WO2024058002A1 - Base station device, terminal device, and communication control method - Google Patents

Base station device, terminal device, and communication control method Download PDF

Info

Publication number
WO2024058002A1
WO2024058002A1 PCT/JP2023/032327 JP2023032327W WO2024058002A1 WO 2024058002 A1 WO2024058002 A1 WO 2024058002A1 JP 2023032327 W JP2023032327 W JP 2023032327W WO 2024058002 A1 WO2024058002 A1 WO 2024058002A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
base station
terminal device
communication
station device
Prior art date
Application number
PCT/JP2023/032327
Other languages
French (fr)
Japanese (ja)
Inventor
廉 菅井
直紀 草島
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024058002A1 publication Critical patent/WO2024058002A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present disclosure relates to a base station device, a terminal device, and a communication control method.
  • in-band full duplex communication is being considered.
  • This in-band full-duplex communication is a method of performing full-duplex communication in the same band. Compared to full-duplex communication in which transmission and reception are performed in different bands, frequency usage efficiency can be doubled.
  • the above-mentioned conventional technology has the problem that full-duplex communication is performed by searching for an appropriate combination of a terminal device that receives a downlink signal and a terminal device that transmits an uplink signal, making the procedure complicated. be.
  • the procedure for in-band full-duplex communication becomes complicated when interference is received from terminal devices in different cells.
  • the present disclosure proposes a base station device, a terminal device, and a communication control method that simplify the procedure of in-band full-duplex communication.
  • the control unit includes a control unit that performs control to detect an interference region that is a region including terminal devices of other cells that cause interference, and control to cause other terminal devices included in the interference region to perform an interference suppression operation.
  • the terminal device provides a transmission signal for uplink communication in the same frequency band to a terminal device in another cell that performs downlink communication with the base station device.
  • the terminal device is located in an interference area that is an area including terminal devices that cause interference, and includes a control unit that performs interference suppression operations based on notifications from the base station device.
  • the communication method provides for a terminal device that performs downlink communication with its own base station device to interfere with transmission signals of uplink communication in the same frequency band.
  • This communication control method includes detecting an interference region that is a region including terminal devices of other cells that cause interference, and causing other terminal devices included in the interference region to perform an interference suppression operation.
  • the communication method provides a transmission signal for uplink communication in the same frequency band to a terminal device in another cell that performs downlink communication with the base station device.
  • This communication control method includes performing an interference suppression operation based on a notification from the base station device when the base station device is placed in an interference area that includes a terminal device that causes interference.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a communication system according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a base station device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a terminal device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of in-band full-duplex communication according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a processing procedure of communication control processing according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a processing procedure of detection processing of an interference protection terminal device according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a processing procedure of interference region detection processing according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a processing procedure of interference suppression processing according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating another example of the processing procedure of communication control processing according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a communication system 1 according to an embodiment of the present disclosure.
  • the communication system 1 includes a plurality of base station devices 20 (base station devices 20A and 20B), a plurality of terminal devices 40 (terminal devices 40A, 40B, and 40C), a core network 120, and a packet data network. (PDN: Packet Data Network) 130.
  • base station devices 20A and 20B base station devices 20A and 20B
  • terminal devices 40A, 40B, and 40C terminal devices 40A, 40B, and 40C
  • core network 120 a packet data network.
  • PDN Packet Data Network 130.
  • the number of each device is not limited to this. For example, there may be one base station device 20 and one terminal device 40.
  • the base station device 20 is a communication device that operates a cell 110 and provides wireless communication services to one or more terminal devices 40 located within the coverage of the cell 110.
  • the cell 110 is operated according to any wireless communication method such as LTE or NR.
  • Base station device 20 is connected to core network 120.
  • Core network 120 is connected to packet data network 130 via a gateway device (not shown).
  • the base station device 20 may be configured as a set of a plurality of physical or logical devices.
  • the base station device 20 is classified into a plurality of devices, such as a BBU (Baseband Unit) and an RU (Radio Unit), and may be interpreted as a collection of these devices.
  • BBU Baseband Unit
  • RU Radio Unit
  • the base station device 20 may be either or both of a BBU and an RU.
  • the BBU and RU may be connected through a predetermined interface (eg, eCPRI).
  • the RU may be referred to as RRU (Remote Radio Unit) or RD (Radio DoT).
  • RRU Remote Radio Unit
  • RD Radio DoT
  • the RU may correspond to a gNB-DU described below.
  • the BBU may correspond to a gNB-CU described below.
  • the RU may be a device integrally formed with the antenna.
  • the antenna possessed by the base station device 20 (for example, an antenna formed integrally with the RU) adopts an advanced antenna system and supports MIMO (for example, FD-MIMO) or beamforming, good.
  • the antenna included in the base station device 20 (for example, an antenna formed integrally with the RU) may include, for example, 64 transmitting antenna ports and 64 receiving antenna ports. .
  • a plurality of base station devices 20 may be connected to each other.
  • One or more base station devices 20 may be included in a radio access network (RAN). That is, the base station device 20 may be simply referred to as RAN, RAN node, AN (Access Network), or AN node.
  • RAN in LTE is called EUTRAN (Enhanced Universal Terrestrial RAN).
  • RAN in NR is called NGRAN.
  • the RAN in W-CDMA (UMTS) is called UTRAN.
  • the LTE base station device 20 is called an eNodeB (Evolved Node B) or eNB. That is, EUTRAN includes one or more eNodeBs (eNBs).
  • the NR base station device 20 is called gNodeB or gNB.
  • NGRAN includes one or more gNBs.
  • EUTRAN may include a gNB (en-gNB) connected to a core network (EPC) in an LTE communication system (EPS).
  • EPS LTE communication system
  • NGRAN may include an ng-eNB connected to a core network 5GC in a 5G communication system (5GS).
  • 3GPP registered trademark
  • RRH Remote Radio Head
  • the base station device 20 when the base station device 20 is a gNB, the base station device 20 is referred to as a combination of the above-mentioned gNB-CU (Central Unit) and gNB-DU (Distributed Unit), or any one of these. Good too.
  • the gNB-CU hosts multiple upper layers (eg, RRC, SDAP, and PDCP) among AS (Access Stratum) for communication with the UE.
  • AS Access Stratum
  • the gNB-DU hosts multiple lower layers (eg, RLC, MAC, and PHY) of the AS.
  • RRC signaling (for example, MIB, various SIBs including SIB1, RRC setup messages, and RRC reconfiguration messages) is generated by the gNB-CU, while DCI and various Physical channels (eg, PDCCH and PBCH) may be generated in gNB-DU.
  • DCI and various Physical channels eg, PDCCH and PBCH
  • some configurations of the RRC signaling such as IE: cellGroupConfig, may be generated in the gNB-DU, and the remaining configurations may be generated in the gNB-CU. These configurations may be sent and received via the F1 interface, which will be described later.
  • the base station device 20 may be configured to be able to communicate with other base station devices 20.
  • the base station apparatuses 20 may be connected by an X2 interface. Additionally or alternatively, when the plurality of base station apparatuses 20 are a combination of gNBs or gn-eNBs and gNBs, the apparatuses may be connected through an Xn interface. Additionally or alternatively, when the plurality of base station devices 20 are a combination of gNB-CUs and gNB-DUs, the devices may be connected through the F1 interface described above. Messages and information (RRC signaling or DCI information, Physical Channel), which will be described later, may be communicated between a plurality of base station devices 20 (for example, via the X2, Xn, and F1 interfaces).
  • RRC signaling or DCI information, Physical Channel which will be described later
  • the base station device 20 may be configured to manage multiple cells.
  • the cell provided by the base station device 20 is called a serving cell.
  • Surping cells include PCell (Primary Cell) and SCell (Secondary Cell). Dual connectivity (e.g., EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity) is 40), the PCell and zero or more SCells (S) provided by the MN (Master Node) are called an MCG (Master Cell Group).
  • the surping cell may include a PSCell (Primary Secondary Cell or Primary SCG Cell).
  • the PSCell and zero or more SCells (S) provided by the SN are called an SCG (Secondary Cell Group).
  • SCG Secondary Cell Group
  • PUCCH Physical Uplink Control Channel
  • Radio Link Failure is also detected in PCell and PSCell, but not detected in SCell (it does not need to be detected).
  • PCell and PSCell have a special role in the serving cell (S), so they are also called SpCell (Special Cell).
  • SpCell Specific Cell
  • One downlink component carrier and one uplink component carrier may be associated with one cell.
  • the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts (BWP).
  • BWP bandwidth parts
  • one or more BWPs may be configured in the UE, and one BWP may be used as an Active BWP in the UE.
  • the radio resources for example, frequency band, numerology (subcarrier spacing), slot configuration
  • the terminal device 40 may differ for each cell, each component carrier, or each BWP.
  • the core network 120 When the core network 120 is an NR core network (5G Core (5GC)), the core network 120 includes AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function), and PCF (Policy Control). Function) and UDM (Unified Data Management).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control
  • Function Policy Control
  • UDM Unified Data Management
  • the core network 120 When the core network 120 is an LTE core network (Evolved Packet Core (EPC)), the core network 120 includes MME (Mobility Management Entity), S-GW (Serving gateway), P-GW (PDN gateway), PCRF (Policy and Charging Rule Function) and HSS (Home Subscriber Server).
  • the AMF and MME are control nodes that handle control plane signals and manage the mobility of the terminal device 40.
  • the UPF and S-GW/P-GW are nodes that handle user plane signals.
  • the PCF/PCRF is a control node that controls policies such as QoS (Quality of Service) and accounting for PDU sessions or bearers.
  • the UDM/HSS is a control node that handles subscriber data and performs service control.
  • the terminal device 40 is a communication device that wirelessly communicates with the base station device 20 based on the control by the base station device 20. For example, the terminal device 40 measures the downlink signal from the base station device 20 and reports measurement information indicating the measurement result to the base station device 20. Base station device 20 controls wireless communication with terminal device 40 based on the reported measurement information. On the other hand, the terminal device 40 may transmit an uplink signal for measurement to the base station device 20. In that case, the base station device 20 measures the uplink signal from the terminal device 40 and controls wireless communication with the terminal device 40 based on the measurement information.
  • the base station devices 20 can send and receive information to and from each other using the inter-base station interface.
  • the inter-base station interface may be an Xn interface.
  • the core network is EPC
  • the inter-base station interface may be an X2 interface.
  • the base station device 20 transmits measurement information regarding the terminal device 40 for which handover is predicted (for example, measurement results of cells managed by the source base station device and measurement results of adjacent cells) to other adjacent base station devices 20. Send to. As a result, stable handover is realized, and the stability of wireless communication of the terminal device 40 is ensured.
  • the communication system 1 is surrounded by wireless communications operated by other RATs other than cellular communications, such as Wi-Fi (registered trademark) and MulteFire (registered trademark).
  • wireless communications operated by other RATs other than cellular communications, such as Wi-Fi (registered trademark) and MulteFire (registered trademark).
  • Such communication devices are typically connected to a packet data network 130.
  • FIG. 2 is a diagram illustrating a configuration example of the base station device 20 according to the embodiment of the present disclosure.
  • the base station device 20 is a communication device (wireless system) that wirelessly communicates with the terminal device 40.
  • the base station device 20 is a type of information processing device.
  • the base station device 20 includes a signal processing section 21, a storage section 22, a network communication section 23, and a control section 24. Note that the configuration shown in the figure is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the base station device 20 may be distributed and implemented in a plurality of physically separated devices.
  • the signal processing unit 21 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the terminal device 40 and other base station devices 20).
  • the signal processing section 21 operates under the control of the control section 24.
  • the signal processing unit 21 may be compatible with multiple wireless access methods.
  • the signal processing unit 21 may support both NR and LTE.
  • the signal processing unit 21 may be compatible with other cellular communication systems such as W-CDMA and cdma2000.
  • the signal processing unit 21 may support a wireless LAN communication method in addition to the cellular communication method. Of course, the signal processing unit 21 may only support one wireless access method.
  • the signal processing section 21 includes a reception processing section 211, a transmission processing section 212, and an antenna 113.
  • the signal processing section 21 may each include a plurality of reception processing sections 211, transmission processing sections 212, and antennas 113. Note that when the signal processing section 21 supports multiple wireless access methods, each section of the signal processing section 21 can be configured individually for each wireless access method. For example, if the base station device 20 supports NR and LTE, the reception processing section 211 and the transmission processing section 212 may be configured separately for NR and LTE.
  • the reception processing unit 211 processes uplink signals received via the antenna 113.
  • the reception processing section 211 includes a radio reception section 211a, a demultiplexing section 211b, a demodulation section 211c, and a decoding section 211d.
  • the radio receiving unit 211a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to a digital signal, removal of guard intervals, and fast Fourier transformation of the frequency domain signal for the uplink signal. Extract etc.
  • the wireless access method of the base station device 20 is a cellular communication method such as LTE.
  • the demultiplexing section 211b separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal output from the radio receiving section 211a.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the demodulation unit 211c demodulates the received signal using modulation schemes such as BPSK (Binary Phase Shift Keying) and QPSK (Quadrature Phase Shift Keying) on modulation symbols of the uplink channel.
  • modulation schemes such as BPSK (Binary Phase Shift Keying) and QPSK (Quadrature Phase Shift Keying) on modulation symbols of the uplink channel.
  • the modulation method used by the demodulator 211c may be multilevel QAM such as 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM.
  • the decoding unit 211d performs decoding processing on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and uplink control information are output to the control unit 24.
  • the transmission processing unit 212 performs transmission processing of downlink control information and downlink data.
  • the transmission processing section 212 includes an encoding section 212a, a modulation section 212b, a multiplexing section 212c, and a wireless transmission section 212d.
  • the encoding unit 212a encodes the downlink control information and downlink data input from the control unit 24 using encoding methods such as block encoding, convolutional encoding, and turbo encoding.
  • the modulator 212b modulates the encoded bits output from the encoder 212a using a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM.
  • the multiplexing unit 212c multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges it in a predetermined resource element.
  • the wireless transmitter 212d performs various signal processing on the signal from the multiplexer 212c.
  • the wireless transmitter 212d performs conversion into the time domain using fast Fourier transform, addition of a guard interval, generation of a baseband digital signal, conversion to an analog signal, orthogonal modulation, upconversion, removal of extra frequency components, and Performs processing such as power amplification.
  • the signal generated by the transmission processing section 212 is transmitted from the antenna 113.
  • the storage unit 22 is a data readable/writable storage device such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 22 functions as a storage means of the base station device 20.
  • the network communication unit 23 is a communication interface for communicating with other devices (for example, other base station devices 20).
  • the network communication unit 23 is a LAN (Local Area Network) interface such as a NIC (Network Interface Card).
  • the network communication unit 23 may be a USB (Universal Serial Bus) interface configured by a USB host controller, a USB port, or the like. Further, the network communication unit 23 may be a wired interface or a wireless interface.
  • the network communication unit 23 functions as a network communication means for the base station device 20.
  • the network communication unit 23 communicates with other devices under the control of the control unit 24.
  • the control unit 24 is a controller that controls each part of the base station device 20.
  • the control unit 24 is realized by, for example, a processor such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the control unit 24 is realized by a processor executing various programs stored in a storage device inside the base station device 20 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 24 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
  • FIG. 3 is a diagram illustrating a configuration example of the terminal device 40 according to the embodiment of the present disclosure.
  • the terminal device 40 is a communication device (wireless system) that wirelessly communicates with the base station device 20.
  • the terminal device 40 is a type of information processing device.
  • the terminal device 40 includes a signal processing section 41, a storage section 42, an input/output section 44, and a control section 45. Note that the configuration shown in the figure is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 40 may be distributed and implemented in a plurality of physically separated configurations.
  • the signal processing unit 41 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the base station device 20 and other terminal devices 40).
  • the signal processing section 41 operates under the control of the control section 45.
  • the signal processing unit 41 supports one or more wireless access methods.
  • the signal processing unit 41 supports both NR and LTE.
  • the signal processing unit 41 may be compatible with other wireless access methods such as W-CDMA (registered trademark) and cdma2000 (registered trademark).
  • the signal processing section 41 includes a reception processing section 411, a transmission processing section 412, and an antenna 213.
  • the signal processing section 41 may each include a plurality of reception processing sections 411, transmission processing sections 412, and antennas 213. Note that when the signal processing section 41 supports multiple wireless access methods, each section of the signal processing section 41 can be configured individually for each wireless access method.
  • the reception processing unit 411 and the transmission processing unit 412 may be configured separately for LTE and NR.
  • the configurations of the reception processing section 411 and the transmission processing section 412 are similar to the reception processing section 211 and the transmission processing section 212 of the base station device 20.
  • the storage unit 42 is a data readable/writable storage device such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 42 functions as a storage means of the terminal device 40.
  • the input/output unit 44 is a user interface for exchanging information with the user.
  • the input/output unit 44 is an operating device such as a keyboard, a mouse, an operation key, a touch panel, etc. for the user to perform various operations.
  • the input/output unit 44 is a display device such as a liquid crystal display or an organic electroluminescence display.
  • the input/output unit 44 may be an audio device such as a speaker or a buzzer.
  • the input/output unit 44 may be a lighting device such as an LED (Light Emitting Diode) lamp.
  • the input/output unit 44 functions as an input/output means (input means, output means, operation means, or notification means) of the terminal device 40.
  • the control unit 45 is a controller that controls each part of the terminal device 40.
  • the control unit 45 is realized by, for example, a processor such as a CPU and an MPU.
  • the control unit 45 is realized by a processor executing various programs stored in a storage device inside the terminal device 40 using a RAM or the like as a work area.
  • the control unit 45 may be realized by an integrated circuit such as ASIC or FPGA. CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
  • the communication system 1 performs in-band full-duplex communication. This causes interference in link communication. The measurement of this interference state will be explained.
  • the terminal device 40 and the base station device 20 measure the state of the propagation path.
  • the terminal device 40 and the base station device 20 measure the received power of a predetermined signal or the received power of all signals using the configured resources.
  • the received power of a predetermined signal is also called RSRP (Reference Signal Received Power).
  • the received power of all signals is also called RSSI (Received Signal Strength Indicator).
  • examples of types of channel measurements include CSI (Channel State Information) measurement and RRM (Radio Resource Management) measurement.
  • CSI measurement is also called L1 (Layer 1) measurement
  • RRM measurement is also called L3 (Layer 3) measurement.
  • CSI measurement The results of CSI measurement are mainly used for dynamic resource allocation such as dynamic scheduling.
  • the signal strength in downlink CSI measurement is measured using, for example, CSI-RS.
  • Downlink CSI measurements are reported to the base station as CSI feedback.
  • Downlink CSI is CQI (Channel Quality indicator), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), SSBRI (SS/PBCH Block Resource Indicator), LI (Layer Indicator), RI (Rank Indicator). , and/or L1-RSRP.
  • the terminal device 40 calculates an SINR that satisfies a predetermined PDSCH error rate as a CQI index, and feeds it back to the base station device 20.
  • the predetermined error rate is, for example, 10 ⁇ 1 for eMBB and 10 ⁇ 5 for URLLC.
  • PMI is information indicating a precoding matrix desired by the terminal device 40.
  • Terminal device 40 calculates a precoding matrix suitable for PDSCH reception and feeds it back to base station device 20 as PMI.
  • the CRI is information indicating a CSI-RS with good reception quality.
  • the terminal device 40 detects a CSI-RS with a high CSI-RSRP and feeds back the CRI corresponding to the CSI-RS to the base station device 20.
  • SSBRI is information indicating an SS/PBCH block with good reception quality.
  • the terminal device 40 detects an SS/PBCH block with a high SS-RSRP and feeds back the SSBRI corresponding to the SS/PBCH block to the base station device 20.
  • LI is information indicating the strongest layer among multiple layers.
  • the terminal device 40 calculates the layer with high reception strength and feeds it back to the base station device 20 as LI.
  • RI is information indicating the number of ranks desired by the terminal device 40.
  • the terminal device 40 calculates an appropriate rank number according to the number of antennas and reception quality, and feeds it back to the base station device 20.
  • L1-RSRP is information on RSRP in layer 1 (physical layer). L1-RSRP is characterized by a shorter measurement and reporting cycle than RSRP in RRM measurement, which will be described later.
  • a set (CSI Resource Setting) of resources for performing channel measurement and resources for performing interference measurement is defined.
  • Resources for performing channel measurements are defined as NZP CSI-RS resources.
  • Resources for performing interference measurements are defined as CSI-IM resources or NZP CSI-RS.
  • the base station device 20 configures one or more CSI resource settings for the terminal device 40.
  • the terminal device 40 measures desired signal power and interference power and calculates channel quality (SINR, CQI, etc.) based on the configured CSI resource settings.
  • the signal strength in uplink CSI measurement is measured using, for example, SRS (Sounding Reference Signal).
  • SRS Sounding Reference Signal
