WO2024059966A1 - Mechanisms for rlf detection of sidelink on unlicensed spectrum - Google Patents

Mechanisms for rlf detection of sidelink on unlicensed spectrum Download PDF

Info

Publication number
WO2024059966A1
WO2024059966A1 PCT/CN2022/119584 CN2022119584W WO2024059966A1 WO 2024059966 A1 WO2024059966 A1 WO 2024059966A1 CN 2022119584 W CN2022119584 W CN 2022119584W WO 2024059966 A1 WO2024059966 A1 WO 2024059966A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlf
lbt
psfch
failure
detection
Prior art date
Application number
PCT/CN2022/119584
Other languages
French (fr)
Inventor
Junqiang CHENG
Jing-Wei Chen
Tao Chen
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2022/119584 priority Critical patent/WO2024059966A1/en
Priority to CN202311190879.6A priority patent/CN117729579A/en
Priority to EP23198125.9A priority patent/EP4340525A1/en
Priority to US18/477,073 priority patent/US20240098791A1/en
Publication of WO2024059966A1 publication Critical patent/WO2024059966A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the invention discussed below relates generally to wireless communication systems, and more particularly, to mechanisms for RLF detection of SL on unlicensed spectrum.
  • the radio link failure shall be detected with one of the following triggers: 1) the maximum number of retransmissions for a specific destination has been reached; or 2) T400 expiry for a specific destination; or 3) the maximum number of consecutive HARQ DTX for a specific destination has been reached; or 4) the integrity check failure is indicated from SL PDCP entity.
  • the HARQ feedback i.e., PSFCH
  • the HARQ feedback may be blocked due the failure of LBT channel access, which further has the potential to incorrectly trigger HARQ-based RLF detection.
  • the results of LBT channel access can also reflect the quality of radio link, which thus is regarded as one of the RLF triggers in legacy NR-U and should be taken into account for SL-U RLF detection. Therefore, the mechanisms for RLF detection of SL-U need some enhancements with the considerations of potential LBT channel access failure to support a stable operation of SL-U.
  • the LBT channel access failure based RLF detection can be introduced for SL-U. For example, if a UE fails to access the channel (s) prior to any, and/or one, and/or multiple, and/or partial, and/or all intended/granted/scheduled/overbooked resource (s) , Layer 1 shall notify higher layers about the LBT channel access failure. Additionally, the RLF should be declared due to constant LBT channel access failures.
  • the maximum count/number of LBT failure instance (s) , and/or the size of the LBT failure detection timer before triggering the consistent LBT channel access failures can be (pre-) configured and/or dynamically indicated based on, such as the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising/anchor/cluster-header UE or supervised/client/cluster-member UE) , and/or RLF detection frequency, etc.
  • multiple (consecutive) PSFCH (i.e., HARQ) reception occasions, and/or PSFCH reception occasion window associated with one PSSCH can be (pre-) configured and/or dynamically indicated (by the COT initiator) .
  • the UE can be (pre-) configured that increment the number of consecutive DTX by 1 if PSFCH reception (s) is (are) absent on any, and/or one, and/or multiple, and/or partial, and/or all (candidate) PSFCH reception occasion (s) associated to the PSSCH transmission.
  • more and/or larger values of the maximum number of consecutive DTX before triggering SL-U RLF can be (pre-) configured and/or dynamically indicated based on, such as the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or RLF detection ratio, etc.
  • the (pre-) configuration and/or indication can be signaled via SIB and/or (PC5-) RRC, and/or (PC5) -MAC CE, and/or DCI, and/or SCI.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed figures set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 illustrates an exemplary diagram of the present enhanced mechanism for HARQ-based RLF detection of SL on unlicensed spectrum.
  • This invention is motivated by, but no limited to, a scenario where SL operated on unlicensed spectrum.
  • the failure of LBT channel access may have impact on legacy RLF triggering for SL.
  • LBT channel access failure based RLF detection is supported for legacy NR-U. Therefore, in addition to the legacy RLF triggers for Rel-16/Rel-17 SL, LBT channel access failure based RLF detection is considered in this disclosure. Additionally, the LBT failure may also block the transmission of HAQR, which further results the absent of PSFCH reception (s) , and thus may incorrectly trigger the HARQ-based RLF detection. Therefore, some enhancements for legacy HARQ-based RLF detection need to be further considered.
