 505 may jointly encode the shaped bit vector and the first shaping bit. For example, the transmitting device 505 may jointly encode the shaped bit vector and the first set of shaping bits. If the transmitting device 505 performs a multi-stage shaping procedure, the transmitting device 505 may jointly encode the shaped bit vector, the first set of shaping bits, and the second set of shaping bits. In some examples, the transmitting device 505 may map the shaped bit vector, the first set of shaping vits, and the second set of shaping bits, or any combination thereof, to one or more symbols. For example, the shaped bit vector and the first set of shaping bits may be mapped to a single symbol, thus shaping multiple bits of a symbol.
  • the transmitting device 505 may transmit a message including the first shaping bit and the shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. If the transmitting device 505 performs the multi-stage shaping procedure, the transmitting device 505 may transmit the message including the first shaping bit, the second shaping bit, and the shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. While this example of the process flow 500 is described to shape two bits (e.g., the two most-significant bits) of the bit vector, these techniques may be implemented to shape other quantities of bits of the bit vector.
  • the receiving device 510 may decode the message including the first set of shaping bits and the shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. If the encoder performed a multi-stage shaping procedure, the receiving device 510 may decode the message including the first set of shaping bits, the second set of shaping bits, and the shaped bit vector including the first most-significant bit and the second most-significant bit. For example, the receiving device 510 may generate a demasking vector based on the first set of shaping bits or the second set of shaping bits, or both. The receiving device 510 may apply the demasking vector to the shaped bit vector to recover the original bit vector (e.g., the information bits) .
  • the original bit vector e.g., the information bits
  • FIG. 6 shows a block diagram 600 of a device 605 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 or a network entity 105 as described herein.
  • the device 605 may include a receiver 610, a transmitter 615, and a communications manager 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) . Information may be passed on to other components of the device 605.
  • the receiver 610 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 615 may provide a means for transmitting signals generated by other components of the device 605.
  • the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) .
  • the transmitter 615 may be co-located with a receiver 610 in a transceiver module.
  • the transmitter 615 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 620, the receiver 610, the transmitter 615, or various combinations thereof or various components thereof may be examples of means for performing various aspects of multi-stage bit-level constellation shaping as described herein.
  • the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a processor and memory coupled with, or to, the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the communications manager 620 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both.
  • the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 620 may support wireless communications at a first device in accordance with examples as disclosed herein.
  • the communications manager 620 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector.
  • the communications manager 620 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the communications manager 620 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit.
  • the communications manager 620 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the communications manager 620 may support wireless communications at a second device in accordance with examples as disclosed herein.
  • the communications manager 620 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit.
  • the communications manager 620 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit.
  • the communications manager 620 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • the device 605 may support techniques for improved shaping performance or shaping gain while minimizing overhead (e.g., a quantity of shaping bits) . Improving the shaping performance may reduce a transmit power for a symbol, which may lower transmit power and reduce power consumption at a transmitter.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, a UE 115, or a network entity 105 as described herein.
  • the device 705 may include a receiver 710, a transmitter 715, and a communications manager 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) . Information may be passed on to other components of the device 705.
  • the receiver 710 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 715 may provide a means for transmitting signals generated by other components of the device 705.
  • the transmitter 715 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) .
  • the transmitter 715 may be co-located with a receiver 710 in a transceiver module.
  • the transmitter 715 may utilize a single antenna or a set of multiple antennas.
  • the device 705, or various components thereof may be an example of means for performing various aspects of multi-stage bit-level constellation shaping as described herein.
  • the communications manager 720 may include a shaping bit generating component 725, a mask generating component 730, a shaped message transmission component 735, a shaped message reception component 740, a decoding component 745, a demasking component 750, or any combination thereof.
  • the communications manager 720 may be an example of aspects of a communications manager 620 as described herein.
  • the communications manager 720, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 710, the transmitter 715, or both.
  • the communications manager 720 may receive information from the receiver 710, send information to the transmitter 715, or be integrated in combination with the receiver 710, the transmitter 715, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 720 may support wireless communications at a first device in accordance with examples as disclosed herein.
  • the shaping bit generating component 725 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector.
  • the mask generating component 730 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the mask generating component 730 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit.
  • the shaped message transmission component 735 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the communications manager 720 may support wireless communications at a second device in accordance with examples as disclosed herein.
  • the shaped message reception component 740 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit.
  • the decoding component 745 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit.
  • the demasking component 750 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • FIG. 8 shows a block diagram 800 of a communications manager 820 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the communications manager 820 may be an example of aspects of a communications manager 620, a communications manager 720, or both, as described herein.
  • the communications manager 820, or various components thereof, may be an example of means for performing various aspects of multi-stage bit-level constellation shaping as described herein.
  • the communications manager 820 may include a shaping bit generating component 825, a mask generating component 830, a shaped message transmission component 835, a shaped message reception component 840, a decoding component 845, a demasking component 850, a transmit power component 855, an LLR component 860, an encoding component 865, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
  • the communications manager 820 may support wireless communications at a first device in accordance with examples as disclosed herein.
  • the shaping bit generating component 825 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector.
  • the mask generating component 830 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the mask generating component 830 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit.
  • the shaped message transmission component 835 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the shaping bit generating component 825 may be configured as or otherwise support a means for generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, where the second mask vector is based on the second shaping bit and the second encoder of the first device.
  • the LLR component 860 may be configured as or otherwise support a means for generating the first shaping bit at the first decoder based on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit. In some examples, to support generating the second shaping bit, the LLR component 860 may be configured as or otherwise support a means for generating the second shaping bit at the second decoder based on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
  • the first decoder and the first encoder are associated with a first shaping coder rate
  • the second decoder and the second encoder are associated with a second shaping coder rate
  • the encoding component 865 may be configured as or otherwise support a means for concatenating a first portion of the shaped bit vector and a second portion of the shaped bit vector, where the first portion of the shaped bit vector is generated based on applying the first mask vector, and the second portion of the shaped bit vector is generated based on applying the second mask vector.
  • the transmit power component 855 may be configured as or otherwise support a means for determining that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, where applying the first mask vector is based on transmitting the message consuming less power than the transmission including the bit vector.
  • the LLR component 860 may be configured as or otherwise support a means for generating the first shaping bit at the first decoder of the first device based on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
  • the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit
  • the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit.
  • the encoding component 865 may be configured as or otherwise support a means for generating the message based on jointly encoding the first shaping bit and the shaped bit vector. In some examples, the encoding component 865 may be configured as or otherwise support a means for generating the message based on encoding the first shaping bit and encoding the shaped bit vector separately.
  • the first mask vector is applied to a first portion of the bit vector
  • the second mask vector is applied to a second portion of the bit vector
  • bit vector is mapped to a symbol
  • shaped bit vector is mapped to a shaped symbol including the shaped first most-significant bit and the shaped second most-significant bit.
  • the communications manager 820 may support wireless communications at a second device in accordance with examples as disclosed herein.
  • the shaped message reception component 840 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit.
  • the decoding component 845 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit.
  • the demasking component 850 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • the decoding component 845 may be configured as or otherwise support a means for receiving the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, where decoding the shaped bit vector is based on the second shaping bit.
  • the first masking vector is associated with a first shaping coder rate
  • the second masking vector is associated with a second shaping coder rate
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the device 905 may be an example of or include the components of a device 605, a device 705, or a UE 115 as described herein.
  • the device 905 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 920, an input/output (I/O) controller 910, a transceiver 915, an antenna 925, a memory 930, code 935, and a processor 940. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 945) .
  • a bus 945 e.g., a bus 945
  • the I/O controller 910 may manage input and output signals for the device 905.
  • the I/O controller 910 may also manage peripherals not integrated into the device 905.
  • the I/O controller 910 may represent a physical connection or port to an external peripheral.
  • the I/O controller 910 may utilize an operating system such as or another known operating system.
  • the I/O controller 910 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 910 may be implemented as part of a processor, such as the processor 940.
  • a user may interact with the device 905 via the I/O controller 910 or via hardware components controlled by the I/O controller 910.
  • the device 905 may include a single antenna 925. However, in some other cases, the device 905 may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 915 may communicate bi-directionally, via the one or more antennas 925, wired, or wireless links as described herein.
  • the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 915 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 925 for transmission, and to demodulate packets received from the one or more antennas 925.
  • the transceiver 915 may be an example of a transmitter 615, a transmitter 715, a receiver 610, a receiver 710, or any combination thereof or component thereof, as described herein.
  • the memory 930 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed by the processor 940, cause the device 905 to perform various functions described herein.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 930 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 940 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting multi-stage bit-level constellation shaping) .
  • the device 905 or a component of the device 905 may include a processor 940 and memory 930 coupled with or to the processor 940, the processor 940 and memory 930 configured to perform various functions described herein.
  • the communications manager 920 may support wireless communications at a first device in accordance with examples as disclosed herein.
  • the communications manager 920 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector.
  • the communications manager 920 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the communications manager 920 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit.
  • the communications manager 920 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the communications manager 920 may support wireless communications at a second device in accordance with examples as disclosed herein.
  • the communications manager 920 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit.
  • the communications manager 920 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit.
  • the communications manager 920 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • the device 905 may support techniques for improved shaping performance or shaping gain while minimizing overhead (e.g., a quantity of shaping bits) . Improving the shaping performance may reduce a transmit power for a symbol, which may lower transmit power and reduce power consumption at a transmitter.
  • the communications manager 920 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 915, the one or more antennas 925, or any combination thereof.
  • the communications manager 920 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 920 may be supported by or performed by the processor 940, the memory 930, the code 935, or any combination thereof.
  • the code 935 may include instructions executable by the processor 940 to cause the device 905 to perform various aspects of multi-stage bit-level constellation shaping as described herein, or the processor 940 and the memory 930 may be otherwise configured to perform or support such operations.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of a device 605, a device 705, or a network entity 105 as described herein.
  • the device 1005 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless interfaces, or any combination thereof.
  • the device 1005 may include components that support outputting and obtaining communications, such as a communications manager 1020, a transceiver 1010, an antenna 1015, a memory 1025, code 1030, and a processor 1035. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1040) .
