WO2024058096A1 - High-strength hot-rolled steel sheet - Google Patents

High-strength hot-rolled steel sheet Download PDF

Info

Publication number
WO2024058096A1
WO2024058096A1 PCT/JP2023/032979 JP2023032979W WO2024058096A1 WO 2024058096 A1 WO2024058096 A1 WO 2024058096A1 JP 2023032979 W JP2023032979 W JP 2023032979W WO 2024058096 A1 WO2024058096 A1 WO 2024058096A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
rolled steel
cooling
steel sheet
Prior art date
Application number
PCT/JP2023/032979
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 伊藤
哲 安里
章文 榊原
輝樹 林田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024058096A1 publication Critical patent/WO2024058096A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to high-strength hot-rolled steel sheets.
  • Patent Document 1 in mass %, C: 0.08% or more and less than 0.16%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.0%, P: 0. 025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.002 to 0.006%, Nb: 0.001 to 0.05%, Ti: 0.001 ⁇ 0.05%, Cr: 0.01 ⁇ 1.0%, B: 0.0005 ⁇ 0.0050%, with the balance consisting of Fe and inevitable impurities, and a martensite phase or tempered martensite.
  • phase is the main phase
  • the main phase has a volume percentage of 90% or more of the entire structure
  • the average grain size of prior austenite grains is 20 ⁇ m or less in a cross section parallel to the rolling direction and 15 ⁇ m or less in a cross section perpendicular to the rolling direction.
  • a high-strength hot-rolled steel sheet with excellent low-temperature toughness is described, which has a structure in which the aspect ratio of prior austenite grains in a cross section parallel to the rolling direction is 18 or less.
  • Patent Document 1 according to the above structure, without containing expensive Mo, it has high strength of yield strength YS: 960 MPa or more, high toughness of vE -40 of 40 J or more, and A hot-rolled steel sheet with excellent bending workability and delayed fracture resistance, as well as a surface hardness of 360HB or more on Brinell hardness, and excellent wear resistance, making it suitable for structural members of construction machinery and industrial machinery. It is described that it can be easily produced and has great industrial effects.
  • Patent Document 2 in mass %, C: 0.05 to 0.14%, Si: 0.01 to 1.0%, Mn: 0.50 to 2.0%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.002 to 0.006%, Nb: 0.001 to 0.05%, Ti: 0.001 to 0.05 %, Cr: 0.01 to 1.0%, B: 0.0005 to 0.0050%, with the balance consisting of Fe and unavoidable impurities, and the steel structure has a martensitic phase and a sintered phase.
  • a high-strength hot-rolled steel sheet which contains cementite and has a cementite content of 0.01 to 0.08% by mass. Further, in Patent Document 2, according to the above structure, a high-strength hot-rolled steel sheet that has high toughness and excellent punchability and punching bending fatigue strength characteristics without containing Mo, which is an expensive alloying element, is specifically described.
  • Patent Document 3 in mass %, C: 0.10 to 0.25%, Si: 0.10% or less, Mn: 1.0 to 2.0%, P: 0.025% or less, S: 0 .005% or less, Al: 0.005 to 0.10%, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.05%, Cr: 0.05 to 1.0%, B :0.0005 to 0.0050%, the balance is Fe and unavoidable impurities, the tempered martensite phase accounts for 95% or more by volume of the entire structure, and the prior austenite grains In the width direction, the average grain size of A high-strength hot-rolled steel sheet with excellent strength uniformity is described.
  • the structure of the steel sheet is such that the main phase is tempered martensite over the entire width direction, the average grain size of prior austenite ( ⁇ ) grains in a cross section parallel to the rolling direction is 20 ⁇ m or less, and It is taught that by creating a structure in which the average grain size of prior austenite grains in a cross section perpendicular to has been done.
  • Patent Documents 1 to 3 In hot-rolled steel sheets as described in Patent Documents 1 to 3, when the metal structure is made into a martensite single phase or a structure closer to a martensite single phase in order to increase the strength, uneven cooling during cooling or during transformation may occur. The shape of the steel sheet may collapse due to transformation plasticity, etc., and in such a case, it becomes difficult to maintain sufficient flatness in the obtained hot rolled steel sheet.
  • Patent Document 3 a high-strength hot-rolled steel plate with a uniform yield strength YS in the width direction is studied, but there is no specific method for improving the flatness of the high-strength hot-rolled steel plate. No consideration has been given.
  • an object of the present invention is to provide a high-strength hot-rolled steel sheet with improved flatness using a novel configuration.
  • the present inventors conducted a study focusing particularly on the metal structure in the width direction of a hot rolled steel sheet.
  • the present inventors succeeded in ensuring high strength by changing the metal structure of a hot-rolled steel sheet having a predetermined chemical composition into a structure with tempered martensite as the main phase, while also making the structure uniform in the width direction. It has been found that by distributing the strength in the width direction, it is possible to reduce the strength variation in the width direction. In this way, by reducing the strength variation in the width direction, it is possible to provide a hot rolled steel sheet in which the flatness in the width direction of the hot rolled steel sheet is significantly improved.
  • the present invention that achieves the above object is as follows. (1) In mass%, C: 0.050-0.100%, Si: 0.010-0.200%, Mn: 1.00-2.50%, Ti: 0.001 to 0.120%, Al: 0.001-0.050%, B: 0.0005-0.0050%, P: 0.100% or less, S: 0.050% or less, N: 0.0050% or less, O: 0 to 0.0050%, Cu: 0 to 0.20%, Ni: 0 to 0.20%, Sn: 0 to 0.10%, Cr: 0 to 0.40%, Mo: 0-0.20%, Nb: 0 to 0.05%, V: 0-0.10%, As: 0 to 0.100%, Zr: 0 to 0.100%, Ca: 0-0.0050%, Mg: 0-0.100%, Bi: 0 to 0.020%, Co: 0 to 0.20%, W: 0-0.20%, Zn: 0-0.20%, It has a chemical composition consisting of REM: 0 to 0.
  • the chemical composition is in mass%; O: 0.0001 to 0.0050%, Cu: 0.001 to 0.20%, Ni: 0.001 to 0.20%, Sn: 0.001 to 0.10%, Cr: 0.001-0.40%, Mo: 0.001 to 0.20%, Nb: 0.001-0.05%, V: 0.001 to 0.10%, As: 0.001 to 0.100%, Zr: 0.0001 to 0.100%, Ca: 0.0001-0.0050%, Mg: 0.0001-0.100%, Bi: 0.0001-0.020%, Co: 0.001 to 0.20%, W: 0.001-0.20%, Zn: 0.001 ⁇ 0.20%, and REM: 0.0001 ⁇ 0.1000%
  • the high-strength hot-rolled steel sheet according to the embodiment of the present invention has, in mass%, C: 0.050-0.100%, Si: 0.010-0.200%, Mn: 1.00-2.50%, Ti: 0.001 to 0.120%, Al: 0.001-0.050%, B: 0.0005-0.0050%, P: 0.100% or less, S: 0.050% or less, N: 0.0050% or less, O: 0 to 0.0050%, Cu: 0 to 0.20%, Ni: 0 to 0.20%, Sn: 0 to 0.10%, Cr: 0-0.40%, Mo: 0-0.20%, Nb: 0 to 0.05%, V: 0-0.10%, As: 0 to 0.100%, Zr: 0 to 0.100%, Ca: 0-0.0050%, Mg: 0-0.100%, Bi: 0 to 0.020%, Co: 0 to 0.20%, W: 0-0.20%, Zn: 0-
  • the metal structure of a hot rolled steel sheet is made into a martensite single phase or a structure closer to a martensite single phase in order to increase the strength, the metal structure is affected by uneven cooling during cooling and transformation plasticity during transformation. In such a case, it becomes difficult to maintain sufficient flatness in the resulting hot rolled steel sheet.
  • warpage may occur in the width direction of the steel plate (direction perpendicular to the rolling direction and the plate thickness direction). If a steel plate is warped in the width direction, it may cause shape defects or cracks during forming when such a steel plate is used to form a longitudinal member.
  • An existing method for improving such warpage is correction (flattening treatment) using a leveler or the like.
  • the cooling rate after finish rolling is high, the controllability of the amount of water used for cooling deteriorates, and uneven cooling becomes noticeable as some parts are locally overcooled. As a result, thermal stress is generated due to temperature unevenness in the width direction of the steel plate, and warpage occurs in the width direction of the steel plate. Therefore, from the viewpoint of ensuring flatness, it is not necessarily appropriate to increase the cooling rate after finish rolling excessively. On the other hand, in order to obtain a martensite single-phase structure or a structure closer to a martensite single-phase structure from the viewpoint of increasing strength, it is necessary to cool at a cooling rate higher than the critical cooling rate.
  • the present inventors selected an appropriate steel composition and conducted studies focusing on the metallographic structure in the width direction of the hot-rolled steel sheet.
  • Ta the present inventors achieved high strength, more specifically, high strength of 980 MPa or more, by changing the metal structure of a hot rolled steel sheet having a predetermined chemical composition to a structure with tempered martensite as the main phase. I found out that it can be done.
  • the present inventors thought that it would be effective to uniformly distribute the structure including such tempered martensite as the main phase even in the width direction, and conducted further studies.
  • the metal structure at the 1/4 position of the plate thickness can be a structure of tempered martensite: 95% or more in area%.
  • the present inventors have determined that the strength variation in the width direction of the hot rolled steel sheet can be sufficiently reduced to a level where the difference between the maximum and minimum tensile strengths at all positions in the width direction is 30 MPa or less.
  • the flatness of the hot rolled steel sheet can be significantly improved in relation to the uniformity of the metallographic structure in the entire width direction and the reduction of such strength variations. I discovered that it can be done.
  • the amount of water sprayed onto the top surface of the steel sheet is generally greater than the amount of water sprayed onto the bottom surface of the steel sheet. Therefore, by uniformly cooling the upper and lower surfaces of the steel plate after finish rolling to a temperature that corresponds to the end temperature of martensitic transformation, uniformity of the metal structure and reduction of strength variations in the entire width direction can be achieved as described above.
  • the fact that it is possible to significantly improve the flatness of a hot rolled steel sheet despite its high strength was revealed for the first time by the present inventors.
  • the high-strength hot-rolled steel sheet according to the embodiment of the present invention has sufficient flatness in the hot-rolled state, there is no need for pre-processing using a leveler or the like. Such pre-processing does not consume part of the inherent ductility of the steel sheet. In this regard, it is possible to reduce the risk of forming defects during pressing of the high-strength hot-rolled steel sheet, and it is also possible to significantly improve productivity. Therefore, it goes without saying that the high-strength hot-rolled steel sheet according to the embodiment of the present invention is particularly useful in the automobile field, but can also be used very effectively in other fields.
  • % which is the unit of content of each element, means “% by mass” unless otherwise specified.
  • indicating a numerical range is used to include the numerical values written before and after it as a lower limit and an upper limit, unless otherwise specified.
  • C is an element effective in increasing the strength of steel sheets.
  • the C content is set to 0.050% or more.
  • the C content may be 0.055% or more, 0.060% or more, 0.065% or more, or 0.070% or more.
  • the C content is set to 0.100% or less.
  • the C content may be 0.095% or less, 0.090% or less, 0.085% or less, or 0.080% or less.
  • Si is an element effective for increasing strength as a solid solution strengthening element.
  • the Si content is set to 0.010% or more.
  • the Si content may be 0.020% or more, 0.040% or more, 0.060% or more, 0.080% or more, or 0.100% or more.
  • the Si content is set to 0.200% or less.
  • the Si content may be 0.180% or less, 0.160% or less, 0.140% or less, or 0.120% or less.
  • Mn is an element effective in increasing hardenability and strength as a solid solution strengthening element. If the Mn content is low, hardenability is insufficient, and a relatively large amount of soft phases such as ferrite are generated during cooling, making it impossible to uniformly distribute the structure with tempered martensite as the main phase in the width direction. . Further, due to expansion of the steel plate due to such transformation, warpage may occur in the width direction, and the shape of the steel plate may collapse. Therefore, the Mn content is set to 1.00% or more. The Mn content may be 1.20% or more, 1.40% or more, 1.60% or more, or 1.80% or more.
  • the Mn content is set to 2.50% or less.
  • the Mn content may be 2.40% or less, 2.20% or less, 2.00% or less, or 1.90% or less.
  • Ti is an element that contributes to improving strength through precipitation strengthening and the like.
  • Ti consumes solid solution N in steel by combining with N to form titanium nitride (TiN), which has the effect of suppressing the decrease in the amount of solid solution B caused by the formation of BN. .
  • the Ti content is set to 0.001% or more.
  • the Ti content may be 0.010% or more, 0.020% or more, 0.040% or more, or 0.060% or more.
  • Ti is also an element that suppresses the recrystallization of austenite, if Ti is contained excessively, the driving force for ferrite transformation etc.
  • the Ti content is set to 0.120% or less.
  • the Ti content may be 0.110% or less, 0.100% or less, 0.090% or less, or 0.080% or less.
  • Al is an element that acts as a deoxidizing agent. In order to sufficiently obtain such effects, the Al content is set to 0.001% or more. The Al content may be 0.010% or more, 0.020% or more, or 0.030% or more. On the other hand, when Al is contained excessively, coarse oxides are formed, which may reduce toughness. Therefore, the Al content is set to 0.050% or less. The Al content may be 0.045% or less or 0.040% or less.
  • B is an element that enhances the hardenability of steel and contributes to improving its strength. In order to sufficiently obtain such effects, the B content is set to 0.0005% or more. The B content may be 0.0008% or more, 0.0010% or more, 0.0015% or more, or 0.0020% or more. On the other hand, if B is contained excessively, toughness and/or weldability may deteriorate. Therefore, the B content is set to 0.0050% or less. The B content may be 0.0045% or less, 0.0040% or less, 0.0030% or less, or 0.0025% or less.
  • the P content is set to 0.100% or less.
  • the P content may be 0.080% or less, 0.050% or less, 0.030% or less, or 0.020% or less.
  • the lower limit of the P content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the P content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
  • the Si content is set to 0.050% or less.
  • the S content may be 0.020% or less, 0.010% or less, or 0.005% or less.
  • the lower limit of the S content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the S content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
  • N 0.0050% or less
  • N boron nitride
  • the N content may be 0.0045% or less, 0.0040% or less, or 0.0035% or more.
  • the lower limit of the N content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • high-strength hot-rolled steel sheet The basic chemical composition of the high-strength hot-rolled steel sheet according to the embodiment of the present invention is as described above. Further, the high-strength hot-rolled steel sheet may contain at least one of the following optional elements in place of a portion of the remaining Fe, if necessary.
  • high-strength hot-rolled steel sheets include O: 0 to 0.0050%, Cu: 0 to 0.20%, Ni: 0 to 0.20%, Sn: 0 to 0.10%, and Cr: 0 to 0.
  • O is an element mixed in during the manufacturing process.
  • the O content may be 0%.
  • reducing the O content to less than 0.0001% requires time for refining, leading to a decrease in productivity. Therefore, the O content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0015% or more.
  • the O content is preferably 0.0050% or less.
  • the O content may be 0.0040% or less, 0.0035% or less, or 0.0030% or less.
  • Cu is an element that contributes to improving strength and/or corrosion resistance.
  • the Cu content may be 0%, in order to obtain these effects, the Cu content is preferably 0.001% or more.
  • the Cu content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Cu content is preferably 0.20% or less.
  • the Cu content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, 0.08% or less, or 0.06% or less.
  • Ni is an element that improves the hardenability of steel and contributes to improving its strength and/or corrosion resistance.
  • the Ni content may be 0%, in order to obtain these effects, the Ni content is preferably 0.001% or more.
  • the Ni content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Ni content is preferably 0.20% or less.
  • the Ni content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, 0.08% or less, or 0.06% or less.
  • Sn is an element effective in improving corrosion resistance.
  • the Sn content may be 0%, but in order to obtain such effects, the Sn content is preferably 0.001% or more, 0.005% or more, and 0.01% or more. Or it may be 0.02% or more. On the other hand, excessively containing Sn may lead to a decrease in toughness. Therefore, the Sn content is preferably 0.10% or less.
  • the Sn content may be 0.08% or less, 0.06% or less, or 0.04% or less.
  • Cr is an element that improves the hardenability of steel and contributes to improving its strength and/or corrosion resistance.
  • the Cr content may be 0%, in order to obtain these effects, the Cr content is preferably 0.001% or more.
  • the Cr content may be 0.01% or more, 0.05% or more, or 0.10% or more.
  • the Cr content is preferably 0.40% or less.
  • the Cr content may be 0.30% or less, 0.20% or less, 0.15% or less, or 0.12% or less.
  • Mo is an element that enhances the hardenability of steel and contributes to improving its strength, and also contributes to improving its corrosion resistance.
  • the Mo content may be 0%, in order to obtain these effects, the Mo content is preferably 0.001% or more.
  • the Mo content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Mo content is preferably 0.20% or less.
  • the Mo content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
  • Nb is an element that forms carbides, nitrides, and/or carbonitrides in steel and contributes to refinement of the structure through a pinning effect, and thus to higher strength of the steel sheet.
  • the Nb content may be 0%, in order to obtain such an effect, the Nb content is preferably 0.001% or more.
  • the Nb content may be 0.005% or more or 0.01% or more.
  • the Nb content is set to 0.05% or less.
  • the Nb content may be 0.04% or less, 0.03% or less or 0.02%.
  • V is an element that contributes to improving strength through precipitation strengthening and the like.
  • the V content may be 0%, in order to obtain such an effect, the V content is preferably 0.001% or more.
  • the V content may be 0.005% or more, 0.01% or more, or 0.02% or more.
  • the V content is preferably 0.10% or less.
  • the V content may be 0.08% or less, 0.06% or less, or 0.04% or less.
  • the As content may be 0%, but in order to obtain such effects, the As content is preferably 0.001% or more, 0.005% or more, and 0.008% or more. Or it may be 0.010% or more. On the other hand, even if As is contained excessively, the effect is saturated and the manufacturing cost increases. Therefore, the As content is preferably 0.100% or less.
  • the As content may be 0.080% or less, 0.060% or less, 0.040% or less, or 0.020% or less.
  • Zr is an element that can control the morphology of sulfides.
  • the Zr content may be 0%, in order to obtain such an effect, the Zr content is preferably 0.0001% or more.
  • the Zr content may be 0.0005% or more, 0.001% or more, or 0.010% or more.
  • the Zr content is preferably 0.100% or less.
  • the Zr content may be 0.050% or less, 0.030% or less, or 0.020% or less.
  • Ca is an element that can control the morphology of sulfides.
  • the Ca content may be 0%, in order to obtain such an effect, the Ca content is preferably 0.0001% or more.
  • the Ca content may be 0.0005% or more, 0.0010% or more, or 0.0015% or more.
  • the Ca content is preferably 0.0050% or less.
  • the Ca content may be 0.0040% or less, 0.0030% or less, or 0.0020% or less.
  • Mg is an element that can control the morphology of sulfides.
  • the Mg content may be 0%, but in order to obtain such an effect, the Mg content is preferably 0.0001% or more, 0.001% or more, 0.005% or more, or It may be 0.008% or more.
  • the Mg content is 0.100% or less.
  • the Mg content may be 0.050% or less, 0.030% or less, 0.020% or less, or 0.010% or less.
  • Bi is an element effective in improving corrosion resistance.
  • the Bi content may be 0%, in order to obtain such an effect, the Bi content is preferably 0.0001% or more.
  • the Bi content may be 0.0005% or more, 0.001% or more, or 0.003% or more.
  • the Bi content is preferably 0.020% or less.
  • the Bi content may be 0.010% or less, 0.008% or less, or 0.005% or less.
  • Co is an element that contributes to improving hardenability and/or heat resistance.
  • the Co content may be 0%, in order to obtain these effects, the Co content is preferably 0.001% or more.
  • the Co content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Co content is preferably 0.20% or less.
  • the Co content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
  • W is an element that enhances the hardenability of steel and contributes to improving its strength.
  • the W content may be 0%, in order to obtain such an effect, the W content is preferably 0.001% or more.
  • the W content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the W content is preferably 0.20% or less.
  • the W content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
  • Zn is an element effective in controlling the shape of inclusions.
  • the Zn content is preferably 0.001% or more.
  • the Zn content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Zn content is preferably 0.20% or less.
  • the Zn content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
  • REM 0 to 0.1000%
  • REM rare earth metal
  • the REM content may be 0%, in order to obtain such an effect, the REM content is preferably 0.0001% or more.
  • the REM content may be 0.0005% or more, 0.0010% or more, or 0.0015% or more.
  • the REM content is preferably 0.1000% or less.
  • the REM content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids such as lanthanum (La) with atomic number 57 to lutetium (Lu with atomic number 71). ), and the REM content is the total content of these elements.
  • the remainder other than the above elements consists of Fe and impurities.
  • Impurities are components that are mixed in during the industrial production of high-strength hot rolled steel sheets due to various factors in the production process, including raw materials such as ores and scraps.
  • the chemical composition of the high-strength hot-rolled steel sheet according to the embodiment of the present invention may be measured by a general analytical method.
  • the chemical composition of the high-strength hot rolled steel sheet may be measured using inductively coupled plasma-atomic emission spectrometry (ICP-AES).
  • ICP-AES inductively coupled plasma-atomic emission spectrometry
  • C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
  • the position is 1/10W from the end in the width direction. , 3/10W position, 5/10W position, 7/10W position, and 9/10W position, the metal structure at the 1/4 plate thickness position is tempered martensite (tM) in area%: 95% or more, fresh martensite (fM): 5% or less, and at least one of ferrite ( ⁇ ), upper bainite (B), and pearlite (P): 5% or less in total.
  • tM tempered martensite
  • fM fresh martensite
  • P pearlite
  • total width refers to the length of a high-strength hot-rolled steel plate (for example, a coiled high-strength hot-rolled steel plate) in a direction perpendicular to the rolling direction and the plate thickness direction.
  • the rolling direction of the hot rolled steel sheet can be specified by the following method.
  • the S concentration is measured using an electron probe micro analyzer (EPMA).
  • the measurement conditions are an accelerating voltage of 15 kV, a measurement pitch of 1 ⁇ m, and a distribution image in a 500 ⁇ m square range at the center of the plate thickness.
  • the stretched region with a high S concentration is determined to be an inclusion such as MnS.
  • the metal structure at the 1/4 plate thickness position is By setting the area percentage of returned martensite to 95% or more, it is possible to achieve high strength due to the structure with martensite as the main phase, while also reducing the maximum and minimum tensile strengths at all positions in the width direction. It is possible to reliably control the difference in value to 30 MPa or less, and therefore it is possible to significantly reduce strength variations in the width direction.
  • the area ratio of tempered martensite may be 96% or more, 97% or more, or 98% or more.
  • the upper limit of the area ratio of tempered martensite is not particularly limited and may be 100%.
  • the area ratio of fresh martensite is preferably as low as possible at all positions in the width direction, for example, 4% or less, 3% or less, 2% or less, or 1% or less. Good too.
  • the lower limit of the area ratio of fresh martensite is not particularly limited and may be 0%.
  • the remaining structure other than tempered martensite and fresh martensite is composed of at least one of ferrite, upper bainite, and pearlite.
  • at least one of ferrite, upper bainite, and pearlite must be controlled to a total of 5% or less at all positions in the width direction. If the area ratio of at least one of ferrite, upper bainite, and pearlite exceeds 5% in total at any one position, the strength at that position will become too low, and strength variations in the width direction will be sufficiently reduced. You may not be able to do so.
  • the area ratio of at least one of ferrite, upper bainite, and pearlite be as low as possible at all positions in the width direction, for example, 4% or less, 3% or less, 2% or less in total. % or less or 1% or less.
