WO2024058029A1 - Imaging device, information processing device, and program - Google Patents

Imaging device, information processing device, and program Download PDF

Info

Publication number
WO2024058029A1
WO2024058029A1 PCT/JP2023/032551 JP2023032551W WO2024058029A1 WO 2024058029 A1 WO2024058029 A1 WO 2024058029A1 JP 2023032551 W JP2023032551 W JP 2023032551W WO 2024058029 A1 WO2024058029 A1 WO 2024058029A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance
camera body
interchangeable lens
correction
lens
Prior art date
Application number
PCT/JP2023/032551
Other languages
French (fr)
Japanese (ja)
Inventor
真己斗 大田
英紀 上林
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024058029A1 publication Critical patent/WO2024058029A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • the present disclosure relates to an imaging device, an information processing device, and a program.
  • a camera system in which a camera body and an exchangeable lens communicate with each other.
  • control data regarding photography such as focal length and exposure time, is exchanged between the lens side and the camera body side.
  • a camera system in which a shake correction device is mounted on each of the camera body and lens.
  • a shake correction device in which a shake correction device is mounted on each of the camera body and lens.
  • the image stabilization devices installed on the camera body and lens work together to achieve image stabilization for the camera system as a whole, making it possible to compensate for greater shake than when image stabilization is performed on the camera body and lens individually. become.
  • the correction performance when both the camera body and lens cooperate to perform image stabilization is different from that of the one with higher correction performance alone. It may be lower than if you had done so.
  • the present disclosure provides a mechanism that can further improve the performance of blur correction.
  • the imaging device of the present disclosure includes a camera body equipped with a first shake correction function and an interchangeable lens equipped with a second shake correction function.
  • the imaging device includes a control section.
  • the control unit acquires lens performance information regarding the performance of the second blur correction function of the interchangeable lens.
  • the control unit acquires camera performance information regarding the performance of the first blur correction function of the camera body.
  • the control unit performs blur correction on one of the interchangeable lens and the camera body, or causes the blur correction on the interchangeable lens and the camera body to operate cooperatively, based on the lens performance information and the camera performance information. or decide.
  • FIG. 1 is a front external view of a camera system according to an embodiment of the present disclosure.
  • FIG. 1 is a rear external view of a camera system according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing an example of a functional configuration of a camera system according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a schematic configuration of a body-side shake correction mechanism.
  • FIG. 2 is a block diagram illustrating a configuration example of a body-side blur correction control section according to an embodiment of the present disclosure. 2 is a flowchart illustrating an example of the flow of determination processing according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram illustrating a configuration example of a body-side blur correction control section according to a modification of the embodiment of the present disclosure.
  • FIG. 7 is a diagram for explaining the relationship between shutter speed and focal length and correction performance according to a modification of the embodiment of the present disclosure.
  • 12 is a flowchart illustrating an example of the
  • a plurality of components having substantially the same or similar functional configurations may be distinguished by using different numbers after the same reference numeral. However, if there is no particular need to distinguish between a plurality of components having substantially the same or similar functional configurations, only the same reference numerals are given. Further, similar components in different embodiments may be distinguished by attaching different alphabets or numbers after the same reference numeral. However, if there is no particular need to distinguish between similar components, only the same reference numerals are given.
  • One or more embodiments (including examples and modifications) described below can each be implemented independently. On the other hand, at least a portion of the plurality of embodiments described below may be implemented in combination with at least a portion of other embodiments as appropriate. These multiple embodiments may include novel features that are different from each other. Therefore, these multiple embodiments may contribute to solving mutually different objectives or problems, and may produce mutually different effects.
  • FIG. 1 is a front external view of a camera system 1 according to an embodiment of the present disclosure.
  • FIG. 2 is a rear external view of the camera system 1 according to the embodiment of the present disclosure.
  • XYZ coordinates may be shown in the figures.
  • the Z-axis positive direction corresponds to the photographing direction (optical axis direction) of the camera system 1.
  • the plane formed by the X-axis direction and the Y-axis direction corresponds to the imaging plane of the camera system 1.
  • the camera system 1 shown in FIGS. 1 and 2 is a single-lens reflex type digital camera with interchangeable lenses (an example of an imaging device).
  • the camera system 1 includes a camera main body (camera body) 2 and an interchangeable photographic lens unit (interchangeable lens) 3.
  • a camera main body camera body
  • an interchangeable photographic lens unit interchangeable lens
  • the interchangeable lens 3 is detachably attached to the camera body 2.
  • the interchangeable lens 3 mainly includes a lens barrel 36.
  • the interchangeable lens 3 includes a lens group, an aperture, etc., although not shown, inside the lens barrel 36.
  • the lens group includes a focus lens that changes the focal position by moving in the optical axis direction, and the like.
  • the interchangeable lens 3 has a control device having an internal blur correction function.
  • the camera body 2 includes an annular mount portion Mt, on which the interchangeable lens 3 is mounted, at approximately the center of the front surface.
  • the camera body 2 includes an attachment/detachment button 89 for attaching and detaching the interchangeable lens 3 near the annular mount portion Mt.
  • the camera body 2 includes a grip section 14 on the front left end portion for the photographer to grasp.
  • a release button 11 for instructing the start of exposure is provided on the top surface of the grip section 14.
  • the battery storage chamber stores, for example, a lithium ion battery (not shown) as a power source for the camera.
  • the card storage chamber removably stores a memory card (not shown) for recording photographed image data.
  • the release button 11 is a two-stage detection button that can detect two states: a half-pressed state S1 and a fully-pressed state S2.
  • the release button 11 receives a photographing preparation command D1 and a photographing start command D2 according to the detection results of both states S1 and S2.
  • the camera system 1 determines that a shooting preparation command (also referred to as an exposure preparation command) D1 has been given by the operator.
  • a shooting preparation command also referred to as an exposure preparation command
  • preparation operations for example, AF (Auto Focus) control operation and AE (Auto Exposure) control operation, etc. for acquiring a recording still image (main shooting image) regarding the subject are performed. It will be done.
  • the camera system 1 determines that a shooting start command (also referred to as an exposure start command) D2 has been given.
  • a shooting start command also referred to as an exposure start command
  • the photographing operation includes, for example, an exposure operation regarding a subject image (a light image of the subject) using an image sensor (not shown), and a series of operations for performing predetermined image processing on the image signal obtained by the exposure operation. .
  • a finder window (eyepiece window) 10 is provided at approximately the upper center of the back surface of the camera body 2.
  • the finder window 10 By looking through the finder window 10, the photographer can visually recognize the light image of the subject guided from the interchangeable lens 3 and determine the composition. That is, the photographer can determine the composition using the optical finder.
  • a rear monitor 12 is provided approximately at the center of the rear surface of the camera body 2.
  • the rear monitor 12 is configured, for example, as a color liquid crystal display (LCD).
  • the rear monitor 12 can display a menu screen for setting shooting conditions and the like. Further, the rear monitor 12 can play back and display photographed images recorded on the memory card 90 in playback mode. Further, the rear monitor 12 can display an image to be photographed (live view video).
  • a direction selection key 84 is provided on the right side of the rear monitor 12.
  • This direction selection key 84 has a circular operation button.
  • This operation button is configured to be able to detect pressing operations in four directions: up, down, left, and right, and pressing operations in four directions, upper right, upper left, lower right, and lower left.
  • direction selection key 84 also detects the pressing operation of the central push button, in addition to the pressing operations in the eight directions described above.
  • the camera body 2 includes an image sensor that captures a captured image, and a control device that controls the image sensor and performs image processing on an image signal.
  • the control device has a shake correction function that corrects shake of the camera body 2.
  • the camera body 2 and the interchangeable lens 3 each have a blur correction function.
  • a method is known in which the blur correction of the camera system 1 is realized by coordinating both blur correction functions.
  • the blur correction function of the camera body 2 and the blur correction function of the interchangeable lens 3 each operate by sharing the amount of correction. This expands the blur correction range of the camera system 1, allowing the camera system 1 to correct larger blurs.
  • the camera system 1 includes a camera body 2 equipped with a first shake correction function and an interchangeable lens 3 equipped with a second shake correction function.
  • the camera system 1 acquires lens performance information regarding the performance of the second blur correction function of the interchangeable lens 3.
  • the camera system 1 acquires camera performance information regarding the performance of the first blur correction function of the camera body 2.
  • the camera system 1 compares lens performance information and camera performance information. Based on the comparison result, the camera system 1 determines whether to perform blur correction on one of the interchangeable lens 3 and the camera body 2, or to cause the interchangeable lens 3 and the camera body 2 to perform blur correction together.
  • the camera system 1 compares the performances of the interchangeable lens 3 and the camera body 2 regarding blur correction, and determines whether to perform the blur correction independently or in cooperation.
  • the camera system 1 can perform blur correction on either the interchangeable lens 3 or the camera body 2 when there is a large difference in performance regarding blur correction between the interchangeable lens 3 and the camera body 2. Therefore, the camera system 1 can suppress deterioration in performance of blur correction that may occur when blur correction is operated alone.
  • the camera system 1 can perform blur correction in cooperation with both the interchangeable lens 3 and the camera body 2 when the difference in performance regarding blur correction between the interchangeable lens 3 and the camera body 2 is small. Therefore, the camera system 1 can correct even larger shakes.
  • the camera system 1 according to the embodiment of the present disclosure can further improve the performance of blur correction.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the camera system 1 according to the embodiment of the present disclosure. As shown in FIG. 3, the camera system 1 includes a camera body 2 and an interchangeable lens 3.
  • the interchangeable lens 3 includes a lens group 37, a control device 38, and a shake correction mechanism 40.
  • the lens group 37 is an example of an optical system that receives incident light and forms its image on the light receiving surface of the image sensor 5.
  • the lens group 37 can include a plurality of lenses, such as a focus lens.
  • the focus lens is a lens that changes the focal position of the interchangeable lens 3 by moving in the optical axis direction.
  • the shake correction mechanism 40 drives the lens group 37 and optically corrects shake of the camera system 1.
  • the shake correction mechanism 40 corrects, for example, camera shake during photographing.
  • the shake correction mechanism 40 corrects shake under control from the control device 38.
  • the control device 38 controls each part of the interchangeable lens 3.
  • the control device 38 includes a lens position detection section 39 and a blur correction control section 41.
  • the lens position detection unit 39 detects the position of the focus lens of the lens group 37.
  • the lens position detection unit 39 outputs data regarding the detected position of the focus lens to the camera body 2.
  • the shake correction control section 41 controls the shake correction mechanism 40.
  • the shake correction control unit 41 controls the shake correction mechanism 40 according to instructions from the camera body 2, for example. Thereby, the camera system 1 can perform blur correction on the interchangeable lens 3 side.
  • the camera body 2 includes a shutter 4, an image sensor 5, a mirror mechanism 6, a shake correction mechanism 7, a control device 8, a rear monitor 12, a gyro sensor 61, an operation section 80, a memory card 90, Equipped with
  • the shutter 4 controls the light irradiation period and the light blocking period to the camera body 2 by opening and closing.
  • the image sensor 5 photoelectrically converts an optical image of a subject to generate an image signal.
  • an image sensor herein, a CCD (Charge Coupled Device) sensor (also simply referred to as a CCD)
  • CCD Charge Coupled Device
  • the image sensor 5 is assumed to be a CCD here, the image sensor is not limited to this.
  • the image sensor 5 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like.
  • the mirror mechanism 6 includes a main mirror (main reflecting surface) and a submirror (sub reflecting surface).
  • the main mirror and submirror of the mirror mechanism 6 are arranged on the optical path of the light beam.
  • the light flux (subject image) from the interchangeable lens 3 is reflected by the main mirror toward the top of the camera, and then further reflected by a pentamirror (not shown) placed at the top of the camera body 2, and is used as a light flux for observation.
  • the camera is guided to the finder window 10 (see FIG. 2).
  • a part of the light beam from the interchangeable lens 3 is reflected by the sub-mirror, guided to the control device 8, and used for AF operation. More specifically, a part of this light speed is guided to the AF module 20 of the control device 8, which is disposed at the bottom of the camera body 2, and is used for AF operation.
  • the mirror mechanism 6 when the mirror mechanism 6 is retracted from the optical path (mirror up state), the main mirror and the sub-mirror are retracted from the optical path of the subject image from the interchangeable lens 3, and the subject image is directed toward the shutter 4 and the image sensor 5. and proceed.
  • the camera system 1 is a single-lens reflex type digital camera with interchangeable lenses, but the camera system 1 may be a mirrorless type digital camera with interchangeable lenses. In this case, the mirror mechanism may be omitted.
  • the blur correction mechanism 7 drives the image sensor 5 and optically corrects the blur of the camera system 1.
  • the shake correction mechanism 7 corrects, for example, camera shake during photographing.
  • the blur correction mechanism 7 corrects blur under control from the control device 8.
  • the image stabilization mechanism 7 of the camera body 2 is referred to as the body-side image stabilization mechanism 7, and the blur correction mechanism 40 will be referred to as a lens-side blur correction mechanism 40.
  • the rear monitor 12 is a display device that displays photographed images and the like.
  • the rear monitor 12 is arranged, for example, on the rear surface of the camera body 2 (see FIG. 2).
  • FIG. 3 shows a case where the back monitor 12 is an LCD (Liquid Crystal Display), the back monitor 12 is not limited to an LCD.
  • the back monitor 12 may be, for example, a display device such as an organic EL (Electro Luminescence) display.
  • the gyro sensor 61 is an angular velocity sensor that detects the angular velocity of the camera system 1.
  • the camera system 1 uses a gyro sensor 61 to detect blur.
  • the camera system 1 corrects the blur detected by the gyro sensor 61 using the blur correction mechanism 7.
  • the operation unit 80 includes various buttons and switches including the release button 11 (see FIG. 1). In response to a user's input operation on the operation unit 80, the control device 8 realizes various operations.
  • the memory card 90 is removably stored, for example, in a card storage chamber inside the grip portion 14 (see FIG. 1).
  • the memory card 90 stores photographed images and the like.
  • the memory card 90 functions as a storage means of the camera system 1, for example. Note that the camera system 1 may include storage means other than the memory card 90.
  • Control device 8 The control device 8 controls each part of the camera body 2.
  • the camera body 2 functions as an information processing device by mounting the control device 8 thereon. Note that when distinguishing between the control device 8 of the camera body 2 and the control device 38 of the interchangeable lens 3, the control device 8 of the camera body 2 will be referred to as the body-side control device 8, and the control device 38 of the interchangeable lens 3 will be referred to as the body-side control device 8. It will be referred to as a lens-side control device 38.
  • the control device 8 includes an AF module 20, a focus control section 121, a mirror control section 122, a shutter control section 123, a timing control circuit 124, a signal processing circuit 51, an A/D conversion circuit 52, and a digital signal. It includes a processing circuit 50 and an overall control section 101.
  • the AF module 20 uses, for example, light that has entered through the mirror mechanism 6 to detect the focused state of the subject using a focused state detection method such as a phase difference method.
  • the AF module 20 detects the focused state of the subject according to instructions from the overall control unit 101.
  • the AF module 20 outputs the detected in-focus state of the subject to the overall control unit 101.
  • the focus control section 121 generates a control signal for driving the motor M1 based on the signal input from the overall control section 101.
  • the focus control unit 121 moves the focus lens included in the lens group 37 of the interchangeable lens 3 by driving the motor M1 using the control signal.
  • the focus control unit 121 controls the movement of the focus lens in the optical axis direction according to instructions from the overall control unit 101.
  • the mirror control unit 122 controls state switching between a state in which the mirror mechanism 6 is retracted from the optical path (mirror up state) and a state in which the mirror mechanism 6 blocks the optical path (mirror down state).
  • the mirror control unit 122 generates a control signal for driving the motor M2 based on the signal input from the overall control unit 101.
  • the mirror control unit 122 switches between the mirror up state and the mirror down state by driving the motor M2 using the generated control signal.
  • the shutter control section 123 generates a control signal for controlling the motor M3 based on the signal input from the overall control section 101.
  • the shutter control unit 123 controls opening and closing of the shutter 4 by driving the motor M3 using the generated control signal.
  • Timing control circuit 124 The timing control circuit 124 performs timing control on the image sensor 5 and the like based on a signal input from the overall control section 101.
  • the timing control circuit 124 includes, for example, a timing generator that generates various timing signals.
  • the timing control circuit 124 controls the image sensor 5, the signal processing circuit 51, and the A/D conversion circuit 52 based on various timing signals generated by the timing generator.
  • the signal processing circuit 51 performs signal processing on the image signal input from the image sensor 5.
  • the signal processing circuit 51 performs signal processing on the analog image signal and outputs it to the A/D conversion circuit 52 .
  • the A/D conversion circuit 52 converts the analog image signal input from the signal processing circuit 51 into a digital image signal (digital image data).
  • the A/D conversion circuit 52 outputs the converted digital image data to the digital signal processing circuit 50.
  • the digital signal processing circuit 50 performs digital signal processing on the image data input from the A/D conversion circuit 52 to generate image data related to the captured image.
  • the digital signal processing circuit 50 shown in FIG. 3 includes a black level correction circuit 53, a white balance (S) circuit 54, a ⁇ correction circuit 55, and an image memory 56.
  • the black level correction circuit 53 corrects the black level of each pixel data forming the image data output by the A/D conversion circuit 52 to a reference black level.
  • the WB circuit 54 performs white balance adjustment of the image.
  • the ⁇ correction circuit 55 performs gradation conversion of the captured image.
  • the image memory 56 is a high-speed accessible image memory for temporarily storing generated image data, and has a capacity capable of storing multiple frames of image data.
  • the image data temporarily stored in the image memory 56 is subjected to appropriate image processing (including compression processing, etc.) in the overall control unit 101, and then stored in the memory card 90.
  • image processing including compression processing, etc.
  • the image data temporarily stored in the image memory 56 is appropriately transferred to a VRAM (not shown) by the overall control unit 101, and an image based on the image data is displayed on the rear monitor 12.
  • a confirmation display (after view) for confirming the photographed image, a playback display for reproducing the photographed image, and the like are realized.
  • processing performed by the digital signal processing circuit 50 is not limited to the processing of each part shown in FIG. At least a part of the processing of each section shown in FIG. 3 may be omitted, and processing other than the processing of each section shown in FIG. 3 may be performed by the digital signal processing circuit 50.
  • the overall control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc., and uses the RAM as a work memory to control the camera system according to a program stored in the ROM, for example. 1. Controls the entire operation.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the overall control section 101 includes a shake correction control section 21.
  • the shake correction control unit 41 generates a correction control signal for optically correcting the shake detected by the gyro sensor 61 or the like (shake of the camera system 1 ), and outputs it to the shake correction mechanism 7 .
  • the blur correction mechanism 7 corrects blur in the camera system 1 by driving the image sensor 5 based on the correction control signal.
  • the shake correction control section 21 of the camera body 2 when distinguishing between the shake correction control section 21 of the camera body 2 and the shake correction control section 41 of the interchangeable lens 3, the shake correction control section 21 of the camera body 2 will be referred to as a body-side shake correction control section 21, The shake correction control section 41 of the interchangeable lens 3 will be referred to as a lens side shake correction control section 41.
  • the overall control unit 101 cooperates with the AF module 20, the focus control unit 121, and the like to perform a focus control operation to control the position of the focus lens.
  • the overall control unit 101 implements an automatic focusing operation (AF operation) using the focus control unit 121 according to the in-focus state of the subject detected by the AF module 20.
  • AF operation automatic focusing operation
  • FIG. 4 An overview of blur correction by the body-side blur correction mechanism 7 will be explained using FIG. 4.
  • blur correction by the body-side blur correction mechanism 7 will be described, but the lens-side blur correction mechanism 40 can also perform blur correction in the same manner as the body-side blur correction mechanism 7.
  • the body-side shake correction mechanism 7 drives the image sensor 5 to perform shake correction, while the lens-side shake correction mechanism 40 drives the lens group 37 to perform shake correction.
  • FIG. 4 is a diagram showing a schematic configuration of the body-side shake correction mechanism 7.
  • the body-side blur correction mechanism 7 shown in FIG. 4 includes a base portion 7a, a first moving portion 7b, and a second moving portion 7c.
  • the base portion 7a is fixed near the back portion inside the camera body 2. Further, the first moving section 7b is movable in the X direction relative to the base section 7a, and the second moving section 7c is movable in the Y direction relative to the first moving section 7b.
  • the image sensor 5 is fixed to the second moving section 7c.
  • the base portion 7a has an actuator 7x.
  • the actuator 7x is a drive mechanism called SIDM (SmoothImpactDriveMechanism).
  • SIDM is configured with a piezoelectric element. By repeating the expansion and contraction operations of the piezoelectric element at a high speed frequency, the actuator 7x can drive the first moving section 7b in the X direction with respect to the base section 7a.
  • the first moving section 7b has an actuator 7y.
  • the actuator 7y is also composed of an SIDM similar to the actuator 7x. As the piezoelectric element of the actuator 7y repeats expansion and contraction operations at a high speed frequency, the actuator 7y can drive the second moving section 7c in the Y direction with respect to the first moving section 7b.
  • the image sensor 5 is driven in the X direction by the actuator 7x, and in the Y direction by the actuator 7y.
  • the image sensor 5 fixed to the second moving section 7c can be moved relative to the base section 7a in the X direction and the Y direction by the actuators 7x and 7y.
  • the body-side shake correction control section 21 drives the image sensor 5 with respect to the base section 7a using the actuators 7x and 7y based on the signal (shake detection result) detected by the gyro sensor 61 (angular velocity sensor) etc. do.
  • the body-side blur correction control section 21 uses the detection result from the lens position detection section 39 to control the position of the image sensor 5 according to a feedback control law or the like. This suppresses blur in the camera system 1. That is, blur correction is realized.
  • the camera system 1 performs image stabilization either independently or cooperatively depending on the difference in performance between the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40. Decide whether to do so. More specifically, the body-side shake correction control section 21 of the camera system 1 makes this determination.
  • the stand-alone operation of shake correction is an operation in which shake correction is performed by operating one of the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40 alone.
  • the cooperative operation of blur correction is an operation in which the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 each share the correction amount to perform blur correction.
  • the cooperative operation of blur correction is broadly classified into two types: MasterSlave type and autonomous cooperative type.
  • MasterSlave type for example, the camera body 2 controls the lens-side shake correction mechanism 40 to perform cooperative motion of shake correction.
  • the body-side shake correction control unit 21 determines the correction amounts of the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40.
  • the body-side shake correction control section 21 outputs a correction control signal including this correction amount to the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40.
  • the body-side blur correction control unit 21 acquires the blur detection result (or correction angle) from the interchangeable lens 3.
  • the body-side blur correction control unit 21 determines a correction amount ratio (distribution gain) based on the body-side blur detection result and the lens-side blur detection result, and notifies the lens-side blur correction control unit 41 of the ratio.
  • the body-side image stabilization control section 21 controls the body-side image stabilization mechanism 7 according to the determined ratio, and the lens-side image stabilization control section 41 controls the lens-side image stabilization mechanism 40 according to the notified ratio. do.
  • FIG. 5 is a block diagram illustrating a configuration example of the body-side blur correction control section 21 according to the embodiment of the present disclosure.
  • the body-side blur correction control unit 21 shown in FIG. 5 includes an acquisition unit 211, a performance determination unit 212, a ratio calculation unit 213, and a cooperation determination unit 214.
  • the acquisition unit 211 acquires various data that the body-side blur correction control unit 21 uses to control blur correction.
  • the acquisition unit 211 acquires, for example, an index (an example of lens performance information or camera performance information) regarding the correction performance of the body-side vibration correction mechanism 7 and the lens-side vibration correction mechanism 40.
  • the index regarding the correction performance is, for example, a value indicating the amount of blur that can be corrected by the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40.
  • the acquisition unit 211 acquires information regarding the focal length.
  • the information regarding the focal length is, for example, the value of the focal length determined by the overall control unit 101.
  • the acquisition unit 211 acquires the movable range of the body-side blur correction mechanism 7 and the movable range of the lens-side blur correction mechanism 40.
  • the movable range of the body-side shake correction mechanism 7 is, for example, a range in which the image sensor 5 can be driven.
  • the movable range of the lens-side shake correction mechanism 40 is a range in which the lens group 37 can be driven.
  • the acquisition unit 211 acquires information regarding shutter speed.
  • the shutter speed is determined by pressing the shutter button (release button 11 in FIG. 1) by the photographer.
  • the acquisition unit 211 acquires information regarding the shutter speed from the overall control unit 101, for example, when the shutter button is pressed.
  • the acquisition unit 211 outputs the acquired correction performance to the performance determination unit 212.
  • the acquisition unit 211 outputs the acquired range of movement to the ratio calculation unit 213.
  • the acquisition unit 211 outputs the acquired information regarding the correction performance, movable range, focal length, and shutter speed to the cooperation determination unit 214.
  • the performance determination unit 212 calculates the difference between the correction performance of the body-side vibration correction mechanism 7 and the correction performance of the lens-side vibration correction mechanism 40 acquired by the acquisition unit 211.
  • the performance determination unit 212 compares the calculated difference (performance difference) with a first threshold Th1.
  • the performance determination unit 212 outputs the comparison result to the cooperation determination unit 214.
  • the ratio calculating unit 213 calculates a correction ratio when blur correction is performed cooperatively from the movable range of the body-side blur correction mechanism 7 and the movable range of the lens-side blur correction mechanism 40 acquired by the acquisition unit 211.
  • the ratio calculation unit 213 calculates the image stabilization of the body-side image stabilization mechanism 7 based on the ratio of the movable range of the body-side image stabilization mechanism 7 and the movement range of the lens-side image stabilization mechanism 40 acquired by the acquisition unit 211. The ratio and the blur correction ratio of the lens side blur correction mechanism 40 are determined.
  • the ratio calculation unit 213 outputs the calculated blur correction ratio to the cooperation determination unit 214.
  • the cooperation determination unit 214 determines whether or not to perform blur correction in a cooperative manner. That is, the cooperation determination unit 214 causes either one of the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 to perform the image stabilization independently, or both the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 operate the image stabilization. to decide whether to perform cooperative operation.
  • the cooperation determination unit 214 determines that there is a difference in the correction performance of the body-side vibration reduction mechanism 7 and the lens-side vibration reduction mechanism 40 based on the comparison result of the performance determination unit 212, the cooperation determination unit 214 determines to operate the vibration correction independently. .
  • the cooperation determination unit 214 determines to operate the shake correction independently when the performance difference between the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40 is equal to or greater than the first threshold Th1.
  • the cooperation determination unit 214 determines that blur correction is to be performed by the body-side blur correction mechanism 7 or the lens-side blur correction mechanism 40, whichever has higher correction performance.
  • the camera system 1 when there is a large difference in correction performance between the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40, the camera system 1 performs image stabilization using only the image stabilization mechanism with the higher correction performance. Thereby, the camera system 1 can suppress deterioration of blur correction performance, and can perform blur correction using a shake correction mechanism with higher performance.
  • the camera system 1 performs shake correction in a single operation, and switches to a cooperative operation after the shake can no longer be fully corrected in this single operation. That is, when one of the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 is performing image stabilization independently and the movable range of one reaches its limit, the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 40 cooperate to perform blur correction.
  • the cooperation determination unit 214 estimates in advance the blur caused by photographing, and determines whether or not to perform a cooperative action according to the estimated amount of blur (hereinafter also referred to as expected amount of blur). do.
  • the cooperation determination unit 214 determines that the shake correction is performed with the high performance shake correction mechanism alone.
  • the cooperation determination unit 214 determines whether the body side shake correction mechanism 7 and the lens side shake are corrected. It is determined that both of the correction mechanisms 40 cooperate to perform blur correction.
  • the amount of blur changes depending on the shutter speed. For example, the slower the shutter speed, the more blurring occurs. On the other hand, the faster the shutter speed, the less blurring occurs. In this way, it is possible to predict how much blur will occur depending on the shutter speed in the case of normal camera shake.
  • the cooperation determination unit 214 estimates the expected amount of blur based on the information regarding the shutter speed acquired by the acquisition unit 211. For example, it is assumed that the shutter speed and the expected amount of blur are associated in advance and stored as a correspondence in a storage unit (not shown). Based on this correspondence, the cooperation determination unit 214 estimates the expected amount of blur from the shutter speed.
