WO2024057944A1 - Composition containing borohydride sheet and carrier, and hydrogen release method using same - Google Patents

Composition containing borohydride sheet and carrier, and hydrogen release method using same Download PDF

Info

Publication number
WO2024057944A1
WO2024057944A1 PCT/JP2023/031726 JP2023031726W WO2024057944A1 WO 2024057944 A1 WO2024057944 A1 WO 2024057944A1 JP 2023031726 W JP2023031726 W JP 2023031726W WO 2024057944 A1 WO2024057944 A1 WO 2024057944A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
sheet
borohydride
carrier
composition
Prior art date
Application number
PCT/JP2023/031726
Other languages
French (fr)
Japanese (ja)
Inventor
雅浩 宮内
伸一 伊藤
剛弘 近藤
亮太 丸山
ダウティ マイヘムティジアング
和志 水越
Original Assignee
国立大学法人東京工業大学
国立大学法人筑波大学
三桜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 国立大学法人筑波大学, 三桜工業株式会社 filed Critical 国立大学法人東京工業大学
Publication of WO2024057944A1 publication Critical patent/WO2024057944A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/06Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
    • C01B6/10Monoborane; Diborane; Addition complexes thereof
    • C01B6/11Preparation from boron or inorganic compounds containing boron and oxygen

Definitions

  • the present invention relates to a composition containing a borohydride sheet and a carrier, and a hydrogen release method using the same. According to the present invention, hydrogen can be efficiently released.
  • Hydrogen is a secondary energy that does not emit carbon dioxide when used and can be stored and transported.
  • hydrogen has a lower energy density per volume than natural gas. Therefore, it is stored as compressed hydrogen gas in a high-pressure tank.
  • high pressure is expensive.
  • the cost of constructing and maintaining a hydrogen station is higher than the cost of constructing and maintaining a gas station. Therefore, hydrogen cars that use hydrogen as energy are less popular than gasoline cars.
  • Hydrogen storage alloys are a method of storing hydrogen, but the amount of hydrogen stored per weight is small. Furthermore, as a method for storing a large amount of hydrogen at normal pressure, a method using a borohydride sheet has been developed (Patent Documents 1 to 3 and Non-Patent Documents 1 to 2).
  • a borohydride sheet releases hydrogen when heated (Patent Document 1).
  • the release of hydrogen due to heating is difficult to control.
  • a technique has been developed in which hydrogen is released by irradiating a borohydride sheet with ultraviolet light (Patent Document 2 and Non-Patent Document 1).
  • an object of the present invention is to provide a composition and a method for efficiently releasing hydrogen.
  • the present invention [1] A composition comprising a borohydride sheet and a carrier, the composition having a UV transmittance of more than 0% and less than 100%, [2] The composition according to [1], which has a porosity of more than 0% and 99.99% or less, and contains the borohydride sheet and the carrier at a volume ratio of 1:0.1 to 100; and [3] A method for releasing hydrogen, comprising the step of irradiating the composition according to [1] or [2] with ultraviolet rays.
  • composition and hydrogen release method of the present invention hydrogen can be efficiently released.
  • FIG. 2 is a diagram schematically showing hydrogen release in the composition of Example 1.
  • 2 is a diagram schematically showing hydrogen release in the composition of Comparative Example 1.
  • composition of the present invention includes a borohydride sheet and a carrier.
  • the borohydride sheet and the carrier are included in a volume ratio of 1:0.1 to 100 so that the transmittance of ultraviolet light is more than 0% and less than 100%.
  • the composition of the present invention preferably has an ultraviolet light transmittance of more than 0% and less than 100%. This is because when the transmittance is 0%, there is a borohydride sheet where light cannot reach, and hydrogen cannot be efficiently released. Further, when the transmittance is close to 100% over the entire wavelength, the borohydride sheet cannot absorb ultraviolet light.
  • the lower limit of the transmittance of ultraviolet light is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 1 ⁇ 10 -59 % or more, and in some embodiments it is 1 ⁇ 10 - 11 % or more, in some embodiments 0.001% or more, in some embodiments 0.01% or more, and in some embodiments 0.1% or more.
  • the upper limit of the transmittance of ultraviolet light is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 90% or less, in some embodiments it is 80% or less, and in some embodiments, 50% or less.
  • the method for measuring total light transmittance defined in Japanese Industrial Standards JISK7361-1:1997 is used.
  • the test piece will be partially changed as follows.
  • step 5.1 cut out while maintaining the thickness.
  • the thickness measurement method will be partially changed as follows.
  • 7.4 the thickness of the test specimen is measured at three locations with an accuracy of 0.01 mm.
  • the porosity of the composition of the present invention is preferably more than 0% and 99.99% or less in order to achieve the above-mentioned preferred transmittance.
  • the lower limit of the porosity is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 15% or more, in some embodiments it is 40% or more, and in some embodiments it is 91% or more. be.
  • the upper limit of the porosity is also not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 99% or less, in some embodiments it is 98% or less, and in some embodiments it is 95% or less. It is.
  • the composition of the present invention can efficiently release hydrogen from the borohydride sheet.
  • the porosity is measured using the method for measuring open porosity defined in Japanese Industrial Standards JISR1634:1998.
  • the equipment and equipment used for measurements will be partially changed as follows. 4.
  • the mass meter is a mass meter capable of measuring to the order of 0.00001 g.
  • the measurement method will be partially changed as follows. In 6.6.1, cooling can be performed in the atmosphere. In step 6.6.4, measurements can be taken without wiping the surface of the saturated sample taken out of the water and after confirming that no water droplets are dripping.
  • the volume ratio of the borohydride sheet to the carrier is preferably 1:0.1 to 100 in order to achieve the above-mentioned preferred transmittance.
  • the lower limit of the volume ratio is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 1:0.2 or more, in some embodiments it is 1:0.3 or more, and in some embodiments it is 1:0.3 or more. In terms of aspect, the ratio is 1:0.5 or more.
  • the upper limit is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 1:80 or less, in some embodiments it is 1:50 or less, and in some embodiments it is 1:10 or less. .
  • the lower limit and upper limit can be combined as appropriate.
  • the thickness of the composition of the present invention is, for example, 0.01 to 100 mm.
  • the lower limit of the thickness of the composition is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 0.02 mm or more, in some embodiments it is 0.03 mm or more, and in some embodiments In some embodiments, it is 0.05 mm or more, and in some embodiments, it is 0.1 mm or more.
  • the upper limit of the thickness of the composition is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 95 mm or less, in some embodiments it is 90 mm or less, and in some embodiments it is 85 mm or less. Yes, and in some embodiments it is 80 mm or less.
  • the lower limit and upper limit can be combined as appropriate.
  • the borohydride sheet used in the present invention is not particularly limited as long as it contains boron and hydrogen, but any borohydride sheet used in this field can be used without limitation.
  • an ideal borohydride sheet consisting of only boron and hydrogen has the three-dimensional structure shown in FIG. 1(A).