  • buses e.g.
  • the transceiver 1010 may support bi-directional communications via wired links, wireless links, or both as described herein.
  • the transceiver 1010 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1010 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the device 1005 may include one or more antennas 1015, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) .
  • the transceiver 1010 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1015, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1015, from a wired receiver) , and to demodulate signals.
  • the transceiver 1010 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1015 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1015 that are configured to support various transmitting or outputting operations, or a combination thereof.
  • the transceiver 1010 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof.
  • the transceiver 1010, or the transceiver 1010 and the one or more antennas 1015, or the transceiver 1010 and the one or more antennas 1015 and one or more processors or memory components may be included in a chip or chip assembly that is installed in the device 1005.
  • the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
  • one or more communications links e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168 .
  • the memory 1025 may include RAM and ROM.
  • the memory 1025 may store computer-readable, computer-executable code 1030 including instructions that, when executed by the processor 1035, cause the device 1005 to perform various functions described herein.
  • the code 1030 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1030 may not be directly executable by the processor 1035 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1025 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1035 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) .
  • the processor 1035 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1035.
  • the processor 1035 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1025) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting multi-stage bit-level constellation shaping) .
  • the device 1005 or a component of the device 1005 may include a processor 1035 and memory 1025 coupled with the processor 1035, the processor 1035 and memory 1025 configured to perform various functions described herein.
  • the processor 1035 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1030) to perform the functions of the device 1005.
  • the processor 1035 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1005 (such as within the memory 1025) .
  • the processor 1035 may be a component of a processing system.
  • a processing system may generally refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1005) .
  • a processing system of the device 1005 may refer to a system including the various other components or subcomponents of the device 1005, such as the processor 1035, or the transceiver 1010, or the communications manager 1020, or other components or combinations of components of the device 1005.
  • the processing system of the device 1005 may interface with other components of the device 1005, and may process information received from other components (such as inputs or signals) or output information to other components.
  • a chip or modem of the device 1005 may include a processing system and one or more interfaces to output information, or to obtain information, or both.
  • the one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1005 may transmit information output from the chip or modem.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1005 may obtain information or signal inputs, and the information may be passed to the processing system.
  • a first interface also may obtain information or signal inputs
  • a second interface also may output information or signal outputs.
  • a bus 1040 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1040 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1005, or between different components of the device 1005 that may be co-located or located in different locations (e.g., where the device 1005 may refer to a system in which one or more of the communications manager 1020, the transceiver 1010, the memory 1025, the code 1030, and the processor 1035 may be located in one of the different components or divided between different components) .
  • the communications manager 1020 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) .
  • the communications manager 1020 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the communications manager 1020 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105.
  • the communications manager 1020 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
  • the communications manager 1020 may support wireless communications at a first device in accordance with examples as disclosed herein.
  • the communications manager 1020 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector.
  • the communications manager 1020 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the communications manager 1020 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit.
  • the communications manager 1020 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the communications manager 1020 may support wireless communications at a second device in accordance with examples as disclosed herein.
  • the communications manager 1020 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit.
  • the communications manager 1020 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit.
  • the communications manager 1020 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • the device 1005 may support techniques for improved shaping performance or shaping gain while minimizing overhead (e.g., a quantity of shaping bits) . Improving the shaping performance may reduce a transmit power for a symbol, which may lower transmit power and reduce power consumption at a transmitter.
  • the communications manager 1020 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1010, the one or more antennas 1015 (e.g., where applicable) , or any combination thereof.
  • the communications manager 1020 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1020 may be supported by or performed by the transceiver 1010, the processor 1035, the memory 1025, the code 1030, or any combination thereof.
  • the code 1030 may include instructions executable by the processor 1035 to cause the device 1005 to perform various aspects of multi-stage bit-level constellation shaping as described herein, or the processor 1035 and the memory 1025 may be otherwise configured to perform or support such operations.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1100 may be implemented by a UE or a network entity or its components as described herein.
  • the operations of the method 1100 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 10.
  • a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector.
  • the operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a shaping bit generating component 825 as described with reference to FIG. 8.
  • the method may include applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a mask generating component 830 as described with reference to FIG. 8.
  • the method may include applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit.
  • the operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a mask generating component 830 as described with reference to FIG. 8.
  • the method may include transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1120 may be performed by a shaped message transmission component 835 as described with reference to FIG. 8.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1200 may be implemented by a UE or a network entity or its components as described herein.
  • the operations of the method 1200 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 10.
  • a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector.
  • the operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a shaping bit generating component 825 as described with reference to FIG. 8.
  • the method may include applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit.
  • the operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a mask generating component 830 as described with reference to FIG. 8.
  • the method may include generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, where the second mask vector is based on the second shaping bit and the second encoder of the first device.
  • the operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a shaping bit generating component 825 as described with reference to FIG. 8.
  • the method may include applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit.
  • the operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1220 may be performed by a mask generating component 830 as described with reference to FIG. 8.
  • the method may include transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • the operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by a shaped message transmission component 835 as described with reference to FIG. 8.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1300 may be implemented by a UE or a network entity or its components as described herein.
  • the operations of the method 1300 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 10.
  • a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit.
  • the operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a shaped message reception component 840 as described with reference to FIG. 8.
  • the method may include decoding the shaped bit vector based on the first shaping bit.
  • the operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a decoding component 845 as described with reference to FIG. 8.
  • the method may include applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
  • the operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a demasking component 850 as described with reference to FIG. 8.
  • a method for wireless communications at a first device comprising: generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector; applying a first mask vector based at least in part on a first encoder of the first device to obtain a shaped first most-significant bit; applying a second mask vector based at least in part on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit; and transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  • Aspect 2 The method of aspect 1, further comprising: generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, wherein the second mask vector is based at least in part on the second shaping bit and the second encoder of the first device.
  • Aspect 3 The method of aspect 2, wherein generating the second shaping bit comprises: generating the first shaping bit at the first decoder based at least in part on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit; and generating the second shaping bit at the second decoder based at least in part on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
  • Aspect 4 The method of any of aspects 2 through 3, wherein the first decoder and the first encoder are associated with a first shaping coder rate, and the second decoder and the second encoder are associated with a second shaping coder rate.
  • Aspect 5 The method of any of aspects 2 through 4, further comprising: concatenating a first portion of the shaped bit vector and a second portion of the shaped bit vector, wherein the first portion of the shaped bit vector is generated based at least in part on applying the first mask vector, and the second portion of the shaped bit vector is generated based at least in part on applying the second mask vector.
  • Aspect 6 The method of any of aspects 1 through 5, further comprising: determining that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, wherein applying the first mask vector is based at least in part on transmitting the message consuming less power than the transmission including the bit vector.
  • Aspect 7 The method of any of aspects 1 through 6, wherein generating the first shaping bit comprises: generating the first shaping bit at the first decoder of the first device based at least in part on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
  • Aspect 8 The method of aspect 7, wherein the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit, and the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit.
  • Aspect 9 The method of any of aspects 1 through 8, further comprising: generating the first message based at least in part on jointly encoding the first shaping bit and the shaped bit vector.
  • Aspect 10 The method of any of aspects 1 through 9, further comprising: generating the first message based at least in part on encoding the first shaping bit and encoding the shaped bit vector separately.
  • Aspect 11 The method of any of aspects 1 through 10, wherein the first mask vector is applied to a first portion of the bit vector, and the second mask vector is applied to a second portion of the bit vector.
  • Aspect 12 The method of any of aspects 1 through 11, wherein the bit vector is mapped to a symbol, and the shaped bit vector is mapped to a shaped symbol comprising the shaped first most-significant bit and the shaped second most-significant bit.
  • a method for wireless communications at a second device comprising: receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit; decoding the shaped bit vector based at least in part on the first shaping bit; and applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based at least in part on the first shaping bit.
  • Aspect 14 The method of aspect 13, wherein receiving the message comprises: receiving the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, wherein decoding the shaped bit vector is based at least in part on the second shaping bit.
  • Aspect 15 The method of aspect 14, wherein the first masking vector is associated with a first shaping coder rate, and the second masking vector is associated with a second shaping coder rate.
  • Aspect 16 An apparatus for wireless communications at a first device, comprising a processor; and memory coupled to the processor, the memory comprising instructions executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 12.
  • Aspect 17 An apparatus for wireless communications at a first device, comprising at least one means for performing a method of any of aspects 1 through 12.
  • Aspect 18 A non-transitory computer-readable medium storing code for wireless communications at a first device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 12.
  • Aspect 19 An apparatus for wireless communications at a second device, comprising a processor; and memory coupled to the processor, the memory comprising instructions executable by the processor to cause the apparatus to perform a method of any of aspects 13 through 15.
  • Aspect 20 An apparatus for wireless communications at a second device, comprising at least one means for performing a method of any of aspects 13 through 15.
  • Aspect 21 A non-transitory computer-readable medium storing code for wireless communications at a second device, the code comprising instructions executable by a processor to perform a method of any of aspects 13 through 15.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.

Abstract

Methods, systems, and devices for wireless communications are described. A first device may generate a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The first device may apply a first mask vector to the bit vector to obtain a shaped first most-significant bit. In some examples, the first device may generate a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit. The first device may apply a second mask vector to the bit vector obtain a shaped second most-significant bit. The first device may transmit a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.

Description

MULTI-STAGE BIT-LEVEL CONSTELLATION SHAPING
FIELD OF TECHNOLOGY
The following relates to wireless communications, including multi-stage bit-level constellation shaping.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support multi-stage bit-level constellation shaping. For example, the described techniques provide for shaping multiple bits of a bit vector. A transmitter or a transmitting device may perform a shaping procedure to shape multiple bits in a bit vector. For example, the transmitting device may shape a first most-significant bit and a second most-significant bit in the bit vector by generating a first mask vector and a second mask vector. The transmitting device may apply the mask vectors to the bit vector, shaping multiple bits (e.g., two or more most-significant bits) in the bit vector. In some examples, the transmitting device may shape more than one bit per symbol via an output of mask bits to multiple bit locations per symbol. For example, the  transmitting device may generate one set of shaping bits and shape all of the information bits in the bit vector together. In another implementation, the transmitting device may shape more than one bit sequentially using multiple encoders. For example, the transmitting device may generate a first set of shaping bits to generate a first mask vector and shape the first most-significant bit, then the transmitting device may generate a second set of shaping bits to generate a second mask vector and shape the second most-significant bit. The transmitting device may jointly encode the shaped bit vector and the one or more shaping bits and map the shaped bit vector and shaping information to a symbol, which may result in a lower transmit power than the non-shaped bit vector. By indicating the shaping information (e.g., shaping bits) , a receiving device can decode the shaped bit vector.
