WO2024058163A1 - Mold release film and method for producing same - Google Patents

Mold release film and method for producing same Download PDF

Info

Publication number
WO2024058163A1
WO2024058163A1 PCT/JP2023/033171 JP2023033171W WO2024058163A1 WO 2024058163 A1 WO2024058163 A1 WO 2024058163A1 JP 2023033171 W JP2023033171 W JP 2023033171W WO 2024058163 A1 WO2024058163 A1 WO 2024058163A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
release film
film
aqueous coating
mass
Prior art date
Application number
PCT/JP2023/033171
Other languages
French (fr)
Japanese (ja)
Inventor
健斗 重野
真司 矢野
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2024058163A1 publication Critical patent/WO2024058163A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00

Definitions

  • the present invention relates to a release film having a base film and a release layer and a method for producing the same, and more particularly to a release film useful as a film for various processes and a method for producing the same.
  • release films which are made of polyester film or the like as a base material and have a release layer laminated thereon, have high heat resistance and mechanical properties, and can be used as adhesive sheets, cover films, resin sheets such as ceramic green sheets and polymer electrolyte membranes. It is used as a process film for forming films. Further, as a release layer of a release film, many release layers formed from coating compositions containing silicone have been proposed because they have good heat resistance and peelability (for example, Patent Documents 1 to 5).
  • the release film is also used as a process film for molding ceramic green sheets that require high smoothness for laminated ceramic capacitors, ceramic substrates, etc.
  • ceramic green sheets are formed by applying a slurry containing a ceramic component such as barium titanate and a binder resin onto a release layer of a release film and drying the slurry.
  • a multilayer ceramic capacitor is manufactured by printing electrodes on a molded ceramic green sheet and peeling it off from a release film, and then laminating, pressing, firing, and applying external electrodes to the ceramic green sheet with electrodes.
  • Patent Documents 1 and 2 disclose that a coating composition containing a polysiloxane having an unsaturated group, a polysiloxane having an Si-H group, a platinum group metal catalyst, etc., and an organic solvent is coated on one side of a biaxially stretched polyester.
  • a release film has been proposed in which a release layer is formed by drying and curing the coating composition by heat treatment after application (hereinafter referred to as "off-line coating").
  • Patent Document 3 describes a method (hereinafter referred to as "in-line coating") in which an aqueous coating composition containing an alkenyl group-containing silicone and a Si-H group-containing silicone is applied to one side of a polyester film, and then the polyester film is stretched. ) has proposed a release film with a release layer formed thereon. Further, Patent Document 4 proposes a release film using offline coating. Further, Patent Document 5 proposes a release film using in-line coating.
  • organic solvents impair the stability of the water-dispersed emulsion contained in the aqueous coating composition, impairing the uniformity of the release layer formed by the composition, and deteriorating releasability. there were. Furthermore, as the amount of organic solvents used increases, there is a problem of increased toxicity to the human body and increased environmental burden.
  • Patent Documents 1 and 2 in particular, there was a demand for further compatibility between easy peelability and good wettability of thin-layer ceramic green sheets.
  • the coating composition contains an organic solvent as its main component, it may have an adverse effect on the human body due to contact with the organic solvent or inhalation of its vapor, and may be harmful to the global environment due to the vapor of the organic solvent being released into the atmosphere. load was a problem.
  • the drying equipment for organic solvents must be explosion-proof, which requires initial installation costs, and requires a large amount of energy to operate, resulting in large CO2 emissions and a large environmental impact. was.
  • the release layer is formed of a coating composition using a mixed solvent of water and isopropyl alcohol, which poses problems in that it is harmful to the human body and has a large environmental burden.
  • alcoholic solvents such as isopropyl alcohol may impair the stability of water-dispersed emulsions, impair coating uniformity due to agglomeration or gelation of the emulsion, and cause coating defects such as coarse protrusions and cissing caused by agglomerates. The problem was that this occurred.
  • silicone that has excellent releasability
  • it is necessary to use emulsified silicone because silicone is generally insoluble in water. There was an issue in manufacturing the mold film.
  • the release film described in Patent Document 4 contains an organic solvent as a main component in the composition forming the release layer, it has the problem of being harmful to the human body and having a large environmental burden, as described above. In addition, there is a risk that the biaxially stretched polyester film as a base material may be deformed by the heat generated during drying and curing of the coating composition, so it was necessary to manufacture at a relatively low temperature.
  • the coating composition was cured with heat of 135° C., and there was a risk that the amount of heat for curing the release layer would be insufficient. If the mold release layer is insufficiently cured, the solvent resistance of the mold release layer will be impaired, and the force required to peel off the ceramic green sheet will increase, causing damage to the ceramic green sheet during peeling and potentially causing defects. was there.
  • the present invention was made against the background of such problems of the prior art. In other words, it is possible to reduce the amount of organic solvents that are harmful to the human body and have a negative effect on the environment, and it also achieves both easy peelability and good wettability of thin resin sheets, especially thin ceramic green sheets.
  • the purpose of the present invention is to provide a release film and a method for manufacturing the same.
  • a release film having a polyester film and a release layer in this order is a layer formed by reacting and solidifying an aqueous coating composition
  • the aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the aqueous coating composition
  • the aqueous coating composition comprises: (a) a first silicone emulsion containing at least two or more alkenyl groups in one molecule; (b) a second silicone emulsion containing at least two or more hydrogen groups in one molecule, and (d) In the release layer containing a surfactant,
  • the adhesion energy of the surface of the release layer calculated from the sliding angle of water is 6.0 mJ/m 2 or more,
  • the aqueous coating composition is (c) The release film according to [1] [3] containing an aqueous dispersion containing silicone having a Q unit represented by SiO 4/2
  • the first silicone emulsion containing at least two or more alkenyl groups in one molecule has a number average molecular weight of 1,000 or more and less than 30,000
  • the second silicone emulsion containing at least two or more hydrogen groups in one molecule has a number average molecular weight of 1,000 to 10,000.
  • the release film is obtained by applying the aqueous coating composition to the base film before the crystal orientation is completed, stretching in at least one direction, and then heat-treating the base film to complete the crystal orientation of the base film.
  • the aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the aqueous coating composition, Contains water, a water-soluble component and/or a water-dispersed emulsion, a coating step in which the surface tension of the aqueous coating composition is 40 mN/m or less; and a heating step of heating the polyester film coated with the aqueous coating composition;
  • the aqueous coating composition comprises: (A) a first silicone emulsion containing at least two or more alkenyl groups in one molecule; (B) a second silicone emulsion containing at least two or more hydrogen groups in one molecule, and (D) Contains a
  • the heating step includes the following steps, and the heating step is performed after the coating step; a drying step of drying the aqueous coating composition applied to one side of the polyester film; a stretching step of stretching in a direction perpendicular to the longitudinal direction of the polyester film; and A heat setting step of heat-treating the polyester film to complete crystal orientation.
  • the liquid temperature of the aqueous coating composition is 0°C or more and 40°C or less
  • the release film of the present invention can improve the releasability and wettability of the release layer, and can further suppress the occurrence of defects in thin resin sheets, especially ceramic green sheets. Furthermore, the toxicity to the human body and the environmental load during the manufacturing process can be reduced. Moreover, a uniform release layer can be formed without fear of impairing the stability of the first silicone emulsion and the second silicone emulsion contained in the aqueous coating composition.
  • the present invention has the features described in this specification, it can further solve the problems described below and produce effects.
  • it is possible to achieve both easy peelability and good wettability of the thin ceramic green sheet.
  • the amount of organic solvent can be greatly reduced or it can be substantially eliminated.
  • it is possible to greatly reduce the adverse effects on the human body due to contact with the organic solvent and inhalation of its vapor, and the burden on the global environment due to the emission of organic solvent vapor into the atmosphere.
  • the present invention since aggregation and gelation of the emulsion can be suppressed, coating uniformity is excellent, and the reduction of coarse protrusions derived from aggregates and the occurrence of coating defects such as repellency can be suppressed in a well-balanced manner. Moreover, a release film exhibiting easy releasability can be obtained.
  • the reaction and solidification of the coating composition and the stretching and crystallization of the polyester film can proceed at the same time, while suppressing thermal deformation of the polyester film that is the base material compared to conventional methods.
  • the release layer can be cured at high temperatures.
  • the mold release layer can be sufficiently cured, the mold release layer has excellent solvent resistance. Furthermore, for example, it is possible to suppress an increase in force when peeling the ceramic green sheet, reduce damage to the ceramic green sheet during peeling, and prevent the occurrence of defects.
  • aqueous coating composition when an aqueous coating composition is applied onto a polyester film, coating defects such as repellency can be suppressed during the drying process, and uneven thickness of the release layer, generation of coarse protrusions, etc. can be suppressed. Coating defects such as coating defects can be suppressed.
  • a release film in an embodiment in which a release film is manufactured using an in-line coating method, a release layer with excellent hardening and peelability can be formed, and ceramic slurry, which has been considered difficult in the past, can be formed. It is also possible to obtain the required physical properties regarding wettability.
  • the present invention is a release film having a release layer on at least one surface of a polyester film.
  • the present invention provides a release film having a polyester film and a release layer in this order,
  • the release layer is a layer formed by reacting and solidifying an aqueous coating composition
  • the aqueous coating composition comprises: Containing an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total coating composition,
  • the composition includes: (a) a first silicone emulsion containing at least two or more alkenyl groups in one molecule; (b) a second silicone emulsion containing at least two or more hydrogen groups in one molecule; (d) Surfactant including;
  • a release film having an adhesion energy on the surface of the release layer calculated from the sliding angle of water of 6.0 mJ/m 2 or more and a tape peeling force of 2000 mN/50 mm or less as measured by the following method;
  • the present invention having such a configuration can achieve both easy releasability and good wettability of the release layer, and can provide a uniform thickness without defects to a thin resin sheet, such as a thin ceramic green sheet. can be provided, and defects such as pinholes can be suppressed. Further, the present invention can have the following effects.
  • an aqueous coating composition with a significantly reduced amount of organic solvent compared to conventional ones or an aqueous coating composition containing substantially no organic solvent is used, so there is less harm to the human body and less environmental burden, and there is less CO 2 It is possible to produce a release film while suppressing the occurrence of .
  • the release film of the present invention achieves both releasability and wettability by applying an aqueous coating composition having a predetermined composition using an in-line coating method to form a release layer.
  • an in-line coating method to form a release layer.
  • a thermosetting silicone emulsion can be heat-cured in a relatively high-temperature environment, it exhibits excellent releasability.
  • in-line coating the base film is stretched and crystallized at the same time as the release layer is formed, so even if heat is applied at relatively high temperatures, specifically over 180°C, the film does not deform or shrink due to heat. , it is possible to produce a release film with excellent flatness.
  • an aqueous coating composition containing a surfactant when the coating composition is applied onto a polyester film to form a mold release layer, there are no coating defects such as repellency, and the mold release has excellent releasability. It becomes a layer. Furthermore, since the stability of the silicone emulsion is increased, there is no fear that coarse protrusions or uneven thickness of the release layer will occur due to aggregation or gelation of the emulsion.
  • surfactants exhibit amphiphilic properties that are soluble in organic solvents and water, so they have poor solvent resistance to organic solvents in ceramic slurries and may cause an increase in peeling force. By curing the mold layer, it is possible to create a release layer with a high crosslinking density and excellent solvent resistance, making it possible to produce a release film that exhibits easy releasability and good wettability, which was previously difficult. .
  • the wettability of the release film of the present invention can be evaluated by adhesion energy calculated from the sliding angle measured by forming a droplet on the release layer.
  • the solvent that forms the liquid droplet is not limited when evaluating the adhesion energy, but it is preferably calculated from the sliding angle of water in order to facilitate evaluation of the amount of surfactant contained in the release layer. The detailed evaluation method will be described later.
  • the releasability of the release film of the present invention can be evaluated by the tape peeling force after the release film is immersed in toluene.
  • a resin sheet such as a ceramic green sheet
  • the solvent resistance of the release layer to the organic solvent contained in the ceramic slurry applied on the release layer is important. Therefore, by using the tape peeling force after immersing the release film in an organic solvent, for example, toluene, we can simultaneously evaluate the peeling force and solvent resistance for various objects to be peeled, such as resin sheets and ceramic green sheets. It is possible and preferred.
  • the following tape peeling force test after toluene immersion treatment can be mentioned.
  • the tape peeling force in the present invention can be evaluated using a commercially available adhesive tape.
  • a commercially available adhesive tape For example, the strength of a release film with a tape obtained by laminating an adhesive tape onto a release layer and pressing it under a 5 kg load is shown when the tape is peeled off after being held in an environment of 70°C for 20 hours. The detailed evaluation method will be described later.
  • the adhesive tape an acrylic adhesive tape can be used, and a general-purpose adhesive tape such as No. 31B manufactured by Nitto Denko Corporation can be used.
  • the present invention provides a method for producing a release film, which includes the following steps.
  • the aqueous coating composition contains 10 parts by mass or less of an organic solvent based on 100 parts by mass of the total amount of the coating composition, and preferably contains substantially no organic solvent.
  • a mold release layer with excellent releasability and wettability can be formed.
  • the molecular structure of the silicone emulsion contained in the aqueous coating composition, the molecular weight of the surfactant, the surface tension of the aqueous coating composition, the coating amount of the aqueous coating composition, the liquid temperature of the aqueous coating composition, and the temperature of the heating process examples include.
  • the crosslinking density of the cured film of thermosetting silicone forming the release layer increases, solvent resistance improves, and easy releasability is exhibited. Since the surfactant remains in the mold release layer and segregates on the surface of the release layer, a release film with excellent wettability can be obtained. Details will be described later.
  • polyester film The polyester constituting the polyester film used as the base film is not particularly limited, and a film formed from a polyester commonly used as a base material for a release film can be used.
  • a film formed from a polyester commonly used as a base material for a release film can be used.
  • it is a crystalline linear saturated polyester consisting of an aromatic dibasic acid component and a diol component, such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, or a combination of these resins. More preferred are copolymers containing the constituent components as main components.
  • polyester films formed from polyethylene terephthalate are particularly suitable.
  • the repeating units of ethylene terephthalate are preferably 90 mol% or more, more preferably 95 mol% or more, and a small amount of other dicarboxylic acid components and diol components may be copolymerized.
  • a small amount of other dicarboxylic acid components and diol components may be copolymerized.
  • known additives such as antioxidants, light stabilizers, ultraviolet absorbers, crystallizing agents, etc. may be added within a range that does not impede the effects of the release film of the present invention.
  • the polyester film is preferably a biaxially oriented polyester film for reasons such as high elastic modulus in both directions.
  • the intrinsic viscosity of the polyester film is preferably 0.50 dl/g or more and 0.70 dl/g or less, more preferably 0.52 dl/g or more and 0.62 dl/g or less.
  • the intrinsic viscosity is 0.50 dl/g or more, it is preferable because many breaks do not occur during the stretching process.
  • it is 0.70 dl/g or less it is preferable because the cutting properties are good when cutting into a predetermined product width and dimensional defects do not occur. Further, it is preferable that the raw material pellets be sufficiently vacuum dried.
  • polyester film when it is simply described as a "polyester film", it means a polyester film having (laminated) a surface layer A and a surface layer B.
  • the method for producing the polyester film in the present invention is not particularly limited, and conventionally commonly used methods can be used.
  • it can be obtained by melting the polyester in an extruder, extruding it into a film, cooling it in a rotating cooling drum to obtain an unstretched film, and then biaxially stretching the unstretched film.
  • a biaxially stretched film can be obtained by sequentially biaxially stretching a uniaxially stretched film in the longitudinal or transverse direction in the transverse or longitudinal direction, or by simultaneously biaxially stretching an unstretched film in the longitudinal and transverse directions. I can do it.
  • the stretching temperature during stretching of the polyester film is preferably at least the secondary transition point (Tg) of the polyester. It is preferable to stretch the film by a factor of 1 to 8 times, particularly 2 times to 6 times, in both the longitudinal and transverse directions.
  • the thickness of the polyester film is preferably 12 ⁇ m or more and 50 ⁇ m or less, more preferably 15 ⁇ m or more and 38 ⁇ m or less, and even more preferably 19 ⁇ m or more and 33 ⁇ m or less. If the thickness of the film is 12 ⁇ m or more, there is no risk of deformation due to heat during film production, processing, and molding, which is preferable. On the other hand, if the thickness of the film is 50 ⁇ m or less, the amount of film to be discarded after use will not be excessively large, which is preferable in terms of reducing environmental burden.
  • the polyester film base material may be a single layer or a multilayer of two or more layers.
  • the base film may be a polyester film having a surface layer A that does not substantially contain particles having a particle size of 1.0 ⁇ m or more and a surface layer B that contains particles.
  • surface layer A does not substantially contain inorganic particles having a particle size of 1.0 ⁇ m or more.
  • particles having a particle size of less than 1.0 ⁇ m and 1 nm or more may be present in the surface layer A. Since the surface layer A does not substantially contain particles having a particle size of 1.0 ⁇ m or more, for example, inorganic particles, it is possible to reduce problems caused by transfer of the shape of particles in the base material to the resin sheet.
  • the surface layer A does not contain particles with a particle size of less than 1.0 ⁇ m, so that problems caused by transfer of the particle shape in the base material to the resin sheet can be more effectively suppressed.
  • the polyester film base material is preferably a laminated film having a surface layer A substantially free of inorganic particles on at least one side. Thereby, it is possible to more effectively suppress the transfer of the particle shape in the base material to the resin sheet and the occurrence of defects.
  • the surface layer A that does not substantially contain particles with a particle size of less than 1.0 ⁇ m also substantially does not contain particles with a particle size of 1.0 ⁇ m or more.
  • substantially no particles means, for example, in the case of inorganic particles less than 1.0 ⁇ m, the amount of inorganic elements determined by X-ray fluorescence analysis is 50 ppm or less, preferably 10 ppm or less. , most preferably means a content below the detection limit. Even if particles are not actively added to the film, contaminants derived from foreign substances or dirt attached to the raw resin or the line or equipment in the film manufacturing process are peeled off and mixed into the film. This is because there is. Further, “substantially not containing particles with a particle size of 1.0 ⁇ m or more” means that particles with a particle size of 1.0 ⁇ m or more are not included.
  • the layer on which the release layer is applied is layer A
  • the layer on the opposite side is layer B
  • the other core layer is layer C
  • the layer structure in the thickness direction is release layer/A/ B, or a laminated structure such as release layer/A/C/B.
  • the C layer may have a plurality of layers.
  • the surface layer B may not contain inorganic particles. In that case, it is preferable to provide a coating layer containing at least inorganic particles and a binder on the surface layer B in order to provide slipperiness for winding up the film into a roll.
  • the surface layer B forming the opposite surface to the surface to which the release layer is applied preferably contains inorganic particles from the viewpoint of the slipperiness of the film and the ease with which air can escape.
  • inorganic particles from the viewpoint of the slipperiness of the film and the ease with which air can escape.
  • silica particles and/or calcium carbonate particles it is preferable to use silica particles and/or calcium carbonate particles.
  • the total amount of inorganic particles contained in the surface layer B is preferably 5,000 ppm or more and 15,000 ppm or less.
  • the area surface average roughness (Sa) of the film of the surface layer B is preferably in the range of 1 nm or more and 40 nm or less. More preferably, the range is 5 nm or more and 35 nm or less.
  • the total amount of silica particles and/or calcium carbonate particles is 5000 ppm or more and Sa is 1 nm or more, air can be released uniformly when the film is rolled up, resulting in a good rolled shape and good flatness. , it is suitable for producing ultra-thin ceramic green sheets.
  • the lubricant is less likely to aggregate and coarse protrusions are not formed, resulting in stable quality when producing ultra-thin ceramic green sheets. It is preferable.
  • inert inorganic particles and/or heat-resistant organic particles can also be used as particles contained in layer B, but from the viewpoint of transparency and cost, silica particles and/or More preferably, calcium carbonate particles are used.
  • other inorganic particles that can be used include alumina-silica composite oxide particles, hydroxyapatite particles, and the like.
  • the heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles.
  • porous colloidal silica is preferable, and when using calcium carbonate particles, light calcium carbonate whose surface is treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the lubricant from falling off. .
  • the average particle diameter of the inorganic particles added to the surface layer B is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, particularly preferably 0.5 ⁇ m or more and 1.0 ⁇ m or less. It is preferable that the average particle diameter of the inorganic particles is 0.1 ⁇ m or more because the release film has good slip properties. Further, if the average particle diameter is 2.0 ⁇ m or less, there is no possibility that the smoothness of the surface of the mold release layer will be adversely affected, and therefore there is no possibility that pinholes will occur in the ceramic green sheet, which is preferable.
  • the surface layer A which is the layer on which the release layer is provided, in order to prevent inorganic particles such as lubricants from being mixed in.
  • the thickness ratio of the surface layer A which is the layer on which the release layer is provided, is preferably 20% or more and 50% or less of the total layer thickness of the base film. If it is 20% or more, it is difficult to be affected by particles contained in the surface layer B etc. from inside the film, and it is easy for the area surface average roughness Sa to satisfy the above range, which is preferable.
  • the thickness is 50% or less of the total thickness of the base film, the ratio of recycled raw materials used in the surface layer B can be increased, and the environmental burden is small, which is preferable.
  • the film is coated on the surface of the surface layer A and/or surface layer B before or after uniaxial stretching during the film forming process.
  • a coating layer may be provided, and surface treatment etc. may also be performed.
  • the release layer forming surface to which the aqueous coating composition is applied can be subjected to surface treatment or provided with an easy-to-adhesion layer in order to improve adhesion to the release layer.
  • Surface treatments include plasma treatment, corona discharge treatment, ultraviolet treatment, flame treatment, and electron beam/radiation treatment.
  • the adhesive layer contains the same resin as the base film, and further contains antistatic agents and pigments. , a surfactant, a lubricant, an anti-blocking agent, and the like. If an adhesion improver such as a coupling agent is added to the aqueous coating composition, the release layer should have sufficient adhesion to the base film even without providing an easy-adhesion layer. Can be done.
  • the release layer is laminated on the surface layer A of the base film.
  • the release layer is a layer formed by reacting and solidifying an aqueous coating composition,
  • the aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the coating composition, (a) a first silicone emulsion containing at least two or more alkenyl groups in one molecule; (b) a second silicone emulsion containing at least two or more hydrogen groups in one molecule; (d) a surfactant.
  • the release layer has an adhesion energy of 6.0 mJ/m 2 or more calculated from the sliding angle of water, A release film with a tape peeling force of 2000mN/50mm or less measured by the following method; On the release layer of the release film that was air-dried after being immersed in toluene for 15 minutes, Adhesive tape is laminated with a load of 5 kg, and after holding the release film with tape at 70°C for 20 hours, the tape peeling force is measured by T-shaped peeling at a peeling speed of 0.3 m/min.
  • the release layer has these characteristics, it is possible to provide a release film with excellent releasability and wettability, and it is possible to suppress the occurrence of defects such as pinholes on resin sheets and ceramic green sheets. , a sheet with uniform thickness can be formed.
  • the release layer can be cured without impairing the flatness of the release film even in a relatively high-temperature environment of 180° C. or higher. Therefore, it is possible to form a release layer with a higher crosslinking density than when a release layer is formed by conventional off-line coating, and it can have easy releasability. Further, according to the present invention, a release layer containing a surfactant soluble in water and an organic solvent can be manufactured, and can have excellent wettability when molding a sheet of ceramic slurry or the like. Furthermore, the stability of the silicone emulsion forming the release layer can be improved, and a release film having a uniform release layer without coating defects can be obtained.
  • the aqueous coating composition forming the release layer contains 10 parts by mass or less of an organic solvent based on 100 parts by mass of the total coating composition.
  • an organic solvent contained in the composition meets the above conditions, it is possible to greatly reduce the amount of organic solvent, or to substantially eliminate the amount of organic solvent, compared to a coating composition containing an organic solvent as a main component. .
  • the aqueous coating composition contains 0.01 parts by mass or more and less than 10 parts by mass of an organic solvent, for example 0.01 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the total amount of the coating composition. .01 parts by mass or more and 5 parts by mass or less, 0.01 parts by mass or more and 3 parts by mass or less, 0.01 parts by mass or more and 1 part by mass or less, 0.01 parts by mass or more and less than 1 part by mass, 0.01 parts by mass or more and 0 .8 parts by mass or less.
  • the amount of the organic solvent may be 0.01 part by mass or more and 0.5 parts by mass or less based on 100 parts by mass of the total resin solid content in the coating composition.
  • the aqueous coating composition may contain an organic solvent in an amount of 0.01 parts by mass or more and 0.2 parts by mass or less, for example, 0.01 parts by mass or more and 0.1 parts by mass or less.
  • the composition can be substantially free of organic solvents.
  • 100 parts by mass of the total amount of the coating composition can be defined as, for example, 100 parts by mass of the total amount of the aqueous coating composition applied to the base film before crystal orientation is completed.
  • the present invention by setting the amount of organic solvent to the above conditions, aggregation and gelation of the first silicone emulsion and the second silicone emulsion of the present invention can be suppressed, resulting in excellent coating uniformity and coarse particles originating from aggregates. It is possible to reduce protrusions and suppress the occurrence of coating defects such as repelling in a well-balanced manner. Moreover, a release film exhibiting easy releasability can be obtained.
  • the mold release layer can be sufficiently cured, the mold release layer has excellent solvent resistance. Furthermore, for example, it is possible to suppress an increase in force when peeling the ceramic green sheet, reduce damage to the ceramic green sheet during peeling, and prevent the occurrence of defects. Furthermore, with the present invention, when an aqueous coating composition is applied onto a polyester film, coating defects such as repellency can be suppressed during the drying process, and uneven thickness of the release layer, generation of coarse protrusions, etc. can be suppressed. Coating defects such as coating defects can be suppressed.
  • a release layer with excellent hardening and peelability can be formed, and ceramic slurry, which has been considered difficult in the past, can be formed. It is also possible to obtain the required physical properties regarding wettability.
  • the organic solvent includes an organic solvent that is subject to the Organic Solvent Poisoning Prevention Regulations as a second type organic solvent (organic solvent).
  • organic solvent examples include acetone, isopropyl alcohol, ethyl ether, cellosolve, dichlorobenzene, xylene, cresol, ethyl acetate, methyl acetate, cyclohexanol, dioxane, dimethylformamide, toluene, n-hexane, butanol, methanol, Examples include methyl ethyl ketone.
  • the composition "substantially does not contain an organic solvent” refers to an amount of organic solvent in an amount of 0 parts by mass or more and less than 0.01 parts by mass, based on 100 parts by mass of the total amount of the aqueous coating composition. This means that the above organic solvents are included. This is because organic solvents may be contained in contaminant components derived from foreign substances, raw resins, additives, etc. even if organic solvents are not actively added.
  • the first silicone emulsion having at least two or more alkenyl groups in one molecule is an aqueous dispersion obtained by emulsifying silicone containing at least two or more alkenyl groups in one molecule.
  • the silicone containing at least two or more alkenyl groups in one molecule may be any compound having a siloxane bond in the main chain, but polyorganosiloxanes having alkenyl groups in the terminal and/or side chains may be used. is preferred, and polydimethylsiloxane is more preferred. It is preferable that one molecule has 2 or more alkenyl groups and 20 or less alkenyl groups. The presence of two or more alkenyl groups results in a release layer with high crosslinking density when thermally cured, and exhibits easy releasability.
  • silicone having an alkenyl group examples include a structure represented by the following general formula (I).
  • R 1 may be the same or different and is an alkenyl group having 2 to 8 carbon atoms, or a monovalent hydrocarbon having 1 to 16 carbon atoms containing an alkyl group or an aryl group. At least two of R 1 are alkenyl groups having 2 to 8 carbon atoms, and one or more of R 1 bonded to the silicon atom represented by [SiO] b1 is an alkenyl group having 2 to 8 carbon atoms.
  • R2 may be the same or different and is a monovalent hydrocarbon group having 1 to 16 carbon atoms containing an alkyl group or an aryl group, and when a1+b1 is 100 mol%, a1 is 90 mol% or more and 100 mol% or less, and b1 is 0 mol% or more and 10 mol% or less.
  • [SiO] R 2 bonded to the silicon atom represented by a1 may be a monovalent hydrocarbon group including an alkyl group or an aryl group, but may be a monovalent hydrocarbon group having 1 to 16 carbon atoms selected from an alkyl group or an aryl group.
  • silicone having a D unit structure represented by SiO 2/2 is preferable.
  • R 1 bonded to the silicon atom represented by [SiO] b1 may be an alkenyl group having 2 to 8 carbon atoms, or a monovalent hydrocarbon group containing an alkyl group or an aryl group, but in [SiO] b1 It is preferable that one or more of R 1 bonded to the silicon atom shown is an alkenyl group having 2 or more and 8 or less carbon atoms.
  • R 1 is preferably a monovalent hydrocarbon group having 1 to 16 carbon atoms selected from an alkenyl group having 2 to 8 carbon atoms, an alkyl group, or an aryl group, and a methyl group or a phenyl group. is more preferred, and methyl group is even more preferred.
  • R 1 at both ends is also the same as R 1 bonded to the silicon atom shown in [SiO] b1 , but the preferred structure is an alkenyl group having 2 to 8 carbon atoms, and the alkenyl group at the end is a hydrogen group. It is particularly preferable because steric structural hindrance becomes relatively small when the reaction occurs and peelability is easily improved.
  • Examples of the alkenyl group having 2 or more and 8 or less carbon atoms represented by R 1 include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and among these, a vinyl group is particularly preferred.
  • [SiO] a1 is The range of the structural unit is preferably 90 mol% or more and 100 mol% or less, and more preferably 92 mol% or more and 100 mol% or less.
  • the number average molecular weight of the silicone having an alkenyl group is preferably 1,000 or more and less than 30,000, more preferably 3,000 or more and less than 15,000.
  • the number average molecular weight is 1000 or more, hydrocarbon groups are localized on the coating surface, making it easy to obtain sufficient releasability.
  • the number average molecular weight is less than 30,000, the emulsifying property of the aqueous coating composition tends to be good and the uniform coating properties also tend to be good.
  • the number average molecular weight in the present invention refers to the value calculated from the integral ratio of the peaks derived from each siloxane unit after identifying the siloxane units from the peaks observed by 1 H NMR and 29 Si NMR.
  • the second silicone emulsion having at least two or more hydrogen groups in one molecule is an aqueous dispersion obtained by emulsifying silicone having at least two or more hydrogen groups in one molecule.
  • the silicone having at least two or more hydrogen groups in one molecule may be any compound having a siloxane bond in the main chain, but polyorganosiloxanes having hydrogen groups in the terminal or side chain may be used. Preferably, polydimethylsiloxane is more preferable.
  • the terminal silicon atom may have a hydrogen group, but preferably has a trialkylsilane structure such as trimethylsilane. It is preferable that one molecule has 2 or more and 100 or less hydrogen groups. By having two or more hydrogen groups, it becomes a release layer with high crosslinking density when cured, and exhibits easy releasability.
  • R 3 may be the same or different and is a monovalent hydrocarbon group having 1 to 16 carbon atoms and containing an alkyl group or an aryl group, and a2+b2 is 100 mol%. (In this case, a2 is 30 mol% or more and 90 mol% or less, and b2 is 5 mol% or more and 70 mol% or less.)
  • SiO A hydrogen atom (hydrogen group) is bonded to the silicon atom represented by a2
  • R3 may be a monovalent hydrocarbon group including an alkyl group or an aryl group; It is preferable that it is a monovalent hydrocarbon group having 1 or more and 16 or less carbon atoms selected from the following.
  • silicone having a D unit structure represented by SiO 2/2 is preferable.
  • [SiO] b2 and R3 bonded to the terminal Si atom may be any monovalent hydrocarbon group containing an alkyl group or an aryl group, but are selected from alkyl groups and aryl groups having 1 to 16 carbon atoms. The following monovalent hydrocarbon groups are preferred.
  • the alkyl group is preferably a methyl group, ethyl group, propyl group, butyl group, etc.
  • the aryl group is preferably a phenyl group, tolyl group, etc.
  • the range of the structural unit of [SiO] a2 is preferably from 30 mol% to 90 mol%, and from 40 mol% to 80 mol%. The following are more preferred.
  • the a2 structural unit is 30 mol% or more, there will be a sufficient amount of crosslinking reaction points, the crosslinking density of the mold release layer will increase, and the scratch resistance and solvent resistance of the mold release layer will also be good. preferable.
  • the number average molecular weight of the hydrogen group-containing silicone in the present invention is preferably 1,000 or more and 10,000 or less, more preferably 3,000 or more and 8,000 or less. When the number average molecular weight is 1000 or more, sufficient releasability can be easily obtained. On the other hand, when the number average molecular weight is 10,000 or less, the emulsifying property to the aqueous coating composition tends to be good and the coating uniformity tends to be good as well. In addition, the crosslinking reaction is facilitated to proceed efficiently, the number of hydrogen groups remaining in the release layer is reduced, and the releasability is improved. Note that the number average molecular weight in the present invention refers to the value calculated from the integral ratio of the peaks derived from each siloxane unit after identifying the siloxane units from the peaks observed by 1 H NMR and 29 Si NMR.
  • the aqueous coating composition of the present invention preferably contains (c) an aqueous dispersion containing silicone having a Q unit represented by SiO 4/2 .
  • An aqueous dispersion containing silicone having a Q unit represented by SiO 4/2 is one in which silicone having the structure is dispersed in water as an emulsion or colloid.
  • the silicone having this structure may have any structure as long as it is a compound having a siloxane bond in the main chain, but polyorganosiloxane having an alkenyl group at the terminal and/or side chain is preferable.
  • a copolymer containing a dialkylsiloxane unit or an alkylphenylsiloxane unit is preferable because the amount of alkenyl groups in one molecule can be easily adjusted while exhibiting releasability.
  • the terminal silicon atom preferably has an alkenyl group, but may have a trialkylsilane structure such as trimethylsilane.
  • R1 a R2 b SiO (4-ab)/2 ...(III) (In formula (I), R1 is an alkenyl group having 2 to 8 carbon atoms, R2 is a monovalent saturated hydrocarbon group having 1 to 16 carbon atoms selected from an alkyl group or an aryl group, and a is 0 to 3 , b is an integer between 0 and 3 and satisfies a+b ⁇ 3.)
  • Examples of the alkenyl group having 2 to 8 carbon atoms represented by R1 include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and among these, a vinyl group is particularly preferred.
  • examples of the alkyl group represented by R2 include a methyl group, ethyl group, propyl group, butyl group, and examples of the aryl group include a phenyl group and tolyl group.
  • (c) contains an alkenyl group having 2 to 8 carbon atoms, represented by R1, from the viewpoint of reactivity with a hydrogen group. It is preferred because of its excellent properties, and a vinyl group having 2 carbon atoms is most preferred. It is preferable that 50 mol% or more of the substituents for R2 be methyl groups from the viewpoint of easy removability.
  • Silicones having Q units can have a structure in which the siloxane bonds are extended three-dimensionally, and therefore the alkenyl groups in the molecule can also exist extended three-dimensionally. Therefore, by reacting the silicone having a hydrogen group with the alkenyl group in the molecule, a dense crosslinked structure can be formed, and a release layer with excellent solvent resistance can be obtained. Generally, as the ratio of D units represented by SiO 2/2 contained in the release layer increases, the siloxane bonds tend to form a helical structure.For example, in the case of polydimethylsiloxane, the siloxane bonds present in All two methyl groups are arranged on the outside of the molecular chain, making it hydrophobic.
  • the ratio of Q units contained in the release layer increases, the helical structure of the siloxane bonds formed from D units collapses, resulting in a decrease in hydrophobicity.
  • a release layer containing silicone having Q units it is possible to develop easy releasability due to increased crosslinking density and to improve hydrophobicity due to the collapse of the helical structure of siloxane bonds. In other words, it is possible to achieve both excellent wettability.
  • the content of silicone contained in the release layer in the aqueous dispersion containing silicone having a Q unit is (a) the silicone contained in the first silicone emulsion having an alkenyl group, and (b) the silicone contained in the first silicone emulsion having an alkenyl group. ) 10 parts by mass when the total amount of silicone contained in the second silicone emulsion having hydrogen groups and silicone contained in the aqueous dispersion containing silicone having (c) Q units is 100 parts by mass.
  • the amount is preferably 80 parts by weight, more preferably 20 parts by weight to 70 parts by weight.
  • the silicone having Q units breaks the helical structure of the silicone made up of D units contained in the release layer, resulting in a release layer with excellent wettability, which is preferable. If the amount is 80 parts by mass or less, the silicone having Q units does not destroy the helical structure of the silicone made of D units contained in the release layer too much, resulting in a release layer with excellent releasability, which is preferable.
  • the content of Si atoms contained in the Q unit is 0.05 to 60 mol%, preferably 0.1 to 55 mol%, based on the total Si atoms in the silicone having the Q unit represented by SiO 4/2 . , more preferably 1.0 to 50 mol%.
  • the content of Si atoms contained in the Q unit is 0.05 mol % or more, a structure in which the siloxane bonds are sufficiently extended in three dimensions is obtained, and the effect of increasing the crosslinking density is exhibited, which is preferable. If it is 60 mol% or less, even excessive wettability will not cause heavy peeling, which is preferable.
  • the silicone having Q units is preferably solid at room temperature.
  • the fact that silicone containing Q units is a solid means that many Q unit structures exist as continuous bonds within the molecule, and the silicone has a rigid molecular skeleton and exhibits physical properties similar to glass.
  • the release layer contain silicone with such a rigid molecular skeleton, the elastic modulus of the release layer increases, making it difficult to deform when peeling objects such as ceramic green sheets, and making it lightweight. This is preferable because it forms a release layer that exhibits releasability.
  • the content of the silicone contained in the second silicone emulsion having a hydrogen group in the release layer is the same as that of (a) the silicone contained in the first silicone emulsion having an alkenyl group and (b) the silicone contained in the second silicone emulsion having a hydrogen group.
  • Q unit When the total amount of the silicone contained in the second silicone emulsion having a Gen group and the silicone contained in the aqueous dispersion containing the silicone having a (c) Q unit is 100 parts by mass, 5 parts by mass to 50 parts by mass. Parts by mass are preferred. If the amount is 5 parts by mass or more, the crosslinking reaction points will proceed sufficiently, a dense crosslinked structure will be easily formed, and the peelability will be excellent, which is preferable.
  • the content of silicone contained in (b) the second silicone emulsion having a hydrogen group contained in the composition is equal to the amount of silicone contained in the first silicone emulsion having (a) an alkenyl group. less than the content of.
  • the aqueous coating composition of the present invention preferably contains at least (d) a surfactant. Containing a surfactant is preferable because it provides excellent coatability when the coating composition is applied onto a polyester film as a base film, and there is no fear that coating defects such as repellency will occur. In addition, the stability of the emulsion present in the coating composition is not impaired, and there is no risk of contamination of aggregates or gelled substances of the coating composition into the release layer, which prevents unevenness of the release layer and uneven coating. This is preferable because it can be suppressed.
  • surfactant known materials can be used without particular restrictions, but materials that can suppress the amount of surfactant volatilization during the heating process of stretching and crystallizing the base film and remain in the release layer. It is preferable to use It is preferable that the surfactant remains in the release layer because it increases the wettability with respect to ceramic slurry or the like in which an organic solvent is used.
  • nonionic surfactants cationic, anionic, and nonionic surfactants can be suitably used, but it is preferable to use nonionic surfactants from the viewpoint of improving the stability of the emulsion.
  • alkylene oxide adducts of higher alcohols or higher fatty acids esters of alkylene oxide adducts of higher fatty acids and alcohols, alkylene oxide adducts of alkanolamides, alkylene oxide adducts of sorbitan esters, and alkylene oxides of higher fatty acid glycerides. At least one type selected from alkylene oxide addition types such as adducts can be mentioned.
  • the surfactant used preferably has an HLB value in the range of 6 to 18.
  • the HLB value is a value calculated using the Griffin calculation formula.
  • alkylene oxide examples include ethylene oxide, propylene oxide, and butylene oxide, and one or more of these may be used.
  • the HLB value is preferably in the range of 8 to 18, more preferably in the range of 10 to 15, although it does not matter whether the addition format is block or random.
  • nonionic emulsifiers polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, and the like are preferably mentioned. If a nonionic emulsifier with an HLB value outside this range is used as an emulsifier for a silicone aqueous dispersion, the emulsifying dispersion power and stability of the aqueous dispersion may decrease.
  • alkylene oxide used in the present invention the structure shown in the following formula (IV) is exemplified.
  • m and n are integers from 1 to 30.
  • the number m indicates the alkyl group chain length
  • the number n indicates the number of moles of ethylene oxide added.
  • the larger the number of m and the longer the alkyl group chain length the better the lipophilicity and the better the stability of the aqueous silicone emulsion.
  • the number of m and the number of n can take any value in the range of 1 to 30, but the larger the molecular weight, the higher the molecular weight, and the interface between the heat curing process of the coating composition and the stretching and crystallization process of the base film. This is preferable because the activator remains in the release layer without volatilizing, resulting in a release film with excellent wettability.
  • the number average molecular weight of the surfactant is preferably in the range of 200 to 2,000, more preferably in the range of 250 to 1,000. In one embodiment, the number average molecular weight of the surfactant is 380 or more and 800 or less. When the number average molecular weight is 200 or more, the surfactant remains in the release layer without being volatilized during the heating curing process of the coating composition and the stretching and crystallization process of the base film, resulting in a mold release with excellent wettability. This is preferred because a film can be obtained. It is preferable that the number average molecular weight is 2000 or less because it does not deteriorate the stability of the emulsion or the coatability of the coating composition. Moreover, since the surfactant segregates on the surface of the mold release layer during the thermosetting process of the mold release layer, wettability is improved, which is preferable.
  • the boiling point of the surfactant is preferably 200°C or higher, more preferably 230°C or higher, and even more preferably 250°C or higher. If the boiling point of the surfactant is 200°C or higher, the surfactant will remain in the release layer without volatilizing during the heat curing process of the coating composition and the stretching and crystallization process of the base film, resulting in excellent wettability. It is preferable because it becomes a release layer.
  • the boiling point of the surfactant is 200°C or more and 350°C or less, and may be 200°C or more and 320°C or less.
  • the content of the surfactant contained in the coating composition is preferably 0.1 parts by mass to 20 parts by mass, and preferably 0.15 parts by mass to 15 parts by mass, based on the total amount of resin solids in the coating composition. It is more preferable that there be. A content of 0.1 part by mass or more is preferable because it provides excellent coating properties when applied onto a polyester film, and the surfactant remains in the release layer, resulting in excellent wettability. When the amount is 20 parts by mass or less, there is no possibility that too much residual surfactant will cause heavy exfoliation, which is preferable.
  • the total amount of resin solids in the coating composition includes (a) alkenyl group-containing silicone, (b) hydrogen group-containing silicone, and (C) Q unit-containing silicone added as necessary. Means the total amount of solids.
  • the surface tension of the aqueous coating agent is preferably 10 to 40 mN/m, more preferably 10 to 35 mN/m.
  • it is preferable because it levels when applied onto a base film, resulting in a uniform coating appearance with no streaks or the like.
  • it is 40 mN/m or less, the coating agent spreads easily on the base film, and the stability of the emulsion increases, which is preferable.
  • the amount of surfactant contained in the coating agent is a sufficient amount, and the surfactant remaining in the release layer after heat curing can improve the wettability of ceramic slurry, etc., which is preferable.
  • Platinum-based catalyst The aqueous coating of the present invention requires the use of a platinum-based catalyst in order to cause an addition reaction between the silicone having an alkenyl group and the silicone having a hydrogen group.
  • Known platinum catalysts can be used, such as platinum chloride and chloroplatinic acid.
  • the platinum-based catalyst may be a 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum(0) complex (Karstedt catalyst) in consideration of its dispersibility in silicone. Uniform dispersibility can be ensured by dispersing at the same time.
  • the amount of the platinum-based catalyst forms the release layer (a) silicone contained in the first silicone emulsion having an alkenyl group, (b) silicone contained in the second silicone emulsion having a hydrogen group, (c) SiO It is preferable that the weight of elemental platinum is contained in the range of 10 to 800 ppm based on the total amount of silicone contained in the aqueous dispersion of silicone having Q units expressed by 4/2 . By setting it as this range, the silicone can be sufficiently cured, the generation of aggregates can be suppressed, and a release film with excellent smoothness can be obtained.
  • the weight ratio of the platinum element is 800 ppm or less because there is no possibility that the addition reaction between the alkenyl group and the hydrogen group will be accelerated and silicone aggregates will be generated.
  • the amount of platinum-based catalyst is more preferably 600 ppm or less, even more preferably 500 ppm or less, and even more preferably 300 ppm or less. Further, when it is 10 ppm or more, the silicone addition reaction proceeds efficiently, the release layer is sufficiently cured, and easy releasability is exhibited, which is preferable.
  • the aqueous coating composition of the present invention preferably contains a reaction inhibitor in order to suppress the activity of the platinum-based catalyst at room temperature.
  • the content of the reaction inhibitor is preferably 5 to 1000 ppm, more preferably 10 to 700 ppm, and preferably 20 to 500 ppm, based on the total weight of the aqueous coating composition. If it is 5 ppm or more, the effect of suppressing the activity of the platinum catalyst will be sufficient, which is preferable. If it is 1000 ppm or less, there is no risk that the inside of the oven will be contaminated by the reaction inhibitor that evaporates during heat treatment, which is preferable.
  • the aqueous coating composition of the present invention may further contain adhesion imparting agents, colorants, ultraviolet absorbers, particles, etc. within a range that does not impair the objectives of the present invention.
  • the thickness of the release layer in the present invention after drying is preferably 0.001 to 0.2 ⁇ m, more preferably 0.005 to 0.1 ⁇ m.
  • a thickness of 0.001 ⁇ m or more is preferable because a release layer with excellent releasability can be obtained. If it is 0.2 ⁇ m or less, there is no need to increase the solid content concentration of the release layer component of the aqueous coating composition or the coating amount, and the coatability when coated onto the base film is excellent, which is preferable.
  • the release film of the present invention preferably has a tape peeling force of 2000 mN/50 mm or less, more preferably 1500 mN/50 mm or less, and even more preferably 1200 mN/50 mm or less after toluene immersion treatment. For example, it may be 1000 mN/50mm or less.
  • the toluene immersion treatment in the present invention refers to a process in which the release film is left to stand and immersed in toluene for 15 minutes, and then the release film is air-dried for 3 hours to dry the toluene attached to the release film.
  • the peeling force of the release film after toluene immersion treatment it is possible to evaluate the peeling force including the solvent resistance to the organic solvent used when molding a resin sheet, for example, a ceramic green sheet. If it is 2000 mN/50 mm or less, it becomes a release film with excellent solvent resistance and peelability, which is preferable. The lower the tape peeling force is, the better the peelability is, but realistically it is preferably 1 mN/50 mm or more. If it is 1 mN/50 mm, it is preferable because there is no risk that the molded resin sheet or ceramic green sheet will float during transportation and cause problems.
  • the tape peeling force in the present invention refers to a tape with a tape obtained by laminating, for example, an acrylic adhesive tape, such as Nitto Denko No. 31B tape, on the surface of the release layer and pressing it with a 5 kg load.
  • an acrylic adhesive tape such as Nitto Denko No. 31B tape
  • the value obtained by sandwiching the release film between 750 g glass plates, holding the film in a 70°C environment for 20 hours, and then T-peeling the tape at a peeling speed of 0.3 m/min can be used.
  • the release film of the present invention preferably has a water adhesion energy of 6.0 mJ/m 2 or more, and preferably 7.0 mJ/m 2 or more, calculated from the sliding angle measured by creating a water droplet on the release layer. is more preferable, more preferably 8.0 mJ/m 2 or more, may exceed 8.0 mJ/m 2 , and most preferably the adhesion energy cannot be calculated without water droplets sliding down.
  • the water adhesion energy is larger than 6.0 mJ/m 2 , it is preferable because repelling is difficult to occur when forming a thin resin sheet, ceramic green sheet, etc., and a sheet with a uniform thickness without defects can be obtained.
  • a release film that does not allow water droplets to slide off can also be suitably used.
  • water droplets do not slide down it refers to a state in which water droplets do not immediately slide off when water droplets are attached to a release film and the release film is tilted up to 90°.
  • the water adhesion energy is 10 mJ/m 2 or less, for example, 9.5 mJ/m 2 or less, and may be 9.0 mJ/m 2 or less.
  • the water adhesion energy is within the above range, it is preferable because repelling is less likely to occur when forming a thin resin sheet, ceramic green sheet, etc., and a sheet with a uniform thickness without defects can be obtained.
  • the water adhesion energy is 6.0 mJ/m 2 or more and 10 mJ/m 2 or less, and may be 6.0 mJ/m 2 or more and 9.0 mJ/m 2 or less.
  • the present invention provides a method for producing a release film, which includes the following steps.
  • the manufacturing method of the present invention by setting the surface tension of the aqueous coating composition to 40 mN/m or less, when coating it on a polyester film, there will be no coating defects such as repelling, streaks, or uneven coating, and the coating will be uniform and defective. It is possible to obtain a release film free of .
  • the surface tension is more preferably 35 mN/m or less, even more preferably 33 mN/m or less.
  • the surface tension in this invention shows the value of the static surface tension measured by the pendant drop method.
  • the surface tension of the aqueous coating composition may be greater than or equal to 10 mN/m, and may be greater than or equal to 15 mN/m. When the surface tension exhibits such conditions, it is preferable because it levels when coated onto a base film, resulting in a uniform coating appearance without streaks or the like.
  • the surface tension of the aqueous coating composition may be 10 mN/m or more and 40 mN/m or less, 10 mN/m or more and 33 mN/m or less, and 15 mN/m or more and 33 mN/m or less.
  • an aqueous coating composition is applied to a base film before crystal orientation is completed, stretched in at least one direction, and then heat treated to complete crystal orientation of the base film. It can be formed by
  • the drying step in the production method of the present invention further includes the following steps. a drying step of drying the aqueous coating composition applied to one side of the polyester film; A stretching process in which the polyester film is stretched in a direction perpendicular to its longitudinal direction; A heat setting process in which polyester film is heat treated to complete crystal orientation.
  • the drying temperature may be 60°C or higher and 140°C or lower, for example, 60°C or higher and 130°C or lower, or 60°C or higher and 125°C or lower.
  • a temperature of 60° C. or higher is preferable because the composition is not dried sufficiently, and there is no risk of the film breaking when the polyester film is stretched in the stretching step.A temperature of 140° C.
  • the amount of organic solvent can be significantly reduced or substantially eliminated, compared with coating compositions containing an organic solvent as a main component, which significantly reduces the adverse effects on the human body caused by contact with the organic solvent or inhalation of its vapor, and the burden on the global environment caused by the release of the vapor of the organic solvent into the atmosphere.
  • there is no need to use explosion-proof equipment for drying organic solvents and energy consumption during operation is reduced compared to conventional manufacturing equipment, which reduces CO2 emissions and the environmental impact.
  • the film temperature in the stretching step of the polyester film is sufficient, and there is no risk of breakage or uneven thickness of the release film in the stretching step, which is preferable.
  • the stretching step after drying the water in the aqueous coating composition, it is preferable to heat the polyester film as the base material to a temperature equal to or higher than the glass transition temperature.
  • the temperature is preferably 60°C or more and 150°C or less, and preferably 70°C or more and 150°C or less from the viewpoint of stretchability.
  • the stretching step is performed at a higher temperature than the drying step.
  • the temperature in the heat setting step is preferably as high as possible in order to promote crystallization of the polyester film and curing of the release layer, but it is preferably a temperature equal to or lower than the melting point of the polyester.
  • the temperature is preferably 180°C or higher and 250°C or lower, more preferably 200°C or higher and 240°C or lower.
  • a temperature of 180° C. or higher is preferable because curing of the release layer will proceed sufficiently and the dimensional stability and mechanical properties of the polyester film will be sufficient.
  • the heating step may include multiple steps. Further, the maximum temperature in the heating step is preferably 180°C or more and 250°C or less. The maximum temperature of the heating step may also be within the above numerical range.
  • the coating solution temperature of the aqueous coating composition is preferably 0°C or higher and 40°C or lower, more preferably 5°C or higher and 30°C or lower.
  • a temperature of 0° C. or higher is preferable because there is no fear that the aqueous coating composition will solidify and the emulsion will be destroyed.
  • the temperature is 40° C. or lower, there is no risk that the emulsion in the aqueous coating composition will be broken by heat and contamination of aggregates or gelled materials, and the occurrence of irregularities and coating unevenness in the release layer can be suppressed, which is preferable.
  • the total content of (a), (b), (c), and (d) contained in the coating composition shall be 0.1 to 30% by mass as solid content based on the total weight of the coating composition.
  • the amount is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight. It is preferable that the amount is 0.1% by mass or more because the thickness of the release layer is sufficient to exhibit releasability. When the amount is 20% by mass or less, there is no fear that the release layer will become thick and the amount of curing heat will be insufficient, and the film forming property during stretching of the base film is also excellent, which is preferable.
  • the coating amount of the aqueous coating composition is preferably 0.1 g/m 2 or more and 10 g/m 2 or less. If the coating amount is 10 g/m 2 or less, liquid turbulence will be less likely to occur at the kissing area between the film and the gravure roll when applied using the gravure coating method, and a release layer with excellent smoothness will be obtained. Therefore, it is preferable. It is preferable that the coating amount is 0.1 g/m 2 or more, since there is no fear that the uniformity of the release layer will be impaired due to coating failure due to repelling or the like.
  • the pH of the aqueous coating composition is preferably 1 to 7, more preferably 2 to 6.
  • the pH of the aqueous coating composition is 1 or more, there is no risk of corrosion of tanks, piping, etc. during the coating process, and there is no risk of adverse effects on the human body, which is preferable. It is preferable that the pH is 7 or less because the emulsion in the coating composition will be stable and the coating composition will be excellent.
  • Any known coating method can be applied to apply the above coating liquid, such as roll coating methods such as gravure coating method and reverse coating method, bar coating method such as wire bar coating method, die coating method, spray coating method, and air knife coating method. Conventionally known methods such as a coating method can be used.
  • the manufacturing method of the present invention provides a method of manufacturing a release film for manufacturing a resin sheet and a multilayer ceramic capacitor.
  • the resin sheet in the present invention is not particularly limited as long as it is a sheet that is molded on the surface of the release layer opposite to the base material, and for example, a resin sheet molding composition containing a resin component and a crosslinking agent is cured.
  • a resin sheet molding composition containing a resin component and a crosslinking agent examples include resin sheets formed from organic components having film-forming properties by melt film forming or solution film forming.
  • the release film of the present invention is a release film for producing a resin sheet containing an inorganic compound.
  • the inorganic compound include metal particles, metal oxides, minerals, and the like, such as calcium carbonate, silica particles, aluminum particles, barium titanate particles, and the like.
  • the present invention has a release layer with high smoothness, even if the resin sheet contains these inorganic compounds, there are disadvantages that may be caused by the inorganic compounds, such as breakage of the resin sheet, and separation of the resin sheet from the release layer. The problem of difficulty in peeling can be suppressed.
  • the resin component forming the resin sheet can be appropriately selected depending on the purpose.
  • the resin sheet containing an inorganic compound is a ceramic green sheet.
  • the ceramic green sheet can include barium titanate as an inorganic compound.
  • a resin component for example, a polyvinyl butyral resin can be included.
  • a multilayer ceramic capacitor has a rectangular parallelepiped ceramic body. Inside the ceramic body, first internal electrodes and second internal electrodes are provided alternately along the thickness direction. The first internal electrode is exposed on the first end surface of the ceramic body. A first external electrode is provided on the first end surface. The first internal electrode is electrically connected to the first external electrode at the first end surface. The second internal electrode is exposed on the second end surface of the ceramic body. A second external electrode is provided on the second end surface. The second internal electrode is electrically connected to the second external electrode at the second end surface.
  • the release film of the present invention is a release film for producing ceramic green sheets, and is used to produce such a multilayer ceramic capacitor.
  • a ceramic green sheet can be produced in the following manner. First, using the release film of the present invention as a carrier film, a ceramic slurry for forming a ceramic body is applied and dried. A conductive layer for forming the first or second internal electrode is printed on the coated and dried ceramic green sheet. A ceramic green sheet, a ceramic green sheet printed with a conductive layer for forming the first internal electrode, and a ceramic green sheet printed with a conductive layer for forming the second internal electrode are laminated as appropriate and pressed. By this, a mother laminate is obtained. The mother laminate is divided into multiple parts to produce raw ceramic bodies. A ceramic body is obtained by firing a raw ceramic body. Thereafter, the multilayer ceramic capacitor can be completed by forming the first and second external electrodes.
  • the cross section of the film was observed using a transmission electron microscope LEM-2000 at an accelerating voltage of 100 kV, and the thickness of the release layer was measured. Measurements were performed at arbitrary 10 points, and the average value thereof was taken as the thickness of the release layer.
  • the surface tension of the aqueous coating composition was measured by the pendant drop method using a contact angle meter (manufactured by Kyowa Kaimen Kagaku Co., Ltd., fully automatic contact angle meter DM-701) under conditions of 23° C. and 50% RH. After forming the maximum amount of liquid that could be retained without falling, the surface tension was calculated using the ds/de method using the attached analysis software FAMAS. The measurement was performed five times in total, and the average value was used as the value.
  • the film was peeled off at a peeling angle of 90 degrees, a peeling temperature of 25° C., and a peeling speed of 0.3 m/min.
  • a double-sided adhesive tape manufactured by Nitto Denko Corporation, No. 535A
  • a release film on top of it by adhering the ceramic green sheet side to the double-sided tape.
  • the average value of the peeling force over a peeling distance of 20 mm to 70 mm was calculated, and this value was taken as the peeling force.
  • the measurement was carried out five times in total, and the average value of the peeling force was used for evaluation. Judgment was made based on the obtained peel force values based on the following criteria. ⁇ : Less than 2.0 mN/mm ⁇ : Less than 5.0 mN/mm ⁇ : 5.0 mN/mm or more
  • the release film to be measured was left to stand and immersed in toluene for 15 minutes, then taken out from the toluene, and air-dried for 3 hours to volatilize the toluene attached to the release film. Thereafter, an adhesive tape ("No. 31B Tape” manufactured by Nitto Denko Corporation) was attached to the surface of the release layer of the release film, and the release film with the adhesive tape was cut into strips with a width of 25 mm and a length of 150 mm. After the cut release film with adhesive tape was pressed with a 5 kg pressure roller, the release film with tape was sandwiched between 750 g glass plates and held in a 70°C environment for 20 hours.
  • an adhesive tape No. 31B Tape manufactured by Nitto Denko Corporation
  • a raw material consisting of 9.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion A with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
  • a raw material consisting of 9.0% by mass of polyoxyethylene alkyl ether (number average molecular weight: 582, boiling point: 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion B with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 180 nm by adjusting the stirring speed and stirring time during emulsification.
  • An aqueous coating composition was obtained by mixing silicone emulsion A, silicone emulsion B, and water at the ratio shown in Table 1 so that the solid content concentration was 5.0% by mass. At this time, the amount of surfactant contained in the aqueous coating composition was 9.0% by mass when the total amount of silicone emulsion A and silicone emulsion B was taken as 100.
  • a platinum catalyst manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A
  • 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol were added. They were mixed and used.
  • a raw material consisting of 5.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion C with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
  • An aqueous coating composition was obtained by mixing silicone emulsion C, silicone emulsion B, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 5.2% by mass when the total amount of silicone emulsion C and silicone emulsion B was taken as 100. In addition, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were added. They were mixed and used.
  • silicone emulsion D Using an emulsifying device that can stir the entire inside of the container (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer"), 90% by mass of silicone having a Q unit represented by SiO 4/2 was mixed at the interface.
  • an activator polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283 ° C. )
  • a raw material consisting of 10% by mass was mechanically emulsified in an aqueous medium to obtain silicone emulsion D with a solid content of 40% by mass.
  • silicone having a Q unit represented by SiO 4/2 is shown by the formula (III), R1 is a vinyl group, R2 is a methyl group, and the Si atom to which the vinyl group is directly bonded has a vinyl group. Only one group is bonded, and the content of Si atoms bonded to the vinyl group is 5 mol% with respect to all Si atoms in the silicone with Q units expressed as SiO 4/2 , and the Q unit The content of Si atoms contained in was 40 mol%. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
  • R1 a R2 b SiO (4-ab)/2 ...(III) (In formula (I), R1 is an alkenyl group having 2 to 8 carbon atoms, R2 is a monovalent saturated hydrocarbon group having 1 to 16 carbon atoms selected from an alkyl group or an aryl group, and a is 0 to 3 , b is an integer between 0 and 3 and satisfies a+b ⁇ 3.)
  • An aqueous coating composition was obtained by mixing silicone emulsion A, silicone emulsion B, silicone emulsion D, and water at the ratio shown in Table 1 so that the solid content concentration was 5%.
  • the amount of surfactant contained in the aqueous coating composition is 9.4% by mass in Production Example 3 and 9.2% by mass in Production Example 4.
  • the mass % in Production Example 5 was 9.6 mass %.
  • aqueous coating composition based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
  • a raw material consisting of 9.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 450, boiling point 230°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion E with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
  • siliconeone emulsion F As a surfactant, polyoxyethylene alkyl ether (number average molecular weight 450, boiling point 230 It was prepared in the same manner as silicone emulsion B, except that a raw material containing 9.0% by mass (°C) was used for emulsification.
  • Silicone emulsion G As a surfactant, polyoxyethylene alkyl ether (number average molecular weight 450, boiling point 230 It was prepared in the same manner as Silicone Emulsion D, except that the emulsification was performed using a raw material containing 10% by mass (° C.).
  • An aqueous coating composition was obtained by mixing silicone emulsion E, silicone emulsion F, silicone emulsion G, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 9.4% by mass when the total amount of silicone emulsion E, silicone emulsion F, and silicone emulsion G was taken as 100.
  • aqueous coating composition based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
  • Silicone emulsion A, silicone emulsion B, water, and isopropyl alcohol were mixed at the ratio shown in Table 1 so that the solid content concentration was 5.0% by mass to obtain an aqueous coating composition.
  • isopropyl alcohol was used in an amount of 5% by mass based on the total amount of the aqueous coating composition.
  • the amount of surfactant contained in the aqueous coating composition was 9.0% by mass when the total amount of silicone emulsion A and silicone emulsion B was taken as 100.
  • aqueous coating composition based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were added. They were mixed and used.
  • a raw material consisting of 0.1% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion H with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
  • a2 of formula (2) is 50 mol%
  • b2 is 50 mol%
  • a raw material consisting of 0.1% by mass of oxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion I with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 180 nm by adjusting the stirring speed and stirring time during emulsification.
  • An aqueous coating composition was obtained by mixing silicone emulsion H, silicone emulsion I, and water at the ratio shown in Table 1 so that the solid content concentration was 5%.
  • the amount of surfactant contained in the aqueous coating composition was 0.1% by mass when the total amount of silicone emulsion H and silicone emulsion I was taken as 100.
  • a platinum catalyst manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A
  • 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
  • a raw material consisting of 9.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 362, boiling point 182°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion J with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
  • An aqueous coating composition was obtained by mixing silicone emulsion J, silicone emulsion K, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 9.0% by mass when the total amount of silicone emulsion J and silicone emulsion K was taken as 100. Furthermore, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
  • ⁇ Production example 10> (Silicone emulsion L) Using an emulsifying device that can stir the entire inside of the container (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer”), 90% by mass of silicone having a Q unit represented by SiO 4/2 was mixed at the interface.
  • a silicone emulsion L having a solid content of 40% by mass was obtained by mechanically emulsifying the raw material consisting of 10% by mass in an aqueous medium.
  • silicone having a Q unit represented by SiO 4/2 is shown by the formula (III), R1 is a vinyl group, R2 is a methyl group, and the Si atom to which the vinyl group is directly bonded has a vinyl group. Only one group is bonded, and the content of Si atoms bonded to the vinyl group is 5 mol% with respect to all Si atoms in the silicone with Q units expressed as SiO 4/2 , and the Q unit The content of Si atoms contained in was 40 mol%. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
  • An aqueous coating composition was obtained by mixing silicone emulsion J, silicone emulsion K, silicone emulsion L, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 9.4% by mass when the total amount of silicone emulsion J, silicone emulsion K, and silicone emulsion L was taken as 100.
  • aqueous coating composition based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
  • this coated film was dried at 115°C, stretched 4.0 times in the transverse direction at 145°C, further heat-set at 230°C for about 10 seconds, and then wound into a roll to obtain the separation shown in Table 1.
  • a roll of a release film (thickness: 25 ⁇ m) having a mold layer was obtained.
  • the release film was unwound from the obtained release film roll and the samples were cut into A4 size sheets, and the evaluations shown in Table 1 were performed.
  • the aqueous coating composition was applied in an amount such that the thickness of the release layer after stretching was as shown in Table 1. Details of the aqueous coating composition are shown in Table 1A, and various physical properties of the film are shown in Table 1B.
  • Example 2 and 3> A release film was obtained in the same manner as in Example 1, except that the heat setting temperature was changed to the conditions listed in Table 1B.
  • Examples 4 to 8> A release film was obtained in the same manner as in Example 1, except that the aqueous coating compositions listed in Tables 1A and 1B were used.
  • Example 9 A release film was obtained in the same manner as in Example 8, except that the heat setting temperature was changed to the one shown in Table 1B.
  • Example 10 A release film was obtained in the same manner as in Example 1, except that the aqueous coating composition shown in Table 1A was used.
  • ⁇ Comparative example 1> On one surface of a 25 ⁇ m thick biaxially stretched polyester film (manufactured by Toyobo Co., Ltd., Toyobo Ester Film E5100), apply a coating solution with the following composition using reverse gravure so that the release layer thickness after drying becomes 0.02 ⁇ m. It was coated using an offline coating method and dried at 140°C for 15 seconds. After drying, ultraviolet rays were irradiated on the cooling roll using an ultraviolet irradiator (manufactured by Heraeus, H bulb) at a cumulative light intensity of 100 mJ/cm 2 , and the film was wound into a roll to obtain a release film roll.
  • an ultraviolet irradiator manufactured by Heraeus, H bulb
  • ⁇ Comparative example 2> A release film was obtained in the same manner as in Example 1, except that the aqueous coating composition shown in Table 1A was used.
  • aqueous coating composition prepared in Production Example 1 was applied onto one surface of a 25 ⁇ m thick biaxially stretched polyester film (Toyobo Ester Film E5100, manufactured by Toyobo Co., Ltd.) so that the release layer thickness after drying would be 0.15 ⁇ m. It was coated using an offline coating method and dried at 140°C for 15 seconds. After drying, a release film was obtained by winding it up into a roll.
  • a release film was obtained by winding it up into a roll.
  • a release film was obtained in the same manner as in Example 1, except that the aqueous coating composition was heated to a liquid temperature of 50°C.
  • the surface tension of the aqueous coating composition in the application process was 31 mJ/m 2 .
  • the release film of the present invention has high releasability and wettability of the release layer, it is possible to suppress the occurrence of defects when molding a thin resin sheet, especially a ceramic green sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a mold release film that enables a reduction in the amount of organic solvents which are hazardous to the human body and which have an adverse impact on the environment, and achieves both good wettability and easy release properties of a thin-film resin sheet, particularly, a thin-film ceramic green sheet; and a method for producing the mold release film. The present invention pertains to: a mold release film having a mold release layer on at least one surface of a polyester film; and a method for producing the mold release film. The mold release layer is obtained by reacting and solidifying an aqueous coating composition. The aqueous coating composition contains 10 parts by mass or less of an organic solvent with respect to a total of 100 parts by mass of the coating composition. The composition contains (a) a first silicone emulsion having at least two alkenyl groups per molecule, (b) a second silicone emulsion having at least two hydrogen groups per molecule, and (d) a surfactant. The adhesion energy of the surface of the mold release layer as calculated from the sliding angle of water is at least 6.0 mJ/m2. The tape release force of the surface of the mold release layer is at most 2000 mN/50 mm.