  • the lower limit of the area ratio of at least one of ferrite, upper bainite, and pearlite is not particularly limited and may be 0% in total.
  • the total area percentage of fresh martensite, ferrite, upper bainite, and pearlite may be 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less.
  • the total area ratio of fresh martensite, ferrite, upper bainite, and pearlite may be 0%.
  • Identification of metal structure and calculation of area ratio are performed by FE-SEM (field emission scanning electron microscope) and optical microscope after corrosion using nital reagent or Repeller liquid, and X-ray diffraction method. Structure observation using FE-SEM and an optical microscope is performed at a magnification of 1,000 to 50,000 times on a 100 ⁇ m ⁇ 100 ⁇ m area in a steel plate cross section parallel to the rolling direction and perpendicular to the plate surface.
  • the area ratio of ferrite is 100 ⁇ m within the range of 1/8 to 3/8 of the plate thickness centered at the 1/4 position of the plate thickness in an electron channeling contrast image by FE-SEM (field emission scanning electron microscope). It is determined by observing an area of ⁇ 100 ⁇ m. More specifically, within the above region, a portion that appears with uniform contrast can be identified as ferrite, and its area ratio can be calculated using image analysis software Image J.
  • the area ratio of fresh martensite is determined by the following procedure. First, the observation surface of the sample is etched with repeller liquid, and then an area of 100 ⁇ m x 100 ⁇ m within the range of 1/8 to 3/8 of the plate thickness centered at 1/4 of the plate thickness is observed using FE-SEM. In repeller corrosion, fresh martensite and retained austenite are not corroded, so they appear as flat areas with brighter contrast than other parts on the SEM image. The area percentage of uncorroded areas corresponds to the total area percentage of fresh martensite and retained austenite, if present. The area ratio of fresh martensite is calculated by subtracting the area ratio of retained austenite measured by an X-ray diffraction method, which will be described later, from the area ratio of this uncorroded region.
  • the area ratio of retained austenite is calculated by X-ray diffraction method.
  • the sample is removed by mechanical polishing and chemical polishing from the surface of the sample to a depth of 1/4 in the thickness direction.
  • the integrated intensity ratio of the diffraction peaks of (200) and (211) of the bcc phase and (200), (220) and (311) of the fcc phase obtained using MoK ⁇ rays at a position of 1/4 of the plate thickness. From this, the tissue fraction of retained austenite is calculated. A general 5-peak method is used as this calculation method.
  • the calculated microstructure fraction of retained austenite is determined as the area fraction of retained austenite.
  • Identification of upper bainite and tempered martensite and calculation of area ratio are performed as follows. First, the observation surface of the sample is corroded with a nital reagent, and then an area of 100 ⁇ m x 100 ⁇ m within the range of 1/8 to 3/8 of the plate thickness, centered on 1/4 of the plate thickness, is observed using FE-SEM. Upper bainite and tempered martensite are identified in the following manner from the position and arrangement of cementite contained within the structure in this observation region. In upper bainite, cementite or retained austenite exists at the interface of lath-like bainitic ferrite.
  • upper bainite is identified, and the area ratio of upper bainite is calculated by dividing the area of the identified bainite by the area of the observation field.
  • tempered martensite cementite exists inside the martensite lath, but since there are two or more types of crystal orientations of martensite lath and cementite, and cementite has multiple variants, it is difficult to identify tempered martensite. Can be done. The area of tempered martensite thus identified is divided by the area of the observation field, and the value is calculated as the area ratio of tempered martensite.
  • Identification of pearlite and calculation of area ratio are performed in the following steps. First, the observation surface of the sample is corroded with a nital reagent, and then a range of 1/8 to 3/8 of the plate thickness, centered on 1/4 of the plate thickness, is observed using an optical microscope. A region where carbide and ferrite exist in a layered manner in an image observed with an optical microscope is identified as pearlite, and the value obtained by dividing this region by the area of the observation field is calculated as the area ratio of pearlite.
  • the difference between the maximum and minimum tensile strengths at all positions 1/10W, 3/10W, 5/10W, 7/10W, and 9/10W from the end in the width direction is 30 MPa below]
  • the positions are 1/10W, 3/10W, 5/10W, 7/10W, and 9/10W.
  • the flatness of the hot rolled steel sheet can be significantly improved despite its high strength.
  • the smaller the difference between the maximum value and the minimum value of the tensile strength the better, for example, 28 MPa or less, 25 MPa or less, 22 MPa or less, 20 MPa or less, 17 MPa or less, or 15 MPa or less.
  • the lower limit is not particularly limited, for example, the difference between the maximum and minimum tensile strengths is acceptable if it is 5 MPa or more, 8 MPa or more, or 10 MPa or more.
  • the difference between the maximum and minimum tensile strengths is determined as follows. First, a test was conducted in the direction parallel to the rolling direction at each of the 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the widthwise end of the hot rolled steel plate. A No. 5 tensile test piece of JIS Z2241:2011 with the direction is taken. Next, five tensile strength values are obtained by conducting a tensile test based on JIS Z2241:2011 using these tensile test pieces, and finally, the difference between the maximum value and the minimum value is calculated.
  • the minimum value among the above five tensile strength values is determined as the tensile strength of the high strength hot rolled steel sheet according to the embodiment of the present invention.
  • the high-strength hot-rolled steel sheet according to the embodiment of the present invention has the above-described chemical composition and metal structure, thereby achieving high tensile strength, specifically, a tensile strength of 980 MPa or more.
  • the tensile strength is preferably 1000 MPa or more, 1050 MPa or more, or 1100 MPa or more.
  • the high-strength hot-rolled steel sheet according to the embodiment of the present invention despite having such a very high tensile strength, in relation to the uniformity of the metal structure and the reduction of strength variations in the entire width direction, Very good flatness can be achieved.
  • the upper limit of the tensile strength is not particularly limited, for example, the tensile strength of the high-strength hot rolled steel sheet may be 1300 MPa or less, 1250 MPa or less, 1200 MPa or less, or 1180 MPa or less.
  • the prior austenite grain size in the metallographic structure is 40 ⁇ m or less.
  • the high-strength hot-rolled steel sheet according to the embodiment of the present invention can achieve extremely excellent flatness in relation to the uniformity of the metal structure and the reduction of strength variations in the entire width direction.
  • controlling the prior austenite grain size within such a fine range makes it possible to further improve additional properties such as toughness.
  • the prior austenite grain size is, the more preferable it is, and may be, for example, 37 ⁇ m or less, 35 ⁇ m or less, 32 ⁇ m or less, 30 ⁇ m or less, 27 ⁇ m or less, or 25 ⁇ m or less.
  • the lower limit is not particularly limited, for example, the prior austenite grain size may be 10 ⁇ m or more, 12 ⁇ m or more, 15 ⁇ m or more, 18 ⁇ m or more, or 20 ⁇ m or more.
  • the prior austenite grain size in the metal structure is determined as follows. First, a 200 ⁇ m x 200 ⁇ m area in the L cross section of a steel piece sampled from the surface of a hot rolled steel sheet at a position 1/4 of the sheet thickness is analyzed by SEM/EBSD (scanning electron microscope/backscattered electron diffraction). More specifically, a predetermined crystal orientation transformation is applied to the crystal orientation data obtained by SEM/EBSD ("Study for improving the accuracy of the method for reconstructing the austenite structure of steel", Kengo Hata, Masayuki Wakita, Tomoya Fujiwara). , Kaori Kono, Nippon Steel & Sumikin Technical Report No. 404 (2016), p.
  • the diameter of a circle having the same area is determined from the prior austenite grains in the image. This operation is performed for a total of 10 prior austenite grains, and the obtained 10 circle equivalent diameters are averaged to determine the prior austenite grain size.
  • the high-strength hot-rolled steel sheet according to the embodiment of the present invention can have any overall width W.
  • the full width W may be 700 mm or more, 800 mm or more, 900 mm or more, or 1000 mm or more.
  • the upper limit is not particularly limited, but from the viewpoint of ensuring improvement in flatness, the total width is preferably 2500 mm or less, such as 2200 mm or less, 2000 mm or less, 1800 mm or less, 1600 mm or less, 1500 mm or less, 1400 mm or less, or 1300 mm. It may be the following.
  • the high-strength hot-rolled steel plate according to the embodiment of the present invention generally has a thickness of 1.0 to 6.0 mm, although it is not particularly limited.
  • the plate thickness may be 1.2 mm or more, 1.6 mm or more, or 2.0 mm or more, and/or 5.0 mm or less, 4.0 mm or less, or 3.0 mm or less.
  • the method for manufacturing a high-strength hot-rolled steel sheet includes: A hot rolling process comprising heating a slab having the chemical composition described above in connection with a high-strength hot rolled steel sheet to a temperature of 1220 to 1300°C and subjecting it to rough rolling and finish rolling, the process comprising: The exit temperature of the finish rolling is 1100 to 1200°C, the entry temperature (F0) of the finish rolling is 1000 to 1100°C, the exit temperature (FT) of the finish rolling is 940 to 1000°C, and the a hot rolling process in which the total rolling reduction is 85 to 95%; The finish rolled steel plate is heated in the temperature range from the exit temperature (FT) of the finish rolling to the martensitic transformation start temperature Ms + 50°C at an average cooling rate of not less than critical cooling rate Vc + 10°C/s and not more than 60°C/s.
  • the feature is that it includes a winding process.
  • a slab having the chemical composition described above in connection with hot rolled steel sheet is heated.
  • the slab used is preferably cast by a continuous casting method from the viewpoint of productivity, but may be manufactured by an ingot casting method or a thin slab casting method.
  • the slabs used contain relatively high amounts of alloying elements in order to obtain high strength steel sheets. For this reason, it is necessary to heat the slab to dissolve the alloying elements in the slab before hot rolling. If the heating temperature is less than 1220° C., the alloying elements will not be fully dissolved in the slab, leaving coarse alloy carbides, which may cause embrittlement cracking during hot rolling. For this reason, the heating temperature is 1220°C or higher, preferably 1230°C or higher.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 1300° C. or lower from the viewpoint of the capacity of the heating equipment and productivity.
  • the heated slab is subjected to rough rolling before finish rolling in order to adjust the plate thickness and the like.
  • the exit temperature of the rough rolling is set at 1100 to 1100°C.
  • the temperature is 1200°C, preferably 1150 to 1200°C. If the exit temperature of rough rolling is less than 1100°C, it becomes difficult to obtain an exit temperature of 940°C or higher in finish rolling following rough rolling. Moreover, when the exit temperature of rough rolling exceeds 1200° C., crystal grains may become coarse and the toughness of the obtained hot rolled steel sheet may decrease.
  • the rough rolled slab is then subjected to finish rolling.
  • the entry temperature (F0) of finish rolling is 1000 to 1100°C
  • the exit temperature (FT) of finish rolling is 940 to 1000°C
  • the finishing temperature is 1000 to 1100°C.
  • the total rolling reduction ratio is 85 to 95%.
  • the exit temperature of finish rolling is important in terms of controlling the metallographic structure of the steel sheet. More specifically, if the exit temperature during finish rolling is low, the metal structure may become non-uniform and formability may deteriorate. For this reason, the exit temperature of finish rolling is set to 940° C. or higher. On the other hand, in order to suppress coarsening of austenite, the exit temperature of finish rolling is set to 1000° C. or less.
  • the finish-rolled steel plate is first cooled at a critical cooling rate of Vc+10°C/s or more, 60°C/s, in the temperature range from the finish rolling exit temperature (FT) to the martensitic transformation start temperature Ms+50°C.
  • Primary cooling is performed at the following average cooling rate.
  • the average cooling rate of primary cooling is less than the critical cooling rate Vc + 10°C/s, the total amount of at least one of ferrite, upper bainite, and pearlite will exceed 5 area%, and the desired strength may not be achieved. be.
  • the average cooling rate of primary cooling is more than 60° C./s, the cooling rate is so fast that it becomes difficult to uniformly cool the steel plate in the width direction, resulting in uneven cooling in the width direction.
  • the desired metallographic structure may not be obtained in the width direction in the finally obtained hot rolled steel sheet, and/or the tensile strength may vary widely in the width direction.
  • the shape collapses and warpage occurs in the width direction of the steel plate, making it impossible to achieve sufficient flatness. Therefore, the average cooling rate of the primary cooling is greater than or equal to the critical cooling rate Vc+10°C/s and less than or equal to 60°C/s, preferably greater than or equal to the critical cooling rate Vc+12°C/s and less than or equal to 60°C/s.
  • the Ms point (° C.) is determined by the following formula 1.
  • Ms 823-350[C]-40[Mn]-35[V]-20[Cr]-17[Ni]-10[Cu]-10[Mo]-10[W]+15[Co]+30[Al ]-273 ...
  • [C], [Mn], [V], [Cr], [Ni], [Cu], [Mo], [W], [Co] and [Al] are the respective elements in the steel.
  • the content (mass%) is 0 if the element is not contained.
  • the critical cooling rate Vc (° C.) is also a hardenability index at which the martensite area ratio is 90% or more, and can be expressed by the following formulas 2 and 3.
  • logVc 3.69-0.75 ⁇ (2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+[Mo]).
  • [C], [Si], [Mn], [Ni], [Cr] and [Mo] are the contents (mass%) of each element in the steel, and are 0 if no element is contained.
  • the solid solution B amount corresponds to the amount obtained by subtracting the B amount consumed to form boron nitride (BN) from the B content contained in the steel.
  • the amount of solid solution N (mass %) that can form BN can be reduced by including Ti in the steel and fixing it as TiN. Therefore, the amount of solid solution B can be calculated using equations 4 and 5 below.
  • Solid solution B amount 10.81 ⁇ ([B] / 10.81 - solid solution N amount / 14.01) ... Formula 4
  • Solid solution N amount 14.01 ⁇ ([N]/14.01-[Ti]/47.88) ...
  • the metal structure at 1/4 plate thickness position is expressed as area% of tempered marten.
  • Site It becomes impossible to organize more than 95% of the sites. As a result, it becomes impossible to sufficiently reduce the strength variation in the width direction to a level where the difference between the maximum value and the minimum value among the tensile strengths at all positions in the width direction is 30 MPa or less.
  • the above-mentioned upper and lower cooling ratio does not mean the ratio of the amount of cooling water on the entire upper surface and the amount of cooling water on the entire lower surface in the section from FT to (Ms+50)°C. More specifically, in this manufacturing method, the section from FT to (Ms+50)°C is divided into sections every 10 m, and the upper and lower cooling ratios are calculated for each section from the amount of cooling water on the top surface and the amount of cooling water on the bottom surface. The upper and lower cooling ratios of each section calculated in this way are all controlled within the range of 0.8 to 1.2.
  • each section has a plurality of cooling water nozzles arranged above and below the steel plate along the traveling direction of the steel plate, so these cooling water nozzles can be appropriately controlled based on on/off control. By injecting, it is possible to relatively easily control the upper and lower cooling ratio of each section within the range of 0.8 to 1.2.
  • the average cooling rate of secondary cooling is less than 50° C./s, it may not be possible to obtain a desired metal structure in the width direction of the steel plate, and strength variations in the width direction may not be sufficiently reduced.
  • the average cooling rate of secondary cooling exceeds 120°C/s, autotempering cannot be promoted, and fresh martensite may remain in an amount exceeding 5 area% in the final metal structure. be. In addition to or in place of this, due to such rapid cooling, the controllability of the amount of water used for cooling deteriorates, and uneven cooling occurs in the width direction due to local overcooling of parts. .
  • the tensile strength of the finally obtained hot rolled steel sheet increases in the width direction, the shape of the hot rolled steel sheet collapses, and the steel sheet warps in the width direction, resulting in insufficient strength. It becomes impossible to achieve flatness.
  • the metal structure at 1/4 plate thickness position is expressed as area% of tempered marten.
  • Site It becomes impossible to organize more than 95% of the sites. As a result, it becomes impossible to sufficiently reduce the strength variation in the width direction to a level where the difference between the maximum value and the minimum value among the tensile strengths at all positions in the width direction is 30 MPa or less.
  • the above-mentioned upper and lower cooling ratio does not mean the ratio of the amount of cooling water on the entire upper surface and the amount of cooling water on the entire lower surface in the range from (Ms+50)° C. to 200° C. More specifically, in this manufacturing method, the section from (Ms + 50) °C to 200 °C is divided into sections every 10 m, and the upper and lower cooling ratios are calculated from the amount of cooling water on the upper surface and the amount of cooling water on the lower surface for each section, The upper and lower cooling ratios of each section calculated in this way are all controlled within the range of 0.8 to 1.2.
  • each section has a plurality of cooling water nozzles arranged above and below the steel plate along the direction of movement of the steel plate, so these cooling water By appropriately injecting the nozzle based on on/off control, it is possible to relatively easily control the upper and lower cooling ratio of each section within the range of 0.8 to 1.2.
  • Winding process The secondarily cooled steel plate is finally wound up at 50 to 100°C in a winding process. If the coiling temperature is too low, the hot-rolled steel sheet may become hard and brittle, and excessive water cooling or the like will be required, resulting in a decrease in productivity. Therefore, the winding temperature is 50°C or higher, preferably 80°C or higher.
  • the tempered martensite in the metal structure at the 1/4 plate thickness position is 95% or more in area%, and martensite is the main While achieving high strength due to the phase structure, more specifically, a tensile strength of 980 MPa or more, the difference between the maximum and minimum tensile strengths at all positions in the width direction is surely 30 MPa or less. can be controlled.
  • the high-strength hot-rolled steel sheet manufactured by the above-mentioned manufacturing method has uniform characteristics in the width direction and has very good flatness in spite of its high strength.
  • the above-mentioned high strength and flatness can be achieved in hot-rolled steel sheets that have not been subjected to flattening treatment using a leveler, for example, in hot-rolled steel sheets immediately after production, so such flattening treatment ( Pre-processing) does not consume part of the steel sheet's inherent ductility.
  • the high-strength hot-rolled steel sheet is particularly useful in the automobile field, but can also be used very effectively in other fields.
  • high-strength hot-rolled steel sheets according to embodiments of the present invention were manufactured under various conditions, and the characteristics and flatness in the width direction of the obtained high-strength hot-rolled steel sheets were investigated.
  • molten steel was cast by a continuous casting method to form slabs having various chemical compositions shown in Table 1, these slabs were heated under the conditions shown in Table 2, and then hot rolled.
  • Hot rolling was carried out by performing rough rolling and finish rolling, and the exit temperature of rough rolling, the entry temperature (F0), exit temperature (FT), and total rolling reduction of finish rolling were as shown in Table 2. Met.
  • the finish-rolled steel plate was first cooled in a temperature range from the finish rolling exit temperature (FT) to the martensitic transformation start temperature Ms + 50°C, and then Ms + 50°C. Secondary cooling was performed in a temperature range from 200°C to 200°C.
  • the section from FT to (Ms+50)°C and the section from (Ms+50)°C to 200°C are divided into sections every 10m, and the amount of cooling water on the top surface and the amount on the bottom surface are determined for each section.
  • the upper and lower cooling ratios were calculated from the amount of cooling water, and cooling was performed so that the upper and lower cooling ratios of each section calculated in this manner were controlled within a predetermined range.
  • the upper and lower cooling ratios in primary cooling and secondary cooling in Table 2 indicate the one with the largest absolute value of the difference from the cooling ratio 1 among the upper and lower cooling ratios of each section in primary cooling and secondary cooling.
  • the secondary cooled steel plate was rolled up under the conditions shown in Table 2 to obtain a hot rolled steel plate having a thickness of about 2.3 to 3.2 mm and a total width of 1200 mm.
  • the properties of the obtained hot rolled steel sheet were measured and evaluated by the following methods.
  • the prior austenite grain size in the metal structure was determined as follows. First, a 200 ⁇ m x 200 ⁇ m area in the L cross section of a steel piece sampled from the surface of a hot rolled steel sheet at a position 1/4 of the sheet thickness was analyzed by SEM/EBSD. More specifically, a predetermined crystal orientation transformation was performed on the martensite structure obtained by SEM/EBSD to obtain an image in which the prior austenite grains were reconstructed, and then the equivalent circle diameter was determined from the prior austenite grains in the image. . This operation was performed for a total of 10 prior austenite grains, and the obtained 10 circle equivalent diameters were averaged to determine the prior austenite grain size.
  • Evaluation of flatness was performed as follows. First, the obtained hot-rolled steel plate is placed on a surface plate so that at least a part of one of the plate surfaces (lower surface) is in contact with the surface plate, and then the height of the hot-rolled steel sheet from the surface plate is the highest. The distance from the surface plate at a high position to the lower surface of the hot-rolled steel plate was measured, and the obtained measured value was determined as the maximum warp height H (mm) of the hot-rolled steel plate. As for evaluation of flatness, a case where the maximum warp height H was within 10 mm was judged as a pass, and a case where the maximum warp height H exceeded 10 mm was judged as a failure.
  • Comparative Example 16 since the Mn content was high, it is considered that martensite was not sufficiently tempered even by auto-tempering during cooling of the steel sheet due to improvement in hardenability. As a result, the proportion of fresh martensite (fM) in the metal structure increased, and related to this, it was not possible to sufficiently reduce the variation in tensile strength in the width direction, and the flatness decreased. Comparative Example 17 could not achieve the desired tensile strength because the Mn content was low. It is also believed that because the Mn content was low, hardenability was insufficient and a relatively large amount of soft phases such as ferrite were formed during cooling.
  • Comparative Example 19 because the average cooling rate of primary cooling was low, the total amount of at least one of ferrite, upper bainite, and pearlite exceeded 5 area %, and the desired tensile strength could not be achieved.
  • Comparative Example 20 since the average cooling rate of the primary cooling was high, it was not possible to uniformly distribute the desired metal structure in the width direction due to the occurrence of cooling unevenness. Dispersion in tensile strength also became significant. As a result, sufficient flatness could not be achieved. In Comparative Examples 21 and 22, the desired metal structure could not be uniformly distributed in the width direction due to the occurrence of uneven cooling because the upper and lower cooling ratio of the primary cooling was not appropriate. The variation in tensile strength in the width direction also became significant.
  • the hot-rolled steel sheets according to all the invention examples have a predetermined chemical composition, and by appropriately controlling each condition in the manufacturing method, especially the cooling process, At all positions: 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position, the tempered martensite in the metal structure at the plate thickness 1/4 position is calculated by area%. With a tensile strength of 95% or more, it was possible to achieve a tensile strength of 980 MPa or more due to the structure having tempered martensite as the main phase. In addition, it is possible to reliably control the difference between the maximum and minimum tensile strengths at all positions in the width direction to 30 MPa or less, and therefore it is possible to significantly reduce strength variations in the width direction.
  • Table 3 shows the part where the minimum tensile strength was obtained and the part where the maximum tensile strength was obtained among the 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the end in the width direction. Only the metal structure of the part where tensile strength was obtained is specifically shown. However, in Invention Examples 1, 3 to 7, and 12, in all these positions, the metal structure at the 1/4 position of the plate thickness has an area ratio of tempered martensite: 95% or more and fresh martensite: 5%. The following and at least one of ferrite, upper bainite, and pearlite: the total amount was 5% or less.

Abstract

Provided is a high-strength hot-rolled steel sheet having a predetermined chemical composition, wherein at all of the positions of 1/10W, 3/10W, 5/10W, 7/10W, and 9/10W from the end in the width direction (W is the total width in the direction perpendicular to the rolling direction and the sheet thickness direction), the metal structure at 1/4 position of the sheet thickness contains, in area%, at least 95% of tempered martensite, 5% or less of fresh martensite, and 5% of less in total of at least one among ferrite, upper bainite, and pearlite, and the difference between the maximum and minimum tensile strengths at all of the positions in the width direction is 30 MPa or less.

