WO2024058303A1 - Solid electrolyte for all-solid-state battery - Google Patents

Solid electrolyte for all-solid-state battery Download PDF

Info

Publication number
WO2024058303A1
WO2024058303A1 PCT/KR2022/016299 KR2022016299W WO2024058303A1 WO 2024058303 A1 WO2024058303 A1 WO 2024058303A1 KR 2022016299 W KR2022016299 W KR 2022016299W WO 2024058303 A1 WO2024058303 A1 WO 2024058303A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
solid electrolyte
present
state battery
electrolytes
Prior art date
Application number
PCT/KR2022/016299
Other languages
French (fr)
Korean (ko)
Inventor
박태호
김길호
콰미 암파두임마누엘
김대현
수크마 와루요누르하디
Original Assignee
주식회사 베이스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 베이스 filed Critical 주식회사 베이스
Publication of WO2024058303A1 publication Critical patent/WO2024058303A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials

Definitions

  • the present invention relates to a solid electrolyte for an all-solid-state battery.
  • liquid electrolyte As secondary batteries, lithium-ion batteries using liquid electrolyte are most widely used. However, liquid electrolyte has a risk of leakage when external shock is applied to the battery, and thus additional parts and devices are needed to ensure safety.
  • Solid electrolytes in all-solid-state batteries include polymer electrolytes, oxide electrolytes, and sulfide electrolytes.
  • sulfide-based solid electrolytes have the highest ionic conductivity, but have the problem of generating hydrogen sulfide gas when they react with moisture.
  • Polymer electrolytes have the advantage of having a relatively simple process and being able to use existing lithium-ion battery processes, but have the disadvantage of having significantly low ionic conductivity.
  • Oxide-based electrolytes have the advantage of being safer than sulfide-based electrolytes, but their ionic conductivity is relatively low. Additionally, oxide-based electrolytes generally require a high sintering temperature of 1,000°C or more, which can significantly increase manufacturing costs.
  • the present invention is intended to solve the problems of the prior art described above, and its purpose is to provide a solid electrolyte for an all-solid-state battery that can be sintered at low temperatures and has excellent ionic conductivity.
  • the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention is composed of oxides containing Li, K, and Bi.
  • the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.2 ⁇ (Li+K)/Bi ⁇ 1 based on the molar ratio of each component. Additionally, the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.2 ⁇ (Li+K)/Bi ⁇ 0.6 based on the molar ratio of each component.
  • the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.1 ⁇ Li ⁇ 0.5 based on the molar ratio. Additionally, the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.10 ⁇ K ⁇ 0.15 based on the molar ratio.
  • the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may have a bismuth oxide crystal structure.
  • the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may have a softening point of 540°C to 600°C.
  • the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may have a half-ball temperature of 550°C to 660°C.
  • solid electrolyte for an all-solid-state battery according to the present invention may further include other additional components without impairing the technical spirit of the present invention.
  • the solid electrolyte for an all-solid-state battery contains Li, K, and Bi, thereby enabling low-temperature sintering and having excellent ionic conductivity.
  • FIG. 1 is a diagram schematically showing a cross section of an all-solid-state battery.
  • Figure 2 shows a triangular diagram showing the composition range of solid electrolytes according to examples and comparative examples of the present invention.
  • Figure 3 shows an XRD graph of a solid electrolyte according to an embodiment of the present invention.
  • Figures 4 and 5 show XRD graphs of solid electrolytes according to comparative examples of the present invention.
  • FIG. 1 is a diagram schematically showing a cross section of an all-solid-state battery.
  • the all-solid-state battery 10 includes an anode 11, a cathode 12, and a solid electrolyte layer 13.
  • the solid electrolyte layer 13 is disposed between the anode 11 and the cathode 12 and may be in contact with the anode 11 and the cathode 12, respectively.
  • the positive electrode 11 and the negative electrode 12 may each have a positive electrode active material layer and a negative electrode active material layer, and the positive electrode active material layer and the negative electrode active material layer may each be in contact with the solid electrolyte layer 13.
  • the anode 11 and the cathode 12 may each be bonded to the solid electrolyte layer 13 by sintering. That is, the anode 11, cathode 12, and solid electrolyte layer 13 can be sintered as one piece.
  • the all-solid-state battery 10 is shown as including one layer each of the anode 11, the cathode 12, and the solid electrolyte layer 13, but the present invention is not limited thereto and the anode and the cathode are not limited thereto.
  • the all-solid-state battery may be configured in a form in which the solid electrolyte layer is each composed of a plurality of layers. Alternatively, it may be configured as a so-called stacked all-solid-state battery in which a plurality of anodes, cathodes, and solid electrolyte layers are alternately stacked.
  • the solid electrolyte layer 13 includes an oxide-based electrolyte as a solid electrolyte.
  • Nasicon-type solid electrolytes such as LAGP and Garnet-type solid electrolytes such as LLZO are known, and through continuous research and development, the ionic conductivity of these oxide-based solid electrolytes has increased to 10 -4 S/. It is known to have improved to the cm level.
  • oxide-based solid electrolytes of the Nasicon type and Garnet type there is a limit to further improving ionic conductivity with the oxide-based solid electrolytes of the Nasicon type and Garnet type.
  • these oxide-based solid electrolytes are sintered at a high temperature of 1,000°C or higher, so even if a certain degree of excellent ionic conductivity can be obtained as described above, an increase in manufacturing cost due to high temperature sintering cannot be avoided.
  • a solid electrolyte for an all-solid-state battery may be made of oxide containing Li, K, and Bi.
  • the solid electrolyte for an all-solid-state battery may have a bismuth oxide crystal structure.
  • Bi forms a crystal structure and plays a role in lowering the sintering temperature as a temperature lowering component.
  • Li and K in the composition of the solid electrolyte can function as a network modifier and increase the lattice constant of the bismuth oxide crystal structure. Accordingly, a wider movement path for Li ions can be secured in the crystal structure, thereby improving ionic conductivity.
  • the solid electrolyte according to an embodiment of the present invention is made of an oxide containing Li, K, and Bi, so that Bi functions as the main composition of the crystal structure and Li and K widen the flow path of Li ions to lower the sintering temperature. It can play a lowering role.
  • the components constituting the solid electrolyte may have a specific composition range.
  • the solid electrolyte according to an embodiment of the present invention may satisfy the following relational equation based on the molar ratio of each component.
  • the solid electrolyte according to an embodiment of the present invention may satisfy the following relational equation based on the molar ratio of each component.
  • the solid electrolyte according to an embodiment of the present invention may further satisfy the following relational equation based on the molar ratio.
  • the sintering temperature of the solid electrolyte according to one embodiment of the present invention is about 500°C to about 600°C.
  • the solid electrolyte according to an embodiment of the present invention is sintered at the above temperature , it exhibits an ionic conductivity of about 2.4
  • a precursor powder for producing a solid electrolyte was prepared by mixing 10 mol% of Li 2 O, 12.5 mol% of K 2 O, and 77.5 mol% of Bi 2 O 3 . After mixing the precursor powder, it was placed in a melting furnace and melted at a temperature of about 1,000°C for about 30 minutes. Afterwards, the homogenized melt was poured into a quenching roller and cooled to room temperature, pulverized, and then sieved to obtain fine particles with a size of 10 ⁇ m or less. Finally, the fine particles thus obtained were sintered at about 500°C for about 6 hours to prepare a solid electrolyte.
  • Precursor powders were prepared by varying the composition ratios of Li 2 O and Bi 2 O 3 and melted at a temperature of 800°C to 1,200°C for about 30 minutes depending on the composition ratio. Then, fine particles were obtained through the same process as in Example 1, respectively.
  • a solid electrolyte was prepared by sintering at about 500°C for about 6 hours.
  • Figure 2 shows a triangular diagram showing the composition range of solid electrolytes according to examples and comparative examples of the present invention.
  • 1 to 4 correspond to Examples 1 to 4
  • 5 to 9 correspond to Comparative Examples 1 to 5.
  • Examples 1 to 4, Comparative Examples 2, and Comparative Examples 3 to 5 each have different crystal structures. Specifically, Examples 1 to 4 have a bismuth oxide crystal structure, Comparative Example 2 has a lithium-bismuth oxide crystal structure, and Comparative Examples 3 to 5 have a glass-bismuth oxide crystal structure. It has a ceramic (glass-ceramic) structure. And Comparative Example 1 is located at the boundary between the bismuth oxide crystal structure and the lithium oxide-bismuth oxide crystal structure.
  • Figure 3 shows an XRD graph of a solid electrolyte according to an example (Example 3) of the present invention, and Figures 4 and 5 show an indicates.
  • the solid electrolyte according to an embodiment of the present invention has a single-phase bismuth oxide crystal structure.
  • the solid electrolyte according to the comparative example has a lithium oxide-bismuth oxide crystal structure (see FIG. 4) or a glass-ceramic structure (see FIG. 5).
  • the solid electrolytes according to Examples 1 to 4 of the present invention have a softening point of 600°C or lower and a half-ball temperature of 660°C or lower.
  • the solid electrolyte according to embodiments of the present invention has excellent low-temperature characteristics compared to the conventional oxide-based solid electrolyte, enabling low-temperature sintering.
  • the solid electrolytes according to Examples 1 to 4 of the present invention have very excellent ionic conductivity of 2.4 X 10 -4 to 5.8 X 10 -4 S/cm.
  • the solid electrolytes according to the comparative example show low temperature characteristics similar to those of the examples, but the ionic conductivity is 0.97
  • the solid electrolytes according to Examples 1 to 4 of the present invention are capable of low-temperature sintering and have excellent ionic conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to a solid electrolyte for an all-solid-state battery. The solid electrolyte for an all-solid-state battery, according to one embodiment of the present invention, is formed from oxides including Li, K and Bi.