Description

離型フィルム及びその製造方法Release film and its manufacturing method
 本発明は、基材フィルムと離型層とを有する離型フィルム及びその製造方法に関し、各種工程用フィルムとして有用な離型フィルム及びその製造方法に関する。 The present invention relates to a release film having a base film and a release layer and a method for producing the same, and more particularly to a release film useful as a film for various processes and a method for producing the same.
 従来、ポリエステルフィルム等を基材とし、その上に離型層を積層した離型フィルムは、耐熱性や機械特性が高く、粘着シートやカバーフィルム、セラミックグリーンシートや高分子電解質膜などの樹脂シートを製膜するための工程用フィルムとして使用されている。また、離型フィルムの離型層としては、耐熱性や剥離性が良好なため、シリコーンを含むコーティング組成物により形成した離型層が数多く提案されている(例えば特許文献1~5)。 Conventionally, release films, which are made of polyester film or the like as a base material and have a release layer laminated thereon, have high heat resistance and mechanical properties, and can be used as adhesive sheets, cover films, resin sheets such as ceramic green sheets and polymer electrolyte membranes. It is used as a process film for forming films. Further, as a release layer of a release film, many release layers formed from coating compositions containing silicone have been proposed because they have good heat resistance and peelability (for example, Patent Documents 1 to 5).
 前記離型フィルムは積層セラミックコンデンサ、セラミック基板等の高い平滑性が求められるセラミックグリーンシート成型用の工程フィルムとしても使用されている。近年、積層セラミックコンデンサの小型化・大容量化に伴い、セラミックグリーンシートの厚みも薄膜化する傾向にある。セラミックグリーンシートは、チタン酸バリウムなどのセラミック成分とバインダー樹脂を含有したスラリーを離型フィルムの離型層上に塗工し乾燥することで成型される。成型したセラミックグリーンシートに電極を印刷し離型フィルムから剥離することで得られた電極付きセラミックグリーンシートを、積層、プレス、焼成、外部電極塗布することで積層セラミックコンデンサが製造される。 The release film is also used as a process film for molding ceramic green sheets that require high smoothness for laminated ceramic capacitors, ceramic substrates, etc. In recent years, as multilayer ceramic capacitors have become smaller and larger in capacity, the thickness of ceramic green sheets has also tended to become thinner. Ceramic green sheets are formed by applying a slurry containing a ceramic component such as barium titanate and a binder resin onto a release layer of a release film and drying the slurry. A multilayer ceramic capacitor is manufactured by printing electrodes on a molded ceramic green sheet and peeling it off from a release film, and then laminating, pressing, firing, and applying external electrodes to the ceramic green sheet with electrodes.
 特許文献1~2には、不飽和基を有するポリシロキサン、Si-H基を有するポリシロキサン、白金族金属系触媒等及び有機溶媒を含むコーティング組成物を、2軸延伸ポリエステルの一方の面に塗布した後、熱処理することでコーティング組成物を乾燥および硬化し、離型層を形成する方法(以下「オフラインコーティング」という)で作製した離型フィルムが提案されている。 Patent Documents 1 and 2 disclose that a coating composition containing a polysiloxane having an unsaturated group, a polysiloxane having an Si-H group, a platinum group metal catalyst, etc., and an organic solvent is coated on one side of a biaxially stretched polyester. A release film has been proposed in which a release layer is formed by drying and curing the coating composition by heat treatment after application (hereinafter referred to as "off-line coating").
 特許文献3には、アルケニル基含有シリコーン、及びSi-H基含有シリコーンを含む水性コーティング組成物を、ポリエステルフィルムの一方の面に塗布した後、ポリエステルフィルムを延伸する方法(以下「インラインコーティング」という)により、離型層を形成した離型フィルムが提案されている。
 また、特許文献4にはオフラインコーティングを用いた離型フィルムが提案されている。更に、特許文献5にはインラインコーティングを用いた離型フィルムが提案されている。
Patent Document 3 describes a method (hereinafter referred to as "in-line coating") in which an aqueous coating composition containing an alkenyl group-containing silicone and a Si-H group-containing silicone is applied to one side of a polyester film, and then the polyester film is stretched. ) has proposed a release film with a release layer formed thereon.
Further, Patent Document 4 proposes a release film using offline coating. Further, Patent Document 5 proposes a release film using in-line coating.
特開2003-292894JP2003-292894 WO2017/200056WO2017/200056 特開2010-17932JP2010-17932 特許第6619200号Patent No. 6619200 特開2021-11081JP2021-11081
 近年、セラミックグリーンシートの薄膜化に伴い、セラミックグリーンシートを低く均一な力で剥離できる軽剥離性が離型フィルムに求められる傾向にある。また、離型層の上に塗布するセラミックスラリーに対する濡れ性が良好な離型フィルムが求められている。セラミックグリーンシートを薄膜化するためには、例えば、有機溶媒を樹脂量以上の量で用いて、希釈された低固形分濃度のセラミックスラリーを離型層上に均一に塗布することが求められる。このような組成物からなるセラミックスラリーを離型層上に塗布すると、セラミックスラリーに対する離型フィルムの濡れ性が不十分になることがあり、塗布時に発生するわずかなハジキや塗布ムラなどにより、セラミックグリーンシートにピンホールや厚みムラが生じる恐れがあり、積層セラミックコンデンサの歩留まりが悪化するおそれがあった。
 本発明者らは、鋭意検討した結果、水性コーティング組成物を塗布後、反応させ、固化させて形成する離型層において、組成物に含まれる有機溶剤が、離型層の物性にも影響を及ぼし得ることを見出した。
 具体的には、有機溶剤によって水性コーティング組成物中に含まれる水分散エマルションの安定性が損なわれ、組成物により形成される離型層の均一性が損なわれ、剥離性などが悪化する課題があった。
 また、使用する有機溶剤の量が増加することで、人体への有害性や環境負荷が増大する課題があった。
In recent years, as ceramic green sheets have become thinner, there is a tendency for release films to have easy peelability that allows the ceramic green sheets to be peeled off with a low and uniform force. There is also a need for a release film that has good wettability with respect to the ceramic slurry applied onto the release layer. In order to form a ceramic green sheet into a thin film, it is required, for example, to use an organic solvent in an amount equal to or greater than the amount of resin to uniformly apply a diluted ceramic slurry with a low solid content concentration onto the mold release layer. When a ceramic slurry made of such a composition is applied to a mold release layer, the wettability of the release film to the ceramic slurry may be insufficient, and slight repellency or uneven coating that occurs during application may cause the ceramic There was a risk that pinholes or thickness unevenness would occur in the green sheet, and the yield of multilayer ceramic capacitors would deteriorate.
As a result of extensive studies, the present inventors found that in the release layer formed by applying an aqueous coating composition, reacting it, and solidifying it, the organic solvent contained in the composition also affects the physical properties of the release layer. I found out what it can do.
Specifically, organic solvents impair the stability of the water-dispersed emulsion contained in the aqueous coating composition, impairing the uniformity of the release layer formed by the composition, and deteriorating releasability. there were.
Furthermore, as the amount of organic solvents used increases, there is a problem of increased toxicity to the human body and increased environmental burden.
 特許文献1~2では、特に薄層セラミックグリーンシートの軽剥離性と、良好な濡れ性の更なる両立が求められていた。また、有機溶媒を主成分に含むコーティング組成物を用いているため、有機溶媒への接触や蒸気の吸引による人体への悪影響、および有機溶媒の蒸気が大気中に放出されることによる地球環境への負荷が問題となっていた。
 また、有機溶媒の乾燥設備を防爆設備とする必要があり初期設置費用が掛かることや、運用する際に多大なエネルギーを要するために、CO2排出量が多く、環境負荷が大きいことが課題となっていた。
In Patent Documents 1 and 2, in particular, there was a demand for further compatibility between easy peelability and good wettability of thin-layer ceramic green sheets. In addition, since the coating composition contains an organic solvent as its main component, it may have an adverse effect on the human body due to contact with the organic solvent or inhalation of its vapor, and may be harmful to the global environment due to the vapor of the organic solvent being released into the atmosphere. load was a problem.
In addition, the drying equipment for organic solvents must be explosion-proof, which requires initial installation costs, and requires a large amount of energy to operate, resulting in large CO2 emissions and a large environmental impact. was.
 特許文献3では、水とイソプロピルアルコールの混合溶媒を用いたコーティング組成物で離型層が形成されており、人体への有害性や環境負荷が大きいことが課題となっていた。
 また、イソプロピルアルコールなどのアルコール系溶媒は、水分散エマルションの安定性を損なうことがあり、エマルションの凝集やゲル化などにより塗布均一性が損なわれ、凝集物由来の粗大突起やハジキなどのコート欠陥が発生することが問題であった。特に、優れた剥離性を有するシリコーンを用いた離型層を形成する際には、一般にシリコーンは水に対して不溶であるためエマルション化されたシリコーンを用いる必要があり、軽剥離性を示す離型フィルムの製造に課題があった。
In Patent Document 3, the release layer is formed of a coating composition using a mixed solvent of water and isopropyl alcohol, which poses problems in that it is harmful to the human body and has a large environmental burden.
In addition, alcoholic solvents such as isopropyl alcohol may impair the stability of water-dispersed emulsions, impair coating uniformity due to agglomeration or gelation of the emulsion, and cause coating defects such as coarse protrusions and cissing caused by agglomerates. The problem was that this occurred. In particular, when forming a release layer using silicone that has excellent releasability, it is necessary to use emulsified silicone because silicone is generally insoluble in water. There was an issue in manufacturing the mold film.
 特許文献4に記載の離型フィルムは、離型層を形成する組成物において有機溶媒を主成分に含むため、前述の通り人体への有害性や環境負荷が大きいという問題があった。また、コーティング組成物の乾燥および硬化時の熱で基材の2軸延伸ポリエステルフィルムが変形する恐れがあり、比較的低い温度で製造する必要があった。
 特許文献4の発明では、実施例に記載されるように、135℃の熱でコーティング組成物を硬化させており、離型層の硬化熱量が不十分となる恐れがあった。離型層の硬化が不十分であると、離型層の耐溶剤性が損なわれ、セラミックグリーンシートを剥離する時の力が大きくなり、剥離時にセラミックグリーンシートにダメージが加わり、欠陥が生じる恐れがあった。
Since the release film described in Patent Document 4 contains an organic solvent as a main component in the composition forming the release layer, it has the problem of being harmful to the human body and having a large environmental burden, as described above. In addition, there is a risk that the biaxially stretched polyester film as a base material may be deformed by the heat generated during drying and curing of the coating composition, so it was necessary to manufacture at a relatively low temperature.
In the invention of Patent Document 4, as described in the Examples, the coating composition was cured with heat of 135° C., and there was a risk that the amount of heat for curing the release layer would be insufficient. If the mold release layer is insufficiently cured, the solvent resistance of the mold release layer will be impaired, and the force required to peel off the ceramic green sheet will increase, causing damage to the ceramic green sheet during peeling and potentially causing defects. was there.
 特許文献5に記載の離型フィルムは、水性コーティング組成物を用いているため、ポリエステルフィルムの上に水性コーティング組成物を塗布する時やその乾燥工程でハジキなどのコート欠陥が生じる恐れがあった。また、水分散エマルションを用いているため、塗工時のせん断や熱によってエマルションが破壊され、ゲル化物や凝集物が離型層に混入し、離型層の厚みムラや粗大突起の発生、塗布抜けなどのコート欠陥を引き起こす恐れがあった。これらコート外観は、セラミックグリーンシートの剥離性に悪影響をおよぼす恐れがあった。また、インラインコーティングはポリエステルフィルムの延伸および配向結晶化のために比較的高温で製造する必要がある。そのため、離型層の硬化がオフラインコーティングと比べて進行しやすく剥離性に優れる離型層となる一方で、セラミックスラリーの濡れ性が不十分となるおそれがあった。 Since the release film described in Patent Document 5 uses an aqueous coating composition, coating defects such as repellency may occur when the aqueous coating composition is applied onto the polyester film or during the drying process. . In addition, since a water-dispersed emulsion is used, the emulsion is destroyed by shearing and heat during coating, and gels and aggregates are mixed into the release layer, causing uneven thickness of the release layer and coarse protrusions. There was a risk of causing coating defects such as omissions. The appearance of these coats may have an adverse effect on the releasability of the ceramic green sheet. In-line coatings also need to be produced at relatively high temperatures due to stretching and oriented crystallization of the polyester film. Therefore, although the curing of the mold release layer progresses more easily than in offline coating, resulting in a mold release layer with excellent releasability, there was a risk that the wettability of the ceramic slurry would be insufficient.
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、人体への有害性や環境への悪影響を及ぼす有機溶媒を低減させることができ、かつ、薄層の樹脂シート、特に薄層セラミックグリーンシートの軽剥離性と、良好な濡れ性を両立した離型フィルム及びその製造方法を提供することを目的とする。 The present invention was made against the background of such problems of the prior art. In other words, it is possible to reduce the amount of organic solvents that are harmful to the human body and have a negative effect on the environment, and it also achieves both easy peelability and good wettability of thin resin sheets, especially thin ceramic green sheets. The purpose of the present invention is to provide a release film and a method for manufacturing the same.
 本発明者らは上記課題を解決するために鋭意検討した結果、下記構成を有する離型フィルム及びその製造方法により前記目的を達成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have discovered that the above objects can be achieved by a release film having the following configuration and a method for manufacturing the same, and have completed the present invention.
 即ち、本発明は以下の構成よりなる。
[1]
 ポリエステルフィルムと、離型層をこの順に有する離型フィルムであって、
 前記離型層は、水性コーティング組成物を反応および固化させてなる層であり、
 前記水性コーティング組成物は、水性コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、
 前記水性コーティング組成物は、
(a)1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルション、
(b)1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルション、および、
(d)界面活性剤を含み
 前記離型層において、
水の滑落角から算出した前記離型層表面の付着エネルギーが6.0mJ/m2以上であり、
以下の方法で測定したテープ剥離力が2000mN/50mm以下である離型フィルム;
 前記離型フィルムを15分間トルエン浸漬処理後に風乾した後の前記離型層上に、粘着テープを貼合し5kg荷重で圧着して得たテープ付き離型フィルムを70℃20時間保持した後に、剥離速度0.3m/min、T型剥離して前記テープ剥離力を測定する。
[2]
前記水性コーティング組成物が
(c)SiO4/2で表されるQ単位を有するシリコーンを含有する水分散体を含有する[1]に記載の離型フィルム
[3]
前記水性コーティング組成物において、
(a) 1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルションの数平均分子量が1000以上30000未満であり、
(b) 1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルションの数平均分子量が1000~10000である[1]または[2]に記載の離型フィルム。
[4]
前記離型フィルムが、結晶配向が完了する前の基材フィルムに前記水性コーティング組成物を塗布し、少なくとも一方向に延伸した後、熱処理をして、基材フィルムの結晶配向を完了させることによって形成されている[1]~[3]のいずれかに記載の離型フィルム。
[5]
前記ポリエステルフィルムが実質的に無機粒子を含まない表面層を有し、前記離型層が該表面層上に形成されている[1]~[4]のいずれかに記載の離型フィルム。
[6]
前記離型フィルムが積層セラミックコンデンサ製造用または樹脂シート製造用の離型フィルムである[1]~[5]のいずれかに記載の離型フィルム。
[7]
 以下の工程を有する、離型フィルムの製造方法、又は[1]~[6]のいずれかに記載の離型フィルムの製造方法;
ポリエステルフィルムの少なくとも一方の面に水性コーティング組成物を塗布する塗布工程であって、
前記水性コーティング組成物は、水性コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、
水と、水溶性成分および/または水分散エマルションを含有し、
前記水性コーティング組成物の表面張力が40mN/m以下である塗布工程;および、
前記水性コーティング組成物を塗布した前記ポリエステルフィルムを加熱する加熱工程。
[8]
前記水性コーティング組成物が、
(A)1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルション、
(B)1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルション、および、
(D)界面活性剤を含み、
前記界面活性剤の沸点が200℃以上である前記水性コーティング組成物を用いる前記塗布工程を有する、
[7]に記載の離型フィルムの製造方法。
[9]
前記加熱工程が以下の工程を有し、前記塗布工程の後に加熱工程を有する[7]または[8]に記載の離型フィルムの製造方法;
前記ポリエステルフィルムの一方の面に塗布した前記水性コーティング組成物を乾燥する乾燥工程;
前記ポリエステルフィルムの長手方向に対して垂直な方向に延伸する延伸工程;および、
前記ポリエステルフィルムに熱処理をして、結晶配向を完了させる熱固定工程。
[10]
前記塗布工程における、前記水性コーティング組成物の液温が0℃以上、40℃以下であり、
前記加熱工程の最大温度が180℃以上、250℃以下である[7]~[9]のいずれかに記載の離型フィルムの製造方法。
[11]
樹脂シートまたは積層セラミックコンデンサを製造するための離型フィルムを製造するための、[7]~[10]のいずれかに記載の離型フィルムの製造方法。
That is, the present invention has the following configuration.
[1]
A release film having a polyester film and a release layer in this order,
The release layer is a layer formed by reacting and solidifying an aqueous coating composition,
The aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the aqueous coating composition,
The aqueous coating composition comprises:
(a) a first silicone emulsion containing at least two or more alkenyl groups in one molecule;
(b) a second silicone emulsion containing at least two or more hydrogen groups in one molecule, and
(d) In the release layer containing a surfactant,
The adhesion energy of the surface of the release layer calculated from the sliding angle of water is 6.0 mJ/m 2 or more,
A release film with a tape peeling force of 2000mN/50mm or less measured by the following method;
After the release film was immersed in toluene for 15 minutes and air-dried, an adhesive tape was laminated on the release layer and the release film with the tape was pressed under a load of 5 kg. After holding the release film with the tape at 70°C for 20 hours, The tape peeling force is measured by T-shaped peeling at a peeling speed of 0.3 m/min.
[2]
The aqueous coating composition is
(c) The release film according to [1] [3] containing an aqueous dispersion containing silicone having a Q unit represented by SiO 4/2
In the aqueous coating composition,
(a) the first silicone emulsion containing at least two or more alkenyl groups in one molecule has a number average molecular weight of 1,000 or more and less than 30,000;
(b) The release film according to [1] or [2], wherein the second silicone emulsion containing at least two or more hydrogen groups in one molecule has a number average molecular weight of 1,000 to 10,000.
[4]
The release film is obtained by applying the aqueous coating composition to the base film before the crystal orientation is completed, stretching in at least one direction, and then heat-treating the base film to complete the crystal orientation of the base film. The release film according to any one of [1] to [3], which is formed.
[5]
The release film according to any one of [1] to [4], wherein the polyester film has a surface layer substantially free of inorganic particles, and the release layer is formed on the surface layer.
[6]
The release film according to any one of [1] to [5], wherein the release film is a release film for manufacturing a multilayer ceramic capacitor or a resin sheet.
[7]
A method for producing a release film, or a method for producing a release film according to any one of [1] to [6], comprising the following steps;
A coating step of applying an aqueous coating composition to at least one side of a polyester film, the coating step comprising:
The aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the aqueous coating composition,
Contains water, a water-soluble component and/or a water-dispersed emulsion,
a coating step in which the surface tension of the aqueous coating composition is 40 mN/m or less; and
a heating step of heating the polyester film coated with the aqueous coating composition;
[8]
The aqueous coating composition comprises:
(A) a first silicone emulsion containing at least two or more alkenyl groups in one molecule;
(B) a second silicone emulsion containing at least two or more hydrogen groups in one molecule, and
(D) Contains a surfactant;
the coating step using the aqueous coating composition in which the surfactant has a boiling point of 200° C. or higher;
The method for producing a release film according to [7].
[9]
The method for producing a release film according to [7] or [8], wherein the heating step includes the following steps, and the heating step is performed after the coating step;
a drying step of drying the aqueous coating composition applied to one side of the polyester film;
a stretching step of stretching in a direction perpendicular to the longitudinal direction of the polyester film; and
A heat setting step of heat-treating the polyester film to complete crystal orientation.
[10]
In the coating step, the liquid temperature of the aqueous coating composition is 0°C or more and 40°C or less,
The method for producing a release film according to any one of [7] to [9], wherein the maximum temperature in the heating step is 180°C or higher and 250°C or lower.
[11]
The method for producing a release film according to any one of [7] to [10], for producing a release film for producing a resin sheet or a multilayer ceramic capacitor.
 本発明の離型フィルムは、離型層の剥離性と濡れ性を高めることができ、更に薄層の樹脂シート、特にセラミックグリーンシートの欠陥の発生を抑制することができる。
 更に、製造工程における人体への有害性および環境負荷を低減することができる。また、水性コーティング組成物中に含まれる第一のシリコーンエマルジョン及び第二のシリコーンエマルジョンの安定性を損なう恐れが無く、均一な離型層を形成することができる。
The release film of the present invention can improve the releasability and wettability of the release layer, and can further suppress the occurrence of defects in thin resin sheets, especially ceramic green sheets.
Furthermore, the toxicity to the human body and the environmental load during the manufacturing process can be reduced. Moreover, a uniform release layer can be formed without fear of impairing the stability of the first silicone emulsion and the second silicone emulsion contained in the aqueous coating composition.
 本発明は、本明細書に記載の特徴を有するため、更に以下に記載する課題を解決でき、効果を奏することができる。
 特に薄層セラミックグリーンシートの軽剥離性と、良好な濡れ性の更なる両立が可能となる。また、有機溶媒を主成分に含むコーティング組成物と比べて、有機溶剤の量を大きく低減、または実質的に含まないことを可能にできる。この結果、有機溶媒への接触や蒸気の吸引による人体への悪影響、および有機溶媒の蒸気が大気中に放出されることによる地球環境への負荷を大きく低減できる。
 また、有機溶媒の乾燥設備を防爆設備とする必要もなく、従来の製造装置と比べ、運用する際にエネルギー消費量を低減できる。このためCO2排出量も低減でき、環境負荷を減らすことが出来る。
Since the present invention has the features described in this specification, it can further solve the problems described below and produce effects.
In particular, it is possible to achieve both easy peelability and good wettability of the thin ceramic green sheet. Furthermore, compared to a coating composition containing an organic solvent as a main component, the amount of organic solvent can be greatly reduced or it can be substantially eliminated. As a result, it is possible to greatly reduce the adverse effects on the human body due to contact with the organic solvent and inhalation of its vapor, and the burden on the global environment due to the emission of organic solvent vapor into the atmosphere.
Furthermore, there is no need to make the organic solvent drying equipment explosion-proof equipment, and energy consumption during operation can be reduced compared to conventional manufacturing equipment. Therefore, CO2 emissions can be reduced, and the environmental burden can be reduced.
 更に、本発明であれば、エマルションの凝集やゲル化を抑制できるため、塗布均一性に優れ、凝集物由来の粗大突起の低減とハジキなどのコート欠陥の発生をバランスよく抑制できる。その上、軽剥離性を示す離型フィルムを得ることができる。
 加えて、本発明であれば、コーティング組成物の反応および固化と、ポリエステルフィルムの延伸および結晶化を同時に進行させることができ、従来と比べて基材となるポリエステルフィルムの熱変形を抑制しつつ、高温で離型層の硬化を進行させることができる。
 また、離型層の硬化を十分に行えるため、離型層は耐溶剤性に優れる。その上、例えば、セラミックグリーンシートを剥離する時の力が大きくなることを抑制でき、剥離時にセラミックグリーンシートへのダメージを低減でき、欠陥の発生を防ぐことができる。
Further, according to the present invention, since aggregation and gelation of the emulsion can be suppressed, coating uniformity is excellent, and the reduction of coarse protrusions derived from aggregates and the occurrence of coating defects such as repellency can be suppressed in a well-balanced manner. Moreover, a release film exhibiting easy releasability can be obtained.
In addition, with the present invention, the reaction and solidification of the coating composition and the stretching and crystallization of the polyester film can proceed at the same time, while suppressing thermal deformation of the polyester film that is the base material compared to conventional methods. , the release layer can be cured at high temperatures.
Moreover, since the mold release layer can be sufficiently cured, the mold release layer has excellent solvent resistance. Furthermore, for example, it is possible to suppress an increase in force when peeling the ceramic green sheet, reduce damage to the ceramic green sheet during peeling, and prevent the occurrence of defects.
 更に、本発明であれば、ポリエステルフィルムの上に水性コーティング組成物を塗布する時、その乾燥工程においてハジキなどのコート欠陥が生じることを抑制でき、離型層の厚みムラ、粗大突起の発生、塗布抜けなどのコート欠陥を抑制できる。
 例えば、本発明であれば、インラインコーティング法を用いて離型フィルムを製造する態様において、離型層の硬化と剥離性に優れる離型層を形成でき、従来は困難とされてきた、セラミックスラリーの濡れ性についても、要求される物性を得ることが出来る。
Furthermore, with the present invention, when an aqueous coating composition is applied onto a polyester film, coating defects such as repellency can be suppressed during the drying process, and uneven thickness of the release layer, generation of coarse protrusions, etc. can be suppressed. Coating defects such as coating defects can be suppressed.
For example, according to the present invention, in an embodiment in which a release film is manufactured using an in-line coating method, a release layer with excellent hardening and peelability can be formed, and ceramic slurry, which has been considered difficult in the past, can be formed. It is also possible to obtain the required physical properties regarding wettability.
 本発明は、ポリエステルフィルムの少なくとも一方の面に、離型層を有する離型フィルムであり、例えば、本発明は、ポリエステルフィルムと、離型層をこの順に有する離型フィルムであって、
前記離型層は、水性コーティング組成物を反応および固化させてなる層であり、
前記水性コーティング組成物は、
コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、
前記組成物は、
(a)1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルション、
(b)1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルション、
(d)界面活性剤 
を含み、
前記離型層において、
水の滑落角から算出した前記離型層表面の付着エネルギーが6.0mJ/m2以上であり
以下の方法で測定したテープ剥離力が2000mN/50mm以下である離型フィルム;
 前記離型フィルムを15分間トルエン浸漬処理後に風乾した離型フィルムの離型層上に、
粘着テープを貼合し、5kg荷重で圧着して得たテープ付き離型フィルムを70℃20時間保持した後に、剥離速度0.3m/min、T型剥離でテープ剥離力を測定する。
The present invention is a release film having a release layer on at least one surface of a polyester film. For example, the present invention provides a release film having a polyester film and a release layer in this order,
The release layer is a layer formed by reacting and solidifying an aqueous coating composition,
The aqueous coating composition comprises:
Containing an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total coating composition,
The composition includes:
(a) a first silicone emulsion containing at least two or more alkenyl groups in one molecule;
(b) a second silicone emulsion containing at least two or more hydrogen groups in one molecule;
(d) Surfactant
including;
In the release layer,
A release film having an adhesion energy on the surface of the release layer calculated from the sliding angle of water of 6.0 mJ/m 2 or more and a tape peeling force of 2000 mN/50 mm or less as measured by the following method;
On the release layer of the release film that was air-dried after being immersed in toluene for 15 minutes,
The tape-attached release film obtained by laminating adhesive tape and pressing with a 5 kg load is held at 70°C for 20 hours, and then the tape peeling force is measured by T-shaped peeling at a peeling speed of 0.3 m/min.
 このような構成を有する本願発明は、離型層の軽剥離性と良好な濡れ性を両立することができ、薄層の樹脂シート、例えば薄層セラミックグリーンシートに対して、欠陥なく均一な厚みを提供でき、ピンホールなどの欠点を抑制できる。
 また、本願発明は以下の効果を奏することができる。本発明では、従来と比べて有機溶媒を大きく低減させた水性コーティング組成物、または実質的に有機溶媒を含有しない水性コーティング組成物を用いるため、人体への有害性や環境負荷が少なく、CO2の発生を抑制しながら離型フィルムを製造することができる。
The present invention having such a configuration can achieve both easy releasability and good wettability of the release layer, and can provide a uniform thickness without defects to a thin resin sheet, such as a thin ceramic green sheet. can be provided, and defects such as pinholes can be suppressed.
Further, the present invention can have the following effects. In the present invention, an aqueous coating composition with a significantly reduced amount of organic solvent compared to conventional ones or an aqueous coating composition containing substantially no organic solvent is used, so there is less harm to the human body and less environmental burden, and there is less CO 2 It is possible to produce a release film while suppressing the occurrence of .
 更に、一態様において、本発明の離型フィルムは、所定の組成を有する水性コーティング組成物をインラインコーティング方式で塗布して離型層を形成することで、剥離性と濡れ性の両立を達成することができる。より具体的に述べると、熱硬化性を示すシリコーンエマルションを比較的高温環境下で加熱硬化することができるため、優れた剥離性を示す。インラインコーティングでは基材フィルムの延伸と結晶化を離型層の形成と同時に行うため、比較的高温、具体的には180℃以上の熱をかけても熱によるフィルムの変形や収縮を引き起こすことなく、平面性に優れた離型フィルムを製造することができる。
 また、界面活性剤を含有する水性コーティング組成物を用いるため、ポリエステルフィルム上にコーティング組成物を塗布し離型層を形成する際に、ハジキなどのコート欠陥がなく、剥離性に優れた離型層となる。
 さらに、シリコーンエマルションの安定性が増すため、エマルションの凝集やゲル化によって粗大突起や離型層の厚みムラの発生する恐れがない。一般に、界面活性剤は有機溶媒および水に可溶な両親媒性を示すため、セラミックスラリー中の有機溶媒に対する耐溶剤性が悪く、剥離力の増大を引き起こす恐れがあるが、比較的高温で離型層を硬化させることで架橋密度が大きく耐溶剤性に優れた離型層とすることができ、従来困難であった軽剥離性と良好な濡れ性を示す離型フィルムを製造することができる。
Furthermore, in one embodiment, the release film of the present invention achieves both releasability and wettability by applying an aqueous coating composition having a predetermined composition using an in-line coating method to form a release layer. be able to. More specifically, since a thermosetting silicone emulsion can be heat-cured in a relatively high-temperature environment, it exhibits excellent releasability. In in-line coating, the base film is stretched and crystallized at the same time as the release layer is formed, so even if heat is applied at relatively high temperatures, specifically over 180°C, the film does not deform or shrink due to heat. , it is possible to produce a release film with excellent flatness.
In addition, since an aqueous coating composition containing a surfactant is used, when the coating composition is applied onto a polyester film to form a mold release layer, there are no coating defects such as repellency, and the mold release has excellent releasability. It becomes a layer.
Furthermore, since the stability of the silicone emulsion is increased, there is no fear that coarse protrusions or uneven thickness of the release layer will occur due to aggregation or gelation of the emulsion. In general, surfactants exhibit amphiphilic properties that are soluble in organic solvents and water, so they have poor solvent resistance to organic solvents in ceramic slurries and may cause an increase in peeling force. By curing the mold layer, it is possible to create a release layer with a high crosslinking density and excellent solvent resistance, making it possible to produce a release film that exhibits easy releasability and good wettability, which was previously difficult. .
 本発明の離型フィルムの濡れ性は、離型層上に液摘を形成し測定した滑落角から算出する付着エネルギーで評価することができる。液摘を形成する溶媒は付着エネルギーを評価する際に制限されないが、離型層中に含有する界面活性剤量を評価しやすくするために水の滑落角から算出することが好ましい。詳細な評価方法は後述する。 The wettability of the release film of the present invention can be evaluated by adhesion energy calculated from the sliding angle measured by forming a droplet on the release layer. The solvent that forms the liquid droplet is not limited when evaluating the adhesion energy, but it is preferably calculated from the sliding angle of water in order to facilitate evaluation of the amount of surfactant contained in the release layer. The detailed evaluation method will be described later.
 本発明の離型フィルムの剥離性は、離型フィルムをトルエン浸漬処理後のテープ剥離力で評価することができる。樹脂シート、例えばセラミックグリーンシートの剥離性は、離型層の上に塗布するセラミックスラリー中に含まれる有機溶媒に対する離型層の耐溶剤性が重要である。そのため、離型フィルムを有機溶媒、例えば、トルエン浸漬処理後のテープ剥離力を用いることで樹脂シートおよびセラミックグリーンシートに代表される様々な被剥離体に対する剥離力と、耐溶剤性とを同時に評価することができ好ましい。
 本発明が優れた耐溶剤性と剥離力を有することを評価する方法として、以下に記載のトルエン浸漬処理後のテープ剥離力試験を挙げることができる。
 本発明におけるテープ剥離力は、市販の粘着テープを用いて評価することが出来る。例えば、粘着テープを離型層上に貼合して5kg荷重で圧着して得たテープ付き離型フィルムを、70℃環境下で20時間保持した後にテープを剥離した時の強度を示す。詳細な評価方法は後述する。
 粘着テープとして、アクリル系粘着テープを使用でき、日東電工社製、No.31B等の汎用の粘着テープを適用できる。
The releasability of the release film of the present invention can be evaluated by the tape peeling force after the release film is immersed in toluene. For the releasability of a resin sheet, such as a ceramic green sheet, the solvent resistance of the release layer to the organic solvent contained in the ceramic slurry applied on the release layer is important. Therefore, by using the tape peeling force after immersing the release film in an organic solvent, for example, toluene, we can simultaneously evaluate the peeling force and solvent resistance for various objects to be peeled, such as resin sheets and ceramic green sheets. It is possible and preferred.
As a method for evaluating whether the present invention has excellent solvent resistance and peeling force, the following tape peeling force test after toluene immersion treatment can be mentioned.
The tape peeling force in the present invention can be evaluated using a commercially available adhesive tape. For example, the strength of a release film with a tape obtained by laminating an adhesive tape onto a release layer and pressing it under a 5 kg load is shown when the tape is peeled off after being held in an environment of 70°C for 20 hours. The detailed evaluation method will be described later.
As the adhesive tape, an acrylic adhesive tape can be used, and a general-purpose adhesive tape such as No. 31B manufactured by Nitto Denko Corporation can be used.
 また、本発明は別の態様において、以下の工程を有する離型フィルムの製造方法を提供する。
ポリエステルフィルムの少なくとも一方の面に水性コーティング組成物を塗布する塗布工程であって、
 前記水性コーティング組成物は、コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、好ましくは、有機溶媒を実質的に含有せず、
水と、水溶性成分および/または水分散エマルションを含有し、
水性コーティング組成物の表面張力は40mN/m以下である塗布工程;
 前記水性コーティング組成物を塗布した前記ポリエステルフィルムを加熱する加熱工程。
In another aspect, the present invention provides a method for producing a release film, which includes the following steps.