  • some borohydride sheets contain oxygen. That is, it contains boron, hydrogen, and oxygen, has a B-H-B bond, a B-H bond, and a B-OH bond as shown in FIG. 1(B), and has a combination of BH and BOH (BH)n.
  • the thickness of the borohydride sheet is not particularly limited, but is 0.23 nm to 0.50 nm.
  • the length in at least one direction (for example, the length in the X direction or Y direction in FIG. 1A) is preferably 100 nm or more. In the structure of the present invention, if the length in at least one direction is 100 nm or more, the borohydride sheet can be effectively used as a hydrogen storage material.
  • the size (area) of the borohydride sheet is not particularly limited. The size of the borohydride sheet can be formed to any size depending on the method for manufacturing the borohydride sheet.
  • Hydrogen boride sheets are substances with a crystalline structure.
  • the bonding strength between the boron atoms (B) that form the hexagonal rings, and between the boron atoms (B) and hydrogen atoms (H), is strong. Therefore, even if the structure of the present invention forms a crystal (aggregate) consisting of multiple layers during production, it can be easily cleaved along the crystal planes, just like graphite, and separated (recovered) as a single layer two-dimensional sheet.
  • the composition of the invention includes a carrier.
  • the carrier is not particularly limited as long as the effects of the present invention can be obtained.
  • the porosity of the carrier is, for example, more than 0% and 99.99% or less.
  • the lower limit of the porosity is 15% or more in some embodiments, 40% or more in some embodiments, and 91% or more in some embodiments.
  • the upper limit is 99% or less in some embodiments, 98% or less in some embodiments, and 95% or less in some embodiments.
  • the ultraviolet light transmittance of the carrier is, for example, more than 0% and less than 100%.
  • the lower limit of the transmittance of ultraviolet light is 1% or more in some embodiments, and 20% or more in some embodiments.
  • the upper limit of the transmittance of ultraviolet light is 80% or less in some embodiments, and 50% or less in some embodiments.
  • Examples of the form include wool-like, sponge-like, or porous forms in order to ensure a space through which hydrogen generated by ultraviolet irradiation flows.
  • a carrier with high transmittance is preferable.
  • Specific carrier materials include quartz (quartz wool, porous quartz glass), polystyrene, carbon fiber, cellophane, vinyl chloride resin, and foamed alumina.
  • the method for producing the borohydride sheet is not particularly limited, but can be produced, for example, by the following method.
  • the method for producing a borohydride sheet includes two types of structure: MB2 (where M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti, and V).
  • a step of mixing a metal boride and an ion exchange resin in which metal ions constituting the metal diboride and ion exchangeable ions are coordinated in a polar organic solvent (hereinafter sometimes referred to as the mixing step). include.
  • the metal diboride having the MB 2 type structure has a hexagonal ring structure.
  • aluminum diboride (AlB 2 ), magnesium diboride (MgB 2 ), tantalum diboride (TaB 2 ), zirconium diboride (ZrB 2 ), rhenium diboride (ReB 2 ), diboride Chromium (CrB 2 ), titanium diboride (TiB 2 ), or vanadium diboride (VB 2 ) is used. It is preferable to use magnesium diboride because it can easily perform ion exchange with an ion exchange resin in a polar organic solvent.
  • the crystallite size of the metal diboride having the MB 2 type structure is not particularly limited as long as it is possible to produce a hydrogen boride sheet that provides the effects of the present invention, but preferably the average crystallite size is 2. ⁇ 5 ⁇ m, in one embodiment 2-3 ⁇ m, and in another embodiment 3-5 ⁇ m. By being within the above range, more hydrogen can be stored.
  • the method for measuring the crystallite size is not particularly limited, but it can preferably be measured by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the diffraction intensity of the 2 ⁇ axis of MB 2 powder may be measured by the ⁇ -2 ⁇ method of powder diffraction. Specifically, MB2 powder is fixed to a sample holder for powder measurement.
  • the sample holder to which the MB 2 powder is fixed is installed in the sample holder process jig of the XRD apparatus. Measure the powder using the ⁇ -2 ⁇ method.
  • a commonly used wavelength such as a Cu target (wavelength: 1.54 ⁇ ) or a Mo target (wavelength: 0.7 ⁇ ) can be used.
  • the crystallite size L (m) is calculated using the Scherrer equation below.
  • the crystallite size is calculated for each diffraction angle.
  • the crystallite size obtained is an average value.
  • the average range of crystallite sizes is determined from the range of crystallite sizes calculated from each diffraction.
  • the ion exchange resin in which ions capable of ion exchange with the metal ions constituting the metal diboride are coordinated is not particularly limited.
  • ion exchange resins include, for example, a styrene polymer having a functional group (hereinafter referred to as "functional group ⁇ ") that coordinates an ion exchangeable with the metal ion constituting the metal diboride.
  • a polymer of divinylbenzene having a functional group ⁇ a copolymer of styrene having a functional group ⁇ and divinylbenzene having a functional group ⁇ , and the like.
  • the functional group ⁇ include a sulfo group and a carboxyl group. Among these, a sulfo group is preferred because it can easily undergo ion exchange with the metal ion constituting the metal diboride in a polar organic solvent.
  • the polar organic solvent is not particularly limited, and examples thereof include acetonitrile, N,N-dimethylformamide, methanol, and the like. Among these, acetonitrile is preferred because it does not contain oxygen.
  • metal diboride and ion exchange resin are added to a polar organic solvent, the mixed solution containing the polar organic solvent, metal diboride, and ion exchange resin is stirred, and the metal diboride and ion exchange resin are mixed. Make sufficient contact. As a result, the metal ions constituting the metal diboride and the ions of the functional group ⁇ of the ion exchange resin undergo ion exchange, resulting in boron atoms formed by the boron atoms and atoms originating from the functional group ⁇ of the ion exchange resin. Hydrogen sheets are produced.
  • magnesium diboride is used as the metal diboride and an ion exchange resin having a sulfo group is used as the ion exchange resin
  • the magnesium ion (Mg 2+ ) of the magnesium diboride and the hydrogen of the sulfo group of the ion exchange resin can be combined.
  • the ions (H + ) are substituted, and a borohydride sheet consisting of boron atoms (B) and hydrogen atoms (H) as described above is generated.
  • the ion exchange reaction between the metal ions constituting the metal diboride and the ions of the functional group ⁇ of the ion exchange resin proceed gently without applying ultrasonic waves or the like to the mixed liquid. .
  • the temperature of the mixed solution is preferably 15°C to 35°C.
  • the time for stirring the mixed solution is not particularly limited, but is, for example, 700 minutes to 7000 minutes.
  • the mixing step is performed under an inert atmosphere consisting of an inert gas such as nitrogen (N 2 ) or argon (Ar).
  • an inert gas such as nitrogen (N 2 ) or argon (Ar).
  • the mixed solution after stirring is filtered (hereinafter sometimes referred to as a filtration step).