Description

전고체 전지용 고체 전해질Solid electrolyte for all-solid-state batteries
본 발명은 전고체 전지용 고체 전해질에 관한 것이다.The present invention relates to a solid electrolyte for an all-solid-state battery.
최근 휴대폰 등의 IT 기기에서 전기차, 에너지 저장장치에 이르기까지 다양한 분야에서 이차전지의 이용이 크게 증가하고 있다.Recently, the use of secondary batteries has increased significantly in various fields, from IT devices such as mobile phones to electric vehicles and energy storage devices.
이차전지로는 액체 전해질을 사용하는 리튬이온 전지가 가장 널리 사용되고 있다. 하지만, 액체 전해질은 전지에 외부 충격에 가해지는 경우 누액의 위험이 있고, 이에 따라 안전성을 확보하기 위한 추가적인 부품, 장치가 필요하게 된다.As secondary batteries, lithium-ion batteries using liquid electrolyte are most widely used. However, liquid electrolyte has a risk of leakage when external shock is applied to the battery, and thus additional parts and devices are needed to ensure safety.
최근, 이차전지의 안전성을 향상시키기 위하여 전해질로서 고체 전해질을 사용하는 전고체 전지에 대한 개발이 활발히 진행되고 있다. 전고체 전지의 고체 전해질로는 고분자계 전해질, 산화물계 전해질, 황화물계 전해질 등이 있다. 이 중 황화물계 고체 전해질은 이온 전도도가 가장 높지만, 수분과 반응하여 황화수소가스가 발생하는 문제가 있다. 고분자계 전해질은 상대적으로 공정이 간단하고 기존 리튬이온 전지 공정을 사용할 수 있다는 장점이 있으나, 이온 전도도가 현저히 낮다는 단점이 있다.Recently, in order to improve the safety of secondary batteries, development of all-solid-state batteries that use solid electrolytes as electrolytes is actively underway. Solid electrolytes in all-solid-state batteries include polymer electrolytes, oxide electrolytes, and sulfide electrolytes. Among these, sulfide-based solid electrolytes have the highest ionic conductivity, but have the problem of generating hydrogen sulfide gas when they react with moisture. Polymer electrolytes have the advantage of having a relatively simple process and being able to use existing lithium-ion battery processes, but have the disadvantage of having significantly low ionic conductivity.
산화물계 전해질은 황화물계 전해질보다 안전성이 우수하다는 장점이 있으나 상대적으로 이온 전도도가 낮은 편이다. 또한, 산화물계 전해질은 일반적으로 1,000℃ 이상의 높은 소결 온도가 요구되며, 이로 인해 제조 비용이 크게 증가할 수 있다.Oxide-based electrolytes have the advantage of being safer than sulfide-based electrolytes, but their ionic conductivity is relatively low. Additionally, oxide-based electrolytes generally require a high sintering temperature of 1,000°C or more, which can significantly increase manufacturing costs.
본 발명은 상술한 종래기술의 문제를 해결하기 위한 것으로서, 저온 소결할 수 있으면서도 우수한 이온 전도도를 갖는 전고체 전지용 고체 전해질을 제공하는 것에 그 목적이 있다.The present invention is intended to solve the problems of the prior art described above, and its purpose is to provide a solid electrolyte for an all-solid-state battery that can be sintered at low temperatures and has excellent ionic conductivity.
본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 Li, K 및 Bi를 포함하는 산화물로 이루어진다.The solid electrolyte for an all-solid-state battery according to an embodiment of the present invention is composed of oxides containing Li, K, and Bi.
본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 각 성분의 몰비를 기준으로, 0.2≤(Li+K)/Bi<1 을 만족할 수 있다. 또한, 본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 각 성분의 몰비를 기준으로, 0.2≤(Li+K)/Bi≤0.6 을 만족할 수 있다.The solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.2≤(Li+K)/Bi<1 based on the molar ratio of each component. Additionally, the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.2≤(Li+K)/Bi≤0.6 based on the molar ratio of each component.
본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 몰비를 기준으로, 0.1≤Li<0.5 를 만족할 수 있다. 또한, 본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 몰비를 기준으로, 0.10≤K≤0.15 를 만족할 수 있다.The solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.1≤Li<0.5 based on the molar ratio. Additionally, the solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may satisfy 0.10≤K≤0.15 based on the molar ratio.
본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 비스무스 산화물 결정 구조를 가질 수 있다.The solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may have a bismuth oxide crystal structure.
본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 연화점이 540℃ 내지 600℃일 수 있다.The solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may have a softening point of 540°C to 600°C.
본 발명의 일 실시예에 따른 전고체 전지용 고체 전해질은 Half-ball 온도가 550℃ 내지 660℃일 수 있다.The solid electrolyte for an all-solid-state battery according to an embodiment of the present invention may have a half-ball temperature of 550°C to 660°C.