A method for wireless communications at a first device is described. The method may include generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
An apparatus for wireless communications at a first device is described. The apparatus may include a processor and memory coupled to the processor, the memory including instructions executable by the processor to cause the apparatus to generate, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, apply a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, apply a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and transmit a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
Another apparatus for wireless communications at a first device is described. The apparatus may include means for generating, using a first decoder of the first  device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
A non-transitory computer-readable medium storing code for wireless communications at a first device is described. The code may include instructions executable by a processor to generate, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector, apply a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit, apply a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit, and transmit a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, where the second mask vector may be based on the second shaping bit and the second encoder of the first device.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, generating the second shaping bit may include operations, features, means, or instructions for generating the first shaping bit at the first decoder based on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit and generating the second shaping bit at the second decoder based on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first decoder and the first encoder may be associated with a first shaping coder rate, and the second decoder and the second encoder may be associated with a second shaping coder rate.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for concatenating a first portion of the shaped bit vector and a second portion of the shaped bit vector, where the first portion of the shaped bit vector may be generated based on applying the first mask vector, and the second portion of the shaped bit vector may be generated based on applying the second mask vector.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, where applying the first mask vector may be based on transmitting the message consuming less power than the transmission including the bit vector.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, generating the first shaping bit may include operations, features, means, or instructions for generating the first shaping bit at the first decoder of the first device based on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit, and the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating the first message based on jointly encoding the first shaping bit and the shaped bit vector.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating the first message based on encoding the first shaping bit and encoding the shaped bit vector separately.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first mask vector may be applied to a first portion of the bit vector, and the second mask vector may be applied to a second portion of the bit vector.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the bit vector may be mapped to a symbol, and the shaped bit vector may be mapped to a shaped symbol including the shaped first most-significant bit and the shaped second most-significant bit.
A method for wireless communications at a second device is described. The method may include receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, decoding the shaped bit vector based on the first shaping bit, and applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
An apparatus for wireless communications at a second device is described. The apparatus may include a processor and memory coupled to the processor, the memory including instructions executable by the processor to cause the apparatus to receive a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, decode the shaped bit vector based on the first shaping bit, and apply a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
Another apparatus for wireless communications at a second device is described. The apparatus may include means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, means for decoding the shaped  bit vector based on the first shaping bit, and means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
A non-transitory computer-readable medium storing code for wireless communications at a second device is described. The code may include instructions executable by a processor to receive a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit, decode the shaped bit vector based on the first shaping bit, and apply a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the message may include operations, features, means, or instructions for receiving the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, where decoding the shaped bit vector may be based on the second shaping bit.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first masking vector may be associated with a first shaping coder rate, and the second masking vector may be associated with a second shaping coder rate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIG. 3 illustrates an example of an encoding scheme that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIG. 4 illustrates an example of a multi-stage encoding scheme that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a UE that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a network entity that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
FIGs. 11 through 13 show flowcharts illustrating methods that support multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure.
DETAILED DESCRIPTION
For wireless communications, a modulation scheme or modulation order may correspond to a number of bits carried by a symbol. For some modulations, a most-significant bit in a symbol may greatly affect a transmit power for the symbol. For example, if the most-significant bit is a ‘0’ instead of a ‘1’ , the symbol may be transmitted with a lower transmit power. Some systems support performing a bit shaping procedure on a bit vector prior to mapping the bit vector to a symbol, where a transmitter or a transmitting device modifies the most-significant bit in the bit sequence  to use a lower transmit power. For example, the transmitting device may use a shaping encoder to mask the information bits (e.g., flip the most-significant bit so the symbol has lower power) , and jointly encode the shaped information bits and the information used to shape or mask the information bits. These systems may shape the most-significant bit in a symbol, as shaping the most-significant bit may provide the largest reduction in transmit power. However, shaping one bit may limit shaping performance, such as when a larger shaping rate is used.
The techniques described herein support shaping multiple bits of a bit vector to further reduce transmit power. A transmitting device may perform a shaping procedure to shape multiple bits in a bit vector. For example, the transmitting device may shape a first most-significant bit and a second most-significant bit in the bit vector by generating a first mask vector and a second mask vector. The transmitting device may apply the mask vectors to the bit vector, shaping multiple bits (e.g., two or more most-significant bits) in the bit vector. In some examples, the transmitting device may shape more than one bit per symbol via an output of mask bits to multiple bit locations per symbol. For example, the transmitting device may generate one set of shaping bits and shape all of the information bits in the bit vector together. In another implementation, the transmitting device may shape more than one bit sequentially using multiple encoders. For example, the transmitting device may generate a first set of shaping bits to generate a first mask vector and shape the first most-significant bit, then the transmitting device may generate a second set of shaping bits to generate a second mask vector and shape the second most-significant bit. The transmitting device may jointly encode the shaped bit vector and the one or more shaping bits and map the shaped bit vector and shaping information to a symbol, which may result in a lower transmit power than the non-shaped bit vector. By indicating the shaping information (e.g., the one or more shaping bits) , a receiving device can decode the shaped bit vector.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to multi-stage bit-level constellation shaping.
FIG. 1 illustrates an example of a wireless communications system 100 that supports multi-stage bit-level constellation shaping in accordance with one or more  aspects of the present disclosure. The wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
The network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities. In various examples, a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature. In some examples, network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) . For example, a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
As described herein, a node of the wireless communications system 100, which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein. For example, a node may be a UE 115. As another example, a node may be a network entity 105. As another example, a first node may be  configured to communicate with a second node or a third node. In one aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a UE 115. In another aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a network entity 105. In yet other aspects of this example, the first, second, and third nodes may be different relative to these examples. Similarly, reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node. For example, disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
In some examples, network entities 105 may communicate with the core network 130, or with one another, or both. For example, network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) . In some examples, network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) . In some examples, network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof. The backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof. A UE 115 may communicate with the core network 130 via a communication link 155.
One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB,  or other suitable terminology) . In some examples, a network entity 105 (e.g., a base station 140) may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
In some examples, a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) . For example, a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof. An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) . One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) . In some examples, one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
The split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170. For example, a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack. In some examples, the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption  protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) . The CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160. Additionally, or alternatively, a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack. The DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) . In some cases, a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) . A CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions. A CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) . In some examples, a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
In wireless communications systems (e.g., wireless communications system 100) , infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) . In some cases, in an IAB network, one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other. One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor. One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) . The one or more donor network entities 105 (e.g., IAB donors) may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104)  via supported access and backhaul links (e.g., backhaul communication links 120) . IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor. An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) . In some examples, the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) . In such cases, one or more components of the disaggregated RAN architecture (e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
For instance, an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115. The IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor may refer to a RAN node with a wired or wireless connection to core network 130. The IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a backhaul link) . IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) . Additionally, or alternatively, the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) . A DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) . Additionally, or  alternatively, an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
For example, IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both. The IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104. For example, the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both. The CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104. Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
In the case of the techniques described herein applied in the context of a disaggregated RAN architecture, one or more components of the disaggregated RAN architecture may be configured to support multi-stage bit-level constellation shaping as described herein. For example, some operations described as being performed by a UE 115 or a network entity 105 (e.g., a base station 140) may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some  examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers. The term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers. Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105. For example, the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105, may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
In some examples, such as in a carrier aggregation configuration, a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode, in which case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the network entities 105, the UEs 115, or both) may have hardware configurations that support communications using a particular carrier bandwidth or may be configurable to support communications using one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal  frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related. The quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication. A wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, and a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the network entities 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, for which Δf max may represent a supported subcarrier spacing, and N f may represent a supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots. Alternatively, each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing. Each slot  may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., a quantity of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed for communication using a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a set of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a network entity 105 (e.g., a base station 140, an RU 170) may be movable and therefore provide communication coverage for a moving coverage area 110. In some examples, different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105. In some other examples, the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 (e.g., a base station 140) without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that uses the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and  reception concurrently) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating using a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) . The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions. Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data. Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) . In some examples, one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105. In some examples, one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105. In some examples, groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group. In some examples, a network entity 105 may facilitate the scheduling of resources for D2D communications. In some other  examples, D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
In some systems, a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
The wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from  approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate using a super high frequency (SHF) region, which may be in the range of 3 GHz to 30 GHz, also known as the centimeter band, or using an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the network entities 105 (e.g., base stations 140, RUs 170) , and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, such techniques may facilitate using antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. While operating using unlicensed RF spectrum bands, devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) . Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
A network entity 105 (e.g., a base station 140, an RU 170) or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations. A network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may include one or more antenna arrays that may support various MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
The network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial  path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations. For example, a network entity 105 (e.g., a base station 140, an RU 170) may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a network entity 105 multiple times along different directions. For example, the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the  network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a network entity 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands. The network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170) , a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive  configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or PDCP layer may be IP-based. An RLC layer may perform packet segmentation and reassembly to communicate via logical channels. A MAC layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer also may implement error detection techniques, error correction techniques, or both to support retransmissions to improve link efficiency. In the control plane, an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data. A PHY layer may map transport channels to physical channels.
The UEs 115 and the network entities 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly via a communication link (e.g., a communication link 125, a D2D communication link 135) . HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, in which case the device may provide HARQ feedback in a specific slot for data received via a previous symbol in the slot. In some other examples, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
In some examples, a bit-level and a symbol transmit power may be related. For example, bit 0, or a most-significant bit, may have more impact on a transmit power of the symbol than other bits. If, for example, the most-significant bit is set to ‘0’ , a  transmit power used to transmit the symbol may be lower than if the most-significant bit were set to ‘1’ .