  • LBT channel access failure based RLF detection is introduced for SL-U. For example, if a UE fails to access the channel (s) prior to an, and/or multiple intended transmission (s) , Layer 1 notifies higher layers about the LBT channel access failure. Alternatively, when lower layer performs an LBT procedure before a and/or multiple transmission (s) and the transmission (s) is (are) not performed, an LBT failure indication shall be sent to the MAC entity from lower layers.
  • Layer 1 can be (pre-) configured to report LBT channel access failure to higher layers if the UE fails to access the channel (s) prior to any, and/or one, and/or multiple, and/or partial, and/or all intended resource (s) /occasion (s) .
  • the RLF shall be declared by the UE if consistent LBT failures occurred, and the cause of the RLF can be set as LBT failure as (pre-) configuration.
  • RRC can configure parameter (s) in the procedures of consistent LBT failures indication.
  • the RRC parameters to indicate the maximum count/number of LBT failure instance (e.g., lbt-FailureInstanceMaxCount) , and/or the detection timer of LBT failure (e.g., lbt-FailureDetectionTimer) can be (pre-) configured for the consistent LBT failure detection.
  • a counter for LBT failure indication can be used for the consistent LBT failure detection procedure (e.g., LBT COUNTER) .
  • the value/size of the maximum count/number of LBT failure instance, and/or the detection timer of LBT failure can be (pre-) configured and/or dynamically indicated based on the other impact factors.
  • the factors can be (pre-) configured to include network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising/anchor UE, or supervised/client UE) , and/or the purpose of the COT (e.g., used by the COT initiator, or shared to other UEs) , and/or the UE member in the group, and/or within or out of COT statue, and/or RLF detection frequency/ratio, etc.
  • a bitmap, and/or a table, and/or a scaling factor can be (pre-) configured and/or indicated to reflect the relation between the value/size of the maximum count/number of LBT failure instance, and/or the LBT failure detection timer with the impact factors.
  • some RLF recovery mechanisms e.g., LBT based RLF parameters, and/or enhanced resource selection mechanisms
  • pre-CPU based on the consistent LBT failure indication frequency/times/ratio, and/or the LBT based RLF detection frequency/times/ratio
  • some RLF recovery mechanisms e.g., LBT based RLF parameters, and/or enhanced resource selection mechanisms
  • LBT based RLF parameters, and/or enhanced resource selection mechanisms can be implemented as (pre-) configuration.
  • larger maximum count of LBT failure instance, and/or larger detection timer of LBT failure can be (pre-) configured and/or dynamically indicated if the LBT based RLF detection ratio (in a duration/period) exceeds threshold (s) as (pre-) configuration.
  • the enhanced resource selection mechanisms can also be (pre-) configured and/or indicated based on the RLF detection ratio.
  • more overbooked resources associated with one TB, and/or more candidate PSFCH occasions associated with one PSSCH, and/or finer channel access granularity, and/or longer LBT protection margin between LBT channel access and resource selection, etc. can be (pre-) configured and/or indicated according to the relation between the RLF frequency/times/ratio and the threshold (s) (in a duration/period) as (pre-) configured.
  • the HARQ-based RLF detection is supported for SL-U. Specifically, if the maximum number of consecutive HARQ DTX (for a specific destination) is reached, the UE shall declare RLF and the cause of the RLF should be identified as consecutive DTX. For SL-U, the LBT failure may block the transmission of HARQ (i.e., PSFCH) and thus may incorrectly trigger the HARQ-based RLF detection. Therefore, some enhanced mechanisms for HARQ-based RLF detection of SL-U are proposed.
  • the values of the maximum number of consecutive DTX before triggering SL-U RLF can be (pre-) configured based on the other impact factor.
  • the impact factors can be (pre-) configured to include network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising/anchor UE, or supervised/client UE) , and/or the purpose of the COT (e.g., used by the COT initiator, or shared to other UEs) , and/or the UE member in the group, and/or within or out of COT statue, etc.
