WO2024059989A1 - 电力磁力混合发电系统及其应用方法 - Google Patents

电力磁力混合发电系统及其应用方法 Download PDF

Info

Publication number
WO2024059989A1
WO2024059989A1 PCT/CN2022/119779 CN2022119779W WO2024059989A1 WO 2024059989 A1 WO2024059989 A1 WO 2024059989A1 CN 2022119779 W CN2022119779 W CN 2022119779W WO 2024059989 A1 WO2024059989 A1 WO 2024059989A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
magnetic
electric
main body
energy
Prior art date
Application number
PCT/CN2022/119779
Other languages
English (en)
French (fr)
Inventor
张之荣
Original Assignee
张之荣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张之荣 filed Critical 张之荣
Priority to PCT/CN2022/119779 priority Critical patent/WO2024059989A1/zh
Publication of WO2024059989A1 publication Critical patent/WO2024059989A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia

Definitions

  • the invention relates to the technical field of environmentally friendly and carbon-reducing green energy power generation, and in particular, to an electric-magnetic hybrid power generation system and its application method.
  • Halbach array is a new magnetization method with the following characteristics: for an ideal Halbach array, the magnetic field is sinusoidally distributed only on one side; no yoke is required and can be directly fixed on non-magnetic materials; there is no torque pulsation; The Halbach array requires less magnet volume to produce the same magnetomotive force.
  • Halbach array motors and Halbach array generators are used.
  • the main purpose of the present invention is to provide an electric-magnetic hybrid power generation system, which mainly includes:
  • Each power generation unit has a main body, which contains both a generator and a motor, and a rotating base is provided on the external rotating shaft.
  • the rotating base is provided with a plurality of radially extending arms.
  • Rod, each arm is provided with at least one magnetic blade outward, wherein the magnetic blade is composed of a plurality of magnets that are overlapped with each other in a Halbach array;
  • the magnetic blades provided on two adjacent power generation units rotate and intersect with each other, and their strong magnetic field action surfaces are mutually exclusive and opposite;
  • a control unit is further electrically connected to each power generation unit, and electrical energy is provided to each main body when the motor is started, so that the rotating shaft of each main body obtains normal rotation power.
  • a power storage unit is further electrically connected to each power generation unit to store the electrical energy generated by each main body when the generator is operating normally and generates electricity using mutually exclusive magnetic field rotation.
  • the number of power generation units is at least two to ten, and the power generation units are of vertical axis type or horizontal axis type.
  • a pillar and a base are provided under the main body of the power generation unit, and at least three arms are provided at equal intervals on the rotating base, and the magnetic blades provided on each arm are
  • the pillars are arranged in parallel, and the magnetic blades include a long protective shell and at least seven square neodymium iron boron powerful magnets juxtaposed in a linear array.
  • the arm is L-shaped and has a groove in the middle.
  • One side of the arm is fixedly connected to the rotating base, and the other side is bent downward and provided with a set of joints for external protection of the magnetic blades.
  • a pair of assembly parts on the shell are connected and fixed.
  • An application method of an electric-magnetic hybrid power generation system mainly includes:
  • Each power generation unit has a main body containing both a generator and a motor, and a rotating base is provided on the external rotating shaft.
  • a plurality of arms extending radially are provided, and each arm is provided with at least one magnetic blade facing the outside, wherein the magnetic blade is composed of a plurality of magnets overlapped with each other in a Halbach array;
  • the magnetic blades provided on two adjacent power generation units rotate and intersect with each other, and their strong magnetic field action surfaces are mutually exclusive and opposite, and the following method steps are performed:
  • Establish an electric magnetic operation mode First, use the control unit in the start mode to convert electrical energy into kinetic energy, so that the rotating shafts of each main body can obtain normal rotation power. Then, when the power is turned off, switch to the power generation mode to convert magnetic energy into kinetic energy, so that each main body can generate electricity. When the machine is running normally, the electric energy generated by the magnetic field mutually repelling the rotational power generation is stored in the electricity storage unit.
  • the electric magnetic hybrid power generation system when the electric magnetic operation mode is executed, and further when most of the power generation units are in the power generation mode, at least one of the power generation units is kept in the startup mode and energized and operates normally; thereby, the electric magnetic hybrid power generation system can maintain Normal operation achieves the practical effect of environmental protection, carbon reduction and green energy power generation.