  • periodic SRS transmission when SRS resources are configured by RRC and an activation instruction for SRS transmission is received by DCI, the terminal device 40 remains configured until it receives a deactivation instruction. SRS is transmitted using the SRS resources that have been created.
  • aperiodic SRS transmission when SRS resources are configured by RRC and an SRS transmission trigger instruction is issued by DCI, the terminal device 40 transmits SRS once using the configured SRS resources.
  • RRC sets the time/frequency resources on which the SRS is transmitted.
  • the SRS is transmitted in the last six symbols of the slot.
  • the SRS In periodic SRS transmission and semi-persistent SRS transmission, the SRS has a period and a slot offset.
  • RRM measurement The results of RRM measurement are mainly used for semi-static resource control such as RRC configuration and handover processing.
  • RRM measurement for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator), and SINR (Signal to Interference plus Noise power Ratio) are measured.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Receiveived Signal Strength Indicator
  • SINR Signal to Interference plus Noise power Ratio
  • RSRP (also referred to as L3-RSRP) in RRM measurement is measured using, for example, SS/PBCH block or CSI-RS.
  • RSRP in RRM measurement is calculated from one or more L1-RSRPs.
  • RSRP in RRM measurement is calculated as an average value of a plurality of L1-RSRPs with different measurement resources.
  • RSSI is the total received power for a given resource, including interference and noise.
  • the predetermined resources may be set from the base station device 20.
  • RSRQ is defined by RSRP ⁇ number of resource blocks of RSSI measurement bandwidth/RSSI.
  • SINR is defined as the ratio of signal reception power to interference noise power in a predetermined resource.
  • FIG. 4 is a diagram illustrating an example of in-band full-duplex communication according to an embodiment of the present disclosure. This figure is a diagram showing the state of uplink communication and downlink communication shown in FIG. 5, which will be described later.
  • the horizontal axis in the figure represents time, and the vertical axis represents frequency.
  • in-band full-duplex communication is a communication method in which transmission and reception are performed simultaneously using the same band.
  • the 5G communication standard allows a single wireless system to support various communication use cases such as URLLC (Ultra-Reliable and Low Latency Communication) in addition to eMBB (enhanced Mobile Broadband) for conventional smartphone data communication. It is assumed.
  • URLLC Ultra-Reliable and Low Latency Communication
  • eMBB enhanced Mobile Broadband
  • URLLC is a wireless communication that requires either or both of high reliability and low delay, such as emergency message transmission used in automatic driving.
  • a URLLC packet is multiplexed during reception of an eMBB packet.
  • TDD time division duplex
  • QoS Quality of Service
  • FIG. 5 is a diagram illustrating an example of a communication system according to an embodiment of the present disclosure.
  • the communication system 1 includes a base station device 20A and a terminal device 40A.
  • the base station device 20A in the figure operates a cell 110A. Furthermore, the base station device 20A performs downlink communication with the terminal device 40A.
  • the terminal device 40B located at the end of the cell 110B adjacent to the cell 110A performs uplink communication with the base station device 20B operating the cell 110B.
  • interference occurs when the uplink communication of the terminal device 40B and the downlink communication of the terminal device 40A are performed using in-band full-duplex communication, interference occurs.
  • the reception signal of the downlink communication of the terminal device 40A receives interference from the transmission signal of the uplink communication of the terminal device 40B.
  • the dashed arrow in the figure represents this interference.
  • the base station apparatus 20A causes the terminal apparatus 40B to perform an interference suppression operation.
  • This interference suppression operation is an operation for suppressing interference of the terminal device 40B with the terminal device 40A. Details of the interference suppression operation will be described later.
  • the base station device 20A requests the terminal device 40B to perform an interference suppression operation by transmitting a notification of the interference suppression operation. At this time, the base station device 20A transmits a notification of interference suppression operation to the terminal device 40 included in the interference area 190.
  • the interference region 190 is an area composed of a group of terminals that interfere with the terminal device 40A that performs downlink communication with the base station device 20A, for example, the transmission of uplink communication in the same frequency band in FIG. This is an area including the terminal device 40B of another cell 110B that causes interference with the signal.
  • the interference region 190 in the figure represents an example in which the terminal device 40B of the adjacent cell 110B is included.
  • the base station device 20A in the figure detects an interference region 190 for the terminal device 40A that desires downlink communication using in-band full-duplex communication. Next, when the terminal device 40A performs downlink communication using in-band full-duplex communication, it notifies the other terminal devices 40 (terminal device 40B in the figure) included in the interference area 190 of the interference suppression operation. conduct. Thereby, interference that the terminal device 40A receives can be reduced.
  • [Communication control processing] 6 is a diagram showing an example of a processing procedure of a communication control process according to an embodiment of the present disclosure.
  • the figure is a flow chart showing an example of a processing procedure of a communication process of the base station device 20A.
  • the base station device 20A detects an interference-protected terminal device (step S101).
  • the interference-protected terminal device is a terminal device that performs an interference protection operation during in-band full-duplex communication including a terminal that transmits data of the above URLLC requirements, and corresponds to the terminal device 40A in FIG. 5, for example. Details of the detection process of the interference-protected terminal device will be described later.
  • step S102 if there is no interference protection terminal device (step S102, No), the base station device 20A ends the process. On the other hand, if there is an interference protection terminal device (step S102, Yes), the base station device 20A performs interference area detection processing (step S110). Note that details of the interference area detection process will be described later.
  • the base station device 20A allocates radio resources to the terminal device 40B (step S103).
  • the base station device 20A notifies the other terminal devices 40 included in the interference region 190 of the interference suppression operation (step S104), and ends the process.
  • the base station device 20A identifies whether there is a terminal device 40 that corresponds to an interference protection terminal device among the terminal devices 40 under its control.
  • the operation of identifying this interference protection terminal device includes the received power or received SINR (Signal to Interference and Noise power Ratio) of the terminal device 40, the required QoS (Quality of Service) of the signal to be transmitted, and the terminal devices of other nearby cells.
  • SINR Signal to Interference and Noise power Ratio
  • QoS Quality of Service
  • This is an operation of determining an interference protection terminal device according to information such as distribution.
  • a measurement operation may be performed on the terminal device 40A side in order to know the status of the received SINR and the distribution of peripheral terminal devices.
  • FIG. 7 is a diagram illustrating an example of a processing procedure of detection processing of an interference protection terminal device according to an embodiment of the present disclosure.
  • This figure is a sequence diagram showing an example of the processing procedure of the interference protection terminal device detection process of the base station device 20A.
  • the base station device 20A requests the terminal device 40A to measure interference from other cells (step S201). This interference measurement corresponds to measuring interference from the terminal device 40B of another cell 110B in the terminal device 40A.
  • the base station device 20A for example, transmits a signal requesting interference measurement to another terminal device 40 (terminal device 40B in FIG. 5).
  • the base station device 20A specifies radio resources for transmission and reception using this signal.
  • the terminal device 40A requests the terminal devices 40 of other surrounding cells (terminal device 40B in the figure) to transmit an interference measurement signal (step S202). Specifically, the terminal device 40A transmits a signal requesting the terminal device 40B and the like to transmit an interference measurement signal.
  • the terminal device 40B refers to the cell ID of the signal and determines whether this signal has arrived from a terminal device in a cell different from its own cell.
  • the terminal device (terminal device 40B) of another cell that has received the signal requesting the transmission of a signal for measuring interference transmits an interference measurement signal that is a signal for measuring interference (step S203).
  • terminal device 40B When a terminal device (terminal device 40B) in another cell transmits a high QoS signal that requires low delay, the terminal device transmits that information in a signal for measuring interference or in another signal.
  • the device 40A is notified.
  • the terminal device 40 terminal detects its own received SINR and the distribution of surrounding terminal devices 40 in other cells transmitting high QoS signals based on the received signal for measuring interference, and uses the information.
  • the measurement results are transmitted to the base station device 20A (step S204).
  • the base station device 20A detects the interference protection terminal device based on this measurement result. For example, when the reception SINR of the measurement result is relatively low, the base station device 20A can detect the terminal device 40A as an interference protection terminal device.
  • the base station device 20A may perform a series of operations for identifying an interference protection terminal device on a single terminal device 40 or may perform the series of operations on a plurality of terminal devices 40.
  • orthogonal resources are allocated to each terminal device 40.
  • FIG. 8 is a diagram illustrating an example of a processing procedure of interference region detection processing according to an embodiment of the present disclosure. This figure is a flowchart showing an example of the processing procedure of interference area detection (step S110) in FIG. 6.
  • base station device 20A acquires interference information for the interference-protected terminal device.
  • This interference information is information necessary for the interference-protected terminal device to perform interference suppression operations when performing in-band full-duplex communication.
  • This interference information corresponds, for example, to the amount of interference received from within its own cell and the amount of interference received from other cells when a certain interference-protected terminal device performs in-band full-duplex communication, as well as the packet error rate for the MCS (Modulation and Coding Scheme) when actually performing in-band full-duplex communication.
  • the interference information corresponds, for example, to the ratio of noise signals to received signals of the interference-protected terminal device and information related to QoS.
  • Base station device 20A requests terminal device 40A to generate interference information (step S111).
  • the terminal device 40A measures the amount of interference described above and generates interference information. Note that information measured at the time of detecting the interference protection terminal device can also be applied to the interference information.
  • the base station device 20A acquires interference information from the terminal device 40A (step S112). When acquiring this interference information, the base station device 20A can also collect location information and sector information of the base station device 20A.
  • the base station device 20A determines the interference area 190 based on the interference information (step S113).
  • This interference region 190 can be determined based on any or a combination of the following criteria.
  • (a) A certain range from all interference-protected terminal devices (b) A range that includes terminal devices that may cause interference around the interference-protected terminal device (c) A combined sector area where interference-protected terminal devices are located (d ) Interference protection Combines the sector areas of terminal equipment that can cause interference around the terminal equipment.
  • a plurality of interference regions may be defined within the area covered by a single base station device 20.
  • An ID is assigned to the terminal device 40 within the interference region 190 in order to identify it as a terminal device 40 existing in the interference region 190.
  • This ID may be defined as new information or may be defined as a combination of existing area information.
  • the base station device 20A defines terminal devices having multiple zone IDs as terminal devices within the interference area 190 by combining the zone ID of the adjacent base station device 20 and its own zone ID. .
  • the interference suppression operations that the base station apparatus 20 requests from the interfering terminal apparatus 40 include, for example, suppressing the transmission power of the interfering terminal apparatus, stopping transmission of the interfering terminal apparatus, and suppressing all interference within the band of the interfering terminal apparatus. This includes stopping heavy communication and changing radio resources used by interfering terminal devices.
  • the base station devices 20 agree on the radio resources to be changed in advance. This can be done by signaling.
  • the base station device 20 can also transmit a signal requesting interference suppression operation based on a request from an interference protection terminal that performs in-band full-duplex communication.
  • the base station device 20 may also receive a request signal from the base station device 20 of another cell and transmit a signal requesting interference suppression to the terminal device under its control. Further, these signals requesting interference suppression can be transmitted as physical layer control signals via the PDCCH. Further, the signal requesting interference suppression can also be transmitted as MAC or RRC layer control information via the PDSCH.
  • what kind of interference suppression operation the base station device 20 requests can be determined based on the amount of interference received from the surrounding terminal devices 40 and the amount of allowable interference measured when determining the interference area 190. can.
  • FIG. 9 is a diagram illustrating an example of a processing procedure of interference suppression processing according to an embodiment of the present disclosure. This figure is a sequence diagram showing the procedure of the interference suppression operation in the terminal device 40B based on the notification of the interference suppression operation from the base station device 20A.
  • the base station device 20A allocates radio resources to the terminal device 40A (step S211). This is a processing procedure corresponding to step S103 in FIG. Next, the base station device 20A notifies the terminal device 40B, which is the interfering terminal device, of the interference suppression operation (step S212). This is a processing procedure corresponding to step S104 in FIG. Next, the terminal device 40B performs an interference suppression operation based on the notification of the interference suppression operation (step S213). Through the above processing procedure, the terminal device 40B can perform an interference suppression operation and suppress interference with the downlink communication of the terminal device 40A.
  • the terminal device 40B can select the interference suppression operation based on the amount of allowable interference measured in advance.
  • the interference suppression operation is one of transmission power suppression, transmission stop, determination of whether or not to perform in-band full-duplex communication, and request to cancel in-band full-duplex communication.
  • This interference suppression operation may be requested by the terminal device 40B itself, or may be requested by the base station device 20A or the terminal device 40 of another cell.
  • the target for requesting the above-mentioned interference suppression operation is the terminal device 40 in the area or sector around the terminal device 40 that performs the preset in-band full-duplex communication.
  • the range of this region or sector may be determined by a range defined by a plurality of zone IDs, and the range of the region or sector may be determined based on the QoS of the signal that may be transmitted by the terminal device 40 itself that performs in-band full-duplex communication. may be determined.
  • a method for measuring the amount of allowable interference in the terminal device 40 will be explained.
  • This measurement of the allowable amount of interference is performed for the terminal device 40 that performs in-band full-duplex communication.
  • the allowable amount of interference can be measured based on the amount of interference measured by the aforementioned terminal-to-terminal interference (CLI).
  • CLI terminal-to-terminal interference
  • This measurement is performed on a region or sector basis.
  • This measurement is triggered by the base station device 20.
  • the base station device 20 transmits a signal containing information requesting an operation for measuring the amount of allowable interference to the terminal device 40A and the terminal device 40B.
  • the terminal device 40A that has received the signal storing information requesting an operation for measuring the amount of allowable interference waits until it receives a known signal for measuring interference transmitted from another terminal device.
  • the terminal device 40B which has received the signal storing the information requesting the operation for measuring the amount of allowable interference, transmits a known signal for measuring the interference.
  • the terminal device 40A that has received the known signal for interference measurement notifies the base station device 20 of the amount of interference that it has measured.
  • a plurality of terminals within a sector or area may simultaneously transmit a signal containing information requesting an operation for measuring the amount of allowable interference. Based on this measurement result, the allowable amount of interference for in-band full-duplex communication is calculated.
  • FIG. 10 is a diagram illustrating another example of the processing procedure of communication control processing according to the embodiment of the present disclosure. Similar to FIG. 6, this figure is a flowchart illustrating an example of the processing procedure of communication processing of the base station device 20A. The process in the figure is a process when the interference protection terminal device (terminal device 40A) actually starts in-band full-duplex communication after detecting the interference protection terminal device.
  • the base station device 20A determines whether the terminal device 40A performs in-band full-duplex communication (step S131). As a result, if the terminal device 40A does not perform in-band full-duplex communication (step S131, No), the base station device 20A ends the process. On the other hand, when the terminal device 40A performs in-band full-duplex communication (step S131, Yes), the base station device 20A determines whether to update the interference region 190 (step S132). For example, when the interference situation changes due to movement of the terminal device 40A, which is an interference protection terminal, or the surrounding terminal devices 40, it is necessary to update the interference area 190.
  • step S132 If the interference region 190 is not updated (step S132, No), the base station device 20A moves to the process of step S133. On the other hand, when updating the interference region 190 (step S132, Yes), the base station device 20A performs interference region detection (step S110), and proceeds to the process of step S133. In step S133, the base station device 20A performs radio resource allocation (step S133) and notifies interference suppression operation (step S134).
  • the communication system 1 detects the interference region 190 that includes interfering terminals of other cells. Then, when the terminal device 40A performs in-band full-duplex communication, the base station device 20A causes other terminal devices 40 included in the interference area to perform an interference suppression operation. Thereby, the procedure for in-band full-duplex communication of the terminal device 40A can be simplified.
  • the control device that controls the base station device 20 and the terminal device 40 of this embodiment may be realized by a dedicated computer system, or may be realized by a general-purpose computer system.
  • a communication program for executing the above operations is stored and distributed in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk. Then, for example, the program is installed on a computer and the control device is configured by executing the above-described processing.
  • the control device may be a device (for example, a personal computer) external to the base station device 20 and the terminal device 40. Further, the control device may be a device inside the base station device 20 and the terminal device 40 (for example, the control unit 24 and the control unit 45).
  • the communication program may be stored in a disk device included in a server device on a network such as the Internet, so that it can be downloaded to a computer.
  • the above-mentioned functions may be realized through collaboration between an OS (Operating System) and application software.
  • the parts other than the OS may be stored on a medium and distributed, or the parts other than the OS may be stored in a server device so that they can be downloaded to a computer.
  • each component of each device shown in the drawings is functionally conceptual, and does not necessarily need to be physically configured as shown in the drawings.
  • the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured. Note that this distribution/integration configuration may be performed dynamically.
  • the present embodiment applies to any configuration constituting a device or system, such as a processor as a system LSI (Large Scale Integration), a module using multiple processors, etc., and a unit using multiple modules. Furthermore, it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
  • a processor as a system LSI (Large Scale Integration)
  • a module using multiple processors etc.
  • a unit using multiple modules a unit using multiple modules.
  • it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
  • a system means a collection of multiple components (devices, modules (components), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, multiple devices housed in separate casings and connected via a network, and a single device with multiple modules housed in one casing are both systems. .
  • the present embodiment can take a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
  • each device described in this specification may be realized using software, hardware, or a combination of software and hardware.
  • the programs constituting the software are stored in advance in, for example, a storage medium (non-transitory media) provided inside or outside each device.
  • each program is read into a RAM when executed by a computer, and executed by a processor such as a CPU.
  • the present technology can also have the following configuration.
  • (1) In a communication system that performs in-band full-duplex communication, it includes terminal devices in other cells that cause interference with uplink communication transmission signals in the same frequency band to terminal devices that perform downlink communication with their own base station equipment.
  • a base station device comprising a control unit that performs control to detect an interference region, which is a region, and control to cause other terminal devices included in the interference region to perform an interference suppression operation.
  • the control unit performs control to detect the interference area based on interference information that is information about interference that the terminal device receives from the terminal device of the other cell.
  • the base station device wherein the interference information includes a packet error rate during in-band full-duplex communication of the terminal device.
  • the base station device wherein the interference information includes information regarding QoS of the terminal device of the other cell.
  • the control unit further controls the terminal device to generate the interference information, and detects the interference area based on the interference information generated by the terminal device.
  • the base station device (1), wherein the control unit performs suppression of transmission power as the interference suppression operation.
  • the base station device wherein the control unit causes the interference suppression operation to be a stop of transmission.
  • the control unit causes the interference suppression operation to be a stop of in-band full-duplex communication.
  • the control unit causes the interference suppression operation to be a change in radio resources to be used.
  • a communication system that performs in-band full-duplex communication it includes terminal devices in other cells that cause interference with uplink communication transmission signals in the same frequency band to terminal devices that perform downlink communication with their own base station equipment. detecting an interference region that is a region; A communication control method comprising: causing another of the terminal devices included in the interference area to perform an interference suppression operation. (14) In a communication system that performs in-band full-duplex communication, an area that includes terminal equipment that causes interference with uplink communication transmission signals in the same frequency band to terminal equipment in other cells that perform downlink communication with the base station equipment. A communication control method comprising performing an interference suppression operation based on a notification from the base station device when the base station device is located in a certain interference area.