  • a UE can be (pre-) configured and/or indicated with a scaling factor to the legacy maximum number of consecutive DTX. For example, for lower network loading, a smaller scaling factor can be multiplied with the original maximum consecutive DTX number.
  • a larger scaling factor can be multiplied with the original maximum consecutive DTX number.
  • a UE can be (pre-) configured and/or indicate with a new maximum number of consecutive DTX wherein more and/or larger values are included.
  • a bitmap and/or a table and/or a scaling factor can be (pre-) configured to indicate the relation between the value of the maximum number of consecutive DTX and the impact factor.
  • multiple candidate PSFCH reception occasion (s) associated with one PSSCH can be (pre-) configured and/or dynamically indicated.
  • multiple (consecutive) PSFCH reception occasion (s) and/or a PSFCH reception occasion window within one slot and/or span multiple (consecutive) slots within COT and/or out-of-COT of the associated PSSCH can be (pre-) configured and/or dynamically indicated (by the COT initiator) .
  • the number of candidate PSFCH reception occasion (s) and/or the length of the PSFCH reception occasion window associated with one PSSCH can be determined based on the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or within or out of COT statue, and/or RLF detection ratio (within a duration) , etc.
  • the transmission on the first PSFCH occasion/symbol immediately after LBT channel access is finished can be used for AGC purpose for the following PSFCH (s) and/or a CPE operation as (pre-) configuration.
  • the transmission (s) on the remaining PSFCH candidate occasion (s) /symbol (s) can be (pre-) configured.
  • it can be (pre-) configure to transmit the repetition of the PSFCH, and/or a (per-) configured sequence, and/or (dummy) data on the remaining candidate PSFCH occasion (s) /symbol (s) .
  • the remaining candidate PSFCH occasion (s) after a successful PSFCH transmission can be shared to the other UE (s) as (pre-) configuration.
  • FIG. 1 An example is provided in Figure 1.
  • four consecutive candidate PSFCH reception occasions i.e., PSFCH OC #0 to PSFHC OC #3
  • All consecutive PSFCH occasions can be regarded as a PSFCH occasion window as shown in Figure 1.
  • the LBT is finished at a position within PSFCH occasion #0
  • a CPE operation or a partial AGC symbol e.g., by the way of puncturing
  • PSFCH occasion #1 can be used for AGC symbol and PSFCH occasion #2 can be used for PSFCH transmission. Then PSFCH occasion #3 can be used for the repetition of PSFCH occasion #2.
  • PSFCH occasion #1 can be used for PSFCH transmission. Then the remaining part of the candidate PSFCH occasions or PSFCH occasion window (i.e., PSFCH occasion #2 and #3) can be used for the repetition of PSFCH occasion #1.
  • one AGC symbol is (pre-) configured and/or indicated within the PSFCH occasion window and the remaining symbols within the PSFCH occasion window are used for PSFCH transmission.
  • the HARQ entity shall for PSFCH reception occasion (s) associated to the PSSCH transmission: if PSFCH reception (s) is (are) absent on any, and/or one, and/or multiple, and/or partial, and/or all (candidate) PSFCH reception occasion (s) : increment the number of consecutive DTX by 1. If the number of the consecutive DTX reaches the max number of consecutive DTX: indicate HARQ-based RLF detection to RRC. Else: re-initialized the number of consecutive DTX to zero. As shown in Figure 1, one example is that when the PSFCH reception is absent on any one of the PSFCH reception occasion #0 to #3, the number of consecutive DTX shall be increased by 1. Another example is that when the PSFCH receptions are absent for all PSFCH reception occasion #0 to PSFCH reception occasion #3, the number of consecutive DTX shall be increased by 1.
  • the AGC symbol may be (pre-) configured for each PSFCH transmission.
  • two PSFCH occasion windows each comprised of two PSFCH occasions, are (pre-) configured within two (consecutive) slots, respectively, for one PSSCH.
  • the first and/or partial PSFCH occasion after LBT channel access is finished within each PSFCH occasion window may be used for AGC purpose.
  • the following PSFCH occasion (s) within each PSFCH window may be used for PSFCH transmission. In this case, the LBT before each PSFCH window may be independent.
  • the (pre-) configuration and/or dynamical indication can be signaled via SIB and/or (PC5-) RRC, and/or (PC5) -MAC CE, and/or DCI, and/or SCI.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