  • a speed monitor is further provided on each power generation unit, and when the speed drops to a certain level, the control unit starts to power on the power generation unit to resume normal operation.
  • Figure 1 is a configuration diagram of the system of the present invention
  • Figure 2 is a perspective view of the power generation unit of the present invention.
  • Figure 3 is a diagram showing the magnetic field distribution of the Halbeck array collected by the magnetic blades of the present invention.
  • Figure 4 is a perspective view of another embodiment of the power generation unit of the present invention.
  • Figure 5 is a method flow chart of the system of the present invention.
  • Figure 6 is a schematic diagram of a circuitous arrangement of power generation units according to the present invention.
  • Figure 7 is a schematic diagram of the start-up operation of the system of the present invention to generate electric energy.
  • a plurality of power generation units 10 are spaced apart from each other.
  • Each power generation unit 10 has a main body 11, which contains a generator 12 and an electric motor 13.
  • the external rotating shaft 14 is provided with a rotating base 15, and the rotating base 15 is provided with a rotating base 15.
  • the magnetic blade 17 is composed of a plurality of magnets 171 that are overlapped with each other in a Halbach array;
  • the magnetic blades 17 provided on two adjacent power generation units 10 rotate and intersect with each other, and their strong magnetic field action surfaces are mutually exclusive and oppositely arranged.
  • a control unit 20 is further electrically connected to each power generation unit 10 to provide each main body 11 with electrical energy when the motor 13 is started, so that the rotating shaft 14 of each main body 11 obtains normal rotational power.
  • a power storage unit 30 is further electrically connected to each power generation unit 10 to store the electrical energy generated by each main body 11 when the generator 12 is operating normally and generates electricity using mutually exclusive magnetic field rotation.
  • the number of the power generation units 10 is at least two to ten, and the power generation units 10 are of a vertical axis type or a horizontal axis type (not shown), but the actual configuration number and manner are not limited to this.
  • a pillar 111 and a base 112 are provided under the main body 11 of the power generation unit 10, and at least three arms 16 are provided at equal intervals on the rotating base 15, and each arm 16 has
  • the magnetic blade 17 is arranged parallel to the pillar 111.
  • the magnetic blade 17 includes a long protective shell 170 and at least seven square neodymium iron boron powerful magnets juxtaposed in a linear array. 171, but the actual configuration quantity and method are not limited to this.
  • the arm 16 is L-shaped and has a groove 161 in the middle.
  • One side of the arm 16 is fixedly connected to the rotating base 15, and the other side is bent downward and provided with a set of joints 165 for use.
  • the pair of assembly portions 175 on the elongated protective shell 170 of the magnetic blade 17 are connected and fixed, but the actual configuration and combination are not limited to this.
  • the generator 12 and the motor 13 of the main body 11 run coaxially, and the rotating shaft 14 and the rotating base 15 are provided with one-way bearings (not shown).
  • the elongated protective shell 170 of the magnetic blade 17 Plastic or copper materials can be used, and the closer the size of the built-in magnet 171 is, the better.
  • the magnetic blades 17 of each power generation unit 10 and the square powerful magnets 171 are arranged in the same Halbeck array, and the configuration must be at the same level. , the basic requirements are that the external height is the same, and the internal magnets 171 are also arranged in the same way. It does not matter whether the upper part is set to N pole or S pole.
  • each power generation unit 10 must be kept at the same level, and the number of magnets 171 in each magnetic blade 17 must be the same. During implementation, it can be arranged in odd numbers of 5, 7, 9, 11, and 13 as shown in the figure Seven of 2 is optimal, but in practice it is not limited to this and can also be set to an even number, such as eight in Figure 4.
  • An electric-magnetic hybrid power generation system 100 is constructed with a plurality of power generation units 10 spaced apart from each other.
  • Each power generation unit 10 has a main body 11 containing both a generator 12 and an electric motor 13, and the external rotating shaft 14 is provided with
  • the rotating base 15 is provided with a plurality of radially extending arms 16.
  • Each arm 16 is provided with at least one magnetic blade 17.
  • the magnetic blades 17 are formed by overlapping each other to form a Halbeck shape.
  • the array is composed of a plurality of magnets 171;