Abstract

The present disclosure simplifies a procedure for in-band full-duplex communication. A base station device according to the the present disclosure has a control unit. The control unit of the base station device performs, in a communication system that performs in-band full-duplex communication: control for detecting an interference region that includes terminal devices of other cells that interfere, through transmission signals of uplink communication in the same frequency band, with a terminal device performing downlink communication with the host base station device; and control for causing the other terminal devices included in the detected interference region to perform an interference suppression operation.

Description

基地局装置、端末装置及び通信制御方法Base station device, terminal device and communication control method
 本開示は、基地局装置、端末装置及び通信制御方法に関する。 The present disclosure relates to a base station device, a terminal device, and a communication control method.
 無線通信装置における周波数利用効率を向上させるため、帯域内全二重通信(in band full duplex)が検討されている。この帯域内全二重通信は、同一の帯域において全二重通信を行う方式である。送信及び受信を異なる帯域にて行う全二重通信と比較して周波数利用効率を2倍にすることができる。 In order to improve the efficiency of frequency use in wireless communication devices, in-band full duplex communication is being considered. This in-band full-duplex communication is a method of performing full-duplex communication in the same band. Compared to full-duplex communication in which transmission and reception are performed in different bands, frequency usage efficiency can be doubled.
 この帯域内全二重通信においては、ある端末装置が基地局装置に対して上りリンク信号を送信するのと同時に同一セル内の異なる端末装置が基地局装置からの下りリンク信号を受信することが可能となる。この場合、送信された上りリンク信号が他の端末の下りリンク信号に干渉する端末装置間の干渉である端末間干渉が問題となる。この端末間干渉を防ぐため、帯域内全二重通信の前に端末間干渉を測定する通信装置が提案されている(例えば、特許文献1参照)。 In this in-band full-duplex communication, it is possible for a terminal device to transmit an uplink signal to a base station device and at the same time a different terminal device in the same cell receive a downlink signal from the base station device. It becomes possible. In this case, inter-terminal interference, which is interference between terminal devices in which a transmitted uplink signal interferes with a downlink signal of another terminal, becomes a problem. In order to prevent this inter-terminal interference, a communication device that measures inter-terminal interference before in-band full-duplex communication has been proposed (see, for example, Patent Document 1).
国際公開第2019/142512号International Publication No. 2019/142512
 しかしながら、上記の従来技術では、下りリンク信号を受信する端末装置と上りリンク信号を送信する端末装置との適切な組合せを探索して全二重通信を行うため、手順が複雑になるという問題がある。特に異なるセルの端末装置から干渉を受ける場合の帯域内全二重通信の手順が複雑になるという問題がある。 However, the above-mentioned conventional technology has the problem that full-duplex communication is performed by searching for an appropriate combination of a terminal device that receives a downlink signal and a terminal device that transmits an uplink signal, making the procedure complicated. be. In particular, there is a problem in that the procedure for in-band full-duplex communication becomes complicated when interference is received from terminal devices in different cells.
 そこで、本開示では、帯域内全二重通信の手順を簡略化する基地局装置、端末装置及び通信制御方法を提案する。 Therefore, the present disclosure proposes a base station device, a terminal device, and a communication control method that simplify the procedure of in-band full-duplex communication.
 本開示に係る基地局装置は、帯域内全二重通信を行う通信システムにおいて、自身の基地局装置と下りリンク通信を行う端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす他のセルの端末装置を含む領域である干渉領域を検出する制御と、上記干渉領域に含まれる他の上記端末装置に干渉抑制動作を行わせる制御とを行う制御部を有する。 In a communication system that performs in-band full-duplex communication, a base station device according to the present disclosure prevents interference with a terminal device that performs downlink communication with its own base station device by a transmission signal of uplink communication in the same frequency band. The control unit includes a control unit that performs control to detect an interference region that is a region including terminal devices of other cells that cause interference, and control to cause other terminal devices included in the interference region to perform an interference suppression operation.
 また、本開示に係る端末装置は、帯域内全二重通信を行う通信システムにおいて、基地局装置と下りリンク通信を行う他のセルの端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす端末装置を含む領域である干渉領域に配置される端末装置であって、上記基地局装置からの通知に基づいて干渉抑制動作を行う制御部を有する。 Furthermore, in a communication system that performs in-band full-duplex communication, the terminal device according to the present disclosure provides a transmission signal for uplink communication in the same frequency band to a terminal device in another cell that performs downlink communication with the base station device. The terminal device is located in an interference area that is an area including terminal devices that cause interference, and includes a control unit that performs interference suppression operations based on notifications from the base station device.
 また、本開示に係る通信方法は、帯域内全二重通信を行う通信システムにおいて、自身の基地局装置と下りリンク通信を行う端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす他のセルの端末装置を含む領域である干渉領域を検出することと、上記干渉領域に含まれる他の上記端末装置に干渉抑制動作を行わせることとを含む通信制御方法である。 Furthermore, in a communication system that performs in-band full-duplex communication, the communication method according to the present disclosure provides for a terminal device that performs downlink communication with its own base station device to interfere with transmission signals of uplink communication in the same frequency band. This communication control method includes detecting an interference region that is a region including terminal devices of other cells that cause interference, and causing other terminal devices included in the interference region to perform an interference suppression operation.
 また、本開示に係る通信方法は、帯域内全二重通信を行う通信システムにおいて、基地局装置と下りリンク通信を行う他のセルの端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす端末装置を含む領域である干渉領域に配置される際に、上記基地局装置からの通知に基づいて干渉抑制動作を行うことを含む通信制御方法である。 Furthermore, in a communication system that performs in-band full-duplex communication, the communication method according to the present disclosure provides a transmission signal for uplink communication in the same frequency band to a terminal device in another cell that performs downlink communication with the base station device. This communication control method includes performing an interference suppression operation based on a notification from the base station device when the base station device is placed in an interference area that includes a terminal device that causes interference.
本開示の実施形態に係る通信システムの全体構成の一例を示す図である。1 is a diagram illustrating an example of the overall configuration of a communication system according to an embodiment of the present disclosure. 本開示の実施形態に係る基地局装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a base station device according to an embodiment of the present disclosure. 本開示の実施形態に係る端末装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a terminal device according to an embodiment of the present disclosure. 本開示の実施形態に係る帯域内全二重通信の一例を示す図である。FIG. 2 is a diagram illustrating an example of in-band full-duplex communication according to an embodiment of the present disclosure. 本開示の実施形態に係る通信システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment of the present disclosure. 本開示の実施形態に係る通信制御処理の処理手順の一例を示す図である。FIG. 3 is a diagram illustrating an example of a processing procedure of communication control processing according to an embodiment of the present disclosure. 本開示の実施形態に係る干渉保護端末装置の検出処理の処理手順の一例を示す図である。FIG. 3 is a diagram illustrating an example of a processing procedure of detection processing of an interference protection terminal device according to an embodiment of the present disclosure. 本開示の実施形態に係る干渉領域検出処理の処理手順の一例を示す図である。FIG. 3 is a diagram illustrating an example of a processing procedure of interference region detection processing according to an embodiment of the present disclosure. 本開示の実施形態に係る干渉抑制処理の処理手順の一例を示す図である。FIG. 3 is a diagram illustrating an example of a processing procedure of interference suppression processing according to an embodiment of the present disclosure. 本開示の実施形態に係る通信制御処理の処理手順の他の例を示す図である。FIG. 7 is a diagram illustrating another example of the processing procedure of communication control processing according to the embodiment of the present disclosure.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。説明は、以下の順に行う。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
1.基本の構成
2.実施形態
Embodiments of the present disclosure will be described in detail below based on the drawings. The explanation will be given in the following order. In addition, in each of the following embodiments, the same portions are given the same reference numerals and redundant explanations will be omitted.
1. Basic configuration 2. Embodiment
 (1.基本の構成)
 [システム構成]
 図1は、本開示の実施形態に係る通信システム1の全体構成の一例を示す図である。図1に示したように、通信システム1は、複数の基地局装置20(基地局装置20Aおよび20B)、複数の端末装置40(端末装置40A、40B及び40C)、コアネットワーク120およびパケットデータネットワーク(PDN:Packet Data Network)130を含む。なお、各装置の数はこれには限られない。例えば、基地局装置20や端末装置40は各1台であってもよい。
(1. Basic configuration)
[System configuration]
FIG. 1 is a diagram illustrating an example of the overall configuration of a communication system 1 according to an embodiment of the present disclosure. As shown in FIG. 1, the communication system 1 includes a plurality of base station devices 20 ( base station devices 20A and 20B), a plurality of terminal devices 40 ( terminal devices 40A, 40B, and 40C), a core network 120, and a packet data network. (PDN: Packet Data Network) 130. Note that the number of each device is not limited to this. For example, there may be one base station device 20 and one terminal device 40.
 基地局装置20は、セル110を運用し、セル110のカバレッジの内部に位置する1つ以上の端末装置40へ無線通信サービスを提供する通信装置である。セル110は、例えばLTEまたはNR等の任意の無線通信方式に従って運用される。基地局装置20は、コアネットワーク120に接続される。コアネットワーク120は、ゲートウェイ装置(不図示)を介してパケットデータネットワーク130に接続される。なお、基地局装置20は、複数の物理的又は論理的装置の集合で構成されていてもよい。例えば、本開示の実施形態において基地局装置20は、BBU(Baseband Unit)及びRU(Radio Unit)の複数の装置に区別され、これら複数の装置の集合体として解釈されてもよい。さらに又はこれに代えて、本開示の実施形態において基地局装置20は、BBU及びRUのうちいずれか又は両方であってもよい。BBUとRUとは所定のインタフェース(例えば、eCPRI)で接続されていてもよい。さらに又はこれに代えて、RUはRRU(Remote Radio Unit)又はRD(Radio DoT)と称されていてもよい。さらに又はこれに代えて、RUは後述するgNB-DUに対応していてもよい。さらに又はこれに代えてBBUは、後述するgNB-CUに対応していてもよい。さらに又はこれに代えて、RUはアンテナと一体的に形成された装置であってもよい。基地局装置20が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)はアドバンスドアンテナシステム(Advanced Antenna System)を採用し、MIMO(例えば、FD-MIMO)やビームフォーミングをサポートしていてもよい。アドバンスドアンテナシステムにおいて、基地局装置20が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)は、例えば、64個の送信用アンテナポート及び64個の受信用アンテナポートを備えていてもよい。 The base station device 20 is a communication device that operates a cell 110 and provides wireless communication services to one or more terminal devices 40 located within the coverage of the cell 110. The cell 110 is operated according to any wireless communication method such as LTE or NR. Base station device 20 is connected to core network 120. Core network 120 is connected to packet data network 130 via a gateway device (not shown). Note that the base station device 20 may be configured as a set of a plurality of physical or logical devices. For example, in the embodiment of the present disclosure, the base station device 20 is classified into a plurality of devices, such as a BBU (Baseband Unit) and an RU (Radio Unit), and may be interpreted as a collection of these devices. Additionally or alternatively, in the embodiment of the present disclosure, the base station device 20 may be either or both of a BBU and an RU. The BBU and RU may be connected through a predetermined interface (eg, eCPRI). Additionally or alternatively, the RU may be referred to as RRU (Remote Radio Unit) or RD (Radio DoT). Additionally or alternatively, the RU may correspond to a gNB-DU described below. Additionally or alternatively, the BBU may correspond to a gNB-CU described below. Additionally or alternatively, the RU may be a device integrally formed with the antenna. Even if the antenna possessed by the base station device 20 (for example, an antenna formed integrally with the RU) adopts an advanced antenna system and supports MIMO (for example, FD-MIMO) or beamforming, good. In the advanced antenna system, the antenna included in the base station device 20 (for example, an antenna formed integrally with the RU) may include, for example, 64 transmitting antenna ports and 64 receiving antenna ports. .
 また、基地局装置20は、複数が互いに接続されていてもよい。1つ又は複数の基地局装置20は無線アクセスネットワーク(RAN:Radio Access Network)に含まれていてもよい。すなわち、基地局装置20は単にRAN、RANノード、AN(Access Network)、ANノードと称されてもよい。LTEにおけるRANはEUTRAN(Enhanced Universal Terrestrial RAN)と呼ばれる。NRにおけるRANはNGRANと呼ばれる。W-CDMA(UMTS)におけるRANはUTRANと呼ばれる。LTEの基地局装置20は、eNodeB(Evolved Node B)又はeNBと称される。すなわち、EUTRANは1又は複数のeNodeB(eNB)を含む。また、NRの基地局装置20は、gNodeB又はgNBと称される。すなわち、NGRANは1又は複数のgNBを含む。さらに、EUTRANは、LTEの通信システム(EPS)におけるコアネットワーク(EPC)に接続されたgNB(en-gNB)を含んでいてもよい。同様にNGRANは5G通信システム(5GS)におけるコアネットワーク5GCに接続されたng-eNBを含んでいてもよい。さらに又はこれに代えて、基地局装置20がeNB及びgNBなどである場合、3GPP(登録商標)アクセスと称されてもよい。さらに又はこれに代えて、基地局装置20が無線アクセスポイント(Access Point)である場合、Non-3GPPアクセスと称されてもよい。さらに又はこれに代えて、基地局装置20は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。さらに又はこれに代えて、基地局装置20がgNBである場合、基地局装置20は前述したgNB-CU(Central Unit)及びgNB-DU(Distributed Unit)の組み合わせ又はこれらのうちいずれかと称されてもよい。gNB-CUは、UEとの通信のために、AS(Access Stratum)のうち、複数の上位レイヤ(例えば、RRC、SDAP及びPDCP)をホストする。一方、gNB-DUは、ASのうち、複数の下位レイヤ(例えば、RLC、MAC及びPHY)をホストする。すなわち、後述されるメッセージ・情報のうち、RRCシグナリング(例えば、MIB、SIB1を含む各種SIB、RRCセットアップメッセージ及びRRCリコンフィギュレーションメッセージ)はgNB-CUで生成され、一方で後述されるDCIや各種Physical Channel(例えば、PDCCH及びPBCH)はgNB-DUで生成されてもよい。又はこれに代えて、RRCシグナリングのうち、例えばIE:cellGroupConfigなど一部のコンフィギュレーションについてはgNB-DUで生成され、残りのコンフィギュレーションはgNB-CUで生成されてもよい。これらのコンフィギュレーションは、後述されるF1インタフェースで送受信されてもよい。基地局装置20は、他の基地局装置20と通信可能に構成されていてもよい。例えば、複数の基地局装置20がeNB同士又はeNB及びgNBの組み合わせである場合、当該基地局装置20間はX2インタフェースで接続されてもよい。さらに又はこれに代えて、複数の基地局装置20がgNB同士又はgn-eNB及びgNBの組み合わせである場合、当該装置間はXnインタフェースで接続されてもよい。さらに又はこれに代えて、複数の基地局装置20がgNB-CU及びgNB-DUの組み合わせである場合、当該装置間は前述したF1インタフェースで接続されてもよい。後述されるメッセージ・情報(RRCシグナリング又はDCIの情報、Physical Channel)は複数の基地局装置20間で(例えばX2、Xn、F1インタフェースを介して)通信されてもよい。 Furthermore, a plurality of base station devices 20 may be connected to each other. One or more base station devices 20 may be included in a radio access network (RAN). That is, the base station device 20 may be simply referred to as RAN, RAN node, AN (Access Network), or AN node. RAN in LTE is called EUTRAN (Enhanced Universal Terrestrial RAN). RAN in NR is called NGRAN. The RAN in W-CDMA (UMTS) is called UTRAN. The LTE base station device 20 is called an eNodeB (Evolved Node B) or eNB. That is, EUTRAN includes one or more eNodeBs (eNBs). Further, the NR base station device 20 is called gNodeB or gNB. That is, NGRAN includes one or more gNBs. Furthermore, EUTRAN may include a gNB (en-gNB) connected to a core network (EPC) in an LTE communication system (EPS). Similarly, NGRAN may include an ng-eNB connected to a core network 5GC in a 5G communication system (5GS). Additionally or alternatively, when the base station device 20 is an eNB, gNB, etc., it may be referred to as 3GPP (registered trademark) access. Additionally or alternatively, if the base station device 20 is a wireless access point (Access Point), it may be referred to as Non-3GPP access. Additionally or in place of this, the base station device 20 may be an optical equipment called RRH (Remote Radio Head). Additionally or alternatively, when the base station device 20 is a gNB, the base station device 20 is referred to as a combination of the above-mentioned gNB-CU (Central Unit) and gNB-DU (Distributed Unit), or any one of these. Good too. The gNB-CU hosts multiple upper layers (eg, RRC, SDAP, and PDCP) among AS (Access Stratum) for communication with the UE. On the other hand, the gNB-DU hosts multiple lower layers (eg, RLC, MAC, and PHY) of the AS. That is, among the messages and information described below, RRC signaling (for example, MIB, various SIBs including SIB1, RRC setup messages, and RRC reconfiguration messages) is generated by the gNB-CU, while DCI and various Physical channels (eg, PDCCH and PBCH) may be generated in gNB-DU. Alternatively, some configurations of the RRC signaling, such as IE: cellGroupConfig, may be generated in the gNB-DU, and the remaining configurations may be generated in the gNB-CU. These configurations may be sent and received via the F1 interface, which will be described later. The base station device 20 may be configured to be able to communicate with other base station devices 20. For example, when the plurality of base station apparatuses 20 are eNBs or a combination of eNBs and gNBs, the base station apparatuses 20 may be connected by an X2 interface. Additionally or alternatively, when the plurality of base station apparatuses 20 are a combination of gNBs or gn-eNBs and gNBs, the apparatuses may be connected through an Xn interface. Additionally or alternatively, when the plurality of base station devices 20 are a combination of gNB-CUs and gNB-DUs, the devices may be connected through the F1 interface described above. Messages and information (RRC signaling or DCI information, Physical Channel), which will be described later, may be communicated between a plurality of base station devices 20 (for example, via the X2, Xn, and F1 interfaces).
 さらに、前述の通り、基地局装置20は、複数のセルを管理するように構成されていてもよい。基地局装置20により提供されるセルはサービングセル(Serving cell)と呼ばれる。サーピングセルはPCell(Primary Cell)及びSCell(Secondary Cell)を含む。デュアルコネクティビティ(例えば、EUTRA-EUTRA Dual Connectivity、EUTRA-NR Dual Connectivity(ENDC)、EUTRA-NR Dual Connectivity with 5GC、NR-EUTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivity)がUE(例えば、端末装置40)に提供される場合、MN(Master Node)によって提供されるPCell及びゼロ又は1以上のSCell(S)はMCG(Master Cell Group)と呼ばれる。さらに、サーピングセルはPSCell(Primary Secondary Cell又はPrimary SCG Cell)を含んでもよい。すなわち、Dual ConnectivityがUEに提供される場合、SN(Secondary Node)によって提供されるPSCell及びゼロ又は1以上のSCell(S)はSCG(Secondary Cell Group)と呼ばれる。特別な設定(例えば、PUCCH on SCell)がされていない限り、物理上りリンク制御チャネル(PUCCH)はPCell及びPSCellで送信されるが、SCellでは送信されない。また、Radio Link FailureもPCell及びPSCellでは検出されるが、SCellでは検出されない(検出しなくてよい)。このようにPCell及びPSCellは、サービングセル(S)の中で特別な役割を持つため、SpCell(Special Cell)とも呼ばれる。1つのセルには、1つのダウンリンク・コンポーネント・キャリアと1つのアップリンク・コンポーネント・キャリアが対応付けられてもよい。また、1つのセルに対応するシステム帯域幅は、複数の帯域幅部分(BWP:Bandwidth Part)に分割されてもよい。この場合、1又は複数のBWPがUEに設定され、1つのBWPがActive BWPとして、UEに使用されてもよい。また、セル毎、コンポーネントキャリア毎又はBWPごとに、端末装置40が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration))が異なっていてもよい。 Furthermore, as described above, the base station device 20 may be configured to manage multiple cells. The cell provided by the base station device 20 is called a serving cell. Surping cells include PCell (Primary Cell) and SCell (Secondary Cell). Dual connectivity (e.g., EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity) is 40), the PCell and zero or more SCells (S) provided by the MN (Master Node) are called an MCG (Master Cell Group). Furthermore, the surping cell may include a PSCell (Primary Secondary Cell or Primary SCG Cell). That is, when Dual Connectivity is provided to the UE, the PSCell and zero or more SCells (S) provided by the SN (Secondary Node) are called an SCG (Secondary Cell Group). Unless otherwise configured (eg, PUCCH on SCell), the Physical Uplink Control Channel (PUCCH) is transmitted on the PCell and PSCell, but not on the SCell. Furthermore, Radio Link Failure is also detected in PCell and PSCell, but not detected in SCell (it does not need to be detected). In this way, PCell and PSCell have a special role in the serving cell (S), so they are also called SpCell (Special Cell). One downlink component carrier and one uplink component carrier may be associated with one cell. Further, the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts (BWP). In this case, one or more BWPs may be configured in the UE, and one BWP may be used as an Active BWP in the UE. Furthermore, the radio resources (for example, frequency band, numerology (subcarrier spacing), slot configuration) that can be used by the terminal device 40 may differ for each cell, each component carrier, or each BWP.
 コアネットワーク120がNRのコアネットワーク(5G Core(5GC))の場合、コアネットワーク120は、AMF(Access and Mobility Management Function)、SMF(Session Management Function)、UPF(User Plane Function)、PCF(Policy Control Function)及びUDM(Unified Data Management)を含み得る。 When the core network 120 is an NR core network (5G Core (5GC)), the core network 120 includes AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function), and PCF (Policy Control). Function) and UDM (Unified Data Management).
 コアネットワーク120がLTEのコアネットワーク(Evolved Packet Core(EPC))の場合、コアネットワーク120は、MME(Mobility Management Entity)、S-GW(Serving gateway)、P-GW(PDN gateway)、PCRF(Policy and Charging Rule Function)およびHSS(Home Subscriber Server)を含み得る。AMF及びMMEは、制御プレーンの信号を取り扱う制御ノードであり、端末装置40の移動状態(Mobility)を管理する。UPF及びS-GW/P-GWは、ユーザプレーンの信号を取り扱うノードである。PCF/PCRFは、PDUセッション又はベアラに対するQoS(Quality of Service)等のポリシーおよび課金に関する制御を行う制御ノードである。UDM/HSSは、加入者データを取り扱い、サービス制御を行う制御ノードである。 When the core network 120 is an LTE core network (Evolved Packet Core (EPC)), the core network 120 includes MME (Mobility Management Entity), S-GW (Serving gateway), P-GW (PDN gateway), PCRF (Policy and Charging Rule Function) and HSS (Home Subscriber Server). The AMF and MME are control nodes that handle control plane signals and manage the mobility of the terminal device 40. The UPF and S-GW/P-GW are nodes that handle user plane signals. The PCF/PCRF is a control node that controls policies such as QoS (Quality of Service) and accounting for PDU sessions or bearers. The UDM/HSS is a control node that handles subscriber data and performs service control.