This disclosure describes enhanced mechanisms for RLF detection of SL-U. Specifically, the LBT channel access failure based RLF detection is supported for SL-U. Layer 1 notifies higher layer about the channel access failure if a UE fails to access the channel (s) prior to any, and/or one, and/or multiple, and/or partial, and/or all intended/granted/scheduled/overbooked resource (s) as (pre-) configuration. The value of the maximum count/number of LBT failure instance (s), and/or the size of the LBT failure detection timer before triggering the consistent LBT channel access failures can be (pre-) configured and/or dynamically indicated based on, such as the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising UE or supervised UE), and/or the UE member in the group, etc. Additionally, HARQ-based RLF detection with some enhancements is supported for SL-U. Multiple (candidate) PSFCH reception occasion (s) can be (pre-) configured and/or indicated. The number of consecutive DTX should be increased by 1 if PSFCH reception (s) is (are) absent on any, and/or one, and/or multiple, and/or partial, and/or all (candidate) PSFCH reception occasion (s) associated to the PSSCH transmission as (pre-) configuration. The value of the maximum number of consecutive DTX before triggering the RLF, and/or the number of the (candidate) PSFCH reception occasion associated with one PSSCH can be (pre-) configured and/or indicated based on network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS. etc.

Description

MECHANISMS FOR RLF DETECTION OF SIDELINK ON UNLICENSED SPECTRUM FIELD
The invention discussed below relates generally to wireless communication systems, and more particularly, to mechanisms for RLF detection of SL on unlicensed spectrum.
BACKGROUND
For Rel-16/Rel-17 sidelink (SL) , the radio link failure (RLF) shall be detected with one of the following triggers: 1) the maximum number of retransmissions for a specific destination has been reached; or 2) T400 expiry for a specific destination; or 3) the maximum number of consecutive HARQ DTX for a specific destination has been reached; or 4) the integrity check failure is indicated from SL PDCP entity. For SL transmitted on unlicensed spectrum (SL-U) , the HARQ feedback (i.e., PSFCH) may be blocked due the failure of LBT channel access, which further has the potential to incorrectly trigger HARQ-based RLF detection. Besides, the results of LBT channel access can also reflect the quality of radio link, which thus is regarded as one of the RLF triggers in legacy NR-U and should be taken into account for SL-U RLF detection. Therefore, the mechanisms for RLF detection of SL-U need some enhancements with the considerations of potential LBT channel access failure to support a stable operation of SL-U.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Various aspects of the present disclosure relate to the mechanisms for RLF detection of SL-U. Specifically, in addition to the RLF triggers for Rel-16/Rel-17 SL, the LBT channel access failure based RLF detection can be introduced for SL-U. For example, if a UE fails to access the channel (s) prior to any, and/or one, and/or multiple, and/or partial, and/or all intended/granted/scheduled/overbooked resource (s) , Layer 1 shall notify higher layers about the LBT channel access failure. Additionally, the RLF should be declared due to constant LBT  channel access failures. The maximum count/number of LBT failure instance (s) , and/or the size of the LBT failure detection timer before triggering the consistent LBT channel access failures can be (pre-) configured and/or dynamically indicated based on, such as the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising/anchor/cluster-header UE or supervised/client/cluster-member UE) , and/or RLF detection frequency, etc.
In another aspect of the disclosure, considering that HARQ DTX caused by LBT failure may incorrectly trigger the HARQ-based RLF, some enhanced mechanisms for HARQ-based RLF detection are proposed in this disclosure. For example, multiple (consecutive) PSFCH (i.e., HARQ) reception occasions, and/or PSFCH reception occasion window associated with one PSSCH can be (pre-) configured and/or dynamically indicated (by the COT initiator) . The UE can be (pre-) configured that increment the number of consecutive DTX by 1 if PSFCH reception (s) is (are) absent on any, and/or one, and/or multiple, and/or partial, and/or all (candidate) PSFCH reception occasion (s) associated to the PSSCH transmission. Additionally, more and/or larger values of the maximum number of consecutive DTX before triggering SL-U RLF can be (pre-) configured and/or dynamically indicated based on, such as the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or RLF detection ratio, etc. The (pre-) configuration and/or indication can be signaled via SIB and/or (PC5-) RRC, and/or (PC5) -MAC CE, and/or DCI, and/or SCI.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed figures set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an exemplary diagram of the present enhanced mechanism for HARQ-based RLF detection of SL on unlicensed spectrum.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed  description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
This invention is motivated by, but no limited to, a scenario where SL operated on unlicensed spectrum. In such scenario, the failure of LBT channel access may have impact on legacy RLF triggering for SL. Specifically, considering the LBT channel access results can be regarded as an indicator of the radio link quality, LBT channel access failure based RLF detection is supported for legacy NR-U. Therefore, in addition to the legacy RLF triggers for Rel-16/Rel-17 SL, LBT channel access failure based RLF detection is considered in this disclosure. Additionally, the LBT failure may also block the transmission of HAQR, which further results the absent of PSFCH reception (s) , and thus may incorrectly trigger the HARQ-based RLF detection. Therefore, some enhancements for legacy HARQ-based RLF detection need to be further considered.