  • the cooperation determination unit 214 may estimate the expected amount of blur according to the shutter speed and focal length. When shooting still images, blur is more likely to occur depending on the focal length as well as the shutter speed.
  • the cooperation determination unit 214 estimates the expected amount of blur based on the information regarding the shutter speed and the information regarding the focal length acquired by the acquisition unit 211. For example, it is assumed that the shutter speed, focal length, and estimated amount of blur are associated in advance and stored in a storage unit (not shown) as a correspondence relationship. Based on this correspondence, the cooperation determination unit 214 estimates the expected amount of blur from the shutter speed and focal length.
  • the cooperation determination unit 214 determines whether or not blur correction should be performed in a cooperative manner according to the estimated expected amount of blur. For example, the cooperation determination unit 214 determines whether or not to perform a cooperative operation of blur correction depending on whether the estimated amount of shake is less than the second threshold Th2.
  • the second threshold Th2 is, for example, a value determined depending on the movable range of the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40, whichever has higher performance.
  • the cooperation determination unit 214 determines to perform blur correction in an independent operation. On the other hand, the cooperation determination unit 214 determines that the blur correction should be performed in a cooperative manner when the estimated amount of blur is equal to or greater than the second threshold Th2.
  • the cooperation determination unit 214 determines whether the correction amount (correction angle) is one of the body side shake correction mechanism 7 and the lens side shake correction mechanism 40 based on the expected shake amount, in other words, the shutter speed and focal length at the time of shooting. It is determined whether or not a single correction is sufficient. If an independent correction is sufficient, the cooperation determination unit 214 determines blur correction using an independent operation. If the single correction is insufficient, the cooperation determining unit 214 determines blur correction through cooperative motion.
  • the cooperation determination unit 214 determines that blur correction is to be performed by the body-side blur correction mechanism 7 or the lens-side blur correction mechanism 40, whichever has higher correction performance.
  • the cooperation determination unit 214 determines that the body-side vibration correction mechanism 7 and the lens-side vibration correction mechanism 40 perform vibration correction using the correction ratio calculated by the ratio calculation unit 213.
  • the cooperation determination unit 214 instructs at least one of the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 to perform correction using the determined correction content. If it is determined to operate independently, the cooperation determining unit 214 instructs the blur correction mechanism that has been determined to operate independently to perform blur correction. If it is determined that the cooperative operation is to be performed, the cooperation determination unit 214 instructs both the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 to perform blur correction.
  • the camera system 1 determines that the blur correction mechanism with the higher performance performs shake correction alone.
  • it is assumed that large amounts of shaking will not be within the correction range of each individual camera system.In other words, there is a possibility that the expected shaking cannot be sufficiently corrected by each individual camera system. If so, it is decided to perform blur correction in cooperation.
  • the camera system 1 can further expand the correction range of blur correction while suppressing deterioration of the blur correction performance.
  • FIG. 6 is a flowchart illustrating an example of the flow of determination processing according to the embodiment of the present disclosure.
  • the determination process in FIG. 6 is executed by the camera body 2, for example, before the blur correction process during still image shooting.
  • the camera body 2 acquires the blur correction performance of the camera body 2 and the interchangeable lens 3 (step S101).
  • the camera body 2 calculates the performance difference between the acquired correction performances (step S102).
  • the camera body 2 determines whether the calculated performance difference is greater than or equal to the first threshold Th1 (step S103).
  • step S103 If the performance difference is less than the first threshold Th1 (step S103; No), the camera body 2 acquires the focal length (step S104). The camera body 2 obtains the movable range of the camera body 2 and the interchangeable lens 3 in blur correction (step S105).
  • the camera body 2 calculates a correction ratio when blur correction is performed through cooperative motion (step S106). Next, the camera body 2 determines cooperative blur correction between the interchangeable lens 3 (lens) and the camera body 2 (body) according to the calculated correction ratio (step S107). That is, the camera body 2 determines that the interchangeable lens 3 and the camera body 2 cooperate to perform blur correction, and the process ends.
  • the camera body 2 acquires the focal length (step S108).
  • the camera body 2 obtains the movable range of the camera body 2 and the interchangeable lens 3 in blur correction (step S109).
  • the camera body 2 calculates a correction ratio when blur correction is performed by cooperative motion (step S110).
  • the camera body 2 determines whether the shutter button (release button 11) has been pressed (step S111).
  • step S111 If the shutter button is not pressed (step S111; No), the camera body 2 returns to step S108. Alternatively, the camera body 2 may return to step S111 and wait for the shutter button to be pressed.
  • step S111 If the shutter button is pressed (step S111; Yes), the camera body 2 acquires the shutter speed (step S112).
  • the camera body 2 estimates the expected amount of blur according to the shutter speed and/or focal length (step S113). The camera body 2 determines whether the estimated amount of blur is less than the second threshold Th2 (step S114).
  • step S114 If the estimated amount of blur is equal to or greater than the second threshold Th2 (step S114; No), the camera body 2 proceeds to step S107 and determines blur correction by cooperative operation.
  • the camera body 2 determines to perform shake correction independently, and determines whether to perform shake correction on the lens side, that is, the interchangeable lens 3. (Step S115). For example, if the correction performance of the interchangeable lens 3 is higher than the correction performance of the camera body 2, the camera body 2 determines to perform blur correction on the lens side.
  • step S115 If it is determined that blur correction is to be performed on the lens side (step S115; Yes), the camera body 2 determines blur correction for the lens alone (step S116), and ends the process.
  • step S115 If it is determined that the camera body 2 does not perform shake correction on the lens side (step S115; No), the camera body 2 determines shake correction for the body alone (step S117), and ends the process.
  • the camera system 1 when the difference between the image stabilization performance on the camera body 2 side and the image stabilization performance on the interchangeable lens 3 side is greater than or equal to the first threshold Th1, Perform image stabilization. Thereby, the camera system 1 can suppress deterioration of correction performance due to cooperative blur correction.
  • the camera system 1 performs blur correction in a cooperative manner rather than independently. . Thereby, the camera system 1 can correct larger shakes. Furthermore, before performing shake correction, the camera system 1 uses the estimated shake amount to determine whether to perform shake correction independently or in cooperation. As a result, switching from independent blur correction to cooperative blur correction is less likely to occur while blur correction is being performed, and the camera system 1 can suppress performance deterioration of blur correction.
  • the body-side shake correction control unit 21A determines whether to perform shake correction independently or in cooperation, depending on the correction performance of the camera body 2 and the interchangeable lens 3.
  • the body-side image stabilization control unit 21A adjusts the correction performance of the camera body 2 and the correction performance of the interchangeable lens 3 depending on the focal length and shutter speed. Calculate.
  • the body-side shake correction control unit 21A compares the correction performance of the camera body 2 and the interchangeable lens 3 based on information regarding the focal length and shutter speed. Thereby, the camera system 1 can compare the blur correction performance under each condition, regardless of the focal length or shutter speed.
  • FIG. 7 is a block diagram illustrating a configuration example of a body-side blur correction control unit 21A according to a modification of the embodiment of the present disclosure.
  • the body-side blur correction control unit 21A shown in FIG. 7 includes an acquisition unit 211A instead of the acquisition unit 211 in FIG. 214A. Further, the body-side blur correction control section 21A shown in FIG. 7 further includes a performance calculation section 215.
  • the acquisition unit 211A acquires information regarding performance from the camera body 2 and the interchangeable lens 3, respectively. In this modification, the acquisition unit 211A acquires correction performance at multiple focal lengths and multiple shutter speeds.
  • the acquisition unit 211A acquires the correction performance of the interchangeable lens 3 at each of the T (tele) end and the W (wide) end. At this time, the acquisition unit 211A acquires the correction performance of the interchangeable lens 3 at different shutter speeds.
  • the T end is the state where the focal length of the interchangeable lens 3 is the longest
  • the W end is the state where the focal length of the interchangeable lens 3 is the shortest.
  • the acquisition unit 211A acquires the first lens correction performance of the interchangeable lens 3 at the first shutter speed at the T end.
  • the acquisition unit 211A also acquires the second lens correction performance of the interchangeable lens 3 at the second shutter speed at the T end.
  • the acquisition unit 211A acquires the third lens correction performance of the interchangeable lens 3 at the first shutter speed at the W end.
  • the acquisition unit 211A also acquires the fourth lens correction performance of the interchangeable lens 3 at the second shutter speed at the W end.
  • the acquisition unit 211A may acquire information regarding the shutter speed (first shutter speed) that provides a predetermined lens correction performance at the T end. Similarly, the acquisition unit 211A may acquire information regarding the shutter speed (second shutter speed) that provides a predetermined lens correction performance at the W end.
  • the acquisition unit 211A acquires the correction performance of the camera body 2 at each of the T (tele) end and the W (wide) end. At this time, the acquisition unit 211A acquires the correction performance of the camera body 2 at different shutter speeds.
  • the acquisition unit 211A acquires the first body correction performance of the camera body 2 at the third shutter speed at the T end.
  • the acquisition unit 211A also acquires the second body correction performance of the camera body 2 at the fourth shutter speed at the T end.
  • the acquisition unit 211A acquires the third body correction performance of the camera body 2 at the third shutter speed at the W end.
  • the acquisition unit 211A also acquires the fourth body correction performance of the camera body 2 at the fourth shutter speed at the W end.
  • the acquisition unit 211A may acquire information regarding the shutter speed (third shutter speed) that provides a predetermined body correction performance at the T end. Similarly, the acquisition unit 211A may acquire information regarding a shutter speed (fourth shutter speed) that provides a predetermined body correction performance at the W end.
  • the acquisition unit 211A outputs the acquired information regarding the correction performance (first to fourth lens correction performances and first to fourth body correction performances) to the performance calculation unit 215.
  • the acquisition unit 211A has the same functions as the acquisition unit 211 shown in FIG. 5, except for acquiring correction performance at multiple focal lengths and multiple shutter speeds.
  • the performance calculation unit 215 shown in FIG. 7 calculates the correction performance of the camera body 2 and the correction performance of the interchangeable lens 3 based on the shutter speed and focal length of the camera system 1.
  • FIG. 8 is a diagram for explaining the relationship between shutter speed and focal length and correction performance according to a modification of the embodiment of the present disclosure.
  • the first Tv value that is the first amount of blur BrL is Tv T1 .
  • the second Tv value that becomes the second amount of blur BrH is Tv T2 .
  • the third Tv value that is the first amount of blur Br L is Tv W1 .
  • the fourth Tv value that becomes the second blur amount BrH is TvW2 .
  • the first Tv value Tv T1 and the second Tv value Tv T2 are plotted as points near the straight line L1. Further, the third Tv value Tv W1 and the fourth Tv value Tv W2 are plotted as points near the straight line L2.
  • the first Tv value Tv T1 and the third Tv value Tv W1 at the same amount of blur Br L are plotted as points near the same straight line.
  • the second Tv value Tv T2 and the fourth Tv value Tv W2 at the same amount of shake Br H are plotted as points near the same straight line.
  • the performance calculation unit 215 calculates data related to the straight lines, such as the slope and intercept of these straight lines, to calculate the correction performance (assumed) at any shutter speed (Tv value) and any focal length f.
  • the amount of blur Br) is calculated.
  • the performance calculation unit 215 corrects the camera body 2 alone at a predetermined shutter speed and a predetermined focal length based on the correspondence between the correction performance of the camera body 2 at different focal lengths and the shutter speed (second correspondence). Calculate the performance (estimated amount of shake). Furthermore, the performance calculation unit 215 calculates correction for the interchangeable lens 3 alone at a predetermined shutter speed and a predetermined focal length based on the correspondence between the correction performance of the interchangeable lens 3 at different focal lengths and the shutter speed (first correspondence). Calculate the performance (estimated amount of shake).
  • the performance calculation unit 215 calculates the amount of change in performance due to shutter speed (first performance change) from the correction performance (estimated amount of shake) of the interchangeable lens 3 at a plurality of shutter speeds acquired by the acquisition unit 211A amount).
  • the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the T end from the correction performance at the first shutter speed and the correction performance at the second shutter speed.
  • the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the W end from the correction performance at the first shutter speed and the correction performance at the second shutter speed.
  • the performance calculation unit 215 calculates the amount of change in correction performance (second amount of performance change) in the focal length during still image shooting. For example, the performance calculation unit 215 calculates the relationship between the shutter speed and the correction performance at the focal length during still image shooting based on the relationship between the shutter speed and the correction performance at the T end and the relationship between the shutter speed and the correction performance at the W end. Estimate the relationship.
  • the performance calculation unit 215 acquires information regarding the shutter speed via the acquisition unit 211A.
  • the performance calculation unit 215 calculates the correction performance of the interchangeable lens 3 at the shutter speed during still image shooting from the relationship between the shutter speed and the correction performance at the focal length during still image shooting.
  • the performance calculation unit 215 calculates the correction performance at the shutter speed and focal length at the time of shooting from the correction performance (estimated amount of shake) of the camera body 2 at a plurality of shutter speeds acquired by the acquisition unit 211A.
  • the performance calculation unit 215 calculates the amount of change in performance due to shutter speed (first performance change) from the correction performance (estimated shake amount) of the camera body 2 at the plurality of shutter speeds acquired by the acquisition unit 211A. amount).
  • the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the T end from the correction performance at the third shutter speed and the correction performance at the fourth shutter speed.
  • the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the W end from the correction performance at the third shutter speed and the correction performance at the fourth shutter speed.
  • the performance calculation unit 215 calculates the amount of change in correction performance (second amount of performance change) in the focal length during still image shooting. For example, the performance calculation unit 215 calculates the relationship between the shutter speed and the correction performance at the focal length during still image shooting based on the relationship between the shutter speed and the correction performance at the T end and the relationship between the shutter speed and the correction performance at the W end. Estimate the relationship.
  • the performance calculation unit 215 acquires information regarding the shutter speed via the acquisition unit 211A.
  • the performance calculation unit 215 calculates the correction performance of the camera body 2 at the shutter speed during still image shooting from the relationship between the shutter speed and correction performance at the focal length during still image shooting.
  • the performance calculation unit 215 outputs the calculated corrected performance to the performance determination unit 212A.
  • the performance determining unit 212A calculates the difference in correction performance between the camera body 2 and the interchangeable lens 3 at the time of photography calculated by the performance calculating unit 215.
  • the performance determination unit 212A compares the calculated difference (performance difference) with a third threshold Th3.
  • the performance determination unit 212A outputs the comparison result to the cooperation determination unit 214A.
  • the cooperation determining section 214A determines an independent operation or a cooperative operation of blur correction depending on the correction performance of the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40. If the cooperation determination unit 214A determines that there is a difference in the correction performance of the body-side vibration reduction mechanism 7 and the lens-side vibration reduction mechanism 40 based on the comparison result of the performance determination unit 212A, the cooperation determination unit 214A determines to operate the vibration correction independently. .
  • the cooperation determination unit 214A determines to operate the blur correction independently when the difference in performance between the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 is equal to or greater than the third threshold Th3.
  • the cooperation determination unit 214A determines that blur correction is to be performed by the body-side blur correction mechanism 7 or the lens-side blur correction mechanism 40, whichever has higher correction performance.
  • the cooperation determination unit 214A estimates the expected amount of blur based on the information regarding the shutter speed and the information regarding the focal length acquired by the acquisition unit 211A.
  • the cooperation determination unit 214A determines whether or not to perform a cooperative operation of blur correction according to the estimated expected amount of blur. For example, the cooperation determination unit 214A determines whether or not to perform a cooperative operation of blur correction depending on whether the estimated amount of blur is less than a second threshold.
  • the cooperation determination unit 214 determines to perform blur correction in an independent operation. On the other hand, the cooperation determination unit 214 determines that the blur correction should be performed in a cooperative manner when the estimated amount of blur is equal to or greater than the second threshold.
  • FIG. 9 is a flowchart illustrating an example of the flow of determination processing according to a modification of the embodiment of the present disclosure.
  • the determination process in FIG. 9 is executed by the camera body 2, for example, before the blur correction process when photographing a still image. Note that the same processes as the determination process in FIG. 6 are given the same reference numerals, and the description thereof will be omitted.
  • the camera body 2 acquires the blur correction performance of the camera body 2 and the interchangeable lens 3 (step S201).
  • the camera body 2 acquires the correction performance at the T end and W single end of the camera body 2 for each different shutter speed.
  • the camera body 2 acquires the correction performance of the interchangeable lens 3 at the T end and W single for each different shutter speed.
  • the camera body 2 calculates the first performance change amount of each of the camera body 2 and the interchangeable lens 3 (step S202).
  • the camera body 2 calculates the amount of change in performance depending on the shutter speed at each of the T end and the W end as the first amount of change in performance from the correction performance of the interchangeable lens 3 at the plurality of shutter speeds obtained in step S201.
  • the camera body 2 calculates the amount of change in performance due to the shutter speed at each of the T end and the W end from the correction performance (estimated amount of shake) of the camera body 2 at the plurality of shutter speeds acquired in step S201. Calculated as the amount of change in performance.
  • the camera body 2 calculates the second performance change amount of each of the camera body 2 and the interchangeable lens 3. (Step S203).
  • the camera body 2 calculates the amount of change in the correction performance of the camera body 2 and the interchangeable lens 3 at the focal length obtained in step S108 as the second amount of change in performance.
  • step S111 to step S114 is the same as the determination processing shown in FIG. 6.
  • the camera body 2 that has determined that the expected amount of blur is less than the second threshold Th2 calculates the performance difference between the camera body 2 and the interchangeable lens 3 (step S205).
  • the camera body 2 uses the second performance change amount calculated in step S203 to calculate the correction performance of each of the camera body 2 and the interchangeable lens 3 at the shutter speed acquired in step S112.
  • the camera body 2 calculates the calculated difference in correction performance between the camera body 2 and the interchangeable lens 3 as a performance difference.
  • the camera body 2 determines whether the calculated performance difference is greater than or equal to the third threshold Th3 (step S206).
  • step S206 If the performance difference is less than the third threshold Th3 (step S206; No), the camera body 2 proceeds to step S107 and determines blur correction by cooperative operation.
  • step S206 determines to perform blur correction independently.
  • the subsequent processing is the same as the determination processing in FIG.
  • the first performance change amount is calculated in step S202 after the camera body 2 acquires the correction performance of the camera body 2 and the interchangeable lens 3 at a plurality of shutter speeds. Further, it is assumed that the second performance change amount is calculated in step S203 after the camera body 2 acquires the focal length.
  • the timing for calculating the first performance change amount and/or the second performance change amount is not limited to the example shown in FIG. 9 .
  • the camera body 2 may calculate the first performance change amount immediately before calculating the second performance change amount, or calculate the first and second performance change amount immediately before calculating the performance difference. You can do it like this.
  • the process in FIG. 9 may be changed or omitted as appropriate.
  • the order of the process of estimating the expected shake amount and comparing it with the second threshold Th2 and the process of calculating the performance difference and comparing it with the third threshold Th3 may be changed.
  • the camera system 1 determines whether to perform shake correction alone or with emphasis, depending on the performance difference between the camera body 2 and the interchangeable lens 3 in terms of shutter speed and focal length at the time of shooting. Determine. Thereby, the camera system 1 can calculate the performance difference between the camera body 2 and the interchangeable lens 3 with higher accuracy.
  • the camera system 1 calculates the correction performance of the camera body 2 and the interchangeable lens 3 according to the shutter speed and focal length at the time of shooting. Therefore, even if the movable range (correction range) of the camera body 2 and the interchangeable lens 3 with higher correction performance is sufficiently large relative to the expected amount of shake, the camera system 1 does not allow the camera body 2 or the interchangeable lens 3 to move. If the performance difference between 3 and 3 is small, cooperative operation can be selected.
  • the camera system 1 can work together to compensate for the image blur. It may be decided to make a correction.
  • the camera system 1 cooperates to perform image stabilization, so that the camera body 2 and the interchangeable lens 3
  • the amount of movement of each blur correction mechanism is distributed. That is, by performing a cooperative operation with the camera body 2 and the interchangeable lens 3, the amount of movement of the body-side shake correction mechanism 7 and the movement amount of the lens-side shake correction mechanism 40 are reduced.
  • the actuators (not shown) of the shake correction mechanism of the camera body 2 and the interchangeable lens 3 can be driven at the speed of light with smaller power, and the accuracy of shake correction is further improved.
  • the camera body 2 performs the determination process, but the present invention is not limited to this.
  • the interchangeable lens 3 may perform at least part of the determination process.
  • the lens-side blur correction control unit 41 of the interchangeable lens 3 can execute at least part of the determination process.
  • the interchangeable lens 3 functions as an information processing device that executes information processing such as determination processing.
  • the camera body 2 acquires the correction performance of the camera body 2 and interchangeable lens 3 at the T end and the W end, but the correction performance acquired by the camera body 2 is not limited to the correction performance at the T end and the W end.
  • the camera body 2 only needs to acquire the correction performance of the camera body 2 and interchangeable lens 3 at a plurality of different focal lengths, and may acquire correction performance at a focal length other than the T end and the W end.
  • the camera body 2 may acquire the correction performance of the camera body 2 and interchangeable lens 3 at three or more different focal lengths.
  • the camera body 2 acquires the correction performance of the camera body 2 and the interchangeable lens 3 at two different shutter speeds, but the shutter speeds at which the camera body 2 acquires the correction performance are divided into two. Not limited.
  • the camera body 2 may acquire the correction performance of the camera body 2 and the interchangeable lens 3 at three or more different shutter speeds.
  • the camera body 2 determines whether the camera body 2 and the interchangeable lens 3 operate independently for image stabilization, or both operate together. The decision is not limited to this. For example, it may be determined that the camera body 2 performs a cooperative operation with a different correction ratio instead of an independent operation.
  • the camera body 2 Let the correction ratio of the cooperative motion to be determined be the first correction ratio.
  • the second correction ratio is determined, for example, such that the correction ratio of the camera body 2 and the interchangeable lens 3, which has higher correction performance, is larger than the first correction ratio.
  • the camera body 2 may decide to perform more vibration correction on the one with higher performance.
  • control device that controls the camera body 2 of this embodiment may be realized by a dedicated computer system or a general-purpose computer system.
  • a program for executing operations such as the above-mentioned determination process is stored and distributed in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk. Then, for example, the program is installed on a computer and the control device is configured by executing the above-described processing.
  • the control device may be a device external to the camera body 2 (for example, a personal computer). Further, the control device may be a device inside the camera body 2 (for example, the overall control section 101).
  • the above program may be stored in a disk device included in a server device on a network such as the Internet, so that it can be downloaded to a computer.
  • the above-mentioned functions may be realized through collaboration between an OS (Operating System) and application software.
  • the parts other than the OS may be stored on a medium and distributed, or the parts other than the OS may be stored in a server device so that they can be downloaded to a computer.
  • each component of each device shown in the drawings is functionally conceptual, and does not necessarily need to be physically configured as shown in the drawings.
  • the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured. Note that this distribution/integration configuration may be performed dynamically.
  • the present embodiment can be applied to any configuration constituting a device or system, such as a processor as a system LSI (Large Scale Integration), a module using multiple processors, a unit using multiple modules, etc. Furthermore, it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
  • a processor as a system LSI (Large Scale Integration)
  • a module using multiple processors a unit using multiple modules, etc.
  • it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
  • a system means a collection of multiple components (devices, modules (components), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, multiple devices housed in separate casings and connected via a network, and a single device with multiple modules housed in one casing are both systems. .
  • An imaging device comprising a camera body equipped with a first image stabilization function and an interchangeable lens equipped with a second image stabilization function
  • the imaging device includes: obtaining lens performance information regarding the performance of the second image stabilization function of the interchangeable lens; obtaining camera performance information regarding the performance of the first image stabilization function of the camera body; Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively.
  • An imaging device comprising: (2) When the performance difference between the second image stabilization function of the interchangeable lens and the first image stabilization function of the camera body is less than a threshold, the control unit controls the second image stabilization function of the interchangeable lens and the camera body.
  • the imaging device according to (1) which determines to perform blur correction in a coordinated manner.
  • the control unit performs the blur correction on one of the interchangeable lens and the camera body, or causes the blur correction on the interchangeable lens and the camera body to operate cooperatively, depending on the shutter speed and focal length at the time of photography.
  • the imaging device according to (1) or (2) which determines .
  • the control unit includes: Estimating the expected amount of shake of the imaging device according to the shutter speed and focal length at the time of shooting, Based on the movable range of the second image stabilization function of the interchangeable lens and the first image stabilization function of the camera body, and the estimated amount of shake, perform the image stabilization on one of the interchangeable lens and the camera body.
  • the imaging device according to any one of (1) to (3), wherein the image pickup device determines whether to perform the shake correction of the interchangeable lens and the camera body in a coordinated manner.
  • the control unit is configured such that the movable range due to the second blur correction function of the interchangeable lens is larger than the assumed shake amount, or the movable range due to the first shake correction function of the camera body is larger than the assumed shake amount.
  • the imaging device in which it is determined that the blur correction of the interchangeable lens and the camera body are operated in a coordinated manner when the image stabilization is larger than that of the camera body.
  • the control unit includes: acquiring the lens performance information at different focal lengths at different shutter speeds, acquiring the camera performance information at different focal lengths at different shutter speeds; Based on the acquired lens performance information, estimate the blur correction performance of the interchangeable lens at the focal length and shutter speed at the time of shooting, Based on the acquired camera performance information, estimate the blur correction performance of the camera body at the time of the photograph at the focal length and the shutter speed at the time of the photograph;
  • the image stabilization may be performed on one of the interchangeable lens and the camera body, or the image stabilization of the interchangeable lens and the camera body may be performed cooperatively.
  • the imaging device according to any one of (1) to (5), which determines whether to operate the imaging device.
  • the control unit includes: (6) estimating the blur correction performance of the interchangeable lens at the time of photographing, based on at least one of changes in the lens performance information at different focal lengths and changes in the lens performance information at different shutter speeds; The imaging device described in .
  • the control unit includes: (6) estimating the blur correction performance of the camera body at the time of shooting based on at least one of changes in the camera performance information at different focal lengths and changes in the camera performance information at different shutter speeds; Or the imaging device according to (7). (9) If the control unit determines to perform the blur correction on one of the interchangeable lens and the camera body, it determines to perform the blur correction on the one with higher blur correction performance.
  • the imaging device according to item 1. (10) The control unit instructs one of the interchangeable lens and the camera body, which has been determined to perform the image stabilization, to perform the image stabilization, in any one of (1) to (8). The imaging device described. (11) The imaging device according to any one of (1) to (9), wherein the control unit determines a ratio at which the shake correction is performed for the interchangeable lens and the camera body according to shake correction performance. (12) The imaging device according to (11), wherein the control unit instructs the interchangeable lens and the camera body to perform the blur correction at the ratio.
  • An information processing device comprising: (14) Obtaining lens performance information regarding the performance of a second image stabilization function of the interchangeable lens; Obtaining camera performance information regarding the performance of a first image stabilization function of the camera body; Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively. to do and A program that causes a processor to execute.