  • the method of filtering the mixed solution is not particularly limited, and for example, methods such as natural filtration, vacuum filtration, pressure filtration, and centrifugal filtration are used.
  • the filter medium for example, a filter paper based on cellulose, a membrane filter, a filter plate formed by compression molding of cellulose, glass fiber, or the like is used.
  • the filter size is not particularly limited as long as a borohydride sheet that achieves the effects of the present invention can be produced, but is, for example, 5 ⁇ m or less, preferably 4 ⁇ m or less.
  • the lower limit of the filter size is not limited, it is preferably 0.1 ⁇ m or more from the viewpoint of shortening the filtration time.
  • This product is a borohydride sheet formed by boron atoms and hydrogen atoms originating from the functional group ⁇ of the ion exchange resin.
  • the hydrogen release method of the present invention includes the step of irradiating the composition with ultraviolet rays.
  • the wavelength of the ultraviolet light used is not particularly limited as long as hydrogen molecules (H 2 ) are released from the composition, but ultraviolet light of 200 nm to 400 nm can be used.
  • the ultraviolet light source include, but are not limited to, a mercury xenon lamp, a high pressure mercury UV lamp, a low pressure mercury UV lamp, an ultraviolet LED, an ultraviolet LD, or a metal halide UV lamp.
  • composition of the present invention has a porosity of 0 to 99.99% and a UV transmittance of more than 0% and less than 100%. It is estimated that by combining a carrier with such characteristics and a borohydride sheet, ultraviolet rays will reach the borohydride sheet, and the released hydrogen will be released outside the composition through the pores. be done.
  • Example 1 a composition containing a borohydride sheet was prepared using quartz wool as a carrier.
  • 30 mL of ion exchange resin (Amberlite IR120B H type manufactured by Organo) was placed in a burette, and 120 mL of acetonitrile solvent was added to moisten the resin. Thereafter, the stopcock of the buret was opened and the solution was allowed to flow.
  • the ion exchange resin remaining in the buret was transferred to a 300 mL flask, 200 mL of acetonitrile solvent was added, and nitrogen gas was passed through the solution.
  • Example 1 In this comparative example, only the borohydride sheet was filled into a quartz tube without using a carrier. The procedure of Example 1 was repeated except that quartz wool was used. That is, 37 mg of the borohydride sheet was placed in a quartz tube in a glove box under a nitrogen atmosphere, and both ends of the quartz tube were sealed with septa.
  • Example 1 ⁇ Hydrogen release experiment ⁇
  • the samples obtained in Example 1 and Comparative Example 1 were irradiated with ultraviolet rays, and the amount of hydrogen molecules (H 2 ) released was measured.
  • Example 1 is shown in FIG. 2, and Comparative Example 1 is shown in FIG.
  • the sample was irradiated with ultraviolet light at a distance of 1 mm using a mercury xenon lamp.
  • the samples of Example 1 and Comparative Example 1 were irradiated so that the irradiation areas were the same.
  • the concentration of the generated hydrogen gas was measured by gas chromatography, and changes in the hydrogen concentration were measured for 120 minutes. Table 1 shows the integrated values of hydrogen concentration obtained during the measurement time. After irradiation, the sample of Example 1 had turned white.
  • the sample of Comparative Example 1 had a smaller number of brown spots.
  • the side that was irradiated with ultraviolet rays turned brown, and no change in color was observed on the side that was not irradiated with ultraviolet rays.
  • Example 2 is an example in which the transmittance as recited in claim 1 and the volume ratio as recited in claim 2 are within the ranges recited in the claims.
  • Reference Example 1 is an example in which the porosity and volume ratio are within the ranges described in claim 2.
  • Example 2 a composition containing a borohydride sheet was prepared using a thin sheet of quartz wool (thickness: 0.1 mm) as a carrier. In a glove box under an argon atmosphere, 10.52 mg of borohydride sheet was collected into a screw tube, and 1 mL of acetonitrile solvent was added to prepare a borohydride sheet solution. The borohydride sheet solution was added dropwise to 8.58 mg of quartz wool (A grade 2-6 ⁇ m) and dried under an air atmosphere.
  • a composition containing a borohydride sheet was prepared using curled quartz wool as a carrier.
  • 3 mg of borohydride sheet was collected into a screw tube, and 1 mL of acetonitrile solvent was added to prepare a borohydride sheet solution.
  • the borohydride sheet solution was added dropwise to 6.44 mg of quartz wool (A grade 2-6 ⁇ m) and dried under an air atmosphere.
  • composition of the present invention and the hydrogen release method using the same can be used to store and transport hydrogen, and can produce many hydrogen molecules (H 2 ).

Abstract

The purpose of the present invention is to provide: a composition which is capable of efficiently releasing hydrogen; and a hydrogen release method. The above are achieved by means of a composition which contains a borohydride sheet and a carrier at a volume ratio of 1:0.1 to 100 so that the transmittance of ultraviolet light is more than 0% but less than 100%.

Description

ホウ化水素シート及び担体を含む組成物及びそれを用いる水素放出方法Composition including borohydride sheet and carrier, and hydrogen release method using the same
 本発明は、ホウ化水素シート及び担体を含む組成物及びそれを用いる水素放出方法に関する。本発明によれば、効率的に水素を放出することができる。 The present invention relates to a composition containing a borohydride sheet and a carrier, and a hydrogen release method using the same. According to the present invention, hydrogen can be efficiently released.
 水素は、利用時に二酸化炭素を排出せず、そして貯蔵及び輸送が可能な二次エネルギーである。一方で、水素は天然ガスと比べ、体積当たりのエネルギー密度が低い。従って、高圧タンクに圧縮した水素ガスとして貯蔵される。しかし、高圧にする場合、コストがかる。更に、水素ステーションの建設及び維持のコストは、ガソリンスタンドの建設及び維持のコストよりも高い。従って、水素をエネルギーとして用いる水素自動車は、ガソリン車よりも普及が進んでいない。
 水素を貯蔵する方法として、水素吸蔵合金が挙げられるが、重量当たりの水素貯蔵量が少ない。また、常圧で多量の水素を貯蔵する方法として、ホウ化水素シートを用いる方法が開発されている(特許文献1~3、及び非特許文献1~2)。ホウ化水素シートは、加熱により、水素を放出する(特許文献1)。しかし、加熱による水素の放出は、その制御が難しい。一方、ホウ化水素シートに紫外光を照射することにより、水素を放出する技術が開発されている(特許文献2、及び非特許文献1)。
Hydrogen is a secondary energy that does not emit carbon dioxide when used and can be stored and transported. On the other hand, hydrogen has a lower energy density per volume than natural gas. Therefore, it is stored as compressed hydrogen gas in a high-pressure tank. However, high pressure is expensive. Furthermore, the cost of constructing and maintaining a hydrogen station is higher than the cost of constructing and maintaining a gas station. Therefore, hydrogen cars that use hydrogen as energy are less popular than gasoline cars.