  • the magnetic blades 17 provided on two adjacent power generation units 10 rotate and intersect with each other, and their strong magnetic field action surfaces are mutually exclusive and opposite, and the following method steps are performed:
  • S101 step 1 Establish a starting mode, and use a control unit 20 to provide electric energy to each main body 11 when the motor 13 starts, so that the rotating shaft 14 of each main body 11 obtains normal rotation power;
  • S102 Step 2 Establish a power generation mode, electrically connecting a power storage unit 30 to each power generation unit 10 to store the electrical energy generated by each main body 11 when the generator 12 is operating normally, using mutually exclusive magnetic field rotation to generate power, and;
  • S103 Step 3 Establish an electric magnetic operation mode. First, use the control unit 20 in the startup mode to convert electrical energy into kinetic energy so that the rotating shafts 14 of each main body 11 obtain normal rotational power. Then, cut off the power and switch to the power generation mode to convert magnetic energy into kinetic energy. , so that each main body 11 can operate normally as the generator 12, so that the magnetic field mutually repels the rotational power and the electric energy generated by the power generation is stored in the power storage unit 30.
  • step 3 of S103 when most of the power generation units 10 are in the power generation mode, at least one of the power generation units 10 is kept in the startup mode and powered on for normal operation.
  • step 3 of S103 when step 3 of S103 is executed, a rotational speed monitor is further provided on each power generation unit 10. When the speed drops to a level, the control unit 20 starts powering on the power generation unit 10 and returns to normal operation. .
  • any power generation unit 10 in the system can be used as a driving host.
  • the multiple power generation units 10 do not have to be arranged in a straight line, but can also be arranged in a roundabout way as shown in Figure 6 or in a ring (not shown).
  • the key point is that the distance between the magnetic blades 17 of each power generation unit 10 must be arranged to stagger the rotation space and obtain the best relative mutually exclusive rotation force.
  • the system includes at least one power generation unit 10 as a driving host, and multiple power generation units 10 linked by magnetic mutual repulsion as forced generators.
  • the power storage unit 30 can be connected to the battery to provide a starting mode control unit.
  • 20 is the power source that drives the main power generation unit 10.
  • the electric energy generated by the mutually exclusive rotation of multiple power generation units 10 can also be received and stored by the power storage unit 30.
  • the control unit 20 The electric energy generated and stored by the system can be supplied to the power generation unit 10 used to drive the main engine, so that the speed increase system can resume normal operation and continue to generate electricity.
  • Figure 1 Please refer to Figure 1, Figure 5 and Figure 7, which are schematic diagrams of the start-up operation of the system of the present invention to generate electric energy.
  • the power generation unit 10 uses rare earth neodymium iron boron permanent magnets as new energy sources. It has the strongest magnetic coercivity and permanent magnetic energy (BH) value at present. Power generation is generated through the present invention. With the reasonable arrangement and planning of the unit 10 structure and the effective electric-magnetic hybrid application, the system can run continuously for a long time once it is started. However, it is not a perpetual motion machine. The entire process must be matched with the power storage unit 30 and the control unit 20 to achieve self-rotation. The system of the present invention generates continuous kinetic energy and converts it into electrical energy.
  • BH permanent magnetic energy
  • the short start-up time requires less electrical energy, while the continuous mutually exclusive rotation generates more electrical energy for a long time, so that when the system is operating as a whole, the power generation input is greater than the electricity output. , and during normal start-up operation, apart from using a small amount of self-generated power to speed up, no additional mass energy (such as diesel, gasoline, etc.) is consumed. It can truly achieve the practical effect of environmentally friendly and carbon-reducing green energy power generation, and even the future structure can be Further development can be combined with the blades of wind turbines to produce dual power generation effects that complement each other and utilize magnetic energy and wind energy at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种电力磁力混合发电系统及其应用方法,主要包括:多个发电单元(10)彼此间隔而设,每一发电单元(10)具有一主机体(11),其内同时拥有发电机(12)及电动机(13),而对外的转轴(14)上设有旋转座(15),其座上设有多个呈放射状延伸的臂杆(16),该每一臂杆(16)上至少设有一磁性体叶片(17),由相互迭接呈海尔贝克阵列的多个磁石(171)所构成;配置时,两相邻的发电单元(10)上所设的磁性体叶片(17)彼此旋转交错,且其强磁场作用面呈互斥相对。借此,在初步启动状态先以电能使多个发电单元正常运转,再断电进入发电状态改以磁能旋转交错相对的磁力互斥运转来发电,达到环保减碳绿能发电的实用功效。