Description

高強度熱延鋼板High strength hot rolled steel plate
 本発明は、高強度熱延鋼板に関する。 The present invention relates to high-strength hot-rolled steel sheets.
 近年、自動車業界では、環境負荷低減及び乗員の安全性確保の観点から鋼板の高強度化が進んでいる。鋼板の高強度化に伴い、鋼板の金属組織を構成する主要な組織がマルテンサイト組織となりつつある。 In recent years, the automobile industry has been increasing the strength of steel plates from the perspective of reducing environmental impact and ensuring passenger safety. As the strength of steel sheets increases, the main structure constituting the metallographic structure of steel sheets is becoming martensitic.
 例えば、特許文献1では、質量%で、C:0.08%以上0.16%未満、Si:0.01~1.0%、Mn:0.8~2.0%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、N:0.002~0.006%、Nb:0.001~0.05%、Ti:0.001~0.05%、Cr:0.01~1.0%、B:0.0005~0.0050%を含有し、残部Feおよび不可避的不純物からなる組成と、マルテンサイト相または焼戻マルテンサイト相を主相とし、該主相が組織全体に対する体積率で90%以上であり、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下、圧延方向に垂直な断面で15μm以下であり、かつ圧延方向に平行な断面における旧オーステナイト粒のアスペクト比が18以下である組織とを有することを特徴とする低温靭性に優れた高強度熱延鋼板が記載されている。また、特許文献1では、上記の構成によれば、高価なMoを含有することなく、降伏強さYS:960MPa以上の高強度と、vE-40が40J以上の高靭性とを有し、さらに曲げ加工性、耐遅れ破壊性にも優れ、また、ブリネル硬さで360HB以上の表面硬さを有し耐摩耗性に優れ、建設用機械や産業用機械の構造部材用として好適な熱延鋼板を容易に製造でき、産業上格段の効果を奏すると記載されている。 For example, in Patent Document 1, in mass %, C: 0.08% or more and less than 0.16%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.0%, P: 0. 025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.002 to 0.006%, Nb: 0.001 to 0.05%, Ti: 0.001 ~0.05%, Cr: 0.01~1.0%, B: 0.0005~0.0050%, with the balance consisting of Fe and inevitable impurities, and a martensite phase or tempered martensite. phase is the main phase, the main phase has a volume percentage of 90% or more of the entire structure, and the average grain size of prior austenite grains is 20 μm or less in a cross section parallel to the rolling direction and 15 μm or less in a cross section perpendicular to the rolling direction. A high-strength hot-rolled steel sheet with excellent low-temperature toughness is described, which has a structure in which the aspect ratio of prior austenite grains in a cross section parallel to the rolling direction is 18 or less. Further, in Patent Document 1, according to the above structure, without containing expensive Mo, it has high strength of yield strength YS: 960 MPa or more, high toughness of vE -40 of 40 J or more, and A hot-rolled steel sheet with excellent bending workability and delayed fracture resistance, as well as a surface hardness of 360HB or more on Brinell hardness, and excellent wear resistance, making it suitable for structural members of construction machinery and industrial machinery. It is described that it can be easily produced and has great industrial effects.
 特許文献2では、質量%で、C:0.05~0.14%、Si:0.01~1.0%、Mn:0.50~2.0%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、N:0.002~0.006%、Nb:0.001~0.05%、Ti:0.001~0.05%、Cr:0.01~1.0%、B:0.0005~0.0050%を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、鋼組織が、マルテンサイト相および焼戻マルテンサイト相の少なくとも一方からなり鋼組織全体に対する面積率が95%以上である主相を有し、マルテンサイト相および/または焼戻マルテンサイト相のラス内に平均粒径が0.5μm以下のセメンタイトを含有し、セメンタイトの含有量が質量%で0.01~0.08%であることを特徴とする高強度熱延鋼板が記載されている。また、特許文献2では、上記の構成によれば、高価な合金元素であるMoを含有しなくても、高靭性で、打抜き性および打抜き曲げ疲労強度特性に優れる高強度熱延鋼板、具体的には、引張強度TS:980MPa以上の高強度と、試験温度-40℃でのシャルピー衝撃試験の吸収エネルギーvE-40が40J以上の高靭性とを有し、さらに打抜き性および打抜き曲げ疲労強度特性にも優れる高強度熱延鋼板を提供することができると記載されている。 In Patent Document 2, in mass %, C: 0.05 to 0.14%, Si: 0.01 to 1.0%, Mn: 0.50 to 2.0%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.002 to 0.006%, Nb: 0.001 to 0.05%, Ti: 0.001 to 0.05 %, Cr: 0.01 to 1.0%, B: 0.0005 to 0.0050%, with the balance consisting of Fe and unavoidable impurities, and the steel structure has a martensitic phase and a sintered phase. It has a main phase consisting of at least one of the tempered martensitic phases and has an area ratio of 95% or more to the entire steel structure, and the average grain size in the laths of the martensitic phase and/or tempered martensitic phase is 0.5 μm or less A high-strength hot-rolled steel sheet is described, which contains cementite and has a cementite content of 0.01 to 0.08% by mass. Further, in Patent Document 2, according to the above structure, a high-strength hot-rolled steel sheet that has high toughness and excellent punchability and punching bending fatigue strength characteristics without containing Mo, which is an expensive alloying element, is specifically described. It has high tensile strength TS: 980 MPa or more, high toughness with absorbed energy vE -40 of 40 J or more in the Charpy impact test at a test temperature of -40°C, and also has excellent punching properties and punching bending fatigue strength properties. It is stated that it is possible to provide a high-strength hot-rolled steel sheet that has excellent properties.
 特許文献3では、質量%で、C:0.10~0.25%、Si:0.10%以下、Mn:1.0~2.0%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.01~0.05%、Ti:0.005~0.05%、Cr:0.05~1.0%、B:0.0005~0.0050%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、焼戻マルテンサイト相が、組織全体に対する体積率で95%以上であり、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下、圧延方向に直交する断面で15μm以下である組織を有し、降伏強度(YS)960MPa以上であることを特徴とする板幅方向の強度均一性に優れた高強度熱延鋼板が記載されている。また、特許文献3では、鋼板の組織を幅方向全域にわたって、主相を焼戻マルテンサイトとし、圧延方向に平行な断面における旧オーステナイト(γ)粒の平均粒径が20μm以下で、かつ圧延方向に直交する断面における旧オーステナイト粒の平均粒径が15μm以下である組織とすることにより、降伏強さYS:960MPa以上の高強度を幅方向に均一に有する高強度熱延鋼板が得られると教示されている。 In Patent Document 3, in mass %, C: 0.10 to 0.25%, Si: 0.10% or less, Mn: 1.0 to 2.0%, P: 0.025% or less, S: 0 .005% or less, Al: 0.005 to 0.10%, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.05%, Cr: 0.05 to 1.0%, B :0.0005 to 0.0050%, the balance is Fe and unavoidable impurities, the tempered martensite phase accounts for 95% or more by volume of the entire structure, and the prior austenite grains In the width direction, the average grain size of A high-strength hot-rolled steel sheet with excellent strength uniformity is described. Further, in Patent Document 3, the structure of the steel sheet is such that the main phase is tempered martensite over the entire width direction, the average grain size of prior austenite (γ) grains in a cross section parallel to the rolling direction is 20 μm or less, and It is taught that by creating a structure in which the average grain size of prior austenite grains in a cross section perpendicular to has been done.
特開2016-211073号公報JP 2016-211073 Publication 特開2018-188675号公報Japanese Patent Application Publication No. 2018-188675 特開2016-183414号公報Japanese Patent Application Publication No. 2016-183414
 特許文献1~3に記載されるような熱延鋼板において、高強度化のために金属組織をマルテンサイト単相の又はマルテンサイト単相により近い組織とする場合、冷却時の冷却むらや変態時の変態塑性などに起因して鋼板形状が崩れてしまう場合があり、このような場合には、得られる熱延鋼板において十分な平坦度を維持することが困難となる。例えば、特許文献3では、降伏強さYSが幅方向で均一な高強度熱延鋼板について検討がされているものの、当該高強度熱延鋼板の平坦度を改善するという観点からは何ら具体的な検討はなされていない。 In hot-rolled steel sheets as described in Patent Documents 1 to 3, when the metal structure is made into a martensite single phase or a structure closer to a martensite single phase in order to increase the strength, uneven cooling during cooling or during transformation may occur. The shape of the steel sheet may collapse due to transformation plasticity, etc., and in such a case, it becomes difficult to maintain sufficient flatness in the obtained hot rolled steel sheet. For example, in Patent Document 3, a high-strength hot-rolled steel plate with a uniform yield strength YS in the width direction is studied, but there is no specific method for improving the flatness of the high-strength hot-rolled steel plate. No consideration has been given.
 そこで、本発明は、新規な構成により、改善された平坦度を有する高強度熱延鋼板を提供することを目的とする。 Therefore, an object of the present invention is to provide a high-strength hot-rolled steel sheet with improved flatness using a novel configuration.
 本発明者らは、上記目的を達成するために、特に熱延鋼板の幅方向における金属組織に着目して検討を行った。その結果、本発明者らは、所定の化学組成を有する熱延鋼板の金属組織を焼き戻しマルテンサイトを主相とする組織にすることで高強度を確保しつつ、当該組織を幅方向に均一に分布させることで、幅方向の強度ばらつきを低減することができることを見出した。このように、幅方向の強度ばらつきを低減することで、熱延鋼板の幅方向における平坦度を顕著に改善した熱延鋼板を提供することができる。 In order to achieve the above object, the present inventors conducted a study focusing particularly on the metal structure in the width direction of a hot rolled steel sheet. As a result, the present inventors succeeded in ensuring high strength by changing the metal structure of a hot-rolled steel sheet having a predetermined chemical composition into a structure with tempered martensite as the main phase, while also making the structure uniform in the width direction. It has been found that by distributing the strength in the width direction, it is possible to reduce the strength variation in the width direction. In this way, by reducing the strength variation in the width direction, it is possible to provide a hot rolled steel sheet in which the flatness in the width direction of the hot rolled steel sheet is significantly improved.
 上記目的を達成し得た本発明は下記のとおりである。
 (1)質量%で、
 C:0.050~0.100%、
 Si:0.010~0.200%、
 Mn:1.00~2.50%、
 Ti:0.001~0.120%、
 Al:0.001~0.050%、
 B:0.0005~0.0050%、
 P:0.100%以下、
 S:0.050%以下、
 N:0.0050%以下、
 O:0~0.0050%、
 Cu:0~0.20%、
 Ni:0~0.20%、
 Sn:0~0.10%、
 Cr:0~0.40%、
 Mo:0~0.20%、
 Nb:0~0.05%、
 V:0~0.10%、
 As:0~0.100%、
 Zr:0~0.100%、
 Ca:0~0.0050%、
 Mg:0~0.100%、
 Bi:0~0.020%、
 Co:0~0.20%、
 W:0~0.20%、
 Zn:0~0.20%、
 REM:0~0.1000%、並びに
 残部:Fe及び不純物からなる化学組成を有し、
 圧延方向及び板厚方向に垂直な方向における全幅をWとした場合に、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置の金属組織が、面積%で、
 焼き戻しマルテンサイト:95%以上、
 フレッシュマルテンサイト:5%以下、並びに
 フェライト、上部ベイナイト及びパーライトの少なくとも1種:合計で5%以下であり、
 前記幅方向の全ての位置における引張強度のうち最大値と最小値の差が30MPa以下であることを特徴とする、高強度熱延鋼板。
 (2)前記化学組成が、質量%で、
 O:0.0001~0.0050%、
 Cu:0.001~0.20%、
 Ni:0.001~0.20%、
 Sn:0.001~0.10%、
 Cr:0.001~0.40%、
 Mo:0.001~0.20%、
 Nb:0.001~0.05%、
 V:0.001~0.10%、
 As:0.001~0.100%、
 Zr:0.0001~0.100%、
 Ca:0.0001~0.0050%、
 Mg:0.0001~0.100%、
 Bi:0.0001~0.020%、
 Co:0.001~0.20%、
 W:0.001~0.20%、
 Zn:0.001~0.20%、及び
 REM:0.0001~0.1000%
のうち少なくとも1種を含むことを特徴とする、上記(1)に記載の高強度熱延鋼板。
 (3)前記金属組織における旧オーステナイト粒径が40μm以下であることを特徴とする、上記(1)又は(2)に記載の高強度熱延鋼板。
The present invention that achieves the above object is as follows.
(1) In mass%,
C: 0.050-0.100%,
Si: 0.010-0.200%,
Mn: 1.00-2.50%,
Ti: 0.001 to 0.120%,
Al: 0.001-0.050%,
B: 0.0005-0.0050%,
P: 0.100% or less,
S: 0.050% or less,
N: 0.0050% or less,
O: 0 to 0.0050%,
Cu: 0 to 0.20%,
Ni: 0 to 0.20%,
Sn: 0 to 0.10%,
Cr: 0 to 0.40%,
Mo: 0-0.20%,
Nb: 0 to 0.05%,
V: 0-0.10%,
As: 0 to 0.100%,
Zr: 0 to 0.100%,
Ca: 0-0.0050%,
Mg: 0-0.100%,
Bi: 0 to 0.020%,
Co: 0 to 0.20%,
W: 0-0.20%,
Zn: 0-0.20%,
It has a chemical composition consisting of REM: 0 to 0.1000%, and the balance: Fe and impurities,
When the total width in the direction perpendicular to the rolling direction and the plate thickness direction is W, 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the end in the width direction At all positions, the metal structure at the 1/4 position of the plate thickness is expressed as area%,
Tempered martensite: 95% or more,
Fresh martensite: 5% or less, and at least one of ferrite, upper bainite, and pearlite: 5% or less in total,
A high-strength hot-rolled steel sheet, characterized in that the difference between the maximum and minimum tensile strengths at all positions in the width direction is 30 MPa or less.
(2) the chemical composition is in mass%;
O: 0.0001 to 0.0050%,
Cu: 0.001 to 0.20%,
Ni: 0.001 to 0.20%,
Sn: 0.001 to 0.10%,
Cr: 0.001-0.40%,
Mo: 0.001 to 0.20%,
Nb: 0.001-0.05%,
V: 0.001 to 0.10%,
As: 0.001 to 0.100%,
Zr: 0.0001 to 0.100%,
Ca: 0.0001-0.0050%,
Mg: 0.0001-0.100%,
Bi: 0.0001-0.020%,
Co: 0.001 to 0.20%,
W: 0.001-0.20%,
Zn: 0.001~0.20%, and REM: 0.0001~0.1000%
The high-strength hot-rolled steel sheet described in (1) above, characterized by containing at least one of the following.
(3) The high-strength hot rolled steel sheet according to (1) or (2) above, wherein the prior austenite grain size in the metal structure is 40 μm or less.
 本発明によれば、改善された平坦度を有する高強度熱延鋼板を提供することができる。 According to the present invention, it is possible to provide a high-strength hot-rolled steel sheet with improved flatness.
<高強度熱延鋼板>
 本発明の実施形態に係る高強度熱延鋼板は、質量%で、
 C:0.050~0.100%、
 Si:0.010~0.200%、
 Mn:1.00~2.50%、
 Ti:0.001~0.120%、
 Al:0.001~0.050%、
 B:0.0005~0.0050%、
 P:0.100%以下、
 S:0.050%以下、
 N:0.0050%以下、
 O:0~0.0050%、
 Cu:0~0.20%、
 Ni:0~0.20%、
 Sn:0~0.10%、
 Cr:0~0.40%、
 Mo:0~0.20%、
 Nb:0~0.05%、
 V:0~0.10%、
 As:0~0.100%、
 Zr:0~0.100%、
 Ca:0~0.0050%、
 Mg:0~0.100%、
 Bi:0~0.020%、
 Co:0~0.20%、
 W:0~0.20%、
 Zn:0~0.20%、
 REM:0~0.1000%、並びに
 残部:Fe及び不純物からなる化学組成を有し、
 圧延方向及び板厚方向に垂直な方向における全幅をWとした場合に、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置の金属組織が、面積%で、
 焼き戻しマルテンサイト:95%以上、
 フレッシュマルテンサイト:5%以下、並びに
 フェライト、上部ベイナイト及びパーライトの少なくとも1種:合計で5%以下であり、
 前記幅方向の全ての位置における引張強度のうち最大値と最小値の差が30MPa以下であることを特徴としている。
<High-strength hot-rolled steel plate>
The high-strength hot-rolled steel sheet according to the embodiment of the present invention has, in mass%,
C: 0.050-0.100%,
Si: 0.010-0.200%,
Mn: 1.00-2.50%,
Ti: 0.001 to 0.120%,
Al: 0.001-0.050%,
B: 0.0005-0.0050%,
P: 0.100% or less,
S: 0.050% or less,
N: 0.0050% or less,
O: 0 to 0.0050%,
Cu: 0 to 0.20%,
Ni: 0 to 0.20%,
Sn: 0 to 0.10%,
Cr: 0-0.40%,
Mo: 0-0.20%,
Nb: 0 to 0.05%,
V: 0-0.10%,
As: 0 to 0.100%,
Zr: 0 to 0.100%,
Ca: 0-0.0050%,
Mg: 0-0.100%,
Bi: 0 to 0.020%,
Co: 0 to 0.20%,
W: 0-0.20%,
Zn: 0-0.20%,
It has a chemical composition consisting of REM: 0 to 0.1000%, and the balance: Fe and impurities,
When the total width in the direction perpendicular to the rolling direction and the plate thickness direction is W, 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the end in the width direction At all positions, the metal structure at the 1/4 position of the plate thickness is expressed as area%,
Tempered martensite: 95% or more,
Fresh martensite: 5% or less, and at least one of ferrite, upper bainite, and pearlite: 5% or less in total,
It is characterized in that the difference between the maximum and minimum tensile strengths at all positions in the width direction is 30 MPa or less.
 先に述べたとおり、熱延鋼板において高強度化のために金属組織をマルテンサイト単相の又はマルテンサイト単相により近い組織とする場合、冷却時の冷却むらや変態時の変態塑性などに起因して鋼板形状が崩れてしまう場合があり、このような場合には、得られる熱延鋼板において十分な平坦度を維持することが困難となる。鋼板形状の崩れに関しては、具体的には鋼板の幅方向(圧延方向及び板厚方向に直交する方向)に反りが生じることがある。鋼板の幅方向に反りが生じると、このような鋼板を利用して長手部材を成形する際に形状不良や成形時の割れの要因となる場合がある。このような反りを改善する既存の手法としてレベラーなどでの矯正(平坦化処理)が挙げられる。しかしながら、鋼板の強度が高くなるとレベラーなどでは必ずしも十分な矯正ができない場合がある。また、レベラーなどで矯正することにより予加工を施してしまうと、このような予加工によって鋼板が本来持っている延性の一部を消費してしまうこととなり残延性が低下する。残延性が低下すると、鋼板のプレス時に成形不良が生じやすくなり、結果として生産性も低下する。このため、レベラー等で矯正せずとも、熱延したままの鋼板の状態において平坦度が良好であることが求められる。鋼板形状が崩れる要因としては、主に仕上げ圧延後の冷却速度が速いことが挙げられる。仕上げ圧延後の冷却速度が速い場合、冷却に使用する水量の制御性が悪化し、局所的に過冷される部分が生じるなどして冷却の不均一が顕著となる。その結果として、鋼板の幅方向における温度むらに起因して熱応力が発生し、鋼板の幅方向に反りが生じてしまう。このため、平坦性確保の観点からは、仕上げ圧延後の冷却速度を過度に速くすることは必ずしも適切ではない。一方で、高強度化の観点からマルテンサイト単相の又はマルテンサイト単相により近い組織を得るためには、臨界冷却速度以上の冷却速度で冷却する必要がある。 As mentioned earlier, when the metal structure of a hot rolled steel sheet is made into a martensite single phase or a structure closer to a martensite single phase in order to increase the strength, the metal structure is affected by uneven cooling during cooling and transformation plasticity during transformation. In such a case, it becomes difficult to maintain sufficient flatness in the resulting hot rolled steel sheet. Regarding deformation of the steel plate shape, specifically, warpage may occur in the width direction of the steel plate (direction perpendicular to the rolling direction and the plate thickness direction). If a steel plate is warped in the width direction, it may cause shape defects or cracks during forming when such a steel plate is used to form a longitudinal member. An existing method for improving such warpage is correction (flattening treatment) using a leveler or the like. However, if the strength of the steel plate increases, it may not always be possible to perform sufficient correction using a leveler or the like. Furthermore, if pre-processing is performed by straightening with a leveler or the like, such pre-processing consumes a part of the steel sheet's inherent ductility, resulting in a decrease in residual ductility. When the residual ductility decreases, forming defects are likely to occur during pressing of the steel plate, and as a result, productivity also decreases. Therefore, it is required that the flatness of the hot-rolled steel sheet is good even without correction using a leveler or the like. The main reason for the deformation of the steel sheet is that the cooling rate after finish rolling is fast. If the cooling rate after finish rolling is high, the controllability of the amount of water used for cooling deteriorates, and uneven cooling becomes noticeable as some parts are locally overcooled. As a result, thermal stress is generated due to temperature unevenness in the width direction of the steel plate, and warpage occurs in the width direction of the steel plate. Therefore, from the viewpoint of ensuring flatness, it is not necessarily appropriate to increase the cooling rate after finish rolling excessively. On the other hand, in order to obtain a martensite single-phase structure or a structure closer to a martensite single-phase structure from the viewpoint of increasing strength, it is necessary to cool at a cooling rate higher than the critical cooling rate.