Hydrogen storage alloys are a method of storing hydrogen, but the amount of hydrogen stored per weight is small. Furthermore, as a method for storing a large amount of hydrogen at normal pressure, a method using a borohydride sheet has been developed (Patent Documents 1 to 3 and Non-Patent Documents 1 to 2). A borohydride sheet releases hydrogen when heated (Patent Document 1). However, the release of hydrogen due to heating is difficult to control. On the other hand, a technique has been developed in which hydrogen is released by irradiating a borohydride sheet with ultraviolet light (Patent Document 2 and Non-Patent Document 1).
国際公開2018/074518号International Publication 2018/074518 特開2019-218251号公報JP2019-218251A 特開2016-185899号公報Japanese Patent Application Publication No. 2016-185899
 紫外線照射による水素の放出は、上部が開放されている直径0.48cmのセラミックカップに、粉状のホウ化水素シート20mgを敷く。紫外光を透過する板が取り付けられ、そして不活性ガス(窒素、アルゴン)雰囲気にすることが可能な容器内に、前記カップを静置し、上方から紫外光を照射し水素を放出する。この方法においては、ホウ化水素シートに光が侵入する深さが制限される(例えば、UV光の場合は13μmである)。従って、紫外光が照射されるホウ化水素シートの体積が限られるため、20mgの全てのホウ化水素シートから水素を放出することができない(非特許文献1)。
 従って、本発明の目的は、効率的に水素を放出できる組成物及び水素放出方法を提供することである。
To release hydrogen by ultraviolet irradiation, 20 mg of powdered hydrogen borohydride sheet is placed in a ceramic cup with a diameter of 0.48 cm and an open top. The cup is placed in a container equipped with a plate that transmits ultraviolet light and capable of creating an inert gas (nitrogen, argon) atmosphere, and is irradiated with ultraviolet light from above to release hydrogen. In this method, the depth to which light penetrates into the borohydride sheet is limited (eg, 13 μm for UV light). Therefore, since the volume of the borohydride sheet that is irradiated with ultraviolet light is limited, hydrogen cannot be released from all 20 mg of the borohydride sheet (Non-Patent Document 1).
Therefore, an object of the present invention is to provide a composition and a method for efficiently releasing hydrogen.
 本発明者は、効率的に水素を放出できる組成物及び水素放出方法について、鋭意研究した結果、驚くべきことに、ホウ化水素シートに担体を添加することによって、効率的に水素を放出できることを見出した。
 本発明は、こうした知見に基づくものである。
 従って、本発明は、
[1]ホウ化水素シート及び担体を含む組成物であって、紫外線の透過度が0%を超えて100%より小さい組成物、
[2]気孔率が0%を超えて、99.99%以下であり、ホウ化水素シート及び担体を、1:0.1~100の容積比で含む、[1]に記載の組成物、及び
[3][1]又は[2]に記載の組成物に、紫外線を照射する工程、を含む、水素放出方法、に関する。
As a result of intensive research into compositions and hydrogen release methods that can efficiently release hydrogen, the present inventor surprisingly discovered that hydrogen can be released efficiently by adding a carrier to a borohydride sheet. I found it.
The present invention is based on these findings.
Therefore, the present invention
[1] A composition comprising a borohydride sheet and a carrier, the composition having a UV transmittance of more than 0% and less than 100%,
[2] The composition according to [1], which has a porosity of more than 0% and 99.99% or less, and contains the borohydride sheet and the carrier at a volume ratio of 1:0.1 to 100; and [3] A method for releasing hydrogen, comprising the step of irradiating the composition according to [1] or [2] with ultraviolet rays.
 本発明の組成物及び水素放出方法によれば、効率的に水素を放出することができる。 According to the composition and hydrogen release method of the present invention, hydrogen can be efficiently released.
ホウ素及び水素からなるホウ化水素シート構造を3次元で示した図(A)、及びホウ素、水素、及び酸素を含むホウ化水素シートの構造を模式的に示した図(B)である。They are a diagram (A) showing a three-dimensional structure of a borohydride sheet made of boron and hydrogen, and a diagram (B) schematically showing a structure of a borohydride sheet containing boron, hydrogen, and oxygen. 実施例1の組成物における、水素の放出を模式的に示した図である。FIG. 2 is a diagram schematically showing hydrogen release in the composition of Example 1. 比較例1の組成物における、水素の放出を模式的に示した図である。2 is a diagram schematically showing hydrogen release in the composition of Comparative Example 1. FIG.
[1]組成物
 本発明の組成物は、ホウ化水素シート及び担体を含む。紫外光の透過度が0%を超えて100%より小さくなるよう、前記ホウ化水素シート及び担体は、1:0.1~100の容積比で含まれる。
[1] Composition The composition of the present invention includes a borohydride sheet and a carrier. The borohydride sheet and the carrier are included in a volume ratio of 1:0.1 to 100 so that the transmittance of ultraviolet light is more than 0% and less than 100%.
《紫外線透過度》
 本発明の組成物は、効率的に水素を放出するために、紫外光の透過度が0%を超えて100%より小さいことが好ましい。なぜならば、透過度が0%では、光が届かないホウ化水素シートがあり、効率的に水素を放出できない。また、透過度が波長全体で100%に近い場合、ホウ化水素シートが紫外光を吸収できない。紫外光の透過度の下限は、本発明の効果が得られる限りにおいて、特に限定されるものではないが、ある様態では、1×10-59%以上であり、ある様態では、1×10-11%以上であり、ある様態では0.001%以上であり、ある様態では0.01%以上であり、ある様態では0.1%以上である。紫外光の透過度の上限も、本発明の効果が得られる限りにおいては特に限定されるものではないが、ある様態では90%以下であり、ある様態では80%以下であり、ある様態では、50%以下である。前記紫外線透過度であることによって、本発明の組成物は、ホウ化水素シートから効率的に水素を放出することができる。
 透過度の測定は、日本工業規格JISK7361-1:1997に定義された全光線透過率の測定方法を援用する。試験片は、次の通り一部変更する。5.1において、厚さを保持して切り出す。厚さ測定方法は、次の通り一部変更する。7.4において、試験片は3か所の厚さを0.01mmの精度で測定する。
《Ultraviolet transmittance》
In order to efficiently release hydrogen, the composition of the present invention preferably has an ultraviolet light transmittance of more than 0% and less than 100%. This is because when the transmittance is 0%, there is a borohydride sheet where light cannot reach, and hydrogen cannot be efficiently released. Further, when the transmittance is close to 100% over the entire wavelength, the borohydride sheet cannot absorb ultraviolet light. The lower limit of the transmittance of ultraviolet light is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 1 × 10 -59 % or more, and in some embodiments it is 1 × 10 - 11 % or more, in some embodiments 0.001% or more, in some embodiments 0.01% or more, and in some embodiments 0.1% or more. The upper limit of the transmittance of ultraviolet light is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 90% or less, in some embodiments it is 80% or less, and in some embodiments, 50% or less. By having the above-mentioned ultraviolet transmittance, the composition of the present invention can efficiently release hydrogen from the borohydride sheet.