Some systems may modify the transmit bit sequence, which may lead to a lower transmit power. For example, a transmitting device may use a bitmask on the most-significant bit to reduce the transmit power. The transmitting device may use a shaping encoder to mask the information bits and jointly encode the shaped information bits and information for shaping. The decoder side may jointly decode the shaped information bits and the information for shaping, then reencode the bits to obtain the original information bits.
For example, the transmitting device may input information bits to a log-likelihood ratio (LLR) generator to obtain LLR values for the information bits. The transmitting device may use a channel decoder to obtain shaping bits from the LLR values. The transmitting device may generate a bitmask from the shaping bits and apply the bitmask to the information bits to obtain shaped information bits. The transmitting device may jointly encode the shaping bits and the shaped information bits and map the bits to a symbol to obtain a shaped symbol. The transmitting device may transmit the shaped symbol over a wireless channel to a receiving device. The receiving device may decode the bits from the shaped symbol to recover the shaped information and the shaping bits. The receiving device may generate a demasking vector from the shaping bits and apply the demasking vector to the shaped information bits to recover the original information bits.
When generating the LLR values, the transmitting device may generate a cover code that maximizes a power saving after bit-masking. The LLR values may be generated according to how much power is saved by flipping each bit. For example, if the original transmit bits (u 0, u 1) are set to (1, 1) , transmitting bit u 0 without flipping may have an associated transmit power of 25. Flipping the u 0 bit may result in a transmit power of 9. Therefore, flipping the u 0 bit may have an associated transmit power change of ‘16’ , or flipping the u 0 bit may have a transmit power reduction of ’16’ , so the LLR for the first bit may be 16.
In some examples, the channel decoder may perform a lossy data compression. In some examples, the channel decoder may perform the lossy data  compression based on a low-density parity check code, a low density generator matrix, or a polar code. Using a code to generate a targeting codeword may be an example of a lossy data compression problem. A channel code to perform shaping with 
Figure PCTCN2022119790-appb-000001
that minimizes a delta with W tar, where W tar is a soft metric for a power reduction vector, G s is a channel metric based on the shaping bits, and u s is the information bit vector. A power reduction vector may correspond to a shaping power change (e.g., an ideal shaping power change) by changing an original transmitted symbol’s dominant (e.g., most-significant) bit. The transmitting device may attempt to generate a Bernoulli distribution ‘1’ and ‘0’s of W tar, which may correspond to a codework-like signal in space while reducing a gap (e.g., a hamming distance) of the output codeword to the target codeword. In some examples, soft metrics may be considered. For example, for 64 QAM, the W tar may be a power reduction vector like [-48, 48, 16, 16, -48, -48, 16, -16, -16, …] , where -48 may correspond to an increase of 48 if outputting a ‘1’ for the symbol.
Some systems may support shaping a single bit, such as the most-significant bit. Bit-level shaping may shape the symbols, but shaping a single bit may limit a shaping performance, such has when a larger shaping rate is employed. For example, shaping a single bit may limit shaping performance when there is a Maxwell-Boltzmann distribution 
Figure PCTCN2022119790-appb-000002
with larger v parameters.
Wireless communications systems described herein, such as the wireless communications system 100, may support techniques to improve shaping performance by performing a shaping procedure on multiple bits. In some examples, the wireless communications system 100 may support performing shaping on multiple bits via an output of mask bits to multiple bit locations per symbol. For example, a transmitting device may use a binary or non-binary decoder and encoder to shape all information bits together. In another example, the wireless communications system 100 may support performing shaping on multiple bits sequentially, such as by using multiple encoders. For example, the transmitting device may shape multiple bits per symbol using binary encoders (e.g., multiple binary encoders) . The information bits may be shaped sequentially. In some cases, different shaping coder rates may be applied or used by  different shaping decoder and encoder pairs. In some examples, sequentially shaping bits may minimize a total number of shaping bits while improving shaping gain.
FIG. 2 illustrates an example of a wireless communications system 200 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The wireless communications system 200 may include a UE 115-a and a network entity 105-a, which may be respective examples of a UE 115 and a network entity 105 as described herein. In some examples, the UE 115-a may be an example of a transmitter or a transmitting device which may perform techniques to shape multiple information bits using the techniques described herein. Additionally, or alternatively, the network entity 105-a may be an example of a transmitter or a transmitting device which may perform techniques to shape multiple information bits using the techniques described herein.
The wireless communications system 200 may support techniques to shape multiple information bits in a transmission. For example, the wireless communications system 200 may support techniques for a transmitting device to shape multiple information bits per symbol. In some examples, the transmitting device may shape two or more bits (e.g., two or more most-significant bits) of a bit vector, which may reduce a transmit power used to transmit the bit vector after mapping to a symbol.
In some examples, the transmitting device may shape multiple information bits using a one-stage shaping procedure. The transmitting device may use a binary or non-binary decoder and encoder pair to shape all bits of a bit vector together. For example, the transmitting device may perform a shaping procedure on a bit vector of length 2N. The transmitting device may input LLR values for multiple most-significant bits (e.g., the two most-significant bits) of the bit vector to the decoder and encoder and output a mask vector and a shaping bit vector. In some examples, the mask vector include a bit which flips a most-significant bits of the bit vector if flipping the bit results in a lower transmit power for the bit vector. For example, if flipping a first most significant bit of the bit vector results in a lower transmit power to transmit the bit vector, the mask vector may include a bit which flips the most-significant bit of the bit vector. The mask vector may include one or more additional bits which may flip corresponding one or more additional most-significant bits if flipping the corresponding one or more additional bits reduces the transmit power for transmitting the bit vector.
The mask vector may be demultiplexed into two length N vectors or two masking sub-vectors. The transmitting device may apply a first masking sub-vector to a first portion of the bit vector and a second masking sub-vector to a second portion of the bit vector to mask the most-significant bits. In some examples, the first masking sub-vector may flip a first most-significant bit of the first portion of the bit vector (e.g., if flipping the first most-significant bit reduces the transmit power) , and the second masking sub-vector may flip a second most-significant bit of the second portion of the bit vector (e.g., if flipping the second most-significant bit reduces the transmit power) . Applying the first masking sub-vector may generate a first shaped portion of the bit vector, and applying the second masking sub-vector may generate a second shaped portion of the bit vector. The transmitting device may concatenate the first shaped portion of the bit vector and the second shaped portion of the bit vector to generate a shaped bit vector. Some additional aspects of a one-stage shaping procedure are described in more detail with reference to FIG. 3.
In some examples, the transmitting device may shape multiple information bits using a multi-stage shaping procedure. The transmitting device may use multiple decoder and encoder pairs to sequentially shape multiple bits of a bit vector. For example, the transmitting device may perform a shaping procedure on a bit vector of length 2N. The transmitting device may input LLR values for multiple most-significant bits (e.g., the two most-significant bits) of the bit vector to a first decoder and encoder pair and output a first mask vector and a first shaping bit vector. The transmitting device may apply the first masking vector to a first portion of the bit vector to obtain a first shaped portion of the bit vector. The transmitting device may then input LLR values for the first shaped portion of the bit vector and a second portion of the bit vector to a second decoder and encoder pair and output a second mask vector and a second shaping bit vector. The transmitting device may apply the second masking vector to a second portion of the bit vector to obtain a second shaped portion of the bit vector. In some examples, the transmitting device may concatenate the first shaped portion of the bit vector and the second shaped portion of the bit vector to obtain a shaped bit vector. Some additional aspects of a multi-stage shaping procedure are described in more detail with reference to FIG. 4.
The transmitting device may jointly encode the shaped bit vector and the shaping bits to generate a shaped message 205. In some examples, the transmitting device may map the jointly encoded shaped bit vector and shaping bits to one or more symbols. The transmitting device may transmit the shaped message 205 via the one or more symbols to a receiving device. In some cases, the UE 115-a may be an example of the transmitting device, and the UE 115-a may transmit the shaped message 205 to the network entity 105-a. In another example, the network entity 105-a may be an example of the transmitting device, and the network entity 105-a may transmit the shaped message 205 to the UE 115-a. In some examples, the shaped message 205 may include one or more shaped symbols, each including multiple shaped bits.
In some examples, the transmitting device may transmit the shaped message 205 using a lower transmit power. For example, transmitting a message including the bit vector without performing the shaping procedure may use a higher transmit power than transmitting the shaped message 205.
The receiving device may receive the shaped message 205 including the jointly encoded shaped bit vector and shaping bits. The receiving device may decode the shaped message to obtain the shaping bits and the shaped bit vector. The receiving device may recover the information bits (e.g., the bit vector) using a channel encoder. For example, the receiving device may determine a demasking vector based on the shaping bits and apply the demasking vector to the shaped bit vector to recover the original bit vector. By including the shaping bits in the shaped message 205, the receiving device may recover the original bit vector without any lost information.
FIG. 3 illustrates an example of a single-stage shaping procedure 300 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The single-stage shaping procedure 300 may be implemented by a transmitting device such as a UE 115 or a network entity 105 as described with reference to FIGs. 1 and 2.
The transmitting device may have a bit vector 305, u, to transmit to a receiver or a receiving device. In some examples, the bit vector 305 may be a bit vector of length 2N. The transmitting device may demultiplex the bit vector 305 into two sub-vectors, u 1 and u 2, each of length N. In some examples, a first sub-vector (e.g., u 1) may  include a first most-significant bit, and a second sub-vector (e.g., u 2) may include a second most-significant bit. For example, the first most-significant bit may have a largest impact on transmit power for the bit vector 305, and the second most-significant bit may have a second largest impact on transmit power for the bit vector 305. While the example of the single-stage shaping procedure 300 is described with reference to shaping two most-significant bits, these or similar techniques may be implemented to shape other quantities of bits.