이 외에도, 본 발명에 따른 전고체 전지용 고체 전해질은 본 발명의 기술적 사상을 해치지 않는 범위에서 다른 부가적인 구성을 더 포함할 수 있다.In addition to this, the solid electrolyte for an all-solid-state battery according to the present invention may further include other additional components without impairing the technical spirit of the present invention.
본 발명의 일 실시예에 따르면, 전고체 전지용 고체 전해질이 Li, K 및 Bi를 포함함으로써, 저온 소결이 가능하면서도 우수한 이온 전도도를 가질 수 있다.According to one embodiment of the present invention, the solid electrolyte for an all-solid-state battery contains Li, K, and Bi, thereby enabling low-temperature sintering and having excellent ionic conductivity.
도 1은 전고체 전지의 단면을 개략적으로 나타내는 도면이다.1 is a diagram schematically showing a cross section of an all-solid-state battery.
도 2는 본 발명의 실시예 및 비교예에 따른 고체 전해질의 조성 범위를 도시한 삼각도표를 나타낸다.Figure 2 shows a triangular diagram showing the composition range of solid electrolytes according to examples and comparative examples of the present invention.
도 3은 본 발명의 일 실시예에 따른 고체 전해질의 XRD 그래프를 나타낸다.Figure 3 shows an XRD graph of a solid electrolyte according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 비교예에 따른 고체 전해질의 XRD 그래프를 나타낸다.Figures 4 and 5 show XRD graphs of solid electrolytes according to comparative examples of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail so that a person skilled in the art can easily implement the present invention.
본 발명을 명확하게 설명하기 위하여 본 발명과 관계없는 부분의 설명은 생략하였으며, 명세서 전체를 통하여 동일한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 사상 및 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있으며, 개별 구성요소의 위치 또는 배치도 본 발명의 사상 및 범위를 벗어나지 않으면서 변경될 수 있는 것으로 이해되어야 한다.In order to clearly explain the present invention, descriptions of parts unrelated to the present invention have been omitted, and like reference numerals are assigned to like components throughout the specification. The specific shape, structure, and characteristics described in the specification may be changed and implemented from one embodiment to another without departing from the spirit and scope of the present invention, and the location or arrangement of individual components may also be implemented within the spirit and scope of the present invention. It should be understood as something that can be changed without deviating from it.
따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다.Accordingly, the detailed description below is not to be taken in a limiting sense, and the scope of the present invention should be taken to encompass the scope of the claims and all equivalents thereof.
도 1은 전고체 전지의 단면을 개략적으로 나타내는 도면이다. 1 is a diagram schematically showing a cross section of an all-solid-state battery.
도 1을 참조하면, 전고체 전지(10)는 양극(11), 음극(12) 및 고체 전해질층(13)을 포함한다. 고체 전해질층(13)은 양극(11)과 음극(12) 사이에 배치되며, 양극(11) 및 음극(12)과 각각 접촉할 수 있다. 양극(11)과 음극(12)은 각각 양극 활물질층과 음극 활물질층을 구비할 수 있으며, 양극 활물질층과 음극 활물질층이 각각 고체 전해질층(13)과 접촉할 수 있다.Referring to FIG. 1, the all-solid-state battery 10 includes an anode 11, a cathode 12, and a solid electrolyte layer 13. The solid electrolyte layer 13 is disposed between the anode 11 and the cathode 12 and may be in contact with the anode 11 and the cathode 12, respectively. The positive electrode 11 and the negative electrode 12 may each have a positive electrode active material layer and a negative electrode active material layer, and the positive electrode active material layer and the negative electrode active material layer may each be in contact with the solid electrolyte layer 13.
양극(11)과 음극(12)은 각각 소결에 의해 고체 전해질층(13)과 접합될 수 있다. 즉, 양극(11), 음극(12) 및 고체 전해질층(13)은 일체로 소결될 수 있다.The anode 11 and the cathode 12 may each be bonded to the solid electrolyte layer 13 by sintering. That is, the anode 11, cathode 12, and solid electrolyte layer 13 can be sintered as one piece.
도 1에는 전고체 전지(10)가 양극(11), 음극(12) 및 고체 전해질층(13)을 각 한 개의 층을 포함하는 형태로 도시되어 있으나, 본 발명이 이에 한정된 것은 아니며 양극, 음극 및 고체 전해질층이 각기 복수의 층으로 이루어진 형태로 전고체 전지를 구성할 수도 있다. 또는, 양극, 음극 및 고체 전해질층이 교번하여 복수 적층된 형태의, 소위 적층형 전고체 전지로 구성될 수도 있다.In Figure 1, the all-solid-state battery 10 is shown as including one layer each of the anode 11, the cathode 12, and the solid electrolyte layer 13, but the present invention is not limited thereto and the anode and the cathode are not limited thereto. And the all-solid-state battery may be configured in a form in which the solid electrolyte layer is each composed of a plurality of layers. Alternatively, it may be configured as a so-called stacked all-solid-state battery in which a plurality of anodes, cathodes, and solid electrolyte layers are alternately stacked.