 端末装置40は、基地局装置20による制御に基づいて基地局装置20と無線通信する通信装置である。例えば、端末装置40は、基地局装置20からの下りリンク信号を測定して、測定結果を示す測定情報を基地局装置20へ報告する。基地局装置20は、報告された測定情報に基づいて端末装置40との無線通信を制御する。他方、端末装置40は、測定のための上りリンク信号を基地局装置20に送信し得る。その場合、基地局装置20は、端末装置40からの上りリンク信号を測定して、測定情報に基づいて端末装置40との無線通信を制御する。 The terminal device 40 is a communication device that wirelessly communicates with the base station device 20 based on the control by the base station device 20. For example, the terminal device 40 measures the downlink signal from the base station device 20 and reports measurement information indicating the measurement result to the base station device 20. Base station device 20 controls wireless communication with terminal device 40 based on the reported measurement information. On the other hand, the terminal device 40 may transmit an uplink signal for measurement to the base station device 20. In that case, the base station device 20 measures the uplink signal from the terminal device 40 and controls wireless communication with the terminal device 40 based on the measurement information.
 前述の通り、基地局装置20同士は、基地局間インタフェースを用いて、互いに情報を送受信することができる。コアネットワークが5GCの場合、基地局間インタフェースはXnインタフェースであってもよい。コアネットワークがEPCの場合、基地局間インタフェースは、X2インタフェースであってもよい。例えば、基地局装置20は、ハンドオーバが予測される端末装置40に関する測定情報(例えば、ソース基地局装置が管理するセルの測定結果及び隣接セルの測定結果)を、隣接する他の基地局装置20に送信する。これにより、安定的なハンドオーバが実現され、端末装置40の無線通信の安定性が確保される。 As described above, the base station devices 20 can send and receive information to and from each other using the inter-base station interface. When the core network is 5GC, the inter-base station interface may be an Xn interface. When the core network is EPC, the inter-base station interface may be an X2 interface. For example, the base station device 20 transmits measurement information regarding the terminal device 40 for which handover is predicted (for example, measurement results of cells managed by the source base station device and measurement results of adjacent cells) to other adjacent base station devices 20. Send to. As a result, stable handover is realized, and the stability of wireless communication of the terminal device 40 is ensured.
 なお、図1には図示していないが、通信システム1の周囲には、セルラー通信以外の、例えばWi-Fi(登録商標)やMulteFire(登録商標)等の他のRATにより運用される無線通信サービスを提供する通信装置が存在し得る。かかる通信装置は、典型的には、パケットデータネットワーク130に接続される。 Although not shown in FIG. 1, the communication system 1 is surrounded by wireless communications operated by other RATs other than cellular communications, such as Wi-Fi (registered trademark) and MulteFire (registered trademark). There may be communication devices that provide services. Such communication devices are typically connected to a packet data network 130.
 [基地局装置の構成]
 図2は、本開示の実施形態に係る基地局装置20の構成例を示す図である。基地局装置20は、端末装置40と無線通信する通信装置(無線システム)である。基地局装置20は、情報処理装置の一種である。
[Base station device configuration]
FIG. 2 is a diagram illustrating a configuration example of the base station device 20 according to the embodiment of the present disclosure. The base station device 20 is a communication device (wireless system) that wirelessly communicates with the terminal device 40. The base station device 20 is a type of information processing device.
 基地局装置20は、信号処理部21と、記憶部22と、ネットワーク通信部23と、制御部24と、を備える。なお、同図に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局装置20の機能は、複数の物理的に分離された装置に分散して実装されてもよい。 The base station device 20 includes a signal processing section 21, a storage section 22, a network communication section 23, and a control section 24. Note that the configuration shown in the figure is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the base station device 20 may be distributed and implemented in a plurality of physically separated devices.
 信号処理部21は、他の通信装置(例えば、端末装置40および他の基地局装置20)と無線通信する無線通信インタフェースである。信号処理部21は、制御部24の制御に従って動作する。信号処理部21は、複数の無線アクセス方式に対応してもよい。例えば、信号処理部21は、NRおよびLTEの双方に対応してもよい。信号処理部21は、W-CDMAやcdma2000等の他のセルラー通信方式に対応してもよい。また、信号処理部21は、セルラー通信方式に加えて、無線LAN通信方式に対応してもよい。勿論、信号処理部21は、1つの無線アクセス方式に対応するだけであってもよい。 The signal processing unit 21 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the terminal device 40 and other base station devices 20). The signal processing section 21 operates under the control of the control section 24. The signal processing unit 21 may be compatible with multiple wireless access methods. For example, the signal processing unit 21 may support both NR and LTE. The signal processing unit 21 may be compatible with other cellular communication systems such as W-CDMA and cdma2000. Further, the signal processing unit 21 may support a wireless LAN communication method in addition to the cellular communication method. Of course, the signal processing unit 21 may only support one wireless access method.
 信号処理部21は、受信処理部211と、送信処理部212と、アンテナ113とを備える。信号処理部21は、受信処理部211、送信処理部212、およびアンテナ113をそれぞれ複数備えていてもよい。なお、信号処理部21が複数の無線アクセス方式に対応する場合、信号処理部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、基地局装置20がNRとLTEとに対応しているのであれば、受信処理部211および送信処理部212は、NRとLTEとで個別に構成されてもよい。 The signal processing section 21 includes a reception processing section 211, a transmission processing section 212, and an antenna 113. The signal processing section 21 may each include a plurality of reception processing sections 211, transmission processing sections 212, and antennas 113. Note that when the signal processing section 21 supports multiple wireless access methods, each section of the signal processing section 21 can be configured individually for each wireless access method. For example, if the base station device 20 supports NR and LTE, the reception processing section 211 and the transmission processing section 212 may be configured separately for NR and LTE.
 受信処理部211は、アンテナ113を介して受信された上りリンク信号の処理を行う。受信処理部211は、無線受信部211aと、多重分離部211bと、復調部211cと、復号部211dとを備える。 The reception processing unit 211 processes uplink signals received via the antenna 113. The reception processing section 211 includes a radio reception section 211a, a demultiplexing section 211b, a demodulation section 211c, and a decoding section 211d.
 無線受信部211aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去及び高速フーリエ変換による周波数領域信号の抽出等を行う。例えば、基地局装置20の無線アクセス方式が、LTE等のセルラー通信方式であるとする。このとき、多重分離部211bは、無線受信部211aから出力された信号から、PUSCH(Physical Uplink Shared Channel)及びPUCCH(Physical Uplink Control Channel)等の上りリンクチャネルおよび上りリンク参照信号を分離する。復調部211cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)及びQPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調部211cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、または256QAM等の多値QAMであってもよい。復号部211dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータおよび上りリンク制御情報は制御部24へ出力される。 The radio receiving unit 211a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to a digital signal, removal of guard intervals, and fast Fourier transformation of the frequency domain signal for the uplink signal. Extract etc. For example, assume that the wireless access method of the base station device 20 is a cellular communication method such as LTE. At this time, the demultiplexing section 211b separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal output from the radio receiving section 211a. The demodulation unit 211c demodulates the received signal using modulation schemes such as BPSK (Binary Phase Shift Keying) and QPSK (Quadrature Phase Shift Keying) on modulation symbols of the uplink channel. The modulation method used by the demodulator 211c may be multilevel QAM such as 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM. The decoding unit 211d performs decoding processing on the coded bits of the demodulated uplink channel. The decoded uplink data and uplink control information are output to the control unit 24.
 送信処理部212は、下りリンク制御情報および下りリンクデータの送信処理を行う。送信処理部212は、符号化部212aと、変調部212bと、多重部212cと、無線送信部212dとを備える。 The transmission processing unit 212 performs transmission processing of downlink control information and downlink data. The transmission processing section 212 includes an encoding section 212a, a modulation section 212b, a multiplexing section 212c, and a wireless transmission section 212d.
 符号化部212aは、制御部24から入力された下りリンク制御情報および下りリンクデータを、ブロック符号化、畳み込み符号化及びターボ符号化等の符号化方式を用いて符号化を行う。変調部212bは、符号化部212aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM及び256QAM等の所定の変調方式で変調する。多重部212cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部212dは、多重部212cからの信号に対して、各種信号処理を行う。例えば、無線送信部212dは、高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去及び電力の増幅等の処理を行う。送信処理部212で生成された信号は、アンテナ113から送信される。 The encoding unit 212a encodes the downlink control information and downlink data input from the control unit 24 using encoding methods such as block encoding, convolutional encoding, and turbo encoding. The modulator 212b modulates the encoded bits output from the encoder 212a using a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM. The multiplexing unit 212c multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges it in a predetermined resource element. The wireless transmitter 212d performs various signal processing on the signal from the multiplexer 212c. For example, the wireless transmitter 212d performs conversion into the time domain using fast Fourier transform, addition of a guard interval, generation of a baseband digital signal, conversion to an analog signal, orthogonal modulation, upconversion, removal of extra frequency components, and Performs processing such as power amplification. The signal generated by the transmission processing section 212 is transmitted from the antenna 113.
 記憶部22は、DRAM、SRAM、フラッシュメモリ及びハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、基地局装置20の記憶手段として機能する。 The storage unit 22 is a data readable/writable storage device such as DRAM, SRAM, flash memory, and hard disk. The storage unit 22 functions as a storage means of the base station device 20.
 ネットワーク通信部23は、他の装置(例えば、他の基地局装置20)と通信するための通信インタフェースである。例えば、ネットワーク通信部23は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースである。ネットワーク通信部23は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部23は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部23は、基地局装置20のネットワーク通信手段として機能する。ネットワーク通信部23は、制御部24の制御に従って、他の装置と通信する。 The network communication unit 23 is a communication interface for communicating with other devices (for example, other base station devices 20). For example, the network communication unit 23 is a LAN (Local Area Network) interface such as a NIC (Network Interface Card). The network communication unit 23 may be a USB (Universal Serial Bus) interface configured by a USB host controller, a USB port, or the like. Further, the network communication unit 23 may be a wired interface or a wireless interface. The network communication unit 23 functions as a network communication means for the base station device 20. The network communication unit 23 communicates with other devices under the control of the control unit 24.
 制御部24は、基地局装置20の各部を制御するコントローラ(Controller)である。制御部24は、例えば、CPU(Central Processing Unit)及びMPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部24は、基地局装置20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部24は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。 The control unit 24 is a controller that controls each part of the base station device 20. The control unit 24 is realized by, for example, a processor such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). For example, the control unit 24 is realized by a processor executing various programs stored in a storage device inside the base station device 20 using a RAM (Random Access Memory) or the like as a work area. Note that the control unit 24 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
 [端末装置の構成]
 図3は、本開示の実施形態に係る端末装置40の構成例を示す図である。端末装置40は、基地局装置20と無線通信する通信装置(無線システム)である。端末装置40は、情報処理装置の一種である。
[Terminal device configuration]
FIG. 3 is a diagram illustrating a configuration example of the terminal device 40 according to the embodiment of the present disclosure. The terminal device 40 is a communication device (wireless system) that wirelessly communicates with the base station device 20. The terminal device 40 is a type of information processing device.
 端末装置40は、信号処理部41と、記憶部42と、入出力部44と、制御部45とを備える。なお、同図に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置40の機能は、複数の物理的に分離された構成に分散して実装されてもよい。 The terminal device 40 includes a signal processing section 41, a storage section 42, an input/output section 44, and a control section 45. Note that the configuration shown in the figure is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 40 may be distributed and implemented in a plurality of physically separated configurations.
 信号処理部41は、他の通信装置(例えば、基地局装置20および他の端末装置40)と無線通信する無線通信インタフェースである。信号処理部41は、制御部45の制御に従って動作する。信号処理部41は1または複数の無線アクセス方式に対応する。例えば、信号処理部41は、NRおよびLTEの双方に対応する。信号処理部41は、W-CDMA(登録商標)やcdma2000(登録商標)等、他の無線アクセス方式に対応していてもよい。 The signal processing unit 41 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the base station device 20 and other terminal devices 40). The signal processing section 41 operates under the control of the control section 45. The signal processing unit 41 supports one or more wireless access methods. For example, the signal processing unit 41 supports both NR and LTE. The signal processing unit 41 may be compatible with other wireless access methods such as W-CDMA (registered trademark) and cdma2000 (registered trademark).
 信号処理部41は、受信処理部411と、送信処理部412と、アンテナ213とを備える。信号処理部41は、受信処理部411、送信処理部412、およびアンテナ213をそれぞれ複数備えていてもよい。なお、信号処理部41が複数の無線アクセス方式に対応する場合、信号処理部41の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部411および送信処理部412は、LTEとNRとで個別に構成されてもよい。受信処理部411、および送信処理部412の構成は、基地局装置20の受信処理部211、および送信処理部212と同様である。 The signal processing section 41 includes a reception processing section 411, a transmission processing section 412, and an antenna 213. The signal processing section 41 may each include a plurality of reception processing sections 411, transmission processing sections 412, and antennas 213. Note that when the signal processing section 41 supports multiple wireless access methods, each section of the signal processing section 41 can be configured individually for each wireless access method. For example, the reception processing unit 411 and the transmission processing unit 412 may be configured separately for LTE and NR. The configurations of the reception processing section 411 and the transmission processing section 412 are similar to the reception processing section 211 and the transmission processing section 212 of the base station device 20.
 記憶部42は、DRAM、SRAM、フラッシュメモリ及びハードディスク等のデータ読み書き可能な記憶装置である。記憶部42は、端末装置40の記憶手段として機能する。 The storage unit 42 is a data readable/writable storage device such as DRAM, SRAM, flash memory, and hard disk. The storage unit 42 functions as a storage means of the terminal device 40.
 入出力部44は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部44は、キーボード、マウス、操作キー及びタッチパネル等、ユーザが各種操作を行うための操作装置である。または、入出力部44は、液晶ディスプレイ(Liquid Crystal Display)及び有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部44は、スピーカー及びブザー等の音響装置であってもよい。また、入出力部44は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部44は、端末装置40の入出力手段(入力手段、出力手段、操作手段または通知手段)として機能する。 The input/output unit 44 is a user interface for exchanging information with the user. For example, the input/output unit 44 is an operating device such as a keyboard, a mouse, an operation key, a touch panel, etc. for the user to perform various operations. Alternatively, the input/output unit 44 is a display device such as a liquid crystal display or an organic electroluminescence display. The input/output unit 44 may be an audio device such as a speaker or a buzzer. Further, the input/output unit 44 may be a lighting device such as an LED (Light Emitting Diode) lamp. The input/output unit 44 functions as an input/output means (input means, output means, operation means, or notification means) of the terminal device 40.
 制御部45は、端末装置40の各部を制御するコントローラである。制御部45は、例えば、CPU及びMPU等のプロセッサにより実現される。例えば、制御部45は、端末装置40内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部45は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。 The control unit 45 is a controller that controls each part of the terminal device 40. The control unit 45 is realized by, for example, a processor such as a CPU and an MPU. For example, the control unit 45 is realized by a processor executing various programs stored in a storage device inside the terminal device 40 using a RAM or the like as a work area. Note that the control unit 45 may be realized by an integrated circuit such as ASIC or FPGA. CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
 後述するように通信システム1は、帯域内全二重通信を行う。このため、リンク通信に干渉を生じる。この干渉状態の測定について説明する。 As described later, the communication system 1 performs in-band full-duplex communication. This causes interference in link communication. The measurement of this interference state will be explained.
 [チャネルの測定]
 本実施形態において、端末装置40および基地局装置20は、伝搬経路の状態を測定する。端末装置40および基地局装置20は、設定されたリソースを用いて、所定の信号の受信電力、または、全ての信号の受信電力を測定する。所定の信号の受信電力はRSRP(Reference Signal Received Power)とも呼称される。また、全ての信号の受信電力はRSSI(Received Signal Strength Indicator)とも呼称される。
[Channel measurement]
In this embodiment, the terminal device 40 and the base station device 20 measure the state of the propagation path. The terminal device 40 and the base station device 20 measure the received power of a predetermined signal or the received power of all signals using the configured resources. The received power of a predetermined signal is also called RSRP (Reference Signal Received Power). The received power of all signals is also called RSSI (Received Signal Strength Indicator).
 3GPP(登録商標)において、チャネルの測定の種類の一例として、CSI(Channel State Information)測定とRRM(Radio Resource Management)測定が挙げられる。CSI測定はL1(Layer 1)測定、RRM測定はL3(Layer 3)測定、とも呼称される。 In 3GPP (registered trademark), examples of types of channel measurements include CSI (Channel State Information) measurement and RRM (Radio Resource Management) measurement. CSI measurement is also called L1 (Layer 1) measurement, and RRM measurement is also called L3 (Layer 3) measurement.
 [CSI測定]
 CSI測定の結果は、主に、ダイナミックスケジューリングなどの動的なリソース割り当てに用いられる。
[CSI measurement]
The results of CSI measurement are mainly used for dynamic resource allocation such as dynamic scheduling.
 下りリンクのCSI測定における信号強度は、例えば、CSI-RSを用いて測定される。下りリンクのCSI測定は、CSIフィードバックとして、基地局に報告される。下りリンクのCSIは、CQI(Channel Quality indicator)、PMI(Precoding Matrix Indicator)、CRI(CSI-RS Resource Indicator)、SSBRI(SS/PBCH Block Resource Indicator)、LI(Layer Indicator)、RI(Rank Indicator)、および/または、L1-RSRP、で構成される。 The signal strength in downlink CSI measurement is measured using, for example, CSI-RS. Downlink CSI measurements are reported to the base station as CSI feedback. Downlink CSI is CQI (Channel Quality indicator), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), SSBRI (SS/PBCH Block Resource Indicator), LI (Layer Indicator), RI (Rank Indicator). , and/or L1-RSRP.
 CQIは、サービングセルとのチャネル品質を示す情報である。端末装置40は、PDSCHの所定の誤り率を満たすSINRをCQIインデックスとして計算し、基地局装置20にフィードバックする。所定の誤り率は、例えば、eMBBに対しては10-1であり、URLLCに対しては10-5である。 CQI is information indicating channel quality with the serving cell. The terminal device 40 calculates an SINR that satisfies a predetermined PDSCH error rate as a CQI index, and feeds it back to the base station device 20. The predetermined error rate is, for example, 10 −1 for eMBB and 10 −5 for URLLC.
 PMIは、端末装置40が所望するプリコーディング行列を示す情報である。端末装置40は、PDSCHの受信に適切なプリコーディング行列を計算し、PMIとして基地局装置20にフィードバックする。 PMI is information indicating a precoding matrix desired by the terminal device 40. Terminal device 40 calculates a precoding matrix suitable for PDSCH reception and feeds it back to base station device 20 as PMI.
 CRIは、受信品質の良いCSI-RSを示す情報である。端末装置40は、CSI-RSRPの高いCSI-RSを検出し、そのCSI-RSに対応するCRIを基地局装置20にフィードバックする。 CRI is information indicating a CSI-RS with good reception quality. The terminal device 40 detects a CSI-RS with a high CSI-RSRP and feeds back the CRI corresponding to the CSI-RS to the base station device 20.
 SSBRIは、受信品質の良いSS/PBCHブロックを示す情報である。端末装置40は、SS-RSRPの高いSS/PBCHブロックを検出し、そのSS/PBCHブロックに対応するSSBRIを基地局装置20にフィードバックする。 SSBRI is information indicating an SS/PBCH block with good reception quality. The terminal device 40 detects an SS/PBCH block with a high SS-RSRP and feeds back the SSBRI corresponding to the SS/PBCH block to the base station device 20.
 LIは、複数のレイヤのうち、最も強いレイヤを示す情報である。端末装置40は、受信強度の高いレイヤを計算し、LIとして基地局装置20にフィードバックする。 LI is information indicating the strongest layer among multiple layers. The terminal device 40 calculates the layer with high reception strength and feeds it back to the base station device 20 as LI.
 RIは、端末装置40が所望するランク数を示す情報である。端末装置40は、アンテナ本数および受信品質に応じて、適切なランク数を計算し、基地局装置20にフィードバックする。 RI is information indicating the number of ranks desired by the terminal device 40. The terminal device 40 calculates an appropriate rank number according to the number of antennas and reception quality, and feeds it back to the base station device 20.
 L1-RSRPは、レイヤ1(物理層)におけるRSRPの情報である。L1-RSRPは、後述するRRM測定におけるRSRPと比べて、測定および報告する周期が短い、特徴を有する。 L1-RSRP is information on RSRP in layer 1 (physical layer). L1-RSRP is characterized by a shorter measurement and reporting cycle than RSRP in RRM measurement, which will be described later.
 下りリンクのCSI測定では、チャネル測定を行うためのリソースと、干渉測定を行うためのリソースとのセット(CSI Resource Setting)で定義される。チャネル測定を行うためのリソースは、NZP CSI-RSリソースとして定義される。干渉測定を行うためのリソースは、CSI-IMリソースまたはNZP CSI-RSとして定義される。基地局装置20は、端末装置40に対して、1つ以上のCSIリソース・セッティングを設定する。端末装置40は、設定されたCSIリソース・セッティングに基づいて、所望信号電力と干渉電力とを測定し、チャネル品質(SINRまたはCQIなど)を計算する。 In downlink CSI measurement, a set (CSI Resource Setting) of resources for performing channel measurement and resources for performing interference measurement is defined. Resources for performing channel measurements are defined as NZP CSI-RS resources. Resources for performing interference measurements are defined as CSI-IM resources or NZP CSI-RS. The base station device 20 configures one or more CSI resource settings for the terminal device 40. The terminal device 40 measures desired signal power and interference power and calculates channel quality (SINR, CQI, etc.) based on the configured CSI resource settings.