Description

电力磁力混合发电系统及其应用方法 技术领域
本发明是有关环保减碳绿能发电的技术领域,尤指一种电力磁力混合发电系统及其应用方法。
背景技术
近年来,由于全球资源的日益匮乏,加上全球暖化问题严重,故如何有效地开发及节流有限的资源,成为现今国际关注的重点。随着社会现代化建设的推进,社会总体耗能迅速增加,耗电量提升非常显著,而传统能源不断开发日益枯竭,也带来了严重的环境污染。
目前,各国都在大力推进新型能源的开发利用,常见的定点式发电装置,大多是利用太阳能、风力、潮汐或地热等作为动力来源,但此类利用自然动能产生的动力,往往会受到气候与地形的限制,并无法稳定的产生需要的电力,仅能作为辅助的电力来源来使用。
另一种绿能可使用无污染的磁能作为发电动力,进而达到节能及减碳的目的,故为现今业界的发展重点之一,海尔贝克阵列(halbach array)是一种新的充磁方式,具有以下特点:对于理想的海尔贝克阵列,磁场只正弦分布在一侧;不需要轭部,可直接固定在非导磁材料上;没有转矩脉动;在产生相同磁动势时,海尔贝克阵列所需的磁体体积更少。目前,海尔贝克阵列电机和海尔贝克阵列发电机均有应用。
技术问题
然而,现有技术利用海尔贝克阵列的发电装置整体设计仍欠完善,组成零件多结构复杂,实际应用发电效率低远不如预期,大多仍需依赖其他外在的能源如风力、潮汐能等一起搭配才能提供较好的发电效果,为其主要缺点有进一步改良的必要。
技术解决方案
有鉴于此,本发明的主要目的,在提供一种电力磁力混合发电系统,主要包括:
多个发电单元彼此间隔而设,每一发电单元具有一主机体,其内同时拥有发电机及电动机,而对外的转轴上设有旋转座,该旋转座上设有多个呈放射状延伸的臂杆,该每一臂杆上对外至少设有一磁性体叶片,其中该磁性体叶片由相互迭接呈海尔贝克阵列的多个磁石所构成;
配置时,以两相邻的发电单元上所设的这些磁性体叶片彼此旋转交错,且其强磁场作用面呈互斥相对;
较佳实施,进一步以一控制单元与各发电单元电连接,以电能提供各主机体当电动机启动,使各主机体的转轴获得正常旋转动力。
较佳实施,进一步以一蓄电单元与各发电单元电连接,以储存各主机体当发电机正常运转,以磁场互斥旋转动力发电所产生的电能。
较佳实施,该多个发电单元至少为二至十个,该发电单元为垂直轴式或水平轴式。
较佳实施,该发电单元的该主机体下设有一支柱及一底座,而该旋转座上等间隔设有至少三支该臂杆,且每一该臂杆上所设的该磁性体叶片与该支柱呈平行而设,该磁性体叶片包括一长条形护壳及其内直线阵列相并置有至少七个的方型钕铁硼强力磁石所构成。
较佳实施,该臂杆呈L形其中间设有剖沟,臂杆的一边固定连设在该旋转座上,另一边向下弯折设有一组接部,以供该磁性体叶片外护壳上一对组部相接固定。
一种电力磁力混合发电系统应用方法,主要包括:
建构一电力磁力混合发电系统,具有多个发电单元彼此间隔而设,每一发电单元具有一主机体,其内同时拥有发电机及电动机,而对外的转轴上设有旋转座,该旋转座上设有多个呈放射状延伸的臂杆,该每一臂杆上对外至少设有一磁性体叶片,其中该磁性体叶片由相互迭接呈海尔贝克阵列的多个磁石所构成;
配置时,以两相邻的发电单元上所设的这些磁性体叶片彼此旋转交错,且其强磁场作用面呈互斥相对,而执行以下方法步骤:
建立一启动模式,以一控制单元提供电能提供各主机体当电动机启动,使各主机体的转轴获得正常旋转动力;
建立一发电模式,以一蓄电单元与各发电单元电连接,以储存各主机体当发电机正常运转,以磁场互斥旋转动力发电所产生的电能,以及;
建立一电力磁力运转模式,首先用启动模式的控制单元以电能转换成动能,使各主机体的转轴获得正常旋转动力,再断电切换成发电模式以磁能转换成动能,使各主机体当发电机正常运转,使磁场互斥旋转动力发电所产生的电能储存到蓄电单元中。
较佳实施,其中执行电力磁力运转模式时,进一步在这些发电单元多数为发电模式时,至少使其中的一该发电单元保持在启动模式通电正常运转;借此,使电力磁力混合发电系统可保持正常运作,达到环保减碳绿能发电的实用功效。
较佳实施,执行电力磁力运转模式时,进一步在该每一发电单元上设有转速监测器,当速度下降到一准位时,使该控制单元对该发电单元启动通电回复正常运转。
附图说明
图1 为本发明系统的配置图;
图2 为本发明发电单元的立体图;