The transmitting device may generate LLR values for the first sub-vector and the second sub-vector. For example, the transmitting device may input the first sub-vector and the second sub-vector to an LLR mapper. The LLR mapper may determine at least a first LLR value for the first most-significant bit and a second LLR value for the second most-significant bit. In some examples, the first LLR value may correspond to a transmit power change for flipping the first most-significant bit, and the second LLR value may correspond to a transmit power change for flipping the second most-significant bit.
The transmitting device may determine the LLR values based on different error considerations. In an example, the transmitting device may assume each bit in the bit vector operates independently. For example, the transmitting device may determine an LLR value for a most-significant bit based on an assumption that the most-significant bit is shaped without error by the shaping procedure. Therefore, the transmitting device may determine the LLR value for a most-significant bit corresponds to a power reduction from successfully flipping the bit. Therefore, an LLR value for the first most-significant bit may be a predicted power reduction from flipping the first most-significant bit, and an LLR value for the second most-significant bit may be a predicted power reduction from flipping the second most-significant bit.
In some other examples, the transmitting device may consider a bit error of the most-significant bits for the flip power calculation process or when determining the LLR values. For example, the transmitting device may consider the first most-significant bit, the second most-significant bit, and a block error rate. The block error rate may be determined from a rate-distortion curve of coding rates. For a block error rate with a soft metric input of different symbols, the transmitting device may perform iterative processing to determine the block error rate. In some examples, the first most- significant bit and the second most-significant bit may have different block error rates. The transmitting device may determine or calculate an energy reduction from flipping the first most-significant bit based on the block error rate, and the transmitting device may determine or calculate an energy reduction from flipping the second most-significant bit based on the block error rate.
The transmitting device may input the LLR values to a decoder to generate a first set of shaping bits 310, s. The first set of shaping bits 310 may be a vector of one or more shaping bits and correspond to information of how the first most-significant bit and the second most-significant bit are shaped, such as whether the shaping procedure is to flip the first most-significant bit or the second most-significant bit, or both. The transmitting device may input the first set of shaping bits 310 to an encoder to generate a masking vector 315, V. The masking vector 315 may be equal to s*G, where G is a generator matrix for a wireless channel. For example, G may be a generator matrix with a size of (K, 2N) , where K is a code rate of the decoder and encoder.
The transmitting device may input the masking vector 315 to a demultiplexer. The demultiplexer may generate a first masking sub-vector 320 and a second masking sub-vector 325, each with length N. The transmitting device may apply the masking sub-vectors to corresponding bit sub-vectors. For example, the transmitting device may apply the first masking sub-vector 320 to the first sub-vector u 1 to generate a first shaped sub-vector 330 
Figure PCTCN2022119790-appb-000003
and apply the second masking sub-vector 325 to the second sub-vector u 2 to generate a second shaped sub-vector 335 
Figure PCTCN2022119790-appb-000004
Applying the masking sub-vectors may shape the bits of the sub-vectors. For example, if flipping the most-significant bit in the first sub-vector results in a lower transmit power based on the LLR value, applying the first masking sub-vector 320 may flip the most-significant bit in the first sub-vector.
The transmitting device may concatenate the first shaped sub-vector 330 and the second shaped sub-vector 335 to obtain a shaped bit vector, 
Figure PCTCN2022119790-appb-000005
The transmitting device may jointly encode the shaped bit vector and the first set of shaping bits 310 together to obtain a shaped message and map the shaped message to one or more symbols. The transmitting device may transmit the shaped message including the  shaped bit vector, 
Figure PCTCN2022119790-appb-000006
and the first set of shaping bits 310, s, via the wireless channel to the receiving device.
FIG. 4 illustrates an example of a multi-stage shaping procedure 400 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The multi-stage shaping procedure 400 may be implemented by a transmitting device such as a UE 115 or a network entity 105 as described with reference to FIGs. 1 and 2.
The transmitting device may have a bit vector 405, u, to transmit to a receiving device. In some examples, the bit vector 405 may be a bit vector of length 2N. The transmitting device may demultiplex the bit vector 405 into two sub-vectors, u 1 and u 2, each of length N. In some examples, a first sub-vector (e.g., u 1) may include a first most-significant bit, and a second sub-vector (e.g., u 2) may include a second most-significant bit. For example, the first most-significant bit may have a largest impact on transmit power for the bit vector 405, and the second most-significant bit may have a second largest impact on transmit power for the bit vector 405. While the example of the multi-stage shaping procedure 400 is described with reference to shaping two most-significant bits, these or similar techniques may be implemented to shape other quantities of bits.
The multi-stage shaping procedure 400 may use multiple pairs of encoders and decoders to sequentially shape the bits. In some cases, the different decoder and encoder pairs may have different code rates or different shaping coder rates. For example, a first decoder and a first encoder may have a code rate of K 1, and a second decoder and a second encoder may have a code rate of K 2.
For example, the transmitting device may shape a first most-significant bit then shape a second most-significant bit. In an example, the transmitting device may generate a first set of shaping bits 410 (s 1) using a first encoder. In some cases, the transmitting device may generate the first set of shaping bits 410 based on LLR values of the first most-significant bit or the second most-significant bit, or both, as described in more detail with reference to FIG. 3. The transmitting device may generate a first mask vector 415 based on the first set of shaping bits 410. The transmitting device may  apply the first mask vector 415 to the first sub-vector u 1 to obtain a first shaped sub-vector 
Figure PCTCN2022119790-appb-000007
The transmitting device may then generate a second set of shaping bits 420 after generating the first set of shaping bits 410. For example, the transmitting device may input the first shaped sub-vector 430 and the second sub-vector to the second decoder. In some cases, the transmitting device may input LLR values for the first shaped most-significant bit and the second most-significant bit to the second decoder. The transmitting device may generate a second set of shaping bits 420 based on the input to the decoder. The transmitting device may generate a second mask vector 425 based on the second set of shaping bits 420. The transmitting device may apply the second mask vector 425 to the second sub-vector to generate a second shaped sub-vector 435 
Figure PCTCN2022119790-appb-000008
The transmitting device may concatenate the first shaped sub-vector 430 and the second shaped sub-vector 435 to obtain a shaped bit vector, 
Figure PCTCN2022119790-appb-000009
The transmitting device may jointly encode the shaped bit vector, the first set of shaping bits 410, and the second set of shaping bits 420 together to obtain a shaped message and map the shaped message to one or more symbols. The transmitting device may transmit the shaped message including the shaped bit vector, 
Figure PCTCN2022119790-appb-000010
the first set of shaping bits 410, s 1, and the second set of shaping bits 420, s 2, via the wireless channel to the receiving device.
FIG. 5 illustrates an example of a process flow 500 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The process flow 500 may be implemented by a transmitting device 505 or a receiving device 510, or both, each of which may be an example of a UE 115 or a network entity 105 as described with reference to FIG. 1.
The process flow 500 may be implemented for a single-stage bit-level constellation shaping procedure or a multi-stage bit-level constellation shaping procedure. An example of a single-stage bit-level constellation shaping procedure, or a single-stage shaping procedure, may be described in more detail with reference to FIG. 3, and an example of a multi-stage bit-level constellation shaping procedure, or a multi-stage shaping procedure, may be described in more detail with reference to FIG. 4.
The transmitting device 505 may have information bits to transmit to the receiving device 510. For example, the transmitting device 505 may have one or more bit vectors to transmit to the receiving device 510. The transmitting device 505 may perform a shaping procedure on multiple bits of the bit sequence to transmit a shaped message to the receiving device 510. For example, at 515, the transmitting device 505 may generate, using a first decoder of the transmitting device, a first shaping bit associated with a first most-significant bit of the bit vector and a second most-significant bit of the bit vector. In some cases, the first shaping bit may correspond to a shaping bit vector or one or more shaping bits. In some examples, the transmitting device 505 may generate a first set of shaping bits at 515.
For example, the first shaping bit may be used to generate at least a first mask vector. In some examples, the first mask vector may flip the first most-significant bit if flipping the first most-significant bit results in a lower transmit power for the bit vector. For example, the transmitting device 505 may determine an LLR value for the first most-significant bit or the second most-significant bit, or both. An LLR value may correspond to a power reduction for flipping the bit.
At 520, the transmitting device 505 may apply the first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit. In some examples, the transmitting device 505 may perform a bitwise operation on a first portion or subset of the bit vector with the first mask vector. In some cases, applying the first mask vector may shape the first subset of the bit vector.
In some examples, the transmitting device 505 may generate a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device at 525. For example, the transmitting device may perform a multi-stage shaping procedure, which may sequentially shape the information bits of the bit vector. In some cases, the transmitting device 505 may generate a second set of shaping bits at 525. In some cases, the second encoder and the second decoder may use a different coding rate or shaping coder rate than the first encoder and the first decoder.
At 530, the transmitting device 505 may apply a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most- significant bit. For example, the transmitting device 505 may perform a bitwise operation on a second portion or subset of the bit vector with the second mask vector. In some cases, applying the second mask vector may shape the second subset of the bit vector. In some cases, the transmitting device 505 may concatenate a shaped first portion of the bit vector and a shaped second portion of the bit vector to generate a shaped bit vector.
In some examples, the transmitting device 505 may jointly encode the shaped bit vector and the first shaping bit. For example, the transmitting device 505 may jointly encode the shaped bit vector and the first set of shaping bits. If the transmitting device 505 performs a multi-stage shaping procedure, the transmitting device 505 may jointly encode the shaped bit vector, the first set of shaping bits, and the second set of shaping bits. In some examples, the transmitting device 505 may map the shaped bit vector, the first set of shaping vits, and the second set of shaping bits, or any combination thereof, to one or more symbols. For example, the shaped bit vector and the first set of shaping bits may be mapped to a single symbol, thus shaping multiple bits of a symbol.
At 535, the transmitting device 505 may transmit a message including the first shaping bit and the shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. If the transmitting device 505 performs the multi-stage shaping procedure, the transmitting device 505 may transmit the message including the first shaping bit, the second shaping bit, and the shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. While this example of the process flow 500 is described to shape two bits (e.g., the two most-significant bits) of the bit vector, these techniques may be implemented to shape other quantities of bits of the bit vector.