A coating step of applying an aqueous coating composition to at least one side of a polyester film, the coating step comprising:
The aqueous coating composition contains 10 parts by mass or less of an organic solvent based on 100 parts by mass of the total amount of the coating composition, and preferably contains substantially no organic solvent.
Contains water, a water-soluble component and/or a water-dispersed emulsion,
A coating process in which the surface tension of the aqueous coating composition is 40 mN/m or less;
a heating step of heating the polyester film coated with the aqueous coating composition;
 本発明に係る製造方法において、特に離型層を形成する時の製造条件を所定の方法とすることで、剥離性と濡れ性に優れた離型層を形成できる。
 例えば、水性コーティング組成物中に含まれるシリコーンエマルションの分子構造、界面活性剤の分子量、水性コーティング組成物の表面張力、水性コーティング組成物の塗布量、水性コーティング組成物の液温、加熱工程の温度などが挙げられる。
 本発明の条件で離型フィルムを製造することで、離型層を形成する熱硬化型シリコーンの硬化膜の架橋密度が高まり、耐溶剤性が向上し軽剥離性を示す一方で、離型層中に界面活性剤が残存し離型層表面に偏析することで濡れ性にも優れる離型フィルムを得ることができる。詳細については後述する。
In the manufacturing method according to the present invention, by setting the manufacturing conditions particularly when forming the mold release layer to a predetermined method, a mold release layer with excellent releasability and wettability can be formed.
For example, the molecular structure of the silicone emulsion contained in the aqueous coating composition, the molecular weight of the surfactant, the surface tension of the aqueous coating composition, the coating amount of the aqueous coating composition, the liquid temperature of the aqueous coating composition, and the temperature of the heating process. Examples include.
By producing a release film under the conditions of the present invention, the crosslinking density of the cured film of thermosetting silicone forming the release layer increases, solvent resistance improves, and easy releasability is exhibited. Since the surfactant remains in the mold release layer and segregates on the surface of the release layer, a release film with excellent wettability can be obtained. Details will be described later.
(ポリエステルフィルム)
 基材フィルムとして用いるポリエステルフィルムを構成するポリエステルは、特に限定されず、離型フィルム用基材として通常一般に使用されているポリエステルをフィルム成形したものを使用することが出来る。好ましくは、芳香族二塩基酸成分とジオール成分からなる結晶性の線状飽和ポリエステルであり、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート又はこれらの樹脂の構成成分を主成分とする共重合体がさらに好適である。とりわけ、ポリエチレンテレフタレートから形成されたポリエステルフィルムが特に好適である。ポリエチレンテレフタレートは、エチレンテレフタレートの繰り返し単位が好ましくは90モル%以上、より好ましくは95モル%以上であり、他のジカルボン酸成分、ジオール成分が少量共重合されていてもよい。例えば、コストの点から、テレフタル酸とエチレングリコールのみから製造されたものが好ましい。また、本発明の離型フィルムの効果を阻害しない範囲内で、公知の添加剤、例えば、酸化防止剤、光安定剤、紫外線吸収剤、結晶化剤などを添加してもよい。ポリエステルフィルムは双方向の弾性率の高さ等の理由から二軸配向ポリエステルフィルムであることが好ましい。
(Polyester film)
The polyester constituting the polyester film used as the base film is not particularly limited, and a film formed from a polyester commonly used as a base material for a release film can be used. Preferably, it is a crystalline linear saturated polyester consisting of an aromatic dibasic acid component and a diol component, such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, or a combination of these resins. More preferred are copolymers containing the constituent components as main components. In particular, polyester films formed from polyethylene terephthalate are particularly suitable. In polyethylene terephthalate, the repeating units of ethylene terephthalate are preferably 90 mol% or more, more preferably 95 mol% or more, and a small amount of other dicarboxylic acid components and diol components may be copolymerized. For example, from the viewpoint of cost, it is preferable to use one made from only terephthalic acid and ethylene glycol. Further, known additives such as antioxidants, light stabilizers, ultraviolet absorbers, crystallizing agents, etc. may be added within a range that does not impede the effects of the release film of the present invention. The polyester film is preferably a biaxially oriented polyester film for reasons such as high elastic modulus in both directions.
 上記ポリエステルフィルムの固有粘度は0.50dl/g以上0.70dl/g以下が好ましく、0.52dl/g以上0.62dl/g以下がより好ましい。固有粘度が0.50dl/g以上の場合、延伸工程で破断が多く発生することがなく好ましい。逆に、0.70dl/g以下の場合、所定の製品幅に裁断するときの裁断性が良く、寸法不良が発生しないので好ましい。また、原料ペレットは十分に真空乾燥することが好ましい。 The intrinsic viscosity of the polyester film is preferably 0.50 dl/g or more and 0.70 dl/g or less, more preferably 0.52 dl/g or more and 0.62 dl/g or less. When the intrinsic viscosity is 0.50 dl/g or more, it is preferable because many breaks do not occur during the stretching process. On the other hand, if it is 0.70 dl/g or less, it is preferable because the cutting properties are good when cutting into a predetermined product width and dimensional defects do not occur. Further, it is preferable that the raw material pellets be sufficiently vacuum dried.
 なお、本明細書において、単に「ポリエステルフィルム」と記載する場合、表面層Aと表面層Bを有する(積層した)ポリエステルフィルムを意味する。 In addition, in this specification, when it is simply described as a "polyester film", it means a polyester film having (laminated) a surface layer A and a surface layer B.
 本発明におけるポリエステルフィルムの製造方法は特に限定されず、従来一般に用いられている方法を用いることが出来る。例えば、前記ポリエステルを押出機にて溶融して、フィルム状に押出し、回転冷却ドラムにて冷却することにより未延伸フィルムを得て、該未延伸フィルムを二軸延伸することにより得ることが出来る。二軸延伸フィルムは、縦方向あるいは横方向の一軸延伸フィルムを横方向または縦方向に逐次二軸延伸する方法、或いは未延伸フィルムを縦方向と横方向に同時二軸延伸する方法で得ることが出来る。 The method for producing the polyester film in the present invention is not particularly limited, and conventionally commonly used methods can be used. For example, it can be obtained by melting the polyester in an extruder, extruding it into a film, cooling it in a rotating cooling drum to obtain an unstretched film, and then biaxially stretching the unstretched film. A biaxially stretched film can be obtained by sequentially biaxially stretching a uniaxially stretched film in the longitudinal or transverse direction in the transverse or longitudinal direction, or by simultaneously biaxially stretching an unstretched film in the longitudinal and transverse directions. I can do it.
 本発明において、ポリエステルフィルム延伸時の延伸温度はポリエステルの二次転移点(Tg)以上とすることが好ましい。縦、横おのおのの方向に1倍以上8倍以下、特に2倍以上6倍以下の延伸をすることが好ましい。 In the present invention, the stretching temperature during stretching of the polyester film is preferably at least the secondary transition point (Tg) of the polyester. It is preferable to stretch the film by a factor of 1 to 8 times, particularly 2 times to 6 times, in both the longitudinal and transverse directions.
 上記ポリエステルフィルムは、厚みが12μm以上50μm以下であることが好ましく、さらに好ましくは15μm以上38μm以下であり、より好ましくは、19μm以上33μm以下である。フィルムの厚みが12μm以上であれば、フィルム生産時や加工工程、成型の時に、熱により変形するおそれがなく好ましい。一方、フィルムの厚みが50μm以下であれば、使用後に廃棄するフィルムの量が極度に多くならず、環境負荷を小さくする上で好ましい。 The thickness of the polyester film is preferably 12 μm or more and 50 μm or less, more preferably 15 μm or more and 38 μm or less, and even more preferably 19 μm or more and 33 μm or less. If the thickness of the film is 12 μm or more, there is no risk of deformation due to heat during film production, processing, and molding, which is preferable. On the other hand, if the thickness of the film is 50 μm or less, the amount of film to be discarded after use will not be excessively large, which is preferable in terms of reducing environmental burden.
 上記ポリエステルフィルム基材は、単層であっても2層以上の多層であっても構わない。例えば、基材フィルムは、粒径1.0μm以上の粒子を実質的に含まない表面層Aと、粒子を含む表面層Bとを有するポリエステルフィルムであってもよい。好ましくは、表面層Aは、粒径1.0μm以上の無機粒子を実質的に含まない。 The polyester film base material may be a single layer or a multilayer of two or more layers. For example, the base film may be a polyester film having a surface layer A that does not substantially contain particles having a particle size of 1.0 μm or more and a surface layer B that contains particles. Preferably, surface layer A does not substantially contain inorganic particles having a particle size of 1.0 μm or more.
 この態様において、表面層Aに、粒径1.0μm未満1nm以上の粒子は存在してもよい。表面層Aが、粒径1.0μm以上の粒子、例えば無機粒子を実質的に含まないことにより、樹脂シートに基材中の粒子形状が転写して不具合が生じることを低減できる。 In this embodiment, particles having a particle size of less than 1.0 μm and 1 nm or more may be present in the surface layer A. Since the surface layer A does not substantially contain particles having a particle size of 1.0 μm or more, for example, inorganic particles, it is possible to reduce problems caused by transfer of the shape of particles in the base material to the resin sheet.
 一態様において、表面層Aは、粒径1.0μm未満の粒子についても含有しないことで、樹脂シートに基材中の粒子形状が転写して不具合が生じることを、より効果的に抑制できる。
 一態様において、上記ポリエステルフィルム基材は、少なくとも片面には実質的に無機粒子を含まない表面層Aを有する積層フィルムであることが好ましい。これにより、更に効果的に、樹脂シートに基材中の粒子形状が転写して不具合が生じることを抑制できる。
例えば、粒径1.0μm未満の粒子を実質的に含有しない表面層Aは、粒径1.0μm以上の粒子についても実質的に含まない態様が好ましい。
In one embodiment, the surface layer A does not contain particles with a particle size of less than 1.0 μm, so that problems caused by transfer of the particle shape in the base material to the resin sheet can be more effectively suppressed.
In one embodiment, the polyester film base material is preferably a laminated film having a surface layer A substantially free of inorganic particles on at least one side. Thereby, it is possible to more effectively suppress the transfer of the particle shape in the base material to the resin sheet and the occurrence of defects.
For example, it is preferable that the surface layer A that does not substantially contain particles with a particle size of less than 1.0 μm also substantially does not contain particles with a particle size of 1.0 μm or more.
 ここで、本発明において、「粒子を実質的に含有しない」とは、例えば、1.0μm未満の無機粒子の場合、蛍光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。また、「粒径1.0μm以上の粒子を実質的に含まない」とは、積極的に粒径1.0μm以上の粒子を含まないことを意味する。 Here, in the present invention, "contains substantially no particles" means, for example, in the case of inorganic particles less than 1.0 μm, the amount of inorganic elements determined by X-ray fluorescence analysis is 50 ppm or less, preferably 10 ppm or less. , most preferably means a content below the detection limit. Even if particles are not actively added to the film, contaminants derived from foreign substances or dirt attached to the raw resin or the line or equipment in the film manufacturing process are peeled off and mixed into the film. This is because there is. Further, "substantially not containing particles with a particle size of 1.0 μm or more" means that particles with a particle size of 1.0 μm or more are not included.
 2層以上の多層構成からなる積層ポリエステルフィルムの場合は、実質的に無機粒子を含有しない表面層Aの反対面には、無機粒子などを含有することができる表面層Bを有することが好ましい。 In the case of a laminated polyester film having a multilayer structure of two or more layers, it is preferable to have a surface layer B that can contain inorganic particles on the opposite side of the surface layer A that does not substantially contain inorganic particles.
 積層構成としては、離型層を塗布する側の層をA層、その反対面の層をB層、これら以外の芯層をC層とすると、厚み方向の層構成は離型層/A/B、あるいは離型層/A/C/B等の積層構造が挙げられる。当然ながらC層は複数の層構成であっても構わない。また、表面層Bには無機粒子を含まないこともできる。その場合、フィルムをロール状に巻き取るための滑り性付与するため、表面層B上には少なくとも無機粒子とバインダーを含んだコート層を設けることが好ましい。 Assuming that the layer on which the release layer is applied is layer A, the layer on the opposite side is layer B, and the other core layer is layer C, the layer structure in the thickness direction is release layer/A/ B, or a laminated structure such as release layer/A/C/B. Naturally, the C layer may have a plurality of layers. Furthermore, the surface layer B may not contain inorganic particles. In that case, it is preferable to provide a coating layer containing at least inorganic particles and a binder on the surface layer B in order to provide slipperiness for winding up the film into a roll.
 本発明におけるポリエステルフィルム基材において、離型層を塗布する面の反対面を形成する表面層Bは、フィルムの滑り性や空気の抜けやすさの観点から、無機粒子を含有することが好ましく、特にシリカ粒子及び/又は炭酸カルシウム粒子を用いることが好ましい。含有される無機粒子含有量は、表面層B中に無機粒子の合計で5000ppm以上15000ppm以下含有することが好ましい。 In the polyester film base material of the present invention, the surface layer B forming the opposite surface to the surface to which the release layer is applied preferably contains inorganic particles from the viewpoint of the slipperiness of the film and the ease with which air can escape. In particular, it is preferable to use silica particles and/or calcium carbonate particles. The total amount of inorganic particles contained in the surface layer B is preferably 5,000 ppm or more and 15,000 ppm or less.
 このとき、表面層Bのフィルムの領域表面平均粗さ(Sa)は、1nm以上40nm以下の範囲であることが好ましい。より好ましくは、5nm以上35nm以下の範囲である。シリカ粒子及び/又は炭酸カルシウム粒子の合計が5000ppm以上、Saが1nm以上の場合には、フィルムをロール状に巻き上げるときに、空気を均一に逃がすことができ、巻き姿が良好で平面性良好により、超薄層セラミックグリーンシートの製造に好適なものとなる。また、シリカ粒子及び/又は炭酸カルシウム粒子の合計が15000ppm以下、Saが40nm以下の場合には、滑剤の凝集が生じにくく、粗大突起ができないため、超薄層のセラミックグリーンシート製造時に品質が安定し好ましい。 At this time, the area surface average roughness (Sa) of the film of the surface layer B is preferably in the range of 1 nm or more and 40 nm or less. More preferably, the range is 5 nm or more and 35 nm or less. When the total amount of silica particles and/or calcium carbonate particles is 5000 ppm or more and Sa is 1 nm or more, air can be released uniformly when the film is rolled up, resulting in a good rolled shape and good flatness. , it is suitable for producing ultra-thin ceramic green sheets. In addition, when the total amount of silica particles and/or calcium carbonate particles is 15,000 ppm or less and Sa is 40 nm or less, the lubricant is less likely to aggregate and coarse protrusions are not formed, resulting in stable quality when producing ultra-thin ceramic green sheets. It is preferable.
 上記B層に含有する粒子としては、シリカ及び/又は炭酸カルシウム以外に不活性な無機粒子及び/又は耐熱性有機粒子なども用いることができるが、透明性やコストの観点からシリカ粒子及び/又は炭酸カルシウム粒子を用いることがより好ましい。また、他に使用できる無機粒子としては、アルミナ-シリカ複合酸化物粒子、ヒドロキシアパタイト粒子などが挙げられる。また、耐熱性有機粒子としては、架橋ポリアクリル系粒子、架橋ポリスチレン粒子、ベンゾグアナミン系粒子などが挙げられる。またシリカ粒子を用いる場合、多孔質のコロイダルシリカが好ましく、炭酸カルシウム粒子を用いる場合は、ポリアクリル酸系の高分子化合物で表面処理を施した軽質炭酸カルシウムが、滑剤の脱落防止の観点から好ましい。 In addition to silica and/or calcium carbonate, inert inorganic particles and/or heat-resistant organic particles can also be used as particles contained in layer B, but from the viewpoint of transparency and cost, silica particles and/or More preferably, calcium carbonate particles are used. In addition, other inorganic particles that can be used include alumina-silica composite oxide particles, hydroxyapatite particles, and the like. Examples of the heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles. In addition, when using silica particles, porous colloidal silica is preferable, and when using calcium carbonate particles, light calcium carbonate whose surface is treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the lubricant from falling off. .
 上記表面層Bに添加する無機粒子の平均粒子径は、0.1μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下が特に好ましい。無機粒子の平均粒子径が0.1μm以上であれば、離型フィルムの滑り性が良好であり好ましい。また、平均粒子径が2.0μm以下であれば、離型層表面の平滑性に悪影響を与える恐れがないため、セラミックグリーンシートにピンホールが発生するおそれがなく好ましい。 The average particle diameter of the inorganic particles added to the surface layer B is preferably 0.1 μm or more and 2.0 μm or less, particularly preferably 0.5 μm or more and 1.0 μm or less. It is preferable that the average particle diameter of the inorganic particles is 0.1 μm or more because the release film has good slip properties. Further, if the average particle diameter is 2.0 μm or less, there is no possibility that the smoothness of the surface of the mold release layer will be adversely affected, and therefore there is no possibility that pinholes will occur in the ceramic green sheet, which is preferable.
 上記離型層を設ける側の層である表面層Aには、ピンホール低減の観点から、滑剤などの無機粒子の混入を防ぐため、再生原料などを使用しないことが好ましい。 From the viewpoint of reducing pinholes, it is preferable not to use recycled raw materials in the surface layer A, which is the layer on which the release layer is provided, in order to prevent inorganic particles such as lubricants from being mixed in.
 上記離型層を設ける側の層である表面層Aの厚み比率は、基材フィルムの全層厚みの20%以上50%以下であることが好ましい。20%以上であれば、表面層Bなどに含まれる粒子の影響をフィルム内部から受けづらく、領域表面平均粗さSaが上記の範囲を満足することが容易であり好ましい。基材フィルムの全層の厚みの50%以下であると、表面層Bにおける再生原料の使用比率を増やすことができ、環境負荷が小さく好ましい。 The thickness ratio of the surface layer A, which is the layer on which the release layer is provided, is preferably 20% or more and 50% or less of the total layer thickness of the base film. If it is 20% or more, it is difficult to be affected by particles contained in the surface layer B etc. from inside the film, and it is easy for the area surface average roughness Sa to satisfy the above range, which is preferable. When the thickness is 50% or less of the total thickness of the base film, the ratio of recycled raw materials used in the surface layer B can be increased, and the environmental burden is small, which is preferable.
 また、経済性の観点から上記表面層A以外の層(表面層Bもしくは前述の中間層C)には、50質量%以上90質量%以下のフィルム屑やペットボトルの再生原料を使用することができる。この場合でも、B層に含まれる滑剤の種類や量、粒径ならびに領域表面平均粗さ(Sa)は、上記の範囲を満足することが好ましい。 In addition, from the economic point of view, it is possible to use film scraps or recycled raw materials from PET bottles in an amount of 50% by mass or more and 90% by mass or less for layers other than the above-mentioned surface layer A (surface layer B or the above-mentioned intermediate layer C). can. Even in this case, it is preferable that the type and amount of lubricant contained in the B layer, the particle size, and the area surface average roughness (Sa) satisfy the above ranges.
 また、後に塗布する離型層などの密着性の向上や、帯電を防止するなどのために表面層A及び/または表面層Bの表面に製膜工程内の延伸前または一軸延伸後のフィルムにコート層を設けてもよく、表面処理などを施すこともできる。 In addition, in order to improve the adhesion of a later applied release layer, etc., and to prevent static electricity, the film is coated on the surface of the surface layer A and/or surface layer B before or after uniaxial stretching during the film forming process. A coating layer may be provided, and surface treatment etc. may also be performed.
 一態様において、水性コーティング組成物を塗布する離型層形成面には、離型層との密着性を高めるために、表面処理や、易接着層を設けることが可能である。表面処理としては、プラズマ処理、コロナ放電処理、紫外線処理、火炎処理及び電子線・放射線処理などが挙げられ、易接着層としては、基材フィルムと同じ樹脂を含有し、更に帯電防止剤、顔料、界面活性剤、潤滑剤、アンチブロッキング剤など、を含有する層が挙げられる。水性コーティング組成物にカップリング剤のような密着性向上剤が添加されている場合は、易接着層等を設けなくても、離型層が基材フィルムに対して十分な密着性を有することができる。 In one embodiment, the release layer forming surface to which the aqueous coating composition is applied can be subjected to surface treatment or provided with an easy-to-adhesion layer in order to improve adhesion to the release layer. Surface treatments include plasma treatment, corona discharge treatment, ultraviolet treatment, flame treatment, and electron beam/radiation treatment.The adhesive layer contains the same resin as the base film, and further contains antistatic agents and pigments. , a surfactant, a lubricant, an anti-blocking agent, and the like. If an adhesion improver such as a coupling agent is added to the aqueous coating composition, the release layer should have sufficient adhesion to the base film even without providing an easy-adhesion layer. Can be done.
(離型層)
 本発明において、離型層は基材フィルムの表面層A上に積層される。本発明において、離型層は、水性コーティング組成物を反応および固化させてなる層であり、
前記水性コーティング組成物は、コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、
(a)1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルションと、
(b)1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルションと、
(d)界面活性剤
とを含む水性コーティング組成物から形成される。
 離型層は、水の滑落角から算出する付着エネルギーが6.0mJ/m2以上であり、
以下の方法で測定したテープ剥離力が2000mN/50mm以下である離型フィルム;
 前記離型フィルムを15分間トルエン浸漬処理後に風乾した離型フィルムの離型層上に、
粘着テープを5kg荷重で貼合し、テープ付き離型フィルムを70℃20時間保持した後に、剥離速度0.3m/min、T型剥離でテープ剥離力を測定する。
 離型層がこのような特徴を有することで、剥離性と濡れ性に優れた離型フィルムを提供することができ、樹脂シートやセラミックグリーンシートに対するピンホールの発生などの欠陥の発生を抑制でき、均一な膜厚のシートを形成できる。
(Release layer)
In the present invention, the release layer is laminated on the surface layer A of the base film. In the present invention, the release layer is a layer formed by reacting and solidifying an aqueous coating composition,
The aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the coating composition,
(a) a first silicone emulsion containing at least two or more alkenyl groups in one molecule;
(b) a second silicone emulsion containing at least two or more hydrogen groups in one molecule;
(d) a surfactant.
The release layer has an adhesion energy of 6.0 mJ/m 2 or more calculated from the sliding angle of water,
A release film with a tape peeling force of 2000mN/50mm or less measured by the following method;
On the release layer of the release film that was air-dried after being immersed in toluene for 15 minutes,
Adhesive tape is laminated with a load of 5 kg, and after holding the release film with tape at 70°C for 20 hours, the tape peeling force is measured by T-shaped peeling at a peeling speed of 0.3 m/min.
Because the release layer has these characteristics, it is possible to provide a release film with excellent releasability and wettability, and it is possible to suppress the occurrence of defects such as pinholes on resin sheets and ceramic green sheets. , a sheet with uniform thickness can be formed.
 より詳細には、本発明はインラインコーティングにより離型層を形成するため、180℃以上の比較的高温環境下でも離型フィルムの平面性を損なうことなく、離型層を硬化させることができる。そのため、従来のオフラインコーティングで離型層を形成するよりも架橋密度の高い離型層を形成することができ、軽剥離性を有することができる。
 また、本発明であれば、水および有機溶媒に可溶な界面活性剤を含有する離型層を製造することができ、セラミックスラリーなどのシート成型時に優れた濡れ性を有することができる。さらに、離型層を形成するシリコーンエマルションの安定性を高めることができ、コート欠陥のない均一な離型層を有する離型フィルムを得ることができる。
More specifically, since the present invention forms the release layer by in-line coating, the release layer can be cured without impairing the flatness of the release film even in a relatively high-temperature environment of 180° C. or higher. Therefore, it is possible to form a release layer with a higher crosslinking density than when a release layer is formed by conventional off-line coating, and it can have easy releasability.
Further, according to the present invention, a release layer containing a surfactant soluble in water and an organic solvent can be manufactured, and can have excellent wettability when molding a sheet of ceramic slurry or the like. Furthermore, the stability of the silicone emulsion forming the release layer can be improved, and a release film having a uniform release layer without coating defects can be obtained.
 離型層を形成する水性コーティング組成物は、コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有する。
 組成物中に含まれる有機溶媒量が上記条件であることにより、有機溶媒を主成分に含むコーティング組成物と比べて、有機溶剤の量を大きく低減、または実質的に含まないことを可能にできる。この結果、有機溶媒への接触や蒸気の吸引による人体への悪影響、および有機溶媒の蒸気が大気中に放出されることによる地球環境への負荷を大きく低減できる。
The aqueous coating composition forming the release layer contains 10 parts by mass or less of an organic solvent based on 100 parts by mass of the total coating composition.
When the amount of organic solvent contained in the composition meets the above conditions, it is possible to greatly reduce the amount of organic solvent, or to substantially eliminate the amount of organic solvent, compared to a coating composition containing an organic solvent as a main component. . As a result, it is possible to greatly reduce the adverse effects on the human body due to contact with the organic solvent and inhalation of its vapor, and the burden on the global environment due to the emission of organic solvent vapor into the atmosphere.
 一態様において、水性コーティング組成物は、コーティング組成物の全体量100質量部に対し、有機溶媒を0.01質量部以上10質量部未満、例えば、0.01質量部以上8質量部以下、0.01質量部以上5質量部以下、0.01質量部以上3質量部以下、0.01質量部以上1質量部以下、0.01質量部以上1質量部未満、0.01質量部以上0.8質量部以下で含むことができる。有機溶媒の量は、コーティング組成物における樹脂固形分の合計量100質量部に対し、0.01質量部以上0.5質量部以下であってもよい。
 一態様において、水性コーティング組成物は、有機溶媒を0.01質量部以上0.2質量部以下で含んでもよく、例えば、0.01質量部以上0.1質量部以下であってもよい。例えば、組成物は、実質的に有機溶媒を含有しないことも可能である。
 本発明において、コーティング組成物の全体量100質量部とは、例えば、結晶配向が完了する前の基材フィルムに塗布される、水性コーティング組成物の全体量を100質量部として規定できる。
In one aspect, the aqueous coating composition contains 0.01 parts by mass or more and less than 10 parts by mass of an organic solvent, for example 0.01 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the total amount of the coating composition. .01 parts by mass or more and 5 parts by mass or less, 0.01 parts by mass or more and 3 parts by mass or less, 0.01 parts by mass or more and 1 part by mass or less, 0.01 parts by mass or more and less than 1 part by mass, 0.01 parts by mass or more and 0 .8 parts by mass or less. The amount of the organic solvent may be 0.01 part by mass or more and 0.5 parts by mass or less based on 100 parts by mass of the total resin solid content in the coating composition.
In one aspect, the aqueous coating composition may contain an organic solvent in an amount of 0.01 parts by mass or more and 0.2 parts by mass or less, for example, 0.01 parts by mass or more and 0.1 parts by mass or less. For example, the composition can be substantially free of organic solvents.
In the present invention, 100 parts by mass of the total amount of the coating composition can be defined as, for example, 100 parts by mass of the total amount of the aqueous coating composition applied to the base film before crystal orientation is completed.
 本発明において、有機溶媒量が上記条件であることで、本発明の第1のシリコーンエマルションと第2のシリコーンエマルションの凝集やゲル化を抑制できるため、塗布均一性に優れ、凝集物由来の粗大突起の低減と、ハジキなどのコート欠陥の発生をバランスよく抑制できる。その上、軽剥離性を示す離型フィルムを得ることができる。 In the present invention, by setting the amount of organic solvent to the above conditions, aggregation and gelation of the first silicone emulsion and the second silicone emulsion of the present invention can be suppressed, resulting in excellent coating uniformity and coarse particles originating from aggregates. It is possible to reduce protrusions and suppress the occurrence of coating defects such as repelling in a well-balanced manner. Moreover, a release film exhibiting easy releasability can be obtained.
 また、離型層の硬化を十分に行えるため、離型層は耐溶剤性に優れる。その上、例えば、セラミックグリーンシートを剥離する時の力が大きくなることを抑制でき、剥離時にセラミックグリーンシートへのダメージを低減でき、欠陥の発生を防ぐことができる。
 更に、本発明であれば、ポリエステルフィルムの上に水性コーティング組成物を塗布する時、その乾燥工程においてハジキなどのコート欠陥が生じることを抑制でき、離型層の厚みムラ、粗大突起の発生、塗布抜けなどのコート欠陥を抑制できる。
 例えば、本発明であれば、インラインコーティング法を用いて離型フィルムを製造する態様において、離型層の硬化と剥離性に優れる離型層を形成でき、従来は困難とされてきた、セラミックスラリーの濡れ性についても、要求される物性を得ることが出来る。
Moreover, since the mold release layer can be sufficiently cured, the mold release layer has excellent solvent resistance. Furthermore, for example, it is possible to suppress an increase in force when peeling the ceramic green sheet, reduce damage to the ceramic green sheet during peeling, and prevent the occurrence of defects.
Furthermore, with the present invention, when an aqueous coating composition is applied onto a polyester film, coating defects such as repellency can be suppressed during the drying process, and uneven thickness of the release layer, generation of coarse protrusions, etc. can be suppressed. Coating defects such as coating defects can be suppressed.
For example, according to the present invention, in an embodiment in which a release film is manufactured using an in-line coating method, a release layer with excellent hardening and peelability can be formed, and ceramic slurry, which has been considered difficult in the past, can be formed. It is also possible to obtain the required physical properties regarding wettability.
 ここで、本発明において、有機溶媒は、第2種有機溶剤(有機溶媒)として、有機溶剤中毒予防規則の対象となる有機溶剤を含む。第2種有機溶剤として、例えば、アセトン、イソプロピルアルコール、エチルエーテル、セロソルブ、ジクロルベンゼン、キシレン、クレゾール、酢酸エチル、酢酸メチル、シクロヘキサノール、ジオキサン、ジメチルホルムアミド、トルエン、ノルマルヘキサン、ブタノール、メタノール、メチルエチルケトン等が挙げられる。 Here, in the present invention, the organic solvent includes an organic solvent that is subject to the Organic Solvent Poisoning Prevention Regulations as a second type organic solvent (organic solvent). Examples of the second type organic solvent include acetone, isopropyl alcohol, ethyl ether, cellosolve, dichlorobenzene, xylene, cresol, ethyl acetate, methyl acetate, cyclohexanol, dioxane, dimethylformamide, toluene, n-hexane, butanol, methanol, Examples include methyl ethyl ketone.
 本発明において、組成物において「実質的に有機溶媒を含有しない」とは、水性コーティング組成物の全体量100質量部に対し、有機溶媒を0質量部以上0.01質量部未満の量で、上記有機溶媒が含まれることを意味する。これは積極的に有機溶媒を添加しなくとも、外来異物由来のコンタミ成分や、原料樹脂、添加剤などに有機溶剤が含まれる場合があるためである。 In the present invention, the composition "substantially does not contain an organic solvent" refers to an amount of organic solvent in an amount of 0 parts by mass or more and less than 0.01 parts by mass, based on 100 parts by mass of the total amount of the aqueous coating composition. This means that the above organic solvents are included. This is because organic solvents may be contained in contaminant components derived from foreign substances, raw resins, additives, etc. even if organic solvents are not actively added.
 (a)1分子中に少なくとも2個以上のアルケニル基を有する第1のシリコーンエマルションは、1分子中に少なくとも2個以上のアルケニル基を含有するシリコーンをエマルション化して水分散体にしたものである。1分子中に少なくとも2個以上のアルケニル基を含有するシリコーンとしては、主鎖にシロキサン結合を有する化合物であればいずれの化合物でも良いが、末端及び/又は側鎖にアルケニル基を有するポリオルガノシロキサンが好ましく、ポリジメチルシロキサンであることがより好ましい。1分子内にアルケニル基が2個以上20以下有していることが好ましい。アルケニル基が2個以上あることで、熱硬化した際に架橋密度の高い離型層となり、軽剥離性を示す。 (a) The first silicone emulsion having at least two or more alkenyl groups in one molecule is an aqueous dispersion obtained by emulsifying silicone containing at least two or more alkenyl groups in one molecule. . The silicone containing at least two or more alkenyl groups in one molecule may be any compound having a siloxane bond in the main chain, but polyorganosiloxanes having alkenyl groups in the terminal and/or side chains may be used. is preferred, and polydimethylsiloxane is more preferred. It is preferable that one molecule has 2 or more alkenyl groups and 20 or less alkenyl groups. The presence of two or more alkenyl groups results in a release layer with high crosslinking density when thermally cured, and exhibits easy releasability.
 アルケニル基を有するシリコーンとしては、例えば、下記一般式(I)で表される構造が例示される。 Examples of the silicone having an alkenyl group include a structure represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001
(一般式(I)中、Rは、同一又は異なっていてもよく、炭素数2以上8以下のアルケニル基、又はアルキル基もしくはアリール基を含む炭素数1以上16以下の1価の炭化水素基であり、Rのうち2つ以上は炭素数2以上8以下のアルケニル基であり、[SiO]b1で示すケイ素原子に結合するRのうち1つ以上は炭素数2以上8以下のアルケニル基であり。Rは、同一又は異なっていてもよく、アルキル基もしくはアリール基を含む炭素数1以上16以下の1価の炭化水素基であり、a1+b1を100モル%とするとき、a1は90モル%以上100モル%以下、b1は0モル%以上10モル%以下である。)
 [SiO]a1で示すケイ素原子に結合するRは、アルキル基もしくはアリール基を含む1価の炭化水素基であればよいが、アルキル基もしくはアリール基から選択される炭素数1以上16以下の1価の炭化水素基であることが好ましく、メチル基、又はフェニル基がより好ましく、メチル基が更に好ましい。また、一般式(I)で例示される通り、SiO2/2で表されるD単位構造からなるシリコーンであることが好ましい。
Figure JPOXMLDOC01-appb-C000001
(In general formula (I), R 1 may be the same or different and is an alkenyl group having 2 to 8 carbon atoms, or a monovalent hydrocarbon having 1 to 16 carbon atoms containing an alkyl group or an aryl group. At least two of R 1 are alkenyl groups having 2 to 8 carbon atoms, and one or more of R 1 bonded to the silicon atom represented by [SiO] b1 is an alkenyl group having 2 to 8 carbon atoms. It is an alkenyl group.R2 may be the same or different and is a monovalent hydrocarbon group having 1 to 16 carbon atoms containing an alkyl group or an aryl group, and when a1+b1 is 100 mol%, a1 is 90 mol% or more and 100 mol% or less, and b1 is 0 mol% or more and 10 mol% or less.)
[SiO] R 2 bonded to the silicon atom represented by a1 may be a monovalent hydrocarbon group including an alkyl group or an aryl group, but may be a monovalent hydrocarbon group having 1 to 16 carbon atoms selected from an alkyl group or an aryl group. It is preferably a monovalent hydrocarbon group, more preferably a methyl group or a phenyl group, and even more preferably a methyl group. Furthermore, as exemplified by general formula (I), silicone having a D unit structure represented by SiO 2/2 is preferable.
 [SiO]b1で示すケイ素原子に結合するRは、炭素数2以上8以下のアルケニル基、又はアルキル基もしくはアリール基を含む1価の炭化水素基であればよいが、[SiO]b1で示すケイ素原子に結合するRのうち1つ以上は炭素数2以上8以下のアルケニル基であることが好ましい。Rとしては、炭素数2以上8以下のアルケニル基、又はアルキル基もしくはアリール基から選択される炭素数1以上16以下の1価の炭化水素基であることが好ましく、メチル基、又はフェニル基がより好ましく、メチル基が更に好ましい。 R 1 bonded to the silicon atom represented by [SiO] b1 may be an alkenyl group having 2 to 8 carbon atoms, or a monovalent hydrocarbon group containing an alkyl group or an aryl group, but in [SiO] b1 It is preferable that one or more of R 1 bonded to the silicon atom shown is an alkenyl group having 2 or more and 8 or less carbon atoms. R 1 is preferably a monovalent hydrocarbon group having 1 to 16 carbon atoms selected from an alkenyl group having 2 to 8 carbon atoms, an alkyl group, or an aryl group, and a methyl group or a phenyl group. is more preferred, and methyl group is even more preferred.