본 발명의 일 실시예에 따른 고체 전해질층(13)은 고체 전해질로서 산화물계 전해질을 포함한다.The solid electrolyte layer 13 according to an embodiment of the present invention includes an oxide-based electrolyte as a solid electrolyte.
산화물계 고체 전해질로는 LAGP와 같은 나시콘(Nasicon) 타입, LLZO와 같은 가넷(Garnet) 타입의 고체 전해질이 알려져 있고, 지속적인 연구 개발을 통해 이러한 산화물계 고체 전해질의 이온 전도도가 10-4 S/cm 수준까지 향상된 것으로 알려져 있다.As oxide-based solid electrolytes, Nasicon-type solid electrolytes such as LAGP and Garnet-type solid electrolytes such as LLZO are known, and through continuous research and development, the ionic conductivity of these oxide-based solid electrolytes has increased to 10 -4 S/. It is known to have improved to the cm level.
하지만, 상기의 나시콘 타입 및 가넷 타입의 산화물계 고체 전해질로 이온 전도도를 더 향상시키는 데에는 한계가 있다. 뿐만 아니라, 이들 산화물계 고체 전해질은 1,000℃ 이상의 고온에서 소결되는바, 상술한 바와 같이 어느 정도 우수한 이온 전도도를 얻을 수 있더라도 고온 소결에 따른 제조 비용 증가를 피할 수 없다.However, there is a limit to further improving ionic conductivity with the oxide-based solid electrolytes of the Nasicon type and Garnet type. In addition, these oxide-based solid electrolytes are sintered at a high temperature of 1,000°C or higher, so even if a certain degree of excellent ionic conductivity can be obtained as described above, an increase in manufacturing cost due to high temperature sintering cannot be avoided.
본 발명의 일 실시예에서는 이러한 종래 산화물계 고체 전해질의 한계를 극복한 새로운 산화물계 고체 전해질을 통하여, 소결 온도를 낮추면서도 매우 우수한 이온 전도도를 확보하고 있다.In one embodiment of the present invention, excellent ionic conductivity is secured while lowering the sintering temperature through a new oxide-based solid electrolyte that overcomes the limitations of the conventional oxide-based solid electrolyte.
본 발명의 일 실시예에 따르면, 전고체 전지용 고체 전해질은 Li, K 및 Bi를 포함하는 산화물로 이루어질 수 있다. 일 실시예에서, 전고체 전지용 고체 전해질은 비스무스 산화물 결정 구조를 가질 수 있다.According to one embodiment of the present invention, a solid electrolyte for an all-solid-state battery may be made of oxide containing Li, K, and Bi. In one embodiment, the solid electrolyte for an all-solid-state battery may have a bismuth oxide crystal structure.
고체 전해질을 이루는 조성에서 Bi는 결정 구조를 이루고, 저온화 성분으로서 소결 온도를 낮추는 역할을 한다.In the composition of the solid electrolyte, Bi forms a crystal structure and plays a role in lowering the sintering temperature as a temperature lowering component.
고체 전해질을 이루는 조성에서 Li 및 K는 망목 수식제로 기능할 수 있고, 비스무스 산화물 결정 구조의 격자 상수를 증가시킬 수 있다. 이에 따라, 상기 결정 구조에서 Li 이온의 이동 경로를 더 넓게 확보할 수 있어, 이온 전도도를 향상시킬 수 있다.Li and K in the composition of the solid electrolyte can function as a network modifier and increase the lattice constant of the bismuth oxide crystal structure. Accordingly, a wider movement path for Li ions can be secured in the crystal structure, thereby improving ionic conductivity.
이처럼, 본 발명의 일 실시예에 따른 고체 전해질은 Li, K 및 Bi를 포함하는 산화물로 이루어짐으로써, Bi가 결정 구조의 메인 조성으로 기능하고 Li 및 K가 Li 이온의 유동 경로를 넓혀 소결 온도를 낮추는 역할을 할 수 있다.In this way, the solid electrolyte according to an embodiment of the present invention is made of an oxide containing Li, K, and Bi, so that Bi functions as the main composition of the crystal structure and Li and K widen the flow path of Li ions to lower the sintering temperature. It can play a lowering role.
본 발명의 일 실시예에 따르면, 고체 전해질을 이루는 성분들은 특정 조성범위를 가질 수 있다.According to one embodiment of the present invention, the components constituting the solid electrolyte may have a specific composition range.
본 발명의 일 실시예에 따른 고체 전해질은, 각 성분의 몰비를 기준으로 다음의 관계식을 만족할 수 있다.The solid electrolyte according to an embodiment of the present invention may satisfy the following relational equation based on the molar ratio of each component.
(1) 0.2≤(Li+K)/Bi<1 (1) 0.2≤(Li+K)/Bi<1
바람직하게는, 본 발명의 일 실시예에 따른 고체 전해질은, 각 성분의 몰비를 기준으로 다음의 관계식을 만족할 수 있다.Preferably, the solid electrolyte according to an embodiment of the present invention may satisfy the following relational equation based on the molar ratio of each component.
(2) 0.2≤(Li+K)/Bi≤0.6(2) 0.2≤(Li+K)/Bi≤0.6
고체 전해질의 알칼리 성분(Li 및 K)의 몰비와 Bi의 몰비가 상기 관계식을 만족하는 경우 이온 전도도가 현저히 향상될 수 있다.When the molar ratio of the alkaline components (Li and K) of the solid electrolyte and the molar ratio of Bi satisfy the above relational equation, ionic conductivity can be significantly improved.