图3 为本发明磁性体叶片采海尔贝克阵列磁场分布示图;
图4 为本发明发电单元的另一实施例立体图;
图5 为本发明系统的方法流程图;
图6为本发明发电单元迂回排列的示意图;
图7 为本发明系统启动运转产生电能的示意图。
附图标记说明
电力磁力混合发电系统  100
发电单元              10
主机体                11
支柱                  111
底座                  112
发电机                12
电动机                13
转轴                  14
旋转座                15
臂杆                  16
剖沟                  161
组接部                165
磁性体叶片            17
长条形护壳            170
磁石                  171
对组部                175
控制单元              20
蓄电单元              30
S101、 S102 、S103   步骤1、步骤2、步骤3。
本发明的最佳实施方式
为方便了解本发明的内容,及所能达成的功效,现配合附图列举具体实施例,详细说明如下:请参阅图1至图4所示,本发明所设的一种电力磁力混合发电系统,主要包括:
多个发电单元10彼此间隔而设,每一发电单元10具有一主机体11,其内同时拥有发电机12及电动机13,而对外的转轴14上设有旋转座15,该旋转座15上设有多个呈放射状延伸的臂杆16,该每一臂杆16上对外至少设有一磁性体叶片17,该磁性体叶片17由相互迭接呈海尔贝克阵列的多个磁石171所构成;
其中两相邻的发电单元10上所设的这些磁性体叶片17彼此旋转交错,且其强磁场作用面呈互斥相对配置。
较佳实施,其中进一步以一控制单元20与各发电单元10电连接,以电能提供各主机体11当电动机13启动,使各主机体11的转轴14获得正常旋转动力。
较佳实施,其中进一步以一蓄电单元30与各发电单元10电连接,以储存各主机体11当发电机12正常运转,以磁场互斥旋转动力发电所产生的电能。
较佳实施,其中该多个发电单元10至少为二至十个,该发电单元10为垂直轴式或水平轴式(图未示),但实际配置数量及方式并不以此为限。
较佳实施,其中该发电单元10的该主机体11下设有一支柱111及一底座112,而该旋转座15上等间隔设有至少三支该臂杆16,且每一该臂杆16上所设的该磁性体叶片17与该支柱111呈平行而设,该磁性体叶片17包括一长条形护壳170及其内直线阵列相并置有至少七个的方型钕铁硼强力磁石171所构成,但实际配置数量及方式并不以此为限。
较佳实施,其中该臂杆16呈L形其中间设有剖沟161,臂杆16的一边固定连设在该旋转座15上,另一边向下弯折设有一组接部165,以供该磁性体叶片17的长条形护壳170上一对组部175相接固定,但实际配置及组合方式并不以此为限。
设置时,该主机体11的发电机12及电动机13采同轴运转,其转轴14与旋转座15上设有单向轴承(图未示),该磁性体叶片17的长条形护壳170可选用塑胶或铜材质,而内置的磁石171尺寸越密合越好,每台发电单元10的磁性体叶片17方型强力磁石171均采用相同的海尔贝克阵列排列,配置上需在同一水准上,基本要求外部高度相同,内部磁石171排列也相同,至于上方所设为N极或S极则均无妨,如此即可利用磁性体叶片17其同性相斥的原理,使两个磁性体叶片17交错旋转互相接近时,产生互斥的推力,进而驱动其相邻发电单元10的磁性体叶片17转动而产生动力进行发电。
本发明系统实际应用配置的注意事项:
1.每个发电单元10的磁性体叶片17高度必须保持相同水准,且每条磁性体叶片17中磁石171数量必须一致,实施时可以5、7、9、11、13奇数个排列组成如图2的七个为最佳,但实际并不以此为限也可设成偶数个排列如图4的八个。
2.因为超强磁石171互斥反作用力大无法控制力道,所以每台发电单元10转速必须限速,最高转速要求一致且不可过快。