 上りリンクのCSI測定における信号強度は、例えば、SRS(Sounding Reference Signal)を用いて測定される。SRS送信の方法として、周期的(periodic)SRS送信、準持続的(semi-persistent)SRS送信及び非周期的(aperiodic)SRS送信、の3種類の方法が挙げられる。周期的SRS送信において、RRCによってSRSリソースが設定された場合、端末装置40は、設定されたSRSリソースでSRSを送信する。準持続的SRS送信において、RRCによってSRSリソースが設定され、かつ、DCIによってSRS送信に対する活性(activation)の指示を受信した場合、端末装置40は非活性(deactivation)の指示を受信するまで設定されたSRSリソースでSRSを送信する。非周期的SRS送信において、RRCによってSRSリソースが設定され、かつ、DCIによってSRS送信トリガーの指示がされた場合、端末装置40は設定されたSRSリソースでSRSを1度送信する。 The signal strength in uplink CSI measurement is measured using, for example, SRS (Sounding Reference Signal). There are three types of SRS transmission methods: periodic SRS transmission, semi-persistent SRS transmission, and aperiodic SRS transmission. In periodic SRS transmission, when SRS resources are configured by RRC, the terminal device 40 transmits SRS using the configured SRS resources. In semi-persistent SRS transmission, when SRS resources are configured by RRC and an activation instruction for SRS transmission is received by DCI, the terminal device 40 remains configured until it receives a deactivation instruction. SRS is transmitted using the SRS resources that have been created. In aperiodic SRS transmission, when SRS resources are configured by RRC and an SRS transmission trigger instruction is issued by DCI, the terminal device 40 transmits SRS once using the configured SRS resources.
 RRCによって、SRSが送信される時間/周波数リソースが設定される。SRSは、スロットの後方6シンボルで送信される。周期的SRS送信および準持続的SRS送信において、SRSは周期とスロットオフセットが設定される。 RRC sets the time/frequency resources on which the SRS is transmitted. The SRS is transmitted in the last six symbols of the slot. In periodic SRS transmission and semi-persistent SRS transmission, the SRS has a period and a slot offset.
 [RRM測定]
 RRM測定の結果は、主に、RRC設定やハンドオーバ処理などの準静的なリソース制御に用いられる。RRM測定では、一例として、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)及びSINR(Signal to Interference plus Noise power Ratio)、などが測定される。
[RRM measurement]
The results of RRM measurement are mainly used for semi-static resource control such as RRC configuration and handover processing. In the RRM measurement, for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator), and SINR (Signal to Interference plus Noise power Ratio) are measured.
 RRM測定におけるRSRP(L3-RSRPとも呼称される。)は、例えば、SS/PBCH blockまたはCSI-RSを用いて測定される。RRM測定におけるRSRPは、1つ以上のL1-RSRPから算出される。例えば、RRM測定におけるRSRPは、測定リソースが異なる複数のL1-RSRPの平均値、で算出される。 RSRP (also referred to as L3-RSRP) in RRM measurement is measured using, for example, SS/PBCH block or CSI-RS. RSRP in RRM measurement is calculated from one or more L1-RSRPs. For example, RSRP in RRM measurement is calculated as an average value of a plurality of L1-RSRPs with different measurement resources.
 RSSIは、所定のリソースにおける、干渉や雑音を含む全受信電力である。所定のリソースは、基地局装置20から設定されてもよい。 RSSI is the total received power for a given resource, including interference and noise. The predetermined resources may be set from the base station device 20.
 RSRQは、RSRP×RSSI測定帯域幅のリソースブロック数/RSSIにより定義される。 RSRQ is defined by RSRP×number of resource blocks of RSSI measurement bandwidth/RSSI.
 SINRは、所定のリソースにおける、信号受信電力と干渉雑音電力との比で定義される。 SINR is defined as the ratio of signal reception power to interference noise power in a predetermined resource.
 (2.実施形態)
 [通信システムの構成]
 図4は、本開示の実施形態に係る帯域内全二重通信の一例を示す図である。同図は、後述する図5に表した上りリンク通信及び下りリンク通信の様子を表す図である。同図の横軸は時間を表し、縦軸は周波数を表す。同図に表したように、帯域内全二重通信は、同一帯域を用いて送信と受信とを同時に行う通信方式である。
(2. Embodiment)
[Communication system configuration]
FIG. 4 is a diagram illustrating an example of in-band full-duplex communication according to an embodiment of the present disclosure. This figure is a diagram showing the state of uplink communication and downlink communication shown in FIG. 5, which will be described later. The horizontal axis in the figure represents time, and the vertical axis represents frequency. As shown in the figure, in-band full-duplex communication is a communication method in which transmission and reception are performed simultaneously using the same band.
 通信規格の5Gでは、従来のスマートフォンのデータ通信のeMBB(enhanced Mobile BroadBand)に加えてURLLC(Ultra-Reliable and Low Latency Communication)等の様々な通信ユースケースを1つの無線システムにてサポートすることが想定されている。なお、URLLCは、自動運転に用いられる緊急メッセージ伝送等の高信頼性及び低遅延の何れか又はその両方が要求される無線通信である。帯域内全二重通信技術の導入を想定した場合、異なる要件のデータの送受信が同時に行われる。例えば、eMBBパケットの受信途中にURLLCパケットが多重される。同時刻で送受信を可能にすることにより、時分割通信(TDD:Time Division Duplex)システムと比較して、送信待機遅延を短縮することができ、URLLCのQoS(Quality of Service)を担保することができる。 The 5G communication standard allows a single wireless system to support various communication use cases such as URLLC (Ultra-Reliable and Low Latency Communication) in addition to eMBB (enhanced Mobile Broadband) for conventional smartphone data communication. It is assumed. Note that URLLC is a wireless communication that requires either or both of high reliability and low delay, such as emergency message transmission used in automatic driving. Assuming the introduction of in-band full-duplex communication technology, data with different requirements will be sent and received simultaneously. For example, a URLLC packet is multiplexed during reception of an eMBB packet. By enabling transmission and reception at the same time, it is possible to reduce the transmission waiting delay compared to time division duplex (TDD) systems, and ensure the QoS (Quality of Service) of URLLC. can.
 図5は、本開示の実施形態に係る通信システムの一例を示す図である。同図は、通信システム1の一例を表す図である。通信システム1は、基地局装置20Aと、端末装置40Aとを含む。同図の基地局装置20Aは、セル110Aを運用する。また、基地局装置20Aは、端末装置40Aとの間において下りリンク通信を行う。一方、セル110Aに隣接するセル110Bの端部に位置する端末装置40Bは、セル110Bを運用する基地局装置20Bと上りリンク通信を行う。この端末装置40Bの上りリンク通信と端末装置40Aの下りリンク通信を帯域内全二重通信にて行う場合、干渉を生じる。すなわち、端末装置40Aの下りリンク通信の受信信号は、端末装置40Bの上りリンク通信の送信信号から干渉を受ける。同図の破線の矢印は、この干渉を表す。この異なるセル間の端末間干渉を抑制するため、基地局装置20Aは、端末装置40Bに干渉抑制動作を行わせる。この干渉抑制動作は、端末装置40Bの端末装置40Aへの干渉を抑制する動作である。干渉抑制動作の詳細については後述する。 FIG. 5 is a diagram illustrating an example of a communication system according to an embodiment of the present disclosure. This figure is a diagram showing an example of the communication system 1. As shown in FIG. The communication system 1 includes a base station device 20A and a terminal device 40A. The base station device 20A in the figure operates a cell 110A. Furthermore, the base station device 20A performs downlink communication with the terminal device 40A. On the other hand, the terminal device 40B located at the end of the cell 110B adjacent to the cell 110A performs uplink communication with the base station device 20B operating the cell 110B. When the uplink communication of the terminal device 40B and the downlink communication of the terminal device 40A are performed using in-band full-duplex communication, interference occurs. That is, the reception signal of the downlink communication of the terminal device 40A receives interference from the transmission signal of the uplink communication of the terminal device 40B. The dashed arrow in the figure represents this interference. In order to suppress this inter-terminal interference between different cells, the base station apparatus 20A causes the terminal apparatus 40B to perform an interference suppression operation. This interference suppression operation is an operation for suppressing interference of the terminal device 40B with the terminal device 40A. Details of the interference suppression operation will be described later.
 基地局装置20Aは、干渉抑制動作の通知を送信することにより、端末装置40Bに干渉抑制動作を要請する。この際、基地局装置20Aは、干渉領域190に含まれる端末装置40に対して干渉抑制動作の通知を送信する。ここで、干渉領域190は、基地局装置20Aと下りリンク通信を行う端末装置40Aに対して干渉を及ぼす端末群から構成される領域であり、例えば図5の同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす他のセル110Bの端末装置40Bを含む領域である。同図の干渉領域190は、隣接するセル110Bの端末装置40Bが含まれる例を表したものである。 The base station device 20A requests the terminal device 40B to perform an interference suppression operation by transmitting a notification of the interference suppression operation. At this time, the base station device 20A transmits a notification of interference suppression operation to the terminal device 40 included in the interference area 190. Here, the interference region 190 is an area composed of a group of terminals that interfere with the terminal device 40A that performs downlink communication with the base station device 20A, for example, the transmission of uplink communication in the same frequency band in FIG. This is an area including the terminal device 40B of another cell 110B that causes interference with the signal. The interference region 190 in the figure represents an example in which the terminal device 40B of the adjacent cell 110B is included.
 同図の基地局装置20Aは、帯域内全二重通信による下りリンク通信を欲する端末装置40Aに対する干渉領域190を検出する。次に、端末装置40Aが帯域内全二重通信による下りリンク通信を行う際に、干渉領域190に含まれる他の端末装置40(同図の端末装置40B)に対して干渉抑制動作の通知を行う。これにより、端末装置40Aが受ける干渉を低減することができる。 The base station device 20A in the figure detects an interference region 190 for the terminal device 40A that desires downlink communication using in-band full-duplex communication. Next, when the terminal device 40A performs downlink communication using in-band full-duplex communication, it notifies the other terminal devices 40 (terminal device 40B in the figure) included in the interference area 190 of the interference suppression operation. conduct. Thereby, interference that the terminal device 40A receives can be reduced.
 [通信制御処理]
 図6は、本開示の実施形態に係る通信制御処理の処理手順の一例を示す図である。同図は、基地局装置20Aの通信処理の処理手順の一例を表す流れ図である。まず、基地局装置20Aは、干渉保護端末装置の検出を行う(ステップS101)。ここで、干渉保護端末装置は、上記URLLC要件のデータを送信する端末を含む帯域内全二重通信の際に干渉保護動作を実施する端末装置であり、例えば図5の端末装置40Aが該当する。なお、干渉保護端末装置の検出の処理の詳細については後述する。
[Communication control processing]
6 is a diagram showing an example of a processing procedure of a communication control process according to an embodiment of the present disclosure. The figure is a flow chart showing an example of a processing procedure of a communication process of the base station device 20A. First, the base station device 20A detects an interference-protected terminal device (step S101). Here, the interference-protected terminal device is a terminal device that performs an interference protection operation during in-band full-duplex communication including a terminal that transmits data of the above URLLC requirements, and corresponds to the terminal device 40A in FIG. 5, for example. Details of the detection process of the interference-protected terminal device will be described later.
 その結果、干渉保護端末装置が存在しない場合には(ステップS102,No)、基地局装置20Aは、処理を終了する。一方、干渉保護端末装置が存在する場合には(ステップS102,Yes)、基地局装置20Aは、干渉領域検出処理を行う(ステップS110)。なお、干渉領域検出処理の詳細については後述する。 As a result, if there is no interference protection terminal device (step S102, No), the base station device 20A ends the process. On the other hand, if there is an interference protection terminal device (step S102, Yes), the base station device 20A performs interference area detection processing (step S110). Note that details of the interference area detection process will be described later.
 次に、基地局装置20Aは、端末装置40Bに対して無線リソースの割当を行う(ステップS103)。次に、基地局装置20Aは、干渉領域190に含まれる他の端末装置40に干渉抑制動作の通知を行い(ステップS104)、処理を終了する。 Next, the base station device 20A allocates radio resources to the terminal device 40B (step S103). Next, the base station device 20A notifies the other terminal devices 40 included in the interference region 190 of the interference suppression operation (step S104), and ends the process.
 基地局装置20Aは配下の端末装置40のうち、干渉保護端末装置に該当する端末装置40が存在するかを特定する。この干渉保護端末装置を特定する動作とは、端末装置40の受信電力又は受信SINR(Signal to Interference and Noise power Ratio)、送信する信号の要求QoS(Quality of Service)、周辺の他セルの端末装置分布などの情報に応じて干渉保護端末装置を決定する動作である。この時、受信SINRの状況や周辺端末装置分布を知るために端末装置40A側で測定動作を実施してもよい。 The base station device 20A identifies whether there is a terminal device 40 that corresponds to an interference protection terminal device among the terminal devices 40 under its control. The operation of identifying this interference protection terminal device includes the received power or received SINR (Signal to Interference and Noise power Ratio) of the terminal device 40, the required QoS (Quality of Service) of the signal to be transmitted, and the terminal devices of other nearby cells. This is an operation of determining an interference protection terminal device according to information such as distribution. At this time, a measurement operation may be performed on the terminal device 40A side in order to know the status of the received SINR and the distribution of peripheral terminal devices.
 [干渉保護端末装置の検出]
 図7は、本開示の実施形態に係る干渉保護端末装置の検出処理の処理手順の一例を示す図である。同図は、基地局装置20Aの干渉保護端末装置の検出処理の処理手順の一例を表すシーケンス図である。まず、基地局装置20Aは、端末装置40Aに他のセルからの干渉測定を要請する(ステップS201)。この干渉測定は、端末装置40Aにおける他のセル110Bの端末装置40Bからの干渉を測定することに該当する。基地局装置20Aは、例えば、干渉測定を要請する信号を他の端末装置40(図5における端末装置40B)に送信する。また、基地局装置20Aは、この信号により送受信のための無線リソースを指定する。
[Detection of interference protection terminal device]
FIG. 7 is a diagram illustrating an example of a processing procedure of detection processing of an interference protection terminal device according to an embodiment of the present disclosure. This figure is a sequence diagram showing an example of the processing procedure of the interference protection terminal device detection process of the base station device 20A. First, the base station device 20A requests the terminal device 40A to measure interference from other cells (step S201). This interference measurement corresponds to measuring interference from the terminal device 40B of another cell 110B in the terminal device 40A. The base station device 20A, for example, transmits a signal requesting interference measurement to another terminal device 40 (terminal device 40B in FIG. 5). Furthermore, the base station device 20A specifies radio resources for transmission and reception using this signal.
 次に、端末装置40Aは、周囲の他のセルの端末装置40(同図においては端末装置40B)に干渉測定信号の送信を要請する(ステップS202)。具体的には、端末装置40Aは、端末装置40B等に干渉測定信号の送信を要請する信号を送信する。端末装置40Bは、信号のセルIDを参照してこの信号が自身セルとは異なるセルの端末装置から到来したものかを判別する。干渉を測定するための信号送信を要請する信号を受信した他のセルの端末装置(端末装置40B)は、干渉を測定するための信号である干渉測定信号を送信する(ステップS203)。他のセルの端末装置(端末装置40B)は自身が低遅延を要求されるような高いQoSの信号を送信する場合は、その情報を、干渉を測定するための信号又は別の信号にて端末装置40Aに通知する。次に、端末装置40端末は、受信した干渉を測定するための信号に基づいて自身の受信SINRや周囲の高QoS信号を送信する他のセルの端末装置40の分布を検出し、その情報を測定結果として基地局装置20Aに送信する(ステップS204)。基地局装置20Aは、この測定結果に基づいて干渉保護端末装置を検出する。例えば、測定結果の受信SINRが比較的低い場合に、基地局装置20Aは、端末装置40Aを干渉保護端末装置として検出することができる。 Next, the terminal device 40A requests the terminal devices 40 of other surrounding cells (terminal device 40B in the figure) to transmit an interference measurement signal (step S202). Specifically, the terminal device 40A transmits a signal requesting the terminal device 40B and the like to transmit an interference measurement signal. The terminal device 40B refers to the cell ID of the signal and determines whether this signal has arrived from a terminal device in a cell different from its own cell. The terminal device (terminal device 40B) of another cell that has received the signal requesting the transmission of a signal for measuring interference transmits an interference measurement signal that is a signal for measuring interference (step S203). When a terminal device (terminal device 40B) in another cell transmits a high QoS signal that requires low delay, the terminal device transmits that information in a signal for measuring interference or in another signal. The device 40A is notified. Next, the terminal device 40 terminal detects its own received SINR and the distribution of surrounding terminal devices 40 in other cells transmitting high QoS signals based on the received signal for measuring interference, and uses the information. The measurement results are transmitted to the base station device 20A (step S204). The base station device 20A detects the interference protection terminal device based on this measurement result. For example, when the reception SINR of the measurement result is relatively low, the base station device 20A can detect the terminal device 40A as an interference protection terminal device.
 なお、基地局装置20Aは、干渉保護端末装置を特定する一連の動作を単一の端末装置40に対して実施する場合と複数の端末装置40に対して実施する場合とがある。複数の端末装置40宛に他セルからの干渉の測定を要請する信号を送信する場合は、端末装置40毎に直交したリソースを割り当てる。 Note that the base station device 20A may perform a series of operations for identifying an interference protection terminal device on a single terminal device 40 or may perform the series of operations on a plurality of terminal devices 40. When transmitting a signal requesting measurement of interference from other cells to a plurality of terminal devices 40, orthogonal resources are allocated to each terminal device 40.
 [干渉領域の検出]
 図8は、本開示の実施形態に係る干渉領域検出処理の処理手順の一例を示す図である。同図は、図6における干渉領域検出(ステップS110)の処理手順の一例を表す流れ図である。
[Detection of interference area]
FIG. 8 is a diagram illustrating an example of a processing procedure of interference region detection processing according to an embodiment of the present disclosure. This figure is a flowchart showing an example of the processing procedure of interference area detection (step S110) in FIG. 6.
 基地局装置20Aは、干渉保護端末装置(ここでは端末装置40A)が存在する場合、干渉保護端末装置に対する干渉情報の取得を行う。この干渉情報は、干渉保護端末装置が帯域内全二重通信を実施する際に干渉抑制動作を実施するために必要な情報である。この干渉情報には、例えば、ある干渉保護端末装置が帯域内全二重通信を実施する際に自セル内から受ける干渉量及び他セルから受ける干渉量並びに実際に帯域内全二重通信を実施する際のMCS(Modulation and Coding Scheme)に対するパケットエラー率が該当する。また、干渉情報には、例えば、干渉保護端末装置の受信信号に対する雑音信号の比率及びQoSに関する情報が該当する。基地局装置20Aは、端末装置40Aに対して干渉情報の生成を要請する(ステップS111)。 When an interference-protected terminal device (terminal device 40A in this case) exists, base station device 20A acquires interference information for the interference-protected terminal device. This interference information is information necessary for the interference-protected terminal device to perform interference suppression operations when performing in-band full-duplex communication. This interference information corresponds, for example, to the amount of interference received from within its own cell and the amount of interference received from other cells when a certain interference-protected terminal device performs in-band full-duplex communication, as well as the packet error rate for the MCS (Modulation and Coding Scheme) when actually performing in-band full-duplex communication. In addition, the interference information corresponds, for example, to the ratio of noise signals to received signals of the interference-protected terminal device and information related to QoS. Base station device 20A requests terminal device 40A to generate interference information (step S111).
 次に、端末装置40Aは、上述の干渉量等の測定を行い、干渉情報を生成する。なお、干渉保護端末装置の検出時に測定した情報を干渉情報に適用することもできる。次に、基地局装置20Aは、端末装置40Aから干渉情報を取得する(ステップS112)。この、干渉情報の取得の際に、基地局装置20Aは、基地局装置20Aの位置情報やセクタ情報を収集することもできる。 Next, the terminal device 40A measures the amount of interference described above and generates interference information. Note that information measured at the time of detecting the interference protection terminal device can also be applied to the interference information. Next, the base station device 20A acquires interference information from the terminal device 40A (step S112). When acquiring this interference information, the base station device 20A can also collect location information and sector information of the base station device 20A.
 次に、基地局装置20Aは、干渉情報に基づいて、干渉領域190を決定する(ステップS113)。この干渉領域190は、以下の規範のいずれかまたは組み合わせに基づいて決定することができる。
(a)全ての干渉保護端末装置から一定の範囲
(b)干渉保護端末装置の周辺の干渉となりうる端末装置を含む範囲
(c)干渉保護端末装置が配置されるセクタエリアを合わせたもの
(d)干渉保護端末装置の周辺の干渉となりうる端末装置のセクタエリアを合わせたもの
Next, the base station device 20A determines the interference area 190 based on the interference information (step S113). This interference region 190 can be determined based on any or a combination of the following criteria.
(a) A certain range from all interference-protected terminal devices (b) A range that includes terminal devices that may cause interference around the interference-protected terminal device (c) A combined sector area where interference-protected terminal devices are located (d ) Interference protection Combines the sector areas of terminal equipment that can cause interference around the terminal equipment.
 これらの範囲は予め規格で規定されていても、干渉状況によって範囲が決定されてもよい。また、単一の基地局装置20がカバーするエリア内で複数の干渉領域が定義されてもよい。干渉領域190内の端末装置40に対しては、干渉領域190に存在する端末装置40として判別するためIDが割り当てられる。このIDは新しい情報として定義されても、既存のエリア情報の組み合わせで定義されてもよい。例えば、基地局装置20Aは、隣接する基地局装置20のゾーン(zone)IDと自身のゾーンIDとを組み合わせることによって、複数のゾーンIDを持つ端末装置を干渉領域190内の端末装置として定義する。 These ranges may be defined in advance by standards, or may be determined depending on the interference situation. Further, a plurality of interference regions may be defined within the area covered by a single base station device 20. An ID is assigned to the terminal device 40 within the interference region 190 in order to identify it as a terminal device 40 existing in the interference region 190. This ID may be defined as new information or may be defined as a combination of existing area information. For example, the base station device 20A defines terminal devices having multiple zone IDs as terminal devices within the interference area 190 by combining the zone ID of the adjacent base station device 20 and its own zone ID. .
 [干渉抑制動作]
 基地局装置20が干渉を及ぼす端末装置40(干渉端末装置)に要請する干渉抑制動作には、例えば、干渉端末装置の送信電力抑制、干渉端末装置の送信停止、干渉端末装置の帯域内全二重通信の停止及び干渉端末装置が使用する無線リソースの変更等が該当する。干渉端末が無線リソースを変更する場合、基地局装置20間において変更する無線リソースを予め合意しておく。これは、シグナリングにより行うことができる。また、基地局装置20は、帯域内全二重通信を実施する干渉保護端末からの要請に基づいて、干渉抑制動作を要請する信号の送信を行うこともできる。また基地局装置20は、他セルの基地局装置20からの要請信号を受信して、干渉抑制を要請する信号を配下の端末装置に送信してもよい。また、これらの干渉抑制を要請する信号は、PDCCHを介した物理レイヤの制御信号として送信することができる。また、干渉抑制を要請する信号は、PDSCHを介したMACまたはRRCレイヤの制御情報として送信することもできる。