Abstract

An imaging device according to the present disclosure comprises a camera body that is equipped with a first blur correction function, and an interchangeable lens that is equipped with a second blur correction function. The imaging device also comprises a control unit. The control unit acquires lens performance information relating to the performance of the second blur correction function of the interchangeable lens. The control unit acquires camera performance information relating to the performance of the first blur correction function of the camera body. On the basis of the lens performance information and the camera performance information, the control unit determines whether to perform blur correction using either one of the interchangeable lens or the camera body or to cooperatively activate blur correction of the interchangeable lens and the camera body.

Description

撮像装置、情報処理装置及びプログラムImaging device, information processing device and program
 本開示は、撮像装置、情報処理装置及びプログラムに関する。 The present disclosure relates to an imaging device, an information processing device, and a program.
 カメラボディと交換可能なレンズとが互いに通信を行うカメラシステムが知られている。このようなカメラシステムでは、レンズ側とカメラボディ側とで焦点距離や露光時間など撮影に関する制御データがやりとりされる。 A camera system is known in which a camera body and an exchangeable lens communicate with each other. In such a camera system, control data regarding photography, such as focal length and exposure time, is exchanged between the lens side and the camera body side.
 また、カメラボディ及びレンズのそれぞれにブレ補正装置が搭載されたカメラシステムが知られている。このようなカメラシステムにおいて、カメラボディ及びレンズのそれぞれでブレを補正することができる場合に、カメラシステム全体としてブレ補正装置を有効に動作させる技術が知られている。 Also, a camera system is known in which a shake correction device is mounted on each of the camera body and lens. In such a camera system, there is a known technique for effectively operating a shake correction device in the camera system as a whole when shake can be corrected in each of the camera body and lens.
特開平11-101998号公報Japanese Patent Application Publication No. 11-101998
 カメラボディ及びレンズそれぞれに搭載されたブレ補正装置が協調して、カメラシステム全体としてブレ補正を実現することで、カメラボディ及びレンズのそれぞれでブレ補正を行うより大きなブレを補正することができるようになる。 The image stabilization devices installed on the camera body and lens work together to achieve image stabilization for the camera system as a whole, making it possible to compensate for greater shake than when image stabilization is performed on the camera body and lens individually. become.
 しかしながら、カメラボディ側の補正性能及びレンズ側の補正性能に差がある場合、カメラボディ及びレンズ両方で協調してブレ補正を行った場合の補正性能が、補正性能が高い方単体でブレ補正を行った場合よりも低くなる可能性がある。 However, if there is a difference between the correction performance on the camera body side and the correction performance on the lens side, the correction performance when both the camera body and lens cooperate to perform image stabilization is different from that of the one with higher correction performance alone. It may be lower than if you had done so.
 カメラボディ及びレンズそれぞれに搭載されたブレ補正装置を用いてブレ補正を実現する場合に、ブレ補正の性能をより向上させることが望まれる。 When implementing shake correction using shake correction devices mounted on the camera body and lens, it is desirable to further improve the performance of shake correction.
 そこで、本開示では、ブレ補正の性能をより向上させることができる仕組みを提供する。 Therefore, the present disclosure provides a mechanism that can further improve the performance of blur correction.
 なお、上記課題又は目的は、本明細書に開示される複数の実施形態が解決し得、又は達成し得る複数の課題又は目的の1つに過ぎない。 Note that the above-mentioned problem or object is only one of the plurality of problems or objects that can be solved or achieved by the plurality of embodiments disclosed in this specification.
 本開示の撮像装置は、第一のブレ補正機能を搭載したカメラボディ及び第二のブレ補正機能を搭載した交換レンズを備える。撮像装置は、制御部を備える。制御部は、前記交換レンズの前記第二のブレ補正機能の性能に関するレンズ性能情報を取得する。制御部は、前記カメラボディの前記第一のブレ補正機能の性能に関するカメラ性能情報を取得する。制御部は、前記レンズ性能情報と、前記カメラ性能情報と、に基づき、前記交換レンズ及び前記カメラボディの一方でブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する。 The imaging device of the present disclosure includes a camera body equipped with a first shake correction function and an interchangeable lens equipped with a second shake correction function. The imaging device includes a control section. The control unit acquires lens performance information regarding the performance of the second blur correction function of the interchangeable lens. The control unit acquires camera performance information regarding the performance of the first blur correction function of the camera body. The control unit performs blur correction on one of the interchangeable lens and the camera body, or causes the blur correction on the interchangeable lens and the camera body to operate cooperatively, based on the lens performance information and the camera performance information. or decide.
本開示の実施形態に係るカメラシステムの正面外観図である。1 is a front external view of a camera system according to an embodiment of the present disclosure. 本開示の実施形態に係るカメラシステムの背面外観図である。FIG. 1 is a rear external view of a camera system according to an embodiment of the present disclosure. 本開示の実施形態に係るカメラシステムの機能構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of a functional configuration of a camera system according to an embodiment of the present disclosure. ボディ側ブレ補正機構の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of a body-side shake correction mechanism. 本開示の実施形態に係るボディ側ブレ補正制御部の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a body-side blur correction control section according to an embodiment of the present disclosure. 本開示の実施形態に係る判定処理の流れの一例を示すフローチャートである。2 is a flowchart illustrating an example of the flow of determination processing according to an embodiment of the present disclosure. 本開示の実施形態の変形例に係るボディ側ブレ補正制御部の構成例を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration example of a body-side blur correction control section according to a modification of the embodiment of the present disclosure. 本開示の実施形態の変形例に係るシャッタースピード及び焦点距離と、補正性能と、の関係について説明するための図である。FIG. 7 is a diagram for explaining the relationship between shutter speed and focal length and correction performance according to a modification of the embodiment of the present disclosure. 本開示の実施形態の変形例に係る判定処理の流れの一例を示すフローチャートである。12 is a flowchart illustrating an example of the flow of determination processing according to a modification of the embodiment of the present disclosure.
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 The following describes in detail the embodiments of the present disclosure with reference to the accompanying drawings. Note that in this specification and drawings, components that have substantially the same functional configuration are designated by the same reference numerals to avoid redundant description.
 また、本明細書及び図面において、実質的に同一または類似の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合がある。ただし、実質的に同一または類似の機能構成を有する複数の構成要素の各々を特に区別する必要が無い場合、同一符号のみを付する。また、異なる実施形態の類似する構成要素については、同一の符号の後に異なるアルファベット又は数字を付して区別する場合がある。ただし、類似する構成要素の各々を特に区別する必要が無い場合、同一符号のみを付する。 Furthermore, in this specification and the drawings, a plurality of components having substantially the same or similar functional configurations may be distinguished by using different numbers after the same reference numeral. However, if there is no particular need to distinguish between a plurality of components having substantially the same or similar functional configurations, only the same reference numerals are given. Further, similar components in different embodiments may be distinguished by attaching different alphabets or numbers after the same reference numeral. However, if there is no particular need to distinguish between similar components, only the same reference numerals are given.
 以下に説明される1又は複数の実施形態(実施例、変形例を含む)は、各々が独立に実施されることが可能である。一方で、以下に説明される複数の実施形態は少なくとも一部が他の実施形態の少なくとも一部と適宜組み合わせて実施されてもよい。これら複数の実施形態は、互いに異なる新規な特徴を含み得る。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し得、互いに異なる効果を奏し得る。 One or more embodiments (including examples and modifications) described below can each be implemented independently. On the other hand, at least a portion of the plurality of embodiments described below may be implemented in combination with at least a portion of other embodiments as appropriate. These multiple embodiments may include novel features that are different from each other. Therefore, these multiple embodiments may contribute to solving mutually different objectives or problems, and may produce mutually different effects.
<<1.カメラシステムの概要構成例>>
 図1及び図2を用いて、本開示の実施形態に係るカメラシステム1の概要を説明する。図1は、本開示の実施形態に係るカメラシステム1の正面外観図である。図2は、本開示の実施形態に係るカメラシステム1の背面外観図である。
<<1. Example of general configuration of camera system >>
An overview of a camera system 1 according to an embodiment of the present disclosure will be described using FIGS. 1 and 2. FIG. 1 is a front external view of a camera system 1 according to an embodiment of the present disclosure. FIG. 2 is a rear external view of the camera system 1 according to the embodiment of the present disclosure.
 なお、以下、図においてXYZ座標が示される場合がある。Z軸正方向は、カメラシステム1の撮影方向(光軸方向)に相当する。X軸方向及びY軸方向によって形成される平面は、カメラシステム1の撮像平面に相当する。 Note that, hereinafter, XYZ coordinates may be shown in the figures. The Z-axis positive direction corresponds to the photographing direction (optical axis direction) of the camera system 1. The plane formed by the X-axis direction and the Y-axis direction corresponds to the imaging plane of the camera system 1.
 図1及び図2に示すカメラシステム1は、レンズ交換式一眼レフレックスタイプのデジタルカメラ(撮像装置の一例)である。 The camera system 1 shown in FIGS. 1 and 2 is a single-lens reflex type digital camera with interchangeable lenses (an example of an imaging device).
 図1に示すように、カメラシステム1は、カメラ本体部(カメラボディ)2と、交換式の撮影レンズユニット(交換レンズ)3と、を備える。 As shown in FIG. 1, the camera system 1 includes a camera main body (camera body) 2 and an interchangeable photographic lens unit (interchangeable lens) 3.
 交換レンズ3は、カメラボディ2に対して着脱可能に装着される。交換レンズ3は、主として、鏡胴36を備える。交換レンズ3は、鏡胴36内部に、図示を省略するが、レンズ群や絞り等を備える。レンズ群には、光軸方向に移動することで焦点位置を変更するフォーカスレンズ等が含まれる。また、交換レンズ3は、内部にブレ補正機能を有する制御装置を有する。 The interchangeable lens 3 is detachably attached to the camera body 2. The interchangeable lens 3 mainly includes a lens barrel 36. The interchangeable lens 3 includes a lens group, an aperture, etc., although not shown, inside the lens barrel 36. The lens group includes a focus lens that changes the focal position by moving in the optical axis direction, and the like. Moreover, the interchangeable lens 3 has a control device having an internal blur correction function.
 カメラボディ2は、交換レンズ3が装着される円環状のマウント部Mtを正面略中央に備える。カメラボディ2は、交換レンズ3を着脱するための着脱ボタン89を、円環状のマウント部Mt付近に備える。 The camera body 2 includes an annular mount portion Mt, on which the interchangeable lens 3 is mounted, at approximately the center of the front surface. The camera body 2 includes an attachment/detachment button 89 for attaching and detaching the interchangeable lens 3 near the annular mount portion Mt.
 また、カメラボディ2は、正面左端部に撮影者が把持するためのグリップ部14を備える。グリップ部14の上面には、露光開始を指示するためのレリーズボタン11が設けられている。 Furthermore, the camera body 2 includes a grip section 14 on the front left end portion for the photographer to grasp. A release button 11 for instructing the start of exposure is provided on the top surface of the grip section 14.
 グリップ部14の内部には、図示を省略するが、電池収納室やカード収納室等が設けられる。電池収納室は、カメラの電源として、例えばリチウムイオン電池(図示省略)などを収納する。カード収納室は、撮影した画像データを記録するためのメモリカード(図示省略)を着脱可能に収納する。 Inside the grip part 14, although not shown, a battery storage chamber, a card storage chamber, etc. are provided. The battery storage chamber stores, for example, a lithium ion battery (not shown) as a power source for the camera. The card storage chamber removably stores a memory card (not shown) for recording photographed image data.
 レリーズボタン11は、半押し状態S1と全押し状態S2との2つの状態を検出可能な2段階検出ボタンである。レリーズボタン11は、両状態S1,S2の検出結果に応じて、撮影準備指令D1と撮影開始指令D2とを受け付ける。 The release button 11 is a two-stage detection button that can detect two states: a half-pressed state S1 and a fully-pressed state S2. The release button 11 receives a photographing preparation command D1 and a photographing start command D2 according to the detection results of both states S1 and S2.
 レリーズボタン11が半押しされ半押し状態S1になると、カメラシステム1は、撮影準備指令(又は露光準備指令とも称する)D1が操作者によって付与されたものと判定する。 When the release button 11 is pressed halfway and enters the halfway pressed state S1, the camera system 1 determines that a shooting preparation command (also referred to as an exposure preparation command) D1 has been given by the operator.
 そして、撮影準備指令D1に応答して、被写体に関する記録用静止画像(本撮影画像)を取得するための準備動作(例えば、AF(Auto Focus)制御動作およびAE(Auto Exposure)制御動作等)が行われる。 Then, in response to the shooting preparation command D1, preparation operations (for example, AF (Auto Focus) control operation and AE (Auto Exposure) control operation, etc.) for acquiring a recording still image (main shooting image) regarding the subject are performed. It will be done.
 また、レリーズボタン11がさらに押し込まれて全押し状態S2になると、カメラシステム1は、撮影開始指令(又は露光開始指令とも称する)D2が付与されたものと判定する。 Furthermore, when the release button 11 is pushed further to reach the fully pressed state S2, the camera system 1 determines that a shooting start command (also referred to as an exposure start command) D2 has been given.
 そして、撮影開始指令D2に応答して、当該本撮影画像の撮影動作が行われる。撮影動作は、例えば、撮像素子(図示省略)を用いた被写体像(被写体の光像)に関する露光動作、及び、その露光動作によって得られた画像信号に所定の画像処理を施す一連の動作を含む。 Then, in response to the photographing start command D2, the photographing operation of the main photographed image is performed. The photographing operation includes, for example, an exposure operation regarding a subject image (a light image of the subject) using an image sensor (not shown), and a series of operations for performing predetermined image processing on the image signal obtained by the exposure operation. .
 図2において、カメラボディ2の背面略中央上部には、ファインダ窓(接眼窓)10が設けられる。撮影者は、ファインダ窓10を覗くことによって、交換レンズ3から導かれた被写体の光像を視認して構図決定を行いうる。すなわち、撮影者は、光学ファインダを用いて構図決めを行いうる。 In FIG. 2, a finder window (eyepiece window) 10 is provided at approximately the upper center of the back surface of the camera body 2. By looking through the finder window 10, the photographer can visually recognize the light image of the subject guided from the interchangeable lens 3 and determine the composition. That is, the photographer can determine the composition using the optical finder.
 図2において、カメラボディ2の背面の略中央には、背面モニタ12が設けられる。背面モニタ12は、例えばカラー液晶ディスプレイ(LCD)として構成される。 In FIG. 2, a rear monitor 12 is provided approximately at the center of the rear surface of the camera body 2. The rear monitor 12 is configured, for example, as a color liquid crystal display (LCD).
 背面モニタ12は、撮影条件等を設定するためのメニュー画面を表示しうる。また、背面モニタ12は、再生モードにおいてメモリカード90に記録された撮影画像を再生表示しうる。また、背面モニタ12は、撮影対象とする画像(ライブビュー映像)を表示しうる。 The rear monitor 12 can display a menu screen for setting shooting conditions and the like. Further, the rear monitor 12 can play back and display photographed images recorded on the memory card 90 in playback mode. Further, the rear monitor 12 can display an image to be photographed (live view video).
 背面モニタ12の右側には方向選択キー84が設けられる。この方向選択キー84は、円形の操作ボタンを有する。この操作ボタンは、上下左右の4方向の押圧操作と、右上、左上、右下及び左下の4方向の押圧操作とを、それぞれ検出できるように構成される。 A direction selection key 84 is provided on the right side of the rear monitor 12. This direction selection key 84 has a circular operation button. This operation button is configured to be able to detect pressing operations in four directions: up, down, left, and right, and pressing operations in four directions, upper right, upper left, lower right, and lower left.
 なお、方向選択キー84は、上記8方向の押圧操作とは別に、中央部のプッシュボタンの押圧操作も検出する。 Note that the direction selection key 84 also detects the pressing operation of the central push button, in addition to the pressing operations in the eight directions described above.
 なお、ここでの図示は省略するが、カメラボディ2は、その内部に、撮像画像を撮像する撮像素子や、撮像素子の制御や画像信号に対する画像処理などを行う制御装置を有する。制御装置は、カメラボディ2のブレを補正するブレ補正機能を有する。 Note that although not shown here, the camera body 2 includes an image sensor that captures a captured image, and a control device that controls the image sensor and performs image processing on an image signal. The control device has a shake correction function that corrects shake of the camera body 2.
(課題)
 上述したように、本実施形態に係るカメラシステム1は、カメラボディ2及び交換レンズ3それぞれがブレ補正機能を有する。このように、カメラボディ2及び交換レンズ3それぞれにブレ補正機能が搭載されている場合に、両方のブレ補正を協調させてカメラシステム1のブレ補正を実現する方法が知られている。
(assignment)
As described above, in the camera system 1 according to the present embodiment, the camera body 2 and the interchangeable lens 3 each have a blur correction function. As described above, when the camera body 2 and the interchangeable lens 3 are each equipped with a blur correction function, a method is known in which the blur correction of the camera system 1 is realized by coordinating both blur correction functions.
 この場合、カメラボディ2のブレ補正機能と、交換レンズ3のブレ補正機能と、がそれぞれ補正量を分け合って動作する。これにより、カメラシステム1のブレ補正範囲が広がり、カメラシステム1は、より大きなブレも補正することができるようになる。 In this case, the blur correction function of the camera body 2 and the blur correction function of the interchangeable lens 3 each operate by sharing the amount of correction. This expands the blur correction range of the camera system 1, allowing the camera system 1 to correct larger blurs.
 しかしながら、カメラボディ2及び交換レンズ3のブレ補正機能に性能差がある場合、性能が高いブレ補正機能単体でカメラシステム1のブレを補正した方が、協調してブレを補正した場合より性能が高くなる場合がある。これは、カメラボディ2及び交換レンズ3のブレ補正機能が協調してブレ補正を行う場合、性能が高いブレ補正機能が、悪いブレ補正機能の影響を受けるためである。 However, if there is a performance difference between the image stabilization functions of the camera body 2 and the interchangeable lens 3, it is better to use the high-performance image stabilization function alone to correct the image blur in the camera system 1 than when they work together to correct the image blur. It may be higher. This is because when the shake correction functions of the camera body 2 and the interchangeable lens 3 cooperate to perform shake correction, a high-performance shake correction function is affected by a poor shake correction function.
 このように、カメラボディ2及び交換レンズ3のブレ補正機能に性能差がある場合、性能が高いブレ補正機能が、悪いブレ補正機能の影響を受け、カメラシステム1全体におけるブレ補正の性能が低下する恐れがある。 In this way, if there is a performance difference between the image stabilization functions of the camera body 2 and the interchangeable lens 3, the image stabilization function with high performance will be affected by the poor image stabilization function, and the image stabilization performance of the entire camera system 1 will decrease. There is a risk that
(提案技術の概要)
 そこで、本開示の実施形態に係るカメラシステム1は、第一のブレ補正機能を搭載したカメラボディ2及び第二のブレ補正機能を搭載した交換レンズ3を備える。
(Overview of proposed technology)
Therefore, the camera system 1 according to the embodiment of the present disclosure includes a camera body 2 equipped with a first shake correction function and an interchangeable lens 3 equipped with a second shake correction function.
 カメラシステム1は、交換レンズ3の第二のブレ補正機能の性能に関するレンズ性能情報を取得する。カメラシステム1は、カメラボディ2の第一のブレ補正機能の性能に関するカメラ性能情報を取得する。 The camera system 1 acquires lens performance information regarding the performance of the second blur correction function of the interchangeable lens 3. The camera system 1 acquires camera performance information regarding the performance of the first blur correction function of the camera body 2.
 カメラシステム1は、レンズ性能情報とカメラ性能情報とを比較する。カメラシステム1は、比較結果に基づき、交換レンズ3及びカメラボディ2の一方でブレ補正を行うか、交換レンズ3及びカメラボディ2でブレ補正を協調動作させるかを決定する。 The camera system 1 compares lens performance information and camera performance information. Based on the comparison result, the camera system 1 determines whether to perform blur correction on one of the interchangeable lens 3 and the camera body 2, or to cause the interchangeable lens 3 and the camera body 2 to perform blur correction together.
 このように、カメラシステム1が、交換レンズ3及びカメラボディ2のブレ補正に関する性能を比較し、ブレ補正を単体動作させるか協調動作させるかを決定する。 In this way, the camera system 1 compares the performances of the interchangeable lens 3 and the camera body 2 regarding blur correction, and determines whether to perform the blur correction independently or in cooperation.
 これにより、カメラシステム1は、交換レンズ3及びカメラボディ2のブレ補正に関する性能差が大きい場合に、ブレ補正を交換レンズ3及びカメラボディ2のいずれか一方で行うことができる。そのため、カメラシステム1は、ブレ補正を単体で動作させた場合に起こりうるブレ補正の性能の悪化を抑制することができる。 Thereby, the camera system 1 can perform blur correction on either the interchangeable lens 3 or the camera body 2 when there is a large difference in performance regarding blur correction between the interchangeable lens 3 and the camera body 2. Therefore, the camera system 1 can suppress deterioration in performance of blur correction that may occur when blur correction is operated alone.
 また、カメラシステム1は、交換レンズ3及びカメラボディ2のブレ補正に関する性能差が小さい場合に、ブレ補正を交換レンズ3及びカメラボディ2の両方で協調して行うことができる。そのため、カメラシステム1は、より大きなブレも補正することができる。 In addition, the camera system 1 can perform blur correction in cooperation with both the interchangeable lens 3 and the camera body 2 when the difference in performance regarding blur correction between the interchangeable lens 3 and the camera body 2 is small. Therefore, the camera system 1 can correct even larger shakes.
 このように、本開示の実施形態に係るカメラシステム1は、ブレ補正の性能をより向上させることができる。 In this way, the camera system 1 according to the embodiment of the present disclosure can further improve the performance of blur correction.
<<2.カメラシステムの構成例>>
<2.1.カメラシステムの機能構成例>
 図3は、本開示の実施形態に係るカメラシステム1の機能構成例を示すブロック図である。図3に示すように、カメラシステム1は、カメラボディ2及び交換レンズ3を備える。
<<2. Camera system configuration example >>
<2.1. Example of functional configuration of camera system>
FIG. 3 is a block diagram showing an example of the functional configuration of the camera system 1 according to the embodiment of the present disclosure. As shown in FIG. 3, the camera system 1 includes a camera body 2 and an interchangeable lens 3.
[交換レンズ3]
 図3に示すように、交換レンズ3は、レンズ群37と、制御装置38と、ブレ補正機構40と、を備える。
[Interchangeable lens 3]
As shown in FIG. 3, the interchangeable lens 3 includes a lens group 37, a control device 38, and a shake correction mechanism 40.
 レンズ群37は、入射光を就航してその像を撮像素子5の受光面に結像する光学系の一例である。レンズ群37は、フォーカスレンズ等、複数のレンズを含みうる。フォーカスレンズは、光軸方向に移動することによって交換レンズ3の焦点位置を変更するレンズである。 The lens group 37 is an example of an optical system that receives incident light and forms its image on the light receiving surface of the image sensor 5. The lens group 37 can include a plurality of lenses, such as a focus lens. The focus lens is a lens that changes the focal position of the interchangeable lens 3 by moving in the optical axis direction.
 ブレ補正機構40は、レンズ群37を駆動し、カメラシステム1のブレを光学的に補正する。ブレ補正機構40は、例えば、撮影時の手ぶれ等を補正する。ブレ補正機構40は、制御装置38からの制御に従ってブレを補正する。 The shake correction mechanism 40 drives the lens group 37 and optically corrects shake of the camera system 1. The shake correction mechanism 40 corrects, for example, camera shake during photographing. The shake correction mechanism 40 corrects shake under control from the control device 38.
 制御装置38は、交換レンズ3の各部を制御する。制御装置38は、レンズ位置検出部39と、ブレ補正制御部41と、を備える。 The control device 38 controls each part of the interchangeable lens 3. The control device 38 includes a lens position detection section 39 and a blur correction control section 41.
 レンズ位置検出部39は、レンズ群37のフォーカスレンズの位置を検出する。レンズ位置検出部39は、検出したフォーカスレンズの位置に関するデータをカメラボディ2に出力する。 The lens position detection unit 39 detects the position of the focus lens of the lens group 37. The lens position detection unit 39 outputs data regarding the detected position of the focus lens to the camera body 2.
 ブレ補正制御部41は、ブレ補正機構40を制御する。ブレ補正制御部41は、例えばカメラボディ2からの指示に従ってブレ補正機構40を制御する。これにより、カメラシステム1は、交換レンズ3側でブレ補正を行うことができる。 The shake correction control section 41 controls the shake correction mechanism 40. The shake correction control unit 41 controls the shake correction mechanism 40 according to instructions from the camera body 2, for example. Thereby, the camera system 1 can perform blur correction on the interchangeable lens 3 side.
[カメラボディ2]
 カメラボディ2は、シャッター4と、撮像素子5と、ミラー機構6と、ブレ補正機構7と、制御装置8と、背面モニタ12と、ジャイロセンサ61と、操作部80と、メモリカード90と、を備える。
[Camera body 2]
The camera body 2 includes a shutter 4, an image sensor 5, a mirror mechanism 6, a shake correction mechanism 7, a control device 8, a rear monitor 12, a gyro sensor 61, an operation section 80, a memory card 90, Equipped with
(シャッター4)
 シャッター4は、開閉することにより、カメラボディ2への光照射期間及び遮光期間を制御する。
(Shutter 4)
The shutter 4 controls the light irradiation period and the light blocking period to the camera body 2 by opening and closing.
(撮像素子5)
 撮像素子5は、被写体の光像を光電変換して画像信号を生成する。詳細には、撮像素子(ここではCCD(Charge Coupled Device)センサ(単にCCDとも称する))5は、被写体の光像を光電変換作用により電気的信号に変換して、本撮影画像に係る画像信号(記録用の画像信号)を生成する。
(Image sensor 5)
The image sensor 5 photoelectrically converts an optical image of a subject to generate an image signal. Specifically, an image sensor (herein, a CCD (Charge Coupled Device) sensor (also simply referred to as a CCD)) 5 converts an optical image of a subject into an electrical signal by a photoelectric conversion function, and generates an image signal related to the main photographed image. (image signal for recording) is generated.
 なお、ここでは、撮像素子5がCCDであるとしたが、撮像素子はこれに限定されない。例えば、撮像素子5がCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等であってもよい。 Note that although the image sensor 5 is assumed to be a CCD here, the image sensor is not limited to this. For example, the image sensor 5 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like.
(ミラー機構6)
 ミラー機構6は、図示を省略するが、主ミラー(主反射面)とサブミラー(副反射面)とを有する。
(Mirror mechanism 6)
Although not shown, the mirror mechanism 6 includes a main mirror (main reflecting surface) and a submirror (sub reflecting surface).
 ミラー機構6が光路を遮断した状態(ミラーダウン状態)において、ミラー機構6の主ミラーおよびサブミラーは、光束の光路上に配置される。そして、交換レンズ3からの光束(被写体像)は、主ミラーでカメラ上部側に反射された後、カメラボディ2の上部に配置されたペンタミラー(図示省略)によってさらに反射され、観察用光束としてファインダ窓10(図2参照)へと導かれる。 In the state where the mirror mechanism 6 blocks the optical path (mirror down state), the main mirror and submirror of the mirror mechanism 6 are arranged on the optical path of the light beam. The light flux (subject image) from the interchangeable lens 3 is reflected by the main mirror toward the top of the camera, and then further reflected by a pentamirror (not shown) placed at the top of the camera body 2, and is used as a light flux for observation. The camera is guided to the finder window 10 (see FIG. 2).
 また、交換レンズ3からの光束の一部は、サブミラーで反射され、制御装置8に導かれ、AF動作に利用される。より具体的には、この光速の一部は、制御装置8の、カメラボディ2の下部に配置されたAFモジュール20に導かれ、AF動作に利用される。 Further, a part of the light beam from the interchangeable lens 3 is reflected by the sub-mirror, guided to the control device 8, and used for AF operation. More specifically, a part of this light speed is guided to the AF module 20 of the control device 8, which is disposed at the bottom of the camera body 2, and is used for AF operation.
 一方、ミラー機構6が光路から退避した状態(ミラーアップ状態)においては、主ミラー及びサブミラーは、交換レンズ3からの被写体像の光路から待避し、当該被写体像はシャッター4及び撮像素子5へ向けて進行する。 On the other hand, when the mirror mechanism 6 is retracted from the optical path (mirror up state), the main mirror and the sub-mirror are retracted from the optical path of the subject image from the interchangeable lens 3, and the subject image is directed toward the shutter 4 and the image sensor 5. and proceed.
 ここでは、カメラシステム1がレンズ交換式一眼レフレックスタイプのデジタルカメラであるとしたが、カメラシステム1がレンズ交換式ミラーレスタイプのデジタルカメラであってもよい。この場合、ミラー機構は省略されうる。 Here, it is assumed that the camera system 1 is a single-lens reflex type digital camera with interchangeable lenses, but the camera system 1 may be a mirrorless type digital camera with interchangeable lenses. In this case, the mirror mechanism may be omitted.
(ブレ補正機構7)
 ブレ補正機構7は、撮像素子5を駆動し、カメラシステム1のブレを光学的に補正する。ブレ補正機構7は、例えば、撮影時の手ぶれ等を補正する。ブレ補正機構7は、制御装置8からの制御に従ってブレを補正する。
(Shake correction mechanism 7)
The blur correction mechanism 7 drives the image sensor 5 and optically corrects the blur of the camera system 1. The shake correction mechanism 7 corrects, for example, camera shake during photographing. The blur correction mechanism 7 corrects blur under control from the control device 8.
 なお、カメラボディ2のブレ補正機構7と、交換レンズ3のブレ補正機構40と、を区別する場合、カメラボディ2のブレ補正機構7をボディ側ブレ補正機構7と記載し、交換レンズ3のブレ補正機構40をレンズ側ブレ補正機構40と記載する。 Note that when distinguishing between the image stabilization mechanism 7 of the camera body 2 and the image stabilization mechanism 40 of the interchangeable lens 3, the image stabilization mechanism 7 of the camera body 2 is referred to as the body-side image stabilization mechanism 7, and The blur correction mechanism 40 will be referred to as a lens-side blur correction mechanism 40.
(背面モニタ12)
 背面モニタ12は、撮影画像等を表示する表示装置である。背面モニタ12は、例えば、カメラボディ2の背面に配置される(図2参照)。図3では、背面モニタ12がLCD(Liquid Crystal Display)である場合を示しているが、背面モニタ12は、LCDに限定されない。背面モニタ12は、例えば有機EL(Electro Luminescence)ディスプレイ等の表示装置であってもよい。
(Rear monitor 12)
The rear monitor 12 is a display device that displays photographed images and the like. The rear monitor 12 is arranged, for example, on the rear surface of the camera body 2 (see FIG. 2). Although FIG. 3 shows a case where the back monitor 12 is an LCD (Liquid Crystal Display), the back monitor 12 is not limited to an LCD. The back monitor 12 may be, for example, a display device such as an organic EL (Electro Luminescence) display.
(ジャイロセンサ61)
 ジャイロセンサ61は、カメラシステム1の角速度を検出する角速度センサである。カメラシステム1は、ジャイロセンサ61を用いてブレを検出する。カメラシステム1は、ジャイロセンサ61が検出したブレを、ブレ補正機構7を用いて補正する。
(gyro sensor 61)
The gyro sensor 61 is an angular velocity sensor that detects the angular velocity of the camera system 1. The camera system 1 uses a gyro sensor 61 to detect blur. The camera system 1 corrects the blur detected by the gyro sensor 61 using the blur correction mechanism 7.
(操作部80)
 操作部80は、レリーズボタン11(図1参照)を含む各種ボタンおよびスイッチ等を備えて構成される。操作部80に対するユーザーの入力操作に応答して、制御装置8が各種動作を実現する。
(Operation unit 80)
The operation unit 80 includes various buttons and switches including the release button 11 (see FIG. 1). In response to a user's input operation on the operation unit 80, the control device 8 realizes various operations.
(メモリカード90)
 メモリカード90は、例えばグリップ部14(図1照)内部のカード収納室に着脱可能に収納される。メモリカード90は、撮影画像等を記憶する。メモリカード90は、例えば、カメラシステム1の記憶手段として機能する。なお、カメラシステム1は、メモリカード90以外の記憶手段を備えていてもよい。
(Memory card 90)
The memory card 90 is removably stored, for example, in a card storage chamber inside the grip portion 14 (see FIG. 1). The memory card 90 stores photographed images and the like. The memory card 90 functions as a storage means of the camera system 1, for example. Note that the camera system 1 may include storage means other than the memory card 90.
(制御装置8)
 制御装置8は、カメラボディ2の各部を制御する。カメラボディ2は、制御装置8を搭載することで、情報処理装置として機能する。なお、カメラボディ2の制御装置8と、交換レンズ3の制御装置38と、を区別する場合、カメラボディ2の制御装置8をボディ側制御装置8と記載し、交換レンズ3の制御装置38をレンズ側制御装置38と記載する。
(Control device 8)