3.注意每台发电单元10的其上所设多个磁性体叶片17之间距离不可太近,而且两个发电单元10当电动机13启动时最佳方式应正反转相对各采用定速的单一转向,如此可进一步防止磁性体叶片17万一因正反转错乱或速度差造成彼此相互碰撞或相吸的情形。
较佳实施,请参图1至图5所示,本发明电力磁力混合发电系统100其应用方法具体如图5所示:
建构一电力磁力混合发电系统100,具有多个发电单元10彼此间隔而设,每一发电单元10具有一主机体11,其内同时拥有发电机12及电动机13,而对外的转轴14上设有旋转座15,该旋转座15上设有多个呈放射状延伸的臂杆16,该每一臂杆16上对外至少设有一磁性体叶片17,其中该磁性体叶片17由相互迭接呈海尔贝克阵列的多个磁石171所构成;
配置时,以两相邻的发电单元10上所设的这些磁性体叶片17彼此旋转交错,且其强磁场作用面呈互斥相对,而执行以下方法步骤:
S101步骤1. 建立一启动模式,以一控制单元20提供电能提供各主机体11当电动机13启动,使各主机体11的转轴14获得正常旋转动力;
S102步骤2. 建立一发电模式,以一蓄电单元30与各发电单元10电连接,以储存各主机体11当发电机12正常运转,以磁场互斥旋转动力发电所产生的电能,以及;
S103步骤3. 建立一电力磁力运转模式,首先用启动模式的控制单元20以电能转换成动能,使各主机体11的转轴14获得正常旋转动力,再断电切换成发电模式以磁能转换成动能,使各主机体11当发电机12正常运转,使磁场互斥旋转动力发电所产生的电能储存到蓄电单元30中。
较佳实施,其中执行S103步骤3时,进一步在这些发电单元10多数为发电模式时,至少使其中的一该发电单元10保持在启动模式通电正常运转。
较佳实施,其中执行S103步骤3时,进一步在该每一发电单元10上设有转速监测器,当速度下降到一准位时,使该控制单元20对该发电单元10启动通电回复正常运转。
应用上,系统中组成的任一台发电单元10皆可当成驱动主机,其中多个发电单元10不一定要采直线排列,也可采迂回排列如图6或环状排列(图未示),重点每台发电单元10其磁性体叶片17间的距离,安排必须要交错旋转空间并取得最佳相对互斥旋转的作用力。
组成的系统至少包括:一台发电单元10当成驱动主机,而以磁力互斥连动多台发电单元10当受力发电机,实际应用,可用蓄电单元30接到蓄电池,提供启动模式控制单元20驱动主机发电单元10的动力电源,同时多台发电单元10互斥受力旋转所发的电能也可被蓄电单元30接收储存,在必要时当速度下降到一准位,控制单元20又能以系统自发电储存的电能再供给当驱动主机的发电单元10,使转速提升系统恢复正常运转持续用来发电。
请参图1、图5及图7所示,为本发明系统启动运转产生电能的示意图。
1. 在启动模式时,以电能同时驱动每台发电单元10叶片等加速运转,此时电能带动发电单元10的电动机13旋转动能产生叶片位能变化,实质作用并加上叶片互斥的磁力动能。
2.当所有发电单元10加速到最高转速后,只通电保留当成驱动主机的发电单元10的动力,将其他发电单元10切断停止供电并改为蓄电模式。
3.之后维持驱动主机的发电单元10的动力,其余受力发电机的叶片皆会因磁力相斥所产生的反作用力作动,以叶片位能变化旋转产生动能再变成电能以达发电效果。
4.如此在整体发电大于耗电下系统便可持续运转供电,并对自身发电动力预备进行蓄电。
本发明的电力磁力混合发电系统100及其应用方法,发电单元10采用稀土钕铁硼永磁体作为新能源,是目前磁力最大矫顽力最强具有永久的磁能(BH)值,通过本发明发电单元10结构的合理安排与规划,配合有效的电力磁力混合应用,系统一经启动可以自行连续运行很长时间,但它不是永动机整个过程必须搭配蓄电单元30及控制单元20才能实现自行旋转,使本发明系统产生持续的动能转换成电能,获得启动时间短所费的电能少,而持续互斥旋转的时间长所产生的电能多,使系统整体运转时达到发电输入大于用电输出的实用功效,而且在正常启动运转时,其间除了少量用到自发电力提速之外不用另外消耗任何质能(如柴油、汽油等),能真正达到环保减碳绿能发电的实用功效,甚至未来结构还可进一步发展用与风力发电机的叶片相结合,使产生相辅相成同时利用磁能及风能的双重发电效果。
但是以上所述,仅为本发明的较佳实施例而已,当不能以此限定本发明实施的范围;故凡依本发明申请专利范围及发明说明书内容所作的等效变化与修饰,皆应属本发明专利涵盖的范围内。