[Interference suppression operation]
The interference suppression operations that the base station apparatus 20 requests from the interfering terminal apparatus 40 (interfering terminal apparatus) include, for example, suppressing the transmission power of the interfering terminal apparatus, stopping transmission of the interfering terminal apparatus, and suppressing all interference within the band of the interfering terminal apparatus. This includes stopping heavy communication and changing radio resources used by interfering terminal devices. When the interfering terminal changes the radio resources, the base station devices 20 agree on the radio resources to be changed in advance. This can be done by signaling. Furthermore, the base station device 20 can also transmit a signal requesting interference suppression operation based on a request from an interference protection terminal that performs in-band full-duplex communication. The base station device 20 may also receive a request signal from the base station device 20 of another cell and transmit a signal requesting interference suppression to the terminal device under its control. Further, these signals requesting interference suppression can be transmitted as physical layer control signals via the PDCCH. Further, the signal requesting interference suppression can also be transmitted as MAC or RRC layer control information via the PDSCH.
 この時、基地局装置20がどのような干渉抑制動作を要請するかは、干渉領域190の決定の際に測定した周辺の端末装置40から受ける干渉量や許容干渉量に基づいて決定することができる。 At this time, what kind of interference suppression operation the base station device 20 requests can be determined based on the amount of interference received from the surrounding terminal devices 40 and the amount of allowable interference measured when determining the interference area 190. can.
 [干渉抑制手順]
 図9は、本開示の実施形態に係る干渉抑制処理の処理手順の一例を示す図である。同図は、基地局装置20Aからの干渉抑制動作の通知に基づく端末装置40Bにおける干渉抑制動作の手順を表すシーケンス図である。
[Interference suppression procedure]
FIG. 9 is a diagram illustrating an example of a processing procedure of interference suppression processing according to an embodiment of the present disclosure. This figure is a sequence diagram showing the procedure of the interference suppression operation in the terminal device 40B based on the notification of the interference suppression operation from the base station device 20A.
 基地局装置20Aは、端末装置40Aに対して無線リソースの割当を行う(ステップS211)。これは、図6のステップS103に対応する処理手順である。次に、基地局装置20Aは、干渉端末装置である端末装置40Bに干渉抑制動作の通知を行う(ステップS212)。これは、図6のステップS104に対応する処理手順である。次に、端末装置40Bは、干渉抑制動作の通知に基づく干渉抑制動作を行う(ステップS213)。以上の処理手順により、端末装置40Bが干渉抑制動作を行い、端末装置40Aの下りリンク通信への干渉を抑制することができる。 The base station device 20A allocates radio resources to the terminal device 40A (step S211). This is a processing procedure corresponding to step S103 in FIG. Next, the base station device 20A notifies the terminal device 40B, which is the interfering terminal device, of the interference suppression operation (step S212). This is a processing procedure corresponding to step S104 in FIG. Next, the terminal device 40B performs an interference suppression operation based on the notification of the interference suppression operation (step S213). Through the above processing procedure, the terminal device 40B can perform an interference suppression operation and suppress interference with the downlink communication of the terminal device 40A.
 なお、端末装置40Bは、予め測定した許容干渉量に基づいて干渉抑制動作を選択することができる。干渉抑制動作は、前述のように、送信電力抑制、送信停止、帯域内全二重通信実施可否の判断及び帯域内全二重通信中止の要請の何れかである。この干渉抑制動作は、端末装置40B自身が要請してもよく、基地局装置20Aや他セルの端末装置40が要請してもよい。この時、上記の干渉抑制動作を要請する対象は、予め設定された帯域内全二重通信を実施する端末装置40の周辺の領域又はセクタ内の端末装置40である。この領域又はセクタの範囲は複数のゾーンIDで定義される範囲で決定されてもよく、帯域内全二重通信を実施する端末装置40自身が伝送する可能性がある信号のQoSから領域又はセクタを決定してもよい。 Note that the terminal device 40B can select the interference suppression operation based on the amount of allowable interference measured in advance. As described above, the interference suppression operation is one of transmission power suppression, transmission stop, determination of whether or not to perform in-band full-duplex communication, and request to cancel in-band full-duplex communication. This interference suppression operation may be requested by the terminal device 40B itself, or may be requested by the base station device 20A or the terminal device 40 of another cell. At this time, the target for requesting the above-mentioned interference suppression operation is the terminal device 40 in the area or sector around the terminal device 40 that performs the preset in-band full-duplex communication. The range of this region or sector may be determined by a range defined by a plurality of zone IDs, and the range of the region or sector may be determined based on the QoS of the signal that may be transmitted by the terminal device 40 itself that performs in-band full-duplex communication. may be determined.
 端末装置40における許容干渉量の測定方法について説明する。この許容干渉量の測定は、帯域内全二重通信を実施する端末装置40に対して行われる。許容干渉量は、前述の端末間干渉(CLI)により測定される干渉量に基づいて測定することができる。この測定は領域又はセクタ単位で実行される。この測定は基地局装置20により動作がトリガーされる。基地局装置20は、端末装置40Aおよび端末装置40Bに対して許容干渉量測定のための動作を要請する情報が格納された信号を送信する。許容干渉量測定のための動作を要請する情報が格納された信号を受信した端末装置40Aは、他の端末装置から送信される干渉測定のための既知の信号を受信するまで待機する。一方、許容干渉量測定のための動作を要請する情報が格納された信号を受信した端末装置40Bは、干渉測定のための既知の信号を送信する。干渉測定のための既知信号を受信した端末装置40Aは、自身が測定した干渉量を基地局装置20に通知する。この時、許容干渉量測定のための動作を要請する情報が格納された信号によってセクタ又は領域内の複数端末が同時に信号を送信してもよい。この測定結果に基づいて帯域内全二重通信の許容干渉量が算出される。 A method for measuring the amount of allowable interference in the terminal device 40 will be explained. This measurement of the allowable amount of interference is performed for the terminal device 40 that performs in-band full-duplex communication. The allowable amount of interference can be measured based on the amount of interference measured by the aforementioned terminal-to-terminal interference (CLI). This measurement is performed on a region or sector basis. This measurement is triggered by the base station device 20. The base station device 20 transmits a signal containing information requesting an operation for measuring the amount of allowable interference to the terminal device 40A and the terminal device 40B. The terminal device 40A that has received the signal storing information requesting an operation for measuring the amount of allowable interference waits until it receives a known signal for measuring interference transmitted from another terminal device. On the other hand, the terminal device 40B, which has received the signal storing the information requesting the operation for measuring the amount of allowable interference, transmits a known signal for measuring the interference. The terminal device 40A that has received the known signal for interference measurement notifies the base station device 20 of the amount of interference that it has measured. At this time, a plurality of terminals within a sector or area may simultaneously transmit a signal containing information requesting an operation for measuring the amount of allowable interference. Based on this measurement result, the allowable amount of interference for in-band full-duplex communication is calculated.
 [他の通信制御処理]
 図10は、本開示の実施形態に係る通信制御処理の処理手順の他の例を示す図である。同図は、図6と同様に、基地局装置20Aの通信処理の処理手順の一例を表す流れ図である。同図の処理は、干渉保護端末装置の検出後に、干渉保護端末装置(端末装置40A)が実際に帯域内全二重通信を開始する際の処理である。
[Other communication control processing]
FIG. 10 is a diagram illustrating another example of the processing procedure of communication control processing according to the embodiment of the present disclosure. Similar to FIG. 6, this figure is a flowchart illustrating an example of the processing procedure of communication processing of the base station device 20A. The process in the figure is a process when the interference protection terminal device (terminal device 40A) actually starts in-band full-duplex communication after detecting the interference protection terminal device.
 まず、基地局装置20Aは、端末装置40Aが帯域内全二重通信を行うかを判断する(ステップS131)。その結果、端末装置40Aが帯域内全二重通信を行わない場合には(ステップS131,No)、基地局装置20Aは、処理を終了する。一方、端末装置40Aが帯域内全二重通信を行う場合には(ステップS131,Yes)、基地局装置20Aは、干渉領域190を更新するかを判断する(ステップS132)。例えば、干渉保護端末である端末装置40Aや周辺の端末装置40の移動等により干渉状況が変化した場合には、干渉領域190の更新が必要になる。 First, the base station device 20A determines whether the terminal device 40A performs in-band full-duplex communication (step S131). As a result, if the terminal device 40A does not perform in-band full-duplex communication (step S131, No), the base station device 20A ends the process. On the other hand, when the terminal device 40A performs in-band full-duplex communication (step S131, Yes), the base station device 20A determines whether to update the interference region 190 (step S132). For example, when the interference situation changes due to movement of the terminal device 40A, which is an interference protection terminal, or the surrounding terminal devices 40, it is necessary to update the interference area 190.
 干渉領域190を更新しない場合には(ステップS132,No)、基地局装置20Aは、ステップS133の処理に移行する。一方、干渉領域190を更新する場合には(ステップS132,Yes)、基地局装置20Aは、干渉領域検出(ステップS110)を行い、ステップS133の処理に移行する。ステップS133において、基地局装置20Aは、無線リソース割当を行い(ステップS133)、干渉抑制動作を通知する(ステップS134)。 If the interference region 190 is not updated (step S132, No), the base station device 20A moves to the process of step S133. On the other hand, when updating the interference region 190 (step S132, Yes), the base station device 20A performs interference region detection (step S110), and proceeds to the process of step S133. In step S133, the base station device 20A performs radio resource allocation (step S133) and notifies interference suppression operation (step S134).
 このように、本開示の実施形態の通信システム1は、他のセルの干渉端末を含む干渉領域190の検出を行う。そして、端末装置40Aが帯域内全二重通信を行う際に、基地局装置20Aは、干渉領域に含まれる他の端末装置40に干渉抑制動作を行わせる。これにより、端末装置40Aの帯域内全二重通信の手順を簡略化することができる。 In this way, the communication system 1 according to the embodiment of the present disclosure detects the interference region 190 that includes interfering terminals of other cells. Then, when the terminal device 40A performs in-band full-duplex communication, the base station device 20A causes other terminal devices 40 included in the interference area to perform an interference suppression operation. Thereby, the procedure for in-band full-duplex communication of the terminal device 40A can be simplified.
 (その他の変形例)
 本実施形態の基地局装置20及び端末装置40を制御する制御装置は、専用のコンピュータシステムにより実現してもよいし、汎用のコンピュータシステムによって実現してもよい。
(Other variations)
The control device that controls the base station device 20 and the terminal device 40 of this embodiment may be realized by a dedicated computer system, or may be realized by a general-purpose computer system.
 例えば、上述の動作を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、基地局装置20及び端末装置40の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、基地局装置20及び端末装置40の内部の装置(例えば、制御部24及び制御部45)であってもよい。 For example, a communication program for executing the above operations is stored and distributed in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk. Then, for example, the program is installed on a computer and the control device is configured by executing the above-described processing. At this time, the control device may be a device (for example, a personal computer) external to the base station device 20 and the terminal device 40. Further, the control device may be a device inside the base station device 20 and the terminal device 40 (for example, the control unit 24 and the control unit 45).
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。 Furthermore, the communication program may be stored in a disk device included in a server device on a network such as the Internet, so that it can be downloaded to a computer. Furthermore, the above-mentioned functions may be realized through collaboration between an OS (Operating System) and application software. In this case, the parts other than the OS may be stored on a medium and distributed, or the parts other than the OS may be stored in a server device so that they can be downloaded to a computer.
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。 Further, among the processes described in the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually can be performed manually. All or part of this can also be performed automatically using known methods. In addition, information including the processing procedures, specific names, and various data and parameters shown in the above documents and drawings may be changed arbitrarily, unless otherwise specified. For example, the various information shown in each figure is not limited to the illustrated information.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。なお、この分散・統合による構成は動的に行われてもよい。 Furthermore, each component of each device shown in the drawings is functionally conceptual, and does not necessarily need to be physically configured as shown in the drawings. In other words, the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured. Note that this distribution/integration configuration may be performed dynamically.
 また、上述の実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、上述の実施形態のフローチャートに示された各ステップは、適宜順序を変更することが可能である。 Furthermore, the above-described embodiments can be combined as appropriate in areas where the processing contents do not conflict. Moreover, the order of each step shown in the flowchart of the above-described embodiment can be changed as appropriate.
 また、例えば、本実施形態は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット及びユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。 Further, for example, the present embodiment applies to any configuration constituting a device or system, such as a processor as a system LSI (Large Scale Integration), a module using multiple processors, etc., and a unit using multiple modules. Furthermore, it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
 なお、本実施形態において、システムとは、複数の構成要素(装置及びモジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。従って、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 Note that in this embodiment, a system means a collection of multiple components (devices, modules (components), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, multiple devices housed in separate casings and connected via a network, and a single device with multiple modules housed in one casing are both systems. .
 また、例えば、本実施形態は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 Furthermore, for example, the present embodiment can take a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
 以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。 Although each embodiment of the present disclosure has been described above, the technical scope of the present disclosure is not limited to each of the above-described embodiments as is, and various changes can be made without departing from the gist of the present disclosure. be. Furthermore, components of different embodiments and modifications may be combined as appropriate.
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、コンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。 Note that the series of processes performed by each device described in this specification may be realized using software, hardware, or a combination of software and hardware. The programs constituting the software are stored in advance in, for example, a storage medium (non-transitory media) provided inside or outside each device. For example, each program is read into a RAM when executed by a computer, and executed by a processor such as a CPU.
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 Furthermore, the processes described using flowcharts and sequence diagrams in this specification do not necessarily have to be executed in the order shown. Some processing steps may be performed in parallel. Also, additional processing steps may be employed or some processing steps may be omitted.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limiting, and other effects may also exist.
 なお、本技術は以下のような構成も取ることができる。
(1)
 帯域内全二重通信を行う通信システムにおいて、自身の基地局装置と下りリンク通信を行う端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす他のセルの端末装置を含む領域である干渉領域を検出する制御と、前記干渉領域に含まれる他の前記端末装置に干渉抑制動作を行わせる制御とを行う制御部を有する基地局装置。
(2)
 前記制御部は、前記端末装置が前記他のセルの端末装置から受ける干渉の情報である干渉情報に基づいて前記干渉領域を検出する制御を行う前記(1)に記載の基地局装置。
(3)
 前記干渉情報は、前記端末装置が前記他のセルの端末装置から受ける干渉量を含む前記(2)に記載の基地局装置。
(4)
 前記干渉情報は、前記端末装置の帯域内全二重通信の際のパケットエラー率を含む前記(2)に記載の基地局装置。
(5)
 前記干渉情報は、前記端末装置の受信信号に対する雑音信号の比率を含む前記(2)に記載の基地局装置。
(6)
 前記干渉情報は、前記他のセルの端末装置のQoSに関する情報を含む前記(2)に記載の基地局装置。
(7)
 前記制御部は、前記端末装置に前記干渉情報を生成させる制御を更に行い、前記端末装置により生成された前記干渉情報に基づいて前記干渉領域を検出する前記(2)に記載の基地局装置。
(8)
 前記制御部は、送信電力の抑制を前記干渉抑制動作とする前記(1)に記載の基地局装置。
(9)
 前記制御部は、送信の停止を前記干渉抑制動作とする前記(1)に記載の基地局装置。
(10)
 前記制御部は、帯域内全二重通信の停止を前記干渉抑制動作とする前記(1)に記載の基地局装置。
(11)
 前記制御部は、使用する無線リソースの変更を前記干渉抑制動作とする前記(1)に記載の基地局装置。
(12)
 帯域内全二重通信を行う通信システムにおいて、基地局装置と下りリンク通信を行う他のセルの端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす端末装置を含む領域である干渉領域に配置される端末装置であって、前記基地局装置からの通知に基づいて干渉抑制動作を行う制御部を有する端末装置。
(13)
 帯域内全二重通信を行う通信システムにおいて、自身の基地局装置と下りリンク通信を行う端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす他のセルの端末装置を含む領域である干渉領域を検出することと、
 前記干渉領域に含まれる他の前記端末装置に干渉抑制動作を行わせることと
 を含む通信制御方法。
(14)
 帯域内全二重通信を行う通信システムにおいて、基地局装置と下りリンク通信を行う他のセルの端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす端末装置を含む領域である干渉領域に配置される際に、前記基地局装置からの通知に基づいて干渉抑制動作を行うことを含む通信制御方法。
Note that the present technology can also have the following configuration.
(1)
In a communication system that performs in-band full-duplex communication, it includes terminal devices in other cells that cause interference with uplink communication transmission signals in the same frequency band to terminal devices that perform downlink communication with their own base station equipment. A base station device comprising a control unit that performs control to detect an interference region, which is a region, and control to cause other terminal devices included in the interference region to perform an interference suppression operation.
(2)
The base station device according to (1), wherein the control unit performs control to detect the interference area based on interference information that is information about interference that the terminal device receives from the terminal device of the other cell.
(3)
The base station apparatus according to (2), wherein the interference information includes an amount of interference that the terminal apparatus receives from the terminal apparatus of the other cell.
(4)
The base station device according to (2), wherein the interference information includes a packet error rate during in-band full-duplex communication of the terminal device.
(5)
The base station device according to (2), wherein the interference information includes a ratio of a noise signal to a received signal of the terminal device.
(6)
The base station device according to (2), wherein the interference information includes information regarding QoS of the terminal device of the other cell.
(7)
The base station device according to (2), wherein the control unit further controls the terminal device to generate the interference information, and detects the interference area based on the interference information generated by the terminal device.
(8)
The base station device according to (1), wherein the control unit performs suppression of transmission power as the interference suppression operation.
(9)
The base station device according to (1), wherein the control unit causes the interference suppression operation to be a stop of transmission.
(10)
The base station device according to (1), wherein the control unit causes the interference suppression operation to be a stop of in-band full-duplex communication.
(11)
The base station device according to (1), wherein the control unit causes the interference suppression operation to be a change in radio resources to be used.
(12)
In a communication system that performs in-band full-duplex communication, an area that includes terminal equipment that causes interference with uplink communication transmission signals in the same frequency band to terminal equipment in other cells that perform downlink communication with the base station equipment. A terminal device disposed in a certain interference area, the terminal device having a control unit that performs an interference suppression operation based on a notification from the base station device.
(13)
In a communication system that performs in-band full-duplex communication, it includes terminal devices in other cells that cause interference with uplink communication transmission signals in the same frequency band to terminal devices that perform downlink communication with their own base station equipment. detecting an interference region that is a region;
A communication control method comprising: causing another of the terminal devices included in the interference area to perform an interference suppression operation.
(14)
In a communication system that performs in-band full-duplex communication, an area that includes terminal equipment that causes interference with uplink communication transmission signals in the same frequency band to terminal equipment in other cells that perform downlink communication with the base station equipment. A communication control method comprising performing an interference suppression operation based on a notification from the base station device when the base station device is located in a certain interference area.
 1 通信システム
 20、20A、20B 基地局装置
 24、45 制御部
 40、40A、40B 端末装置
 190 干渉領域
1 Communication System 20, 20A, 20B Base Station Device 24, 45 Control Unit 40, 40A, 40B Terminal Device 190 Interference Area