The control device 8 controls each part of the camera body 2. The camera body 2 functions as an information processing device by mounting the control device 8 thereon. Note that when distinguishing between the control device 8 of the camera body 2 and the control device 38 of the interchangeable lens 3, the control device 8 of the camera body 2 will be referred to as the body-side control device 8, and the control device 38 of the interchangeable lens 3 will be referred to as the body-side control device 8. It will be referred to as a lens-side control device 38.
 制御装置8は、AFモジュール20と、フォーカス制御部121と、ミラー制御部122と、シャッター制御部123と、タイミング制御回路124と、信号処理回路51と、A/D変換回路52と、デジタル信号処理回路50と、全体制御部101と、を備える。 The control device 8 includes an AF module 20, a focus control section 121, a mirror control section 122, a shutter control section 123, a timing control circuit 124, a signal processing circuit 51, an A/D conversion circuit 52, and a digital signal. It includes a processing circuit 50 and an overall control section 101.
(AFモジュール20)
 AFモジュール20は、例えば、ミラー機構6を介して進入した光を用いて、位相差方式等の合焦状態検出手法により被写体の合焦状態を検出する。AFモジュール20は、全体制御部101の指示に従って、被写体の合焦状態を検出する。AFモジュール20は、検出した被写体の合焦状態を全体制御部101に出力する。
(AF module 20)
The AF module 20 uses, for example, light that has entered through the mirror mechanism 6 to detect the focused state of the subject using a focused state detection method such as a phase difference method. The AF module 20 detects the focused state of the subject according to instructions from the overall control unit 101. The AF module 20 outputs the detected in-focus state of the subject to the overall control unit 101.
(フォーカス制御部121)
 フォーカス制御部121は、全体制御部101から入力される信号に基づき、モータM1を駆動するための制御信号を生成する。フォーカス制御部121は、制御信号を用いてモータM1を駆動することによって、交換レンズ3のレンズ群37に含まれるフォーカスレンズを移動する。フォーカス制御部121は、全体制御部101からの指示に従って、フォーカスレンズの光軸方向の動きを制御する。
(Focus control unit 121)
The focus control section 121 generates a control signal for driving the motor M1 based on the signal input from the overall control section 101. The focus control unit 121 moves the focus lens included in the lens group 37 of the interchangeable lens 3 by driving the motor M1 using the control signal. The focus control unit 121 controls the movement of the focus lens in the optical axis direction according to instructions from the overall control unit 101.
(ミラー制御部122)
 ミラー制御部122は、ミラー機構6が光路から退避した状態(ミラーアップ状態)とミラー機構6が光路を遮断した状態(ミラーダウン状態)との状態切替を制御する。ミラー制御部122は、全体制御部101から入力される信号に基づき、モータM2を駆動するための制御信号を生成する。ミラー制御部122は、生成した制御信号を用いてモータM2を駆動することによって、ミラーアップ状態とミラーダウン状態とを切り替える。
(Mirror control unit 122)
The mirror control unit 122 controls state switching between a state in which the mirror mechanism 6 is retracted from the optical path (mirror up state) and a state in which the mirror mechanism 6 blocks the optical path (mirror down state). The mirror control unit 122 generates a control signal for driving the motor M2 based on the signal input from the overall control unit 101. The mirror control unit 122 switches between the mirror up state and the mirror down state by driving the motor M2 using the generated control signal.
(シャッター制御部123)
 シャッター制御部123は、全体制御部101から入力される信号に基づき、モータM3を制御するための制御信号を生成する。シャッター制御部123は、生成した制御信号を用いてモータM3を駆動することによって、シャッター4の開閉を制御する。
(Shutter control unit 123)
The shutter control section 123 generates a control signal for controlling the motor M3 based on the signal input from the overall control section 101. The shutter control unit 123 controls opening and closing of the shutter 4 by driving the motor M3 using the generated control signal.
(タイミング制御回路124)
 タイミング制御回路124は、全体制御部101から入力される信号に基づき、撮像素子5等に対するタイミング制御を行う。タイミング制御回路124は、例えば、各種のタイミング信号を生成するタイミングジェネレータ等を含む。タイミング制御回路124は、タイミングジェネレータで生成された各種のタイミング信号を基に、撮像素子5、信号処理回路51及びA/D変換回路52を制御する。
(Timing control circuit 124)
The timing control circuit 124 performs timing control on the image sensor 5 and the like based on a signal input from the overall control section 101. The timing control circuit 124 includes, for example, a timing generator that generates various timing signals. The timing control circuit 124 controls the image sensor 5, the signal processing circuit 51, and the A/D conversion circuit 52 based on various timing signals generated by the timing generator.
(信号処理回路51)
 信号処理回路51は、撮像素子5から入力された画像信号に対して信号処理を施す。信号処理回路51は、アナログの画像信号に対して信号処理を施し、A/D変換回路52に出力する。
(Signal processing circuit 51)
The signal processing circuit 51 performs signal processing on the image signal input from the image sensor 5. The signal processing circuit 51 performs signal processing on the analog image signal and outputs it to the A/D conversion circuit 52 .
(A/D変換回路52)
 A/D変換回路52は、信号処理回路51から入力されたアナログの画像信号をデジタルの画像信号(デジタル画像データ)に変換する。A/D変換回路52は、デジタルに変換したデジタル画像データをデジタル信号処理回路50に出力する。
(A/D conversion circuit 52)
The A/D conversion circuit 52 converts the analog image signal input from the signal processing circuit 51 into a digital image signal (digital image data). The A/D conversion circuit 52 outputs the converted digital image data to the digital signal processing circuit 50.
(デジタル信号処理回路50)
 デジタル信号処理回路50は、A/D変換回路52から入力される画像データに対してデジタル信号処理を行い、撮像画像に係る画像データを生成する。図3に示すデジタル信号処理回路50は、黒レベル補正回路53、ホワイトバランス(S)回路54、γ補正回路55及び画像メモリ56を備える。
(Digital signal processing circuit 50)
The digital signal processing circuit 50 performs digital signal processing on the image data input from the A/D conversion circuit 52 to generate image data related to the captured image. The digital signal processing circuit 50 shown in FIG. 3 includes a black level correction circuit 53, a white balance (S) circuit 54, a γ correction circuit 55, and an image memory 56.
 黒レベル補正回路53は、A/D変換回路52が出力した画像データを構成する各画素データの黒レベルを基準の黒レベルに補正する。WB回路54は、画像のホワイトバランス調整を行う。 The black level correction circuit 53 corrects the black level of each pixel data forming the image data output by the A/D conversion circuit 52 to a reference black level. The WB circuit 54 performs white balance adjustment of the image.
 γ補正回路55は、撮像画像の階調変換を行う。画像メモリ56は、生成された画像データを一時的に記憶するための、高速アクセス可能な画像メモリであり、複数フレーム分の画像データを記憶可能な容量を有する。 The γ correction circuit 55 performs gradation conversion of the captured image. The image memory 56 is a high-speed accessible image memory for temporarily storing generated image data, and has a capacity capable of storing multiple frames of image data.
 本撮影時には、画像メモリ56に一時記憶される画像データは、全体制御部101において適宜画像処理(圧縮処理等を含む)が施された後、メモリカード90に記憶される。 During actual shooting, the image data temporarily stored in the image memory 56 is subjected to appropriate image processing (including compression processing, etc.) in the overall control unit 101, and then stored in the memory card 90.
 また、画像メモリ56に一時記憶される画像データは、全体制御部101によって適宜VRAM(図示省略)に転送され、背面モニタ12に画像データに基づく画像が表示される。これによって、撮影画像を確認するための確認表示(アフタービュー)や、撮影済みの画像を再生する再生表示等が実現される。 Further, the image data temporarily stored in the image memory 56 is appropriately transferred to a VRAM (not shown) by the overall control unit 101, and an image based on the image data is displayed on the rear monitor 12. As a result, a confirmation display (after view) for confirming the photographed image, a playback display for reproducing the photographed image, and the like are realized.
 なお、デジタル信号処理回路50で行われる処理は図3に示す各部の処理に限定されない。図3に示す各部の処理の少なくとも一部が省略されてもよく、図3に示す各部の処理以外の処理がデジタル信号処理回路50で行われてもよい。 Note that the processing performed by the digital signal processing circuit 50 is not limited to the processing of each part shown in FIG. At least a part of the processing of each section shown in FIG. 3 may be omitted, and processing other than the processing of each section shown in FIG. 3 may be performed by the digital signal processing circuit 50.
(全体制御部101)
 全体制御部101は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを含み、例えばROMに記憶されるプログラムに従い、RAMをワークメモリとして用いて、カメラシステム1全体の動作を制御する。
(Overall control unit 101)
The overall control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc., and uses the RAM as a work memory to control the camera system according to a program stored in the ROM, for example. 1. Controls the entire operation.
 例えば、全体制御部101は、ブレ補正制御部21を備える。ブレ補正制御部41は、例えば、ジャイロセンサ61等によって検出されたブレ(カメラシステム1のブレ)を光学的に補正するための補正制御信号を生成し、ブレ補正機構7に出力する。ブレ補正機構7は、補正制御信号に基づき、撮像素子5を駆動することで、カメラシステム1のブレを補正する。 For example, the overall control section 101 includes a shake correction control section 21. The shake correction control unit 41 generates a correction control signal for optically correcting the shake detected by the gyro sensor 61 or the like (shake of the camera system 1 ), and outputs it to the shake correction mechanism 7 . The blur correction mechanism 7 corrects blur in the camera system 1 by driving the image sensor 5 based on the correction control signal.
 なお、カメラボディ2のブレ補正制御部21と、交換レンズ3のブレ補正制御部41と、を区別する場合、カメラボディ2のブレ補正制御部21をボディ側ブレ補正制御部21と記載し、交換レンズ3のブレ補正制御部41をレンズ側ブレ補正制御部41と記載する。 Note that when distinguishing between the shake correction control section 21 of the camera body 2 and the shake correction control section 41 of the interchangeable lens 3, the shake correction control section 21 of the camera body 2 will be referred to as a body-side shake correction control section 21, The shake correction control section 41 of the interchangeable lens 3 will be referred to as a lens side shake correction control section 41.
 また、全体制御部101は、AFモジュール20およびフォーカス制御部121等と協動して、フォーカスレンズの位置を制御する合焦制御動作を行う。全体制御部101は、AFモジュール20によって検出される被写体の合焦状態に応じて、フォーカス制御部121を用いて自動合焦動作(AF動作)を実現する。 Further, the overall control unit 101 cooperates with the AF module 20, the focus control unit 121, and the like to perform a focus control operation to control the position of the focus lens. The overall control unit 101 implements an automatic focusing operation (AF operation) using the focus control unit 121 according to the in-focus state of the subject detected by the AF module 20.
<2.2.ブレ補正機構の一例>
 上述したように、カメラシステム1では、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40によってブレ補正が行われる。
<2.2. An example of a shake correction mechanism>
As described above, in the camera system 1, the body side shake correction mechanism 7 and the lens side shake correction mechanism 40 perform shake correction.
 図4を用いて、ボディ側ブレ補正機構7によるブレ補正の概要について説明する。ここでは、ボディ側ブレ補正機構7によるブレ補正について説明するが、レンズ側ブレ補正機構40もボディ側ブレ補正機構7と同様にしてブレ補正を行いうる。ボディ側ブレ補正機構7は、撮像素子5を駆動してブレ補正を行うが、レンズ側ブレ補正機構40はレンズ群37を駆動してブレ補正を行う。 An overview of blur correction by the body-side blur correction mechanism 7 will be explained using FIG. 4. Here, blur correction by the body-side blur correction mechanism 7 will be described, but the lens-side blur correction mechanism 40 can also perform blur correction in the same manner as the body-side blur correction mechanism 7. The body-side shake correction mechanism 7 drives the image sensor 5 to perform shake correction, while the lens-side shake correction mechanism 40 drives the lens group 37 to perform shake correction.
 図4は、ボディ側ブレ補正機構7の概略構成を示す図である。図4に示すボディ側ブレ補正機構7は、ベース部7aと第1移動部7bと第2移動部7cとを有する。 FIG. 4 is a diagram showing a schematic configuration of the body-side shake correction mechanism 7. The body-side blur correction mechanism 7 shown in FIG. 4 includes a base portion 7a, a first moving portion 7b, and a second moving portion 7c.
 ベース部7aは、カメラボディ2の内部の背面部付近に固定されている。また、第1移動部7bはベース部7aに対してX方向に移動可能であり、第2移動部7cは第1移動部7bに対してY方向に移動可能である。第2移動部7cには撮像素子5が固定されている。 The base portion 7a is fixed near the back portion inside the camera body 2. Further, the first moving section 7b is movable in the X direction relative to the base section 7a, and the second moving section 7c is movable in the Y direction relative to the first moving section 7b. The image sensor 5 is fixed to the second moving section 7c.
 ベース部7aは、アクチュエータ7xを有している。アクチュエータ7xは、SIDM(SmoothImpactDriveMechanism:スムーズインパクト駆動機構)と呼ばれる駆動機構である。当該SIDMは圧電素子を備えて構成されている。当該圧電素子が高速周波数で伸縮動作を繰り返すことによって、アクチュエータ7xは第1移動部7bをベース部7aに対してX方向に駆動することが可能である。 The base portion 7a has an actuator 7x. The actuator 7x is a drive mechanism called SIDM (SmoothImpactDriveMechanism). The SIDM is configured with a piezoelectric element. By repeating the expansion and contraction operations of the piezoelectric element at a high speed frequency, the actuator 7x can drive the first moving section 7b in the X direction with respect to the base section 7a.
 また、第1移動部7bは、アクチュエータ7yを有している。アクチュエータ7yも、アクチュエータ7xと同様のSIDMで構成されている。アクチュエータ7yの圧電素子が高速周波数で伸縮動作を繰り返すことによって、アクチュエータ7yは第2移動部7cを第1移動部7bに対してY方向に駆動することが可能である。 Furthermore, the first moving section 7b has an actuator 7y. The actuator 7y is also composed of an SIDM similar to the actuator 7x. As the piezoelectric element of the actuator 7y repeats expansion and contraction operations at a high speed frequency, the actuator 7y can drive the second moving section 7c in the Y direction with respect to the first moving section 7b.
 以上のように、撮像素子5は、アクチュエータ7xによってX方向に駆動され、アクチュエータ7yによってY方向に駆動される。この結果、第2移動部7cに固定された撮像素子5は、アクチュエータ7x,7yによって、ベース部7aに対してX方向およびY方向において相対的に移動することが可能である。 As described above, the image sensor 5 is driven in the X direction by the actuator 7x, and in the Y direction by the actuator 7y. As a result, the image sensor 5 fixed to the second moving section 7c can be moved relative to the base section 7a in the X direction and the Y direction by the actuators 7x and 7y.
 そして、ボディ側ブレ補正制御部21が、ジャイロセンサ61(角速度センサ)等によって検出された信号(ブレ検出結果)に基づき、撮像素子5をベース部7aに対してアクチュエータ7x,7yを用いて駆動する。ボディ側ブレ補正制御部21は、レンズ位置検出部39からの検出結果を用いて、フィードバック制御則等に従って撮像素子5の位置を制御する。これにより、カメラシステム1におけるブレが抑制される。すなわち、ブレ補正が実現される。 Then, the body-side shake correction control section 21 drives the image sensor 5 with respect to the base section 7a using the actuators 7x and 7y based on the signal (shake detection result) detected by the gyro sensor 61 (angular velocity sensor) etc. do. The body-side blur correction control section 21 uses the detection result from the lens position detection section 39 to control the position of the image sensor 5 according to a feedback control law or the like. This suppresses blur in the camera system 1. That is, blur correction is realized.
<2.3.ボディ側ブレ補正部の構成例>
 上述したように、本実施形態に係るカメラシステム1は、ボディ側ブレ補正機構7の補正性能と、レンズ側ブレ補正機構40と、の性能差に応じて、ブレ補正を単体動作させるか協調動作させるかを決定する。より具体的には、カメラシステム1のボディ側ブレ補正制御部21が、この決定を行う。
<2.3. Configuration example of body-side image stabilization section>
As described above, the camera system 1 according to the present embodiment performs image stabilization either independently or cooperatively depending on the difference in performance between the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40. Decide whether to do so. More specifically, the body-side shake correction control section 21 of the camera system 1 makes this determination.
 なお、ブレ補正の単体動作は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の一方を単体で動作させることで、ブレ補正を行う動作である。また、ブレ補正の協調動作は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40でそれぞれ補正量を分け合ってブレ補正を行う動作である。 Note that the stand-alone operation of shake correction is an operation in which shake correction is performed by operating one of the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40 alone. Further, the cooperative operation of blur correction is an operation in which the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 each share the correction amount to perform blur correction.
 ブレ補正の協調動作は、大きく、MasterSlave型及び自律協調型の2つに分類される。MasterSlave型では、例えばカメラボディ2がレンズ側ブレ補正機構40を制御することで、ブレ補正の協調動作を行う。 The cooperative operation of blur correction is broadly classified into two types: MasterSlave type and autonomous cooperative type. In the MasterSlave type, for example, the camera body 2 controls the lens-side shake correction mechanism 40 to perform cooperative motion of shake correction.
 この場合、例えば、ボディ側ブレ補正制御部21は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の補正量を決定する。ボディ側ブレ補正制御部21は、この補正量を含む補正制御信号を、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40に出力する。 In this case, for example, the body-side shake correction control unit 21 determines the correction amounts of the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40. The body-side shake correction control section 21 outputs a correction control signal including this correction amount to the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40.
 自律協調型の場合、ボディ側ブレ補正制御部21は、交換レンズ3からブレ検出結果(又は補正角)を取得する。ボディ側ブレ補正制御部21は、ボディ側のブレ検出結果及びレンズ側のブレ検出結果に基づき、補正量の比率(分配ゲイン)を決定し、レンズ側ブレ補正制御部41に通知する。 In the case of the autonomous cooperative type, the body-side blur correction control unit 21 acquires the blur detection result (or correction angle) from the interchangeable lens 3. The body-side blur correction control unit 21 determines a correction amount ratio (distribution gain) based on the body-side blur detection result and the lens-side blur detection result, and notifies the lens-side blur correction control unit 41 of the ratio.
 ボディ側ブレ補正制御部21は、決定した比率に応じてボディ側ブレ補正機構7を制御するとともに、レンズ側ブレ補正制御部41は、通知された比率に応じてレンズ側ブレ補正機構40を制御する。 The body-side image stabilization control section 21 controls the body-side image stabilization mechanism 7 according to the determined ratio, and the lens-side image stabilization control section 41 controls the lens-side image stabilization mechanism 40 according to the notified ratio. do.
 以下では、カメラシステム1がブレ補正において協調動作を行う場合、自律協調型の協調動作を行うものとする。 In the following, when the camera system 1 performs a cooperative operation in blur correction, it is assumed that the camera system 1 performs an autonomous cooperative type cooperative operation.
 図5は、本開示の実施形態に係るボディ側ブレ補正制御部21の構成例を示すブロック図である。図5に示すボディ側ブレ補正制御部21は、取得部211と、性能判定部212と、比率算出部213と、協調判定部214と、を備える。 FIG. 5 is a block diagram illustrating a configuration example of the body-side blur correction control section 21 according to the embodiment of the present disclosure. The body-side blur correction control unit 21 shown in FIG. 5 includes an acquisition unit 211, a performance determination unit 212, a ratio calculation unit 213, and a cooperation determination unit 214.
(取得部211)
 取得部211は、ボディ側ブレ補正制御部21がブレ補正の制御に使用する各種データを取得する。取得部211は、例えば、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の補正性能に関する指標(レンズ性能情報、カメラ性能情報の一例)を取得する。補正性能に関する指標は、例えば、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40が補正可能なブレ量を示す値である。
(Acquisition unit 211)
The acquisition unit 211 acquires various data that the body-side blur correction control unit 21 uses to control blur correction. The acquisition unit 211 acquires, for example, an index (an example of lens performance information or camera performance information) regarding the correction performance of the body-side vibration correction mechanism 7 and the lens-side vibration correction mechanism 40. The index regarding the correction performance is, for example, a value indicating the amount of blur that can be corrected by the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40.
 また、取得部211は、焦点距離に関する情報を取得する。焦点距離に関する情報は、例えば全体制御部101が決定した焦点距離の値である。取得部211は、ボディ側ブレ補正機構7の可動範囲、及び、レンズ側ブレ補正機構40の可動範囲を取得する。ボディ側ブレ補正機構7の可動範囲は、例えば、撮像素子5を駆動可能な範囲である。レンズ側ブレ補正機構40の可動範囲は、レンズ群37を駆動可能な範囲である。 Additionally, the acquisition unit 211 acquires information regarding the focal length. The information regarding the focal length is, for example, the value of the focal length determined by the overall control unit 101. The acquisition unit 211 acquires the movable range of the body-side blur correction mechanism 7 and the movable range of the lens-side blur correction mechanism 40. The movable range of the body-side shake correction mechanism 7 is, for example, a range in which the image sensor 5 can be driven. The movable range of the lens-side shake correction mechanism 40 is a range in which the lens group 37 can be driven.
 取得部211は、シャッタースピードに関する情報を取得する。シャッタースピードは、撮影者によってシャッターボタン(図1のレリーズボタン11)が押下されることで決まる。取得部211は、シャッターボタンが押下された場合に、例えば全体制御部101からシャッタースピードに関する情報を取得する。 The acquisition unit 211 acquires information regarding shutter speed. The shutter speed is determined by pressing the shutter button (release button 11 in FIG. 1) by the photographer. The acquisition unit 211 acquires information regarding the shutter speed from the overall control unit 101, for example, when the shutter button is pressed.
 取得部211は、取得した補正性能を性能判定部212に出力する。取得部211は、取得した可動範囲を比率算出部213に出力する。取得部211は、取得した補正性能、可動範囲、焦点距離に関する情報、及び、シャッタースピードに関する情報を協調判定部214に出力する。 The acquisition unit 211 outputs the acquired correction performance to the performance determination unit 212. The acquisition unit 211 outputs the acquired range of movement to the ratio calculation unit 213. The acquisition unit 211 outputs the acquired information regarding the correction performance, movable range, focal length, and shutter speed to the cooperation determination unit 214.
(性能判定部212)
 性能判定部212は、取得部211が取得したボディ側ブレ補正機構7の補正性能、及び、レンズ側ブレ補正機構40の補正性能の差分を算出する。性能判定部212は、算出した差分(性能差)を第一閾値Th1と比較する。性能判定部212は、比較結果を協調判定部214に出力する。
(Performance judgment unit 212)
The performance determination unit 212 calculates the difference between the correction performance of the body-side vibration correction mechanism 7 and the correction performance of the lens-side vibration correction mechanism 40 acquired by the acquisition unit 211. The performance determination unit 212 compares the calculated difference (performance difference) with a first threshold Th1. The performance determination unit 212 outputs the comparison result to the cooperation determination unit 214.
(比率算出部213)
 比率算出部213は、取得部211が取得したボディ側ブレ補正機構7の可動範囲、及び、レンズ側ブレ補正機構40の可動範囲からブレ補正を協調して行う場合の補正比率を算出する。
(Ratio calculation unit 213)
The ratio calculating unit 213 calculates a correction ratio when blur correction is performed cooperatively from the movable range of the body-side blur correction mechanism 7 and the movable range of the lens-side blur correction mechanism 40 acquired by the acquisition unit 211.
 例えば、比率算出部213は、取得部211が取得したボディ側ブレ補正機構7の可動範囲、及び、レンズ側ブレ補正機構40の可動範囲の比率に応じて、ボディ側ブレ補正機構7のブレ補正比率、及び、レンズ側ブレ補正機構40のブレ補正比率を決定する。 For example, the ratio calculation unit 213 calculates the image stabilization of the body-side image stabilization mechanism 7 based on the ratio of the movable range of the body-side image stabilization mechanism 7 and the movement range of the lens-side image stabilization mechanism 40 acquired by the acquisition unit 211. The ratio and the blur correction ratio of the lens side blur correction mechanism 40 are determined.
 比率算出部213は、算出したブレ補正比率を協調判定部214に出力する。 The ratio calculation unit 213 outputs the calculated blur correction ratio to the cooperation determination unit 214.
(協調判定部214)
 協調判定部214は、ブレ補正を協調動作させるか否かを判定する。すなわち、協調判定部214は、ブレ補正を、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40のいずれか一方に単独動作させるか、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の両方で協調動作させるかを決定する。
(Cooperation determination unit 214)
The cooperation determination unit 214 determines whether or not to perform blur correction in a cooperative manner. That is, the cooperation determination unit 214 causes either one of the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 to perform the image stabilization independently, or both the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 operate the image stabilization. to decide whether to perform cooperative operation.
 協調判定部214は、性能判定部212の比較結果に基づき、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の補正性能に差があると判定した場合、ブレ補正を単独動作させると決定する。 If the cooperation determination unit 214 determines that there is a difference in the correction performance of the body-side vibration reduction mechanism 7 and the lens-side vibration reduction mechanism 40 based on the comparison result of the performance determination unit 212, the cooperation determination unit 214 determines to operate the vibration correction independently. .
 具体的に、協調判定部214は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の性能差が第一閾値Th1以上である場合、ブレ補正を単独動作させると決定する。 Specifically, the cooperation determination unit 214 determines to operate the shake correction independently when the performance difference between the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40 is equal to or greater than the first threshold Th1.
 単独動作させると決定した場合、協調判定部214は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40のうち、補正性能が高い方でブレ補正を行うと決定する。 If it is determined to operate independently, the cooperation determination unit 214 determines that blur correction is to be performed by the body-side blur correction mechanism 7 or the lens-side blur correction mechanism 40, whichever has higher correction performance.
 このように、カメラシステム1は、ボディ側ブレ補正機構7とレンズ側ブレ補正機構40とで補正性能に大きな差がある場合、補正性能が高いブレ補正機構単独でブレ補正を行う。これにより、カメラシステム1は、ブレ補正性能の悪化を抑制することができ、より性能が高いブレ補正機構でブレ補正を行うことができる。 In this way, in the camera system 1, when there is a large difference in correction performance between the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40, the camera system 1 performs image stabilization using only the image stabilization mechanism with the higher correction performance. Thereby, the camera system 1 can suppress deterioration of blur correction performance, and can perform blur correction using a shake correction mechanism with higher performance.
 一方、ブレが大きいと、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の一方を単独動作させただけでは、カメラシステム1がこのブレを補正できない恐れがある。このように、ブレがボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の可動範囲を超える場合、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40が協調してブレ補正を行うことが望ましい。 On the other hand, if the shake is large, there is a possibility that the camera system 1 will not be able to correct the shake by operating either the body-side shake correction mechanism 7 or the lens-side shake correction mechanism 40 alone. In this way, when the shake exceeds the movable range of the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40, it is desirable that the body-side shake correction mechanism 7 and the lens-side shake correction mechanism 40 cooperate to correct the shake. .
 例えば、カメラシステム1が、単独動作でブレ補正を行っている場合に、この単独動作ではブレを補正しきれなくなってから協調動作に切り替えるとする。すなわち、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の一方が単独でブレ補正を行っている場合に一方の可動範囲が限界に達すると、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の両方が協調してブレ補正を行うとする。 For example, suppose that the camera system 1 performs shake correction in a single operation, and switches to a cooperative operation after the shake can no longer be fully corrected in this single operation. That is, when one of the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 is performing image stabilization independently and the movable range of one reaches its limit, the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40 40 cooperate to perform blur correction.
 このように、ブレ補正を行っている最中に単独動作から協調動作に切り替えると、切り替え時に補正性能が劣化する恐れがある。 In this way, if the independent operation is switched to the cooperative operation while blur correction is being performed, there is a risk that the correction performance will deteriorate at the time of switching.
 そこで、本開示の実施形態に係る協調判定部214は、予め撮影によって生じるブレを推定し、推定したブレ量(以下、想定ブレ量とも記載する)に応じて協調動作を行うか否かを判定する。 Therefore, the cooperation determination unit 214 according to the embodiment of the present disclosure estimates in advance the blur caused by photographing, and determines whether or not to perform a cooperative action according to the estimated amount of blur (hereinafter also referred to as expected amount of blur). do.
 すなわち、協調判定部214は、性能が高いブレ補正機構単独でブレ補正を行っても補正範囲(可動範囲)が十分に足りる場合は、性能が高いブレ補正機構単独でブレ補正を行うと決定する。 That is, if the correction range (movable range) is sufficient even if the shake correction mechanism with high performance performs shake correction alone, the cooperation determination unit 214 determines that the shake correction is performed with the high performance shake correction mechanism alone. .
 一方、協調判定部214は、性能が高いブレ補正機構単独でブレ補正を行うと補正範囲(可動範囲)が足りないくらいブレが大きいと想定される場合、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の両方で協調してブレ補正を行うと決定する。 On the other hand, if it is assumed that the shake is so large that the correction range (movable range) is insufficient if the high-performance shake correction mechanism performs shake correction alone, the cooperation determination unit 214 determines whether the body side shake correction mechanism 7 and the lens side shake are corrected. It is determined that both of the correction mechanisms 40 cooperate to perform blur correction.
 静止画撮影の場合、ブレ量はシャッタースピードに応じて変化する。例えば、シャッタースピードが遅いほど発生するブレが大きくなる。一方、シャッタースピードが速いほど発生するブレが小さくなる。このように、通常の手ブレであれば、シャッタースピードに応じてどの程度ブレが発生するのか、発生するブレを予測することができる。 When shooting still images, the amount of blur changes depending on the shutter speed. For example, the slower the shutter speed, the more blurring occurs. On the other hand, the faster the shutter speed, the less blurring occurs. In this way, it is possible to predict how much blur will occur depending on the shutter speed in the case of normal camera shake.
 そこで、協調判定部214は、取得部211が取得したシャッタースピードに関する情報に基づき、想定ブレ量を推定する。例えば、シャッタースピードと想定ブレ量とが予め対応づけられており、記憶部(図示省略)に対応関係として記憶されているものとする。協調判定部214は、この対応関係に基づき、シャッタースピードから想定ブレ量を推定する。 Therefore, the cooperation determination unit 214 estimates the expected amount of blur based on the information regarding the shutter speed acquired by the acquisition unit 211. For example, it is assumed that the shutter speed and the expected amount of blur are associated in advance and stored as a correspondence in a storage unit (not shown). Based on this correspondence, the cooperation determination unit 214 estimates the expected amount of blur from the shutter speed.
 あるいは、協調判定部214が、シャッタースピードと焦点距離とに応じて想定ブレ量を推定するようにしてもよい。静止画撮影のブレは、シャッタースピードに加え焦点距離に応じて起こりやすくなる。 Alternatively, the cooperation determination unit 214 may estimate the expected amount of blur according to the shutter speed and focal length. When shooting still images, blur is more likely to occur depending on the focal length as well as the shutter speed.
 そこで、協調判定部214は、取得部211が取得したシャッタースピードに関する情報、及び、焦点距離に関する情報に基づき、想定ブレ量を推定する。例えば、シャッタースピード及び焦点距離と、想定ブレ量とが予め対応づけられており、記憶部(図示省略)に対応関係として記憶されているものとする。協調判定部214は、この対応関係に基づき、シャッタースピード及び焦点距離から想定ブレ量を推定する。 Therefore, the cooperation determination unit 214 estimates the expected amount of blur based on the information regarding the shutter speed and the information regarding the focal length acquired by the acquisition unit 211. For example, it is assumed that the shutter speed, focal length, and estimated amount of blur are associated in advance and stored in a storage unit (not shown) as a correspondence relationship. Based on this correspondence, the cooperation determination unit 214 estimates the expected amount of blur from the shutter speed and focal length.