Claims (9)

  1. 一种电力磁力混合发电系统,其特征在于,主要包括:
    多个发电单元彼此间隔而设,每一发电单元具有一主机体,其内同时拥有发电机及电动机,而对外的转轴上设有旋转座,该旋转座上设有多个呈放射状延伸的臂杆,该每一臂杆上对外至少设有一磁性体叶片,该磁性体叶片由相互迭接呈海尔贝克阵列的多个磁石所构成;
    其中两相邻的发电单元上所设的这些磁性体叶片彼此旋转交错,且其相对的作用面强磁场呈互斥配置。
  2. 根据权利要求1所述的电力磁力混合发电系统,其特征在于,进一步以一控制单元与各发电单元电连接,以电能提供各主机体当电动机启动,使各主机体的转轴获得正常旋转动力。
  3. 根据权利要求1所述的电力磁力混合发电系统,其特征在于,进一步以一蓄电单元与各发电单元电连接,以储存各主机体当发电机正常运转,以磁场互斥旋转动力发电所产生的电能。
  4. 根据权利要求1所述的电力磁力混合发电系统,其特征在于,该多个发电单元至少为二至十个,该发电单元为垂直轴式或水平轴式。
  5. 根据权利要求1所述的电力磁力混合发电系统,其特征在于,该发电单元的该主机体下设有一支柱及一底座,而该旋转座上等间隔设有至少三支该臂杆,且每一该臂杆上所设的该磁性体叶片与该支柱呈平行而设,该磁性体叶片包括一长条形护壳及其内直线阵列相并置有至少七个的方型钕铁硼强力磁石所构成。
  6. 根据权利要求5所述的电力磁力混合发电系统,其特征在于,该臂杆呈L形其中间设有剖沟,臂杆的一边固定连设在该旋转座上,另一边向下弯折设有一组接部,以供该磁性体叶片外护壳上一对组部相接固定。
  7. 一种电力磁力混合发电系统应用方法,其特征在于,主要包括:
    建构一电力磁力混合发电系统,具有多个发电单元彼此间隔而设,每一发电单元具有一主机体,其内同时拥有发电机及电动机,而对外的转轴上设有旋转座,该旋转座上设有多个呈放射状延伸的臂杆,该每一臂杆上对外至少设有一磁性体叶片,其中该磁性体叶片由相互迭接呈海尔贝克阵列的多个磁石所构成;
    配置时,以两相邻的发电单元上所设的这些磁性体叶片彼此旋转交错,且其强磁场作用面呈互斥相对,而执行以下方法步骤:
    步骤1. 建立一启动模式,以一控制单元提供电能提供各主机体当电动机启动,使各主机体的转轴获得正常旋转动力;
    步骤2. 建立一发电模式,以一蓄电单元与各发电单元电连接,以储存各主机体当发电机正常运转,以磁场互斥旋转动力发电所产生的电能,以及;
    步骤3. 建立一电力磁力运转模式,首先用启动模式的控制单元以电能转换成动能,使各主机体的转轴获得正常旋转动力,再断电切换成发电模式以磁能转换成动能,使各主机体当发电机正常运转,使磁场互斥旋转动力发电所产生的电能储存到蓄电单元中。
  8. 根据权利要求7所述的电力磁力混合发电系统应用方法,其特征在于,执行步骤3时,进一步在这些发电单元多数为发电模式时,至少使其中的一该发电单元保持在启动模式通电正常运转。
  9. 根据权利要求7所述的电力磁力混合发电系统应用方法,其特征在于,执行步骤3时,进一步在该每一发电单元上设有转速监测器,当速度下降到一准位时,使该控制单元对该发电单元启动通电回复正常运转。
PCT/CN2022/119779 2022-09-20 2022-09-20 电力磁力混合发电系统及其应用方法 WO2024059989A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119779 WO2024059989A1 (zh) 2022-09-20 2022-09-20 电力磁力混合发电系统及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119779 WO2024059989A1 (zh) 2022-09-20 2022-09-20 电力磁力混合发电系统及其应用方法