 両末端のRも[SiO]b1で示すケイ素原子に結合するRと同様であるが、好ましい構成としては炭素数2以上8以下のアルケニル基であり、末端のアルケニル基はハイドロジェン基と反応をした場合に立体的な構造障害が比較的小さくなり、剥離性を向上させやすいため特に好ましい。 R 1 at both ends is also the same as R 1 bonded to the silicon atom shown in [SiO] b1 , but the preferred structure is an alkenyl group having 2 to 8 carbon atoms, and the alkenyl group at the end is a hydrogen group. It is particularly preferable because steric structural hindrance becomes relatively small when the reaction occurs and peelability is easily improved.
 Rで表される炭素数2以上8以下のアルケニル基として、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などが挙げられ、これらの中でも特にビニル基が好ましい。 Examples of the alkenyl group having 2 or more and 8 or less carbon atoms represented by R 1 include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and among these, a vinyl group is particularly preferred.
 [SiO]a1と[SiO]b1の構成単位を合計して100モル%とするとき、剥離性を向上させるために炭化水素基を塗膜表面に局在化させる観点から、[SiO]a1の構成単位の範囲として90モル%以上100モル%以下が好ましく、より好ましい範囲として92モル%以上100モル%以下である。 When the total structural units of [SiO] a1 and [SiO] b1 are 100 mol%, from the viewpoint of localizing hydrocarbon groups on the coating surface to improve releasability, [SiO] a1 is The range of the structural unit is preferably 90 mol% or more and 100 mol% or less, and more preferably 92 mol% or more and 100 mol% or less.
 アルケニル基を有するシリコーンの数平均分子量は、1000以上30000未満が好ましく、より好ましくは3000以上15000未満である。数平均分子量が1000以上であると、炭化水素基が塗膜表面に局在化して十分な剥離性が得られ易くなる。一方、数平均分子量が30000未満であると、水性コーティング組成物へ乳化特性が良好になり、均一塗工性も良好になる傾向がある。なお本発明における数平均分子量は1H NMRおよび29Si NMRで観測されるピークからシロキサンユニットの同定を行い、各シロキサンユニット由来のピークの積分比から算出したものを指す。 The number average molecular weight of the silicone having an alkenyl group is preferably 1,000 or more and less than 30,000, more preferably 3,000 or more and less than 15,000. When the number average molecular weight is 1000 or more, hydrocarbon groups are localized on the coating surface, making it easy to obtain sufficient releasability. On the other hand, when the number average molecular weight is less than 30,000, the emulsifying property of the aqueous coating composition tends to be good and the uniform coating properties also tend to be good. Note that the number average molecular weight in the present invention refers to the value calculated from the integral ratio of the peaks derived from each siloxane unit after identifying the siloxane units from the peaks observed by 1 H NMR and 29 Si NMR.
(b)1分子中に少なくとも2個以上のハイドロジェン基を有する第2のシリコーンエマルションは、1分子中に少なくとも2個以上のハイドロジェン基を有するシリコーンをエマルション化して水分散体にしたものである。1分子中に少なくとも2個以上のハイドロジェン基を有するシリコーンとしては、主鎖にシロキサン結合を有する化合物であればいずれの化合物でも良いが、末端や側鎖にハイドロジェン基を有するポリオルガノシロキサンが好ましく、ポリジメチルシロキサンであることがより好ましい。末端のケイ素原子は、ハイドロジェン基を有していてもよいが、トリメチルシラン等のトリアルキルシラン構造であることが好ましい。1分子内にハイドロジェン基が2個以上100個以下有していることが好ましい。ハイドロジェン基が2個以上あることで、硬化した際に架橋密度の高い離型層となり、軽剥離性を示す。 (b) The second silicone emulsion having at least two or more hydrogen groups in one molecule is an aqueous dispersion obtained by emulsifying silicone having at least two or more hydrogen groups in one molecule. be. The silicone having at least two or more hydrogen groups in one molecule may be any compound having a siloxane bond in the main chain, but polyorganosiloxanes having hydrogen groups in the terminal or side chain may be used. Preferably, polydimethylsiloxane is more preferable. The terminal silicon atom may have a hydrogen group, but preferably has a trialkylsilane structure such as trimethylsilane. It is preferable that one molecule has 2 or more and 100 or less hydrogen groups. By having two or more hydrogen groups, it becomes a release layer with high crosslinking density when cured, and exhibits easy releasability.
 ハイドロジェン基を有するシリコーンとしては、下記の一般式(II)で示される構造が例示される。 As the silicone having a hydrogen group, a structure represented by the following general formula (II) is exemplified.
Figure JPOXMLDOC01-appb-C000002
(一般式(II)中、Rは、同一又は異なっていてもよく、アルキル基もしくはアリール基を含む炭素数1以上16以下の1価の炭化水素基であり、a2+b2を100モル%とするとき、a2は30モル%以上90モル%以下、b2は5モル%以上70モル%以下である。)
 [SiO]a2で示すケイ素原子には、水素原子(ハイドロジェン基)が結合し、Rは、アルキル基もしくはアリール基を含む1価の炭化水素基であればよいが、アルキル基もしくはアリール基から選択される炭素数1以上16以下の1価の炭化水素基であることが好ましい。また、一般式(II)で例示される通り、SiO2/2で表されるD単位構造からなるシリコーンであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(In general formula (II), R 3 may be the same or different and is a monovalent hydrocarbon group having 1 to 16 carbon atoms and containing an alkyl group or an aryl group, and a2+b2 is 100 mol%. (In this case, a2 is 30 mol% or more and 90 mol% or less, and b2 is 5 mol% or more and 70 mol% or less.)
[SiO] A hydrogen atom (hydrogen group) is bonded to the silicon atom represented by a2 , and R3 may be a monovalent hydrocarbon group including an alkyl group or an aryl group; It is preferable that it is a monovalent hydrocarbon group having 1 or more and 16 or less carbon atoms selected from the following. Further, as exemplified by general formula (II), silicone having a D unit structure represented by SiO 2/2 is preferable.
 [SiO]b2、及び末端のSi原子に結合するRは、アルキル基もしくはアリール基を含む1価の炭化水素基であればよいが、アルキル基もしくはアリール基から選択される炭素数1以上16以下の1価の炭化水素基であることが好ましい。 [SiO] b2 and R3 bonded to the terminal Si atom may be any monovalent hydrocarbon group containing an alkyl group or an aryl group, but are selected from alkyl groups and aryl groups having 1 to 16 carbon atoms. The following monovalent hydrocarbon groups are preferred.
 何れのRについても、アルキル基もしくはアリール基の炭素数はより少ない数の方がより好ましく、立体的な構造障害が比較的小さくなり、架橋反応が進行しやすいものとなる。また、塗布工程における塗布液の流動性や離型層中の反応構造の均一性の観点からも好ましい。このため、アルキル基としては、メチル基、エチル基、プロピル基、ブチル基などが好ましく、またアリール基としては、フェニル基、トリル基などが好ましい。 For any R 3 , it is more preferable that the number of carbon atoms in the alkyl group or aryl group is smaller, so that steric structural hindrance becomes relatively small and the crosslinking reaction progresses easily. It is also preferable from the viewpoint of the fluidity of the coating liquid in the coating process and the uniformity of the reaction structure in the release layer. Therefore, the alkyl group is preferably a methyl group, ethyl group, propyl group, butyl group, etc., and the aryl group is preferably a phenyl group, tolyl group, etc.
 [SiO]a2と[SiO]b2の構成単位を合計して100モル%とすると、[SiO]a2の構成単位の範囲として30モル%以上90モル%以下が好ましく、40モル%以上80モル%以下がより好ましい。[SiO]a2の構成単位が30モル%以上であると、架橋反応点が十分な量となり、離型層の架橋密度が大きくなり、離型層の耐擦過性や耐溶剤性も良好になり好ましい。また、[SiO]a2の構成単位が90モル%以下であると、離型層中にハイドロジェン基が残存しにくくなり、離型層中の未架橋成分量が増えにくく剥離性が良好になるため好ましい。 When the sum of the structural units of [SiO] a2 and [SiO] b2 is 100 mol%, the range of the structural unit of [SiO] a2 is preferably from 30 mol% to 90 mol%, and from 40 mol% to 80 mol%. The following are more preferred. [SiO] When the a2 structural unit is 30 mol% or more, there will be a sufficient amount of crosslinking reaction points, the crosslinking density of the mold release layer will increase, and the scratch resistance and solvent resistance of the mold release layer will also be good. preferable. In addition, when the structural unit of [SiO] a2 is 90 mol% or less, hydrogen groups are less likely to remain in the release layer, and the amount of uncrosslinked components in the release layer is less likely to increase, resulting in good releasability. Therefore, it is preferable.
 本発明におけるハイドロジェン基含有シリコーンの数平均分子量は、1000以上10000以下が好ましく、より好ましくは3000以上8000以下である。数平均分子量が1000以上であると、十分な剥離性が得られ易くなる。一方、数平均分子量が10000以下であると、水性コーティング組成物への乳化特性が良好になり、塗工均一性も良好になる傾向がある。かつ架橋反応が効率的に進行し易くなり、離型層中の残存ハイドロジェン基が少なくなり、剥離性が良好になる。なお本発明における数平均分子量は1H NMRおよび29Si NMRで観測されるピークからシロキサンユニットの同定を行い、各シロキサンユニット由来のピークの積分比から算出したものを指す。 The number average molecular weight of the hydrogen group-containing silicone in the present invention is preferably 1,000 or more and 10,000 or less, more preferably 3,000 or more and 8,000 or less. When the number average molecular weight is 1000 or more, sufficient releasability can be easily obtained. On the other hand, when the number average molecular weight is 10,000 or less, the emulsifying property to the aqueous coating composition tends to be good and the coating uniformity tends to be good as well. In addition, the crosslinking reaction is facilitated to proceed efficiently, the number of hydrogen groups remaining in the release layer is reduced, and the releasability is improved. Note that the number average molecular weight in the present invention refers to the value calculated from the integral ratio of the peaks derived from each siloxane unit after identifying the siloxane units from the peaks observed by 1 H NMR and 29 Si NMR.
 本発明における水性コーティング組成物には、(c)SiO4/2で表されるQ単位を有するシリコーンを含有する水分散体を含有することが好ましい。(c)SiO4/2で表されるQ単位を有するシリコーンを含有する水分散体は、当該構造を有するシリコーンがエマルションやコロイドなどとなって水分散されたものである。当該構造を有するシリコーンとしては、主鎖にシロキサン結合を有する化合物であればいずれの構造でも良いが、末端及び/又は側鎖にアルケニル基を有するポリオルガノシロキサンが好ましい。また、ジアルキルシロキサン単位又はアルキルフェニルシロキサン単位を含む共重合体であることが、剥離性を発現させつつ、1分子中のアルケニル基量を調整し易いため好ましい。末端のケイ素原子は、アルケニル基を有することが好ましいが、トリメチルシラン等のトリアルキルシラン構造であってもよい。 The aqueous coating composition of the present invention preferably contains (c) an aqueous dispersion containing silicone having a Q unit represented by SiO 4/2 . (c) An aqueous dispersion containing silicone having a Q unit represented by SiO 4/2 is one in which silicone having the structure is dispersed in water as an emulsion or colloid. The silicone having this structure may have any structure as long as it is a compound having a siloxane bond in the main chain, but polyorganosiloxane having an alkenyl group at the terminal and/or side chain is preferable. Further, a copolymer containing a dialkylsiloxane unit or an alkylphenylsiloxane unit is preferable because the amount of alkenyl groups in one molecule can be easily adjusted while exhibiting releasability. The terminal silicon atom preferably has an alkenyl group, but may have a trialkylsilane structure such as trimethylsilane.
 SiO4/2で表されるQ単位を有するシリコーンとしては、下記の式(III)で示される構造が例示される。
                 R1aR2bSiO(4-a-b)/2 ・・・(III)
(式(I)中、R1は炭素数2~8のアルケニル基、R2はアルキル基またはアリール基から選択される炭素数1~16の1価の飽和炭化水素基であり、aは0~3、bは0~3で、かつa+b≦3 を満たす整数をそれぞれ表す。)
As the silicone having a Q unit represented by SiO 4/2 , a structure represented by the following formula (III) is exemplified.
R1 a R2 b SiO (4-ab)/2 ...(III)
(In formula (I), R1 is an alkenyl group having 2 to 8 carbon atoms, R2 is a monovalent saturated hydrocarbon group having 1 to 16 carbon atoms selected from an alkyl group or an aryl group, and a is 0 to 3 , b is an integer between 0 and 3 and satisfies a+b≦3.)
 R1で表される炭素数2~8のアルケニル基として、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などが挙げられ、これらの中でも特にビニル基が好ましい。また、R2で表されるアルキル基として、メチル基、エチル基、プロピル基、ブチル基など、またアリール基として、フェニル基、トリル基などが挙げられる。R1で表される炭素数2~8のアルケニル基が(c)に含まれていることがハイドロジェン基との反応性の観点で好ましく、炭素数が少ないほど立体障害の影響が少なく反応性に優れるため好ましく、炭素数2のビニル基であることが最も好ましい。R2の置換基は50モル% 以上がメチル基であることが軽剥離性の点で好ましい。 Examples of the alkenyl group having 2 to 8 carbon atoms represented by R1 include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and among these, a vinyl group is particularly preferred. Furthermore, examples of the alkyl group represented by R2 include a methyl group, ethyl group, propyl group, butyl group, and examples of the aryl group include a phenyl group and tolyl group. It is preferable that (c) contains an alkenyl group having 2 to 8 carbon atoms, represented by R1, from the viewpoint of reactivity with a hydrogen group. It is preferred because of its excellent properties, and a vinyl group having 2 carbon atoms is most preferred. It is preferable that 50 mol% or more of the substituents for R2 be methyl groups from the viewpoint of easy removability.
 Q単位を有するシリコーンは、3次元的にシロキサン結合が拡張した構造を取ることができるため、分子中のアルケニル基も3次元的に広がって存在することができる。そのため、ハイドロジェン基を有するシリコーンと分子中のアルケニル基が反応することで緻密な架橋構造を取ることができ、耐溶剤性に優れる離型層を得ることができる。一般的に、離型層中に含まれるSiO2/2で表されるD単位の比率が多くなると、シロキサン結合が螺旋構造を取りやすく、例えばポリジメチルシロキサンの場合には、シロキサン結合に存在する2つのメチル基は全て分子鎖の外側に配列するため疎水性を示す。一方で、離型層中に含まれるQ単位の比率が多くなると、D単位から形成されるシロキサン結合の螺旋構造が崩れるため、疎水性が低下する。特に理論で限定するわけではないが、Q単位を有するシリコーンを含む離型層とすることで、架橋密度が上がることによる軽剥離性の発現と、シロキサン結合の螺旋構造が崩れることによる疎水性の低下、すなわち優れた濡れ性の両立を実現することができる。 Silicones having Q units can have a structure in which the siloxane bonds are extended three-dimensionally, and therefore the alkenyl groups in the molecule can also exist extended three-dimensionally. Therefore, by reacting the silicone having a hydrogen group with the alkenyl group in the molecule, a dense crosslinked structure can be formed, and a release layer with excellent solvent resistance can be obtained. Generally, as the ratio of D units represented by SiO 2/2 contained in the release layer increases, the siloxane bonds tend to form a helical structure.For example, in the case of polydimethylsiloxane, the siloxane bonds present in All two methyl groups are arranged on the outside of the molecular chain, making it hydrophobic. On the other hand, when the ratio of Q units contained in the release layer increases, the helical structure of the siloxane bonds formed from D units collapses, resulting in a decrease in hydrophobicity. Although it is not limited by theory, by using a release layer containing silicone having Q units, it is possible to develop easy releasability due to increased crosslinking density and to improve hydrophobicity due to the collapse of the helical structure of siloxane bonds. In other words, it is possible to achieve both excellent wettability.
 (c)Q単位を有するシリコーンを含有する水分散体中に含まれるシリコーンの離型層中の含有量は、(a)アルケニル基を有する第1のシリコーンエマルション中に含まれるシリコーンと、(b)ハイドロジェン基を有する第2のシリコーンエマルション中に含まれるシリコーンと(c)Q単位を有するシリコーンを含有する水分散体中に含まれるシリコーンの合計量を100質量部とした時に、10質量部~80質量部であることが好ましく、20質量部~70質量部であることがより好ましい。10質量部以上であると、Q単位を有するシリコーンによって、離型層中に含まれるD単位からなるシリコーンの螺旋構造が崩されて、濡れ性に優れる離型層となるため好ましい。80質量部以下であると、Q単位を有するシリコーンによって、離型層中に含まれるD単位からなるシリコーンの螺旋構造が崩されすぎずに、剥離性に優れる離型層となるため好ましい。 (c) The content of silicone contained in the release layer in the aqueous dispersion containing silicone having a Q unit is (a) the silicone contained in the first silicone emulsion having an alkenyl group, and (b) the silicone contained in the first silicone emulsion having an alkenyl group. ) 10 parts by mass when the total amount of silicone contained in the second silicone emulsion having hydrogen groups and silicone contained in the aqueous dispersion containing silicone having (c) Q units is 100 parts by mass. The amount is preferably 80 parts by weight, more preferably 20 parts by weight to 70 parts by weight. If the amount is 10 parts by mass or more, the silicone having Q units breaks the helical structure of the silicone made up of D units contained in the release layer, resulting in a release layer with excellent wettability, which is preferable. If the amount is 80 parts by mass or less, the silicone having Q units does not destroy the helical structure of the silicone made of D units contained in the release layer too much, resulting in a release layer with excellent releasability, which is preferable.
 Q単位に含まれるSi原子の含有量は、SiO4/2で表されるQ単位を有するシリコーン中の全Si原子に対し、0.05~60モル%であり、好ましくは0.1~55モル%であり、より好ましくは1.0~50モル%である。Q単位に含まれるSi原子の含有量が0.05モル%以上の場合、十分にシロキサン結合が3次元に拡張した構造をとれ、架橋密度を高める効果が発現するため好ましい。60モル%以下であれば、過剰に濡れ性が付与さえ、重剥離を引き起こす恐れがなく好ましい。 The content of Si atoms contained in the Q unit is 0.05 to 60 mol%, preferably 0.1 to 55 mol%, based on the total Si atoms in the silicone having the Q unit represented by SiO 4/2 . , more preferably 1.0 to 50 mol%. When the content of Si atoms contained in the Q unit is 0.05 mol % or more, a structure in which the siloxane bonds are sufficiently extended in three dimensions is obtained, and the effect of increasing the crosslinking density is exhibited, which is preferable. If it is 60 mol% or less, even excessive wettability will not cause heavy peeling, which is preferable.
 Q単位を有するシリコーンは、室温で固体であることが好ましい。Q単位を有するシリコーンが固体であることは、分子内のQ単位構造が連続した結合として多く存在していることを意味しており、分子骨格が剛直でガラスに近い物性を示すシリコーンである。このような分子骨格が剛直なシリコーンを含有する離型層とすることで離型層の弾性率が高まり、セラミックグリーンシートなどの被剥離体を剥離する際に離型層が変形しづらく、軽剥離性を示す離型層となるため好ましい。 The silicone having Q units is preferably solid at room temperature. The fact that silicone containing Q units is a solid means that many Q unit structures exist as continuous bonds within the molecule, and the silicone has a rigid molecular skeleton and exhibits physical properties similar to glass. By making the release layer contain silicone with such a rigid molecular skeleton, the elastic modulus of the release layer increases, making it difficult to deform when peeling objects such as ceramic green sheets, and making it lightweight. This is preferable because it forms a release layer that exhibits releasability.
 (b)ハイドロジェン基を有する第2のシリコーンエマルション中に含まれるシリコーンの離型層中の含有量は、(a)アルケニル基を有する第1のシリコーンエマルション中に含まれるシリコーンと(b)ハイドロジェン基を有する第2のシリコーンエマルション中に含まれるシリコーンと(c)Q単位を有するシリコーンを含有する水分散体中に含まれるシリコーンの合計量を100質量部とした時に、5質量部~50質量部であることが好ましい。5質量部以上であると、架橋反応点が十分に進行し、緻密な架橋構造が形成され易くなり、剥離性に優れるため好ましい。50質量部以下であると、離型層中のハイドロジェン基が残存しにくくなり、離型層表面の活性が上がりにくく剥離性が良好に維持されるため好ましい。
 一態様において、組成物に含まれる、(b)ハイドロジェン基を有する第2のシリコーンエマルション中に含まれるシリコーンの含有量は、(a)アルケニル基を有する第1のシリコーンエマルション中に含まれるシリコーンの含有量よりも少ない。
(b) The content of the silicone contained in the second silicone emulsion having a hydrogen group in the release layer is the same as that of (a) the silicone contained in the first silicone emulsion having an alkenyl group and (b) the silicone contained in the second silicone emulsion having a hydrogen group. When the total amount of the silicone contained in the second silicone emulsion having a Gen group and the silicone contained in the aqueous dispersion containing the silicone having a (c) Q unit is 100 parts by mass, 5 parts by mass to 50 parts by mass. Parts by mass are preferred. If the amount is 5 parts by mass or more, the crosslinking reaction points will proceed sufficiently, a dense crosslinked structure will be easily formed, and the peelability will be excellent, which is preferable. When the amount is 50 parts by mass or less, hydrogen groups in the release layer are less likely to remain, the surface activity of the release layer is less likely to increase, and releasability is maintained favorably, which is preferable.
In one embodiment, the content of silicone contained in (b) the second silicone emulsion having a hydrogen group contained in the composition is equal to the amount of silicone contained in the first silicone emulsion having (a) an alkenyl group. less than the content of.
 本発明の水性コーティング組成物には(d)界面活性剤を少なくとも含有することが好ましい。界面活性剤を含有することで、基材フィルムであるポリエステルフィルム上にコーティング組成物を塗布する時の塗工性に優れ、ハジキなどのコート欠陥が生じる恐れが無く好ましい。また、コーティング組成物中に存在するエマルションの安定性を損なうことがなく、離型層にコーティング組成物の凝集物やゲル化物が混入する恐れがなく、離型層の凹凸や塗布ムラの発生を抑えることができ好ましい。 The aqueous coating composition of the present invention preferably contains at least (d) a surfactant. Containing a surfactant is preferable because it provides excellent coatability when the coating composition is applied onto a polyester film as a base film, and there is no fear that coating defects such as repellency will occur. In addition, the stability of the emulsion present in the coating composition is not impaired, and there is no risk of contamination of aggregates or gelled substances of the coating composition into the release layer, which prevents unevenness of the release layer and uneven coating. This is preferable because it can be suppressed.
 界面活性剤としては、特に制限することなく公知の材料を用いることができるが、基材フィルムを延伸、結晶化する加熱工程において界面活性剤の揮発量が抑えられ、離型層に残存する材料を用いることが好ましい。離型層中に界面活性剤が残存することで、有機溶媒が用いられているセラミックスラリーなどに対する濡れ性が高まるため好ましい。 As the surfactant, known materials can be used without particular restrictions, but materials that can suppress the amount of surfactant volatilization during the heating process of stretching and crystallizing the base film and remain in the release layer. It is preferable to use It is preferable that the surfactant remains in the release layer because it increases the wettability with respect to ceramic slurry or the like in which an organic solvent is used.
 界面活性剤としては、カチオン系、アニオン系、ノニオン系のものをそれぞれ好適に用いることができるが、エマルションの安定性を高める観点からノニオン系のものを用いることが好ましい。例えば、高級アルコール、ないし高級脂肪酸のアルキレンオキシド付加体、高級脂肪酸とアルコールとのアルキレンオキシド付加体のエステル体、アルカノールアミドのアルキレンオキシド付加体、ソルビタンエステルのアルキレンオキシド付加体、高級脂肪酸グリセリドのアルキレンオキシド付加体などのアルキレンオキシド付加型から選ばれる少なくとも1 種が挙げられる。用いる界面活性剤としては、HLB値が6~18の範囲であることが好ましい。ここで、HLB値はGriffinの計算式により算出される値である。 As the surfactant, cationic, anionic, and nonionic surfactants can be suitably used, but it is preferable to use nonionic surfactants from the viewpoint of improving the stability of the emulsion. For example, alkylene oxide adducts of higher alcohols or higher fatty acids, esters of alkylene oxide adducts of higher fatty acids and alcohols, alkylene oxide adducts of alkanolamides, alkylene oxide adducts of sorbitan esters, and alkylene oxides of higher fatty acid glycerides. At least one type selected from alkylene oxide addition types such as adducts can be mentioned. The surfactant used preferably has an HLB value in the range of 6 to 18. Here, the HLB value is a value calculated using the Griffin calculation formula.
 アルキレンオキシドとして、エチレンオキシド、プロピレンオキシド、ブチレンオキシドが挙げられ、これらのうちの1 種を用いても複数用いてもよい。複数用いる場合、ブロック、ランダムの付加形式を問わないが、HLB値が8~18の範囲であることが好ましく、10~15の範囲であることがさらに好ましい。これらのノニオン系乳化剤の中でも、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル等が好ましく挙げられる。HLB値がかかる範囲を外れるノニオン系乳化剤をシリコーン水分散体の乳化剤として用いると、乳化分散力や水分散体の安定性が低下することがある。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide, and one or more of these may be used. When a plurality of them are used, the HLB value is preferably in the range of 8 to 18, more preferably in the range of 10 to 15, although it does not matter whether the addition format is block or random. Among these nonionic emulsifiers, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, and the like are preferably mentioned. If a nonionic emulsifier with an HLB value outside this range is used as an emulsifier for a silicone aqueous dispersion, the emulsifying dispersion power and stability of the aqueous dispersion may decrease.
 本発明に用いるアルキレンオキシドの例としては、例えば下記式(IV)に示す構造が例示される。
         H2m+1Cm-O-(CH2-CH2-O)n-H    (IV)
(式IV中、mおよびnは1~30の整数。mの数はアルキル基鎖長を示し、n数は酸化エチレン(エチレンオキサイド)の付加モル数を示す。)
 mの数が多く、アルキル基鎖長が長いほど親油性に優れ、水性シリコーンエマルションの安定性に優れるほど好ましい。また、nの数が多くエチレンオキサイドの数が多いほど親水性にも優れ、水性シリコーンエマルションの安定性が高まるため好ましい。mの数とnの数は1~30の範囲の任意の値を取ることができるが、大きいほど分子量が高くなり、コーティング組成物の加熱硬化工程並びに基材フィルムの延伸および結晶化工程において界面活性剤が揮発することなく離型層に留まるため、濡れ性に優れた離型フィルムが得られるため好ましい。
As an example of the alkylene oxide used in the present invention, the structure shown in the following formula (IV) is exemplified.
H 2m+1 C m -O-(CH 2 -CH 2 -O) n -H (IV)
(In formula IV, m and n are integers from 1 to 30. The number m indicates the alkyl group chain length, and the number n indicates the number of moles of ethylene oxide added.)
The larger the number of m and the longer the alkyl group chain length, the better the lipophilicity and the better the stability of the aqueous silicone emulsion. Furthermore, the larger the number of n and the larger the number of ethylene oxides, the better the hydrophilicity and the higher the stability of the aqueous silicone emulsion, which is preferable. The number of m and the number of n can take any value in the range of 1 to 30, but the larger the molecular weight, the higher the molecular weight, and the interface between the heat curing process of the coating composition and the stretching and crystallization process of the base film. This is preferable because the activator remains in the release layer without volatilizing, resulting in a release film with excellent wettability.
 界面活性剤を離型層に残存させるためには、界面活性剤の数平均分子量を200~2000の範囲であることが好ましく、250~1000の範囲であることがより好ましい。一態様において、界面活性剤の数平均分子量は、380以上800以下である。
数平均分子量が200以上であると、コーティング組成物の加熱硬化工程並びに基材フィルムの延伸および結晶化工程において界面活性剤が揮発することなく離型層に留まるため、濡れ性に優れた離型フィルムが得られるため好ましい。数平均分子量が2000以下であると、エマルションの安定性やコーティング組成物の塗工性を悪化させることが無く好ましい。また、離型層の熱硬化過程で界面活性剤が離型層表面に偏析するため、濡れ性が向上し好ましい。
In order for the surfactant to remain in the release layer, the number average molecular weight of the surfactant is preferably in the range of 200 to 2,000, more preferably in the range of 250 to 1,000. In one embodiment, the number average molecular weight of the surfactant is 380 or more and 800 or less.
When the number average molecular weight is 200 or more, the surfactant remains in the release layer without being volatilized during the heating curing process of the coating composition and the stretching and crystallization process of the base film, resulting in a mold release with excellent wettability. This is preferred because a film can be obtained. It is preferable that the number average molecular weight is 2000 or less because it does not deteriorate the stability of the emulsion or the coatability of the coating composition. Moreover, since the surfactant segregates on the surface of the mold release layer during the thermosetting process of the mold release layer, wettability is improved, which is preferable.
 界面活性剤の沸点は200℃以上であることが好ましく、230℃以上であることがより好ましく、250℃以上であることが更に好ましい。界面活性剤の沸点が200℃以上であれば、コーティング組成物の加熱硬化工程並びに基材フィルムの延伸および結晶化工程において界面活性剤が揮発することなく離型層に留まるため、濡れ性に優れた離型層となり好ましい。例えば、界面活性剤の沸点は200℃以上350℃以下であり、200℃以上320℃以下であってもよい。界面活性剤の沸点が上記範囲内であることにより、離型層を乾燥、硬化する過程で界面活性剤が急激に揮発することを抑制でき、水滑落角から算出する付着エネルギーが低くなることを抑制できる。また、濡れ性の悪化についても抑制できる。 The boiling point of the surfactant is preferably 200°C or higher, more preferably 230°C or higher, and even more preferably 250°C or higher. If the boiling point of the surfactant is 200°C or higher, the surfactant will remain in the release layer without volatilizing during the heat curing process of the coating composition and the stretching and crystallization process of the base film, resulting in excellent wettability. It is preferable because it becomes a release layer. For example, the boiling point of the surfactant is 200°C or more and 350°C or less, and may be 200°C or more and 320°C or less. By having the boiling point of the surfactant within the above range, rapid volatilization of the surfactant during the drying and curing process of the release layer can be suppressed, and the adhesion energy calculated from the sliding angle can be lowered. It can be suppressed. Moreover, deterioration of wettability can also be suppressed.
 コーティング組成物中に含まれる界面活性剤の含有量としては、コーティング組成物における樹脂固形分の合計量に対し、0.1質量部~20質量部であることが好ましく、0.15質量部~15質量部であることがより好ましい。0.1質量部以上であると、ポリエステルフィルム上に塗布する時の塗工性に優れ、かつ離型層中に界面活性剤が残存し、濡れ性に優れるため好ましい。20質量部以下であると、残存する界面活性剤が多すぎて重剥離化を引き起こす恐れがなく好ましい。
 本明細書において、コーティング組成物における樹脂固形分の合計量は、(a)アルケニル基含有シリコーン、(b) ハイドロジェン基含有シリコーン、および必要に応じて添加される(C)Q単位含有シリコーンの固形分の合計量を意味する。
The content of the surfactant contained in the coating composition is preferably 0.1 parts by mass to 20 parts by mass, and preferably 0.15 parts by mass to 15 parts by mass, based on the total amount of resin solids in the coating composition. It is more preferable that there be. A content of 0.1 part by mass or more is preferable because it provides excellent coating properties when applied onto a polyester film, and the surfactant remains in the release layer, resulting in excellent wettability. When the amount is 20 parts by mass or less, there is no possibility that too much residual surfactant will cause heavy exfoliation, which is preferable.
In the present specification, the total amount of resin solids in the coating composition includes (a) alkenyl group-containing silicone, (b) hydrogen group-containing silicone, and (C) Q unit-containing silicone added as necessary. Means the total amount of solids.
 本発明において、水性コーティング剤の表面張力が10~40mN/mであることが好ましく、10~35mN/mであることがより好ましい。10mN/m以上であると、基材フィルム上に塗布した時にレベリングし、均一でスジなどの発生がないコート外観となるため好ましい。40mN/m以下であると、基材フィルムの上でコーティング剤が濡れ広がりやすく、エマルションの安定性も高まるため好ましい。また、コーティング剤に含まれる界面活性剤の量が十分量となり、加熱硬化後に離型層に残存する界面活性剤がセラミックスラリーなどの濡れ性を高めることができるため好ましい。 In the present invention, the surface tension of the aqueous coating agent is preferably 10 to 40 mN/m, more preferably 10 to 35 mN/m. When it is 10 mN/m or more, it is preferable because it levels when applied onto a base film, resulting in a uniform coating appearance with no streaks or the like. When it is 40 mN/m or less, the coating agent spreads easily on the base film, and the stability of the emulsion increases, which is preferable. Further, the amount of surfactant contained in the coating agent is a sufficient amount, and the surfactant remaining in the release layer after heat curing can improve the wettability of ceramic slurry, etc., which is preferable.
(白金系触媒)
 本発明の水性コーティングには、アルケニル基を有するシリコーンとハイドロジェン基を有するシリコーンを付加反応させるために白金系触媒を用いることが必要である。白金系触媒としては公知のものが使用でき、例えば塩化白金や塩化白金酸が挙げられる。該白金系触媒はシリコーンへの分散性を考慮して1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン白金(0)錯体(Karstedt触媒)を用いてもよく、シリコーンを乳化させる際に同時に分散させることで均一分散性を確保することができる。
(Platinum-based catalyst)
The aqueous coating of the present invention requires the use of a platinum-based catalyst in order to cause an addition reaction between the silicone having an alkenyl group and the silicone having a hydrogen group. Known platinum catalysts can be used, such as platinum chloride and chloroplatinic acid. The platinum-based catalyst may be a 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum(0) complex (Karstedt catalyst) in consideration of its dispersibility in silicone. Uniform dispersibility can be ensured by dispersing at the same time.
 白金系触媒量は離型層を形成する(a)アルケニル基を有する第1のシリコーンエマルションに含まれるシリコーン、(b)ハイドロジェン基を有する第2のシリコーンエマルションに含まれるシリコーン、(c)SiO4/2で表されるQ単位を有するシリコーンの水分散体に含まれるシリコーンの合計量に対し、白金元素の重量が10~800ppmの範囲で含まれていることが好ましい。この範囲とすることで、シリコーンの硬化を十分に行うことができ、かつ凝集物の発生を抑制することができ、平滑性に優れた離型フィルムを得ることができる。白金元素の重量比が800ppm以下であると、アルケニル基とハイドロジェン基との付加反応が加速されてシリコーン凝集物が発生する恐れが無く好ましい。白金系触媒量は、600ppm以下であることがより好ましく、500ppm以下が更に好ましく、300ppm以下であることがより好適である。また、10ppm以上であると、シリコーン付加反応が効率的に進行して、離型層の硬化が十分となり、軽剥離性を示すため好ましい。 The amount of the platinum-based catalyst forms the release layer (a) silicone contained in the first silicone emulsion having an alkenyl group, (b) silicone contained in the second silicone emulsion having a hydrogen group, (c) SiO It is preferable that the weight of elemental platinum is contained in the range of 10 to 800 ppm based on the total amount of silicone contained in the aqueous dispersion of silicone having Q units expressed by 4/2 . By setting it as this range, the silicone can be sufficiently cured, the generation of aggregates can be suppressed, and a release film with excellent smoothness can be obtained. It is preferable that the weight ratio of the platinum element is 800 ppm or less because there is no possibility that the addition reaction between the alkenyl group and the hydrogen group will be accelerated and silicone aggregates will be generated. The amount of platinum-based catalyst is more preferably 600 ppm or less, even more preferably 500 ppm or less, and even more preferably 300 ppm or less. Further, when it is 10 ppm or more, the silicone addition reaction proceeds efficiently, the release layer is sufficiently cured, and easy releasability is exhibited, which is preferable.
(反応抑制剤)
 本発明の水性コーティング組成物には、室温における白金系触媒の活性を抑制するために反応抑制剤が含有されていることが好ましい。反応抑制剤の含有量は水性コーティング組成物の全重量に対して、5~1000ppmであることが好ましく、10~700ppmであることがより好ましく、20~500ppmであることが好ましい。5ppm以上であれば、白金系触媒の活性を抑制する効果が十分となり好ましい。1000ppm以下であると、熱処理時に揮発する反応抑制剤によってオーブン内部が汚染する恐れがなく好ましい。
(reaction inhibitor)