In this disclosure, LBT channel access failure based RLF detection is introduced for SL-U. For example, if a UE fails to access the channel (s) prior to an, and/or multiple intended transmission (s) , Layer 1 notifies higher layers about the LBT channel access failure. Alternatively, when lower layer performs an LBT procedure before a and/or multiple transmission (s) and the transmission (s) is (are) not performed, an LBT failure indication shall be sent to the MAC entity from lower layers. For the case that additional and/or multiple resources are allocated/scheduled/overbooked for one (TB) transmission, and/or for the case that additional and/or multiple PSFCH reception occasions associated with PSSCH transmission are (pre-) configured and/or indicated, and/or for the case that additional and/or multiple candidate S-SSB occasions are (pre-) configured and/or indicated, Layer 1 can be (pre-) configured to report LBT channel access failure to higher layers if the UE fails to access the channel (s) prior to any, and/or one, and/or multiple, and/or partial, and/or all intended resource (s) /occasion (s) .
Additionally, the RLF shall be declared by the UE if consistent LBT failures occurred, and the cause of the RLF can be set as LBT failure as (pre-) configuration. Specifically, RRC can configure parameter (s) in the procedures of consistent LBT failures indication. For example, the RRC parameters to indicate the maximum count/number of LBT failure instance (e.g., lbt-FailureInstanceMaxCount) , and/or the detection timer of LBT failure (e.g., lbt-FailureDetectionTimer) can be (pre-) configured for the consistent LBT failure detection. Besides, a counter for LBT failure indication can be used for the consistent LBT failure detection procedure (e.g., LBT COUNTER) .
Additionally, the consistent LBT failure can be triggered based on the relation between LBT COUNTER and the parameters of lbt-FailureInstanceMaxCount and lbt-FailureDetectionTimer. For example, if LBT failure indication has been received from lower layers: start or restart the lbt-FailureDetectionTimer and increment LBT COUNTER by 1. Then if LBT COUNTER >= lbt-FailureInstanceMaxCount: trigger consistent LBT failure. If all triggered consistent LBT failure are cancelled; or if the lbt-FailureDetectionTimer expires; or if lbt-FailureDetectionTimer or lbt-FailureInstanceMaxCount is reconfigured by upper layer: set LBT COUNTER to 0.
Additionally, the value/size of the maximum count/number of LBT failure instance, and/or the detection timer of LBT failure can be (pre-) configured and/or dynamically indicated based on the other impact factors. For example, the factors can be (pre-) configured to include network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising/anchor UE, or supervised/client UE) , and/or the purpose of the COT (e.g., used by the COT initiator, or shared to other UEs) , and/or the UE member in the group, and/or within or out of COT statue, and/or RLF detection frequency/ratio, etc. A bitmap, and/or a table, and/or a scaling factor can be (pre-) configured and/or indicated to reflect the relation between the value/size of the maximum count/number of LBT failure instance, and/or the LBT failure detection timer with the impact factors.
Additionally, based on the consistent LBT failure indication frequency/times/ratio, and/or the LBT based RLF detection frequency/times/ratio, some RLF recovery mechanisms (e.g., LBT based RLF parameters, and/or enhanced resource selection mechanisms) can be implemented as (pre-) configuration. For example, larger maximum count of LBT failure instance, and/or larger detection timer of LBT failure can be (pre-) configured and/or dynamically indicated if the LBT based RLF detection ratio (in a duration/period) exceeds threshold (s) as (pre-) configuration. Besides, the enhanced resource selection mechanisms can also be (pre-) configured and/or indicated based on the RLF detection ratio. For example, more  overbooked resources associated with one TB, and/or more candidate PSFCH occasions associated with one PSSCH, and/or finer channel access granularity, and/or longer LBT protection margin between LBT channel access and resource selection, etc. can be (pre-) configured and/or indicated according to the relation between the RLF frequency/times/ratio and the threshold (s) (in a duration/period) as (pre-) configured.
In another aspect of the disclosure, the HARQ-based RLF detection is supported for SL-U. Specifically, if the maximum number of consecutive HARQ DTX (for a specific destination) is reached, the UE shall declare RLF and the cause of the RLF should be identified as consecutive DTX. For SL-U, the LBT failure may block the transmission of HARQ (i.e., PSFCH) and thus may incorrectly trigger the HARQ-based RLF detection. Therefore, some enhanced mechanisms for HARQ-based RLF detection of SL-U are proposed. The values of the maximum number of consecutive DTX before triggering SL-U RLF can be (pre-) configured based on the other impact factor. For example, the impact factors can be (pre-) configured to include network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising/anchor UE, or supervised/client UE) , and/or the purpose of the COT (e.g., used by the COT initiator, or shared to other UEs) , and/or the UE member in the group, and/or within or out of COT statue, etc. A UE can be (pre-) configured and/or indicated with a scaling factor to the legacy maximum number of consecutive DTX. For example, for lower network loading, a smaller scaling factor can be multiplied with the original maximum consecutive DTX number. For higher network loading, a larger scaling factor can be multiplied with the original maximum consecutive DTX number. Additionally, A UE can be (pre-) configured and/or indicate with a new maximum number of consecutive DTX wherein more and/or larger values are included. A bitmap and/or a table and/or a scaling factor can be (pre-) configured to indicate the relation between the value of the maximum number of consecutive DTX and the impact factor.