Claims (14)

  1.  帯域内全二重通信を行う通信システムにおいて、自身の基地局装置と下りリンク通信を行う端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす他のセルの端末装置を含む領域である干渉領域を検出する制御と、前記干渉領域に含まれる他の前記端末装置に干渉抑制動作を行わせる制御とを行う制御部を有する基地局装置。 In a communication system that performs in-band full-duplex communication, it includes terminal devices in other cells that cause interference with uplink communication transmission signals in the same frequency band to terminal devices that perform downlink communication with their own base station equipment. A base station device comprising a control unit that performs control to detect an interference region, which is a region, and control to cause other terminal devices included in the interference region to perform an interference suppression operation.
  2.  前記制御部は、前記端末装置が前記他のセルの端末装置から受ける干渉の情報である干渉情報に基づいて前記干渉領域を検出する制御を行う請求項1に記載の基地局装置。 The base station device according to claim 1, wherein the control unit performs control to detect the interference area based on interference information that is information about interference that the terminal device receives from a terminal device in the other cell.
  3.  前記干渉情報は、前記端末装置が前記他のセルの端末装置から受ける干渉量を含む請求項2に記載の基地局装置。 The base station apparatus according to claim 2, wherein the interference information includes an amount of interference that the terminal apparatus receives from a terminal apparatus of the other cell.
  4.  前記干渉情報は、前記端末装置の帯域内全二重通信の際のパケットエラー率を含む請求項2に記載の基地局装置。 The base station device according to claim 2, wherein the interference information includes a packet error rate during in-band full-duplex communication of the terminal device.
  5.  前記干渉情報は、前記端末装置の受信信号に対する雑音信号の比率を含む請求項2に記載の基地局装置。 The base station device according to claim 2, wherein the interference information includes a ratio of a noise signal to a received signal of the terminal device.
  6.  前記干渉情報は、前記他のセルの端末装置のQoSに関する情報を含む請求項2に記載の基地局装置。 The base station device according to claim 2, wherein the interference information includes information regarding QoS of the terminal device of the other cell.
  7.  前記制御部は、前記端末装置に前記干渉情報を生成させる制御を更に行い、前記端末装置により生成された前記干渉情報に基づいて前記干渉領域を検出する請求項2に記載の基地局装置。 The base station device according to claim 2, wherein the control unit further controls the terminal device to generate the interference information, and detects the interference area based on the interference information generated by the terminal device.
  8.  前記制御部は、送信電力の抑制を前記干渉抑制動作とする請求項1に記載の基地局装置。 The base station apparatus according to claim 1, wherein the control unit makes suppression of transmission power the interference suppression operation.
  9.  前記制御部は、送信の停止を前記干渉抑制動作とする請求項1に記載の基地局装置。 The base station device according to claim 1, wherein the control unit makes stopping transmission the interference suppression operation.
  10.  前記制御部は、帯域内全二重通信の停止を前記干渉抑制動作とする請求項1に記載の基地局装置。 The base station device according to claim 1, wherein the control unit causes the interference suppression operation to be a stop of in-band full-duplex communication.
  11.  前記制御部は、使用する無線リソースの変更を前記干渉抑制動作とする請求項1に記載の基地局装置。 The base station apparatus according to claim 1, wherein the control unit causes the interference suppression operation to be a change in radio resources to be used.
  12.  帯域内全二重通信を行う通信システムにおいて、基地局装置と下りリンク通信を行う他のセルの端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす端末装置を含む領域である干渉領域に配置される端末装置であって、前記基地局装置からの通知に基づいて干渉抑制動作を行う制御部を有する端末装置。 In a communication system that performs in-band full-duplex communication, an area that includes terminal equipment that causes interference with uplink communication transmission signals in the same frequency band to terminal equipment in other cells that perform downlink communication with the base station equipment. A terminal device disposed in a certain interference area, the terminal device having a control unit that performs an interference suppression operation based on a notification from the base station device.
  13.  帯域内全二重通信を行う通信システムにおいて、自身の基地局装置と下りリンク通信を行う端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす他のセルの端末装置を含む領域である干渉領域を検出することと、
     前記干渉領域に含まれる他の前記端末装置に干渉抑制動作を行わせることと
     を含む通信制御方法。
    In a communication system that performs in-band full-duplex communication, it includes terminal devices in other cells that cause interference with uplink communication transmission signals in the same frequency band to terminal devices that perform downlink communication with their own base station equipment. detecting an interference region that is a region;
    A communication control method comprising: causing another of the terminal devices included in the interference area to perform an interference suppression operation.
  14.  帯域内全二重通信を行う通信システムにおいて、基地局装置と下りリンク通信を行う他のセルの端末装置に対して同じ周波数帯域の上りリンク通信の送信信号により干渉を及ぼす端末装置を含む領域である干渉領域に配置される際に、前記基地局装置からの通知に基づいて干渉抑制動作を行うことを含む通信制御方法。 In a communication system that performs in-band full-duplex communication, an area that includes terminal equipment that causes interference with uplink communication transmission signals in the same frequency band to terminal equipment in other cells that perform downlink communication with the base station equipment. A communication control method comprising performing an interference suppression operation based on a notification from the base station device when the base station device is located in a certain interference area.
PCT/JP2023/032327 2022-09-13 2023-09-05 Base station device, terminal device, and communication control method WO2024058002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-145540 2022-09-13
JP2022145540 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024058002A1 true WO2024058002A1 (en) 2024-03-21