 協調判定部214は、推定した想定ブレ量に応じて、ブレ補正を協調動作させるか否かを判定する。例えば、協調判定部214は、想定ブレ量が第二閾値Th2未満か否かに応じてブレ補正を協調動作させるか否かを判定する。第二閾値Th2は、例えば、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40のうち性能が高い方の可動範囲に応じて決まる値である。 The cooperation determination unit 214 determines whether or not blur correction should be performed in a cooperative manner according to the estimated expected amount of blur. For example, the cooperation determination unit 214 determines whether or not to perform a cooperative operation of blur correction depending on whether the estimated amount of shake is less than the second threshold Th2. The second threshold Th2 is, for example, a value determined depending on the movable range of the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40, whichever has higher performance.
 協調判定部214は、想定ブレ量が第二閾値Th2未満である場合、ブレ補正を単独動作で行うと決定する。一方、協調判定部214は、想定ブレ量が第二閾値Th2以上である場合、ブレ補正を協調動作させると決定する。 If the expected amount of blur is less than the second threshold Th2, the cooperation determination unit 214 determines to perform blur correction in an independent operation. On the other hand, the cooperation determination unit 214 determines that the blur correction should be performed in a cooperative manner when the estimated amount of blur is equal to or greater than the second threshold Th2.
 このように、協調判定部214は、想定ブレ量、換言すると撮影時のシャッタースピード及び焦点距離に基づいて、補正量(補正角)がボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の一方による単独の補正で足りるか否かを判定する。単独の補正で足りる場合、協調判定部214は単独動作でのブレ補正を決定する。単独の補正で足りない場合、協調判定部214は協調動作でのブレ補正を決定する。 In this way, the cooperation determination unit 214 determines whether the correction amount (correction angle) is one of the body side shake correction mechanism 7 and the lens side shake correction mechanism 40 based on the expected shake amount, in other words, the shutter speed and focal length at the time of shooting. It is determined whether or not a single correction is sufficient. If an independent correction is sufficient, the cooperation determination unit 214 determines blur correction using an independent operation. If the single correction is insufficient, the cooperation determining unit 214 determines blur correction through cooperative motion.
 単独動作させると決定した場合、協調判定部214は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40のうち、補正性能が高い方でブレ補正を行うと決定する。 If it is determined to operate independently, the cooperation determination unit 214 determines that blur correction is to be performed by the body-side blur correction mechanism 7 or the lens-side blur correction mechanism 40, whichever has higher correction performance.
 協調動作させると決定した場合、協調判定部214は、比率算出部213が算出した補正比率で、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40によるブレ補正を行うと決定する。 If it is determined to perform cooperative operation, the cooperation determination unit 214 determines that the body-side vibration correction mechanism 7 and the lens-side vibration correction mechanism 40 perform vibration correction using the correction ratio calculated by the ratio calculation unit 213.
 協調判定部214は、決定した補正内容で補正するようボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の少なくとも一方に指示する。単独動作させると決定した場合、協調判定部214は、単独動作させると決定したブレ補正機構にブレ補正を実行するように指示する。協調動作させると決定した場合、協調判定部214は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の両方にブレ補正を実行するよう指示する。 The cooperation determination unit 214 instructs at least one of the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 to perform correction using the determined correction content. If it is determined to operate independently, the cooperation determining unit 214 instructs the blur correction mechanism that has been determined to operate independently to perform blur correction. If it is determined that the cooperative operation is to be performed, the cooperation determination unit 214 instructs both the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 to perform blur correction.
 このように、カメラシステム1は、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40のブレ補正性能に大きな差がある場合、性能が高いブレ補正機構単独でブレ補正を行うと決定する。また、カメラシステム1は、ブレ補正性能に大きな差があっても、単独の補正範囲に収まらないような大きなブレが想定される、すなわち、想定されるブレが単独では十分に補正できない可能性がある場合、協調してブレ補正を行うと決定する。 In this way, if there is a large difference in the blur correction performance of the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40, the camera system 1 determines that the blur correction mechanism with the higher performance performs shake correction alone. In addition, even if there is a large difference in the camera system 1's image stabilization performance, it is assumed that large amounts of shaking will not be within the correction range of each individual camera system.In other words, there is a possibility that the expected shaking cannot be sufficiently corrected by each individual camera system. If so, it is decided to perform blur correction in cooperation.
 これにより、カメラシステム1は、カメラボディ2と交換レンズ3とで補正性能に差がある場合でも、ブレ補正性能の劣化を抑制しつつ、ブレ補正の補正範囲をより拡大することができる。 Thereby, even if there is a difference in correction performance between the camera body 2 and the interchangeable lens 3, the camera system 1 can further expand the correction range of blur correction while suppressing deterioration of the blur correction performance.
<<3.判定処理例>>
 図6は、本開示の実施形態に係る判定処理の流れの一例を示すフローチャートである。図6の判定処理は、例えば、静止画撮影時のブレ補正処理前に、カメラボディ2によって実行される。
<<3. Judgment processing example >>
FIG. 6 is a flowchart illustrating an example of the flow of determination processing according to the embodiment of the present disclosure. The determination process in FIG. 6 is executed by the camera body 2, for example, before the blur correction process during still image shooting.
 図6に示すように、カメラボディ2は、カメラボディ2及び交換レンズ3のブレ補正の補正性能を取得する(ステップS101)。 As shown in FIG. 6, the camera body 2 acquires the blur correction performance of the camera body 2 and the interchangeable lens 3 (step S101).
 次に、カメラボディ2は、取得した補正性能の性能差を算出する(ステップS102)。カメラボディ2は、算出した性能差が第一閾値Th1以上であるか否かを判定する(ステップS103)。 Next, the camera body 2 calculates the performance difference between the acquired correction performances (step S102). The camera body 2 determines whether the calculated performance difference is greater than or equal to the first threshold Th1 (step S103).
 性能差が第一閾値Th1未満である場合(ステップS103;No)、カメラボディ2は、焦点距離を取得する(ステップS104)。カメラボディ2は、カメラボディ2及び交換レンズ3のブレ補正における可動範囲を取得する(ステップS105)。 If the performance difference is less than the first threshold Th1 (step S103; No), the camera body 2 acquires the focal length (step S104). The camera body 2 obtains the movable range of the camera body 2 and the interchangeable lens 3 in blur correction (step S105).
 カメラボディ2は、取得した可動範囲に基づき、協調動作によってブレ補正を行う場合の補正比率を算出する(ステップS106)。次に、カメラボディ2は、算出した補正比率に応じて、交換レンズ3(レンズ)及びカメラボディ2(ボディ)での協調ブレ補正を決定する(ステップS107)。すなわち、カメラボディ2は、交換レンズ3及びカメラボディ2で協調してブレ補正を行うと決定し、処理を終了する。 Based on the acquired movable range, the camera body 2 calculates a correction ratio when blur correction is performed through cooperative motion (step S106). Next, the camera body 2 determines cooperative blur correction between the interchangeable lens 3 (lens) and the camera body 2 (body) according to the calculated correction ratio (step S107). That is, the camera body 2 determines that the interchangeable lens 3 and the camera body 2 cooperate to perform blur correction, and the process ends.
 性能差が第一閾値Th1以上である場合(ステップS103;Yes)、カメラボディ2は、焦点距離を取得する(ステップS108)。カメラボディ2は、カメラボディ2及び交換レンズ3のブレ補正における可動範囲を取得する(ステップS109)。 If the performance difference is greater than or equal to the first threshold Th1 (step S103; Yes), the camera body 2 acquires the focal length (step S108). The camera body 2 obtains the movable range of the camera body 2 and the interchangeable lens 3 in blur correction (step S109).
 カメラボディ2は、取得した可動範囲に基づき、協調動作によってブレ補正を行う場合の補正比率を算出する(ステップS110)。 Based on the acquired movable range, the camera body 2 calculates a correction ratio when blur correction is performed by cooperative motion (step S110).
 次に、カメラボディ2は、シャッターボタン(レリーズボタン11)が押下された否かを判定する(ステップS111)。 Next, the camera body 2 determines whether the shutter button (release button 11) has been pressed (step S111).
 シャッターボタンが押下されていない場合(ステップS111;No)、カメラボディ2は、ステップS108に戻る。あるいは、カメラボディ2は、ステップS111に戻り、シャッターボタンの押下を待機するようにしてもよい。 If the shutter button is not pressed (step S111; No), the camera body 2 returns to step S108. Alternatively, the camera body 2 may return to step S111 and wait for the shutter button to be pressed.
 シャッターボタンが押下された場合(ステップS111;Yes)、カメラボディ2は、シャッタースピードを取得する(ステップS112)。 If the shutter button is pressed (step S111; Yes), the camera body 2 acquires the shutter speed (step S112).
 カメラボディ2は、シャッタースピード及び/又は焦点距離に応じて想定ブレ量を推定する(ステップS113)。カメラボディ2は、想定ブレ量が第二閾値Th2未満であるか否かを判定する(ステップS114)。 The camera body 2 estimates the expected amount of blur according to the shutter speed and/or focal length (step S113). The camera body 2 determines whether the estimated amount of blur is less than the second threshold Th2 (step S114).
 想定ブレ量が第二閾値Th2以上である場合(ステップS114;No)、カメラボディ2は、ステップS107に進み、協調動作によるブレ補正を決定する。 If the estimated amount of blur is equal to or greater than the second threshold Th2 (step S114; No), the camera body 2 proceeds to step S107 and determines blur correction by cooperative operation.
 一方、想定ブレ量が第二閾値Th2未満である場合(ステップS114;Yes)、カメラボディ2は、単独でブレ補正を行うと決定し、レンズ側、すなわち交換レンズ3でブレ補正を行うか否かを判定する(ステップS115)。カメラボディ2は、例えば、交換レンズ3の補正性能が、カメラボディ2の補正性能より高い場合、レンズ側でブレ補正を行うと判定する。 On the other hand, if the estimated amount of shake is less than the second threshold Th2 (step S114; Yes), the camera body 2 determines to perform shake correction independently, and determines whether to perform shake correction on the lens side, that is, the interchangeable lens 3. (Step S115). For example, if the correction performance of the interchangeable lens 3 is higher than the correction performance of the camera body 2, the camera body 2 determines to perform blur correction on the lens side.
 レンズ側でブレ補正を行うと判定した場合(ステップS115;Yes)、カメラボディ2は、レンズ単体でのブレ補正を決定し(ステップS116)、処理を終了する。 If it is determined that blur correction is to be performed on the lens side (step S115; Yes), the camera body 2 determines blur correction for the lens alone (step S116), and ends the process.
 レンズ側でブレ補正を行わないと判定した場合(ステップS115;No)、カメラボディ2は、ボディ単体でのブレ補正を決定し(ステップS117)、処理を終了する。 If it is determined that the camera body 2 does not perform shake correction on the lens side (step S115; No), the camera body 2 determines shake correction for the body alone (step S117), and ends the process.
 以上のように、本開示の実施形態に係るカメラシステム1は、カメラボディ2側のブレ補正性能と、交換レンズ3側のブレ補正性能と、の差が第一閾値Th1以上である場合、単独でのブレ補正を行う。これにより、カメラシステム1は、協調でのブレ補正による補正性能の劣化を抑制することができる。 As described above, in the camera system 1 according to the embodiment of the present disclosure, when the difference between the image stabilization performance on the camera body 2 side and the image stabilization performance on the interchangeable lens 3 side is greater than or equal to the first threshold Th1, Perform image stabilization. Thereby, the camera system 1 can suppress deterioration of correction performance due to cooperative blur correction.
 また、カメラシステム1は、補正性能の差が第一閾値Th1以上であっても、想定ブレ量が第二閾値Th2以上である場合は、単独でのブレ補正ではなく協調してブレ補正を行う。これにより、カメラシステム1は、より大きなブレを補正することができる。また、カメラシステム1は、ブレ補正を行う前に、想定ブレ量を用いてブレ補正を単独で行うか協調して行うかを決定する。これにより、ブレ補正を行っている最中に、単独ブレ補正から協調ブレ補正への切り替えが発生しにくくなり、カメラシステム1は、ブレ補正の性能劣化を抑制することができる。 Furthermore, even if the difference in correction performance is greater than or equal to the first threshold Th1, if the expected amount of blur is greater than or equal to the second threshold Th2, the camera system 1 performs blur correction in a cooperative manner rather than independently. . Thereby, the camera system 1 can correct larger shakes. Furthermore, before performing shake correction, the camera system 1 uses the estimated shake amount to determine whether to perform shake correction independently or in cooperation. As a result, switching from independent blur correction to cooperative blur correction is less likely to occur while blur correction is being performed, and the camera system 1 can suppress performance deterioration of blur correction.
<<4.変形例>>
 上述した実施形態では、カメラシステム1のボディ側ブレ補正制御部21が、カメラボディ2及び交換レンズ3から補正性能を取得するとしたが、これに限定されない。例えば、ボディ側ブレ補正制御部21が補正性能を算出するようにしてもよい。かかる点について変形例として説明する。
<<4. Modified example >>
In the embodiment described above, it is assumed that the body-side shake correction control unit 21 of the camera system 1 acquires the correction performance from the camera body 2 and the interchangeable lens 3, but the present invention is not limited to this. For example, the body-side blur correction control unit 21 may calculate the correction performance. This point will be explained as a modified example.
 本変形例では、ボディ側ブレ補正制御部21Aが、カメラボディ2及び交換レンズ3の補正性能に応じて、ブレ補正を単独で行うか協調して行うかを決定する。 In this modification, the body-side shake correction control unit 21A determines whether to perform shake correction independently or in cooperation, depending on the correction performance of the camera body 2 and the interchangeable lens 3.
 ブレ補正の性能は、焦点距離やシャッタースピードに応じて変化するため、例えば、ボディ側ブレ補正制御部21Aは、焦点距離やシャッタースピードに応じてカメラボディ2の補正性能及び交換レンズ3の補正性能を算出する。 Since the performance of image stabilization changes depending on the focal length and shutter speed, for example, the body-side image stabilization control unit 21A adjusts the correction performance of the camera body 2 and the correction performance of the interchangeable lens 3 depending on the focal length and shutter speed. Calculate.
 すなわち、本変形例では、ボディ側ブレ補正制御部21Aは、焦点距離及びシャッタースピードに関する情報に基づき、カメラボディ2及び交換レンズ3の補正性能を比較する。これにより、カメラシステム1は、どの焦点距離であっても、また、どのシャッタースピードであっても、それぞれの条件ごとにブレ補正の性能を比較することができる。 That is, in this modification, the body-side shake correction control unit 21A compares the correction performance of the camera body 2 and the interchangeable lens 3 based on information regarding the focal length and shutter speed. Thereby, the camera system 1 can compare the blur correction performance under each condition, regardless of the focal length or shutter speed.
<4.1.ボディ側ブレ補正制御部の構成例>
 図7は、本開示の実施形態の変形例に係るボディ側ブレ補正制御部21Aの構成例を示すブロック図である。図7に示すボディ側ブレ補正制御部21Aは、図5の取得部211の代わりに取得部211Aを、性能判定部212の代わりに性能判定部212Aを、協調判定部214の代わりに協調判定部214Aを備える。また、図7に示すボディ側ブレ補正制御部21Aは、さらに性能算出部215を備える。
<4.1. Configuration example of body-side image stabilization control section>
FIG. 7 is a block diagram illustrating a configuration example of a body-side blur correction control unit 21A according to a modification of the embodiment of the present disclosure. The body-side blur correction control unit 21A shown in FIG. 7 includes an acquisition unit 211A instead of the acquisition unit 211 in FIG. 214A. Further, the body-side blur correction control section 21A shown in FIG. 7 further includes a performance calculation section 215.
(取得部211A)
 取得部211Aは、性能に関する情報をカメラボディ2及び交換レンズ3からそれぞれ取得する。本変形例では、取得部211Aは、複数の焦点距離及び複数のシャッタースピードにおける補正性能を取得する。
(Acquisition unit 211A)
The acquisition unit 211A acquires information regarding performance from the camera body 2 and the interchangeable lens 3, respectively. In this modification, the acquisition unit 211A acquires correction performance at multiple focal lengths and multiple shutter speeds.
 例えば、取得部211Aは、T(テレ)端及びW(ワイド)端それぞれにおける交換レンズ3の補正性能を取得する。このとき、取得部211Aは、異なるシャッタースピードにおける交換レンズ3の補正性能を取得する。なお、T端は、交換レンズ3の焦点距離を最も長くした状態であり、W端は、交換レンズ3の焦点距離を最も短くした状態である。 For example, the acquisition unit 211A acquires the correction performance of the interchangeable lens 3 at each of the T (tele) end and the W (wide) end. At this time, the acquisition unit 211A acquires the correction performance of the interchangeable lens 3 at different shutter speeds. Note that the T end is the state where the focal length of the interchangeable lens 3 is the longest, and the W end is the state where the focal length of the interchangeable lens 3 is the shortest.
 より具体的には、取得部211Aは、T端における第一シャッタースピードでの交換レンズ3の第一レンズ補正性能を取得する。また、取得部211Aは、T端における第二シャッタースピードでの交換レンズ3の第二レンズ補正性能を取得する。取得部211Aは、W端における第一シャッタースピードでの交換レンズ3の第三レンズ補正性能を取得する。また、取得部211Aは、W端における第二シャッタースピードでの交換レンズ3の第四レンズ補正性能を取得する。 More specifically, the acquisition unit 211A acquires the first lens correction performance of the interchangeable lens 3 at the first shutter speed at the T end. The acquisition unit 211A also acquires the second lens correction performance of the interchangeable lens 3 at the second shutter speed at the T end. The acquisition unit 211A acquires the third lens correction performance of the interchangeable lens 3 at the first shutter speed at the W end. The acquisition unit 211A also acquires the fourth lens correction performance of the interchangeable lens 3 at the second shutter speed at the W end.
 あるいは、取得部211Aは、T端において所定のレンズ補正性能となるシャッタースピード(第一シャッタースピード)に関する情報を取得するようにしてもよい。同様に、取得部211Aは、W端において所定のレンズ補正性能となるシャッタースピード(第二シャッタースピード)に関する情報を取得するようにしてもよい。 Alternatively, the acquisition unit 211A may acquire information regarding the shutter speed (first shutter speed) that provides a predetermined lens correction performance at the T end. Similarly, the acquisition unit 211A may acquire information regarding the shutter speed (second shutter speed) that provides a predetermined lens correction performance at the W end.
 また、取得部211Aは、T(テレ)端及びW(ワイド)端それぞれにおけるカメラボディ2の補正性能を取得する。このとき、取得部211Aは、異なるシャッタースピードにおけるカメラボディ2の補正性能を取得する。 Furthermore, the acquisition unit 211A acquires the correction performance of the camera body 2 at each of the T (tele) end and the W (wide) end. At this time, the acquisition unit 211A acquires the correction performance of the camera body 2 at different shutter speeds.
 より具体的には、取得部211Aは、T端における第三シャッタースピードでのカメラボディ2の第一ボディ補正性能を取得する。また、取得部211Aは、T端における第四シャッタースピードでのカメラボディ2の第二ボディ補正性能を取得する。取得部211Aは、W端における第三シャッタースピードでのカメラボディ2の第三ボディ補正性能を取得する。また、取得部211Aは、W端における第四シャッタースピードでのカメラボディ2の第四ボディ補正性能を取得する。 More specifically, the acquisition unit 211A acquires the first body correction performance of the camera body 2 at the third shutter speed at the T end. The acquisition unit 211A also acquires the second body correction performance of the camera body 2 at the fourth shutter speed at the T end. The acquisition unit 211A acquires the third body correction performance of the camera body 2 at the third shutter speed at the W end. The acquisition unit 211A also acquires the fourth body correction performance of the camera body 2 at the fourth shutter speed at the W end.
 あるいは、取得部211Aは、T端において所定のボディ補正性能となるシャッタースピード(第三シャッタースピード)に関する情報を取得するようにしてもよい。同様に、取得部211Aは、W端において所定のボディ補正性能となるシャッタースピード(第四シャッタースピード)に関する情報を取得するようにしてもよい。 Alternatively, the acquisition unit 211A may acquire information regarding the shutter speed (third shutter speed) that provides a predetermined body correction performance at the T end. Similarly, the acquisition unit 211A may acquire information regarding a shutter speed (fourth shutter speed) that provides a predetermined body correction performance at the W end.
 取得部211Aは、取得した補正性能に関する情報(第一~第四レンズ補正性能及び第一~第四ボディ補正性能)を性能算出部215に出力する。 The acquisition unit 211A outputs the acquired information regarding the correction performance (first to fourth lens correction performances and first to fourth body correction performances) to the performance calculation unit 215.
 なお、取得部211Aは、複数の焦点距離及び複数のシャッタースピードにおける補正性能を取得する以外、図5に示す取得部211と同様の機能を有する。 Note that the acquisition unit 211A has the same functions as the acquisition unit 211 shown in FIG. 5, except for acquiring correction performance at multiple focal lengths and multiple shutter speeds.
(性能算出部215)
 図7に示す性能算出部215は、カメラシステム1のシャッタースピード及び焦点距離に基づき、カメラボディ2の補正性能、及び、交換レンズ3の補正性能をそれぞれ算出する。
(Performance calculation unit 215)
The performance calculation unit 215 shown in FIG. 7 calculates the correction performance of the camera body 2 and the correction performance of the interchangeable lens 3 based on the shutter speed and focal length of the camera system 1.
 ここで、図8を用いてシャッタースピード及び焦点距離と、補正性能と、の関係について説明する。図8は、本開示の実施形態の変形例に係るシャッタースピード及び焦点距離と、補正性能と、の関係について説明するための図である。 Here, the relationship between shutter speed, focal length, and correction performance will be explained using FIG. 8. FIG. 8 is a diagram for explaining the relationship between shutter speed and focal length and correction performance according to a modification of the embodiment of the present disclosure.
 図8に示すように、例えば、第一焦点距離fにおいて、第一ブレ量Brとなる第一Tv値が、TvT1であったとする。また、第一焦点距離fにおいて、第二ブレ量Brとなる第二Tv値が、TvT2であったとする。 As shown in FIG. 8, for example, assume that at the first focal length fT , the first Tv value that is the first amount of blur BrL is Tv T1 . Further, assume that at the first focal length fT , the second Tv value that becomes the second amount of blur BrH is Tv T2 .
 また、例えば、第二焦点距離fwにおいて、第一ブレ量Brとなる第三Tv値が、TvW1であったとする。また、第一焦点距離fにおいて、第二ブレ量Brとなる第四Tv値が、TvW2であったとする。 Further, for example, assume that at the second focal length fw, the third Tv value that is the first amount of blur Br L is Tv W1 . Further, it is assumed that at the first focal length fT , the fourth Tv value that becomes the second blur amount BrH is TvW2 .
 ここで、ブレ量Brを対数にすると、第一Tv値TvT1及び第二Tv値TvT2は、直線L1付近の点としてプロットされる。また、第三Tv値TvW1及び第四Tv値TvW2は、直線L2付近の点としてプロットされる。 Here, when the shake amount Br is expressed as a logarithm, the first Tv value Tv T1 and the second Tv value Tv T2 are plotted as points near the straight line L1. Further, the third Tv value Tv W1 and the fourth Tv value Tv W2 are plotted as points near the straight line L2.
 このように、ブレ量Brを対数で表すと、同一焦点距離fにおいて、異なるシャッタースピード(Tv値)でのブレ量Brは、直線で近似することができる。 In this way, when the amount of blur Br is expressed logarithmically, the amount of blur Br at different shutter speeds (Tv values) at the same focal length f can be approximated by a straight line.
 また、図8に示すように、焦点距離fを対数にすると、同一ブレ量Brにおける第一Tv値TvT1及び第三Tv値TvW1は、同一直線付近の点としてプロットされる。同一ブレ量Brにおける第二Tv値TvT2及び第四Tv値TvW2は、同一直線付近の点としてプロットされる。 Further, as shown in FIG. 8, when the focal length f is made logarithmic, the first Tv value Tv T1 and the third Tv value Tv W1 at the same amount of blur Br L are plotted as points near the same straight line. The second Tv value Tv T2 and the fourth Tv value Tv W2 at the same amount of shake Br H are plotted as points near the same straight line.
 このように、焦点距離fを対数で表すと、同一ブレ量Brにおいて、異なるシャッタースピード(Tv値)での焦点距離fは、直線で近似することができる。 In this way, when the focal length f is expressed logarithmically, the focal length f at different shutter speeds (Tv values) for the same amount of blur Br can be approximated by a straight line.
 そこで、本変形例に係る性能算出部215は、これらの直線の傾きや切片といった直線に関するデータを算出することで、任意のシャッタースピード(Tv値)及び任意の焦点距離fにおける補正性能(想定されるブレ量Br)を算出する。 Therefore, the performance calculation unit 215 according to this modification calculates data related to the straight lines, such as the slope and intercept of these straight lines, to calculate the correction performance (assumed) at any shutter speed (Tv value) and any focal length f. The amount of blur Br) is calculated.
 例えば、性能算出部215は、異なる焦点距離におけるカメラボディ2の補正性能とシャッタースピードの対応関係(第二の対応関係)に基づき、所定のシャッタースピード及び所定の焦点距離におけるカメラボディ2単体の補正性能(想定ブレ量)を算出する。また、性能算出部215は、異なる焦点距離における交換レンズ3の補正性能とシャッタースピードの対応関係(第一の対応関係)に基づき、所定のシャッタースピード及び所定の焦点距離における交換レンズ3単体の補正性能(想定ブレ量)を算出する。 For example, the performance calculation unit 215 corrects the camera body 2 alone at a predetermined shutter speed and a predetermined focal length based on the correspondence between the correction performance of the camera body 2 at different focal lengths and the shutter speed (second correspondence). Calculate the performance (estimated amount of shake). Furthermore, the performance calculation unit 215 calculates correction for the interchangeable lens 3 alone at a predetermined shutter speed and a predetermined focal length based on the correspondence between the correction performance of the interchangeable lens 3 at different focal lengths and the shutter speed (first correspondence). Calculate the performance (estimated amount of shake).
 より具体的には、例えば、性能算出部215は、取得部211Aが取得した複数のシャッタースピードにおける交換レンズ3の補正性能(想定ブレ量)からシャッタースピードによる性能の変化量(第一の性能変化量)を算出する。 More specifically, for example, the performance calculation unit 215 calculates the amount of change in performance due to shutter speed (first performance change) from the correction performance (estimated amount of shake) of the interchangeable lens 3 at a plurality of shutter speeds acquired by the acquisition unit 211A amount).
 本変形例では、例えば、性能算出部215は、第一シャッタースピードにおける補正性能、及び、第二シャッタースピードにおける補正性能からT端におけるシャッタースピードと補正性能との関係(直線近似)を算出する。 In this modification, for example, the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the T end from the correction performance at the first shutter speed and the correction performance at the second shutter speed.
 また、例えば、性能算出部215は、第一シャッタースピードにおける補正性能、及び、第二シャッタースピードにおける補正性能からW端におけるシャッタースピードと補正性能との関係(直線近似)を算出する。 For example, the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the W end from the correction performance at the first shutter speed and the correction performance at the second shutter speed.
 次に、性能算出部215は、静止画撮影時の焦点距離における補正性能の変化量(第二の性能変化量)を算出する。例えば、性能算出部215は、T端におけるシャッタースピードと補正性能との関係、及び、W端におけるシャッタースピードと補正性能との関係から、静止画撮影時の焦点距離におけるシャッタースピードと補正性能との関係を推定する。 Next, the performance calculation unit 215 calculates the amount of change in correction performance (second amount of performance change) in the focal length during still image shooting. For example, the performance calculation unit 215 calculates the relationship between the shutter speed and the correction performance at the focal length during still image shooting based on the relationship between the shutter speed and the correction performance at the T end and the relationship between the shutter speed and the correction performance at the W end. Estimate the relationship.
 次に、撮影者がシャッターボタン(レリーズボタン11、図3参照)を押下することで、シャッタースピードが決定する。性能算出部215は、取得部211Aを介してシャッタースピードに関する情報を取得する。性能算出部215は、静止画撮影時の焦点距離におけるシャッタースピードと補正性能との関係から撮影時のシャッタースピードにおける交換レンズ3の補正性能を算出する。 Next, the photographer presses the shutter button (release button 11, see FIG. 3) to determine the shutter speed. The performance calculation unit 215 acquires information regarding the shutter speed via the acquisition unit 211A. The performance calculation unit 215 calculates the correction performance of the interchangeable lens 3 at the shutter speed during still image shooting from the relationship between the shutter speed and the correction performance at the focal length during still image shooting.
 同様に、性能算出部215は、取得部211Aが取得した複数のシャッタースピードにおけるカメラボディ2の補正性能(想定ブレ量)から、撮影時のシャッタースピード及び焦点距離における補正性能を算出する。 Similarly, the performance calculation unit 215 calculates the correction performance at the shutter speed and focal length at the time of shooting from the correction performance (estimated amount of shake) of the camera body 2 at a plurality of shutter speeds acquired by the acquisition unit 211A.
 より具体的には、例えば、性能算出部215は、取得部211Aが取得した複数のシャッタースピードにおけるカメラボディ2の補正性能(想定ブレ量)からシャッタースピードによる性能の変化量(第一の性能変化量)を算出する。 More specifically, for example, the performance calculation unit 215 calculates the amount of change in performance due to shutter speed (first performance change) from the correction performance (estimated shake amount) of the camera body 2 at the plurality of shutter speeds acquired by the acquisition unit 211A. amount).
 本変形例では、例えば、性能算出部215は、第三シャッタースピードにおける補正性能、及び、第四シャッタースピードにおける補正性能からT端におけるシャッタースピードと補正性能との関係(直線近似)を算出する。 In this modification, for example, the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the T end from the correction performance at the third shutter speed and the correction performance at the fourth shutter speed.
 また、例えば、性能算出部215は、第三シャッタースピードにおける補正性能、及び、第四シャッタースピードにおける補正性能からW端におけるシャッタースピードと補正性能との関係(直線近似)を算出する。 For example, the performance calculation unit 215 calculates the relationship (linear approximation) between the shutter speed and the correction performance at the W end from the correction performance at the third shutter speed and the correction performance at the fourth shutter speed.
 次に、性能算出部215は、静止画撮影時の焦点距離における補正性能の変化量(第二の性能変化量)を算出する。例えば、性能算出部215は、T端におけるシャッタースピードと補正性能との関係、及び、W端におけるシャッタースピードと補正性能との関係から、静止画撮影時の焦点距離におけるシャッタースピードと補正性能との関係を推定する。 Next, the performance calculation unit 215 calculates the amount of change in correction performance (second amount of performance change) in the focal length during still image shooting. For example, the performance calculation unit 215 calculates the relationship between the shutter speed and the correction performance at the focal length during still image shooting based on the relationship between the shutter speed and the correction performance at the T end and the relationship between the shutter speed and the correction performance at the W end. Estimate the relationship.
 次に、撮影者がシャッターボタン(レリーズボタン11、図3参照)を押下することで、シャッタースピードが決定する。性能算出部215は、取得部211Aを介してシャッタースピードに関する情報を取得する。性能算出部215は、静止画撮影時の焦点距離におけるシャッタースピードと補正性能との関係から撮影時のシャッタースピードにおけるカメラボディ2の補正性能を算出する。 Next, the photographer presses the shutter button (release button 11, see FIG. 3) to determine the shutter speed. The performance calculation unit 215 acquires information regarding the shutter speed via the acquisition unit 211A. The performance calculation unit 215 calculates the correction performance of the camera body 2 at the shutter speed during still image shooting from the relationship between the shutter speed and correction performance at the focal length during still image shooting.
 性能算出部215は、算出した補正性能を、性能判定部212Aに出力する。 The performance calculation unit 215 outputs the calculated corrected performance to the performance determination unit 212A.
(性能判定部212A)
 図6に戻り、性能判定部212Aは、性能算出部215が算出した撮影時のカメラボディ2及び交換レンズ3の補正性能の差を算出する。性能判定部212Aは、算出した差分(性能差)を第三閾値Th3と比較する。性能判定部212Aは、比較結果を協調判定部214Aに出力する。
(Performance judgment unit 212A)
Returning to FIG. 6, the performance determining unit 212A calculates the difference in correction performance between the camera body 2 and the interchangeable lens 3 at the time of photography calculated by the performance calculating unit 215. The performance determination unit 212A compares the calculated difference (performance difference) with a third threshold Th3. The performance determination unit 212A outputs the comparison result to the cooperation determination unit 214A.
(協調判定部214A)
 協調判定部214Aは、性能判定部212Aの比較結果に基づき、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の補正性能に応じて、ブレ補正の単独動作又は協調動作を決定する。協調判定部214Aは、性能判定部212Aの比較結果に基づき、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の補正性能に差があると判定した場合、ブレ補正を単独動作させると決定する。
(Cooperation determination unit 214A)