In this disclosure, multiple candidate PSFCH reception occasion (s) associated with one PSSCH can be (pre-) configured and/or dynamically indicated. Specifically, multiple (consecutive) PSFCH reception occasion (s) and/or a PSFCH reception occasion window within one slot and/or span multiple (consecutive) slots within COT and/or out-of-COT of the associated PSSCH can be (pre-) configured and/or dynamically indicated (by the COT initiator) . The number of candidate PSFCH reception occasion (s) and/or the length of the PSFCH reception occasion window associated with one PSSCH can be determined based on the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or within or out of COT statue, and/or RLF detection ratio (within a duration) , etc.
Additionally, the transmission on the first PSFCH occasion/symbol immediately after LBT channel access is finished can be used for AGC purpose for the following PSFCH (s) and/or a CPE operation as (pre-) configuration. After a successful PSFCH transmission, the transmission (s) on the remaining PSFCH candidate occasion (s) /symbol (s) can be (pre-) configured. For example, it can be (pre-) configure to transmit the repetition of the PSFCH, and/or a (per-) configured sequence, and/or (dummy) data on the remaining candidate PSFCH occasion (s) /symbol (s) . Alternatively, the remaining candidate PSFCH occasion (s) after a successful PSFCH transmission can be shared to the other UE (s) as (pre-) configuration.
To illustrate the above enhanced mechanism for HARQ-based RLF detection, an example is provided in Figure 1. As shown in Figure 1, four consecutive candidate PSFCH reception occasions (i.e., PSFCH OC #0 to PSFHC OC #3) are (pre-) configured and/or indicated for the associated PSSCH. All consecutive PSFCH occasions can be regarded as a PSFCH occasion window as shown in Figure 1. In this example, the LBT is finished at a position within PSFCH occasion #0, then a CPE operation or a partial AGC symbol (e.g., by the way of puncturing) can be (pre-) configured and/or indicated to occupy the remaining partial symbol of PSFCH occasion #0 and align the boundary of PSFCH occasion #1. For the case that CPE operation is (pre-) configured and/or indicated to occupy partial PSFCH occasion #0, PSFCH occasion #1 can be used for AGC symbol and PSFCH occasion #2 can be used for PSFCH transmission. Then PSFCH occasion #3 can be used for the repetition of PSFCH occasion #2. For the case that (punctured) AGC symbol is (pre-) configured and/or indicated to occupy partial PSFCH occasion #0, PSFCH occasion #1 can be used for PSFCH transmission. Then the remaining part of the candidate PSFCH occasions or PSFCH occasion window (i.e., PSFCH occasion #2 and #3) can be used for the repetition of PSFCH occasion #1. In this example, one AGC symbol is (pre-) configured and/or indicated within the PSFCH occasion window and the remaining symbols within the PSFCH occasion window are used for PSFCH transmission.
In another aspect of the disclosure, the HARQ entity shall for PSFCH reception occasion (s) associated to the PSSCH transmission: if PSFCH reception (s) is (are) absent on any, and/or one, and/or multiple, and/or partial, and/or all (candidate) PSFCH reception occasion (s) : increment the number of consecutive DTX by 1. If the number of the consecutive DTX reaches the max number of consecutive DTX: indicate HARQ-based RLF detection to RRC. Else: re-initialized the number of consecutive DTX to zero. As shown in Figure 1, one example is that when the PSFCH reception is absent on any one of the PSFCH reception occasion #0 to #3, the number of consecutive DTX shall be increased by 1. Another example is that when the PSFCH receptions are absent for all PSFCH reception occasion #0 to PSFCH reception occasion #3,  the number of consecutive DTX shall be increased by 1.
For the case that the candidate PSFCH reception occasion (s) and/or PSFCH reception window (s) are (pre-) configured and/or indicated at the discontinuous symbol (s) , and/or within different slots, and/or within different COT, the AGC symbol may be (pre-) configured for each PSFCH transmission. For example, two PSFCH occasion windows, each comprised of two PSFCH occasions, are (pre-) configured within two (consecutive) slots, respectively, for one PSSCH. The first and/or partial PSFCH occasion after LBT channel access is finished within each PSFCH occasion window may be used for AGC purpose. The following PSFCH occasion (s) within each PSFCH window may be used for PSFCH transmission. In this case, the LBT before each PSFCH window may be independent.
In this disclosure, the (pre-) configuration and/or dynamical indication can be signaled via SIB and/or (PC5-) RRC, and/or (PC5) -MAC CE, and/or DCI, and/or SCI.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “UE, ” and the like may not be a  substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.