본 발명의 일 실시예에 따른 고체 전해질은, 몰비를 기준으로 다음의 관계식을 더 만족할 수 있다.The solid electrolyte according to an embodiment of the present invention may further satisfy the following relational equation based on the molar ratio.
(3) 0.10≤Li<0.5(3) 0.10≤Li<0.5
(4) 0.10≤K≤0.15(4) 0.10≤K≤0.15
고체 전해질의 알칼리 성분(Li 및 K)의 몰비가 위 범위를 만족하는 경우 이온 전도도가 향상될 수 있다.When the molar ratio of the alkaline components (Li and K) of the solid electrolyte satisfies the above range, ionic conductivity can be improved.
본 발명의 일 실시예에 따른 고체 전해질의 소결 온도는 약 500℃ 내지 약 600℃이다. 본 발명의 일 실시예에 따른 고체 전해질은 상기 온도에서 소결된 경우, 상온에서 약 2.4 X 10-4 내지 약 5.8 X 10-4 S/cm의 이온 전도도를 보인다.The sintering temperature of the solid electrolyte according to one embodiment of the present invention is about 500°C to about 600°C. When the solid electrolyte according to an embodiment of the present invention is sintered at the above temperature , it exhibits an ionic conductivity of about 2.4
실시예Example
(실시예 1)(Example 1)
Li2O 10 mol%, K2O 12.5 mol% 및 Bi2O3 77.5 mol%를 혼합하여 고체 전해질의 제조를 위한 전구체 파우더를 준비하였다. 전구체 파우더를 혼합한 후 용융로에 넣어 약 1,000℃의 온도에서 약 30분간 용융시켰다. 이후, 균질화된 용융물을 퀜칭 롤러(quenching roller)에 부어 상온까지 냉각시키고, 이를 분쇄한 후 체로 걸러 10 ㎛ 이하 크기의 미립자를 얻었다. 끝으로, 이렇게 얻은 미립자를 약 500℃에서 약 6시간 소결하여 고체 전해질을 제조하였다.A precursor powder for producing a solid electrolyte was prepared by mixing 10 mol% of Li 2 O, 12.5 mol% of K 2 O, and 77.5 mol% of Bi 2 O 3 . After mixing the precursor powder, it was placed in a melting furnace and melted at a temperature of about 1,000°C for about 30 minutes. Afterwards, the homogenized melt was poured into a quenching roller and cooled to room temperature, pulverized, and then sieved to obtain fine particles with a size of 10 ㎛ or less. Finally, the fine particles thus obtained were sintered at about 500°C for about 6 hours to prepare a solid electrolyte.
(추가적인 실시예 및 비교예)(Additional Examples and Comparative Examples)
Li2O 및 Bi2O3의 조성비를 달리하여 전구체 파우더를 준비하고, 조성비에 따라 800℃ 내지 1,200℃의 온도에서 약 30분간 용융하였으며, 이후 실시예 1과 동일한 과정을 통해 미립자를 얻고, 각각 약 500℃에서 약 6시간 소결하여 고체 전해질을 제조하였다.Precursor powders were prepared by varying the composition ratios of Li 2 O and Bi 2 O 3 and melted at a temperature of 800°C to 1,200°C for about 30 minutes depending on the composition ratio. Then, fine particles were obtained through the same process as in Example 1, respectively. A solid electrolyte was prepared by sintering at about 500°C for about 6 hours.
이상 설명한 각 실시예 및 비교예에 따른 고체 전해질 조성비는 표 1에 기재된 바와 같다.The solid electrolyte composition ratio according to each Example and Comparative Example described above is as shown in Table 1.
구분division 고체 전해질 조성(mol%)Solid electrolyte composition (mol%) R2O/Bi2O3 R 2 O/Bi 2 O 3
Li2OLi 2 O K2O K2O Bi2O3 Bi 2 O 3
실시예 1Example 1 1010 12.512.5 77.577.5 0.290.29
실시예 2Example 2 1515 12.512.5 72.572.5 0.380.38
실시예 3Example 3 1818 12.512.5 69.569.5 0.440.44
실시예 4Example 4 2525 12.512.5 62.562.5 0.60.6
비교예 1Comparative Example 1 37.537.5 12.512.5 5050 1One
비교예 2Comparative Example 2 5050 12.512.5 37.537.5 1.671.67
비교예 3Comparative Example 3 62.562.5 12.512.5 2525 33
비교예 4Comparative Example 4 7575 12.512.5 12.512.5 77
비교예 5Comparative Example 5 8585 12.512.5 2.52.5 3939
도 2는 본 발명의 실시예 및 비교예에 따른 고체 전해질의 조성 범위를 도시한 삼각도표를 나타낸다. 도 2에서의 ① 내지 ④는 실시예 1 내지 4에 해당하며, ⑤ 내지 ⑨는 비교예 1 내지 5에 해당한다.Figure 2 shows a triangular diagram showing the composition range of solid electrolytes according to examples and comparative examples of the present invention. In Figure 2, ① to ④ correspond to Examples 1 to 4, and ⑤ to ⑨ correspond to Comparative Examples 1 to 5.
도 2를 참조하면, 실시예 1 내지 4와, 비교예 2와, 비교예 3 내지 5는 각기 다른 결정 구조를 갖는다. 구체적으로, 실시예 1 내지 4는 비스무스 산화물 결정(bismuth oxide crystal) 구조를 갖고, 비교예 2는 리튬 산화물-비스무스 산화물 결정(lithium-bismuth oxide crystal) 구조를 가지며, 비교예 3 내지 5는 글라스-세라믹(glass-ceramic) 구조를 갖는다. 그리고 비교예 1은 비스무스 산화물 결정 구조와 리튬 산화물-비스무스 산화물 결정 구조의 경계에 위치한다.Referring to Figure 2, Examples 1 to 4, Comparative Examples 2, and Comparative Examples 3 to 5 each have different crystal structures. Specifically, Examples 1 to 4 have a bismuth oxide crystal structure, Comparative Example 2 has a lithium-bismuth oxide crystal structure, and Comparative Examples 3 to 5 have a glass-bismuth oxide crystal structure. It has a ceramic (glass-ceramic) structure. And Comparative Example 1 is located at the boundary between the bismuth oxide crystal structure and the lithium oxide-bismuth oxide crystal structure.