Publications (1)

Publication Number Publication Date
WO2024059989A1 true WO2024059989A1 (zh) 2024-03-28

Family

ID=90453606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119779 WO2024059989A1 (zh) 2022-09-20 2022-09-20 电力磁力混合发电系统及其应用方法

Country Status (1)

Country Link
WO (1) WO2024059989A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020158531A1 (en) * 2001-04-27 2002-10-31 Satoru Aritaka Device for kinetic energy accelerator/amplifier
US20040041479A1 (en) * 2000-10-11 2004-03-04 Andrew French Drive apparatus
CN1574557A (zh) * 2003-06-19 2005-02-02 精工爱普生株式会社 驱动控制系统
CN102684562A (zh) * 2011-07-26 2012-09-19 颜文堂 磁动力旋转动力源
CN103840638A (zh) * 2014-03-28 2014-06-04 陈俞任 磁电机
US20190089235A1 (en) * 2015-10-08 2019-03-21 Hyperbolic Engines Incorporated Self-propelling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041479A1 (en) * 2000-10-11 2004-03-04 Andrew French Drive apparatus
US20020158531A1 (en) * 2001-04-27 2002-10-31 Satoru Aritaka Device for kinetic energy accelerator/amplifier
CN1574557A (zh) * 2003-06-19 2005-02-02 精工爱普生株式会社 驱动控制系统
CN102684562A (zh) * 2011-07-26 2012-09-19 颜文堂 磁动力旋转动力源
CN103840638A (zh) * 2014-03-28 2014-06-04 陈俞任 磁电机
US20190089235A1 (en) * 2015-10-08 2019-03-21 Hyperbolic Engines Incorporated Self-propelling system

Similar Documents

Publication Publication Date Title
US20150188400A1 (en) Magnetic Flywheel Induction Engine-Motor-Generator
CN102322402A (zh) 双桨风力发电机
CN102364094A (zh) 一种双向风筒式磁悬浮风力发电装置
WO2024059989A1 (zh) 电力磁力混合发电系统及其应用方法
JP2004162684A (ja) 二重風車発電装置
TW202410609A (zh) 電力磁力混合發電系統及其應用方法
WO2018127083A1 (zh) 复合式发电机组
TWM636448U (zh) 電力磁力混合發電系統
KR20160129078A (ko) 재생가능 자연에너지에 의한 발전 장치
CN206490539U (zh) 复合式发电机组
KR200451776Y1 (ko) 자력을 이용한 발전장치
CN2786860Y (zh) 磁元磁化分极低速发电机
CN203476594U (zh) 水力双驱动发电机
CN104158345A (zh) 双驱动水力发电机
CN106533056A (zh) 卧式大型发电机组启动装置
CN107659094A (zh) 高效节能串极串组式超低速直驱电机
KR20090079446A (ko) 다단의 발전기를 구비하는 발전장치 및 그 발전방법
KR20090001159A (ko) 회전 가속장치 및 이를 이용한 전기에너지 발생 시스템
CN112821720A (zh) 磁电复合动力发电机
TW202403174A (zh) 波動式發電裝置
TWM633216U (zh) 波動式發電裝置
CN114884241A (zh) 转轮式自循环稀土永磁动力驱动机及发电系统
KR20040021749A (ko) 자력 발전기
CN115021488A (zh) 复进式自循环稀土永磁发电系统装置
Gazdac et al. Permanent Magnet Induction Machine-An Overview

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959001

Country of ref document: EP

Kind code of ref document: A1