 そこで、本発明者らは、高強度を達成しつつ鋼板の平坦度を改善するために、適切な鋼組成を選択するとともに、特に熱延鋼板の幅方向における金属組織に着目して検討を行った。まず、本発明者らは、所定の化学組成を有する熱延鋼板の金属組織を焼き戻しマルテンサイトを主相とする組織にすることで高強度、より具体的には980MPa以上の高強度を達成することができることを見出した。次に、本発明者らは、このような焼き戻しマルテンサイトを主相とする組織を幅方向においても均一に分布させることが有効と考え、さらに検討を行った。まず、金属組織を幅方向に均一にするためには、仕上げ圧延後の冷却を適切に行う必要があり、また、焼き戻しマルテンサイトを主相とする組織を形成するためにも冷却時のオートテンパーをうまく利用する必要がある。そこで、本発明者らは、オートテンパーを遅延又は抑制させ得るSiを鋼板中で0.200質量%以下の含有量に制限することで冷却時のオートテンパーを促進させつつ、熱延鋼板の製造方法について後で詳しく説明されるように、冷却時に鋼板に噴射される冷却水の量を仕上げ圧延後からマルテンサイト変態の終了温度に相当するような温度に至るまで鋼板の上面と下面で均等にすること、すなわち仕上げ圧延後から約200℃まで鋼板の上下面を冷却水によって均等に冷却することで、熱延鋼板の幅方向全体にわたって焼き戻しマルテンサイトが95面積%以上となる組織を均一に分布させることができることを見出した。より具体的には、本発明者らは、とりわけ熱延鋼板のSi含有量を0.200質量%以下とするとともに、仕上げ圧延後の冷却を上記のとおり適切に制御することで、熱延鋼板の圧延方向及び板厚方向に垂直な方向における全幅をWとした場合に、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置の金属組織が、面積%で、焼き戻しマルテンサイト:95%以上の組織とすることができることを見出した。その結果として、本発明者らは、熱延鋼板の幅方向における強度ばらつきを、上記幅方向の全ての位置における引張強度のうち最大値と最小値の差が30MPa以下となるようなレベルにおいて十分に低減することができ、幅方向全体における金属組織の均一性とこのような強度ばらつきの低減に関連して、高強度であるにもかかわらず、熱延鋼板の平坦度を顕著に改善することができることを見出した。 Therefore, in order to improve the flatness of the steel sheet while achieving high strength, the present inventors selected an appropriate steel composition and conducted studies focusing on the metallographic structure in the width direction of the hot-rolled steel sheet. Ta. First, the present inventors achieved high strength, more specifically, high strength of 980 MPa or more, by changing the metal structure of a hot rolled steel sheet having a predetermined chemical composition to a structure with tempered martensite as the main phase. I found out that it can be done. Next, the present inventors thought that it would be effective to uniformly distribute the structure including such tempered martensite as the main phase even in the width direction, and conducted further studies. First, in order to make the metal structure uniform in the width direction, it is necessary to cool properly after finishing rolling.Also, in order to form a structure with tempered martensite as the main phase, automatic cooling during cooling is necessary. You need to make good use of temper. Therefore, the present inventors have developed a method for manufacturing hot-rolled steel sheets while promoting auto-tempering during cooling by limiting the content of Si, which can delay or suppress auto-tempering, to 0.200% by mass or less in steel sheets. As will be explained in detail later, the amount of cooling water injected into the steel sheet during cooling is uniformly distributed between the top and bottom surfaces of the steel sheet from after finish rolling until the temperature corresponds to the end temperature of martensitic transformation. In other words, by uniformly cooling the upper and lower surfaces of the steel plate to approximately 200°C with cooling water after finish rolling, a structure in which tempered martensite accounts for 95% or more by area over the entire width of the hot-rolled steel plate is created. It was found that it is possible to distribute the More specifically, the present inventors have particularly determined that the Si content of the hot rolled steel sheet is 0.200% by mass or less, and that the cooling after finish rolling is appropriately controlled as described above. When the total width in the direction perpendicular to the rolling direction and plate thickness direction is W, 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W from the end in the width direction. It has been found that at all positions, the metal structure at the 1/4 position of the plate thickness can be a structure of tempered martensite: 95% or more in area%. As a result, the present inventors have determined that the strength variation in the width direction of the hot rolled steel sheet can be sufficiently reduced to a level where the difference between the maximum and minimum tensile strengths at all positions in the width direction is 30 MPa or less. Despite the high strength, the flatness of the hot rolled steel sheet can be significantly improved in relation to the uniformity of the metallographic structure in the entire width direction and the reduction of such strength variations. I discovered that it can be done.
 従来、仕上げ圧延後の冷却においては、鋼板の上面に噴射される水の量が鋼板の下面に噴射される水の量よりも多いことが一般的である。したがって、鋼板の上下面における冷却を仕上げ圧延後からマルテンサイト変態終了温度に相当するような温度まで均等に行うことで上記のように幅方向全体において金属組織の均一性と強度ばらつきの低減を達成し、それによって高強度であるにもかかわらず熱延鋼板の平坦度を顕著に改善することができるという事実は、今回、本発明者らによって初めて明らかにされたことである。また、本発明の実施形態に係る高強度熱延鋼板によれば、熱延されたままの状態において十分な平坦性を有していることから、レベラー等による予加工の必要もなく、したがってこのような予加工によって鋼板が本来持っている延性の一部を消費してしまうこともない。これに関連して、当該高強度熱延鋼板のプレス時に成形不良が生じるリスクを低減することができ、生産性も顕著に向上させることが可能となる。したがって、本発明の実施形態に係る高強度熱延鋼板は、自動車分野の使用において特に有用であることは当然ながら、他の分野においても非常に有効に使用することが可能である。 Conventionally, in cooling after finish rolling, the amount of water sprayed onto the top surface of the steel sheet is generally greater than the amount of water sprayed onto the bottom surface of the steel sheet. Therefore, by uniformly cooling the upper and lower surfaces of the steel plate after finish rolling to a temperature that corresponds to the end temperature of martensitic transformation, uniformity of the metal structure and reduction of strength variations in the entire width direction can be achieved as described above. However, the fact that it is possible to significantly improve the flatness of a hot rolled steel sheet despite its high strength was revealed for the first time by the present inventors. Furthermore, since the high-strength hot-rolled steel sheet according to the embodiment of the present invention has sufficient flatness in the hot-rolled state, there is no need for pre-processing using a leveler or the like. Such pre-processing does not consume part of the inherent ductility of the steel sheet. In this regard, it is possible to reduce the risk of forming defects during pressing of the high-strength hot-rolled steel sheet, and it is also possible to significantly improve productivity. Therefore, it goes without saying that the high-strength hot-rolled steel sheet according to the embodiment of the present invention is particularly useful in the automobile field, but can also be used very effectively in other fields.
 以下、本発明の実施形態に係る高強度熱延鋼板についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。 Hereinafter, the high-strength hot-rolled steel sheet according to the embodiment of the present invention will be explained in more detail. In the following description, "%", which is the unit of content of each element, means "% by mass" unless otherwise specified. In addition, in this specification, "~" indicating a numerical range is used to include the numerical values written before and after it as a lower limit and an upper limit, unless otherwise specified.
[C:0.050~0.100%]
 Cは、鋼板の強度を高めるのに有効な元素である。このような効果を十分に得るために、C含有量は0.050%以上とする。C含有量は0.055%以上、0.060%以上、0.065%以上又は0.070%以上であってもよい。一方で、Cを過度に含有すると、過度な高強度化に起因して幅方向における強度のばらつきを所定の範囲内に制御することが難しくなる。したがって、C含有量は0.100%以下とする。C含有量は0.095%以下、0.090%以下、0.085%以下又は0.080%以下であってもよい。
[C:0.050-0.100%]
C is an element effective in increasing the strength of steel sheets. In order to sufficiently obtain such effects, the C content is set to 0.050% or more. The C content may be 0.055% or more, 0.060% or more, 0.065% or more, or 0.070% or more. On the other hand, if too much C is contained, it becomes difficult to control the variation in strength in the width direction within a predetermined range due to excessively high strength. Therefore, the C content is set to 0.100% or less. The C content may be 0.095% or less, 0.090% or less, 0.085% or less, or 0.080% or less.
[Si:0.010~0.200%]
 Siは、固溶強化元素として強度上昇に有効な元素である。このような効果を十分に得るために、Si含有量は0.010%以上とする。Si含有量は0.020%以上、0.040%以上、0.060%以上、0.080%以上又は0.100%以上であってもよい。一方で、Siを過度に含有すると、鋼板冷却時のオートテンパーを遅延又は抑制させる場合があり、このような場合には所望の金属組織を有する熱延鋼板を得ることができなくなる。したがって、Si含有量は0.200%以下とする。Si含有量は0.180%以下、0.160%以下、0.140%以下又は0.120%以下であってもよい。
[Si:0.010-0.200%]
Si is an element effective for increasing strength as a solid solution strengthening element. In order to sufficiently obtain such effects, the Si content is set to 0.010% or more. The Si content may be 0.020% or more, 0.040% or more, 0.060% or more, 0.080% or more, or 0.100% or more. On the other hand, if Si is contained excessively, auto-tempering during cooling of the steel sheet may be delayed or suppressed, and in such a case, it becomes impossible to obtain a hot-rolled steel sheet having a desired metal structure. Therefore, the Si content is set to 0.200% or less. The Si content may be 0.180% or less, 0.160% or less, 0.140% or less, or 0.120% or less.
[Mn:1.00~2.50%]
 Mnは、焼入れ性及び固溶強化元素として強度上昇に有効な元素である。Mn含有量が低いと、焼入れ性が不足するために冷却時にフェライト等の軟質相が比較的多く生成し、焼き戻しマルテンサイトを主相とする組織を幅方向において均一に分布させることができなくなる。また、このような変態に伴う鋼板の膨張に起因して幅方向に反りが生じ、鋼板形状が崩れてしまう場合がある。したがって、Mn含有量は1.00%以上とする。Mn含有量は1.20%以上、1.40%以上、1.60%以上又は1.80%以上であってもよい。一方で、Mnを過度に含有すると、焼入れ性向上に起因して鋼板冷却時のオートテンパーによってもマルテンサイトが十分に焼き戻されず、最終的な金属組織においてフレッシュマルテンサイトを十分に低減できない場合がある。したがって、Mn含有量は2.50%以下とする。Mn含有量は2.40%以下、2.20%以下、2.00%以下又は1.90%以下であってもよい。
[Mn: 1.00-2.50%]
Mn is an element effective in increasing hardenability and strength as a solid solution strengthening element. If the Mn content is low, hardenability is insufficient, and a relatively large amount of soft phases such as ferrite are generated during cooling, making it impossible to uniformly distribute the structure with tempered martensite as the main phase in the width direction. . Further, due to expansion of the steel plate due to such transformation, warpage may occur in the width direction, and the shape of the steel plate may collapse. Therefore, the Mn content is set to 1.00% or more. The Mn content may be 1.20% or more, 1.40% or more, 1.60% or more, or 1.80% or more. On the other hand, if Mn is contained excessively, martensite may not be sufficiently tempered even by auto-tempering during cooling of the steel sheet due to improved hardenability, and fresh martensite may not be sufficiently reduced in the final metal structure. be. Therefore, the Mn content is set to 2.50% or less. The Mn content may be 2.40% or less, 2.20% or less, 2.00% or less, or 1.90% or less.
[Ti:0.001~0.120%]
 Tiは、析出強化等により強度の向上に寄与する元素である。また、Tiは、Nと結合して窒化チタン(TiN)を形成することにより鋼中の固溶Nを消費し、それによってBNの形成に起因する固溶B量の減少を抑制する作用を有する。これらの効果を十分に得るために、Ti含有量は0.001%以上とする。Ti含有量は0.010%以上、0.020%以上、0.040%以上又は0.060%以上であってもよい。一方で、Tiはオーステナイトの再結晶を抑制する元素でもあることから、Tiを過度に含有すると、転位を比較的多く含む未再結晶オーステナイトの存在に起因して冷却時にフェライト変態等の駆動力が高められ、当該未再結晶オーステナイトからフェライト等の軟質相が生成しやすくなり、所望の金属組織を得ることができない場合がある。したがって、Ti含有量は0.120%以下とする。Ti含有量は0.110%以下、0.100%以下、0.090%以下又は0.080%以下であってもよい。
[Ti: 0.001 to 0.120%]
Ti is an element that contributes to improving strength through precipitation strengthening and the like. In addition, Ti consumes solid solution N in steel by combining with N to form titanium nitride (TiN), which has the effect of suppressing the decrease in the amount of solid solution B caused by the formation of BN. . In order to fully obtain these effects, the Ti content is set to 0.001% or more. The Ti content may be 0.010% or more, 0.020% or more, 0.040% or more, or 0.060% or more. On the other hand, since Ti is also an element that suppresses the recrystallization of austenite, if Ti is contained excessively, the driving force for ferrite transformation etc. during cooling will be reduced due to the presence of unrecrystallized austenite containing relatively many dislocations. In some cases, a soft phase such as ferrite is likely to be generated from the unrecrystallized austenite, making it impossible to obtain a desired metal structure. Therefore, the Ti content is set to 0.120% or less. The Ti content may be 0.110% or less, 0.100% or less, 0.090% or less, or 0.080% or less.
[Al:0.001~0.050%]
 Alは、脱酸剤として作用する元素である。このような効果を十分に得るために、Al含有量は0.001%以上とする。Al含有量は0.010%以上、0.020%以上又は0.030%以上であってもよい。一方で、Alを過度に含有すると、粗大な酸化物が形成し、靭性を低下させる場合がある。したがって、Al含有量は0.050%以下とする。Al含有量は0.045%以下又は0.040%以下であってもよい。
[Al: 0.001-0.050%]
Al is an element that acts as a deoxidizing agent. In order to sufficiently obtain such effects, the Al content is set to 0.001% or more. The Al content may be 0.010% or more, 0.020% or more, or 0.030% or more. On the other hand, when Al is contained excessively, coarse oxides are formed, which may reduce toughness. Therefore, the Al content is set to 0.050% or less. The Al content may be 0.045% or less or 0.040% or less.
[B:0.0005~0.0050%]
 Bは、鋼の焼入れ性を高め、強度の向上に寄与する元素である。このような効果を十分に得るために、B含有量は0.0005%以上とする。B含有量は0.0008%以上、0.0010%以上、0.0015%以上又は0.0020%以上であってもよい。一方で、Bを過度に含有すると、靭性及び/又は溶接性が低下する場合がある。したがって、B含有量は0.0050%以下とする。B含有量は0.0045%以下、0.0040%以下、0.0030%以下又は0.0025%以下であってもよい。
[B:0.0005-0.0050%]
B is an element that enhances the hardenability of steel and contributes to improving its strength. In order to sufficiently obtain such effects, the B content is set to 0.0005% or more. The B content may be 0.0008% or more, 0.0010% or more, 0.0015% or more, or 0.0020% or more. On the other hand, if B is contained excessively, toughness and/or weldability may deteriorate. Therefore, the B content is set to 0.0050% or less. The B content may be 0.0045% or less, 0.0040% or less, 0.0030% or less, or 0.0025% or less.
[P:0.100%以下]
 Pは、過度に含有すると溶接性などに不利に影響する場合がある。したがって、P含有量は0.100%以下とする。P含有量は0.080%以下、0.050%以下、0.030%以下又は0.020%以下であってもよい。P含有量の下限は特に限定されず0%であってもよいが、過度な低減はコストの上昇を招く。したがって、P含有量は0.0001%以上、0.0005%以上又は0.001%以上であってもよい。
[P: 0.100% or less]
Excessive P content may adversely affect weldability. Therefore, the P content is set to 0.100% or less. The P content may be 0.080% or less, 0.050% or less, 0.030% or less, or 0.020% or less. The lower limit of the P content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the P content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
[S:0.050%以下]
 Sは、過度に含有するとMnSが多く生成して靭性を低下させる場合がある。したがって、Si含有量は0.050%以下とする。S含有量は0.020%以下、0.010%以下又は0.005%以下であってもよい。S含有量の下限は特に限定されず0%であってもよいが、過度な低減はコストの上昇を招く。したがって、S含有量は0.0001%以上、0.0005%以上又は0.001%以上であってもよい。
[S: 0.050% or less]
If S is contained in an excessive amount, a large amount of MnS may be generated and the toughness may be reduced. Therefore, the Si content is set to 0.050% or less. The S content may be 0.020% or less, 0.010% or less, or 0.005% or less. The lower limit of the S content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the S content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
[N:0.0050%以下]
 Nは、過度に含有すると粗大な窒化物を形成し、靭性を低下させる場合がある。また、Nは、鋼中のBと結合して窒化ホウ素(BN)を形成することにより固溶B量を減少させ、Bの添加による焼入れ性向上効果を低下させる場合がある。したがって、N含有量は低いほど好ましく、0.0050%以下とする。N含有量は0.0045%以下、0.0040%以下又は0.0035%以であってもよい。N含有量の下限は特に限定されず0%であってもよいが、過度な低減はコストの上昇を招く。したがって、N含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。
[N: 0.0050% or less]
If N is contained excessively, it may form coarse nitrides and reduce toughness. Further, N combines with B in the steel to form boron nitride (BN), thereby reducing the amount of solid solution B, which may reduce the hardenability improvement effect of B addition. Therefore, the lower the N content, the better, and it is set to 0.0050% or less. The N content may be 0.0045% or less, 0.0040% or less, or 0.0035% or more. The lower limit of the N content is not particularly limited and may be 0%, but excessive reduction will lead to an increase in cost. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
 本発明の実施形態に係る高強度熱延鋼板の基本化学組成は上記のとおりである。さらに、当該高強度熱延鋼板は、必要に応じて、残部のFeの一部に代えて以下の任意選択元素のうち少なくとも1種を含有してもよい。例えば、高強度熱延鋼板は、O:0~0.0050%、Cu:0~0.20%、Ni:0~0.20%、Sn:0~0.10%、Cr:0~0.40%、Mo:0~0.20%、Nb:0~0.05%、V:0~0.10%、As:0~0.100%、Zr:0~0.100%、Ca:0~0.0050%、Mg:0~0.100%、Bi:0~0.020%、Co:0~0.20%、W:0~0.20%、Zn:0~0.20%、及びREM:0~0.1000%のうち少なくとも1種を含有してもよい。以下、これらの任意選択元素について詳しく説明する。 The basic chemical composition of the high-strength hot-rolled steel sheet according to the embodiment of the present invention is as described above. Further, the high-strength hot-rolled steel sheet may contain at least one of the following optional elements in place of a portion of the remaining Fe, if necessary. For example, high-strength hot-rolled steel sheets include O: 0 to 0.0050%, Cu: 0 to 0.20%, Ni: 0 to 0.20%, Sn: 0 to 0.10%, and Cr: 0 to 0. .40%, Mo: 0-0.20%, Nb: 0-0.05%, V: 0-0.10%, As: 0-0.100%, Zr: 0-0.100%, Ca : 0-0.0050%, Mg: 0-0.100%, Bi: 0-0.020%, Co: 0-0.20%, W: 0-0.20%, Zn: 0-0. 20%, and REM: 0 to 0.1000%. These optional elements will be explained in detail below.
[O:0~0.0050%]
 Oは、製造工程で混入する元素である。O含有量は0%であってもよい。しかしながら、O含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、O含有量は0.0001%以上、0.0005%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、Oを過度に含有すると、粗大な介在物が形成して鋼板の靭性を低下させる場合がある。したがって、O含有量は0.0050%以下であることが好ましい。O含有量は0.0040%以下、0.0035%以下又は0.0030%以下であってもよい。
[O: 0 to 0.0050%]
O is an element mixed in during the manufacturing process. The O content may be 0%. However, reducing the O content to less than 0.0001% requires time for refining, leading to a decrease in productivity. Therefore, the O content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0015% or more. On the other hand, if O is contained excessively, coarse inclusions may be formed and the toughness of the steel sheet may be reduced. Therefore, the O content is preferably 0.0050% or less. The O content may be 0.0040% or less, 0.0035% or less, or 0.0030% or less.
[Cu:0~0.20%]
 Cuは、強度及び/又は耐食性の向上に寄与する元素である。Cu含有量は0%であってもよいが、これらの効果を得るためには、Cu含有量は0.001%以上であることが好ましい。Cu含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Cuを過度に含有すると、靭性や溶接性の劣化を招く場合がある。したがって、Cu含有量は0.20%以下であることが好ましい。Cu含有量は0.18%以下、0.15%以下、0.12%以下、0.10%以下、0.08%以下又は0.06%以下であってもよい。
[Cu: 0-0.20%]
Cu is an element that contributes to improving strength and/or corrosion resistance. Although the Cu content may be 0%, in order to obtain these effects, the Cu content is preferably 0.001% or more. The Cu content may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, excessive Cu content may lead to deterioration of toughness and weldability. Therefore, the Cu content is preferably 0.20% or less. The Cu content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, 0.08% or less, or 0.06% or less.
[Ni:0~0.20%]
 Niは、鋼の焼入れ性を高め、強度及び/又は耐食性の向上に寄与する元素である。Ni含有量は0%であってもよいが、これらの効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Niを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、Ni含有量は0.20%以下であることが好ましい。Ni含有量は0.18%以下、0.15%以下、0.12%以下、0.10%以下、0.08%以下又は0.06%以下であってもよい。
[Ni: 0-0.20%]
Ni is an element that improves the hardenability of steel and contributes to improving its strength and/or corrosion resistance. Although the Ni content may be 0%, in order to obtain these effects, the Ni content is preferably 0.001% or more. The Ni content may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, even if Ni is contained excessively, the effect is saturated, leading to an increase in manufacturing costs. Therefore, the Ni content is preferably 0.20% or less. The Ni content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, 0.08% or less, or 0.06% or less.
[Sn:0~0.10%]
 Snは、耐食性の向上に有効な元素である。Sn含有量は0%であってもよいが、このような効果を得るためには、Sn含有量はそれぞれ0.001%以上であることが好ましく、0.005%以上、0.01%以上又は0.02%以上であってもよい。一方で、Snを過度に含有すると、靭性の低下を招く場合がある。したがって、Sn含有量は0.10%以下であることが好ましい。Sn含有量は0.08%以下、0.06%以下又は0.04%以下であってもよい。
[Sn: 0 to 0.10%]
Sn is an element effective in improving corrosion resistance. The Sn content may be 0%, but in order to obtain such effects, the Sn content is preferably 0.001% or more, 0.005% or more, and 0.01% or more. Or it may be 0.02% or more. On the other hand, excessively containing Sn may lead to a decrease in toughness. Therefore, the Sn content is preferably 0.10% or less. The Sn content may be 0.08% or less, 0.06% or less, or 0.04% or less.
[Cr:0~0.40%]
 Crは、鋼の焼入れ性を高め、強度及び/又は耐食性の向上に寄与する元素である。Cr含有量は0%であってもよいが、これらの効果を得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.01%以上、0.05%以上又は0.10%以上であってもよい。一方で、Crを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、Cr含有量は0.40%以下であることが好ましい。Cr含有量は0.30%以下、0.20%以下、0.15%以下又は0.12%以下であってもよい。
[Cr: 0-0.40%]
Cr is an element that improves the hardenability of steel and contributes to improving its strength and/or corrosion resistance. Although the Cr content may be 0%, in order to obtain these effects, the Cr content is preferably 0.001% or more. The Cr content may be 0.01% or more, 0.05% or more, or 0.10% or more. On the other hand, even if Cr is contained excessively, the effect is saturated, leading to an increase in manufacturing costs. Therefore, the Cr content is preferably 0.40% or less. The Cr content may be 0.30% or less, 0.20% or less, 0.15% or less, or 0.12% or less.
[Mo:0~0.20%]
 Moは、鋼の焼入れ性を高め、強度の向上に寄与する元素であり、耐食性の向上にも寄与する元素である。Mo含有量は0%であってもよいが、これらの効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Moを過度に含有すると、熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Mo含有量は0.20%以下であることが好ましい。Mo含有量は0.18%以下、0.15%以下、0.12%以下、0.10%以下又は0.08%以下であってもよい。
[Mo: 0-0.20%]
Mo is an element that enhances the hardenability of steel and contributes to improving its strength, and also contributes to improving its corrosion resistance. Although the Mo content may be 0%, in order to obtain these effects, the Mo content is preferably 0.001% or more. The Mo content may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, if Mo is contained excessively, deformation resistance during hot working may increase, and equipment load may increase. Therefore, the Mo content is preferably 0.20% or less. The Mo content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
[Nb:0~0.05%]
 Nbは、鋼中に炭化物、窒化物及び/又は炭窒化物を形成してピン止め効果により組織の微細化、ひいては鋼板の高強度化に寄与する元素である。Nb含有量は0%であってもよいが、このような効果を得るためには、Nb含有量は0.001%以上であることが好ましい。Nb含有量は0.005%以上又は0.01%以上であってもよい。一方で、Nbを過度に含有すると、鋼中に粗大な炭化物等が生成して鋼板の靭性を低下させる場合がある。したがって、Nb含有量は0.05%以下とする。Nb含有量は0.04%以下、0.03%以下又は0.02%であってもよい。
[Nb: 0 to 0.05%]
Nb is an element that forms carbides, nitrides, and/or carbonitrides in steel and contributes to refinement of the structure through a pinning effect, and thus to higher strength of the steel sheet. Although the Nb content may be 0%, in order to obtain such an effect, the Nb content is preferably 0.001% or more. The Nb content may be 0.005% or more or 0.01% or more. On the other hand, when Nb is contained excessively, coarse carbides and the like are generated in the steel, which may reduce the toughness of the steel sheet. Therefore, the Nb content is set to 0.05% or less. The Nb content may be 0.04% or less, 0.03% or less or 0.02%.