Based on the comparison result of the performance determining section 212A, the cooperation determining section 214A determines an independent operation or a cooperative operation of blur correction depending on the correction performance of the body-side image stabilization mechanism 7 and the lens-side image stabilization mechanism 40. If the cooperation determination unit 214A determines that there is a difference in the correction performance of the body-side vibration reduction mechanism 7 and the lens-side vibration reduction mechanism 40 based on the comparison result of the performance determination unit 212A, the cooperation determination unit 214A determines to operate the vibration correction independently. .
 具体的に、協調判定部214Aは、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40の性能差が第三閾値Th3以上である場合、ブレ補正を単独動作させると決定する。 Specifically, the cooperation determination unit 214A determines to operate the blur correction independently when the difference in performance between the body-side blur correction mechanism 7 and the lens-side blur correction mechanism 40 is equal to or greater than the third threshold Th3.
 単独動作させると決定した場合、協調判定部214Aは、ボディ側ブレ補正機構7及びレンズ側ブレ補正機構40のうち、補正性能が高い方でブレ補正を行うと決定する。 If it is determined to operate independently, the cooperation determination unit 214A determines that blur correction is to be performed by the body-side blur correction mechanism 7 or the lens-side blur correction mechanism 40, whichever has higher correction performance.
 また、協調判定部214Aは、取得部211Aが取得したシャッタースピードに関する情報、及び、焦点距離に関する情報に基づき、想定ブレ量を推定する。協調判定部214Aは、推定した想定ブレ量に応じて、ブレ補正を協調動作させるか否かを判定する。例えば、協調判定部214Aは、想定ブレ量が第二閾値未満か否かに応じてブレ補正を協調動作させるか否かを判定する。 Further, the cooperation determination unit 214A estimates the expected amount of blur based on the information regarding the shutter speed and the information regarding the focal length acquired by the acquisition unit 211A. The cooperation determination unit 214A determines whether or not to perform a cooperative operation of blur correction according to the estimated expected amount of blur. For example, the cooperation determination unit 214A determines whether or not to perform a cooperative operation of blur correction depending on whether the estimated amount of blur is less than a second threshold.
 協調判定部214は、想定ブレ量が第二閾値未満である場合、ブレ補正を単独動作で行うと決定する。一方、協調判定部214は、想定ブレ量が第二閾値以上である場合、ブレ補正を協調動作させると決定する。 If the estimated amount of blur is less than the second threshold, the cooperation determination unit 214 determines to perform blur correction in an independent operation. On the other hand, the cooperation determination unit 214 determines that the blur correction should be performed in a cooperative manner when the estimated amount of blur is equal to or greater than the second threshold.
<4.2.判定処理例>
 図9は、本開示の実施形態の変形例に係る判定処理の流れの一例を示すフローチャートである。図9の判定処理は、例えば、静止画像撮影時のブレ補正処理前に、カメラボディ2によって実行される。なお、図6の判定処理と同じ処理については同一符号を付し説明を省略する。
<4.2. Judgment processing example>
FIG. 9 is a flowchart illustrating an example of the flow of determination processing according to a modification of the embodiment of the present disclosure. The determination process in FIG. 9 is executed by the camera body 2, for example, before the blur correction process when photographing a still image. Note that the same processes as the determination process in FIG. 6 are given the same reference numerals, and the description thereof will be omitted.
 図9に示すように、カメラボディ2は、カメラボディ2及び交換レンズ3のブレ補正の補正性能を取得する(ステップS201)。ここでは、カメラボディ2は、カメラボディ2のT端及びW単における補正性能を、異なるシャッタースピードごとに取得する。また、カメラボディ2は、交換レンズ3のT端及びW単における補正性能を、異なるシャッタースピードごとに取得する。 As shown in FIG. 9, the camera body 2 acquires the blur correction performance of the camera body 2 and the interchangeable lens 3 (step S201). Here, the camera body 2 acquires the correction performance at the T end and W single end of the camera body 2 for each different shutter speed. Further, the camera body 2 acquires the correction performance of the interchangeable lens 3 at the T end and W single for each different shutter speed.
 次に、カメラボディ2は、カメラボディ2及び交換レンズ3それぞれの第一の性能変化量を算出する(ステップS202)。 Next, the camera body 2 calculates the first performance change amount of each of the camera body 2 and the interchangeable lens 3 (step S202).
 例えば、カメラボディ2は、ステップS201で取得した複数のシャッタースピードにおける交換レンズ3の補正性能から、T端及びW端それぞれにおけるシャッタースピードによる性能の変化量を第一の性能変化量として算出する。 For example, the camera body 2 calculates the amount of change in performance depending on the shutter speed at each of the T end and the W end as the first amount of change in performance from the correction performance of the interchangeable lens 3 at the plurality of shutter speeds obtained in step S201.
 また、例えば、カメラボディ2は、ステップS201で取得した複数のシャッタースピードにおけるカメラボディ2の補正性能(想定ブレ量)から、T端及びW端それぞれにおけるシャッタースピードによる性能の変化量を第一の性能変化量として算出する。 For example, the camera body 2 calculates the amount of change in performance due to the shutter speed at each of the T end and the W end from the correction performance (estimated amount of shake) of the camera body 2 at the plurality of shutter speeds acquired in step S201. Calculated as the amount of change in performance.
 その後、焦点距離及び可動範囲を取得し(ステップS108、S109)、補正比率を算出すると(ステップS110)、カメラボディ2は、カメラボディ2及び交換レンズ3それぞれの第二の性能変化量を算出する(ステップS203)。 After that, when the focal length and the movable range are acquired (steps S108 and S109) and the correction ratio is calculated (step S110), the camera body 2 calculates the second performance change amount of each of the camera body 2 and the interchangeable lens 3. (Step S203).
 例えば、カメラボディ2は、ステップS108で取得した焦点距離におけるカメラボディ2及び交換レンズ3の補正性能の変化量を第二の性能変化量として算出する。 For example, the camera body 2 calculates the amount of change in the correction performance of the camera body 2 and the interchangeable lens 3 at the focal length obtained in step S108 as the second amount of change in performance.
 その後、ステップS111からステップS114の処理は、図6に示す判定処理と同じである。 After that, the processing from step S111 to step S114 is the same as the determination processing shown in FIG. 6.
 想定ブレ量が第二閾値Th2未満である(ステップS114;Yes)と判定したカメラボディ2は、カメラボディ2及び交換レンズ3の性能差を算出する(ステップS205)。 The camera body 2 that has determined that the expected amount of blur is less than the second threshold Th2 (step S114; Yes) calculates the performance difference between the camera body 2 and the interchangeable lens 3 (step S205).
 例えば、カメラボディ2は、ステップS203で算出した第二の性能変化量を用いて、ステップS112で取得したシャッタースピードにおける補正性能を、カメラボディ2及び交換レンズ3のそれぞれで算出する。カメラボディ2は、算出したカメラボディ2及び交換レンズ3の補正性能の差分を性能差として算出する。 For example, the camera body 2 uses the second performance change amount calculated in step S203 to calculate the correction performance of each of the camera body 2 and the interchangeable lens 3 at the shutter speed acquired in step S112. The camera body 2 calculates the calculated difference in correction performance between the camera body 2 and the interchangeable lens 3 as a performance difference.
 カメラボディ2は、算出した性能差が第三閾値Th3以上であるか否かを判定する(ステップS206)。 The camera body 2 determines whether the calculated performance difference is greater than or equal to the third threshold Th3 (step S206).
 性能差が第三閾値Th3未満である場合(ステップS206;No)、カメラボディ2は、ステップS107に進み、協調動作によるブレ補正を決定する。 If the performance difference is less than the third threshold Th3 (step S206; No), the camera body 2 proceeds to step S107 and determines blur correction by cooperative operation.
 一方、性能差が第三閾値Th3以上である場合(ステップS206;Yes)、カメラボディ2は、単独でブレ補正を行うと決定する。以降の処理は、図6の判定処理と同じである。 On the other hand, if the performance difference is greater than or equal to the third threshold Th3 (step S206; Yes), the camera body 2 determines to perform blur correction independently. The subsequent processing is the same as the determination processing in FIG.
 なお、図9では、カメラボディ2が、複数のシャッタースピードにおけるカメラボディ2及び交換レンズ3の補正性能を取得した後のステップS202で、第一の性能変化量を算出するとした。また、カメラボディ2が焦点距離を取得した後のステップS203で第二の性能変化量を算出するとした。しかしながら、第一の性能変化量及び/又は第二の性能変化量を算出するタイミングは、図9の例に限定されない。 Note that in FIG. 9, the first performance change amount is calculated in step S202 after the camera body 2 acquires the correction performance of the camera body 2 and the interchangeable lens 3 at a plurality of shutter speeds. Further, it is assumed that the second performance change amount is calculated in step S203 after the camera body 2 acquires the focal length. However, the timing for calculating the first performance change amount and/or the second performance change amount is not limited to the example shown in FIG. 9 .
 例えば、カメラボディ2が、第二の性能変化量を算出する直前に第一の性能変化量を算出してもよく、性能差を算出する直前に第一、第二の性能変化量を算出するようにしてもよい。 For example, the camera body 2 may calculate the first performance change amount immediately before calculating the second performance change amount, or calculate the first and second performance change amount immediately before calculating the performance difference. You can do it like this.
 このように、図9の処理は適宜変更したり省略したりしてもよい。例えば、想定ブレ量の推定及び第二閾値Th2との比較を行う処理と、性能差の算出及び第三閾値Th3との比較を行う処理の順番を入れ替えてもよい。 In this way, the process in FIG. 9 may be changed or omitted as appropriate. For example, the order of the process of estimating the expected shake amount and comparing it with the second threshold Th2 and the process of calculating the performance difference and comparing it with the third threshold Th3 may be changed.
 以上のように、本変形例では、カメラシステム1は、撮影時のシャッタースピード及び焦点距離におけるカメラボディ2及び交換レンズ3の性能差に応じて、ブレ補正を単独で行うか強調して行うかを決定する。これにより、カメラシステム1は、より高精度にカメラボディ2及び交換レンズ3の性能差を算出することができる。 As described above, in this modification, the camera system 1 determines whether to perform shake correction alone or with emphasis, depending on the performance difference between the camera body 2 and the interchangeable lens 3 in terms of shutter speed and focal length at the time of shooting. Determine. Thereby, the camera system 1 can calculate the performance difference between the camera body 2 and the interchangeable lens 3 with higher accuracy.
 また、本変形例では、カメラシステム1は、撮影時のシャッタースピード及び焦点距離に応じてカメラボディ2及び交換レンズ3の補正性能を算出する。そのため、カメラシステム1は、カメラボディ2及び交換レンズ3のうち補正性能が高い方の可動範囲(補正範囲)が想定ブレ量に対して十分に大きい場合であっても、カメラボディ2及び交換レンズ3の性能差が小さければ、協調動作を選択しうる。 Furthermore, in this modification, the camera system 1 calculates the correction performance of the camera body 2 and the interchangeable lens 3 according to the shutter speed and focal length at the time of shooting. Therefore, even if the movable range (correction range) of the camera body 2 and the interchangeable lens 3 with higher correction performance is sufficiently large relative to the expected amount of shake, the camera system 1 does not allow the camera body 2 or the interchangeable lens 3 to move. If the performance difference between 3 and 3 is small, cooperative operation can be selected.
 すなわち、カメラシステム1は、カメラボディ2及び交換レンズ3のうち補正性能が高い方単独で十分にブレ補正が行える場合でも、カメラボディ2及び交換レンズ3の性能差が小さければ、協調してブレ補正を行うと決定しうる。 In other words, even if the camera body 2 and the interchangeable lens 3 with higher correction performance can perform sufficient image stabilization alone, if the difference in performance between the camera body 2 and the interchangeable lens 3 is small, the camera system 1 can work together to compensate for the image blur. It may be decided to make a correction.
 このように、カメラボディ2及び交換レンズ3のうち補正性能が高い方単独で十分にブレ補正が行える場合でも、カメラシステム1が協調してブレ補正を行うことで、カメラボディ2及び交換レンズ3それぞれのブレ補正機構の移動量が分散される。すなわち、カメラボディ2及び交換レンズ3で協調動作を行うことで、ボディ側ブレ補正機構7の移動量、及び、レンズ側ブレ補正機構40の移動量が小さくなる。これにより、カメラボディ2及び交換レンズ3のブレ補正機構のアクチュエータ(図示省略)がより小さいパワーで光速に駆動することができ、ブレ補正の精度がより向上する。 In this way, even if the camera body 2 and the interchangeable lens 3 with higher correction performance can perform sufficient image stabilization alone, the camera system 1 cooperates to perform image stabilization, so that the camera body 2 and the interchangeable lens 3 The amount of movement of each blur correction mechanism is distributed. That is, by performing a cooperative operation with the camera body 2 and the interchangeable lens 3, the amount of movement of the body-side shake correction mechanism 7 and the movement amount of the lens-side shake correction mechanism 40 are reduced. As a result, the actuators (not shown) of the shake correction mechanism of the camera body 2 and the interchangeable lens 3 can be driven at the speed of light with smaller power, and the accuracy of shake correction is further improved.
<<5.その他の実施形態>>
 上述した実施形態及び変形例に係る処理は、上記実施形態及び変形例以外にも種々の異なる形態にて実施されてよい。
<<5. Other embodiments >>
The processes according to the embodiments and modifications described above may be implemented in various different forms in addition to the embodiments and modifications described above.
 上述した実施形態及び変形例では、判定処理をカメラボディ2が実行するとしたが、これに限定されない。例えば、判定処理の少なくとも一部の処理を交換レンズ3が実行するようにしてもよい。この場合、交換レンズ3の、例えばレンズ側ブレ補正制御部41が判定処理の少なくとも一部の処理を実行しうる。また、この場合、交換レンズ3は、判定処理等の情報処理を実行する情報処理装置として機能する。 In the above-described embodiments and modifications, the camera body 2 performs the determination process, but the present invention is not limited to this. For example, the interchangeable lens 3 may perform at least part of the determination process. In this case, for example, the lens-side blur correction control unit 41 of the interchangeable lens 3 can execute at least part of the determination process. Further, in this case, the interchangeable lens 3 functions as an information processing device that executes information processing such as determination processing.
 また、上述した変形例では、カメラボディ2がT端及びW端におけるカメラボディ2及び交換レンズ3の補正性能を取得するとしたが、カメラボディ2が取得する補正性能は、T端及びW端における補正性能に限定されない。カメラボディ2は、異なる複数の焦点距離におけるカメラボディ2及び交換レンズ3の補正性能を取得すればよく、T端及びW端以外の焦点距離における補正性能を取得してもよい。また、カメラボディ2が、3つ以上の異なる焦点距離におけるカメラボディ2及び交換レンズ3の補正性能を取得してもよい。 In addition, in the above-mentioned modified example, the camera body 2 acquires the correction performance of the camera body 2 and interchangeable lens 3 at the T end and the W end, but the correction performance acquired by the camera body 2 is not limited to the correction performance at the T end and the W end. The camera body 2 only needs to acquire the correction performance of the camera body 2 and interchangeable lens 3 at a plurality of different focal lengths, and may acquire correction performance at a focal length other than the T end and the W end. Furthermore, the camera body 2 may acquire the correction performance of the camera body 2 and interchangeable lens 3 at three or more different focal lengths.
 また、上述した変形例では、カメラボディ2が異なる2つのシャッタースピードにおけるカメラボディ2及び交換レンズ3の補正性能を取得するとしたが、カメラボディ2が補正性能を取得するシャッタースピードは、2つに限定されない。例えば、カメラボディ2が3つ以上の異なるシャッタースピードにおけるカメラボディ2及び交換レンズ3の補正性能を取得するようにしてもよい。 Furthermore, in the above-mentioned modification, the camera body 2 acquires the correction performance of the camera body 2 and the interchangeable lens 3 at two different shutter speeds, but the shutter speeds at which the camera body 2 acquires the correction performance are divided into two. Not limited. For example, the camera body 2 may acquire the correction performance of the camera body 2 and the interchangeable lens 3 at three or more different shutter speeds.
 また、上述した実施形態及び変形例では、カメラボディ2が、ブレ補正をカメラボディ2及び交換レンズ3の一方で単独動作させるか、両方で協調動作させるかを決定するとしたが、カメラボディ2による決定はこれに限定されない。例えば、カメラボディ2が単独動作の代わりに、補正比率の異なる協調動作を行うと決定するようにしてもよい。 Furthermore, in the embodiments and modifications described above, it is assumed that the camera body 2 determines whether the camera body 2 and the interchangeable lens 3 operate independently for image stabilization, or both operate together. The decision is not limited to this. For example, it may be determined that the camera body 2 performs a cooperative operation with a different correction ratio instead of an independent operation.
 この場合、カメラボディ2は、カメラボディ2及び交換レンズ3の性能差が第一閾値Th1以上あり、かつ、想定ブレ量がカメラボディ2及び交換レンズ3の一方の可動範囲より小さい場合に、第二の補正比率で協調動作を行うと決定する。 In this case, when the performance difference between the camera body 2 and the interchangeable lens 3 is greater than or equal to the first threshold Th1, and the expected amount of shake is smaller than the movable range of one of the camera body 2 and the interchangeable lens 3, It is determined that the cooperative operation will be performed using the second correction ratio.
 ここで、カメラボディ2及び交換レンズ3の性能差が第一閾値Th1未満である、又は、想定ブレ量がカメラボディ2及び交換レンズ3の一方の可動範囲以上である場合に、カメラボディ2が決定する協調動作の補正比率を第一の補正比率とする。 Here, if the difference in performance between the camera body 2 and the interchangeable lens 3 is less than the first threshold Th1, or if the expected amount of shake is greater than the movable range of either the camera body 2 or the interchangeable lens 3, the camera body 2 Let the correction ratio of the cooperative motion to be determined be the first correction ratio.
 第二の補正比率は、例えば、カメラボディ2及び交換レンズ3のうち、補正性能が高い方の補正比率が、第一の補正比率よりも大きくなるように決定される。 The second correction ratio is determined, for example, such that the correction ratio of the camera body 2 and the interchangeable lens 3, which has higher correction performance, is larger than the first correction ratio.
 このように、カメラボディ2は、カメラボディ2及び交換レンズ3のブレ補正の性能差が大きい場合に、性能が高い方でより多くブレ補正を行うと決定してもよい。 In this manner, when the difference in the performance of camera shake correction between the camera body 2 and the interchangeable lens 3 is large, the camera body 2 may decide to perform more vibration correction on the one with higher performance.
 例えば、本実施形態のカメラボディ2を制御する制御装置は、専用のコンピュータシステムにより実現してもよいし、汎用のコンピュータシステムによって実現してもよい。 For example, the control device that controls the camera body 2 of this embodiment may be realized by a dedicated computer system or a general-purpose computer system.
 例えば、上述の判定処理等の動作を実行するためのプログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、カメラボディ2の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、カメラボディ2の内部の装置(例えば、全体制御部101)であってもよい。 For example, a program for executing operations such as the above-mentioned determination process is stored and distributed in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk. Then, for example, the program is installed on a computer and the control device is configured by executing the above-described processing. At this time, the control device may be a device external to the camera body 2 (for example, a personal computer). Further, the control device may be a device inside the camera body 2 (for example, the overall control section 101).
 また、上記プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。 Furthermore, the above program may be stored in a disk device included in a server device on a network such as the Internet, so that it can be downloaded to a computer. Furthermore, the above-mentioned functions may be realized through collaboration between an OS (Operating System) and application software. In this case, the parts other than the OS may be stored on a medium and distributed, or the parts other than the OS may be stored in a server device so that they can be downloaded to a computer.
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。 Further, among the processes described in the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually can be performed manually. All or part of this can also be performed automatically using known methods. In addition, the processing procedures, specific names, and information including various data and parameters shown in the above documents and drawings may be changed arbitrarily, unless otherwise specified. For example, the various information shown in each figure is not limited to the illustrated information.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。なお、この分散・統合による構成は動的に行われてもよい。 Furthermore, each component of each device shown in the drawings is functionally conceptual, and does not necessarily need to be physically configured as shown in the drawings. In other words, the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured. Note that this distribution/integration configuration may be performed dynamically.
 また、上述の実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、上述の実施形態のフローチャート等に示された各ステップは、適宜順序を変更することが可能である。 Furthermore, the above-described embodiments can be combined as appropriate in areas where the processing contents do not conflict. Furthermore, the order of the steps shown in the flowcharts and the like of the above-described embodiments can be changed as appropriate.
 また、例えば、本実施形態は、装置又はシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。 Furthermore, for example, the present embodiment can be applied to any configuration constituting a device or system, such as a processor as a system LSI (Large Scale Integration), a module using multiple processors, a unit using multiple modules, etc. Furthermore, it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
 なお、本実施形態において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 Note that in this embodiment, a system means a collection of multiple components (devices, modules (components), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, multiple devices housed in separate casings and connected via a network, and a single device with multiple modules housed in one casing are both systems. .
<<6.むすび>>
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
<<6. Conclusion >>
Although the embodiments of the present disclosure have been described above, the technical scope of the present disclosure is not limited to the above-mentioned embodiments as they are, and various changes can be made without departing from the gist of the present disclosure. . Furthermore, components of different embodiments and modifications may be combined as appropriate.
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 Further, the effects in each embodiment described in this specification are merely examples and are not limited, and other effects may also be provided.
 なお、本技術は以下のような構成も取ることができる。
(1)
 第一のブレ補正機能を搭載したカメラボディ及び第二のブレ補正機能を搭載した交換レンズを備えた撮像装置であって、
 前記撮像装置は、
 前記交換レンズの前記第二のブレ補正機能の性能に関するレンズ性能情報を取得し、
 前記カメラボディの前記第一のブレ補正機能の性能に関するカメラ性能情報を取得し、
 前記レンズ性能情報と、前記カメラ性能情報と、に基づき、前記交換レンズ及び前記カメラボディの一方でブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、制御部、
 を備える撮像装置。
(2)
 前記制御部は、前記交換レンズの前記第二のブレ補正機能と、前記カメラボディの前記第一のブレ補正機能と、の性能差が閾値未満である場合、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させると決定する、(1)に記載の撮像装置。
(3)
 前記制御部は、撮影時のシャッタースピード及び焦点距離に応じて、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、(1)又は(2)に記載の撮像装置。
(4)
 前記制御部は、
 撮影時のシャッタースピード及び焦点距離に応じて、前記撮像装置の想定ブレ量を推定し、
 前記交換レンズの前記第二のブレ補正機能及び前記カメラボディの前記第一のブレ補正機能による可動範囲、及び、前記想定ブレ量に基づき、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、(1)~(3)のいずれか1つに記載の撮像装置。
(5)
 前記制御部は、前記交換レンズの前記第二のブレ補正機能による前記可動範囲が前記想定ブレ量より大きい、又は、前記カメラボディの前記第一のブレ補正機能による前記可動範囲が前記想定ブレ量より大きい場合、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させると決定する、(4)に記載の撮像装置。
(6)
 前記制御部は、
 異なる焦点距離における前記レンズ性能情報を、それぞれ異なるシャッタースピードにおいて取得し、
 異なる前記焦点距離における前記カメラ性能情報を、それぞれ異なる前記シャッタースピードにおいて取得し、
 取得した前記レンズ性能情報に基づき、撮影時の前記焦点距離及び前記シャッタースピードにおける前記交換レンズのブレ補正性能を推定し、
 取得した前記カメラ性能情報に基づき、前記撮影時の前記焦点距離及び前記シャッタースピードにおける前記カメラボディの前記撮影時の前記ブレ補正性能を推定し、
 前記交換レンズ及び前記カメラボディの前記撮影時の前記ブレ補正性能に応じて、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、(1)~(5)のいずれか1つに記載の撮像装置。
(7)
 前記制御部は、
 異なる前記焦点距離における前記レンズ性能情報の変化、及び、異なる前記シャッタースピードにおける前記レンズ性能情報の変化の少なくとも一方に基づき、前記交換レンズの前記撮影時の前記ブレ補正性能を推定する、(6)に記載の撮像装置。
(8)
 前記制御部は、
 異なる前記焦点距離における前記カメラ性能情報の変化、及び、異なる前記シャッタースピードにおける前記カメラ性能情報の変化の少なくとも一方に基づき、前記カメラボディの前記撮影時の前記ブレ補正性能を推定する、(6)又は(7)に記載の撮像装置。
(9)
 前記制御部は、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うと決定した場合、ブレ補正性能が高い方で前記ブレ補正を行うと決定する、(1)~(8)のいずれか1つに記載の撮像装置。
(10)
 前記制御部は、前記交換レンズ及び前記カメラボディのうち、前記ブレ補正を行うと決定した一方に対して、前記ブレ補正を行うよう指示する、(1)~(8)のいずれか1つに記載の撮像装置。
(11)
 前記制御部は、ブレ補正性能に応じて前記交換レンズ及び前記カメラボディの前記ブレ補正を行う比率を決定する、(1)~(9)のいずれか1つに記載の撮像装置。
(12)
 前記制御部は、前記交換レンズ及び前記カメラボディに対して、前記比率で前記ブレ補正を行うよう指示する、(11)に記載の撮像装置。
(13)
 交換レンズの第二のブレ補正機能の性能に関するレンズ性能情報を取得し、
 カメラボディの第一のブレ補正機能の性能に関するカメラ性能情報を取得し、
 前記レンズ性能情報と、前記カメラ性能情報と、に基づき、前記交換レンズ及び前記カメラボディの一方でブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、制御部、
 を備える情報処理装置。
(14)
 交換レンズの第二のブレ補正機能の性能に関するレンズ性能情報を取得することと、
 カメラボディの第一のブレ補正機能の性能に関するカメラ性能情報を取得することと、
 前記レンズ性能情報と、前記カメラ性能情報と、に基づき、前記交換レンズ及び前記カメラボディの一方でブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定することと、
 をプロセッサに実行させるためのプログラム。
Note that the present technology can also have the following configuration.
(1)
An imaging device comprising a camera body equipped with a first image stabilization function and an interchangeable lens equipped with a second image stabilization function,
The imaging device includes:
obtaining lens performance information regarding the performance of the second image stabilization function of the interchangeable lens;
obtaining camera performance information regarding the performance of the first image stabilization function of the camera body;
Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively. control unit,
An imaging device comprising:
(2)
When the performance difference between the second image stabilization function of the interchangeable lens and the first image stabilization function of the camera body is less than a threshold, the control unit controls the second image stabilization function of the interchangeable lens and the camera body. The imaging device according to (1), which determines to perform blur correction in a coordinated manner.
(3)
The control unit performs the blur correction on one of the interchangeable lens and the camera body, or causes the blur correction on the interchangeable lens and the camera body to operate cooperatively, depending on the shutter speed and focal length at the time of photography. The imaging device according to (1) or (2), which determines .
(4)
The control unit includes:
Estimating the expected amount of shake of the imaging device according to the shutter speed and focal length at the time of shooting,
Based on the movable range of the second image stabilization function of the interchangeable lens and the first image stabilization function of the camera body, and the estimated amount of shake, perform the image stabilization on one of the interchangeable lens and the camera body. The imaging device according to any one of (1) to (3), wherein the image pickup device determines whether to perform the shake correction of the interchangeable lens and the camera body in a coordinated manner.
(5)
The control unit is configured such that the movable range due to the second blur correction function of the interchangeable lens is larger than the assumed shake amount, or the movable range due to the first shake correction function of the camera body is larger than the assumed shake amount. The imaging device according to (4), in which it is determined that the blur correction of the interchangeable lens and the camera body are operated in a coordinated manner when the image stabilization is larger than that of the camera body.
(6)
The control unit includes:
acquiring the lens performance information at different focal lengths at different shutter speeds,
acquiring the camera performance information at different focal lengths at different shutter speeds;
Based on the acquired lens performance information, estimate the blur correction performance of the interchangeable lens at the focal length and shutter speed at the time of shooting,
Based on the acquired camera performance information, estimate the blur correction performance of the camera body at the time of the photograph at the focal length and the shutter speed at the time of the photograph;
Depending on the image stabilization performance of the interchangeable lens and the camera body at the time of shooting, the image stabilization may be performed on one of the interchangeable lens and the camera body, or the image stabilization of the interchangeable lens and the camera body may be performed cooperatively. The imaging device according to any one of (1) to (5), which determines whether to operate the imaging device.
(7)
The control unit includes:
(6) estimating the blur correction performance of the interchangeable lens at the time of photographing, based on at least one of changes in the lens performance information at different focal lengths and changes in the lens performance information at different shutter speeds; The imaging device described in .
(8)
The control unit includes:
(6) estimating the blur correction performance of the camera body at the time of shooting based on at least one of changes in the camera performance information at different focal lengths and changes in the camera performance information at different shutter speeds; Or the imaging device according to (7).
(9)
If the control unit determines to perform the blur correction on one of the interchangeable lens and the camera body, it determines to perform the blur correction on the one with higher blur correction performance. The imaging device according to item 1.
(10)
The control unit instructs one of the interchangeable lens and the camera body, which has been determined to perform the image stabilization, to perform the image stabilization, in any one of (1) to (8). The imaging device described.
(11)
The imaging device according to any one of (1) to (9), wherein the control unit determines a ratio at which the shake correction is performed for the interchangeable lens and the camera body according to shake correction performance.
(12)
The imaging device according to (11), wherein the control unit instructs the interchangeable lens and the camera body to perform the blur correction at the ratio.
(13)
Obtaining lens performance information regarding the performance of the second image stabilization function of the interchangeable lens,
Obtain camera performance information regarding the performance of the first image stabilization function of the camera body,
Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively. control unit,
An information processing device comprising:
(14)
Obtaining lens performance information regarding the performance of a second image stabilization function of the interchangeable lens;
Obtaining camera performance information regarding the performance of a first image stabilization function of the camera body;
Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively. to do and
A program that causes a processor to execute.
 1 カメラシステム
 2 カメラボディ
 3 交換レンズ
 7,40 ブレ補正機構
 8,38 制御装置
 21,41 ブレ補正制御部
 37 レンズ群
 39 レンズ位置検出部
 101 全体制御部
1 Camera system 2 Camera body 3 Interchangeable lens 7, 40 Shake correction mechanism 8, 38 Control device 21, 41 Shake correction control section 37 Lens group 39 Lens position detection section 101 Overall control section