For the measurement of transmittance, the method for measuring total light transmittance defined in Japanese Industrial Standards JISK7361-1:1997 is used. The test piece will be partially changed as follows. In step 5.1, cut out while maintaining the thickness. The thickness measurement method will be partially changed as follows. In 7.4, the thickness of the test specimen is measured at three locations with an accuracy of 0.01 mm.
《気孔率》
 本発明の組成物の気孔率は、上記好ましい透過率にするため、0%を超えて、99.99%以下であることが好ましい。気孔率の下限は、本発明の効果が得られる限りにおいて、特に限定されるものではないが、ある様態では15%以上であり、ある様態では40%以上であり、ある様態では91%以上である。気孔率の上限も、本発明の効果が得られる限りにおいては特に限定されるものではないが、ある様態では99%以下であり、ある様態では98%以下であり、ある様態では、95%以下である。前記気孔率であることによって、本発明の組成物は、ホウ化水素シートから効率的に水素を放出することができる。
 気孔率の測定は、日本工業規格JISR1634:1998に定義された開気孔率の測定方法を援用して測定する。測定に用いる装置・器具は、次の通り一部変更する。4. b)において、質量計は0.00001gの桁まで測定できる質量計とする。測定方法は、次の通り一部変更する。6.6.1において、放冷は大気中で行うことができる。6.6.4において、水中から取り出した飽水試料の表面をぬぐうことをせず、水滴が垂れていないことを確認後、測定を行うことができる。
《Porosity》
The porosity of the composition of the present invention is preferably more than 0% and 99.99% or less in order to achieve the above-mentioned preferred transmittance. The lower limit of the porosity is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 15% or more, in some embodiments it is 40% or more, and in some embodiments it is 91% or more. be. The upper limit of the porosity is also not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 99% or less, in some embodiments it is 98% or less, and in some embodiments it is 95% or less. It is. By having the above-mentioned porosity, the composition of the present invention can efficiently release hydrogen from the borohydride sheet.
The porosity is measured using the method for measuring open porosity defined in Japanese Industrial Standards JISR1634:1998. The equipment and equipment used for measurements will be partially changed as follows. 4. In b), the mass meter is a mass meter capable of measuring to the order of 0.00001 g. The measurement method will be partially changed as follows. In 6.6.1, cooling can be performed in the atmosphere. In step 6.6.4, measurements can be taken without wiping the surface of the saturated sample taken out of the water and after confirming that no water droplets are dripping.
《容積比》
 前記ホウ化水素シートと担体との容積比は、上記好ましい透過率にするため、1:0.1~100であることが好ましい。容積比の下限は、本発明の効果が得られる限りにおいて、特に限定されるものではないが、ある態様では1:0.2以上であり、ある様態では1:0.3以上であり、ある様態では1:0.5以上である。上限も、本発明の効果が得られる限りにおいて特に限定されるものではないが、ある態様では1:80以下であり、ある様態では1:50以下であり、ある様態では1:10以下である。前記下限と上限とは、適宜組み合わせることができる。前記容積比であることによって、本発明の組成物は、ホウ化水素シートから効率的に水素を放出することができる。
《Volume ratio》
The volume ratio of the borohydride sheet to the carrier is preferably 1:0.1 to 100 in order to achieve the above-mentioned preferred transmittance. The lower limit of the volume ratio is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 1:0.2 or more, in some embodiments it is 1:0.3 or more, and in some embodiments it is 1:0.3 or more. In terms of aspect, the ratio is 1:0.5 or more. The upper limit is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 1:80 or less, in some embodiments it is 1:50 or less, and in some embodiments it is 1:10 or less. . The lower limit and upper limit can be combined as appropriate. By having the above volume ratio, the composition of the present invention can efficiently release hydrogen from the borohydride sheet.
 本発明の組成物の厚さは、例えば0.01~100mmである。組成物の厚さの下限は、本発明の効果が得られる限りにおいて、特に限定されるものではないが、ある態様では0.02mm以上であり、ある態様では0.03mm以上であり、ある態様では0.05mm以上であり、ある態様では0.1mm以上である。組成物の厚さの上限も、本発明の効果が得られる限りにおいて特に限定されるものではないが、ある態様では、95mm以下であり、ある態様では90mm以下であり、ある態様では85mm以下であり、ある態様では80mm以下である。前記下限と上限とは、適宜組み合わせることができる。 The thickness of the composition of the present invention is, for example, 0.01 to 100 mm. The lower limit of the thickness of the composition is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 0.02 mm or more, in some embodiments it is 0.03 mm or more, and in some embodiments In some embodiments, it is 0.05 mm or more, and in some embodiments, it is 0.1 mm or more. The upper limit of the thickness of the composition is not particularly limited as long as the effects of the present invention can be obtained, but in some embodiments it is 95 mm or less, in some embodiments it is 90 mm or less, and in some embodiments it is 85 mm or less. Yes, and in some embodiments it is 80 mm or less. The lower limit and upper limit can be combined as appropriate.
《ホウ化水素シート》
 本発明に用いられるホウ化水素シートは、ホウ素及び水素を含む限りにおいて特に限定されるものではないが、本分野において用いられるホウ化水素シートを限定することなく用いることができる。
 例えば、ホウ素及び水素のみからなる理想的なホウ化水素シートは、図1(A)に示す3次元の構造を有する。また、ホウ化水素シートは、酸素を含むものもある。すなわち、ホウ素、水素、及び酸素を含み、図1(B)に示すB-H-B結合、B-H結合、及びB-OH結合を有し、BH及びBOHの組み合わされた(BH)n(BOH)mの構造を有するホウ化水素シートを用いることができる。すなわち、図1(A)における水素(H)の一部が水酸基(OH)に置換された構造となっており、BHn(OH)m(n+m=1)の構造を有する。
《borohydride sheet》
The borohydride sheet used in the present invention is not particularly limited as long as it contains boron and hydrogen, but any borohydride sheet used in this field can be used without limitation.
For example, an ideal borohydride sheet consisting of only boron and hydrogen has the three-dimensional structure shown in FIG. 1(A). Moreover, some borohydride sheets contain oxygen. That is, it contains boron, hydrogen, and oxygen, has a B-H-B bond, a B-H bond, and a B-OH bond as shown in FIG. 1(B), and has a combination of BH and BOH (BH)n. A borohydride sheet having the structure (BOH)m can be used. That is, it has a structure in which some of the hydrogens (H) in FIG. 1(A) are replaced with hydroxyl groups (OH), and has a structure of BHn(OH)m (n+m=1).