[V:0~0.10%]
 Vは、析出強化等により強度の向上に寄与する元素である。V含有量は0%であってもよいが、このような効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.005%以上、0.01%以上又は0.02%以上であってもよい。一方で、Vを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。したがって、V含有量は0.10%以下であることが好ましい。V含有量は0.08%以下、0.06%以下又は0.04%以下であってもよい。
[V: 0-0.10%]
V is an element that contributes to improving strength through precipitation strengthening and the like. Although the V content may be 0%, in order to obtain such an effect, the V content is preferably 0.001% or more. The V content may be 0.005% or more, 0.01% or more, or 0.02% or more. On the other hand, if too much V is contained, a large amount of precipitates may be generated and the toughness may be reduced. Therefore, the V content is preferably 0.10% or less. The V content may be 0.08% or less, 0.06% or less, or 0.04% or less.
[As:0~0.100%]
 Asは、耐食性の向上に有効な元素である。As含有量は0%であってもよいが、このような効果を得るためには、As含有量はそれぞれ0.001%以上であることが好ましく、0.005%以上、0.008%以上又は0.010%以上であってもよい。一方で、Asを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、As含有量は0.100%以下であることが好ましい。As含有量は0.080%以下、0.060%以下、0.040%以下又は0.020%以下であってもよい。
[As: 0 to 0.100%]
As is an element effective in improving corrosion resistance. The As content may be 0%, but in order to obtain such effects, the As content is preferably 0.001% or more, 0.005% or more, and 0.008% or more. Or it may be 0.010% or more. On the other hand, even if As is contained excessively, the effect is saturated and the manufacturing cost increases. Therefore, the As content is preferably 0.100% or less. The As content may be 0.080% or less, 0.060% or less, 0.040% or less, or 0.020% or less.
[Zr:0~0.100%]
 Zrは、硫化物の形態を制御することができる元素である。Zr含有量は0%であってもよいが、このような効果を得るためには、Zr含有量は0.0001%以上であることが好ましい。Zr含有量は0.0005%以上、0.001%以上又は0.010%以上であってもよい。一方で、Zrを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、Zr含有量は0.100%以下であることが好ましい。Zr含有量は0.050%以下、0.030%以下又は0.020%以下であってもよい。
[Zr: 0 to 0.100%]
Zr is an element that can control the morphology of sulfides. Although the Zr content may be 0%, in order to obtain such an effect, the Zr content is preferably 0.0001% or more. The Zr content may be 0.0005% or more, 0.001% or more, or 0.010% or more. On the other hand, even if Zr is contained excessively, the effect is saturated, leading to an increase in manufacturing costs. Therefore, the Zr content is preferably 0.100% or less. The Zr content may be 0.050% or less, 0.030% or less, or 0.020% or less.
[Ca:0~0.0050%]
 Caは、硫化物の形態を制御することができる元素である。Ca含有量は0%であってもよいが、このような効果を得るためには、Ca含有量は0.0001%以上であることが好ましい。Ca含有量は0.0005%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、Caを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、Ca含有量は0.0050%以下であることが好ましい。Ca含有量は0.0040%以下、0.0030%以下又は0.0020%以下であってもよい。
[Ca: 0-0.0050%]
Ca is an element that can control the morphology of sulfides. Although the Ca content may be 0%, in order to obtain such an effect, the Ca content is preferably 0.0001% or more. The Ca content may be 0.0005% or more, 0.0010% or more, or 0.0015% or more. On the other hand, even if Ca is contained excessively, the effect is saturated, leading to an increase in manufacturing costs. Therefore, the Ca content is preferably 0.0050% or less. The Ca content may be 0.0040% or less, 0.0030% or less, or 0.0020% or less.
[Mg:0~0.100%]
 Mgは、硫化物の形態を制御することができる元素である。Mg含有量は0%であってもよいが、このような効果を得るためには、Mg含有量は0.0001%以上であることが好ましく、0.001%以上、0.005%以上又は0.008%以上であってもよい。一方で、Mgを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、Mg含有量は0.100%以下であることが好ましい。Mg含有量は0.050%以下、0.030%以下、0.020%以下又は0.010%以下であってもよい。
[Mg: 0 to 0.100%]
Mg is an element that can control the morphology of sulfides. The Mg content may be 0%, but in order to obtain such an effect, the Mg content is preferably 0.0001% or more, 0.001% or more, 0.005% or more, or It may be 0.008% or more. On the other hand, even if Mg is contained excessively, the effect is saturated, leading to an increase in manufacturing costs. Therefore, it is preferable that the Mg content is 0.100% or less. The Mg content may be 0.050% or less, 0.030% or less, 0.020% or less, or 0.010% or less.
[Bi:0~0.020%]
 Biは、耐食性の向上に有効な元素である。Bi含有量は0%であってもよいが、このような効果を得るためには、Bi含有量は0.0001%以上であることが好ましい。Bi含有量は0.0005%以上、0.001%以上又は0.003%以上であってもよい。一方で、Biを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、Bi含有量は0.020%以下であることが好ましい。Bi含有量は0.010%以下、0.008%以下又は0.005%以下であってもよい。
[Bi: 0-0.020%]
Bi is an element effective in improving corrosion resistance. Although the Bi content may be 0%, in order to obtain such an effect, the Bi content is preferably 0.0001% or more. The Bi content may be 0.0005% or more, 0.001% or more, or 0.003% or more. On the other hand, even if Bi is contained excessively, the effect is saturated and the manufacturing cost increases. Therefore, the Bi content is preferably 0.020% or less. The Bi content may be 0.010% or less, 0.008% or less, or 0.005% or less.
[Co:0~0.20%]
 Coは、焼入れ性及び/又は耐熱性の向上に寄与する元素である。Co含有量は0%であってもよいが、これらの効果を得るためには、Co含有量は0.001%以上であることが好ましい。Co含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Coを過度に含有すると、熱間加工性が低下する場合があり、原料コストの増加にも繋がる。したがって、Co含有量は0.20%以下であることが好ましい。Co含有量は0.18%以下、0.15%以下、0.12%以下、0.10%以下又は0.08%以下であってもよい。
[Co: 0-0.20%]
Co is an element that contributes to improving hardenability and/or heat resistance. Although the Co content may be 0%, in order to obtain these effects, the Co content is preferably 0.001% or more. The Co content may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, if Co is contained excessively, hot workability may decrease, leading to an increase in raw material cost. Therefore, the Co content is preferably 0.20% or less. The Co content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
[W:0~0.20%]
 Wは、鋼の焼入れ性を高め、強度の向上に寄与する元素である。W含有量は0%であってもよいが、このような効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Wを過度に含有すると、溶接性が低下する場合がある。したがって、W含有量は0.20%以下であることが好ましい。W含有量は0.18%以下、0.15%以下、0.12%以下、0.10%以下又は0.08%以下であってもよい。
[W: 0-0.20%]
W is an element that enhances the hardenability of steel and contributes to improving its strength. Although the W content may be 0%, in order to obtain such an effect, the W content is preferably 0.001% or more. The W content may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, if W is contained excessively, weldability may deteriorate. Therefore, the W content is preferably 0.20% or less. The W content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
[Zn:0~0.20%]
 Znは、介在物の形状を制御するのに有効な元素である。このような効果を得るためには、Zn含有量は0.001%以上であることが好ましい。Zn含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Znを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、Zn含有量は0.20%以下であることが好ましい。Zn含有量は0.18%以下、0.15%以下、0.12%以下、0.10%以下又は0.08%以下であってもよい。
[Zn: 0-0.20%]
Zn is an element effective in controlling the shape of inclusions. In order to obtain such effects, the Zn content is preferably 0.001% or more. The Zn content may be 0.01% or more, 0.03% or more, or 0.05% or more. On the other hand, even if Zn is contained excessively, the effect is saturated, leading to an increase in manufacturing costs. Therefore, the Zn content is preferably 0.20% or less. The Zn content may be 0.18% or less, 0.15% or less, 0.12% or less, 0.10% or less, or 0.08% or less.
[REM:0~0.1000%]
 REM(希土類金属)は、硫化物の形態を制御することができる元素である。REM含有量は0%であってもよいが、このような効果を得るためには、REM含有量は0.0001%以上であることが好ましい。REM含有量は0.0005%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、REMを過度に含有しても効果が飽和し、製造コストの上昇を招く。したがって、REM含有量は0.1000%以下であることが好ましい。REM含有量は0.0100%以下、0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及びランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、REM含有量はこれら元素の合計含有量である。
[REM: 0 to 0.1000%]
REM (rare earth metal) is an element that can control the morphology of sulfides. Although the REM content may be 0%, in order to obtain such an effect, the REM content is preferably 0.0001% or more. The REM content may be 0.0005% or more, 0.0010% or more, or 0.0015% or more. On the other hand, even if REM is contained excessively, the effect is saturated, leading to an increase in manufacturing costs. Therefore, the REM content is preferably 0.1000% or less. The REM content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less. In this specification, REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids such as lanthanum (La) with atomic number 57 to lutetium (Lu with atomic number 71). ), and the REM content is the total content of these elements.
 本発明の実施形態に係る高強度熱延鋼板において、上記の元素以外の残部は、Fe及び不純物からなる。不純物とは、高強度熱延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。 In the high-strength hot rolled steel sheet according to the embodiment of the present invention, the remainder other than the above elements consists of Fe and impurities. Impurities are components that are mixed in during the industrial production of high-strength hot rolled steel sheets due to various factors in the production process, including raw materials such as ores and scraps.
 本発明の実施形態に係る高強度熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、当該高強度熱延鋼板の化学組成は、誘導結合プラズマ発光分光分析(ICP-AES:Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。C及びSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。 The chemical composition of the high-strength hot-rolled steel sheet according to the embodiment of the present invention may be measured by a general analytical method. For example, the chemical composition of the high-strength hot rolled steel sheet may be measured using inductively coupled plasma-atomic emission spectrometry (ICP-AES). C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
[金属組織]
 本発明の実施形態に係る高強度熱延鋼板では、当該高強度熱延鋼板の圧延方向及び板厚方向に垂直な方向における全幅をWとした場合に、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置の金属組織は、面積%で、焼き戻しマルテンサイト(tM):95%以上、フレッシュマルテンサイト(fM):5%以下、並びにフェライト(α)、上部ベイナイト(B)及びパーライト(P)の少なくとも1種:合計で5%以下である。本発明において、「全幅」とは、高強度熱延鋼板(例えばコイル状の高強度熱延鋼板)の圧延方向及び板厚方向に垂直な方向における鋼板の長さをいうものである。
[Metal structure]
In the high-strength hot-rolled steel sheet according to the embodiment of the present invention, when the total width of the high-strength hot-rolled steel sheet in the direction perpendicular to the rolling direction and the plate thickness direction is W, the position is 1/10W from the end in the width direction. , 3/10W position, 5/10W position, 7/10W position, and 9/10W position, the metal structure at the 1/4 plate thickness position is tempered martensite (tM) in area%: 95% or more, fresh martensite (fM): 5% or less, and at least one of ferrite (α), upper bainite (B), and pearlite (P): 5% or less in total. In the present invention, "total width" refers to the length of a high-strength hot-rolled steel plate (for example, a coiled high-strength hot-rolled steel plate) in a direction perpendicular to the rolling direction and the plate thickness direction.
 ここで、熱延鋼板の圧延方向が明らかでない場合には、熱延鋼板の圧延方向は以下の方法によって特定することができる。熱延鋼板の板厚断面を鏡面研磨で仕上げた後、電子プローブマイクロアナライザ(EPMA、Electron Probe Micro Analyzer)にてS濃度を測定する。測定条件は加速電圧を15kVとし、測定ピッチを1μmとして板厚中心部の500μm角の範囲の分布像を測定する。このとき、S濃度が高い延伸した領域をMnS等の介在物と判定する。観察の際は複数の視野で観察しても良い。次に、上記方法により初めに観察した板厚断面を基準として、板厚方向を軸に0°~180°の範囲において5°刻みで回転させた面と平行となる面を上記の方法で断面観察する。得られた各断面における複数の介在物の長軸の長さの平均値を各断面において算出し、介在物の長軸の長さの平均値が最大となる断面を特定する。その断面における介在物の長軸方向と平行な方向を熱延鋼板の圧延方向と特定する。
 以下、各組織についてより詳しく説明する。
Here, if the rolling direction of the hot rolled steel sheet is not clear, the rolling direction of the hot rolled steel sheet can be specified by the following method. After finishing the thickness section of the hot rolled steel plate by mirror polishing, the S concentration is measured using an electron probe micro analyzer (EPMA). The measurement conditions are an accelerating voltage of 15 kV, a measurement pitch of 1 μm, and a distribution image in a 500 μm square range at the center of the plate thickness. At this time, the stretched region with a high S concentration is determined to be an inclusion such as MnS. When observing, you may observe from multiple fields of view. Next, using the plate thickness cross section first observed using the above method as a reference, rotate the plate thickness direction in 5° increments in the range of 0° to 180° as an axis, and then take a cross section using the above method. Observe. The average value of the lengths of the long axes of the plurality of inclusions in each of the obtained cross sections is calculated for each cross section, and the cross section in which the average value of the lengths of the long axes of the inclusions is maximum is specified. The direction parallel to the long axis direction of the inclusion in the cross section is specified as the rolling direction of the hot rolled steel sheet.
Each organization will be explained in more detail below.
[焼き戻しマルテンサイト:95%以上]
 幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置での金属組織中の焼き戻しマルテンサイトを面積%で95%以上とすることで、マルテンサイトを主相とする組織に起因して高い強度を達成しつつ、これら幅方向の全ての位置における引張強度のうち最大値と最小値の差を確実に30MPa以下に制御することができ、したがって幅方向の強度ばらつきを顕著に低減することが可能となる。上記幅方向の全ての位置において、焼き戻しマルテンサイトの面積率は、96%以上、97%以上又は98%以上であってもよい。焼き戻しマルテンサイトの面積率の上限は、特に限定されず100%であってもよい。
[Tempered martensite: 95% or more]
At all positions of 1/10W, 3/10W, 5/10W, 7/10W, and 9/10W from the edge in the width direction, the metal structure at the 1/4 plate thickness position is By setting the area percentage of returned martensite to 95% or more, it is possible to achieve high strength due to the structure with martensite as the main phase, while also reducing the maximum and minimum tensile strengths at all positions in the width direction. It is possible to reliably control the difference in value to 30 MPa or less, and therefore it is possible to significantly reduce strength variations in the width direction. At all positions in the width direction, the area ratio of tempered martensite may be 96% or more, 97% or more, or 98% or more. The upper limit of the area ratio of tempered martensite is not particularly limited and may be 100%.
[フレッシュマルテンサイト:5%以下]
 本発明の実施形態に係る高強度熱延鋼板では、上記幅方向の全ての位置において、フレッシュマルテンサイトの面積率を5%以下に制御することが必要である。いずれか1つの位置においても、フレッシュマルテンサイトの面積率が5%を超えると、その位置において強度が高くなりすぎてしまい、幅方向における強度ばらつきを十分に低減することができなくなる場合がある。したがって、強度ばらつきを低減する観点からは、上記幅方向の全ての位置において、フレッシュマルテンサイトの面積率は低いほど好ましく、例えば4%以下、3%以下、2%以下又は1%以下であってもよい。フレッシュマルテンサイトの面積率の下限は、特に限定されず0%であってもよい。
[Fresh martensite: 5% or less]
In the high-strength hot-rolled steel sheet according to the embodiment of the present invention, it is necessary to control the area ratio of fresh martensite to 5% or less at all positions in the width direction. If the area ratio of fresh martensite exceeds 5% at any one position, the strength at that position becomes too high, and strength variations in the width direction may not be sufficiently reduced. Therefore, from the viewpoint of reducing strength variations, the area ratio of fresh martensite is preferably as low as possible at all positions in the width direction, for example, 4% or less, 3% or less, 2% or less, or 1% or less. Good too. The lower limit of the area ratio of fresh martensite is not particularly limited and may be 0%.
[フェライト、上部ベイナイト及びパーライトの少なくとも1種:合計で5%以下]
 本発明の実施形態に係る高強度熱延鋼板では、焼き戻しマルテンサイト及びフレッシュマルテンサイト以外の残部組織は、フェライト、上部ベイナイト及びパーライトの少なくとも1種から構成される。フェライト、上部ベイナイト及びパーライトの少なくとも1種についても同様に、上記幅方向の全ての位置において合計で5%以下に制御することが必要である。いずれか1つの位置においても、フェライト、上部ベイナイト及びパーライトの少なくとも1種の面積率が合計で5%を超えると、その位置において強度が低くなりすぎてしまい、幅方向における強度ばらつきを十分に低減することができなくなる場合がある。したがって、強度ばらつきを低減する観点からは、上記幅方向の全ての位置において、フェライト、上部ベイナイト及びパーライトの少なくとも1種の面積率は低いほど好ましく、例えば合計で4%以下、3%以下、2%以下又は1%以下であってもよい。フェライト、上部ベイナイト及びパーライトの少なくとも1種の面積率の下限は、特に限定されず合計で0%であってもよい。例えば、フレッシュマルテンサイト、フェライト、上部ベイナイト及びパーライトの合計の面積率は5%以下、4%以下、3%以下、2%以下又は1%以下であってもよい。同様に、フレッシュマルテンサイト、フェライト、上部ベイナイト及びパーライトの合計の面積率は0%であってもよい。
[At least one of ferrite, upper bainite, and pearlite: 5% or less in total]
In the high-strength hot-rolled steel sheet according to the embodiment of the present invention, the remaining structure other than tempered martensite and fresh martensite is composed of at least one of ferrite, upper bainite, and pearlite. Similarly, at least one of ferrite, upper bainite, and pearlite must be controlled to a total of 5% or less at all positions in the width direction. If the area ratio of at least one of ferrite, upper bainite, and pearlite exceeds 5% in total at any one position, the strength at that position will become too low, and strength variations in the width direction will be sufficiently reduced. You may not be able to do so. Therefore, from the viewpoint of reducing strength variations, it is preferable that the area ratio of at least one of ferrite, upper bainite, and pearlite be as low as possible at all positions in the width direction, for example, 4% or less, 3% or less, 2% or less in total. % or less or 1% or less. The lower limit of the area ratio of at least one of ferrite, upper bainite, and pearlite is not particularly limited and may be 0% in total. For example, the total area percentage of fresh martensite, ferrite, upper bainite, and pearlite may be 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less. Similarly, the total area ratio of fresh martensite, ferrite, upper bainite, and pearlite may be 0%.
[金属組織の同定及び面積率の算出]
 金属組織の同定及び面積率の算出は、ナイタール試薬又はレペラ液を用いた腐食後のFE-SEM(電界放射型走査型電子顕微鏡)及び光学顕微鏡並びにX線回折法により行われる。FE-SEM及び光学顕微鏡による組織観察は、圧延方向に平行かつ板面に垂直な方向の鋼板断面における100μm×100μmの領域に対して1000~50000倍の倍率で行われる。いずれの金属組織についても、幅方向(圧延方向及び板厚方向に垂直な方向)の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の各位置において、それぞれ測定箇所を3箇所とし、それら3つの測定値の平均値を算出することによって各位置での面積率を決定する。
[Identification of metallographic structure and calculation of area ratio]
Identification of metal structure and calculation of area ratio are performed by FE-SEM (field emission scanning electron microscope) and optical microscope after corrosion using nital reagent or Repeller liquid, and X-ray diffraction method. Structure observation using FE-SEM and an optical microscope is performed at a magnification of 1,000 to 50,000 times on a 100 μm×100 μm area in a steel plate cross section parallel to the rolling direction and perpendicular to the plate surface. For any metal structure, 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the edge in the width direction (direction perpendicular to the rolling direction and the plate thickness direction) At each position, there are three measurement points, and the area ratio at each position is determined by calculating the average value of the three measurement values.
 フェライトの面積率は、FE-SEM(電界放射型走査型電子顕微鏡)による電子チャンネリングコントラスト像において、板厚1/4位置を中心とする板厚1/8~3/8の範囲内で100μm×100μmの領域を観察することにより求める。より具体的には、上記領域内において、均一なコントラストで写る部分をフェライトとして特定し、その面積率を画像解析ソフトウェアImage Jを用いて算出することができる。 The area ratio of ferrite is 100 μm within the range of 1/8 to 3/8 of the plate thickness centered at the 1/4 position of the plate thickness in an electron channeling contrast image by FE-SEM (field emission scanning electron microscope). It is determined by observing an area of ×100 μm. More specifically, within the above region, a portion that appears with uniform contrast can be identified as ferrite, and its area ratio can be calculated using image analysis software Image J.
 フレッシュマルテンサイト(焼入れままマルテンサイト)の面積率は以下の手順で求める。まず、試料の観察面をレペラ液でエッチングし、次いで板厚1/4位置を中心とする板厚1/8~3/8の範囲内で100μm×100μmの領域をFE-SEMで観察する。レペラ腐食では、フレッシュマルテンサイト及び残留オーステナイトは腐食されないため、SEM画像上では他の部分よりも明るいコントラストで平坦な領域として現れる。腐食されていない領域の面積率は、フレッシュマルテンサイト及び存在する場合には残留オーステナイトの合計面積率に対応する。この腐食されていない領域の面積率から、後で説明するX線回折法により測定した残留オーステナイトの面積率を引算することでフレッシュマルテンサイトの面積率を算出する。 The area ratio of fresh martensite (as-quenched martensite) is determined by the following procedure. First, the observation surface of the sample is etched with repeller liquid, and then an area of 100 μm x 100 μm within the range of 1/8 to 3/8 of the plate thickness centered at 1/4 of the plate thickness is observed using FE-SEM. In repeller corrosion, fresh martensite and retained austenite are not corroded, so they appear as flat areas with brighter contrast than other parts on the SEM image. The area percentage of uncorroded areas corresponds to the total area percentage of fresh martensite and retained austenite, if present. The area ratio of fresh martensite is calculated by subtracting the area ratio of retained austenite measured by an X-ray diffraction method, which will be described later, from the area ratio of this uncorroded region.
 残留オーステナイトの面積率はX線回折法により算出される。まず、試料の板面から板厚方向に深さ1/4位置までを機械研磨及び化学研磨により除去する。次いで、板厚1/4位置において、MoKα線を用いて得られたbcc相の(200)及び(211)並びにfcc相の(200)、(220)及び(311)の回折ピークの積分強度比から、残留オーステナイトの組織分率を算出する。この算出方法として一般的な5ピーク法が利用される。算出された残留オーステナイトの組織分率を残留オーステナイトの面積率として決定する。 The area ratio of retained austenite is calculated by X-ray diffraction method. First, the sample is removed by mechanical polishing and chemical polishing from the surface of the sample to a depth of 1/4 in the thickness direction. Next, the integrated intensity ratio of the diffraction peaks of (200) and (211) of the bcc phase and (200), (220) and (311) of the fcc phase obtained using MoKα rays at a position of 1/4 of the plate thickness. From this, the tissue fraction of retained austenite is calculated. A general 5-peak method is used as this calculation method. The calculated microstructure fraction of retained austenite is determined as the area fraction of retained austenite.