At 540, the receiving device 510 may decode the message including the first set of shaping bits and the shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. If the encoder performed a multi-stage shaping procedure, the receiving device 510 may decode the message including the first set of shaping bits, the second set of shaping bits, and the shaped bit vector including the first most-significant bit and the second most-significant bit. For example, the receiving device 510 may generate a demasking vector based on the first set of shaping  bits or the second set of shaping bits, or both. The receiving device 510 may apply the demasking vector to the shaped bit vector to recover the original bit vector (e.g., the information bits) .
FIG. 6 shows a block diagram 600 of a device 605 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 or a network entity 105 as described herein. The device 605 may include a receiver 610, a transmitter 615, and a communications manager 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) . Information may be passed on to other components of the device 605. The receiver 610 may utilize a single antenna or a set of multiple antennas.
The transmitter 615 may provide a means for transmitting signals generated by other components of the device 605. For example, the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) . In some examples, the transmitter 615 may be co-located with a receiver 610 in a transceiver module. The transmitter 615 may utilize a single antenna or a set of multiple antennas.
The communications manager 620, the receiver 610, the transmitter 615, or various combinations thereof or various components thereof may be examples of means for performing various aspects of multi-stage bit-level constellation shaping as described herein. For example, the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may be implemented in  hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with, or to, the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 620, the receiver 610, the transmitter 615, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 620 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both. For example, the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 620 may support wireless communications at a first device in accordance with examples as disclosed herein. For example, the communications manager 620 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The communications manager 620 may be configured as or otherwise support a  means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit. The communications manager 620 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit. The communications manager 620 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
Additionally, or alternatively, the communications manager 620 may support wireless communications at a second device in accordance with examples as disclosed herein. For example, the communications manager 620 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit. The communications manager 620 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit. The communications manager 620 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
By including or configuring the communications manager 620 in accordance with examples as described herein, the device 605 (e.g., a processor controlling or otherwise coupled with the receiver 610, the transmitter 615, the communications manager 620, or a combination thereof) may support techniques for improved shaping performance or shaping gain while minimizing overhead (e.g., a quantity of shaping bits) . Improving the shaping performance may reduce a transmit power for a symbol, which may lower transmit power and reduce power consumption at a transmitter.
FIG. 7 shows a block diagram 700 of a device 705 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, a UE 115, or a network entity 105 as described herein. The device 705 may include a receiver 710, a transmitter 715, and a communications manager 720. The device 705 may also include a  processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) . Information may be passed on to other components of the device 705. The receiver 710 may utilize a single antenna or a set of multiple antennas.
The transmitter 715 may provide a means for transmitting signals generated by other components of the device 705. For example, the transmitter 715 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to multi-stage bit-level constellation shaping) . In some examples, the transmitter 715 may be co-located with a receiver 710 in a transceiver module. The transmitter 715 may utilize a single antenna or a set of multiple antennas.
The device 705, or various components thereof, may be an example of means for performing various aspects of multi-stage bit-level constellation shaping as described herein. For example, the communications manager 720 may include a shaping bit generating component 725, a mask generating component 730, a shaped message transmission component 735, a shaped message reception component 740, a decoding component 745, a demasking component 750, or any combination thereof. The communications manager 720 may be an example of aspects of a communications manager 620 as described herein. In some examples, the communications manager 720, or various components thereof, may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 710, the transmitter 715, or both. For example, the communications manager 720 may receive information from the receiver 710, send information to the transmitter 715, or be integrated in combination with the receiver 710, the transmitter 715, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 720 may support wireless communications at a first device in accordance with examples as disclosed herein. The shaping bit generating component 725 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The mask generating component 730 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit. The mask generating component 730 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit. The shaped message transmission component 735 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
Additionally, or alternatively, the communications manager 720 may support wireless communications at a second device in accordance with examples as disclosed herein. The shaped message reception component 740 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit. The decoding component 745 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit. The demasking component 750 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
FIG. 8 shows a block diagram 800 of a communications manager 820 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The communications manager 820 may be an example of aspects of a communications manager 620, a communications manager 720, or both, as described herein. The communications manager 820, or various components thereof, may be an example of means for performing various aspects of multi-stage bit-level constellation shaping as described herein. For example, the communications manager  820 may include a shaping bit generating component 825, a mask generating component 830, a shaped message transmission component 835, a shaped message reception component 840, a decoding component 845, a demasking component 850, a transmit power component 855, an LLR component 860, an encoding component 865, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
The communications manager 820 may support wireless communications at a first device in accordance with examples as disclosed herein. The shaping bit generating component 825 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The mask generating component 830 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit. In some examples, the mask generating component 830 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit. The shaped message transmission component 835 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
In some examples, the shaping bit generating component 825 may be configured as or otherwise support a means for generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, where the second mask vector is based on the second shaping bit and the second encoder of the first device.
In some examples, to support generating the second shaping bit, the LLR component 860 may be configured as or otherwise support a means for generating the  first shaping bit at the first decoder based on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit. In some examples, to support generating the second shaping bit, the LLR component 860 may be configured as or otherwise support a means for generating the second shaping bit at the second decoder based on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
In some examples, the first decoder and the first encoder are associated with a first shaping coder rate, and the second decoder and the second encoder are associated with a second shaping coder rate.
In some examples, the encoding component 865 may be configured as or otherwise support a means for concatenating a first portion of the shaped bit vector and a second portion of the shaped bit vector, where the first portion of the shaped bit vector is generated based on applying the first mask vector, and the second portion of the shaped bit vector is generated based on applying the second mask vector.
In some examples, the transmit power component 855 may be configured as or otherwise support a means for determining that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, where applying the first mask vector is based on transmitting the message consuming less power than the transmission including the bit vector.
In some examples, to support generating the first shaping bit, the LLR component 860 may be configured as or otherwise support a means for generating the first shaping bit at the first decoder of the first device based on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
In some examples, the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit, and the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit.
In some examples, the encoding component 865 may be configured as or otherwise support a means for generating the message based on jointly encoding the first shaping bit and the shaped bit vector. In some examples, the encoding component 865 may be configured as or otherwise support a means for generating the message based on encoding the first shaping bit and encoding the shaped bit vector separately.
In some examples, the first mask vector is applied to a first portion of the bit vector, and the second mask vector is applied to a second portion of the bit vector.
In some examples, the bit vector is mapped to a symbol, and the shaped bit vector is mapped to a shaped symbol including the shaped first most-significant bit and the shaped second most-significant bit.
Additionally, or alternatively, the communications manager 820 may support wireless communications at a second device in accordance with examples as disclosed herein. The shaped message reception component 840 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit. The decoding component 845 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit. The demasking component 850 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
In some examples, to support receiving the message, the decoding component 845 may be configured as or otherwise support a means for receiving the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, where decoding the shaped bit vector is based on the second shaping bit.
In some examples, the first masking vector is associated with a first shaping coder rate, and the second masking vector is associated with a second shaping coder rate.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The device 905 may be an example of or include the components of a device 605, a device 705, or a UE 115 as described herein. The device 905 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 920, an input/output (I/O) controller 910, a transceiver 915, an antenna 925, a memory 930, code 935, and a processor 940. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 945) .
The I/O controller 910 may manage input and output signals for the device 905. The I/O controller 910 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 910 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 910 may utilize an operating system such as 
Figure PCTCN2022119790-appb-000011
Figure PCTCN2022119790-appb-000012
or another known operating system. Additionally or alternatively, the I/O controller 910 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 910 may be implemented as part of a processor, such as the processor 940. In some cases, a user may interact with the device 905 via the I/O controller 910 or via hardware components controlled by the I/O controller 910.
In some cases, the device 905 may include a single antenna 925. However, in some other cases, the device 905 may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 915 may communicate bi-directionally, via the one or more antennas 925, wired, or wireless links as described herein. For example, the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 915 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 925 for transmission, and to demodulate packets received from the one or more antennas 925. The transceiver  915, or the transceiver 915 and one or more antennas 925, may be an example of a transmitter 615, a transmitter 715, a receiver 610, a receiver 710, or any combination thereof or component thereof, as described herein.
The memory 930 may include random access memory (RAM) and read-only memory (ROM) . The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed by the processor 940, cause the device 905 to perform various functions described herein. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 930 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting multi-stage bit-level constellation shaping) . For example, the device 905 or a component of the device 905 may include a processor 940 and memory 930 coupled with or to the processor 940, the processor 940 and memory 930 configured to perform various functions described herein.
The communications manager 920 may support wireless communications at a first device in accordance with examples as disclosed herein. For example, the communications manager 920 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The communications manager 920 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to  obtain a shaped first most-significant bit. The communications manager 920 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit. The communications manager 920 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
Additionally, or alternatively, the communications manager 920 may support wireless communications at a second device in accordance with examples as disclosed herein. For example, the communications manager 920 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit. The communications manager 920 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit. The communications manager 920 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
By including or configuring the communications manager 920 in accordance with examples as described herein, the device 905 may support techniques for improved shaping performance or shaping gain while minimizing overhead (e.g., a quantity of shaping bits) . Improving the shaping performance may reduce a transmit power for a symbol, which may lower transmit power and reduce power consumption at a transmitter.
In some examples, the communications manager 920 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 915, the one or more antennas 925, or any combination thereof. Although the communications manager 920 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 920 may be supported by or performed by the processor 940, the memory 930, the code 935, or any combination thereof. For example, the code 935 may include instructions executable by the processor 940 to cause the  device 905 to perform various aspects of multi-stage bit-level constellation shaping as described herein, or the processor 940 and the memory 930 may be otherwise configured to perform or support such operations.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The device 1005 may be an example of or include the components of a device 605, a device 705, or a network entity 105 as described herein. The device 1005 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless interfaces, or any combination thereof. The device 1005 may include components that support outputting and obtaining communications, such as a communications manager 1020, a transceiver 1010, an antenna 1015, a memory 1025, code 1030, and a processor 1035. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1040) .