Claims (14)

  1.  第一のブレ補正機能を搭載したカメラボディ及び第二のブレ補正機能を搭載した交換レンズを備えた撮像装置であって、
     前記撮像装置は、
     前記交換レンズの前記第二のブレ補正機能の性能に関するレンズ性能情報を取得し、
     前記カメラボディの前記第一のブレ補正機能の性能に関するカメラ性能情報を取得し、
     前記レンズ性能情報と、前記カメラ性能情報と、に基づき、前記交換レンズ及び前記カメラボディの一方でブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、制御部、
     を備える撮像装置。
    An imaging device comprising a camera body equipped with a first image stabilization function and an interchangeable lens equipped with a second image stabilization function,
    The imaging device includes:
    obtaining lens performance information regarding the performance of the second image stabilization function of the interchangeable lens;
    obtaining camera performance information regarding the performance of the first image stabilization function of the camera body;
    Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively. control unit,
    An imaging device comprising:
  2.  前記制御部は、前記交換レンズの前記第二のブレ補正機能と、前記カメラボディの前記第一のブレ補正機能と、の性能差が閾値未満である場合、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させると決定する、請求項1に記載の撮像装置。 When the performance difference between the second image stabilization function of the interchangeable lens and the first image stabilization function of the camera body is less than a threshold, the control unit controls the second image stabilization function of the interchangeable lens and the camera body. The imaging device according to claim 1, wherein the imaging device determines to perform blur correction in a coordinated manner.
  3.  前記制御部は、撮影時のシャッタースピード及び焦点距離に応じて、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、請求項1に記載の撮像装置。 The control unit performs the blur correction on one of the interchangeable lens and the camera body, or causes the blur correction on the interchangeable lens and the camera body to operate cooperatively, depending on the shutter speed and focal length at the time of photography. The imaging device according to claim 1, wherein the imaging device determines .
  4.  前記制御部は、
     撮影時のシャッタースピード及び焦点距離に応じて、前記撮像装置の想定ブレ量を推定し、
     前記交換レンズの前記第二のブレ補正機能及び前記カメラボディの前記第一のブレ補正機能による可動範囲、及び、前記想定ブレ量に基づき、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、請求項1に記載の撮像装置。
    The control unit includes:
    Estimating the expected amount of shake of the imaging device according to the shutter speed and focal length at the time of shooting,
    Based on the movable range of the second image stabilization function of the interchangeable lens and the first image stabilization function of the camera body, and the estimated amount of shake, perform the image stabilization on one of the interchangeable lens and the camera body. The imaging device according to claim 1 , wherein the image capturing apparatus determines whether to perform the blur correction of the interchangeable lens and the camera body in a coordinated manner.
  5.  前記制御部は、前記交換レンズの前記第二のブレ補正機能による前記可動範囲が前記想定ブレ量より大きい、又は、前記カメラボディの前記第一のブレ補正機能による前記可動範囲が前記想定ブレ量より大きい場合、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させると決定する、請求項4に記載の撮像装置。 The control unit is configured such that the movable range due to the second blur correction function of the interchangeable lens is larger than the assumed shake amount, or the movable range due to the first shake correction function of the camera body is larger than the assumed shake amount. The imaging device according to claim 4, wherein if the image stabilization is larger than that, it is determined that the shake correction of the interchangeable lens and the camera body are operated in a coordinated manner.
  6.  前記制御部は、
     異なる焦点距離における前記レンズ性能情報とシャッタースピードとの第一の対応関係に基づき、撮影時の前記焦点距離及び前記シャッタースピードにおける前記交換レンズのブレ補正性能を推定し、
     異なる前記焦点距離における前記カメラ性能情報と前記シャッタースピードとの第二の対応関係に基づき、前記撮影時の前記焦点距離及び前記シャッタースピードにおける前記カメラボディの前記撮影時の前記ブレ補正性能を推定し、
     前記交換レンズ及び前記カメラボディの前記撮影時の前記ブレ補正性能に応じて、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、請求項1に記載の撮像装置。
    The control unit includes:
    Based on a first correspondence between the lens performance information and shutter speed at different focal lengths, estimate the blur correction performance of the interchangeable lens at the focal length and the shutter speed at the time of photography,
    Based on a second correspondence relationship between the camera performance information and the shutter speed at different focal lengths, estimate the shake correction performance of the camera body at the focal length and the shutter speed at the time of shooting. ,
    Depending on the image stabilization performance of the interchangeable lens and the camera body at the time of shooting, the image stabilization may be performed on one of the interchangeable lens and the camera body, or the image stabilization of the interchangeable lens and the camera body may be performed cooperatively. The imaging device according to claim 1, wherein the imaging device determines whether to operate the imaging device.
  7.  前記制御部は、
     異なる前記焦点距離における前記レンズ性能情報の変化、及び、異なる前記シャッタースピードにおける前記レンズ性能情報の変化の少なくとも一方に基づき、前記交換レンズの前記撮影時の前記ブレ補正性能を推定する、請求項6に記載の撮像装置。
    The control unit includes:
    6. The blur correction performance of the interchangeable lens at the time of photographing is estimated based on at least one of a change in the lens performance information at different focal lengths and a change in the lens performance information at different shutter speeds. The imaging device described in .
  8.  前記制御部は、
     異なる前記焦点距離における前記カメラ性能情報の変化、及び、異なる前記シャッタースピードにおける前記カメラ性能情報の変化の少なくとも一方に基づき、前記カメラボディの前記撮影時の前記ブレ補正性能を推定する、請求項6に記載の撮像装置。
    The control unit includes:
    6. The image stabilization performance of the camera body at the time of photographing is estimated based on at least one of a change in the camera performance information at different focal lengths and a change in the camera performance information at different shutter speeds. The imaging device described in .
  9.  前記制御部は、前記交換レンズ及び前記カメラボディの一方で前記ブレ補正を行うと決定した場合、ブレ補正性能が高い方で前記ブレ補正を行うと決定する、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein when the control unit determines to perform the blur correction on one of the interchangeable lens and the camera body, it determines to perform the blur correction on the one with higher blur correction performance.
  10.  前記制御部は、前記交換レンズ及び前記カメラボディのうち、前記ブレ補正を行うと決定した一方に対して、前記ブレ補正を行うよう指示する、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the control unit instructs one of the interchangeable lens and the camera body that has been determined to perform the blur correction to perform the blur correction.
  11.  前記制御部は、ブレ補正性能に応じて前記交換レンズ及び前記カメラボディの前記ブレ補正を行う比率を決定する、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the control unit determines a ratio of the shake correction of the interchangeable lens and the camera body according to shake correction performance.
  12.  前記制御部は、前記交換レンズ及び前記カメラボディに対して、前記比率で前記ブレ補正を行うよう指示する、請求項11に記載の撮像装置。 The imaging device according to claim 11, wherein the control unit instructs the interchangeable lens and the camera body to perform the blur correction at the ratio.
  13.  交換レンズの第二のブレ補正機能の性能に関するレンズ性能情報を取得し、
     カメラボディの第一のブレ補正機能の性能に関するカメラ性能情報を取得し、
     前記レンズ性能情報と、前記カメラ性能情報と、に基づき、前記交換レンズ及び前記カメラボディの一方でブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定する、制御部、
     を備える情報処理装置。
    Obtaining lens performance information regarding the performance of the second image stabilization function of the interchangeable lens,
    Obtain camera performance information regarding the performance of the first image stabilization function of the camera body,
    Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively. control unit,
    An information processing device comprising:
  14.  交換レンズの第二のブレ補正機能の性能に関するレンズ性能情報を取得することと、
     カメラボディの第一のブレ補正機能の性能に関するカメラ性能情報を取得することと、
     前記レンズ性能情報と、前記カメラ性能情報と、に基づき、前記交換レンズ及び前記カメラボディの一方でブレ補正を行うか、前記交換レンズ及び前記カメラボディの前記ブレ補正を協調動作させるか、を決定することと、
     をプロセッサに実行させるためのプログラム。
    Obtaining lens performance information regarding the performance of a second image stabilization function of the interchangeable lens;
    Obtaining camera performance information regarding the performance of a first image stabilization function of the camera body;
    Based on the lens performance information and the camera performance information, it is determined whether to perform blur correction on one of the interchangeable lens and the camera body, or to cause the blur correction on the interchangeable lens and the camera body to operate cooperatively. to do and
    A program that causes a processor to execute.
PCT/JP2023/032551 2022-09-15 2023-09-06 Imaging device, information processing device, and program WO2024058029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-147041 2022-09-15
JP2022147041 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024058029A1 true WO2024058029A1 (en) 2024-03-21