도 3은 본 발명의 일 실시예(실시예 3)에 따른 고체 전해질의 XRD 그래프를 나타내고, 도 4 및 도 5는 본 발명의 비교예(비교예 2 및 4)에 따른 고체 전해질의 XRD 그래프를 나타낸다.Figure 3 shows an XRD graph of a solid electrolyte according to an example (Example 3) of the present invention, and Figures 4 and 5 show an indicates.
도 3을 참조하면, 본 발명의 실시예에 따른 고체 전해질은 단일상의 비스무스 산화물 결정 구조를 가짐을 확인할 수 있다. 반면에, 비교예에 따른 고체 전해질은 리튬 산화물-비스무스 산화물 결정 구조를 갖거나(도 4 참조), 유리-세라믹 구조를 갖는 것(도 5 참조)을 확인할 수 있다.Referring to FIG. 3, it can be seen that the solid electrolyte according to an embodiment of the present invention has a single-phase bismuth oxide crystal structure. On the other hand, it can be confirmed that the solid electrolyte according to the comparative example has a lithium oxide-bismuth oxide crystal structure (see FIG. 4) or a glass-ceramic structure (see FIG. 5).
각 실시예 및 비교예에 따른 고체 전해질의 결정 구조와, 연화점, half-ball 온도 및 이온 전도도를 측정한 결과는 표 2에 기재된 바와 같다.The results of measuring the crystal structure, softening point, half-ball temperature, and ionic conductivity of the solid electrolytes according to each Example and Comparative Example are shown in Table 2.
구분division 결정 구조crystal structure 연화점
(℃)
Yeonhwa branch
(℃)
Half-ball 온도
(℃)
Half-ball temperature
(℃)
이온 전도도
(S/cm)
ionic conductivity
(S/cm)
실시예 1Example 1 Bi2O3 결정 구조Bi 2 O 3 crystal structure 600600 653653 2.4 X 10-4 2.4
실시예 2Example 2 Bi2O3 결정 구조Bi 2 O 3 crystal structure 570570 600600 4.0 X 10-4 4.0
실시예 3Example 3 Bi2O3 결정 구조Bi 2 O 3 crystal structure 540540 580580 5.1 X 10-4 5.1
실시예 4Example 4 Bi2O3 결정 구조Bi 2 O 3 crystal structure 540540 554554 5.8 X 10-4 5.8
비교예 1Comparative Example 1 Bi2O3 결정 구조Bi 2 O 3 crystal structure 540540 563563 3.7 X 10-6 3.7
비교예 2Comparative Example 2 Li2O-B2O3 결정 구조Li 2 OB 2 O 3 crystal structure 545545 570570 5.8 X 10-5 5.8
비교예 3Comparative Example 3 유리-세라믹 구조Glass-ceramic structure 550550 608608 1.2 X 10-6 1.2
비교예 4Comparative Example 4 유리-세라믹 구조Glass-ceramic structure 581581 603603 1.7 X 10-5 1.7
비교예 5Comparative Example 5 유리-세라믹 구조Glass-ceramic structure 550550 610610 0.97 X 10-6 0.97
표 2를 참조하면, 본 발명의 실시예 1 내지 4에 따른 고체 전해질은 600℃ 이하의 연화점을 갖고, half-ball 온도는 660℃ 이하를 보인다. 이처럼, 본 발명의 실시예들에 따른 고체 전해질은 종래 산화물계 고체 전해질 대비 우수한 저온 특성을 가져, 저온 소결이 가능하게 된다.Referring to Table 2, the solid electrolytes according to Examples 1 to 4 of the present invention have a softening point of 600°C or lower and a half-ball temperature of 660°C or lower. As such, the solid electrolyte according to embodiments of the present invention has excellent low-temperature characteristics compared to the conventional oxide-based solid electrolyte, enabling low-temperature sintering.
또한, 본 발명의 실시예 1 내지 4에 따른 고체 전해질은 2.4 X 10-4 내지 5.8 X 10-4 S/cm의 매우 우수한 이온 전도도를 갖는다. 이에 비하여, 비교예에 따른 고체 전해질들은 실시예들과 유사한 저온 특성을 보이지만 이온 전도도는 0.97 X 10-6 내지 1.7 X 10-5 S/cm로서 본 발명의 실시예들과 큰 차이를 보인다.In addition, the solid electrolytes according to Examples 1 to 4 of the present invention have very excellent ionic conductivity of 2.4 X 10 -4 to 5.8 X 10 -4 S/cm. In comparison , the solid electrolytes according to the comparative example show low temperature characteristics similar to those of the examples, but the ionic conductivity is 0.97
이처럼, 본 발명의 실시예 1 내지 4에 따른 고체 전해질은 저온 소결이 가능하면서도 우수한 이온 전도도를 가짐을 확인할 수 있다.In this way, it can be confirmed that the solid electrolytes according to Examples 1 to 4 of the present invention are capable of low-temperature sintering and have excellent ionic conductivity.
이상 본 발명을 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예에 의해 설명하였으나, 상기 실시예는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.Although the present invention has been described above with reference to specific details such as specific components and limited examples, the examples are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited thereto. Anyone with ordinary knowledge in the relevant technical field can make various modifications and transformations from this description.
따라서, 본 발명의 사상은 앞서 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐만 아니라 이 청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the embodiments described above, and all modifications equivalent or equivalent to the claims as well as the claims described below shall fall within the scope of the spirit of the present invention. will be.