 前記ホウ化水素シートの厚さは、特に限定されるものではないが、0.23nm~0.50nmである。ホウ化水素シートにおいて、少なくとも一方向の長さ(例えば、図1AにおいてX方向又はY方向の長さ)が100nm以上であることが好ましい。本発明の構造体において、少なくとも一方向の長さが100nm以上であれば、ホウ化水素シートは、水素の貯蔵材料として有効に利用することができる。
 ホウ化水素シートの大きさ(面積)は、特に限定されない。ホウ化水素シートの大きさは、ホウ化水素シートの製造方法によって、任意の大きさに形成することができる。
The thickness of the borohydride sheet is not particularly limited, but is 0.23 nm to 0.50 nm. In the borohydride sheet, the length in at least one direction (for example, the length in the X direction or Y direction in FIG. 1A) is preferably 100 nm or more. In the structure of the present invention, if the length in at least one direction is 100 nm or more, the borohydride sheet can be effectively used as a hydrogen storage material.
The size (area) of the borohydride sheet is not particularly limited. The size of the borohydride sheet can be formed to any size depending on the method for manufacturing the borohydride sheet.
 ホウ化水素シートは、結晶構造を有する物質である。また、ホウ化水素シートでは、六角形の環を形成するホウ素原子(B)間、及び、ホウ素原子(B)と水素原子(H)の間の結合力が強い。そのため、本発明の構造体は、製造時に複数積層されてなる結晶(凝集体)を形成したとしても、グラファイトと同様に結晶面に沿って容易に劈開し、単層の二次元シートとして分離(回収)することができる。 Hydrogen boride sheets are substances with a crystalline structure. In addition, in hydrogen boride sheets, the bonding strength between the boron atoms (B) that form the hexagonal rings, and between the boron atoms (B) and hydrogen atoms (H), is strong. Therefore, even if the structure of the present invention forms a crystal (aggregate) consisting of multiple layers during production, it can be easily cleaved along the crystal planes, just like graphite, and separated (recovered) as a single layer two-dimensional sheet.
《担体》
 本発明の組成物は、担体を含む。前記担体は本発明の効果が得られる限りにおいて、特に限定されるものでない。前記担体の気孔率は、例えば0%を超えて99.99%以下である。気孔率の下限は、ある様態では15%以上であり、ある様態では40%以上であり、ある様態では91%以上である。上限は、ある様態では99%以下であり、ある様態では98%以下であり、ある様態では、95%以下である。また、前記担体の紫外光の透過度は、例えば0%を超えて100%より小さい。紫外光の透過度の下限は、ある様態では1%以上であり、ある様態では、20%以上である。紫外光の透過度の上限は、ある様態では80%以下であり、ある様態では50%以下である。
 形態としては、紫外線照射によって発生した水素が流れる空間を確保するために、例えばウール状、スポンジ状、又は多孔体状の形態が挙げられる。また、紫外線をホウ化水素シートに効率的に照射するために、透過度の高い担体が好ましい。
 具体的な担体の材料としては、石英(石英ウール、石英ガラス多孔体)、ポリスチレン、炭素繊維、セロハン、塩化ビニル樹脂、発泡アルミナが挙げられる。
《Carrier》
The composition of the invention includes a carrier. The carrier is not particularly limited as long as the effects of the present invention can be obtained. The porosity of the carrier is, for example, more than 0% and 99.99% or less. The lower limit of the porosity is 15% or more in some embodiments, 40% or more in some embodiments, and 91% or more in some embodiments. The upper limit is 99% or less in some embodiments, 98% or less in some embodiments, and 95% or less in some embodiments. Further, the ultraviolet light transmittance of the carrier is, for example, more than 0% and less than 100%. The lower limit of the transmittance of ultraviolet light is 1% or more in some embodiments, and 20% or more in some embodiments. The upper limit of the transmittance of ultraviolet light is 80% or less in some embodiments, and 50% or less in some embodiments.
Examples of the form include wool-like, sponge-like, or porous forms in order to ensure a space through which hydrogen generated by ultraviolet irradiation flows. Further, in order to efficiently irradiate the borohydride sheet with ultraviolet rays, a carrier with high transmittance is preferable.
Specific carrier materials include quartz (quartz wool, porous quartz glass), polystyrene, carbon fiber, cellophane, vinyl chloride resin, and foamed alumina.
 前記ホウ化水素シートの製造方法は、特に限定されないが、例えば以下の方法で製造することができる。
 ホウ化水素シートの製造方法は、MB(但し、Mは、Al、Mg、Ta、Zr、Re、Cr、Ti及びVからなる群から選択される少なくとも1種である。)型構造の二ホウ化金属と、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂とを極性有機溶媒中で混合する工程(以下、混合工程と称することがある)を含む。
The method for producing the borohydride sheet is not particularly limited, but can be produced, for example, by the following method.
The method for producing a borohydride sheet includes two types of structure: MB2 (where M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti, and V). A step of mixing a metal boride and an ion exchange resin in which metal ions constituting the metal diboride and ion exchangeable ions are coordinated in a polar organic solvent (hereinafter sometimes referred to as the mixing step). include.
 MB型構造の二ホウ化金属は、六角形の環状の構造を有するものが用いられる。例えば、二ホウ化アルミニウム(AlB)、二ホウ化マグネシウム(MgB)、二ホウ化タンタル(TaB)、二ホウ化ジルコニウム(ZrB)、二ホウ化レニウム(ReB)、二ホウ化クロム(CrB)、二ホウ化チタン(TiB)、又は二ホウ化バナジウム(VB)が用いられる。極性有機溶媒中にて、容易にイオン交換樹脂とのイオン交換を行うことができることから、二ホウ化マグネシウムを用いることが好ましい。 The metal diboride having the MB 2 type structure has a hexagonal ring structure. For example, aluminum diboride (AlB 2 ), magnesium diboride (MgB 2 ), tantalum diboride (TaB 2 ), zirconium diboride (ZrB 2 ), rhenium diboride (ReB 2 ), diboride Chromium (CrB 2 ), titanium diboride (TiB 2 ), or vanadium diboride (VB 2 ) is used. It is preferable to use magnesium diboride because it can easily perform ion exchange with an ion exchange resin in a polar organic solvent.