 上部ベイナイト及び焼き戻しマルテンサイトの同定及び面積率の算出は以下の手順で行う。まず、試料の観察面をナイタール試薬で腐食し、次いで板厚1/4を中心とする板厚1/8~3/8の範囲内で100μm×100μmの領域をFE-SEMで観察する。この観察領域において組織内部に含まれるセメンタイトの位置及びセメンタイトの配列から、以下のようにして上部ベイナイト及び焼き戻しマルテンサイトを同定する。上部ベイナイトは、ラス状のベイニティックフェライトの界面にセメンタイト又は残留オーステナイトが存在する。このような特徴点に基づき、上部ベイナイトを同定し、同定されたベイナイトの領域を観察視野の面積で除した値を上部ベイナイトの面積率として算出する。一方、焼き戻しマルテンサイトでは、マルテンサイトラスの内部にセメンタイトが存在するが、マルテンサイトラスとセメンタイトの結晶方位が2種類以上あり、セメンタイトが複数のバリアントを持つことから、焼き戻しマルテンサイトを同定することができる。このようにして同定された焼き戻しマルテンサイトの領域を観察視野の面積で除した値を焼き戻しマルテンサイトの面積率として算出する。 Identification of upper bainite and tempered martensite and calculation of area ratio are performed as follows. First, the observation surface of the sample is corroded with a nital reagent, and then an area of 100 μm x 100 μm within the range of 1/8 to 3/8 of the plate thickness, centered on 1/4 of the plate thickness, is observed using FE-SEM. Upper bainite and tempered martensite are identified in the following manner from the position and arrangement of cementite contained within the structure in this observation region. In upper bainite, cementite or retained austenite exists at the interface of lath-like bainitic ferrite. Based on such feature points, upper bainite is identified, and the area ratio of upper bainite is calculated by dividing the area of the identified bainite by the area of the observation field. On the other hand, in tempered martensite, cementite exists inside the martensite lath, but since there are two or more types of crystal orientations of martensite lath and cementite, and cementite has multiple variants, it is difficult to identify tempered martensite. Can be done. The area of tempered martensite thus identified is divided by the area of the observation field, and the value is calculated as the area ratio of tempered martensite.
 パーライトの同定及び面積率の算出は以下の手順で行う。まず、試料の観察面をナイタール試薬で腐食し、次いで板厚1/4を中心とする板厚1/8~3/8の範囲を光学顕微鏡で観察する。光学顕微鏡の観察像において炭化物とフェライトが層状に存在する領域をパーライトと同定し、この領域を観察視野の面積で除した値をパーライトの面積率として算出する。 Identification of pearlite and calculation of area ratio are performed in the following steps. First, the observation surface of the sample is corroded with a nital reagent, and then a range of 1/8 to 3/8 of the plate thickness, centered on 1/4 of the plate thickness, is observed using an optical microscope. A region where carbide and ferrite exist in a layered manner in an image observed with an optical microscope is identified as pearlite, and the value obtained by dividing this region by the area of the observation field is calculated as the area ratio of pearlite.
[幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置における引張強度のうち最大値と最小値の差が30MPa以下]
 本発明の実施形態に係る高強度熱延鋼板では、先に述べたとおり、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置での金属組織中の焼き戻しマルテンサイトを面積%で95%以上とすることで、マルテンサイトを主相とする組織に起因して高い強度を達成しつつ、これら幅方向の全ての位置における引張強度のうち最大値と最小値の差を確実に30MPa以下に制御することができ、したがって幅方向の強度ばらつきを顕著に低減することが可能となる。また、幅方向全体における金属組織の均一性とこのような強度ばらつきの低減に関連して、高強度であるにもかかわらず、熱延鋼板の平坦度を顕著に改善することができる。熱延鋼板の平坦度を改善する観点からは、上記引張強度の最大値と最小値の差は小さいほど好ましく、例えば28MPa以下、25MPa以下、22MPa以下、20MPa以下、17MPa以下又は15MPa以下であってもよい。下限は特に限定されないが、例えば、上記引張強度の最大値と最小値の差は5MPa以上、8MPa以上又は10MPa以上であれば許容され得る。
[The difference between the maximum and minimum tensile strengths at all positions 1/10W, 3/10W, 5/10W, 7/10W, and 9/10W from the end in the width direction is 30 MPa below]
As described above, in the high-strength hot-rolled steel sheet according to the embodiment of the present invention, from the end in the width direction, the positions are 1/10W, 3/10W, 5/10W, 7/10W, and 9/10W. By setting the tempered martensite in the metal structure at 1/4 of the plate thickness to 95% or more in area% at all positions, high strength can be achieved due to the structure with martensite as the main phase. While achieving this, it is possible to reliably control the difference between the maximum and minimum tensile strengths at all positions in the width direction to 30 MPa or less, and therefore it is possible to significantly reduce strength variations in the width direction. Become. Further, in relation to the uniformity of the metal structure in the entire width direction and the reduction of such strength variations, the flatness of the hot rolled steel sheet can be significantly improved despite its high strength. From the viewpoint of improving the flatness of the hot rolled steel sheet, the smaller the difference between the maximum value and the minimum value of the tensile strength, the better, for example, 28 MPa or less, 25 MPa or less, 22 MPa or less, 20 MPa or less, 17 MPa or less, or 15 MPa or less. Good too. Although the lower limit is not particularly limited, for example, the difference between the maximum and minimum tensile strengths is acceptable if it is 5 MPa or more, 8 MPa or more, or 10 MPa or more.
 当該引張強度の最大値と最小値の差は、以下のようにして決定される。まず、熱延鋼板の幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の各位置において、圧延方向に平行な方向を試験方向とするJIS Z2241:2011の5号引張試験片を採取する。次いで、これらの引張試験片を用いてJIS Z2241:2011に準拠した引張試験を行うことにより5つの引張強度の値を得、最後にそれらの最大値と最小値の差を算出する。 The difference between the maximum and minimum tensile strengths is determined as follows. First, a test was conducted in the direction parallel to the rolling direction at each of the 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the widthwise end of the hot rolled steel plate. A No. 5 tensile test piece of JIS Z2241:2011 with the direction is taken. Next, five tensile strength values are obtained by conducting a tensile test based on JIS Z2241:2011 using these tensile test pieces, and finally, the difference between the maximum value and the minimum value is calculated.
[引張強度]
 上記の5つの引張強度の値のうち最小値が、本発明の実施形態に係る高強度熱延鋼板の引張強度として決定される。本発明の実施形態に係る高強度熱延鋼板では、上で説明した化学組成及び金属組織を有することで、高い引張強度、具体的には980MPa以上の引張強度を達成することができる。引張強度は、好ましくは1000MPa以上、1050MPa以上又は1100MPa以上である。本発明の実施形態に係る高強度熱延鋼板によれば、このような非常に高い引張強度を有するにもかかわらず、幅方向全体における金属組織の均一性と強度ばらつきの低減に関連して、非常に優れた平坦度を達成することができる。引張強度の上限は特に限定されないが、例えば、高強度熱延鋼板の引張強度は1300MPa以下、1250MPa以下、1200MPa以下又は1180MPa以下であってもよい。
[Tensile strength]
The minimum value among the above five tensile strength values is determined as the tensile strength of the high strength hot rolled steel sheet according to the embodiment of the present invention. The high-strength hot-rolled steel sheet according to the embodiment of the present invention has the above-described chemical composition and metal structure, thereby achieving high tensile strength, specifically, a tensile strength of 980 MPa or more. The tensile strength is preferably 1000 MPa or more, 1050 MPa or more, or 1100 MPa or more. According to the high-strength hot-rolled steel sheet according to the embodiment of the present invention, despite having such a very high tensile strength, in relation to the uniformity of the metal structure and the reduction of strength variations in the entire width direction, Very good flatness can be achieved. Although the upper limit of the tensile strength is not particularly limited, for example, the tensile strength of the high-strength hot rolled steel sheet may be 1300 MPa or less, 1250 MPa or less, 1200 MPa or less, or 1180 MPa or less.
[金属組織における旧オーステナイト粒径:40μm以下]
 本発明の好ましい実施形態によれば、金属組織における旧オーステナイト粒径は40μm以下である。先に述べたとおり、本発明の実施形態に係る高強度熱延鋼板では、幅方向全体における金属組織の均一性と強度ばらつきの低減に関連して非常に優れた平坦度を達成することができるが、これに加えて、旧オーステナイト粒径をこのような微細な範囲内に制御することで、靭性などの追加の特性をさらに向上させることが可能となる。靭性向上の観点からは、旧オーステナイト粒径は小さいほど好ましく、例えば37μm以下、35μm以下、32μm以下、30μm以下、27μm以下又は25μm以下であってもよい。下限は特に限定されないが、例えば、旧オーステナイト粒径は10μm以上、12μm以上、15μm以上、18μm以上又は20μm以上であってもよい。
[Prior austenite grain size in metal structure: 40 μm or less]
According to a preferred embodiment of the present invention, the prior austenite grain size in the metallographic structure is 40 μm or less. As mentioned above, the high-strength hot-rolled steel sheet according to the embodiment of the present invention can achieve extremely excellent flatness in relation to the uniformity of the metal structure and the reduction of strength variations in the entire width direction. However, in addition to this, controlling the prior austenite grain size within such a fine range makes it possible to further improve additional properties such as toughness. From the viewpoint of improving toughness, the smaller the prior austenite grain size is, the more preferable it is, and may be, for example, 37 μm or less, 35 μm or less, 32 μm or less, 30 μm or less, 27 μm or less, or 25 μm or less. Although the lower limit is not particularly limited, for example, the prior austenite grain size may be 10 μm or more, 12 μm or more, 15 μm or more, 18 μm or more, or 20 μm or more.
 金属組織における旧オーステナイト粒径は、以下のようにして決定される。まず、熱延鋼板の表面から板厚1/4の位置において採取した鋼片のL断面における200μm×200μmの領域をSEM/EBSD(走査電子顕微鏡/後方散乱電子回折)により解析する。より具体的には、SEM/EBSDで得られた結晶方位データに所定の結晶方位変換(「鋼のオーステナイト組織の再構築法の高精度化に向けた検討」,畑顕吾,脇田昌幸,藤原知哉,河野佳織,新日鉄住金技報第404号(2016),p.24-30を参照)を行い、旧オーステナイト粒を再構築した画像を得る。当該画像の旧オーステナイト粒から同一の面積を有する円の直径すなわち円相当直径を求める。この操作を合計10個の旧オーステナイト粒について行い、得られた10個の円相当直径を平均化することで旧オーステナイト粒径を決定する。 The prior austenite grain size in the metal structure is determined as follows. First, a 200 μm x 200 μm area in the L cross section of a steel piece sampled from the surface of a hot rolled steel sheet at a position 1/4 of the sheet thickness is analyzed by SEM/EBSD (scanning electron microscope/backscattered electron diffraction). More specifically, a predetermined crystal orientation transformation is applied to the crystal orientation data obtained by SEM/EBSD ("Study for improving the accuracy of the method for reconstructing the austenite structure of steel", Kengo Hata, Masayuki Wakita, Tomoya Fujiwara). , Kaori Kono, Nippon Steel & Sumikin Technical Report No. 404 (2016), p. 24-30) to obtain an image in which the prior austenite grains are reconstructed. The diameter of a circle having the same area, that is, the equivalent circle diameter, is determined from the prior austenite grains in the image. This operation is performed for a total of 10 prior austenite grains, and the obtained 10 circle equivalent diameters are averaged to determine the prior austenite grain size.
[全幅W]
 本発明の実施形態に係る高強度熱延鋼板は、任意の全幅Wを有することができる。特に限定されないが、例えば、巻き取られた状態の熱延鋼板(コイル)における全幅Wの場合、全幅Wは700mm以上、800mm以上、900mm以上又は1000mm以上であってもよい。上限は特に限定されないが、平坦度の改善をより確実にするという観点からは、全幅は2500mm以下であることが好ましく、2200mm以下、2000mm以下、1800mm以下、1600mm以下、1500mm以下、1400mm以下又は1300mm以下であってもよい。
[Full width W]
The high-strength hot-rolled steel sheet according to the embodiment of the present invention can have any overall width W. Although not particularly limited, for example, in the case of the full width W of a hot rolled steel plate (coil) in a wound state, the full width W may be 700 mm or more, 800 mm or more, 900 mm or more, or 1000 mm or more. The upper limit is not particularly limited, but from the viewpoint of ensuring improvement in flatness, the total width is preferably 2500 mm or less, such as 2200 mm or less, 2000 mm or less, 1800 mm or less, 1600 mm or less, 1500 mm or less, 1400 mm or less, or 1300 mm. It may be the following.
[板厚]
 本発明の実施形態に係る高強度熱延鋼板は、特に限定されないが、一般的には1.0~6.0mmの板厚を有する。例えば、板厚は1.2mm以上、1.6mm以上若しくは2.0mm以上であってもよく、及び/又は5.0mm以下、4.0mm以下若しくは3.0mm以下であってもよい。
[Plate thickness]
The high-strength hot-rolled steel plate according to the embodiment of the present invention generally has a thickness of 1.0 to 6.0 mm, although it is not particularly limited. For example, the plate thickness may be 1.2 mm or more, 1.6 mm or more, or 2.0 mm or more, and/or 5.0 mm or less, 4.0 mm or less, or 3.0 mm or less.
<高強度熱延鋼板の製造方法>
 次に、本発明の実施形態に係る高強度熱延鋼板の好ましい製造方法について説明する。以下の説明は、本発明の実施形態に係る高強度熱延鋼板を製造するための特徴的な方法の例示を意図するものであって、当該高強度熱延鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
<Production method of high strength hot rolled steel plate>
Next, a preferred method for manufacturing a high-strength hot-rolled steel sheet according to an embodiment of the present invention will be described. The following description is intended to illustrate a characteristic method for manufacturing a high-strength hot-rolled steel sheet according to an embodiment of the present invention, and the high-strength hot-rolled steel sheet is manufactured as described below. It is not intended to be limited to those manufactured by the method.
 本発明の実施形態に係る高強度熱延鋼板の製造方法は、
 高強度熱延鋼板に関連して上で説明した化学組成を有するスラブを1220~1300℃の温度に加熱して粗圧延及び仕上げ圧延することを含む熱間圧延工程であって、前記粗圧延の出側温度が1100~1200℃であり、前記仕上げ圧延の入側温度(F0)が1000~1100℃であり、前記仕上げ圧延の出側温度(FT)が940~1000℃であり、仕上げ圧延の総圧下率が85~95%である熱間圧延工程、
 仕上げ圧延された鋼板を、前記仕上げ圧延の出側温度(FT)からマルテンサイト変態開始温度Ms+50℃までの温度域を臨界冷却速度Vc+10℃/s以上、60℃/s以下の平均冷却速度で1次冷却し、次いでMs+50℃から200℃までの温度域を50~120℃/sの平均冷却速度で2次冷却する冷却工程であって、前記1次冷却における鋼板の下面に対する上面の上下冷却比が0.8~1.2であり、前記2次冷却における鋼板の下面に対する上面の上下冷却比が0.8~1.2である冷却工程、並びに
 2次冷却された鋼板を50~100℃で巻き取る巻取工程
を含むことを特徴としている。以下、各工程について詳しく説明する。
The method for manufacturing a high-strength hot-rolled steel sheet according to an embodiment of the present invention includes:
A hot rolling process comprising heating a slab having the chemical composition described above in connection with a high-strength hot rolled steel sheet to a temperature of 1220 to 1300°C and subjecting it to rough rolling and finish rolling, the process comprising: The exit temperature of the finish rolling is 1100 to 1200°C, the entry temperature (F0) of the finish rolling is 1000 to 1100°C, the exit temperature (FT) of the finish rolling is 940 to 1000°C, and the a hot rolling process in which the total rolling reduction is 85 to 95%;
The finish rolled steel plate is heated in the temperature range from the exit temperature (FT) of the finish rolling to the martensitic transformation start temperature Ms + 50°C at an average cooling rate of not less than critical cooling rate Vc + 10°C/s and not more than 60°C/s. A cooling step in which secondary cooling is performed in the temperature range from Ms + 50°C to 200°C at an average cooling rate of 50 to 120°C/s, the vertical cooling ratio of the upper surface to the lower surface of the steel plate in the primary cooling. is 0.8 to 1.2, and the vertical cooling ratio of the upper surface to the lower surface of the steel plate in the secondary cooling is 0.8 to 1.2, and the secondary cooled steel plate is heated to 50 to 100°C. The feature is that it includes a winding process. Each step will be explained in detail below.
[熱間圧延工程]
[スラブの加熱]
 まず、熱延鋼板に関連して上で説明した化学組成を有するスラブが加熱される。使用するスラブは、生産性の観点から連続鋳造法において鋳造することが好ましいが、造塊法又は薄スラブ鋳造法によって製造してもよい。使用されるスラブは、高強度鋼板を得るために合金元素を比較的多く含有している。このため、スラブを熱間圧延に供する前に加熱して合金元素をスラブ中に固溶させる必要がある。加熱温度が1220℃未満であると、合金元素がスラブ中に十分に固溶せずに粗大な合金炭化物が残り、熱間圧延中に脆化割れを生じる場合がある。このため、加熱温度は1220℃以上とし、好ましくは1230℃以上である。加熱温度の上限は、特に限定されないが、加熱設備の能力や生産性の観点から1300℃以下であることが好ましい。
[Hot rolling process]
[Heating the slab]
First, a slab having the chemical composition described above in connection with hot rolled steel sheet is heated. The slab used is preferably cast by a continuous casting method from the viewpoint of productivity, but may be manufactured by an ingot casting method or a thin slab casting method. The slabs used contain relatively high amounts of alloying elements in order to obtain high strength steel sheets. For this reason, it is necessary to heat the slab to dissolve the alloying elements in the slab before hot rolling. If the heating temperature is less than 1220° C., the alloying elements will not be fully dissolved in the slab, leaving coarse alloy carbides, which may cause embrittlement cracking during hot rolling. For this reason, the heating temperature is 1220°C or higher, preferably 1230°C or higher. The upper limit of the heating temperature is not particularly limited, but is preferably 1300° C. or lower from the viewpoint of the capacity of the heating equipment and productivity.
[粗圧延]
 本方法では、加熱されたスラブに対し、板厚調整等のために、仕上げ圧延の前に粗圧延を施される。粗圧延は、所望のシートバー寸法を確保するとともに、仕上げ圧延における940℃以上の温度域での総圧下率を所望の範囲内に調整できるようにするため、粗圧延の出側温度を1100~1200℃とし、好ましくは1150~1200℃である。粗圧延の出側温度が1100℃未満であると、粗圧延に続く仕上げ圧延で940℃以上の出側温度を得ることが困難となる。また、粗圧延の出側温度が1200℃を超えると、結晶粒が粗大化して、得られる熱延鋼板の靭性が低下する場合がある。
[Rough rolling]
In this method, the heated slab is subjected to rough rolling before finish rolling in order to adjust the plate thickness and the like. In the rough rolling, in order to ensure the desired sheet bar dimensions and to be able to adjust the total rolling reduction within the desired range in the temperature range of 940°C or higher in the finish rolling, the exit temperature of the rough rolling is set at 1100 to 1100°C. The temperature is 1200°C, preferably 1150 to 1200°C. If the exit temperature of rough rolling is less than 1100°C, it becomes difficult to obtain an exit temperature of 940°C or higher in finish rolling following rough rolling. Moreover, when the exit temperature of rough rolling exceeds 1200° C., crystal grains may become coarse and the toughness of the obtained hot rolled steel sheet may decrease.
[仕上げ圧延]
 粗圧延されたスラブは、次に仕上げ圧延を施される。上記のように、使用されるスラブは合金元素を比較的多く含有しているため、熱間圧延の際に圧延荷重を大きくする必要がある。このため、熱間圧延は高温及び高圧下で行われ、具体的には仕上げ圧延の入側温度(F0)は1000~1100℃、仕上げ圧延の出側温度(FT)は940~1000℃、仕上げ圧延の総圧下率は85~95%とする。特に仕上げ圧延の出側温度は、鋼板の金属組織の制御の点で重要である。より詳しくは、仕上げ圧延の出側温度が低いと、金属組織が不均一となり、成形性が低下する場合がある。このため、仕上げ圧延の出側温度は940℃以上とする。一方で、オーステナイトの粗大化を抑制するため、仕上げ圧延の出側温度は1000℃以下とする。
[Finish rolling]
The rough rolled slab is then subjected to finish rolling. As mentioned above, since the slab used contains a relatively large amount of alloying elements, it is necessary to increase the rolling load during hot rolling. For this reason, hot rolling is performed at high temperature and under high pressure. Specifically, the entry temperature (F0) of finish rolling is 1000 to 1100°C, the exit temperature (FT) of finish rolling is 940 to 1000°C, and the finishing temperature is 1000 to 1100°C. The total rolling reduction ratio is 85 to 95%. In particular, the exit temperature of finish rolling is important in terms of controlling the metallographic structure of the steel sheet. More specifically, if the exit temperature during finish rolling is low, the metal structure may become non-uniform and formability may deteriorate. For this reason, the exit temperature of finish rolling is set to 940° C. or higher. On the other hand, in order to suppress coarsening of austenite, the exit temperature of finish rolling is set to 1000° C. or less.
[冷却工程]
[1次冷却]
 仕上げ圧延された鋼板は、次の冷却工程において、まず、仕上げ圧延の出側温度(FT)からマルテンサイト変態開始温度Ms+50℃までの温度域を臨界冷却速度Vc+10℃/s以上、60℃/s以下の平均冷却速度で1次冷却される。この温度域を臨界冷却速度Vc+10℃/s以上、60℃/s以下の平均冷却速度で1次冷却することで、マルテンサイト変態を促進させて、最終的に得られる金属組織においてフェライト、上部ベイナイト及びパーライトの少なくとも1種を合計で5面積%以下に低減するとともに、当該金属組織を幅方向において均一なものとすることができる。1次冷却の平均冷却速度が臨界冷却速度Vc+10℃/s未満であると、フェライト、上部ベイナイト及びパーライトの少なくとも1種が合計で5面積%超となり、所望の強度を達成することができない場合がある。一方で、1次冷却の平均冷却速度が60℃/s超であると、冷却速度が速いために鋼板を幅方向で均一に冷却することが難しくなり、幅方向において冷却むらが生じてしまう。この場合には、最終的に得られる熱延鋼板において幅方向で所望の金属組織が得られないか及び/又は幅方向で引張強度のばらつきが大きくなり、これに関連して当該熱延鋼板の形状が崩れ、鋼板の幅方向に反りが生じて十分な平坦度を達成することができなくなる。したがって、1次冷却の平均冷却速度は、臨界冷却速度Vc+10℃/s以上、60℃/s以下とし、好ましくは臨界冷却速度Vc+12℃/s以上、60℃/s以下である。
[Cooling process]
[Primary cooling]
In the next cooling process, the finish-rolled steel plate is first cooled at a critical cooling rate of Vc+10°C/s or more, 60°C/s, in the temperature range from the finish rolling exit temperature (FT) to the martensitic transformation start temperature Ms+50°C. Primary cooling is performed at the following average cooling rate. By performing primary cooling in this temperature range at an average cooling rate of critical cooling rate Vc+10°C/s or more and 60°C/s or less, martensitic transformation is promoted, and the final metal structure is ferrite, upper bainite, etc. It is possible to reduce the total amount of at least one of pearlite and pearlite to 5% by area or less, and to make the metal structure uniform in the width direction. If the average cooling rate of primary cooling is less than the critical cooling rate Vc + 10°C/s, the total amount of at least one of ferrite, upper bainite, and pearlite will exceed 5 area%, and the desired strength may not be achieved. be. On the other hand, if the average cooling rate of primary cooling is more than 60° C./s, the cooling rate is so fast that it becomes difficult to uniformly cool the steel plate in the width direction, resulting in uneven cooling in the width direction. In this case, the desired metallographic structure may not be obtained in the width direction in the finally obtained hot rolled steel sheet, and/or the tensile strength may vary widely in the width direction. The shape collapses and warpage occurs in the width direction of the steel plate, making it impossible to achieve sufficient flatness. Therefore, the average cooling rate of the primary cooling is greater than or equal to the critical cooling rate Vc+10°C/s and less than or equal to 60°C/s, preferably greater than or equal to the critical cooling rate Vc+12°C/s and less than or equal to 60°C/s.