The aqueous coating composition of the present invention preferably contains a reaction inhibitor in order to suppress the activity of the platinum-based catalyst at room temperature. The content of the reaction inhibitor is preferably 5 to 1000 ppm, more preferably 10 to 700 ppm, and preferably 20 to 500 ppm, based on the total weight of the aqueous coating composition. If it is 5 ppm or more, the effect of suppressing the activity of the platinum catalyst will be sufficient, which is preferable. If it is 1000 ppm or less, there is no risk that the inside of the oven will be contaminated by the reaction inhibitor that evaporates during heat treatment, which is preferable.
 本発明の水性コーティング組成物には、本発明の課題を損なわない範囲内でさらに密着性付与剤、着色剤、紫外線吸収剤、粒子などを添加してもよい。 The aqueous coating composition of the present invention may further contain adhesion imparting agents, colorants, ultraviolet absorbers, particles, etc. within a range that does not impair the objectives of the present invention.
(その他離型層の特徴)
 本発明における離型層の膜厚は、乾燥後の厚みとして0.001~0.2μmであることが好ましく、0.005~0.1μmであることがより好ましい。0.001μm以上であると、剥離性に優れた離型層が得られるため好ましい。0.2μm以下であると、水性コーティング組成物の離型層成分の固形分濃度や、塗布量を増やす必要がなく、基材フィルム上に塗布する時の塗工性に優れるため好ましい。
(Other features of release layer)
The thickness of the release layer in the present invention after drying is preferably 0.001 to 0.2 μm, more preferably 0.005 to 0.1 μm. A thickness of 0.001 μm or more is preferable because a release layer with excellent releasability can be obtained. If it is 0.2 μm or less, there is no need to increase the solid content concentration of the release layer component of the aqueous coating composition or the coating amount, and the coatability when coated onto the base film is excellent, which is preferable.
 本発明の離型フィルムは、トルエン浸漬処理後のテープ剥離力が2000mN/50mm以下であることが好ましく、1500mN/50mm以下であることがより好ましく、1200mN/50mm以下であることが更に好ましい。例えば、1000 mN/50mm以下であってもよい。本発明におけるトルエン浸漬処理とは、離型フィルムを15分間トルエンに静置して浸漬した後、離型フィルムを3時間風乾して離型フィルムに付着したトルエンを乾燥させる処理のことである。トルエン浸漬処理後の離型フィルムのテープ剥離力を評価することで、樹脂シート、例えばセラミックグリーンシートを成型する際に用いる有機溶媒に対する耐溶剤性を含めた剥離力を評価することができる。2000mN/50mm以下であれば、耐溶剤性に優れ、剥離性に優れた離型フィルムとなり好ましい。テープ剥離力は低い値であるほど剥離性に優れるが、現実的には1mN/50mm以上であることが好ましい。1mN/50mmであれば、成型した樹脂シートやセラミックグリーンシートが搬送中に浮いて不具合が生じる恐れが無く好ましい。なお、本発明におけるテープ剥離力とは、離型層の表面上に、例えば、アクリル系粘着テープ、一例として日東電工製No.31Bテープを貼合し、5kg荷重で圧着して得たテープ付き離型フィルムを750gのガラス板で挟み、70℃環境下20時間保持した後、テープを0.3m/minの剥離速度でT型剥離した値を用いることができる。 The release film of the present invention preferably has a tape peeling force of 2000 mN/50 mm or less, more preferably 1500 mN/50 mm or less, and even more preferably 1200 mN/50 mm or less after toluene immersion treatment. For example, it may be 1000 mN/50mm or less. The toluene immersion treatment in the present invention refers to a process in which the release film is left to stand and immersed in toluene for 15 minutes, and then the release film is air-dried for 3 hours to dry the toluene attached to the release film. By evaluating the tape peeling force of the release film after toluene immersion treatment, it is possible to evaluate the peeling force including the solvent resistance to the organic solvent used when molding a resin sheet, for example, a ceramic green sheet. If it is 2000 mN/50 mm or less, it becomes a release film with excellent solvent resistance and peelability, which is preferable. The lower the tape peeling force is, the better the peelability is, but realistically it is preferably 1 mN/50 mm or more. If it is 1 mN/50 mm, it is preferable because there is no risk that the molded resin sheet or ceramic green sheet will float during transportation and cause problems. Note that the tape peeling force in the present invention refers to a tape with a tape obtained by laminating, for example, an acrylic adhesive tape, such as Nitto Denko No. 31B tape, on the surface of the release layer and pressing it with a 5 kg load. The value obtained by sandwiching the release film between 750 g glass plates, holding the film in a 70°C environment for 20 hours, and then T-peeling the tape at a peeling speed of 0.3 m/min can be used.
 本発明の離型フィルムは離型層上に水摘を作成して測定した滑落角から算出する水付着エネルギーが6.0mJ/m2以上であることが好ましく、7.0mJ/m2以上であることがより好ましく、8.0mJ/m2以上であることが更に好ましく、8.0mJ/m2を超えてもよく、水滴が滑落せずに付着エネルギーが算出できないことが最も好ましい。
水付着エネルギーが6.0mJ/m2よりも大きいと、薄層の樹脂シートやセラミックグリーンシートなどを成型する時にハジキが発生しづらく、欠陥なく均一な厚みのシートが得られるため好ましい。
 水滴が滑落しないと付着エネルギーが大きすぎて算出できないほど濡れ性がよいと考えられるため、水滴が滑落しない離型フィルムでも好適に用いることができる。
なお、本明細書において水滴が滑落しない場合は、離型フィルムに水滴を付着させ、離型フィルムを90°まで傾斜させた状態で直ちに水滴が滑落しない状態をいう。
The release film of the present invention preferably has a water adhesion energy of 6.0 mJ/m 2 or more, and preferably 7.0 mJ/m 2 or more, calculated from the sliding angle measured by creating a water droplet on the release layer. is more preferable, more preferably 8.0 mJ/m 2 or more, may exceed 8.0 mJ/m 2 , and most preferably the adhesion energy cannot be calculated without water droplets sliding down.
When the water adhesion energy is larger than 6.0 mJ/m 2 , it is preferable because repelling is difficult to occur when forming a thin resin sheet, ceramic green sheet, etc., and a sheet with a uniform thickness without defects can be obtained.
Since it is considered that the wettability is so good that the adhesion energy is too large to be calculated if water droplets do not slide off, a release film that does not allow water droplets to slide off can also be suitably used.
In this specification, when water droplets do not slide down, it refers to a state in which water droplets do not immediately slide off when water droplets are attached to a release film and the release film is tilted up to 90°.
 水付着エネルギーは、10mJ/m2以下であり、例えば、9.5mJ/m2以下であり、9.0mJ/m2以下であってもよい。水付着エネルギーが上記範囲内であることにより、薄層の樹脂シートやセラミックグリーンシートなどを成型する時にハジキが発生しづらく、欠陥なく均一な厚みのシートが得られるため好ましい。
 例えば、水付着エネルギーは6.0mJ/m2以上10mJ/m2以下であり、6.0mJ/m2以上9.0mJ/m2以下であってもよい。
The water adhesion energy is 10 mJ/m 2 or less, for example, 9.5 mJ/m 2 or less, and may be 9.0 mJ/m 2 or less. When the water adhesion energy is within the above range, it is preferable because repelling is less likely to occur when forming a thin resin sheet, ceramic green sheet, etc., and a sheet with a uniform thickness without defects can be obtained.
For example, the water adhesion energy is 6.0 mJ/m 2 or more and 10 mJ/m 2 or less, and may be 6.0 mJ/m 2 or more and 9.0 mJ/m 2 or less.
(離型フィルムの製造方法)
 本発明は、別の実施態様において、以下の工程を有する、離型フィルムの製造方法を提供する。
 ポリエステルフィルムの少なくとも一方の面に水性コーティング組成物を塗布する塗布工程であって、前記水性コーティング組成物がコーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、好ましくは、有機溶媒を実質的に含有せず、水と、水溶性成分および/または水分散エマルションを含有し、
前記水性コーティング組成物の表面張力が40mN/m以下である塗布工程;
前記水性コーティング組成物を塗布した前記ポリエステルフィルムを加熱する加熱工程。
(Method for manufacturing release film)
In another embodiment, the present invention provides a method for producing a release film, which includes the following steps.
A coating step of applying an aqueous coating composition to at least one surface of a polyester film, the aqueous coating composition containing an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the coating composition, Preferably, it does not substantially contain an organic solvent and contains water, a water-soluble component and/or a water-dispersed emulsion,
a coating step in which the surface tension of the aqueous coating composition is 40 mN/m or less;
a heating step of heating the polyester film coated with the aqueous coating composition;
 本発明の製造方法であれば、水性コーティング組成物の表面張力を40mN/m以下とすることで、ポリエステルフィルム上に塗布する時に、ハジキやスジ、塗布ムラなどのコート欠陥をなく、均一かつ欠陥のない離型フィルムを得ることができる。また、表面張力を40mN/m以下とすることで、水性コーティング組成物中のシリコーンエマルションの安定性が高まり、凝集物やゲル化物が離型層に混入し、離型フィルムの平面性が悪化する恐れが無く好ましい。表面張力は35mN/m以下であることがより好ましく、33mN/m以下であることが更に好ましい。なお、本発明における表面張力はペンダントドロップ法で測定した静的表面張力の値を示す。 With the manufacturing method of the present invention, by setting the surface tension of the aqueous coating composition to 40 mN/m or less, when coating it on a polyester film, there will be no coating defects such as repelling, streaks, or uneven coating, and the coating will be uniform and defective. It is possible to obtain a release film free of . In addition, by setting the surface tension to 40 mN/m or less, the stability of the silicone emulsion in the aqueous coating composition is increased, and aggregates and gelled substances are mixed into the release layer, which deteriorates the flatness of the release film. There is no fear and it is desirable. The surface tension is more preferably 35 mN/m or less, even more preferably 33 mN/m or less. In addition, the surface tension in this invention shows the value of the static surface tension measured by the pendant drop method.
 水性コーティング組成物の表面張力は、10mN/m以上であってよく、15mN/m以上であってもよい。表面張力がこのような条件を示すことで、基材フィルム上に塗布した時にレベリングし、均一でスジなどの発生がないコート外観となるため好ましい。
 例えば、水性コーティング組成物の表面張力は10mN/m以上40mN/m以下であり、10mN/m以上33mN/m以下であってよく、15mN/m以上33mN/m以下であってもよい。
The surface tension of the aqueous coating composition may be greater than or equal to 10 mN/m, and may be greater than or equal to 15 mN/m. When the surface tension exhibits such conditions, it is preferable because it levels when coated onto a base film, resulting in a uniform coating appearance without streaks or the like.
For example, the surface tension of the aqueous coating composition may be 10 mN/m or more and 40 mN/m or less, 10 mN/m or more and 33 mN/m or less, and 15 mN/m or more and 33 mN/m or less.
 本発明の離型フィルムは、結晶配向が完了する前の基材フィルムに、水性コーティング組成物を塗布し、少なくとも一方向に延伸した後、熱処理をして、基材フィルムの結晶配向を完了させることによって形成され得る。 In the release film of the present invention, an aqueous coating composition is applied to a base film before crystal orientation is completed, stretched in at least one direction, and then heat treated to complete crystal orientation of the base film. It can be formed by
 本発明の製造方法における乾燥工程は、更に下記工程を有していることが好ましい。ポリエステルフィルムの一方の面に塗布した水性コーティング組成物を乾燥する乾燥工程;
ポリエステルフィルムの長手方向に対して垂直な方向に延伸する延伸工程;
ポリエステルフィルムに熱処理をして、結晶配向を完了させる熱固定工程。
It is preferable that the drying step in the production method of the present invention further includes the following steps. a drying step of drying the aqueous coating composition applied to one side of the polyester film;
A stretching process in which the polyester film is stretched in a direction perpendicular to its longitudinal direction;
A heat setting process in which polyester film is heat treated to complete crystal orientation.
 例えば、水性コーティング組成物をポリエステルフィルムの一方の表面に塗布し、次いで、この塗布フィルムを乾燥させる乾燥工程において、乾燥温度は60℃以上140℃以下であってよく、例えば、60℃以上130℃以下であり、60℃以上125℃以下であってもよい。
 60℃以上であることで組成物の乾燥が不十分となり、延伸工程においてポリエステルフィルムを延伸するときにフィルムの破断が発生する恐れが無く好ましい。140℃以下であることで組成物の急激な乾燥を防ぐことができ、エマルションの凝集やゲル化を抑制できるため、塗布均一性に優れ、凝集物由来の粗大突起の低減と、ハジキなどのコート欠陥の発生をバランスよく抑制できる。
 更に、本発明においては、有機溶媒を主成分に含むコーティング組成物と比べて、有機溶剤の量を大きく低減、または実質的に含まないことを可能にできる。この結果、有機溶媒への接触や蒸気の吸引による人体への悪影響、および有機溶媒の蒸気が大気中に放出されることによる地球環境への負荷を大きく低減できる。
 また、有機溶媒の乾燥設備を防爆設備とする必要もなく、従来の製造装置と比べ、運用する際にエネルギー消費量を低減できる。このため、CO2排出量も低減でき、環境負荷を減らすことが出来る。
For example, in a drying step in which an aqueous coating composition is applied to one surface of a polyester film and then the applied film is dried, the drying temperature may be 60°C or higher and 140°C or lower, for example, 60°C or higher and 130°C or lower, or 60°C or higher and 125°C or lower.
A temperature of 60° C. or higher is preferable because the composition is not dried sufficiently, and there is no risk of the film breaking when the polyester film is stretched in the stretching step.A temperature of 140° C. or lower can prevent the composition from drying rapidly and can suppress the emulsion from coagulating or gelling, resulting in excellent coating uniformity, a reduction in coarse protrusions derived from coagulation, and a well-balanced suppression of the occurrence of coating defects such as repelling.
Furthermore, in the present invention, the amount of organic solvent can be significantly reduced or substantially eliminated, compared with coating compositions containing an organic solvent as a main component, which significantly reduces the adverse effects on the human body caused by contact with the organic solvent or inhalation of its vapor, and the burden on the global environment caused by the release of the vapor of the organic solvent into the atmosphere.
In addition, there is no need to use explosion-proof equipment for drying organic solvents, and energy consumption during operation is reduced compared to conventional manufacturing equipment, which reduces CO2 emissions and the environmental impact.
 塗布した水性コーティング組成物を乾燥する乾燥工程の後に延伸工程を有することで、ポリエステルフィルムの延伸工程におけるフィルム温度が十分となり、延伸工程における破断や離型フィルムの厚みムラが生じる恐れが無く好ましい。延伸工程は、水性コーティング組成物中の水を乾燥させた後、基材であるポリエステルフィルムをガラス転移温度以上まで加熱することが好ましく、延伸工程における延伸温度は、例えば60℃以上160℃以下であり、60℃以上150℃以下であることが好ましく、70℃以上、150℃以下であることが、延伸性の観点から好ましい。
 一態様において、延伸工程は、乾燥工程よりも高温で行われる。
By having a stretching step after the drying step of drying the applied aqueous coating composition, the film temperature in the stretching step of the polyester film is sufficient, and there is no risk of breakage or uneven thickness of the release film in the stretching step, which is preferable. In the stretching step, after drying the water in the aqueous coating composition, it is preferable to heat the polyester film as the base material to a temperature equal to or higher than the glass transition temperature. The temperature is preferably 60°C or more and 150°C or less, and preferably 70°C or more and 150°C or less from the viewpoint of stretchability.
In one embodiment, the stretching step is performed at a higher temperature than the drying step.
 本発明の製造方法において、離型フィルムの寸法安定性や機械特性を付与するために延伸後のポリエステルフィルムに熱処理をして結晶配向を完了させる熱固定工程を有することが好ましい。熱固定工程の温度は、ポリエステルフィルムの結晶化や、離型層の硬化を進行させるために温度が高いほど好ましいが、ポリエステルの融点以下の温度であることが好ましい。具体的には、180℃以上、250℃以下であることが好ましく、200℃以上、240℃以下であることがより好ましい。180℃以上であると、離型層の硬化が十分進行し、かつポリエステルフィルムの寸法安定性や機械特性が十分となるため好ましい。250℃以下であると、ポリエステルフィルムの結晶が融解することなく、平面性に優れた離型フィルムが得られるため好ましい。
 例えば、このような熱固定工程を加熱工程と称する場合も有る。加熱工程は複数の工程を経てもよい。また、加熱工程の最大温度は、180℃以上、250℃以下であることが好ましい。
加熱工程の最大温度はまた、上記数値範囲であってもよい。
In the production method of the present invention, it is preferable to include a heat setting step in which the stretched polyester film is heat-treated to complete crystal orientation in order to impart dimensional stability and mechanical properties to the release film. The temperature in the heat setting step is preferably as high as possible in order to promote crystallization of the polyester film and curing of the release layer, but it is preferably a temperature equal to or lower than the melting point of the polyester. Specifically, the temperature is preferably 180°C or higher and 250°C or lower, more preferably 200°C or higher and 240°C or lower. A temperature of 180° C. or higher is preferable because curing of the release layer will proceed sufficiently and the dimensional stability and mechanical properties of the polyester film will be sufficient. A temperature of 250° C. or lower is preferable because the crystals of the polyester film do not melt and a release film with excellent flatness can be obtained.
For example, such a heat fixing process is sometimes referred to as a heating process. The heating step may include multiple steps. Further, the maximum temperature in the heating step is preferably 180°C or more and 250°C or less.
The maximum temperature of the heating step may also be within the above numerical range.
 塗布工程における、水性コーティング組成物の塗液温度は0℃以上、40℃以下であることが好ましく、5℃以上、30℃以下であることがより好ましい。0℃以上であると、水性コーティング組成物が固化して、エマルションが破壊される恐れが無く好ましい。40℃以下であると、熱により水性コーティング組成物中のエマルションが破壊され凝集物やゲル化物が混入する恐れがなく、離型層の凹凸や塗布ムラの発生を抑えることができ好ましい。 In the coating step, the coating solution temperature of the aqueous coating composition is preferably 0°C or higher and 40°C or lower, more preferably 5°C or higher and 30°C or lower. A temperature of 0° C. or higher is preferable because there is no fear that the aqueous coating composition will solidify and the emulsion will be destroyed. When the temperature is 40° C. or lower, there is no risk that the emulsion in the aqueous coating composition will be broken by heat and contamination of aggregates or gelled materials, and the occurrence of irregularities and coating unevenness in the release layer can be suppressed, which is preferable.
 コーティング組成物中に含まれる(a)、(b)、(c)、(d)の含有量の合計は、コーティング組成物の全重量に対して固形分として、0.1~30質量%であることが好ましく、0.5~20質量%であることがより好ましく、1~15質量%であることがさらに好ましい。0.1質量%以上であると、剥離性を発現させるのに十分な離型層の膜厚となるため好ましい。20質量%以下であると、離型層が厚くなり硬化熱量が不十分になる恐れがなくなり、かつ基材フィルム延伸時の造膜性にも優れるため好ましい。 The total content of (a), (b), (c), and (d) contained in the coating composition shall be 0.1 to 30% by mass as solid content based on the total weight of the coating composition. The amount is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight. It is preferable that the amount is 0.1% by mass or more because the thickness of the release layer is sufficient to exhibit releasability. When the amount is 20% by mass or less, there is no fear that the release layer will become thick and the amount of curing heat will be insufficient, and the film forming property during stretching of the base film is also excellent, which is preferable.
 水性コーティング組成物の塗布量は0.1g/m2以上10g/m2以下であることが好ましい。塗布量が10g/m2以下であれば、例えばグラビア塗工方式で塗布した際に、フィルムとグラビアロール間のキス部で液乱れが生じづらくなり、平滑性に優れた離型層が得られるため好ましい。塗布量が0.1g/m2以上であると、ハジキなどによる塗布抜けによって離型層の均一性が損なわれる恐れが無く好ましい。 The coating amount of the aqueous coating composition is preferably 0.1 g/m 2 or more and 10 g/m 2 or less. If the coating amount is 10 g/m 2 or less, liquid turbulence will be less likely to occur at the kissing area between the film and the gravure roll when applied using the gravure coating method, and a release layer with excellent smoothness will be obtained. Therefore, it is preferable. It is preferable that the coating amount is 0.1 g/m 2 or more, since there is no fear that the uniformity of the release layer will be impaired due to coating failure due to repelling or the like.
 水性コーティング組成物のpHは1~7であることが好ましく、2~6であることが好ましい。水性コーティング組成物のpHが1以上であると、塗布工程におけるタンクや配管などが腐食される恐れが無く、人体への悪影響の恐れもなく好ましい。pHが7以下であるとコーティング組成物中のエマルションが安定となり、塗工性に優れるため好ましい。 The pH of the aqueous coating composition is preferably 1 to 7, more preferably 2 to 6. When the pH of the aqueous coating composition is 1 or more, there is no risk of corrosion of tanks, piping, etc. during the coating process, and there is no risk of adverse effects on the human body, which is preferable. It is preferable that the pH is 7 or less because the emulsion in the coating composition will be stable and the coating composition will be excellent.
 上記塗液の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。 Any known coating method can be applied to apply the above coating liquid, such as roll coating methods such as gravure coating method and reverse coating method, bar coating method such as wire bar coating method, die coating method, spray coating method, and air knife coating method. Conventionally known methods such as a coating method can be used.
 一態様において、本発明の製造方法は、樹脂シートおよび積層セラミックコンデンサを製造するための、離型フィルムを製造する方法を提供する。 In one embodiment, the manufacturing method of the present invention provides a method of manufacturing a release film for manufacturing a resin sheet and a multilayer ceramic capacitor.
(樹脂シート)
 本発明における樹脂シートは、離型層における基材とは反対側の面に成型されるシートであれば特に限定されず、例えば、樹脂成分と架橋剤を含む樹脂シート成型組成物を硬化させたものや、造膜性を有する有機成分を溶融製膜や溶液製膜により成型した樹脂シートなどが挙げられる。一態様において、本発明の離型フィルムは、無機化合物を含む樹脂シートを製造するための離型フィルムである。無機化合物としては、金属粒子、金属酸化物、鉱物などを例示でき、例えば、炭酸カルシウム、シリカ粒子、アルミ粒子、チタン酸バリウム粒子等を例示できる。本発明は、平滑性の高い離型層を有するため、これら無機化合物を樹脂シートに含む態様であっても、無機化合物に起因し得る欠点、例えば、樹脂シートの破損、離型層から樹脂シートの剥離が困難になる問題を抑制できる。
樹脂シートを形成する樹脂成分は、用途に応じて適宜選択できる。一態様において、無機化合物を含む樹脂シートは、セラミックグリーンシートである。例えば、セラミックグリーンシートは、無機化合物として、チタン酸バリウムを含むことができる。また、樹脂成分として、例えば、ポリビニルブチラール系樹脂を含むことができる。
(resin sheet)
The resin sheet in the present invention is not particularly limited as long as it is a sheet that is molded on the surface of the release layer opposite to the base material, and for example, a resin sheet molding composition containing a resin component and a crosslinking agent is cured. Examples include resin sheets formed from organic components having film-forming properties by melt film forming or solution film forming. In one embodiment, the release film of the present invention is a release film for producing a resin sheet containing an inorganic compound. Examples of the inorganic compound include metal particles, metal oxides, minerals, and the like, such as calcium carbonate, silica particles, aluminum particles, barium titanate particles, and the like. Since the present invention has a release layer with high smoothness, even if the resin sheet contains these inorganic compounds, there are disadvantages that may be caused by the inorganic compounds, such as breakage of the resin sheet, and separation of the resin sheet from the release layer. The problem of difficulty in peeling can be suppressed.
The resin component forming the resin sheet can be appropriately selected depending on the purpose. In one embodiment, the resin sheet containing an inorganic compound is a ceramic green sheet. For example, the ceramic green sheet can include barium titanate as an inorganic compound. Further, as a resin component, for example, a polyvinyl butyral resin can be included.
(セラミックグリーンシートとセラミックコンデンサ)
 一般に、積層セラミックコンデンサは、直方体状のセラミック素体を有する。セラミック素体の内部には、第1の内部電極と第2の内部電極とが厚み方向に沿って交互に設けられている。第1の内部電極は、セラミック素体の第1の端面に露出している。第1の端面の上には第1の外部電極が設けられている。第1の内部電極は、第1の端面において第1の外部電極と電気的に接続されている。第2の内部電極は、セラミック素体の第2の端面に露出している。第2の端面の上には第2の外部電極が設けられている。第2の内部電極は、第2の端面において第2の外部電極と電気的に接続されている。
(Ceramic green sheet and ceramic capacitor)
Generally, a multilayer ceramic capacitor has a rectangular parallelepiped ceramic body. Inside the ceramic body, first internal electrodes and second internal electrodes are provided alternately along the thickness direction. The first internal electrode is exposed on the first end surface of the ceramic body. A first external electrode is provided on the first end surface. The first internal electrode is electrically connected to the first external electrode at the first end surface. The second internal electrode is exposed on the second end surface of the ceramic body. A second external electrode is provided on the second end surface. The second internal electrode is electrically connected to the second external electrode at the second end surface.
 一態様において、本発明の離型フィルムは、セラミックグリーンシート製造用離型フィルムであり、このような積層セラミックコンデンサを製造するために用いられる。
 例えば、本発明のセラミックグリーンシート製造用離型フィルムを用いると、例えば、以下のようにしてセラミックグリーンシートが製造される。まず、本発明の離型フィルムをキャリアフィルムとして用い、セラミック素体を構成するためのセラミックスラリーを塗布、乾燥させる。塗布、乾燥したセラミックグリーンシートの上に、第1又は第2の内部電極を構成するための導電層を印刷する。セラミックグリーンシート、第1の内部電極を構成するための導電層が印刷されたセラミックグリーンシート及び第2の内部電極を構成するための導電層が印刷されたセラミックグリーンシートを適宜積層し、プレスすることにより、マザー積層体を得る。マザー積層体を複数に分断し、生のセラミック素体を作製する。生のセラミック素体を焼成することによりセラミック素体を得る。その後、第1及び第2の外部電極を形成することにより積層セラミックコンデンサを完成させることができる。
In one embodiment, the release film of the present invention is a release film for producing ceramic green sheets, and is used to produce such a multilayer ceramic capacitor.
For example, by using the release film for ceramic green sheet production of the present invention, a ceramic green sheet can be produced in the following manner. First, using the release film of the present invention as a carrier film, a ceramic slurry for forming a ceramic body is applied and dried. A conductive layer for forming the first or second internal electrode is printed on the coated and dried ceramic green sheet. A ceramic green sheet, a ceramic green sheet printed with a conductive layer for forming the first internal electrode, and a ceramic green sheet printed with a conductive layer for forming the second internal electrode are laminated as appropriate and pressed. By this, a mother laminate is obtained. The mother laminate is divided into multiple parts to produce raw ceramic bodies. A ceramic body is obtained by firing a raw ceramic body. Thereafter, the multilayer ceramic capacitor can be completed by forming the first and second external electrodes.
 以下に、実施例を用いて本発明についてさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。本発明で用いた特性値は下記の方法を用いて評価した。 The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples in any way. The characteristic values used in the present invention were evaluated using the following method.
(離型層厚み)
 離型フィルムを三角形の小片に切り出した後、コーティングにより、厚み2nmのPt(白金)層を離型層表面に形成した。得られたサンプルを多軸包埋カプセルに固定して、エポキシ樹脂を用いて包埋処理し、ミクロトームULTRACUT-Sを用いて、フィルムの面方向に垂直な方向にスライスして、厚さ50nmの超薄サンプルを得た。次いで、得られた超薄サンプルをグリッドに載台して、2%オスミウム酸により、60℃、2時間の条件で蒸気染色した。蒸気染色後の超薄サンプルを用いて、透過電子顕微鏡LEM-2000により、加速電圧100kVの条件でフィルム断面を観測し、離型層の厚みを測定した。測定は、任意の10点について実施し、それらの平均値を離型層の厚みとした。
(Release layer thickness)
After cutting the release film into triangular pieces, a 2 nm thick Pt (platinum) layer was formed on the surface of the release layer by coating. The obtained sample was fixed in a multiaxial embedding capsule, embedded using epoxy resin, and sliced in a direction perpendicular to the surface direction of the film using a microtome ULTRACUT-S to obtain a 50 nm thick sample. An ultrathin sample was obtained. Next, the obtained ultra-thin sample was mounted on a grid and steam-stained with 2% osmic acid at 60° C. for 2 hours. Using an ultra-thin sample after steam staining, the cross section of the film was observed using a transmission electron microscope LEM-2000 at an accelerating voltage of 100 kV, and the thickness of the release layer was measured. Measurements were performed at arbitrary 10 points, and the average value thereof was taken as the thickness of the release layer.
(表面張力)
 23℃、50%RHの条件下で、接触角計(協和界面科学社製、全自動接触角計DM-701)をもちいて、水性コーティング組成物の表面張力をペンダントドロップ法にて測定した。落下せずに保持できる最大量の液摘を形成した後、付属の解析ソフトFAMASを用いてds/de法で表面張力を算出した。測定は計5回行い、その平均値を値として採用した。
(surface tension)
The surface tension of the aqueous coating composition was measured by the pendant drop method using a contact angle meter (manufactured by Kyowa Kaimen Kagaku Co., Ltd., fully automatic contact angle meter DM-701) under conditions of 23° C. and 50% RH. After forming the maximum amount of liquid that could be retained without falling, the surface tension was calculated using the ds/de method using the attached analysis software FAMAS. The measurement was performed five times in total, and the average value was used as the value.
(水性コーティング組成物の液温)
 水性コーティング組成物を調合後、ポリエステルフィルムに塗布する前の液温を防水型のデジタル温度計を用いて計測した値を採用した。
(Liquid temperature of aqueous coating composition)
After preparing the aqueous coating composition and before applying it to the polyester film, the temperature of the solution was measured using a waterproof digital thermometer, and the value was used.
(離型層の塗布均一性)
 ロール状に巻き取って得られた離型フィルムを巻き出してA4版に切り出し、離型層面を蛍光灯とハロゲンライトを用いて目視で観察した際に凝集状塗布欠点の個数(A4版1枚あたりの個数)を比較し、以下の基準により評価した。
◎:塗布欠点なし
○:塗布欠点が1~2個
△:塗布欠点が3~5個
×:塗布欠点が6個以上
(Coating uniformity of release layer)
The release film obtained by winding it up into a roll was unwound and cut into an A4 size sheet, and the surface of the release layer was visually observed using a fluorescent lamp and a halogen light. The number of pieces per sample) was compared and evaluated based on the following criteria.
◎: No coating defects ○: 1 to 2 coating defects △: 3 to 5 coating defects ×: 6 or more coating defects
(セラミックシート剥離性)
 下記、材料からなるスラリー組成物Iを10分間攪拌混合し、ビーズミルを用いて直径0.5mmのジルコニアビーズで10分間分散し1次分散体を得た。その後下記材料からなるスラリー組成物IIを(スラリー組成物I):(スラリー組成物II)=3.4:1.0の比率になるように1次分散体に加え、ビーズミルを用いて直径0.5mmのジルコニアビーズで10分間2次分散し、セラミックスラリーを得た。
(スラリー組成物I)
トルエン                       22.3質量部
エタノール                      18.3質量部
チタン酸バリウム(平均粒径100nm)         57.5質量部
ホモゲノールL-18(花王社製)            1.9質量部
(スラリー組成物II)
トルエン                       39.6質量部
エタノール                      39.6質量部
フタル酸ジオクチル                   3.3質量部
ポリビニルブチラール(積水化学社製 エスレックBM-S) 16.3質量部
1-エチル-3-メチルイミダゾリウムエチルサルフェート    0.5質量部
 次いで得られた離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが2.0μmになるように塗工し60℃で1分乾燥して、セラミックグリーンシート付き離型フィルムを得た。得られたセラミックグリーンシート付き離型フィルムを除電機(キーエンス社製、SJ-F020)を用いて除電した後に剥離試験機(協和界面科学社製、VPA-3、ロードセル荷重0.1N)を用いて、剥離角度90度、剥離温度25℃、剥離速度0.3m/minで剥離した。剥離する向きとしては、剥離試験機付属のSUS板上に両面接着テープ(日東電工社製、No.535A)を貼りつけ、その上にセラミックグリーンシート側を両面テープと接着する形で離型フィルムを固定し、離型フィルム側を引っ張る形で剥離した。得られた測定値のうち、剥離距離20mm~70mmの剥離力の平均値を算出し、その値を剥離力とした。測定は計5回実施し、その剥離力の平均値の値を採用し、評価を行った。得られた剥離力の数値から下記の基準で判定した。
〇:2.0mN/mm未満
△:5.0mN/mm未満
×:5.0mN/mm以上
(Ceramic sheet removability)
A slurry composition I consisting of the following materials was stirred and mixed for 10 minutes, and dispersed for 10 minutes with zirconia beads having a diameter of 0.5 mm using a bead mill to obtain a primary dispersion. Thereafter, slurry composition II consisting of the following materials was added to the primary dispersion at a ratio of (slurry composition I): (slurry composition II) = 3.4:1.0, and the diameter was 0. Secondary dispersion was performed using .5 mm zirconia beads for 10 minutes to obtain a ceramic slurry.
(Slurry composition I)
Toluene 22.3 parts by mass Ethanol 18.3 parts by mass Barium titanate (average particle size 100 nm) 57.5 parts by mass Homogenol L-18 (manufactured by Kao Corporation) 1.9 parts by mass (Slurry Composition II)
Toluene 39.6 parts by mass Ethanol 39.6 parts by mass Dioctyl phthalate 3.3 parts by mass Polyvinyl butyral (Sekisui Chemical Co., Ltd. S-LEC BM-S) 16.3 parts by mass
1-Ethyl-3-methylimidazolium ethyl sulfate 0.5 parts by mass Next, the mold release surface of the obtained mold release film sample was coated with an applicator so that the dried slurry had a thickness of 2.0 μm and heated at 60°C. The film was dried for 1 minute to obtain a release film with a ceramic green sheet. The obtained mold release film with ceramic green sheet was neutralized using a static eliminator (manufactured by Keyence Corporation, SJ-F020), and then tested using a peel tester (manufactured by Kyowa Interface Science Co., Ltd., VPA-3, load cell load 0.1N). The film was peeled off at a peeling angle of 90 degrees, a peeling temperature of 25° C., and a peeling speed of 0.3 m/min. For the direction of peeling, stick a double-sided adhesive tape (manufactured by Nitto Denko Corporation, No. 535A) on the SUS plate attached to the peel tester, and then apply a release film on top of it by adhering the ceramic green sheet side to the double-sided tape. was fixed and peeled off by pulling the release film side. Among the measured values obtained, the average value of the peeling force over a peeling distance of 20 mm to 70 mm was calculated, and this value was taken as the peeling force. The measurement was carried out five times in total, and the average value of the peeling force was used for evaluation. Judgment was made based on the obtained peel force values based on the following criteria.
〇: Less than 2.0 mN/mm △: Less than 5.0 mN/mm ×: 5.0 mN/mm or more
(スラリー塗布外観)
 前記セラミックスラリーの剥離性評価と同様にして離型フィルムの離型面に厚さ1μmのセラミックグリーンシートを成型した。離型フィルムの上に成型されたセラミックグリーンシートの端面をセラミックグリーンシートが積層されている面から光学顕微鏡を用いて観察し、下記基準で目視判定した。
○:セラミックグリーンシート端面が均一
×:セラミックグリーンシート端面が不均一
(Appearance of slurry application)
A ceramic green sheet with a thickness of 1 μm was molded on the mold release surface of the mold release film in the same manner as in the evaluation of the releasability of the ceramic slurry. The end face of the ceramic green sheet molded on the release film was observed using an optical microscope from the side on which the ceramic green sheets were laminated, and visually judged according to the following criteria.
○: Ceramic green sheet end surface is uniform ×: Ceramic green sheet end surface is uneven
(水滑落角)