Claims (10)

  1. A method for RLF detection of sidelink on unlicensed spectrum, wherein the LBT failure based RLF detection is supported.
  2. The method of claim 1, wherein Layer 1 notifies higher layer about the channel access failure if a UE fails to access the channel (s) prior to any, and/or one, and/or multiple, and/or partial, and/or all intended/granted/scheduled/overbooked resource (s) .
  3. The method of claim 1, wherein the maximum count/number of LBT failure instance (s) , and/or the size of the LBT failure detection timer before triggering the consistent LBT channel access failures can be (pre-) configured and/or dynamically indicated based on, such as the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, and/or the role of the UE (e.g., supervising UE or supervised UE) , and/or the UE member in the group, etc.
  4. The method of claim 1, wherein the RLF should be declared if constant LBT channel access failures is indicated, and the cause of RLF should be identified as LBT failure.
  5. The method of claim 1, wherein the HARQ-based RLF detection is supported.
  6. The method of claim 5, wherein multiple (consecutive) PSFCH (i.e., HARQ) reception occasions, and/or a PSFCH reception occasion window associated with one PSSCH can be (pre-) configured and/or dynamically indicated.
  7. The method of claim 5, wherein the UE can be (pre-) configured that increment the number of consecutive DTX by 1 if PSFCH reception (s) is (are) absent on any, and/or one, and/or multiple, and/or partial, and/or all (candidate) PSFCH reception occasion (s) associated to the PSSCH transmission.
  8. The method of claim 5, wherein the value of the maximum number of consecutive DTX before triggering SL-U RLF can be (pre-) configured and/or dynamically indicated based on, such as the network loading, and/or network density, and/or channel busy ratio, and/or traffic QoS, etc.
  9. The method of claim 5, wherein the RLF should be declared if the maximum number of consecutive DTX is reached, and the cause of RLF shall be identified as consecutive DTX.
  10. The method of claim 1, wherein the (pre-) configuration and/or indication can be signaled via SIB and/or (PC5-) RRC, and/or (PC5) -MAC CE, and/or DCI, and/or SCI.
PCT/CN2022/119584 2022-09-19 2022-09-19 Mechanisms for rlf detection of sidelink on unlicensed spectrum WO2024059966A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/119584 WO2024059966A1 (en) 2022-09-19 2022-09-19 Mechanisms for rlf detection of sidelink on unlicensed spectrum
CN202311190879.6A CN117729579A (en) 2022-09-19 2023-09-14 Beam fault detection method and user equipment
EP23198125.9A EP4340525A1 (en) 2022-09-19 2023-09-19 Methods and apparatus for rlf detection of sidelink on unlicensed spectrum
US18/477,073 US20240098791A1 (en) 2022-09-19 2023-09-28 Mechanisms for rlf detection of sidelink on unlicensed spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119584 WO2024059966A1 (en) 2022-09-19 2022-09-19 Mechanisms for rlf detection of sidelink on unlicensed spectrum