 本製造方法において、Ms点(℃)は、下記式1により求められる。
 Ms=823-350[C]-40[Mn]-35[V]-20[Cr]-17[Ni]-10[Cu]-10[Mo]-10[W]+15[Co]+30[Al]-273                  ・・・式1
 ここで、[C]、[Mn]、[V]、[Cr]、[Ni]、[Cu]、[Mo]、[W]、[Co]及び[Al]は、鋼中の各元素の含有量(質量%)であり、元素を含有しない場合は0である。また、臨界冷却速度Vc(℃)は、マルテンサイト面積率が90%以上になる焼入れ性指標でもあり、下記式2及び3によって表すことができる。
 固溶B量≧0.0005質量%のとき、
 logVc=2.94-0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+2[Mo])  ・・・式2
 固溶B量<0.0005質量%のとき、
 logVc=3.69-0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+[Mo])   ・・・式3
 ここで、[C]、[Si]、[Mn]、[Ni]、[Cr]及び[Mo]は、鋼中の各元素の含有量(質量%)であり、元素を含有しない場合は0である。また、固溶B量(質量%)は、鋼中に含まれるB含有量から窒化ホウ素(BN)を形成するのに消費されるB量を除いた量に対応する。一方で、BNを形成し得る固溶N量(質量%)は鋼中にTiを含有させてTiNとして固定することにより低減することができる。したがって、固溶B量は、下記式4及び5によって算出することができる。
 固溶B量=10.81×([B]/10.81-固溶N量/14.01) ・・・式4
 ただし、[N]/14.01-[Ti]/47.88>0のとき、
 固溶N量=14.01×([N]/14.01-[Ti]/47.88) ・・・式5
 [N]/14.01-[Ti]/47.88≦0のとき、固溶N量は0である。
 ここで、[B]、[N]及び[Ti]は、鋼中の各元素の含有量(質量%)であり、元素を含有しない場合は0である。
In this manufacturing method, the Ms point (° C.) is determined by the following formula 1.
Ms=823-350[C]-40[Mn]-35[V]-20[Cr]-17[Ni]-10[Cu]-10[Mo]-10[W]+15[Co]+30[Al ]-273 ...Formula 1
Here, [C], [Mn], [V], [Cr], [Ni], [Cu], [Mo], [W], [Co] and [Al] are the respective elements in the steel. The content (mass%) is 0 if the element is not contained. Further, the critical cooling rate Vc (° C.) is also a hardenability index at which the martensite area ratio is 90% or more, and can be expressed by the following formulas 2 and 3.
When the amount of solid solution B≧0.0005% by mass,
logVc=2.94-0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+2[Mo])...Formula 2
When the amount of solid solution B is <0.0005% by mass,
logVc=3.69-0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+[Mo])...Formula 3
Here, [C], [Si], [Mn], [Ni], [Cr] and [Mo] are the contents (mass%) of each element in the steel, and are 0 if no element is contained. It is. Moreover, the solid solution B amount (mass %) corresponds to the amount obtained by subtracting the B amount consumed to form boron nitride (BN) from the B content contained in the steel. On the other hand, the amount of solid solution N (mass %) that can form BN can be reduced by including Ti in the steel and fixing it as TiN. Therefore, the amount of solid solution B can be calculated using equations 4 and 5 below.
Solid solution B amount = 10.81 × ([B] / 10.81 - solid solution N amount / 14.01) ... Formula 4
However, when [N]/14.01-[Ti]/47.88>0,
Solid solution N amount = 14.01 × ([N]/14.01-[Ti]/47.88) ... Formula 5
When [N]/14.01−[Ti]/47.88≦0, the amount of solid solute N is 0.
Here, [B], [N], and [Ti] are the content (mass%) of each element in the steel, and are 0 when no element is contained.
 1次冷却においては、平均冷却速度の制御に加えて、鋼板をその上面と下面で均等に冷却することが極めて重要である。このような冷却は、鋼板の下面に対する上面の上下冷却比が0.8~1.2となるように行われ、より具体的には鋼板の上面に噴射される冷却水の量が、鋼板の下面に噴射される冷却水の量に対して0.8~1.2倍になるように行われる。このように鋼板の上下面における冷却を均等に行うことで冷却むらの発生を顕著に抑制又は低減することが可能となる。その結果として、幅方向全体において金属組織の均一性と強度ばらつきの低減を達成することができ、これに関連して、熱延鋼板の幅方向に反りを生じさせることなく、十分な平坦度を達成することが可能となる。上下冷却比が0.8未満であるか又は1.2超であると、冷却むらの発生に起因して、幅方向において金属組織を均一に分布させることができなくなり、すなわち幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置の金属組織を、面積%で、焼き戻しマルテンサイト:95%以上の組織とすることができなくなる。その結果として、幅方向における強度ばらつきを、上記幅方向の全ての位置における引張強度のうち最大値と最小値の差が30MPa以下となるようなレベルにおいて十分に低減することができなくなる。 In primary cooling, in addition to controlling the average cooling rate, it is extremely important to cool the steel plate evenly on its upper and lower surfaces. Such cooling is performed such that the vertical cooling ratio of the upper surface of the steel plate to the lower surface of the steel plate is 0.8 to 1.2. More specifically, the amount of cooling water injected onto the upper surface of the steel plate is This is done so that the amount of cooling water is 0.8 to 1.2 times the amount of cooling water injected to the lower surface. By uniformly cooling the upper and lower surfaces of the steel plate in this manner, it is possible to significantly suppress or reduce the occurrence of uneven cooling. As a result, it is possible to achieve uniformity of the metallographic structure and reduction of strength variations in the entire width direction, and related to this, it is possible to achieve sufficient flatness without causing warpage in the width direction of the hot rolled steel sheet. It becomes possible to achieve this. If the upper and lower cooling ratio is less than 0.8 or more than 1.2, the metal structure cannot be uniformly distributed in the width direction due to uneven cooling, that is, the edges in the width direction At all positions from 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position, the metal structure at 1/4 plate thickness position is expressed as area% of tempered marten. Site: It becomes impossible to organize more than 95% of the sites. As a result, it becomes impossible to sufficiently reduce the strength variation in the width direction to a level where the difference between the maximum value and the minimum value among the tensile strengths at all positions in the width direction is 30 MPa or less.
 ここで、上記の上下冷却比とは、FT~(Ms+50)℃の区間の上面全体の冷却水量と下面全体の冷却水量の比を意味するものではない。より具体的には、本製造方法では、FT~(Ms+50)℃の区間を10mごとのセクションに分け、これらのセクションごとに上面の冷却水量と下面の冷却水量から上下冷却比を計算し、このようにして計算された各セクションの上下冷却比が全て0.8~1.2の範囲内に制御される。分割されたセクションごとではなく区間全体の上下冷却比の制御では、例えば局所的な過冷などに起因する冷却むらの発生を十分に抑制することは非常に困難である。しかしながら、このようなセクションごとの上下冷却比の制御を実現することで、局所的な過冷などを低減して冷却むらの発生を確実に抑制することが可能となる。また、このようなセクションごとの上下冷却比の制御は、任意の適切な手段によって行うことができる。特に限定されないが、例えば、各セクションには鋼板の上側と下側で鋼板の進行方向に沿って複数の冷却水ノズルが配置されているため、これらの冷却水ノズルをオンオフ制御に基づいて適切に噴射することにより、各セクションの上下冷却比を0.8~1.2の範囲内に比較的容易に制御することが可能である。 Here, the above-mentioned upper and lower cooling ratio does not mean the ratio of the amount of cooling water on the entire upper surface and the amount of cooling water on the entire lower surface in the section from FT to (Ms+50)°C. More specifically, in this manufacturing method, the section from FT to (Ms+50)°C is divided into sections every 10 m, and the upper and lower cooling ratios are calculated for each section from the amount of cooling water on the top surface and the amount of cooling water on the bottom surface. The upper and lower cooling ratios of each section calculated in this way are all controlled within the range of 0.8 to 1.2. By controlling the upper and lower cooling ratios not for each divided section but for the entire section, it is very difficult to sufficiently suppress the occurrence of cooling unevenness due to local overcooling, for example. However, by controlling the upper and lower cooling ratios for each section, it is possible to reduce local overcooling and reliably suppress the occurrence of uneven cooling. Moreover, such control of the upper and lower cooling ratios for each section can be performed by any appropriate means. For example, but not limited to, each section has a plurality of cooling water nozzles arranged above and below the steel plate along the traveling direction of the steel plate, so these cooling water nozzles can be appropriately controlled based on on/off control. By injecting, it is possible to relatively easily control the upper and lower cooling ratio of each section within the range of 0.8 to 1.2.
[2次冷却]
 1次冷却された鋼板は、次いでMs+50℃から200℃までの温度域を50~120℃/sの平均冷却速度で2次冷却される。Ms+50℃からマルテンサイト変態の終了温度に相当し得る200℃までの温度域を50~120℃/sの平均冷却速度で2次冷却することで、オートテンパーが進行する温度域の滞留時間を十分に確保することができるため、オートテンパーを促進させることが可能となる。したがって、先の1次冷却によってマルテンサイト変態した組織を十分に焼き戻して、最終的な金属組織において95面積%以上の焼き戻しマルテンサイトを幅方向に均一に分布させることが可能となる。2次冷却の平均冷却速度が50℃/s未満であると、鋼板の幅方向において所望の金属組織を得ることができず、幅方向の強度ばらつきを十分に低減することができない場合がある。一方で、2次冷却の平均冷却速度が120℃/s超であると、オートテンパーを促進させることができなくなり、最終的な金属組織においてフレッシュマルテンサイトが5面積%を超えて残存する場合がある。これに加え又はそれに代えて、このような急冷に起因して冷却に使用する水量の制御性が悪化し、局所的に過冷される部分が生じるなどして幅方向において冷却むらが生じてしまう。この場合には、最終的に得られる熱延鋼板において幅方向で引張強度のばらつきが大きくなり、これに関連して当該熱延鋼板の形状が崩れ、鋼板の幅方向に反りが生じて十分な平坦度を達成することができなくなる。
[Secondary cooling]
The primarily cooled steel plate is then secondarily cooled in a temperature range from Ms+50°C to 200°C at an average cooling rate of 50 to 120°C/s. By performing secondary cooling at an average cooling rate of 50 to 120°C/s in the temperature range from Ms+50°C to 200°C, which may correspond to the end temperature of martensitic transformation, the residence time in the temperature range where autotempering progresses is sufficient. This makes it possible to promote auto-tempering. Therefore, it is possible to sufficiently temper the martensite-transformed structure by the previous primary cooling, and to uniformly distribute tempered martensite in the width direction in the final metal structure in an amount of 95% or more by area. If the average cooling rate of secondary cooling is less than 50° C./s, it may not be possible to obtain a desired metal structure in the width direction of the steel plate, and strength variations in the width direction may not be sufficiently reduced. On the other hand, if the average cooling rate of secondary cooling exceeds 120°C/s, autotempering cannot be promoted, and fresh martensite may remain in an amount exceeding 5 area% in the final metal structure. be. In addition to or in place of this, due to such rapid cooling, the controllability of the amount of water used for cooling deteriorates, and uneven cooling occurs in the width direction due to local overcooling of parts. . In this case, the tensile strength of the finally obtained hot rolled steel sheet increases in the width direction, the shape of the hot rolled steel sheet collapses, and the steel sheet warps in the width direction, resulting in insufficient strength. It becomes impossible to achieve flatness.
 2次冷却においても、1次冷却の場合と同様に、平均冷却速度の制御に加えて、鋼板をその上面と下面で均等に冷却することが極めて重要である。このような冷却は、1次冷却の場合と同様に、鋼板の下面に対する上面の上下冷却比が0.8~1.2となるように行われ、より具体的には鋼板の上面に噴射される冷却水の量が、鋼板の下面に噴射される冷却水の量に対して0.8~1.2倍になるように行われる。このように鋼板の上下面における冷却を均等に行うことで冷却むらの発生を顕著に抑制又は低減することが可能となる。その結果として、幅方向全体において金属組織の均一性と強度ばらつきの低減を達成することができ、これに関連して、熱延鋼板の幅方向に反りを生じさせることなく、十分な平坦度を達成することが可能となる。上下冷却比が0.8未満であるか又は1.2超であると、冷却むらの発生に起因して、幅方向において金属組織を均一に分布させることができなくなり、すなわち幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置の金属組織を、面積%で、焼き戻しマルテンサイト:95%以上の組織とすることができなくなる。その結果として、幅方向における強度ばらつきを、上記幅方向の全ての位置における引張強度のうち最大値と最小値の差が30MPa以下となるようなレベルにおいて十分に低減することができなくなる。 In secondary cooling, as in the case of primary cooling, in addition to controlling the average cooling rate, it is extremely important to cool the steel plate evenly on its upper and lower surfaces. As in the case of primary cooling, such cooling is performed such that the vertical cooling ratio of the upper surface of the steel plate to the lower surface of the steel plate is 0.8 to 1.2. The amount of cooling water sprayed is 0.8 to 1.2 times the amount of cooling water injected onto the lower surface of the steel plate. By uniformly cooling the upper and lower surfaces of the steel plate in this manner, it is possible to significantly suppress or reduce the occurrence of uneven cooling. As a result, it is possible to achieve uniformity of the metallographic structure and reduction of strength variations in the entire width direction, and related to this, it is possible to achieve sufficient flatness without causing warpage in the width direction of the hot rolled steel sheet. It becomes possible to achieve this. If the upper and lower cooling ratio is less than 0.8 or more than 1.2, the metal structure cannot be uniformly distributed in the width direction due to uneven cooling, that is, the edges in the width direction At all positions from 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position, the metal structure at 1/4 plate thickness position is expressed as area% of tempered marten. Site: It becomes impossible to organize more than 95% of the sites. As a result, it becomes impossible to sufficiently reduce the strength variation in the width direction to a level where the difference between the maximum value and the minimum value among the tensile strengths at all positions in the width direction is 30 MPa or less.
 ここで、上記の上下冷却比とは、(Ms+50)℃~200℃の区間の上面全体の冷却水量と下面全体の冷却水量の比を意味するものではない。より具体的には、本製造方法では、(Ms+50)℃~200℃の区間を10mごとのセクションに分け、これらのセクションごとに上面の冷却水量と下面の冷却水量から上下冷却比を計算し、このようにして計算された各セクションの上下冷却比が全て0.8~1.2の範囲内に制御される。分割されたセクションごとではなく区間全体の上下冷却比の制御では、例えば局所的な過冷などに起因する冷却むらの発生を十分に抑制することは非常に困難である。しかしながら、このようなセクションごとの上下冷却比の制御を実現することで、局所的な過冷などを低減して冷却むらの発生を確実に抑制することが可能となる。また、このようなセクションごとの上下冷却比の制御は、任意の適切な手段によって行うことができる。特に限定されないが、1次冷却の場合と同様に、例えば、各セクションには鋼板の上側と下側で鋼板の進行方向に沿って複数の冷却水ノズルが配置されているため、これらの冷却水ノズルをオンオフ制御に基づいて適切に噴射することにより、各セクションの上下冷却比を0.8~1.2の範囲内に比較的容易に制御することが可能である。 Here, the above-mentioned upper and lower cooling ratio does not mean the ratio of the amount of cooling water on the entire upper surface and the amount of cooling water on the entire lower surface in the range from (Ms+50)° C. to 200° C. More specifically, in this manufacturing method, the section from (Ms + 50) °C to 200 °C is divided into sections every 10 m, and the upper and lower cooling ratios are calculated from the amount of cooling water on the upper surface and the amount of cooling water on the lower surface for each section, The upper and lower cooling ratios of each section calculated in this way are all controlled within the range of 0.8 to 1.2. By controlling the upper and lower cooling ratios not for each divided section but for the entire section, it is very difficult to sufficiently suppress the occurrence of cooling unevenness due to local overcooling, for example. However, by controlling the upper and lower cooling ratios for each section, it is possible to reduce local overcooling and reliably suppress the occurrence of uneven cooling. Moreover, such control of the upper and lower cooling ratios for each section can be performed by any appropriate means. Although not particularly limited, as in the case of primary cooling, for example, each section has a plurality of cooling water nozzles arranged above and below the steel plate along the direction of movement of the steel plate, so these cooling water By appropriately injecting the nozzle based on on/off control, it is possible to relatively easily control the upper and lower cooling ratio of each section within the range of 0.8 to 1.2.
[巻取工程]
 2次冷却された鋼板は、最後に巻取工程において50~100℃で巻き取られる。巻取温度が低すぎると、熱延鋼板が硬くなり脆化する場合があり、また過度な水冷等が必要になり、生産性も低下する。したがって、巻取温度は50℃以上とし、好ましくは80℃以上である。
[Winding process]
The secondarily cooled steel plate is finally wound up at 50 to 100°C in a winding process. If the coiling temperature is too low, the hot-rolled steel sheet may become hard and brittle, and excessive water cooling or the like will be required, resulting in a decrease in productivity. Therefore, the winding temperature is 50°C or higher, preferably 80°C or higher.
 上記の製造方法によって製造された熱延鋼板によれば、圧延方向及び板厚方向に垂直な方向における全幅をWとした場合に、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置での金属組織中の焼き戻しマルテンサイトを面積%で95%以上として、マルテンサイトを主相とする組織に起因して高い強度、より具体的には980MPa以上の引張強度を達成しつつ、これら幅方向の全ての位置における引張強度のうち最大値と最小値の差を確実に30MPa以下に制御することができる。したがって、幅方向の強度ばらつきを顕著に低減することが可能となり、これに関連して、熱延鋼板の幅方向に反りを生じさせることなく、十分な平坦度を達成することが可能となる。したがって、上記の製造方法によって製造された高強度熱延鋼板は、高強度であるにもかかわらず、幅方向に均質な特性を有するとともに、平坦度が非常に良好である。また、例えばレベラー等を用いた平坦化処理を行っていない熱延鋼板、例えば製造直後の熱延鋼板において、上記の高強度と平坦度を達成することができるため、このような平坦化処理(予加工)によって鋼板が本来持っている延性の一部を消費してしまうこともない。このため、鋼板のプレス時に成形不良が生じるリスクを低減することができ、生産性も顕著に向上させることが可能となる。したがって、当該高強度熱延鋼板は、自動車分野の使用において特に有用であることは当然ながら、他の分野においても非常に有効に使用することが可能である。 According to the hot-rolled steel sheet manufactured by the above manufacturing method, when the total width in the direction perpendicular to the rolling direction and the plate thickness direction is W, a 1/10W position, a 3/10W position from the end in the width direction, At all positions, 5/10W position, 7/10W position, and 9/10W position, the tempered martensite in the metal structure at the 1/4 plate thickness position is 95% or more in area%, and martensite is the main While achieving high strength due to the phase structure, more specifically, a tensile strength of 980 MPa or more, the difference between the maximum and minimum tensile strengths at all positions in the width direction is surely 30 MPa or less. can be controlled. Therefore, it becomes possible to significantly reduce strength variations in the width direction, and in connection with this, it becomes possible to achieve sufficient flatness without causing warpage in the width direction of the hot rolled steel sheet. Therefore, the high-strength hot-rolled steel sheet manufactured by the above-mentioned manufacturing method has uniform characteristics in the width direction and has very good flatness in spite of its high strength. In addition, the above-mentioned high strength and flatness can be achieved in hot-rolled steel sheets that have not been subjected to flattening treatment using a leveler, for example, in hot-rolled steel sheets immediately after production, so such flattening treatment ( Pre-processing) does not consume part of the steel sheet's inherent ductility. Therefore, it is possible to reduce the risk of forming defects during pressing of the steel plate, and it is also possible to significantly improve productivity. Therefore, it goes without saying that the high-strength hot-rolled steel sheet is particularly useful in the automobile field, but can also be used very effectively in other fields.
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.
 以下の実施例では、本発明の実施形態に係る高強度熱延鋼板を種々の条件下で製造し、得られた高強度熱延鋼板の幅方向における特性、及び平坦度について調べた。 In the following examples, high-strength hot-rolled steel sheets according to embodiments of the present invention were manufactured under various conditions, and the characteristics and flatness in the width direction of the obtained high-strength hot-rolled steel sheets were investigated.
 まず、溶鋼を連続鋳造法にて鋳造して表1に示す種々の化学組成を有するスラブを形成し、これらのスラブを表2に示す条件下で加熱し、次いで熱間圧延を行った。熱間圧延は、粗圧延と仕上げ圧延を行うことにより実施し、粗圧延の出側温度並びに仕上げ圧延の入側温度(F0)、出側温度(FT)及び総圧下率は表2に示すとおりであった。次に、仕上げ圧延された鋼板を、表2に示す条件下で、まず仕上げ圧延の出側温度(FT)からマルテンサイト変態開始温度Ms+50℃までの温度域において1次冷却を施し、次いでMs+50℃から200℃までの温度域において2次冷却を施した。 First, molten steel was cast by a continuous casting method to form slabs having various chemical compositions shown in Table 1, these slabs were heated under the conditions shown in Table 2, and then hot rolled. Hot rolling was carried out by performing rough rolling and finish rolling, and the exit temperature of rough rolling, the entry temperature (F0), exit temperature (FT), and total rolling reduction of finish rolling were as shown in Table 2. Met. Next, under the conditions shown in Table 2, the finish-rolled steel plate was first cooled in a temperature range from the finish rolling exit temperature (FT) to the martensitic transformation start temperature Ms + 50°C, and then Ms + 50°C. Secondary cooling was performed in a temperature range from 200°C to 200°C.
 1次冷却及び2次冷却においては、それぞれFT~(Ms+50)℃の区間と(Ms+50)℃~200℃の区間とを10mごとのセクションに分け、これらのセクションごとに上面の冷却水量と下面の冷却水量から上下冷却比を計算し、このようにして計算される各セクションの上下冷却比が所定の範囲内に制御されるようにして冷却を実施した。表2の1次冷却及び2次冷却における上下冷却比は、1次冷却及び2次冷却における各セクションの上下冷却比のうち冷却比1からの差の絶対値が最も大きいものを示している。最後に、2次冷却された鋼板を表2に示す条件下で巻き取り、約2.3~3.2mmの板厚及び1200mmの全幅を有する熱延鋼板を得た。 In primary cooling and secondary cooling, the section from FT to (Ms+50)℃ and the section from (Ms+50)℃ to 200℃ are divided into sections every 10m, and the amount of cooling water on the top surface and the amount on the bottom surface are determined for each section. The upper and lower cooling ratios were calculated from the amount of cooling water, and cooling was performed so that the upper and lower cooling ratios of each section calculated in this manner were controlled within a predetermined range. The upper and lower cooling ratios in primary cooling and secondary cooling in Table 2 indicate the one with the largest absolute value of the difference from the cooling ratio 1 among the upper and lower cooling ratios of each section in primary cooling and secondary cooling. Finally, the secondary cooled steel plate was rolled up under the conditions shown in Table 2 to obtain a hot rolled steel plate having a thickness of about 2.3 to 3.2 mm and a total width of 1200 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた熱延鋼板の特性は以下の方法によって測定及び評価した。 The properties of the obtained hot rolled steel sheet were measured and evaluated by the following methods.