Claims (8)

  1. 전고체 전지용 고체 전해질로서,As a solid electrolyte for an all-solid-state battery,
    Li, K 및 Bi를 포함하는 산화물로 이루어지는,Consisting of oxides containing Li, K and Bi,
    전고체 전지용 고체 전해질.Solid electrolyte for all-solid-state batteries.
  2. 제1항에 있어서,According to paragraph 1,
    각 성분의 몰비를 기준으로, 0.2≤(Li+K)/Bi<1 을 만족하는,Based on the molar ratio of each component, satisfying 0.2≤(Li+K)/Bi<1,
    전고체 전지용 고체 전해질.Solid electrolyte for all-solid-state batteries.
  3. 제2항에 있어서,According to paragraph 2,
    각 성분의 몰비를 기준으로, 0.2≤(Li+K)/Bi≤0.6 을 만족하는,Based on the molar ratio of each component, satisfying 0.2≤(Li+K)/Bi≤0.6,
    전고체 전지용 고체 전해질.Solid electrolyte for all-solid-state batteries.
  4. 제2항 또는 제3항에 있어서, According to paragraph 2 or 3,
    몰비를 기준으로, 0.1≤Li<0.5 를 만족하는,Based on the molar ratio, satisfying 0.1≤Li<0.5,
    전고체 전지용 고체 전해질.Solid electrolyte for all-solid-state batteries.
  5. 제2항 내지 제4항 중 어느 한 항에 있어서, According to any one of claims 2 to 4,
    몰비를 기준으로, 0.10≤K≤0.15 를 만족하는,Based on the molar ratio, satisfying 0.10≤K≤0.15,
    전고체 전지용 고체 전해질.Solid electrolyte for all-solid-state batteries.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, According to any one of claims 1 to 5,
    비스무스 산화물 결정 구조를 갖는,Having a bismuth oxide crystal structure,
    전고체 전지용 고체 전해질. Solid electrolyte for all-solid-state batteries.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, According to any one of claims 1 to 6,
    연화점이 540℃ 내지 600℃인,A softening point of 540°C to 600°C,
    전고체 전지용 고체 전해질.Solid electrolyte for all-solid-state batteries.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, According to any one of claims 1 to 7,
    Half-ball 온도가 550℃ 내지 660℃인,Half-ball temperature is 550℃ to 660℃,
    전고체 전지용 고체 전해질.Solid electrolyte for all-solid-state batteries.
PCT/KR2022/016299 2022-09-16 2022-10-24 Solid electrolyte for all-solid-state battery WO2024058303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220117429A KR102595766B1 (en) 2022-09-16 2022-09-16 Solid electrolyet for solid-state battery
KR10-2022-0117429 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058303A1 true WO2024058303A1 (en) 2024-03-21