 前記MB型構造の二ホウ化金属の結晶子サイズは、本発明の効果が得られるホウ化水素シートを製造できる限りにおいて、特に限定されるものではないが、好ましくは平均結晶子サイズが2~5μmであり、1つの態様として2~3μmであり、別の態様として3~5μmである。前記範囲であることによって、より多くの水素を貯蔵することができる。
 結晶子サイズの測定方法は、特に限定されるものではないが、好ましくはX線回折法(XRD)によって測定することができる。
 MBの粉末を粉末回折のΘ-2Θ法により、2Θ軸の回折強度を測定すればよい。具体的には、MB粉末を粉末測定用のサンプルホルダーに固定する。MB粉末が固定されたサンプルホルダーをXRD装置のサンプルホルダー工程治具に設置する。Θ-2Θ法で粉末を測定する。X線源としては、Cuターゲット(波長1.54Å)、又はMoターゲット(波長0.7Å)などの汎用される波長を用いることができる。得られた回折パターンより、回折ピークの半値幅β(radians)、X線波長λ(m)、回折角度Θ(radians)、及び結晶形状の因子K(単位無し、結晶形状を近似的に考え、0.9が用いられることが多い)から、以下のシェラーの式により結晶子サイズL(m)を計算する。
L=(K×λ)/(β×cosΘ)
 MBのいずれの結晶面で回折が生じたかによって、回折角度は変わるため、各回折角度について、結晶子サイズを計算する。得られる結晶子サイズは平均の値である。更に、各回折から計算される結晶子サイズの範囲より、結晶子サイズの平均の範囲を測定する。
The crystallite size of the metal diboride having the MB 2 type structure is not particularly limited as long as it is possible to produce a hydrogen boride sheet that provides the effects of the present invention, but preferably the average crystallite size is 2. ~5 μm, in one embodiment 2-3 μm, and in another embodiment 3-5 μm. By being within the above range, more hydrogen can be stored.
The method for measuring the crystallite size is not particularly limited, but it can preferably be measured by X-ray diffraction (XRD).
The diffraction intensity of the 2Θ axis of MB 2 powder may be measured by the Θ-2Θ method of powder diffraction. Specifically, MB2 powder is fixed to a sample holder for powder measurement. The sample holder to which the MB 2 powder is fixed is installed in the sample holder process jig of the XRD apparatus. Measure the powder using the Θ-2Θ method. As the X-ray source, a commonly used wavelength such as a Cu target (wavelength: 1.54 Å) or a Mo target (wavelength: 0.7 Å) can be used. From the obtained diffraction pattern, the half-width β (radians) of the diffraction peak, the X-ray wavelength λ (m), the diffraction angle Θ (radians), and the crystal shape factor K (no unit, considering the crystal shape approximately, 0.9 is often used), the crystallite size L (m) is calculated using the Scherrer equation below.
L=(K×λ)/(β×cosΘ)
Since the diffraction angle changes depending on which crystal plane of MB 2 diffraction occurs, the crystallite size is calculated for each diffraction angle. The crystallite size obtained is an average value. Furthermore, the average range of crystallite sizes is determined from the range of crystallite sizes calculated from each diffraction.
 二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂は、特に限定されない。このようなイオン交換樹脂としては、例えば、二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位した官能基(以下、「官能基α」と言う。)を有するスチレンの重合体、官能基αを有するジビニルベンゼンの重合体、官能基αを有するスチレンと官能基αを有するジビニルベンゼンの共重合体等が挙げられる。官能基αとしては、例えば、スルホ基、カルボキシル基等が挙げられる。これらの中でも、極性有機溶媒中にて、容易に二ホウ化金属を構成する金属イオンとのイオン交換を行うことができることから、スルホ基が好ましい。 The ion exchange resin in which ions capable of ion exchange with the metal ions constituting the metal diboride are coordinated is not particularly limited. Examples of such ion exchange resins include, for example, a styrene polymer having a functional group (hereinafter referred to as "functional group α") that coordinates an ion exchangeable with the metal ion constituting the metal diboride. , a polymer of divinylbenzene having a functional group α, a copolymer of styrene having a functional group α and divinylbenzene having a functional group α, and the like. Examples of the functional group α include a sulfo group and a carboxyl group. Among these, a sulfo group is preferred because it can easily undergo ion exchange with the metal ion constituting the metal diboride in a polar organic solvent.
 極性有機溶媒は、特に限定されず、例えば、アセトニトリル、N,N-ジメチルホルムアミド、メタノール等が挙げられる。これらの中でも、酸素を含んでいない点からアセトニトリルが好ましい。 The polar organic solvent is not particularly limited, and examples thereof include acetonitrile, N,N-dimethylformamide, methanol, and the like. Among these, acetonitrile is preferred because it does not contain oxygen.
 前記混合工程では、極性有機溶媒に二ホウ化金属とイオン交換樹脂を投入し、極性有機溶媒、二ホウ化金属及びイオン交換樹脂を含む混合溶液を撹拌し、二ホウ化金属とイオン交換樹脂を充分に接触させる。これにより、二ホウ化金属を構成する金属イオンと、イオン交換樹脂の官能基αのイオンとがイオン交換して、ホウ素原子と、イオン交換樹脂の官能基αに由来する原子によって形成されるホウ化水素シートが生成される。 In the mixing step, metal diboride and ion exchange resin are added to a polar organic solvent, the mixed solution containing the polar organic solvent, metal diboride, and ion exchange resin is stirred, and the metal diboride and ion exchange resin are mixed. Make sufficient contact. As a result, the metal ions constituting the metal diboride and the ions of the functional group α of the ion exchange resin undergo ion exchange, resulting in boron atoms formed by the boron atoms and atoms originating from the functional group α of the ion exchange resin. Hydrogen sheets are produced.
 例えば、二ホウ化金属として二ホウ化マグネシウムを用い、イオン交換樹脂としてスルホ基を有するイオン交換樹脂を用いれば、二ホウ化マグネシウムのマグネシウムイオン(Mg2+)と、イオン交換樹脂のスルホ基の水素イオン(H)とが置換して、上述のようなホウ素原子(B)と水素原子(H)からなるホウ化水素シートが生成される。 For example, if magnesium diboride is used as the metal diboride and an ion exchange resin having a sulfo group is used as the ion exchange resin, the magnesium ion (Mg 2+ ) of the magnesium diboride and the hydrogen of the sulfo group of the ion exchange resin can be combined. The ions (H + ) are substituted, and a borohydride sheet consisting of boron atoms (B) and hydrogen atoms (H) as described above is generated.
 前記混合工程では、混合液に超音波等を加えることなく、二ホウ化金属を構成する金属イオンと、イオン交換樹脂の官能基αのイオンとがイオン交換する反応を、穏やかに進めることが好ましい。 In the mixing step, it is preferable that the ion exchange reaction between the metal ions constituting the metal diboride and the ions of the functional group α of the ion exchange resin proceed gently without applying ultrasonic waves or the like to the mixed liquid. .
 混合溶液を撹拌する際、混合溶液の温度は、15℃~35℃であることが好ましい。
 混合溶液を撹拌する時間は、特に限定されないが、例えば、700分~7000分とする。
When stirring the mixed solution, the temperature of the mixed solution is preferably 15°C to 35°C.
The time for stirring the mixed solution is not particularly limited, but is, for example, 700 minutes to 7000 minutes.
 また、混合工程は、窒素(N)やアルゴン(Ar)等の不活性ガスからなる不活性雰囲気下で行う。 Further, the mixing step is performed under an inert atmosphere consisting of an inert gas such as nitrogen (N 2 ) or argon (Ar).