 23℃、湿度50%の環境下で、接触角計(協和界面科学社製、全自動接触角計DM-701)を用いて測定した。具体的には、平坦なガラス基板上に離型フィルムを静置させ、離型層の表面上に液摘量7.0μLの水を滴下した。滴下後、3秒後にガラス板を0°から90°まで傾斜速度1.0°/秒で傾斜させ、移動判定距離を100dotとして液摘が動き出した時の傾斜角度を滑落角の測定値とした。測定は計5回行い、その平均値を滑落角として採用した。
(Sliding angle)
Measurements were made using a contact angle meter (manufactured by Kyowa Kaimen Kagaku Co., Ltd., fully automatic contact angle meter DM-701) in an environment of 23°C and 50% humidity. Specifically, the release film was placed on a flat glass substrate, and 7.0 μL of water was dropped onto the surface of the release layer. Three seconds after dropping, the glass plate was tilted from 0° to 90° at a tilting speed of 1.0°/sec, the movement determination distance was 100 dots, and the tilt angle at which the droplet began to move was taken as the measured value of the sliding angle. The measurement was performed five times in total, and the average value was used as the sliding angle.
(付着エネルギー)
 全自動接触角計DM-701に付属されている解析ソフトFAMASを用いて、上記水滑落角、着液半径、液摘質量および重力加速度から算出した値を採用した。
(adhesion energy)
Using the analysis software FAMAS included with the fully automatic contact angle meter DM-701, the values calculated from the above-mentioned water sliding angle, liquid landing radius, liquid removal mass, and gravitational acceleration were adopted.
(トルエン浸漬処理後剥離力)
 測定する離型フィルムを15分間トルエンに静置して浸漬した後にトルエンから取り出し、3時間風乾して離型フィルムに付着したトルエンを揮発乾燥させた。その後、離型フィルムの離型層表面に粘着テープ(日東電工社製の「No.31Bテープ」)を貼り合わせ、幅25mm、長さ150mmの短冊状に粘着テープ付き離型フィルムを裁断した。裁断した粘着テープ付き離型フィルムを5kgの圧着ローラで圧着後、テープ付き離型フィルムを750gのガラス板で挟み、70℃環境下20時間保持した。その後、粘着テープの一端を固定し、離型フィルムの一端を担持し、離型フィルム側を300mm/minの速度で23℃の環境下で引っ張り、T型剥離にて測定した。測定は計3回行い、その平均値を50mm幅換算値に変換した値を採用した。測定には、引っ張り試験機((株)島津製作所製の「AUTOGRAPHAG-X」)を用いた。
(Peeling force after toluene immersion treatment)
The release film to be measured was left to stand and immersed in toluene for 15 minutes, then taken out from the toluene, and air-dried for 3 hours to volatilize the toluene attached to the release film. Thereafter, an adhesive tape ("No. 31B Tape" manufactured by Nitto Denko Corporation) was attached to the surface of the release layer of the release film, and the release film with the adhesive tape was cut into strips with a width of 25 mm and a length of 150 mm. After the cut release film with adhesive tape was pressed with a 5 kg pressure roller, the release film with tape was sandwiched between 750 g glass plates and held in a 70°C environment for 20 hours. Thereafter, one end of the adhesive tape was fixed, one end of the release film was supported, and the release film side was pulled at a speed of 300 mm/min in an environment of 23°C, and measurements were taken using T-peel. The measurement was performed three times in total, and the average value was converted to a 50 mm width equivalent value and used as the value. For the measurement, a tensile tester ("AUTOGRAPHAG-X" manufactured by Shimadzu Corporation) was used.
 <製造例1>
 (シリコーンエマルションA)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(I)のa1が99モル%、b1が1モル%であり、数平均分子量が27000であるシリコーンオイルを91質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が9(式(IV)のn=9,m=12で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量582、沸点283℃)9.0質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションAを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径200nmに調整した。
<Manufacture example 1>
(Silicone emulsion A)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a1 of formula (I) is 99 mol%, b1 is 1 mol%, 91% by mass of silicone oil with a number average molecular weight of 27,000, the number of alkyl group chains as a surfactant is 12, and the number of ethylene oxide chains is 9 (structure shown by n = 9, m = 12 in formula (IV)). A raw material consisting of 9.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion A with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
         H2m+1Cm-O-(CH2-CH2-O)n-H    (IV) H 2m+1 C m -O-(CH 2 -CH 2 -O) n -H (IV)
(シリコーンエマルションB)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(II)のa2が50モル%、b2が50モル%であり、数平均分子量が5500であるシリコーンオイル91質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が9(式(IV)のn=9,m=12で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量582、沸点283℃)9.0質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションBを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径180nmに調整した。
(Silicone emulsion B)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a2 of formula (II) is 50 mol%, b2 is 50 mol%, 91% by mass of silicone oil with a number average molecular weight of 5500, the number of alkyl group chains as a surfactant is 12, and the number of ethylene oxide chains is 9 (structure shown by n = 9, m = 12 in formula (IV)). A raw material consisting of 9.0% by mass of polyoxyethylene alkyl ether (number average molecular weight: 582, boiling point: 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion B with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 180 nm by adjusting the stirring speed and stirring time during emulsification.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 シリコーンエマルションAとシリコーンエマルションBおよび水を表1に記載の比率で固形分濃度が5.0質量%となるように混合して水性コーティング組成物を得た。この時、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションAとシリコーンエマルションBの合計量を100としたとき、9.0質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。 An aqueous coating composition was obtained by mixing silicone emulsion A, silicone emulsion B, and water at the ratio shown in Table 1 so that the solid content concentration was 5.0% by mass. At this time, the amount of surfactant contained in the aqueous coating composition was 9.0% by mass when the total amount of silicone emulsion A and silicone emulsion B was taken as 100. In addition, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were added. They were mixed and used.
<製造例2>
(シリコーンエマルションC)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(I)のa1が99モル%、b1が1モル%であり、数平均分子量が27000であるシリコーンオイルを95質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が9(式(IV)のm=12,n=9で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量582、沸点283℃)5.0質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションCを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径200nmに調整した。
<Manufacture example 2>
(Silicone emulsion C)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a1 of formula (I) is 99 mol%, b1 is 1 mol%, 95% by mass of silicone oil with a number average molecular weight of 27,000, the number of alkyl group chains as a surfactant is 12, and the number of ethylene oxide chains is 9 (structure shown by m = 12, n = 9 in formula (IV)). A raw material consisting of 5.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion C with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
 シリコーンエマルションCとシリコーンエマルションBおよび水を表1に記載の比率で固形分濃度が5%となるように混合して水性コーティング組成物を得た。この時、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションCとシリコーンエマルションBの合計量を100としたとき、5.2質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。 An aqueous coating composition was obtained by mixing silicone emulsion C, silicone emulsion B, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 5.2% by mass when the total amount of silicone emulsion C and silicone emulsion B was taken as 100. In addition, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were added. They were mixed and used.
<製造例3~5>
(シリコーンエマルションD)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、SiO4/2で表されるQ単位を有するシリコーンを90質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が9(式(IV)のm=12,n=9で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量582、沸点283℃)10質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションDを得た。この時、SiO4/2で表されるQ単位を有するシリコーンは式(III)で示され、R1がビニル基、R2がメチル基であり、ビニル基が直接結合しているSi原子にはビニル基は1つのみ結合しており、SiO4/2で表されるQ単位を有するシリコーン中の全Si原子に対するビニル基と結合しているSi原子の含有量は5モル%であり、Q単位に含まれるSi原子の含有量は40モル%であった。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径200nmに調整した。
            R1aR2bSiO(4-a-b)/2 ・・・(III)
(式(I)中、R1は炭素数2~8のアルケニル基、R2はアルキル基またはアリール基から選択される炭素数1~16の1価の飽和炭化水素基であり、aは0~3、bは0~3で、かつa+b≦3 を満たす整数をそれぞれ表す。)
<Production Examples 3 to 5>
(Silicone emulsion D)
Using an emulsifying device that can stir the entire inside of the container (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer"), 90% by mass of silicone having a Q unit represented by SiO 4/2 was mixed at the interface. As an activator, polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283 ° C. ) A raw material consisting of 10% by mass was mechanically emulsified in an aqueous medium to obtain silicone emulsion D with a solid content of 40% by mass. At this time, silicone having a Q unit represented by SiO 4/2 is shown by the formula (III), R1 is a vinyl group, R2 is a methyl group, and the Si atom to which the vinyl group is directly bonded has a vinyl group. Only one group is bonded, and the content of Si atoms bonded to the vinyl group is 5 mol% with respect to all Si atoms in the silicone with Q units expressed as SiO 4/2 , and the Q unit The content of Si atoms contained in was 40 mol%. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
R1 a R2 b SiO (4-ab)/2 ...(III)
(In formula (I), R1 is an alkenyl group having 2 to 8 carbon atoms, R2 is a monovalent saturated hydrocarbon group having 1 to 16 carbon atoms selected from an alkyl group or an aryl group, and a is 0 to 3 , b is an integer between 0 and 3 and satisfies a+b≦3.)
 シリコーンエマルションAとシリコーンエマルションBとシリコーンエマルションDおよび水を表1に記載の比率で固形分濃度が5%となるように混合して水性コーティング組成物を得た。この時、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションAとシリコーンエマルションBとシリコーンエマルションDの合計量を100としたとき、製造例3は9.4質量%、製造例4は9.2質量%、製造例5は9.6質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。 An aqueous coating composition was obtained by mixing silicone emulsion A, silicone emulsion B, silicone emulsion D, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, when the total amount of silicone emulsion A, silicone emulsion B, and silicone emulsion D is taken as 100, the amount of surfactant contained in the aqueous coating composition is 9.4% by mass in Production Example 3 and 9.2% by mass in Production Example 4. The mass % in Production Example 5 was 9.6 mass %. Furthermore, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
<製造例6>
(シリコーンエマルションE)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(I)のa1が99モル%、b1が1モル%であり、数平均分子量が27000であるシリコーンオイルを91質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が6(式(IV)のm=12,n=6で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量450、沸点230℃)9.0質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションEを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径200nmに調整した。
<Manufacture example 6>
(Silicone emulsion E)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a1 of formula (I) is 99 mol%, b1 is 1 mol%, 91% by mass of silicone oil with a number average molecular weight of 27,000, the number of alkyl group chains as a surfactant is 12, and the number of ethylene oxide chains is 6 (structure shown by m = 12, n = 6 in formula (IV)). A raw material consisting of 9.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 450, boiling point 230°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion E with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
(シリコーンエマルションF)
 界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が6(式(IV)のm=12、n=6で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量450、沸点230℃)9.0質量%からなる原料を用いて乳化させた以外は、シリコーンエマルションBと同様の方法にて調製した。
(Silicone emulsion F)
As a surfactant, polyoxyethylene alkyl ether (number average molecular weight 450, boiling point 230 It was prepared in the same manner as silicone emulsion B, except that a raw material containing 9.0% by mass (°C) was used for emulsification.
(シリコーンエマルションG)
 界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が6(式(IV)のm=12、n=6で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量450、沸点230℃)10質量%からなる原料を用いて乳化させた以外は、シリコーンエマルションDと同様の方法にて調製した。
(Silicone emulsion G)
As a surfactant, polyoxyethylene alkyl ether (number average molecular weight 450, boiling point 230 It was prepared in the same manner as Silicone Emulsion D, except that the emulsification was performed using a raw material containing 10% by mass (° C.).
 シリコーンエマルションEとシリコーンエマルションFとシリコーンエマルションGおよび水を表1に記載の比率で固形分濃度が5%となるように混合して水性コーティング組成物を得た。この時、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションEとシリコーンエマルションFとシリコーンエマルションGの合計量を100としたとき、9.4質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。 An aqueous coating composition was obtained by mixing silicone emulsion E, silicone emulsion F, silicone emulsion G, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 9.4% by mass when the total amount of silicone emulsion E, silicone emulsion F, and silicone emulsion G was taken as 100. Furthermore, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
<製造例7>
 シリコーンエマルションAとシリコーンエマルションBと水とイソプロピルアルコールを用いて表1に記載の比率で固形分濃度が5.0質量%となるように混合して水性コーティング組成物を得た。この時、イソプロピルアルコールは水性コーティング組成物全量に対して5質量%用いた。また、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションAとシリコーンエマルションBの合計量を100としたとき、9.0質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。
<製造例8>
(シリコーンエマルションH)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(I)のa1が99モル%、b1が1モル%であり、数平均分子量が27000であるシリコーンオイルを98質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が9(式(IV)のm=12,n=9で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量582、沸点283℃)0.1質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションHを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径200nmに調整した。
<Manufacture example 7>
Silicone emulsion A, silicone emulsion B, water, and isopropyl alcohol were mixed at the ratio shown in Table 1 so that the solid content concentration was 5.0% by mass to obtain an aqueous coating composition. At this time, isopropyl alcohol was used in an amount of 5% by mass based on the total amount of the aqueous coating composition. Further, the amount of surfactant contained in the aqueous coating composition was 9.0% by mass when the total amount of silicone emulsion A and silicone emulsion B was taken as 100. In addition, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were added. They were mixed and used.
<Production example 8>
(Silicone emulsion H)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a1 of formula (I) is 99 mol%, b1 is 1 mol%, 98% by mass of silicone oil with a number average molecular weight of 27,000, the number of alkyl group chains as a surfactant is 12, and the number of ethylene oxide chains is 9 (structure shown by m = 12, n = 9 in formula (IV)). A raw material consisting of 0.1% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion H with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
(シリコーンエマルションI)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(2)のa2が50モル%、b2が50モル%であり、数平均分子量が5500であるシリコーンオイル98質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド数が9(式(IV)のm=12,n=9で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量582、沸点283℃)0.1質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションIを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径180nmに調整した。
(Silicone emulsion I)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a2 of formula (2) is 50 mol%, b2 is 50 mol%, 98% by mass of silicone oil with a number average molecular weight of 5500, a polyester having 12 alkyl group chains and 9 ethylene oxides (structure represented by m=12, n=9 in formula (IV)) as a surfactant. A raw material consisting of 0.1% by mass of oxyethylene alkyl ether (number average molecular weight 582, boiling point 283°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion I with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 180 nm by adjusting the stirring speed and stirring time during emulsification.
 シリコーンエマルションHとシリコーンエマルションIおよび水を表1に記載の比率で固形分濃度が5%となるように混合して水性コーティング組成物を得た。この時、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションHとシリコーンエマルションIの合計量を100としたとき、0.1質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。 An aqueous coating composition was obtained by mixing silicone emulsion H, silicone emulsion I, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 0.1% by mass when the total amount of silicone emulsion H and silicone emulsion I was taken as 100. Furthermore, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
<製造例9>
(シリコーンエマルションJ)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(I)のa1が99モル%、b1が1モル%であり、数平均分子量が27000であるシリコーンオイルを91質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が4(式(IV)のm=12,n=4で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量362、沸点182℃)9.0質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションJを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径200nmに調整した。
<Production example 9>
(Silicone Emulsion J)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a1 of formula (I) is 99 mol%, b1 is 1 mol%, 91% by mass of silicone oil with a number average molecular weight of 27,000, the number of alkyl group chains as a surfactant is 12, and the number of ethylene oxide chains is 4 (structure shown by m = 12, n = 4 in formula (IV)). A raw material consisting of 9.0% by mass of a certain polyoxyethylene alkyl ether (number average molecular weight 362, boiling point 182°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion J with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
(シリコーンエマルションK)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、式(2)のa2が50モル%、b2が50モル%であり、数平均分子量が5500であるシリコーンオイル91質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド鎖数が4(式(IV)のm=12,n=4で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量362、沸点182℃)9.0質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションKを得た。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径180nmに調整した。
(Silicone emulsion K)
Using an emulsifying device (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer") that can stir the entire inside of the container, a2 of formula (2) is 50 mol%, b2 is 50 mol%, 91% by mass of silicone oil with a number average molecular weight of 5500, the number of alkyl group chains as a surfactant is 12, and the number of ethylene oxide chains is 4 (structure shown by m = 12, n = 4 in formula (IV)) A raw material consisting of 9.0% by mass of polyoxyethylene alkyl ether (number average molecular weight: 362, boiling point: 182°C) was mechanically emulsified in an aqueous medium to obtain silicone emulsion K with a solid content of 40% by mass. Furthermore, the emulsion particle size was adjusted to an average particle size of 180 nm by adjusting the stirring speed and stirring time during emulsification.
 シリコーンエマルションJとシリコーンエマルションKおよび水を表1に記載の比率で固形分濃度が5%となるように混合して水性コーティング組成物を得た。この時、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションJとシリコーンエマルションKの合計量を100としたとき、9.0質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。 An aqueous coating composition was obtained by mixing silicone emulsion J, silicone emulsion K, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 9.0% by mass when the total amount of silicone emulsion J and silicone emulsion K was taken as 100. Furthermore, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
<製造例10>
(シリコーンエマルションL)
 容器内全体を攪拌できる乳化装置(株式会社エヌ・ピー・ラボ製、装置名「ウルトラプラネタリーミキサー」)を用いて、SiO4/2で表されるQ単位を有するシリコーンを90質量%、界面活性剤としてアルキル基鎖数が12、エチレンオキサイド数が4(式(IV)のm=12,n=4で示される構造)であるポリオキシエチレンアルキルエーテル(数平均分子量362、沸点182℃)10質量%からなる原料を水媒体中で機械的に乳化させて、固形分40質量%のシリコーンエマルションLを得た。この時、SiO4/2で表されるQ単位を有するシリコーンは式(III)で示され、R1がビニル基、R2がメチル基であり、ビニル基が直接結合しているSi原子にはビニル基は1つのみ結合しており、SiO4/2で表されるQ単位を有するシリコーン中の全Si原子に対するビニル基と結合しているSi原子の含有量は5モル%であり、Q単位に含まれるSi原子の含有量は40モル%であった。また、乳化の際の撹拌速度と撹拌時間の調整によりエマルション粒径を平均粒径200nmに調整した。
<Production example 10>
(Silicone emulsion L)
Using an emulsifying device that can stir the entire inside of the container (manufactured by NP Lab Co., Ltd., device name "Ultra Planetary Mixer"), 90% by mass of silicone having a Q unit represented by SiO 4/2 was mixed at the interface. As an activator, polyoxyethylene alkyl ether (number average molecular weight 362, boiling point 182°C) has 12 alkyl group chains and 4 ethylene oxides (structure represented by m=12, n=4 in formula (IV)). A silicone emulsion L having a solid content of 40% by mass was obtained by mechanically emulsifying the raw material consisting of 10% by mass in an aqueous medium. At this time, silicone having a Q unit represented by SiO 4/2 is shown by the formula (III), R1 is a vinyl group, R2 is a methyl group, and the Si atom to which the vinyl group is directly bonded has a vinyl group. Only one group is bonded, and the content of Si atoms bonded to the vinyl group is 5 mol% with respect to all Si atoms in the silicone with Q units expressed as SiO 4/2 , and the Q unit The content of Si atoms contained in was 40 mol%. Furthermore, the emulsion particle size was adjusted to an average particle size of 200 nm by adjusting the stirring speed and stirring time during emulsification.
 シリコーンエマルションJとシリコーンエマルションKとシリコーンエマルションLおよび水を表1に記載の比率で固形分濃度が5%となるように混合して水性コーティング組成物を得た。この時、水性コーティング組成物中に含まれる界面活性剤の量はシリコーンエマルションJとシリコーンエマルションKとシリコーンエマルションLの合計量を100としたとき、9.4質量%であった。また、水性コーティング組成物全重量に対し、白金系触媒(信越化学工業社製、商品名:CAT-PM-10A)を0.02質量%、架橋反応抑制剤(1-エチニルシクロヘキサノール)を150ppm混合して使用した。 An aqueous coating composition was obtained by mixing silicone emulsion J, silicone emulsion K, silicone emulsion L, and water at the ratio shown in Table 1 so that the solid content concentration was 5%. At this time, the amount of surfactant contained in the aqueous coating composition was 9.4% by mass when the total amount of silicone emulsion J, silicone emulsion K, and silicone emulsion L was taken as 100. Furthermore, based on the total weight of the aqueous coating composition, 0.02% by mass of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: CAT-PM-10A) and 150ppm of a crosslinking reaction inhibitor (1-ethynylcyclohexanol) were mixed. I used it.
<実施例1>
 平均粒子径が0.6μmの炭酸カルシウムの粒子を0.25質量%含むポリエチレンテレフタレート([η]=0.63dl/g、Tg=78℃)を押出機で溶融させて、ろ過精度10μmのフィルターを通し、ダイより押出し、常法により冷却ドラムで冷却して未延伸フィルムとした。次いで縦方向に80℃で3.2倍に延伸した後、製造例1で得た水性コーティング組成物をポリエステルフィルムの一方の表面にロールコーターで均一に塗布した。次いで、この塗布フィルムを115℃で乾燥し、145℃で横方向に4.0倍に延伸して、更に230℃で約10秒間熱固定した後、ロール状に巻き取ることで、表1に示す離型層を有する離型フィルム(厚み25μm)のロールを得た。得られた離型フィルムロールから離型フィルムを巻き出してA4版にカットしたサンプルを用いて、表1に記載の評価を行った。なお、水性コーティング組成物の塗布量は、離型層の延伸後の厚みが表1に記載の厚みになるように塗布をした。水性コーティング組成物の詳細を表1Aに示し、フィルムに関する諸物性等を表1Bに示す。
<Example 1>
Polyethylene terephthalate ([η] = 0.63 dl/g, Tg = 78°C) containing 0.25% by mass of calcium carbonate particles with an average particle diameter of 0.6 μm was melted in an extruder to create a filter with a filtration accuracy of 10 μm. The film was extruded through a die and cooled using a cooling drum in a conventional manner to obtain an unstretched film. After stretching the polyester film 3.2 times in the longitudinal direction at 80° C., the aqueous coating composition obtained in Production Example 1 was uniformly applied to one surface of the polyester film using a roll coater. Next, this coated film was dried at 115°C, stretched 4.0 times in the transverse direction at 145°C, further heat-set at 230°C for about 10 seconds, and then wound into a roll to obtain the separation shown in Table 1. A roll of a release film (thickness: 25 μm) having a mold layer was obtained. The release film was unwound from the obtained release film roll and the samples were cut into A4 size sheets, and the evaluations shown in Table 1 were performed. The aqueous coating composition was applied in an amount such that the thickness of the release layer after stretching was as shown in Table 1. Details of the aqueous coating composition are shown in Table 1A, and various physical properties of the film are shown in Table 1B.
<実施例2および3>
 熱固定温度を表1Bに記載の条件に変更した以外は、実施例1と同様の方法で離型フィルムを得た。
<Example 2 and 3>
A release film was obtained in the same manner as in Example 1, except that the heat setting temperature was changed to the conditions listed in Table 1B.
<実施例4~8>
 表1A、表1Bに記載の水性コーティング組成物を用いた以外は、実施例1と同様の方法で離型フィルムを得た。
<Examples 4 to 8>
A release film was obtained in the same manner as in Example 1, except that the aqueous coating compositions listed in Tables 1A and 1B were used.
<実施例9>
 表1Bに記載の熱固定温度に変更した以外は、実施例8と同様の方法で離型フィルムを得た。
<Example 9>
A release film was obtained in the same manner as in Example 8, except that the heat setting temperature was changed to the one shown in Table 1B.
<実施例10>
 表1Aに記載の水性コーティング組成物を用いた以外は、実施例1と同様の方法で離型フィルムを得た。
<Example 10>
A release film was obtained in the same manner as in Example 1, except that the aqueous coating composition shown in Table 1A was used.
<比較例1>
 厚み25μmの2軸延伸ポリエステルフィルム(東洋紡社製、東洋紡エステルフィルムE5100)の一方の表面上に、以下組成の塗布液を、リバースグラビアを用いて乾燥後の離型層膜厚が0.02μmになるようにオフラインコート方式で塗工し、140℃で15秒間乾燥した。乾燥後、冷却ロール上で紫外線照射機(へレウス社製、Hバルブ)を用いて積算光量100mJ/cmの紫外線を照射し、ロール状に巻き取ることで離型フィルムロールを得た。得られた離型フィルムロールから離型フィルムを巻き出しA4版にカットしたサンプルを用いて表1Bに記載の評価を行った。
  メチルエチルケトン              49.49質量部
  トルエン                   49.48質量部
    LTC-851(信越化学工業社製、シリコーン剥離剤) 1.00質量部
   CAT-PL-50T(信越化学工業社製、白金触媒)     0.03質量部
<Comparative example 1>
On one surface of a 25 μm thick biaxially stretched polyester film (manufactured by Toyobo Co., Ltd., Toyobo Ester Film E5100), apply a coating solution with the following composition using reverse gravure so that the release layer thickness after drying becomes 0.02 μm. It was coated using an offline coating method and dried at 140°C for 15 seconds. After drying, ultraviolet rays were irradiated on the cooling roll using an ultraviolet irradiator (manufactured by Heraeus, H bulb) at a cumulative light intensity of 100 mJ/cm 2 , and the film was wound into a roll to obtain a release film roll. The release film was unwound from the obtained release film roll, and samples cut into A4 size sheets were used for evaluation as shown in Table 1B.
Methyl ethyl ketone 49.49 parts by mass Toluene 49.48 parts by mass LTC-851 (manufactured by Shin-Etsu Chemical Co., Ltd., silicone release agent) 1.00 parts by mass CAT-PL-50T (manufactured by Shin-Etsu Chemical Co., Ltd., platinum catalyst) 0.03 parts by mass Department
<比較例2>
 表1Aに記載の水性コーティング組成物を用いたこと以外は、実施例1と同様の方法で離型フィルムを得た。
<Comparative example 2>
A release film was obtained in the same manner as in Example 1, except that the aqueous coating composition shown in Table 1A was used.
 表1に示すように、実施例1~10では、水滑落角から算出する付着エネルギーが高くスラリーの濡れ性に優れ、かつセラミックシートの剥離性にも優れる離型フィルムが得られた。これに対し、比較例1では界面活性剤を有さない水性コーティング組成物を用いてオフラインコート方式で離型層を形成したため、水滑落から算出した付着エネルギーが低く、濡れ性が悪化していた。比較例2では、水性コーティング組成物の表面張力が高かったため、水性コーティング組成物の塗布均一性が悪く、ハジキが発生していた。そのため、スラリーの塗布外観が悪かった。また、トルエン浸漬処理後の剥離力が2000mN/50mmを大きく超えていて、剥離性も悪かった。 As shown in Table 1, in Examples 1 to 10, release films with high adhesion energy calculated from the sliding angle, excellent wettability of slurry, and excellent releasability of ceramic sheets were obtained. On the other hand, in Comparative Example 1, the release layer was formed using an offline coating method using an aqueous coating composition that did not contain a surfactant, so the adhesion energy calculated from water sliding was low and the wettability deteriorated. . In Comparative Example 2, since the surface tension of the aqueous coating composition was high, the coating uniformity of the aqueous coating composition was poor, and repellency occurred. Therefore, the appearance of the applied slurry was poor. In addition, the peeling force after toluene immersion treatment greatly exceeded 2000 mN/50 mm, and the peelability was also poor.
<参考例1および2>
 表2Aに記載の水性コーティング組成物及び表2Bの条件を用いたこと以外は、実施例1と同様の方法で離型フィルムを得た。諸物性を表2Bに示す。
<Reference examples 1 and 2>
A release film was obtained in the same manner as in Example 1, except that the aqueous coating composition shown in Table 2A and the conditions shown in Table 2B were used. Various physical properties are shown in Table 2B.
<参考例3>
 製造例1で作製した水性コーティング組成物を、厚み25μmの2軸延伸ポリエステルフィルム(東洋紡社製、東洋紡エステルフィルムE5100)の一方の表面上に、乾燥後の離型層厚みが0.15μmになるようにオフラインコート方式で塗工し、140℃で15秒間乾燥した。乾燥後、ロール状に巻き取ることで離型フィルムを得た。
<Reference example 3>
The aqueous coating composition prepared in Production Example 1 was applied onto one surface of a 25 μm thick biaxially stretched polyester film (Toyobo Ester Film E5100, manufactured by Toyobo Co., Ltd.) so that the release layer thickness after drying would be 0.15 μm. It was coated using an offline coating method and dried at 140°C for 15 seconds. After drying, a release film was obtained by winding it up into a roll.
<参考例4>
 製造例3で作製した水性コーティング組成物を用いて、熱固定温度を160℃とした以外は実施例1と同様の方法で離型フィルムを得た。塗布工程における水性コーティング組成物の表面張力は、31mJ/m2であった。
<Reference example 4>
Using the aqueous coating composition prepared in Production Example 3, a release film was obtained in the same manner as in Example 1, except that the heat setting temperature was 160°C. The surface tension of the aqueous coating composition in the application process was 31 mJ/m 2 .
<参考例5>
 製造例3で作製した水性コーティング組成物を用いて、水性コーティング組成物の液温が50℃となるように加温した以外は、実施例1と同様の方法で離型フィルムを得た。塗布工程における水性コーティング組成物の表面張力は、31mJ/m2であった。
<Reference example 5>
Using the aqueous coating composition prepared in Production Example 3, a release film was obtained in the same manner as in Example 1, except that the aqueous coating composition was heated to a liquid temperature of 50°C. The surface tension of the aqueous coating composition in the application process was 31 mJ/m 2 .
 表2AおよびBに示すように参考例1および2では、水性コーティング組成物中に含まれる界面活性剤の数平均分子量が低く、沸点が低かった。そのため、離型層を乾燥、硬化する過程で界面活性剤が揮発し、水滑落角から算出する付着エネルギーが低く、濡れ性の悪化が見られた。
 参考例3では製造例1で作製した水性コーティング組成物をオフラインコート方式で塗工したため、硬化温度が低く、離型層が未硬化でロール状に巻き取ったときにブロッキングが発生していた。そのため、スラリー塗布外観が悪く、剥離性も悪化していた。参考例4では、熱固定温度が低く離型層の硬化が不十分であったため、ロール状に巻き取ったときにブロッキングが発生し、スラリー塗布外観が悪く、剥離性も悪化していた。参考例5では、水性コーティング組成物の液温が高かったため、エマルションの破壊が見られ、水性コーティング組成物の塗布時にハジキが発生し、塗布均一性に悪化が見られた。その結果、スラリー塗布外観が悪く、剥離性にも悪化が見られた。
 水性コーティング組成物の詳細を表1Aに示し、フィルムに関する諸物性等を表1Bに示す。また、参考例を表2A及び表2Bに示す。
As shown in Tables 2A and B, in Reference Examples 1 and 2, the number average molecular weight of the surfactant contained in the aqueous coating composition was low, and the boiling point was low. Therefore, the surfactant volatilized during the process of drying and curing the release layer, and the adhesion energy calculated from the sliding angle was low, resulting in deterioration of wettability.
In Reference Example 3, the aqueous coating composition prepared in Production Example 1 was applied by an offline coating method, so the curing temperature was low, and blocking occurred when the release layer was uncured and wound into a roll. Therefore, the appearance of the slurry coating was poor and the releasability was also poor. In Reference Example 4, the heat setting temperature was low and the curing of the release layer was insufficient, so blocking occurred when it was wound up into a roll, the appearance of the slurry coating was poor, and the releasability was also poor. In Reference Example 5, since the liquid temperature of the aqueous coating composition was high, breakage of the emulsion was observed, repelling occurred during application of the aqueous coating composition, and deterioration in coating uniformity was observed. As a result, the appearance of the slurry coating was poor and the releasability was also deteriorated.
Details of the aqueous coating composition are shown in Table 1A, and various physical properties regarding the film are shown in Table 1B. Further, reference examples are shown in Table 2A and Table 2B.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明の離型フィルムは、離型層の剥離性と濡れ性が高いため、薄層の樹脂シート、特にセラミックグリーンシートを成型する時に欠陥の発生を抑制することができる。 Since the release film of the present invention has high releasability and wettability of the release layer, it is possible to suppress the occurrence of defects when molding a thin resin sheet, especially a ceramic green sheet.