Family

ID=88543136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016299 WO2024058303A1 (en) 2022-09-16 2022-10-24 Solid electrolyte for all-solid-state battery

Country Status (2)

Country Link
KR (1) KR102595766B1 (en)
WO (1) WO2024058303A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186720A1 (en) * 2012-12-29 2014-07-03 Murata Manufacturing Co., Ltd. Material for solid electrolyte
US20200036028A1 (en) * 2018-07-24 2020-01-30 University Of Maryland, College Park Stable high conductivity oxide electrolyte
US11152640B2 (en) * 2018-10-05 2021-10-19 University Of Maryland Lithium bismuth oxide compounds as Li super-ionic conductor, solid electrolyte, and coating layer for Li metal battery and Li-ion battery
KR20220008056A (en) * 2020-07-13 2022-01-20 주식회사 엘지에너지솔루션 All solid battery comprising an oxide based solid electrolyte for low temperature sintering process and manufacturing method thereof
EP4044298A1 (en) * 2019-10-11 2022-08-17 Murata Manufacturing Co., Ltd. Solid-state battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102590896B1 (en) * 2020-12-22 2023-10-19 울산대학교 산학협력단 Method for preparing solid electrolyte and solid electrolyte prepared therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186720A1 (en) * 2012-12-29 2014-07-03 Murata Manufacturing Co., Ltd. Material for solid electrolyte
US20200036028A1 (en) * 2018-07-24 2020-01-30 University Of Maryland, College Park Stable high conductivity oxide electrolyte
US11152640B2 (en) * 2018-10-05 2021-10-19 University Of Maryland Lithium bismuth oxide compounds as Li super-ionic conductor, solid electrolyte, and coating layer for Li metal battery and Li-ion battery
EP4044298A1 (en) * 2019-10-11 2022-08-17 Murata Manufacturing Co., Ltd. Solid-state battery
KR20220008056A (en) * 2020-07-13 2022-01-20 주식회사 엘지에너지솔루션 All solid battery comprising an oxide based solid electrolyte for low temperature sintering process and manufacturing method thereof

Also Published As

Publication number Publication date
KR102595766B1 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
Li et al. NaSICON: A promising solid electrolyte for solid‐state sodium batteries
WO2019078702A2 (en) Negative electrode active material and all-solid battery negative electrode comprising same
WO2020180030A1 (en) Method for manufacturing composite solid electrolyte, and all-solid-state secondary battery using same
US20230155181A1 (en) Bipolar all-solid-state sodium ion secondary battery
WO2023018174A1 (en) Cathode active material coated with oxide-based solid electrolyte and sulfide-based solid electrolyte, and all-solid-state battery including same
WO2020060292A1 (en) Solid polymer electrolyte composition, and solid polymer electrolyte containing same
WO2020226412A1 (en) All-solid-state battery comprising composite electrode
KR20210052812A (en) Cathode hybrid electrolyte for solid secondary battery, a cathode including the cathode hybrid electrolyte, preparing method thereof, and solid secondary battery including the cathode hybrid electrolyte
KR20210043146A (en) The secondarty battery
KR20200036971A (en) Solid electrolyte, lithium ion battery comprising the same and manufacturing method thereof
WO2024058303A1 (en) Solid electrolyte for all-solid-state battery
WO2020242095A1 (en) Method for manufacturing negative electrode for all-solid-state battery
WO2023191598A1 (en) Cathode for all-solid-state battery, and all-solid-state battery comprising same
WO2024058302A1 (en) Sintering aid of solid electrolyte for all-solid-state batteries and solid electrolyte including same
KR102603329B1 (en) Solid electrolyte for solid-state battery, which comprises sintering aid
KR102595779B1 (en) Sintering aid of solid electrolyte for solid-state battery and solid electrolyte comprising the same
KR20170069071A (en) An all-solid state battery and preparation thereof
KR102595773B1 (en) Solid electrolyte for solid-state battery
WO2020256360A1 (en) Cathode active material for lithium secondary battery
WO2024085507A1 (en) Positive electrode particles, and positive electrode and all-solid-state battery comprising same
TW202414882A (en) Solid electrolyte for solid-state battery
WO2024058371A1 (en) Positive electrode for all-solid rechargeable battery, and all-solid rechargeable battery
WO2024117610A1 (en) Lithium secondary battery
KR102649111B1 (en) Processing method for the multi-layer all-solid-state battery
KR20200048715A (en) Hybrid electrolyte, and Electrode and Lithium battery comprising hybrid electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958906

Country of ref document: EP

Kind code of ref document: A1