The transceiver 1010 may support bi-directional communications via wired links, wireless links, or both as described herein. In some examples, the transceiver 1010 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1010 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver. In some examples, the device 1005 may include one or more antennas 1015, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) . The transceiver 1010 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1015, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1015, from a wired receiver) , and to demodulate signals. In some implementations, the transceiver 1010 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1015 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1015 that are configured to support various transmitting or outputting operations, or a combination thereof. In some implementations, the  transceiver 1010 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof. In some implementations, the transceiver 1010, or the transceiver 1010 and the one or more antennas 1015, or the transceiver 1010 and the one or more antennas 1015 and one or more processors or memory components (for example, the processor 1035, or the memory 1025, or both) , may be included in a chip or chip assembly that is installed in the device 1005. In some examples, the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
The memory 1025 may include RAM and ROM. The memory 1025 may store computer-readable, computer-executable code 1030 including instructions that, when executed by the processor 1035, cause the device 1005 to perform various functions described herein. The code 1030 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1030 may not be directly executable by the processor 1035 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1025 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1035 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) . In some cases, the processor 1035 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1035. The processor 1035 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1025) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting multi-stage bit-level constellation shaping) . For example, the device 1005 or a component of the device 1005 may include a processor 1035 and memory  1025 coupled with the processor 1035, the processor 1035 and memory 1025 configured to perform various functions described herein. The processor 1035 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1030) to perform the functions of the device 1005. The processor 1035 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1005 (such as within the memory 1025) . In some implementations, the processor 1035 may be a component of a processing system. A processing system may generally refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1005) . For example, a processing system of the device 1005 may refer to a system including the various other components or subcomponents of the device 1005, such as the processor 1035, or the transceiver 1010, or the communications manager 1020, or other components or combinations of components of the device 1005. The processing system of the device 1005 may interface with other components of the device 1005, and may process information received from other components (such as inputs or signals) or output information to other components. For example, a chip or modem of the device 1005 may include a processing system and one or more interfaces to output information, or to obtain information, or both. The one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations. In some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1005 may transmit information output from the chip or modem. Additionally, or alternatively, in some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1005 may obtain information or signal inputs, and the information may be passed to the processing system. A person having ordinary skill in the art will readily recognize that a first interface also may obtain information or signal inputs, and a second interface also may output information or signal outputs.
In some examples, a bus 1040 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1040 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1005, or between different components of the device 1005 that may be co-located or located in different locations (e.g., where the device 1005 may refer to a system in which one or more of the communications manager 1020, the transceiver 1010, the memory 1025, the code 1030, and the processor 1035 may be located in one of the different components or divided between different components) .
In some examples, the communications manager 1020 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) . For example, the communications manager 1020 may manage the transfer of data communications for client devices, such as one or more UEs 115. In some examples, the communications manager 1020 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105. In some examples, the communications manager 1020 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
The communications manager 1020 may support wireless communications at a first device in accordance with examples as disclosed herein. For example, the communications manager 1020 may be configured as or otherwise support a means for generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The communications manager 1020 may be configured as or otherwise support a means for applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit. The communications manager 1020 may be configured as or otherwise support a means for applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit. The communications manager 1020 may be configured as or otherwise support a means for transmitting a message including the first shaping bit and a shaped  bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
Additionally, or alternatively, the communications manager 1020 may support wireless communications at a second device in accordance with examples as disclosed herein. For example, the communications manager 1020 may be configured as or otherwise support a means for receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit. The communications manager 1020 may be configured as or otherwise support a means for decoding the shaped bit vector based on the first shaping bit. The communications manager 1020 may be configured as or otherwise support a means for applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit.
By including or configuring the communications manager 1020 in accordance with examples as described herein, the device 1005 may support techniques for improved shaping performance or shaping gain while minimizing overhead (e.g., a quantity of shaping bits) . Improving the shaping performance may reduce a transmit power for a symbol, which may lower transmit power and reduce power consumption at a transmitter.
In some examples, the communications manager 1020 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1010, the one or more antennas 1015 (e.g., where applicable) , or any combination thereof. Although the communications manager 1020 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1020 may be supported by or performed by the transceiver 1010, the processor 1035, the memory 1025, the code 1030, or any combination thereof. For example, the code 1030 may include instructions executable by the processor 1035 to cause the device 1005 to perform various aspects of multi-stage bit-level constellation shaping as described herein, or the processor 1035 and the memory 1025 may be otherwise configured to perform or support such operations.
FIG. 11 shows a flowchart illustrating a method 1100 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The operations of the method 1100 may be implemented by a UE or a network entity or its components as described herein. For example, the operations of the method 1100 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 10. In some examples, a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
At 1105, the method may include generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a shaping bit generating component 825 as described with reference to FIG. 8.
At 1110, the method may include applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit. The operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a mask generating component 830 as described with reference to FIG. 8.
At 1115, the method may include applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit. The operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a mask generating component 830 as described with reference to FIG. 8.
At 1120, the method may include transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. The operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the  operations of 1120 may be performed by a shaped message transmission component 835 as described with reference to FIG. 8.
FIG. 12 shows a flowchart illustrating a method 1200 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The operations of the method 1200 may be implemented by a UE or a network entity or its components as described herein. For example, the operations of the method 1200 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 10. In some examples, a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
At 1205, the method may include generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector. The operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a shaping bit generating component 825 as described with reference to FIG. 8.
At 1210, the method may include applying a first mask vector based on a first encoder of the first device to obtain a shaped first most-significant bit. The operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a mask generating component 830 as described with reference to FIG. 8.
At 1215, the method may include generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, where the second mask vector is based on the second shaping bit and the second encoder of the first device. The operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a shaping bit generating component 825 as described with reference to FIG. 8.
At 1220, the method may include applying a second mask vector based on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit. The operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1220 may be performed by a mask generating component 830 as described with reference to FIG. 8.
At 1225, the method may include transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit. The operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by a shaped message transmission component 835 as described with reference to FIG. 8.
FIG. 13 shows a flowchart illustrating a method 1300 that supports multi-stage bit-level constellation shaping in accordance with one or more aspects of the present disclosure. The operations of the method 1300 may be implemented by a UE or a network entity or its components as described herein. For example, the operations of the method 1300 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 10. In some examples, a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
At 1305, the method may include receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit. The operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a shaped message reception component 840 as described with reference to FIG. 8.
At 1310, the method may include decoding the shaped bit vector based on the first shaping bit. The operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a decoding component 845 as described with reference to FIG. 8.
At 1315, the method may include applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based on the first shaping bit. The operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a demasking component 850 as described with reference to FIG. 8.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communications at a first device, comprising: generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector; applying a first mask vector based at least in part on a first encoder of the first device to obtain a shaped first most-significant bit; applying a second mask vector based at least in part on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit; and transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
Aspect 2: The method of aspect 1, further comprising: generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, wherein the second mask vector is based at least in part on the second shaping bit and the second encoder of the first device.
Aspect 3: The method of aspect 2, wherein generating the second shaping bit comprises: generating the first shaping bit at the first decoder based at least in part on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit; and generating the second shaping bit at the second decoder based at least in part on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
Aspect 4: The method of any of aspects 2 through 3, wherein the first decoder and the first encoder are associated with a first shaping coder rate, and the second decoder and the second encoder are associated with a second shaping coder rate.
Aspect 5: The method of any of aspects 2 through 4, further comprising: concatenating a first portion of the shaped bit vector and a second portion of the shaped bit vector, wherein the first portion of the shaped bit vector is generated based at least in part on applying the first mask vector, and the second portion of the shaped bit vector is generated based at least in part on applying the second mask vector.
Aspect 6: The method of any of aspects 1 through 5, further comprising: determining that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, wherein applying the first mask vector is based at least in part on transmitting the message consuming less power than the transmission including the bit vector.
Aspect 7: The method of any of aspects 1 through 6, wherein generating the first shaping bit comprises: generating the first shaping bit at the first decoder of the first device based at least in part on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
Aspect 8: The method of aspect 7, wherein the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit, and the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit.
Aspect 9: The method of any of aspects 1 through 8, further comprising: generating the first message based at least in part on jointly encoding the first shaping bit and the shaped bit vector.
Aspect 10: The method of any of aspects 1 through 9, further comprising: generating the first message based at least in part on encoding the first shaping bit and encoding the shaped bit vector separately.
Aspect 11: The method of any of aspects 1 through 10, wherein the first mask vector is applied to a first portion of the bit vector, and the second mask vector is applied to a second portion of the bit vector.
Aspect 12: The method of any of aspects 1 through 11, wherein the bit vector is mapped to a symbol, and the shaped bit vector is mapped to a shaped symbol  comprising the shaped first most-significant bit and the shaped second most-significant bit.
Aspect 13: A method for wireless communications at a second device, comprising: receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit; decoding the shaped bit vector based at least in part on the first shaping bit; and applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based at least in part on the first shaping bit.
Aspect 14: The method of aspect 13, wherein receiving the message comprises: receiving the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, wherein decoding the shaped bit vector is based at least in part on the second shaping bit.
Aspect 15: The method of aspect 14, wherein the first masking vector is associated with a first shaping coder rate, and the second masking vector is associated with a second shaping coder rate.
Aspect 16: An apparatus for wireless communications at a first device, comprising a processor; and memory coupled to the processor, the memory comprising instructions executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 12.
Aspect 17: An apparatus for wireless communications at a first device, comprising at least one means for performing a method of any of aspects 1 through 12.
Aspect 18: A non-transitory computer-readable medium storing code for wireless communications at a first device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 12.
Aspect 19: An apparatus for wireless communications at a second device, comprising a processor; and memory coupled to the processor, the memory comprising instructions executable by the processor to cause the apparatus to perform a method of any of aspects 13 through 15.
Aspect 20: An apparatus for wireless communications at a second device, comprising at least one means for performing a method of any of aspects 13 through 15.
Aspect 21: A non-transitory computer-readable medium storing code for wireless communications at a second device, the code comprising instructions executable by a processor to perform a method of any of aspects 13 through 15.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed using a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor,  multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers.  Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
The term “determine” or “determining” encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These  techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method for wireless communications at a first device, comprising:
    generating, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector;
    applying a first mask vector based at least in part on a first encoder of the first device to obtain a shaped first most-significant bit;
    applying a second mask vector based at least in part on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit; and
    transmitting a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  2. The method of claim 1, further comprising:
    generating a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, wherein the second mask vector is based at least in part on the second shaping bit and the second encoder of the first device.