Claims (11)

  1.  ポリエステルフィルムと、離型層をこの順に有する離型フィルムであって、
     前記離型層は、水性コーティング組成物を反応および固化させてなる層であり、
     前記水性コーティング組成物は、水性コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、
     前記水性コーティング組成物は、
    (a)1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルション、
    (b)1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルション、および、
    (d)界面活性剤を含み
     前記離型層において、
    水の滑落角から算出した前記離型層表面の付着エネルギーが6.0mJ/m2以上であり、
    以下の方法で測定したテープ剥離力が2000mN/50mm以下である離型フィルム;
     前記離型フィルムを15分間トルエン浸漬処理後に風乾した後の前記離型層上に、粘着テープを貼合し5kg荷重で圧着して得たテープ付き離型フィルムを70℃20時間保持した後に、剥離速度0.3m/min、T型剥離して前記テープ剥離力を測定する。
    A release film having a polyester film and a release layer in this order,
    The release layer is a layer formed by reacting and solidifying an aqueous coating composition,
    The aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the aqueous coating composition,
    The aqueous coating composition comprises:
    (a) a first silicone emulsion containing at least two or more alkenyl groups in one molecule;
    (b) a second silicone emulsion containing at least two or more hydrogen groups in one molecule, and
    (d) In the release layer containing a surfactant,
    The adhesion energy of the surface of the release layer calculated from the sliding angle of water is 6.0 mJ/m 2 or more,
    A release film with a tape peeling force of 2000mN/50mm or less measured by the following method;
    After the release film was immersed in toluene for 15 minutes and air-dried, an adhesive tape was laminated on the release layer and the release film with the tape was pressed under a load of 5 kg. After holding the release film with the tape at 70°C for 20 hours, The tape peeling force is measured by T-shaped peeling at a peeling speed of 0.3 m/min.
  2. 前記水性コーティング組成物が
    (c)SiO4/2で表されるQ単位を有するシリコーンを含有する水分散体を含有する請求項1に記載の離型フィルム。
    The aqueous coating composition is
    (c) The release film according to claim 1, comprising an aqueous dispersion containing silicone having a Q unit represented by SiO 4/2 .
  3. 前記水性コーティング組成物において、
    (a) 1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルションの数平均分子量が1000以上30000未満であり、
    (b) 1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルションの数平均分子量が1000~10000である請求項1に記載の離型フィルム。
    In the aqueous coating composition,
    (a) the first silicone emulsion containing at least two or more alkenyl groups in one molecule has a number average molecular weight of 1,000 or more and less than 30,000;
    (b) The release film according to claim 1, wherein the second silicone emulsion containing at least two or more hydrogen groups in one molecule has a number average molecular weight of 1,000 to 10,000.
  4. 前記離型フィルムが、結晶配向が完了する前の基材フィルムに前記水性コーティング組成物を塗布し、少なくとも一方向に延伸した後、熱処理をして、基材フィルムの結晶配向を完了させることによって形成されている請求項1に記載の離型フィルム。 The release film is obtained by applying the aqueous coating composition to the base film before the crystal orientation is completed, stretching in at least one direction, and then heat-treating the base film to complete the crystal orientation of the base film. The release film according to claim 1, wherein the release film is formed.
  5. 前記ポリエステルフィルムが実質的に無機粒子を含まない表面層を有し、前記離型層が該表面層上に形成されている請求項1に記載の離型フィルム。 2. The release film according to claim 1, wherein the polyester film has a surface layer substantially free of inorganic particles, and the release layer is formed on the surface layer.
  6. 前記離型フィルムが積層セラミックコンデンサ製造用または樹脂シート製造用の離型フィルムである請求項1に記載の離型フィルム。 The mold release film according to claim 1, wherein the mold release film is a mold release film for manufacturing a multilayer ceramic capacitor or a resin sheet.
  7. 以下の工程を有する、離型フィルムの製造方法;
    ポリエステルフィルムの少なくとも一方の面に水性コーティング組成物を塗布する塗布工程であって、
    前記水性コーティング組成物は、水性コーティング組成物の全体量100質量部に対し、有機溶媒を10質量部以下で含有し、
    水と、水溶性成分および/または水分散エマルションを含有し、
    前記水性コーティング組成物の表面張力が40mN/m以下である塗布工程;および、
    前記水性コーティング組成物を塗布した前記ポリエステルフィルムを加熱する加熱工程。
    A method for producing a release film, comprising the following steps;
    A coating step of applying an aqueous coating composition to at least one side of a polyester film, the coating step comprising:
    The aqueous coating composition contains an organic solvent in an amount of 10 parts by mass or less based on 100 parts by mass of the total amount of the aqueous coating composition,
    Contains water, a water-soluble component and/or a water-dispersed emulsion,
    a coating step in which the surface tension of the aqueous coating composition is 40 mN/m or less; and
    a heating step of heating the polyester film coated with the aqueous coating composition;
  8. 前記水性コーティング組成物が、
    (A)1分子中に少なくとも2個以上のアルケニル基を含有する第1のシリコーンエマルション、
    (B)1分子中に少なくとも2個以上のハイドロジェン基を含有する第2のシリコーンエマルション、および、
    (D)界面活性剤を含み、
    前記界面活性剤の沸点が200℃以上である前記水性コーティング組成物を用いる前記塗布工程を有する、
    請求項7に記載の離型フィルムの製造方法。
    The aqueous coating composition comprises:
    (A) a first silicone emulsion containing at least two or more alkenyl groups in one molecule;
    (B) a second silicone emulsion containing at least two or more hydrogen groups in one molecule, and
    (D) Contains a surfactant;
    the coating step using the aqueous coating composition in which the surfactant has a boiling point of 200° C. or higher;
    The method for producing a release film according to claim 7.
  9. 前記加熱工程が以下の工程を有し、前記塗布工程の後に加熱工程を有する請求項7に記載の離型フィルムの製造方法;
    前記ポリエステルフィルムの一方の面に塗布した前記水性コーティング組成物を乾燥する乾燥工程;
    前記ポリエステルフィルムの長手方向に対して垂直な方向に延伸する延伸工程;および、
    前記ポリエステルフィルムに熱処理をして、結晶配向を完了させる熱固定工程。
    The method for producing a release film according to claim 7, wherein the heating step includes the following steps, and the heating step is performed after the coating step;
    a drying step of drying the aqueous coating composition applied to one side of the polyester film;
    a stretching step of stretching in a direction perpendicular to the longitudinal direction of the polyester film; and
    A heat setting step of heat-treating the polyester film to complete crystal orientation.
  10. 前記塗布工程における、前記水性コーティング組成物の液温が0℃以上、40℃以下であり、
    前記加熱工程の最大温度が180℃以上、250℃以下である請求項7に記載の離型フィルムの製造方法。
    In the coating step, the liquid temperature of the aqueous coating composition is 0°C or more and 40°C or less,
    The method for producing a release film according to claim 7, wherein the maximum temperature in the heating step is 180°C or more and 250°C or less.
  11. 樹脂シートまたは積層セラミックコンデンサを製造するための離型フィルムを製造するための、請求項7に記載の離型フィルムの製造方法。
     