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,073 Continuation US20240098791A1 (en) 2022-09-19 2023-09-28 Mechanisms for rlf detection of sidelink on unlicensed spectrum

Publications (1)

Publication Number Publication Date
WO2024059966A1 true WO2024059966A1 (en) 2024-03-28

Family

ID=90207599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119584 WO2024059966A1 (en) 2022-09-19 2022-09-19 Mechanisms for rlf detection of sidelink on unlicensed spectrum

Country Status (2)

Country Link
CN (1) CN117729579A (en)
WO (1) WO2024059966A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136458A2 (en) * 2016-02-02 2017-08-10 Intel IP Corporation Listen-before-talk (lbt) failure during a random access procedure
WO2020045920A1 (en) * 2018-08-30 2020-03-05 주식회사 케이티 Method and device for processing channel access failure in unlicensed band
WO2021057185A1 (en) * 2019-09-23 2021-04-01 Qualcomm Incorporated Trigger radio link control radio link failure to avoid data stall
US20210136856A1 (en) * 2019-11-06 2021-05-06 FG Innovation Company Limited Method of sidelink radio link failure control and related device
US20210144761A1 (en) * 2019-11-07 2021-05-13 FG Innovation Company Limited Method of listen before talk recovery procedure and related device
US20210234601A1 (en) * 2018-05-10 2021-07-29 Convida Wireless, Llc Beam failure recovery in new radio unlicensed spectrum

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136458A2 (en) * 2016-02-02 2017-08-10 Intel IP Corporation Listen-before-talk (lbt) failure during a random access procedure
US20210234601A1 (en) * 2018-05-10 2021-07-29 Convida Wireless, Llc Beam failure recovery in new radio unlicensed spectrum
WO2020045920A1 (en) * 2018-08-30 2020-03-05 주식회사 케이티 Method and device for processing channel access failure in unlicensed band
WO2021057185A1 (en) * 2019-09-23 2021-04-01 Qualcomm Incorporated Trigger radio link control radio link failure to avoid data stall
US20210136856A1 (en) * 2019-11-06 2021-05-06 FG Innovation Company Limited Method of sidelink radio link failure control and related device
US20210144761A1 (en) * 2019-11-07 2021-05-13 FG Innovation Company Limited Method of listen before talk recovery procedure and related device

Also Published As

Publication number Publication date
CN117729579A (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US10237895B2 (en) Method and apparatus for initiating communications on a shared channel in a mobile communication system
US6169731B1 (en) Method and apparatus for signal acquisition and power control
JP4244670B2 (en) Mobile communication system, radio base station apparatus and operation control method thereof
CA2714437C (en) Access channel load management in a wireless communication system
EP3242498A1 (en) Method and apparatus for authentication
EP3739930A1 (en) User equipment and beam failure recovery method
CN103597899A (en) Methods and devices for radio link monitoring
JP2011520365A (en) Fast feedback competitive ranging procedure in wireless communication system
CN111436067B (en) Method for processing cell connection failure, terminal equipment and network side equipment
CN103906085B (en) The detection method and user equipment of system message update
CN103686804A (en) Error recovery
US20210219337A1 (en) Contention window adjustment method and device, storage medium and electronic device
CN111418223A (en) Method for managing timer and terminal equipment
Pratas et al. Random access for machine-type communication based on bloom filtering
US6859456B1 (en) Method and apparatus for checking communicated data
WO2024059966A1 (en) Mechanisms for rlf detection of sidelink on unlicensed spectrum
CN105191384B (en) Data transmission method, UE and base station
CN113853771A (en) Client device for indicating delay requirement not being satisfied
CN102076005B (en) Service data security-check method and equipment
CN114499782A (en) Beam failure recovery method, device, terminal and storage medium
CN107889186B (en) Access control method, terminal equipment and wireless access network equipment
EP4340525A1 (en) Methods and apparatus for rlf detection of sidelink on unlicensed spectrum
WO2023212923A1 (en) Methods of co-channel coexistence
WO2023147704A1 (en) Methods and apparatus for sidelink communications on unlicensed frequency bands
EP3646622B1 (en) Cell-blocking methods and apparatus in cellular communications networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958980

Country of ref document: EP

Kind code of ref document: A1