Family

ID=90274791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032551 WO2024058029A1 (en) 2022-09-15 2023-09-06 Imaging device, information processing device, and program

Country Status (1)

Country Link
WO (1) WO2024058029A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104338A (en) * 1993-10-07 1995-04-21 Canon Inc Image blur correcting device
JP2019129373A (en) * 2018-01-23 2019-08-01 オリンパス株式会社 Imaging apparatus, image stabilization method, lens unit, and body unit
JP2021128324A (en) * 2020-02-13 2021-09-02 パナソニックIpマネジメント株式会社 Imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104338A (en) * 1993-10-07 1995-04-21 Canon Inc Image blur correcting device
JP2019129373A (en) * 2018-01-23 2019-08-01 オリンパス株式会社 Imaging apparatus, image stabilization method, lens unit, and body unit
JP2021128324A (en) * 2020-02-13 2021-09-02 パナソニックIpマネジメント株式会社 Imaging apparatus

Similar Documents

Publication Publication Date Title
JP5919543B2 (en) Digital camera
KR101799597B1 (en) Interchangeable lens, method of controlling interchangeable lens, and computer readable recording medium
US8988579B2 (en) Imaging apparatus
JP2007139893A (en) Focusing detection device
JP2009048125A (en) Photographing equipment and method of controlling same
JP2009251491A (en) Imaging apparatus and control method for imaging apparatus
JP5932410B2 (en) Imaging device
US10425573B2 (en) Automatic focus adjustment device and automatic focus adjustment control device
JP2009251493A (en) Imaging apparatus and control method for imaging apparatus
JP2009069170A (en) Photographing device and control method of photographing device
JP2009036985A (en) Photographing device and control method for photographing device
JP4956403B2 (en) Imaging apparatus, control method thereof, and program
JP6257146B2 (en) Imaging apparatus, image processing apparatus, and image processing method
JP2009053296A (en) Imaging device and control method for same
JP2014146935A (en) Image pickup device and control program therefor
WO2024058029A1 (en) Imaging device, information processing device, and program
JP5478677B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP2010145495A (en) Camera system
JP2009048123A (en) Photographing equipment and method of controlling same
JP2009036987A (en) Photographing device and control method for photographing device
WO2019146164A1 (en) Imaging device, imaging method, and program
JP2006222883A (en) Digital camera
JP2014164028A (en) Imaging apparatus and switching method of imaging parameter and program
JP6257139B2 (en) Imaging device, lens device, and photographing system
JP5040669B2 (en) Imaging device