     
     
     
     
     
     
    The method for producing a release film according to claim 7, for producing a release film for producing a resin sheet or a laminated ceramic capacitor.






PCT/JP2023/033171 2022-09-16 2023-09-12 Mold release film and method for producing same WO2024058163A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-148243 2022-09-16
JP2022-148242 2022-09-16
JP2022148243 2022-09-16
JP2022148242 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058163A1 true WO2024058163A1 (en) 2024-03-21

Family

ID=90274998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033171 WO2024058163A1 (en) 2022-09-16 2023-09-12 Mold release film and method for producing same

Country Status (2)

Country Link
TW (1) TW202417249A (en)
WO (1) WO2024058163A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156560A (en) * 2013-02-18 2014-08-28 Teijin Dupont Films Japan Ltd Coating composition for release and silicone-releasable polyester film consisting of the same
JP2017525794A (en) * 2014-06-27 2017-09-07 ダウ コーニング(チャイナ)ホールディング カンパニー リミテッド Silicone release coating composition and low release force emulsion silicone release coating for film and paper with cured release coating
JP2020059252A (en) * 2018-10-12 2020-04-16 東洋紡フイルムソリューション株式会社 Release film
JP2021011081A (en) * 2019-07-09 2021-02-04 東洋紡フイルムソリューション株式会社 Silicone release polyester film
WO2022163569A1 (en) * 2021-01-26 2022-08-04 東洋紡株式会社 Laminated film and method for manufacturing laminated film
JP2023055188A (en) * 2021-10-05 2023-04-17 旭化成ワッカーシリコーン株式会社 Silicone emulsion composition, and method for producing release coating film using the same
JP2023145969A (en) * 2022-03-29 2023-10-12 東洋紡株式会社 release film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156560A (en) * 2013-02-18 2014-08-28 Teijin Dupont Films Japan Ltd Coating composition for release and silicone-releasable polyester film consisting of the same
JP2017525794A (en) * 2014-06-27 2017-09-07 ダウ コーニング(チャイナ)ホールディング カンパニー リミテッド Silicone release coating composition and low release force emulsion silicone release coating for film and paper with cured release coating
JP2020059252A (en) * 2018-10-12 2020-04-16 東洋紡フイルムソリューション株式会社 Release film
JP2021011081A (en) * 2019-07-09 2021-02-04 東洋紡フイルムソリューション株式会社 Silicone release polyester film
WO2022163569A1 (en) * 2021-01-26 2022-08-04 東洋紡株式会社 Laminated film and method for manufacturing laminated film
JP2023055188A (en) * 2021-10-05 2023-04-17 旭化成ワッカーシリコーン株式会社 Silicone emulsion composition, and method for producing release coating film using the same
JP2023145969A (en) * 2022-03-29 2023-10-12 東洋紡株式会社 release film

Also Published As

Publication number Publication date
TW202417249A (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP5251315B2 (en) Release film production method
JP7473865B2 (en) Silicone release polyester film
JP5840996B2 (en) Silicone release polyester film
JP6950760B2 (en) Release film for manufacturing ceramic green sheets
TWI823302B (en) Release film for resin sheet molding
KR101600104B1 (en) Mould release film
JP5346640B2 (en) Release film
JP2023145969A (en) release film
WO2024058163A1 (en) Mold release film and method for producing same
JP6390149B2 (en) Polyester film
JP2005022201A (en) Release film for manufacturing thin-layer ceramic sheet and its manufacturing method
JP5378703B2 (en) Release film
JP2022147557A (en) release film
JP2018161829A (en) Release film for photosensitive conductive layer transfer
WO2024162200A1 (en) Mold release film
WO2024162202A1 (en) Mold release film
JP4482780B2 (en) Film laminate for manufacturing ceramic sheets
TW567127B (en) Release film with ceramic sheet
WO2023219057A1 (en) Silicone release polyester film and method for producing same
WO2024053483A1 (en) Mold release film
JP2002067019A (en) Mold release film for manufacture of ceramic sheet
JP2023145966A (en) release film
JP2023147243A (en) release film
WO2023234140A1 (en) Silicone-releasant polyester film and production method therefor
TW202348426A (en) Mold release film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865515

Country of ref document: EP

Kind code of ref document: A1