[金属組織における旧オーステナイト粒径]
 金属組織における旧オーステナイト粒径は、以下のようにして決定した。まず、熱延鋼板の表面から板厚1/4の位置において採取した鋼片のL断面における200μm×200μmの領域をSEM/EBSDにより解析した。より具体的には、SEM/EBSDで得られたマルテンサイト組織に所定の結晶方位変換を行い、旧オーステナイト粒を再構築した画像を得、次いで当該画像の旧オーステナイト粒から円相当直径を求めた。この操作を合計10個の旧オーステナイト粒について行い、得られた10個の円相当直径を平均化することで旧オーステナイト粒径を決定した。
[Prior austenite grain size in metal structure]
The prior austenite grain size in the metal structure was determined as follows. First, a 200 μm x 200 μm area in the L cross section of a steel piece sampled from the surface of a hot rolled steel sheet at a position 1/4 of the sheet thickness was analyzed by SEM/EBSD. More specifically, a predetermined crystal orientation transformation was performed on the martensite structure obtained by SEM/EBSD to obtain an image in which the prior austenite grains were reconstructed, and then the equivalent circle diameter was determined from the prior austenite grains in the image. . This operation was performed for a total of 10 prior austenite grains, and the obtained 10 circle equivalent diameters were averaged to determine the prior austenite grain size.
[幅方向の強度ばらつき]
 まず、熱延鋼板の幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の各位置において、圧延方向に平行な方向を試験方向とするJIS Z2241:2011の5号引張試験片を採取する。次いで、これらの引張試験片を用いてJIS Z2241:2011に準拠した引張試験を行うことにより5つの引張強度の値を得、最後にそれらの最大値と最小値の差を算出することにより幅方向の強度ばらつきを決定した。
[Strength variation in width direction]
First, a test was conducted in the direction parallel to the rolling direction at each of the 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the widthwise end of the hot rolled steel plate. A No. 5 tensile test piece according to JIS Z2241:2011 with the direction is taken. Next, five tensile strength values were obtained by conducting a tensile test based on JIS Z2241:2011 using these tensile test pieces, and finally, the width direction was determined by calculating the difference between the maximum and minimum values. The strength variation was determined.
[熱延鋼板の引張強度]
 上記の5つの引張強度の値のうち最小値を熱延鋼板の引張強度として決定した。
[Tensile strength of hot rolled steel plate]
The minimum value among the above five tensile strength values was determined as the tensile strength of the hot rolled steel sheet.
[平坦度の評価]
 平坦度の評価は、以下のようにして行った。まず、得られた熱延鋼板をいずれかの板面(下面)の少なくとも一部が定盤と接するように定盤上に載置し、次いで当該熱延鋼板の定盤からの高さが最も高い位置における定盤から熱延鋼板の下面までの距離を測定し、得られた測定値を熱延鋼板の最大反り高さH(mm)として決定した。平坦度の評価として、最大反り高さHが10mm以内の場合を合格、最大反り高さHが10mm超の場合を不合格とした。
[Evaluation of flatness]
Evaluation of flatness was performed as follows. First, the obtained hot-rolled steel plate is placed on a surface plate so that at least a part of one of the plate surfaces (lower surface) is in contact with the surface plate, and then the height of the hot-rolled steel sheet from the surface plate is the highest. The distance from the surface plate at a high position to the lower surface of the hot-rolled steel plate was measured, and the obtained measured value was determined as the maximum warp height H (mm) of the hot-rolled steel plate. As for evaluation of flatness, a case where the maximum warp height H was within 10 mm was judged as a pass, and a case where the maximum warp height H exceeded 10 mm was judged as a failure.
 熱延鋼板の引張強度が980MPa以上であり、平坦度の評価が合格である場合を、改善された平坦度を有する高強度熱延鋼板として評価した。その結果を表3に示す。 A case where the tensile strength of the hot-rolled steel sheet was 980 MPa or more and the flatness evaluation was acceptable was evaluated as a high-strength hot-rolled steel sheet with improved flatness. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3を参照すると、比較例2及び10は、2次冷却の平均冷却速度が高く、また2次冷却の上下冷却比が適切でなかったために、冷却時のオートテンパーによってマルテンサイトを十分に焼き戻すことができず、フレッシュマルテンサイト(fM)の割合が高くなり、また冷却むらの発生に起因して幅方向において金属組織を均一に分布させることができず、幅方向の引張強度のばらつきが顕著となった。その結果として十分な平坦度を達成することができなかった。比較例8は、1次冷却の平均冷却速度が高く、また1次冷却及び2次冷却の上下冷却比が適切でなかったために、冷却むらの発生に起因して幅方向において所望の金属組織を均一に分布させることができなかった。これに関連して、980MPa以上の引張強度を達成することができず、また幅方向の引張強度のばらつきも顕著となった。その結果として十分な平坦度を達成することができなかった。比較例9は、1次冷却の平均冷却速度が高く、また1次冷却の上下冷却比が適切でなかったために、冷却むらの発生に起因して幅方向において所望の金属組織を均一に分布させることができず、幅方向の引張強度のばらつきが顕著となった。その結果として十分な平坦度を達成することができなかった。比較例11は、1次冷却及び2次冷却の上下冷却比が適切でなかったために、冷却むらの発生に起因して幅方向において所望の金属組織を均一に分布させることができず、これに関連して幅方向の引張強度のばらつきも顕著となった。その結果として十分な平坦度を達成することができなかった。比較例13は、C含有量が高かったために、幅方向における引張強度のばらつきを所定の範囲内に制御することができず、平坦度が低下した。比較例14は、C含有量が低かったために所望の引張強度を達成することができなかった。比較例15は、Si含有量が高かったために鋼板冷却時のオートテンパーが抑制されてしまったものと考えられる。その結果として、金属組織中のフレッシュマルテンサイト(fM)の割合が高くなり、これに関連して幅方向における引張強度のばらつきを十分に低減することができず、平坦度が低下した。比較例16は、Mn含有量が高かったために、焼入れ性向上に起因して鋼板冷却時のオートテンパーによってもマルテンサイトが十分に焼き戻されなかったと考えられる。その結果として、金属組織中のフレッシュマルテンサイト(fM)の割合が高くなり、これに関連して幅方向における引張強度のばらつきを十分に低減することができず、平坦度が低下した。比較例17は、Mn含有量が低かったために所望の引張強度を達成することができなかった。また、Mn含有量が低かったために、焼入れ性が不足して冷却時にフェライト等の軟質相が比較的多く生成したものと考えられる。その結果として、焼き戻しマルテンサイトを主相とする組織を幅方向に均一に分布させることができず、また、フェライト等への変態に伴う鋼板の膨張に起因して鋼板形状が崩れてしまい、平坦度が低下したと考えられる。比較例18は、Ti含有量が高かったために、冷却工程の際に未再結晶オーステナイトからフェライト等の軟質相が比較的多く生成してしまった。これに関連して幅方向に所望の金属組織を形成させることができず、その結果として幅方向における引張強度のばらつきを十分に低減することができず、平坦度が低下した。 Referring to Tables 1 to 3, in Comparative Examples 2 and 10, the average cooling rate of secondary cooling was high, and the upper and lower cooling ratio of secondary cooling was not appropriate, so martensite was not sufficiently formed by auto-tempering during cooling. The percentage of fresh martensite (fM) becomes high, and the metal structure cannot be uniformly distributed in the width direction due to uneven cooling, resulting in a decrease in tensile strength in the width direction. The dispersion became noticeable. As a result, sufficient flatness could not be achieved. In Comparative Example 8, the average cooling rate of primary cooling was high, and the upper and lower cooling ratios of primary cooling and secondary cooling were not appropriate, resulting in uneven cooling, which made it difficult to obtain the desired metal structure in the width direction. It was not possible to distribute it evenly. In connection with this, it was not possible to achieve a tensile strength of 980 MPa or more, and the variation in tensile strength in the width direction became significant. As a result, sufficient flatness could not be achieved. In Comparative Example 9, the average cooling rate of the primary cooling was high and the upper and lower cooling ratio of the primary cooling was not appropriate, resulting in uneven cooling, which made it impossible to uniformly distribute the desired metal structure in the width direction. However, the tensile strength in the width direction varied significantly. As a result, sufficient flatness could not be achieved. In Comparative Example 11, because the upper and lower cooling ratios of primary cooling and secondary cooling were not appropriate, it was not possible to uniformly distribute the desired metal structure in the width direction due to uneven cooling. Relatedly, the variation in tensile strength in the width direction also became significant. As a result, sufficient flatness could not be achieved. In Comparative Example 13, since the C content was high, the variation in tensile strength in the width direction could not be controlled within a predetermined range, and the flatness decreased. In Comparative Example 14, the desired tensile strength could not be achieved because the C content was low. It is considered that in Comparative Example 15, auto-tempering during cooling of the steel sheet was suppressed because the Si content was high. As a result, the proportion of fresh martensite (fM) in the metal structure increased, and related to this, it was not possible to sufficiently reduce the variation in tensile strength in the width direction, and the flatness decreased. In Comparative Example 16, since the Mn content was high, it is considered that martensite was not sufficiently tempered even by auto-tempering during cooling of the steel sheet due to improvement in hardenability. As a result, the proportion of fresh martensite (fM) in the metal structure increased, and related to this, it was not possible to sufficiently reduce the variation in tensile strength in the width direction, and the flatness decreased. Comparative Example 17 could not achieve the desired tensile strength because the Mn content was low. It is also believed that because the Mn content was low, hardenability was insufficient and a relatively large amount of soft phases such as ferrite were formed during cooling. As a result, the structure with tempered martensite as the main phase cannot be uniformly distributed in the width direction, and the shape of the steel sheet collapses due to expansion of the steel sheet due to transformation into ferrite, etc. It is thought that the flatness has decreased. In Comparative Example 18, since the Ti content was high, a relatively large amount of soft phases such as ferrite were generated from unrecrystallized austenite during the cooling process. In connection with this, it was not possible to form a desired metal structure in the width direction, and as a result, it was not possible to sufficiently reduce the variation in tensile strength in the width direction, resulting in a decrease in flatness.
 比較例19は、1次冷却の平均冷却速度が低かったために、フェライト、上部ベイナイト及びパーライトの少なくとも1種が合計で5面積%超となり、所望の引張強度を達成することができなかった。比較例20は、1次冷却の平均冷却速度が高かったために、冷却むらの発生に起因して幅方向において所望の金属組織を均一に分布させることができず、これに関連して幅方向の引張強度のばらつきも顕著となった。その結果として十分な平坦度を達成することができなかった。比較例21及び22は、1次冷却の上下冷却比が適切でなかったために、冷却むらの発生に起因して幅方向において所望の金属組織を均一に分布させることができず、これに関連して幅方向の引張強度のばらつきも顕著となった。その結果として十分な平坦度を達成することができなかった。比較例23は、2次冷却の平均冷却速度が低かったために、鋼板の幅方向において所望の金属組織を得ることができず、これに関連して幅方向の引張強度のばらつきも顕著となった。その結果として十分な平坦度を達成することができなかった。比較例24は、2次冷却の平均冷却速度が高かったために、冷却時のオートテンパーによってマルテンサイトを十分に焼き戻すことができず、フレッシュマルテンサイト(fM)の割合が高くなり、また冷却むらの発生に起因して幅方向において金属組織を均一に分布させることができず、幅方向の引張強度のばらつきが顕著となった。その結果として十分な平坦度を達成することができなかった。比較例25及び26は、2次冷却の上下冷却比が適切でなかったために、冷却むらの発生に起因して幅方向において所望の金属組織を均一に分布させることができず、これに関連して幅方向の引張強度のばらつきも顕著となった。その結果として十分な平坦度を達成することができなかった。 In Comparative Example 19, because the average cooling rate of primary cooling was low, the total amount of at least one of ferrite, upper bainite, and pearlite exceeded 5 area %, and the desired tensile strength could not be achieved. In Comparative Example 20, since the average cooling rate of the primary cooling was high, it was not possible to uniformly distribute the desired metal structure in the width direction due to the occurrence of cooling unevenness. Dispersion in tensile strength also became significant. As a result, sufficient flatness could not be achieved. In Comparative Examples 21 and 22, the desired metal structure could not be uniformly distributed in the width direction due to the occurrence of uneven cooling because the upper and lower cooling ratio of the primary cooling was not appropriate. The variation in tensile strength in the width direction also became significant. As a result, sufficient flatness could not be achieved. In Comparative Example 23, because the average cooling rate of secondary cooling was low, it was not possible to obtain the desired metallographic structure in the width direction of the steel plate, and related to this, the variation in tensile strength in the width direction was also significant. . As a result, sufficient flatness could not be achieved. In Comparative Example 24, because the average cooling rate of secondary cooling was high, martensite could not be sufficiently tempered by auto-tempering during cooling, resulting in a high proportion of fresh martensite (fM) and uneven cooling. Due to this, the metal structure could not be uniformly distributed in the width direction, and the tensile strength in the width direction varied significantly. As a result, sufficient flatness could not be achieved. In Comparative Examples 25 and 26, the desired metal structure could not be uniformly distributed in the width direction due to the occurrence of uneven cooling because the upper and lower cooling ratio of secondary cooling was not appropriate. The variation in tensile strength in the width direction also became significant. As a result, sufficient flatness could not be achieved.
 これとは対照的に、全ての発明例に係る熱延鋼板において、所定の化学組成を有し、さらに製造方法における特に冷却工程の各条件を適切に制御することで、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置での金属組織中の焼き戻しマルテンサイトを面積%で95%以上として、焼き戻しマルテンサイトを主相とする組織に起因して980MPa以上の引張強度を達成することができた。加えて、これら幅方向の全ての位置における引張強度のうち最大値と最小値の差を確実に30MPa以下に制御することができ、したがって幅方向の強度ばらつきを顕著に低減することが可能となり、これに関連して、熱延鋼板の幅方向に反りを生じさせることなく、十分な平坦度を達成することができた。表3では、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置のうち、最小の引張強度が得られた部位と最大の引張強度が得られた部位の金属組織のみを具体的に示している。しかしながら、発明例1、3~7及び12では、これらの全ての位置において、板厚1/4位置の金属組織は、面積率で、焼き戻しマルテンサイト:95%以上、フレッシュマルテンサイト:5%以下、並びにフェライト、上部ベイナイト及びパーライトの少なくとも1種:合計で5%以下であった。 In contrast, the hot-rolled steel sheets according to all the invention examples have a predetermined chemical composition, and by appropriately controlling each condition in the manufacturing method, especially the cooling process, At all positions: 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position, the tempered martensite in the metal structure at the plate thickness 1/4 position is calculated by area%. With a tensile strength of 95% or more, it was possible to achieve a tensile strength of 980 MPa or more due to the structure having tempered martensite as the main phase. In addition, it is possible to reliably control the difference between the maximum and minimum tensile strengths at all positions in the width direction to 30 MPa or less, and therefore it is possible to significantly reduce strength variations in the width direction. In this regard, sufficient flatness could be achieved without causing warpage in the width direction of the hot rolled steel sheet. Table 3 shows the part where the minimum tensile strength was obtained and the part where the maximum tensile strength was obtained among the 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the end in the width direction. Only the metal structure of the part where tensile strength was obtained is specifically shown. However, in Invention Examples 1, 3 to 7, and 12, in all these positions, the metal structure at the 1/4 position of the plate thickness has an area ratio of tempered martensite: 95% or more and fresh martensite: 5%. The following and at least one of ferrite, upper bainite, and pearlite: the total amount was 5% or less.

Claims (3)

  1.  質量%で、
     C:0.050~0.100%、
     Si:0.010~0.200%、
     Mn:1.00~2.50%、
     Ti:0.001~0.120%、
     Al:0.001~0.050%、
     B:0.0005~0.0050%、
     P:0.100%以下、
     S:0.050%以下、
     N:0.0050%以下、
     O:0~0.0050%、
     Cu:0~0.20%、
     Ni:0~0.20%、
     Sn:0~0.10%、
     Cr:0~0.40%、
     Mo:0~0.20%、
     Nb:0~0.05%、
     V:0~0.10%、
     As:0~0.100%、
     Zr:0~0.100%、
     Ca:0~0.0050%、
     Mg:0~0.100%、
     Bi:0~0.020%、
     Co:0~0.20%、
     W:0~0.20%、
     Zn:0~0.20%、
     REM:0~0.1000%、並びに
     残部:Fe及び不純物からなる化学組成を有し、
     圧延方向及び板厚方向に垂直な方向における全幅をWとした場合に、幅方向の端部から1/10W位置、3/10W位置、5/10W位置、7/10W位置、及び9/10W位置の全ての位置において、板厚1/4位置の金属組織が、面積%で、
     焼き戻しマルテンサイト:95%以上、
     フレッシュマルテンサイト:5%以下、並びに
     フェライト、上部ベイナイト及びパーライトの少なくとも1種:合計で5%以下であり、
     前記幅方向の全ての位置における引張強度のうち最大値と最小値の差が30MPa以下であることを特徴とする、高強度熱延鋼板。
    In mass%,
    C: 0.050-0.100%,
    Si: 0.010-0.200%,
    Mn: 1.00-2.50%,
    Ti: 0.001 to 0.120%,
    Al: 0.001-0.050%,
    B: 0.0005-0.0050%,
    P: 0.100% or less,
    S: 0.050% or less,
    N: 0.0050% or less,
    O: 0 to 0.0050%,
    Cu: 0 to 0.20%,
    Ni: 0 to 0.20%,
    Sn: 0 to 0.10%,
    Cr: 0-0.40%,
    Mo: 0-0.20%,
    Nb: 0 to 0.05%,
    V: 0-0.10%,
    As: 0 to 0.100%,
    Zr: 0 to 0.100%,
    Ca: 0-0.0050%,
    Mg: 0-0.100%,
    Bi: 0 to 0.020%,
    Co: 0 to 0.20%,
    W: 0-0.20%,
    Zn: 0-0.20%,
    It has a chemical composition consisting of REM: 0 to 0.1000%, and the balance: Fe and impurities,
    When the total width in the direction perpendicular to the rolling direction and the plate thickness direction is W, 1/10W position, 3/10W position, 5/10W position, 7/10W position, and 9/10W position from the end in the width direction At all positions, the metal structure at the 1/4 position of the plate thickness is expressed as area%,
    Tempered martensite: 95% or more,
    Fresh martensite: 5% or less, and at least one of ferrite, upper bainite, and pearlite: 5% or less in total,
    A high-strength hot-rolled steel sheet, characterized in that the difference between the maximum and minimum tensile strengths at all positions in the width direction is 30 MPa or less.
  2.  前記化学組成が、質量%で、
     O:0.0001~0.0050%、
     Cu:0.001~0.20%、
     Ni:0.001~0.20%、
     Sn:0.001~0.10%、
     Cr:0.001~0.40%、
     Mo:0.001~0.20%、
     Nb:0.001~0.05%、
     V:0.001~0.10%、
     As:0.001~0.100%、
     Zr:0.0001~0.100%、
     Ca:0.0001~0.0050%、
     Mg:0.0001~0.100%、
     Bi:0.0001~0.020%、
     Co:0.001~0.20%、
     W:0.001~0.20%、
     Zn:0.001~0.20%、及び
     REM:0.0001~0.1000%
    のうち少なくとも1種を含むことを特徴とする、請求項1に記載の高強度熱延鋼板。
    The chemical composition is in mass%,
    O: 0.0001 to 0.0050%,
    Cu: 0.001 to 0.20%,
    Ni: 0.001 to 0.20%,
    Sn: 0.001 to 0.10%,
    Cr: 0.001-0.40%,
    Mo: 0.001-0.20%,
    Nb: 0.001 to 0.05%,
    V: 0.001 to 0.10%,
    As: 0.001 to 0.100%,
    Zr: 0.0001 to 0.100%,
    Ca: 0.0001-0.0050%,
    Mg: 0.0001-0.100%,
    Bi: 0.0001-0.020%,
    Co: 0.001 to 0.20%,
    W: 0.001-0.20%,
    Zn: 0.001~0.20%, and REM: 0.0001~0.1000%
    The high-strength hot-rolled steel sheet according to claim 1, characterized in that it contains at least one of the following.
  3.  前記金属組織における旧オーステナイト粒径が40μm以下であることを特徴とする、請求項1又は2に記載の高強度熱延鋼板。 The high-strength hot-rolled steel sheet according to claim 1 or 2, wherein the prior austenite grain size in the metal structure is 40 μm or less.
PCT/JP2023/032979 2022-09-12 2023-09-11 High-strength hot-rolled steel sheet WO2024058096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144566 2022-09-12
JP2022144566 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024058096A1 true WO2024058096A1 (en) 2024-03-21

Family

ID=90274958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032979 WO2024058096A1 (en) 2022-09-12 2023-09-11 High-strength hot-rolled steel sheet

Country Status (1)

Country Link
WO (1) WO2024058096A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183414A (en) * 2015-03-26 2016-10-20 Jfeスチール株式会社 High strength hot rolled steel excellent in strength uniformity in sheet width direction and manufacturing method therefor
CN111593264A (en) * 2020-06-28 2020-08-28 武汉钢铁有限公司 Tempering-free wear-resistant hot-rolled strip steel and production method thereof
JP2021063253A (en) * 2019-10-11 2021-04-22 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing the same
WO2021153746A1 (en) * 2020-01-30 2021-08-05 日本製鉄株式会社 Hot rolled steel sheet and production method thereof
WO2022153927A1 (en) * 2021-01-15 2022-07-21 日本製鉄株式会社 Hot-rolled steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183414A (en) * 2015-03-26 2016-10-20 Jfeスチール株式会社 High strength hot rolled steel excellent in strength uniformity in sheet width direction and manufacturing method therefor
JP2021063253A (en) * 2019-10-11 2021-04-22 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing the same
WO2021153746A1 (en) * 2020-01-30 2021-08-05 日本製鉄株式会社 Hot rolled steel sheet and production method thereof
CN111593264A (en) * 2020-06-28 2020-08-28 武汉钢铁有限公司 Tempering-free wear-resistant hot-rolled strip steel and production method thereof
WO2022153927A1 (en) * 2021-01-15 2022-07-21 日本製鉄株式会社 Hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
KR101632778B1 (en) Cold-rolled steel sheet and method for producing same
EP2682492B1 (en) Hot rolled steel sheet and method for producing same
EP2762579B1 (en) High-strength hot-dip galvanized steel sheet and process for producing same
EP2530180A1 (en) Steel sheet and process for producing steel sheet
EP3415655B1 (en) High-strength steel sheet and method for manufacturing same
EP2799568A1 (en) High-strength steel sheet and method for manufacturing same
KR20220013405A (en) High-strength steel sheet and its manufacturing method
WO2021045168A1 (en) Steel sheet
WO2020184154A1 (en) High-strength steel sheet and method for producing same
KR102433938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet and manufacturing method thereof
KR102649506B1 (en) Hot rolled steel sheet and manufacturing method thereof
US20230002848A1 (en) Hot-rolled steel sheet
KR20220146419A (en) hot rolled steel sheet
WO2020209149A1 (en) Cold rolled steel sheet and method for producing same
CN115087756A (en) Hot rolled steel plate
WO2021193310A1 (en) High-strength hot-rolled steel sheet and method for producing same
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
EP4074854A1 (en) Hot-rolled steel sheet
WO2024058096A1 (en) High-strength hot-rolled steel sheet
JP7193044B1 (en) High-strength steel plate, manufacturing method thereof, and member
EP4321646A1 (en) High-strength hot-rolled steel plate and method for manufacturing high-strength hot-rolled steel plate
EP4198149A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
WO2024090011A1 (en) High-strength steel sheet, member, and manufacturing methods therefor
WO2022070621A1 (en) Hot rolled steel sheet