Family

ID=90274840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032327 WO2024058002A1 (en) 2022-09-13 2023-09-05 Base station device, terminal device, and communication control method

Country Status (1)

Country Link
WO (1) WO2024058002A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520554A (en) * 2015-05-14 2018-07-26 エスケーテレコム カンパニー リミテッドSk Telecom Co., Ltd. Base station apparatus, full-duplex transmission control method and system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520554A (en) * 2015-05-14 2018-07-26 エスケーテレコム カンパニー リミテッドSk Telecom Co., Ltd. Base station apparatus, full-duplex transmission control method and system

Similar Documents

Publication Publication Date Title
KR102628976B1 (en) Transmission structure and format for DL control channel
KR102453796B1 (en) Method and apparatus for reporting channel state information in a wireless communication system
CN110226293B (en) Method, apparatus, and non-transitory computer-readable medium for wireless communication
US11546120B2 (en) Techniques and apparatuses for channel state information feedback performance for introduction of 64-QAM in machine type communication devices
CN107079513B (en) Apparatus configured for reporting aperiodic channel state information of dual connectivity
WO2016163502A1 (en) User terminal, wireless base station, and wireless communication method
WO2019094880A1 (en) Uplink control information transmission
US20210297850A1 (en) User terminal and radio communication method
KR20220038774A (en) Scheduling services with multiple priority types
CN114631380A (en) Oversubscription for multiple transmit-receive points based on multiple DCI
WO2021162768A1 (en) Bandwidth part indication for multiple cells scheduled by a single downlink control information message
CN115136532A (en) Sounding reference signal configuration for at least two transmission/reception points
US20190297584A1 (en) User Device-Initiated Downlink Power Request
KR20230073191A (en) Report on lean synchronization signal blocks to enable beam management
US11652574B2 (en) Configuring and signaling an interleaving mode that includes in-allocation interleaving
WO2022185869A1 (en) Terminal device, base station device, and communication method
WO2024058002A1 (en) Base station device, terminal device, and communication control method
WO2023181752A1 (en) Terminal device, base station device, communication method, and communication system
WO2023002686A1 (en) Terminal device, base station device, and communication method
WO2023181753A1 (en) Communication device and communication method
WO2022215350A1 (en) Communication device, base station device, communication method, and communication program
WO2022254548A1 (en) Terminal, wireless communication method, and base station
WO2022254550A1 (en) Terminal, wireless communication method, and base station
WO2022254549A1 (en) Terminal, wireless communication method, and base station
WO2022254547A1 (en) Terminal, wireless communication method, and base station