  3. The method of claim 2, wherein generating the second shaping bit comprises:
    generating the first shaping bit at the first decoder based at least in part on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit; and
    generating the second shaping bit at the second decoder based at least in part on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
  4. The method of claim 2, wherein the first decoder and the first encoder are associated with a first shaping coder rate, and the second decoder and the second encoder are associated with a second shaping coder rate.
  5. The method of claim 2, further comprising:
    concatenating a first portion of the shaped bit vector and a second portion of the shaped bit vector, wherein the first portion of the shaped bit vector is generated based at least in part on applying the first mask vector, and the second portion of the shaped bit vector is generated based at least in part on applying the second mask vector.
  6. The method of claim 1, further comprising:
    determining that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, wherein applying the first mask vector is based at least in part on transmitting the message consuming less power than the transmission including the bit vector.
  7. The method of claim 1, wherein generating the first shaping bit comprises:
    generating the first shaping bit at the first decoder of the first device based at least in part on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
  8. The method of claim 7, wherein the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit, and the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit.
  9. The method of claim 1, further comprising:
    generating the message based at least in part on jointly encoding the first shaping bit and the shaped bit vector.
  10. The method of claim 1, further comprising:
    generating the message based at least in part on encoding the first shaping bit and encoding the shaped bit vector separately.
  11. The method of claim 1, wherein the first mask vector is applied to a first portion of the bit vector, and the second mask vector is applied to a second portion of the bit vector.
  12. The method of claim 1, wherein the bit vector is mapped to a symbol, and the shaped bit vector is mapped to a shaped symbol comprising the shaped first most-significant bit and the shaped second most-significant bit.
  13. A method for wireless communications at a second device, comprising:
    receiving a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit;
    decoding the shaped bit vector based at least in part on the first shaping bit; and
    applying a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based at least in part on the first shaping bit.
  14. The method of claim 13, wherein receiving the message comprises:
    receiving the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, wherein decoding the shaped bit vector is based at least in part on the second shaping bit.
  15. The method of claim 14, wherein the first masking vector is associated with a first shaping coder rate, and the second masking vector is associated with a second shaping coder rate.
  16. An apparatus for wireless communications at a first device, comprising:
    a processor; and
    memory coupled to the processor, the memory comprising instructions executable by the processor to cause the apparatus to:
    generate, using a first decoder of the first device, a first shaping bit associated with a first most-significant bit of a bit vector and a second most-significant bit of the bit vector;
    apply a first mask vector based at least in part on a first encoder of the first device to obtain a shaped first most-significant bit;
    apply a second mask vector based at least in part on the first encoder or a second encoder, or both, to obtain a shaped second most-significant bit; and
    transmit a message including the first shaping bit and a shaped bit vector including the shaped first most-significant bit and the shaped second most-significant bit.
  17. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    generate a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit using a second decoder at the first device, wherein the second mask vector is based at least in part on the second shaping bit and the second encoder of the first device.
  18. The apparatus of claim 17, wherein the instructions to generate the second shaping bit are executable by the processor to cause the apparatus to:
    generate the first shaping bit at the first decoder based at least in part on a first set of one or more log-likelihood ratio values for the first most-significant bit and a second set of one or more log-likelihood ratio values for the second most-significant bit; and
    generate the second shaping bit at the second decoder based at least in part on the shaped first most-significant bit and the second set of one or more log-likelihood ratio values.
  19. The apparatus of claim 17, wherein the first decoder and the first encoder are associated with a first shaping coder rate, and the second decoder and the second encoder are associated with a second shaping coder rate.
  20. The apparatus of claim 17, wherein the instructions are further executable by the processor to cause the apparatus to:
    concatenate a first portion of the shaped bit vector and a second portion of the shaped bit vector, wherein the first portion of the shaped bit vector is generated  based at least in part on applying the first mask vector, and the second portion of the shaped bit vector is generated based at least in part on applying the second mask vector.
  21. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that transmitting the message including the shaped bit vector consumes less power than a transmission including the bit vector, wherein applying the first mask vector is based at least in part on transmitting the message consuming less power than the transmission including the bit vector.
  22. The apparatus of claim 16, wherein the instructions to generate the first shaping bit are executable by the processor to cause the apparatus to:
    generate the first shaping bit at the first decoder of the first device based at least in part on a first set of one or more log-likelihood ratio values and a second set of one or more log-likelihood ratio values.
  23. The apparatus of claim 22, wherein the first set of one or more log-likelihood ratio values correspond to a first reduced power consumption associated with flipping a first sign value of the first most-significant bit, and the second set of one or more log-likelihood ratio values correspond to a second reduced power consumption associated with flipping a second sign value of the second most-significant bit.
  24. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    generate the message based at least in part on jointly encoding the first shaping bit and the shaped bit vector.
  25. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    generate the message based at least in part on encoding the first shaping bit and encoding the shaped bit vector separately.
  26. The apparatus of claim 16, wherein the first mask vector is applied to a first portion of the bit vector, and the second mask vector is applied to a second portion of the bit vector.
  27. The apparatus of claim 16, wherein the bit vector is mapped to a symbol, and the shaped bit vector is mapped to a shaped symbol comprising the shaped first most-significant bit and the shaped second most-significant bit.
  28. An apparatus for wireless communications at a second device, comprising:
    a processor; and
    memory coupled to the processor, the memory comprising instructions executable by the processor to cause the apparatus to:
    receive a message including a shaped bit vector and a first shaping bit, the shaped bit vector including a shaped first most-significant bit and a shaped second most-significant bit;
    decode the shaped bit vector based at least in part on the first shaping bit; and
    apply a first masking vector and a second masking vector to obtain a bit vector including a first most-significant bit and a second most-significant bit based at least in part on the first shaping bit.
  29. The apparatus of claim 28, wherein the instructions to receive the message are executable by the processor to cause the apparatus to:
    receive the message including a second shaping bit associated with the second most-significant bit and the shaped first most-significant bit, wherein decoding the shaped bit vector is based at least in part on the second shaping bit.
  30. The apparatus of claim 29, wherein the first masking vector is associated with a first shaping coder rate, and the second masking vector is associated with a second shaping coder rate.
PCT/CN2022/119790 2022-09-20 2022-09-20 Multi-stage bit-level constellation shaping WO2024059994A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119790 WO2024059994A1 (en) 2022-09-20 2022-09-20 Multi-stage bit-level constellation shaping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119790 WO2024059994A1 (en) 2022-09-20 2022-09-20 Multi-stage bit-level constellation shaping

Publications (1)

Publication Number Publication Date
WO2024059994A1 true WO2024059994A1 (en) 2024-03-28

Family

ID=90453614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119790 WO2024059994A1 (en) 2022-09-20 2022-09-20 Multi-stage bit-level constellation shaping

Country Status (1)

Country Link
WO (1) WO2024059994A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180375696A1 (en) * 2017-06-26 2018-12-27 Qualcomm Incorporated Apparatus and method for codeword-based scrambling of data
CN111448771A (en) * 2017-11-17 2020-07-24 高通股份有限公司 User specific scrambling of polarization codes
CN111699646A (en) * 2018-02-14 2020-09-22 高通股份有限公司 Combining decision metrics for scrambled payloads
US20200382139A1 (en) * 2019-08-21 2020-12-03 Yaron YOFFE Ofdm packing and ldpc framing for constellation shaping in ng wlans

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180375696A1 (en) * 2017-06-26 2018-12-27 Qualcomm Incorporated Apparatus and method for codeword-based scrambling of data
CN111448771A (en) * 2017-11-17 2020-07-24 高通股份有限公司 User specific scrambling of polarization codes
CN111699646A (en) * 2018-02-14 2020-09-22 高通股份有限公司 Combining decision metrics for scrambled payloads
US20200382139A1 (en) * 2019-08-21 2020-12-03 Yaron YOFFE Ofdm packing and ldpc framing for constellation shaping in ng wlans

Similar Documents

Publication Publication Date Title
WO2024030708A1 (en) Techniques for beam refinement and beam selection enhancement
WO2021056376A1 (en) Configurations for omitting channel state information
US20230327923A1 (en) Spatial equalization via reconfigurable intelligent surface selection
WO2022036677A1 (en) Antenna switching for reference signals
WO2024059994A1 (en) Multi-stage bit-level constellation shaping
WO2024016299A1 (en) Non-zero coefficient selection and strongest coefficient indicator for coherent joint transmission channel state information
WO2023184062A1 (en) Channel state information resource configurations for beam prediction
US20240056254A1 (en) Uplink phase tracking reference signals for multiple transmitters on uplink shared channels
US20230388045A1 (en) Multiple modulation and coding scheme tables for multiple codewords
US20240031063A1 (en) Transport block size determination for sidelink slot aggregation
US20230354310A1 (en) Sounding reference signal resource configuration for transmission antenna ports
WO2023206459A1 (en) Uplink multiplexing for multiple transmission reception point operations
WO2024059960A1 (en) Uplink and downlink beam reporting
US20240089151A1 (en) Phase tracking reference signal configuration for rate-splitting multiple input multiple output communications
WO2024026663A1 (en) Dynamic switching for semi-persistent scheduling and configured grant
US20230318736A1 (en) Configuring a mixed-waveform modulation and coding scheme table
US20240098759A1 (en) Common time resources for multicasting
WO2023178646A1 (en) Techniques for configuring multiple supplemental uplink frequency bands per serving cell
WO2024031517A1 (en) Unified transmission configuration indication determination for single frequency network
US20230421219A1 (en) Closed-loop intelligent controlled transmission (clict) and enhancement with distributed source coding
US20230362715A1 (en) Load reporting in backhaul communications
US20230389017A1 (en) Code block group-based transmissions for multi-codeword channels
US20220330311A1 (en) Grant-based feedback bit determination for feedback occasions
US20230403698A1 (en) Semiautonomous uplink scheduling
US20230388845A1 (en) Reporting power efficiency for communications