 本発明の構造体の製造方法においては、好ましくは撹拌が終了した混合溶液を濾過する(以下、濾過工程と称することがある)。混合溶液の濾過方法は、特に限定されず、例えば、自然濾過、減圧濾過、加圧濾過、遠心濾過等の方法が用いられる。また、濾材としては、例えば、セルロースを基材とする濾紙、メンブレンフィルター、セルロースやグラスファイバー等を圧縮成型した濾過板等が用いられる。
 例えば、メンブレンフィルターを用いる場合、フィルターサイズは、本発明の効果が得られるホウ化水素シートを製造できる限りにおいて、特に限定されるものではないが、例えば5μm以下であり、好ましくは4μm以下であり、より好ましくは3μm以下であり、更に好ましくは2μm以下であり、最も好ましくは1μm以下である。フィルターサイズの下限は、限定されないが、濾過時間を短くする観点から0.1μm以上が好ましい。
In the method for manufacturing a structure of the present invention, preferably the mixed solution after stirring is filtered (hereinafter sometimes referred to as a filtration step). The method of filtering the mixed solution is not particularly limited, and for example, methods such as natural filtration, vacuum filtration, pressure filtration, and centrifugal filtration are used. Further, as the filter medium, for example, a filter paper based on cellulose, a membrane filter, a filter plate formed by compression molding of cellulose, glass fiber, or the like is used.
For example, when using a membrane filter, the filter size is not particularly limited as long as a borohydride sheet that achieves the effects of the present invention can be produced, but is, for example, 5 μm or less, preferably 4 μm or less. , more preferably 3 μm or less, still more preferably 2 μm or less, most preferably 1 μm or less. Although the lower limit of the filter size is not limited, it is preferably 0.1 μm or more from the viewpoint of shortening the filtration time.
 濾過により沈殿物と分離されて回収された生成物を含む溶液を、自然乾燥するか、又は、加熱により乾燥することにより、最終的に生成物のみを得る。この生成物は、ホウ素原子と、イオン交換樹脂の官能基αに由来する水素原子によって形成されるホウ化水素シートである。 The solution containing the product separated from the precipitate by filtration is air-dried or dried by heating to finally obtain only the product. This product is a borohydride sheet formed by boron atoms and hydrogen atoms originating from the functional group α of the ion exchange resin.
[2]水素放出方法
 本発明の水素放出方法は、前記組成物に紫外線を照射する工程を含む。用いる紫外線の波長は、前記組成物から水素分子(H)が放出される限りにおいて、特に限定されるものではないが、200nm~400nmの紫外線を用いることができる。
 紫外線の光源としては、特に限定されるものではないが、例えば水銀キセノンランプ、高圧水銀UVランプ、低圧水銀UVランプ、紫外線LED、紫外線LD、又はメタルハライドUVランプが挙げられる。
[2] Hydrogen release method The hydrogen release method of the present invention includes the step of irradiating the composition with ultraviolet rays. The wavelength of the ultraviolet light used is not particularly limited as long as hydrogen molecules (H 2 ) are released from the composition, but ultraviolet light of 200 nm to 400 nm can be used.
Examples of the ultraviolet light source include, but are not limited to, a mercury xenon lamp, a high pressure mercury UV lamp, a low pressure mercury UV lamp, an ultraviolet LED, an ultraviolet LD, or a metal halide UV lamp.
《作用》
 本発明の組成物が、効率的に水素を放出できる機構は、詳細に解析されたわけではないが、以下のように推定することができる。しかしながら、本発明は以下の推定によって限定されるものではない。
 本発明の組成物は、気孔率が0~99.99%であり、紫外線の透過度が0%を超えて100%より小さい。このような特性を有する担体と、ホウ化水素シートとを組み合わせることにより、紫外線がホウ化水素シートに到達し、そして放出された水素が、気孔を介して組成物の外に放出されると推定される。
《Effect》
Although the mechanism by which the composition of the present invention can efficiently release hydrogen has not been analyzed in detail, it can be estimated as follows. However, the present invention is not limited by the following assumptions.
The composition of the present invention has a porosity of 0 to 99.99% and a UV transmittance of more than 0% and less than 100%. It is estimated that by combining a carrier with such characteristics and a borohydride sheet, ultraviolet rays will reach the borohydride sheet, and the released hydrogen will be released outside the composition through the pores. be done.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples, but these are not intended to limit the scope of the present invention.
《実施例1》
 本実施例では、担体として石英ウールを用い、ホウ化水素シートを含む組成物を作製した。
 30mLのイオン交換樹脂(アンバーライトIR120B H型 オルガノ製)をビュレットへ入れ、120mLのアセトニトリル溶媒を加え湿潤させた。その後、ビュレットのコックを開き、溶液を流した。ビュレットに残ったイオン交換樹脂を300mLフラスコへ移し、200mLのアセトニトリル溶媒を加え、溶液中に窒素ガスを流した。更に窒素雰囲気下のグローブボックス内でMgBを500mg秤量し、前記フラスコに撹拌子と共に入れ、攪拌しながら3日間置いた。攪拌時にはフラスコ内に窒素を流し、サンプルの大気暴露を軽減させた。得られた溶液を0.2μmのろ過フィルターと、ロータリーポンプで吸引ろ過した。ろ過は窒素雰囲気下で行った。得られた溶液内に含まれるホウ酸を析出するために、溶液を冷却し、その溶液を0.2μmのろ過フィルターと、ロータリーポンプで吸引ろ過した。更に得られた溶液の溶媒を除去するために、減圧溶媒乾燥し、168mgの黄色の粉末を得て、窒素雰囲気下のグローブボックス内に保管した。
 窒素雰囲気下のグローブボックス内で2mgをスクリュー管へ採取し、1mLのアセトニトリル溶媒を加え、ホウ化水素シート溶液を調製した。石英ウール(Aグレード2~6μm)を石英管に入れ、前記ホウ化水素シート溶液を石英ウールに対し滴下した。滴下時には石英管内に窒素を流し、サンプルの大気暴露を軽減させた。また、ホウ化水素シート溶液が付着した石英ウールに対し窒素を流し、アセトニトリル溶媒を蒸発させ、ホウ化水素シートを石英ウールに担持させた。滴下による担持後、石英管の両端をセプタムにより封をし、密閉した。
《Example 1》
In this example, a composition containing a borohydride sheet was prepared using quartz wool as a carrier.
30 mL of ion exchange resin (Amberlite IR120B H type manufactured by Organo) was placed in a burette, and 120 mL of acetonitrile solvent was added to moisten the resin. Thereafter, the stopcock of the buret was opened and the solution was allowed to flow. The ion exchange resin remaining in the buret was transferred to a 300 mL flask, 200 mL of acetonitrile solvent was added, and nitrogen gas was passed through the solution. Furthermore, 500 mg of MgB 2 was weighed out in a glove box under a nitrogen atmosphere, and placed in the flask together with a stirring bar, and left there for 3 days while being stirred. During stirring, nitrogen was flowed into the flask to reduce exposure of the sample to the atmosphere. The obtained solution was suction filtered using a 0.2 μm filter and a rotary pump. Filtration was performed under nitrogen atmosphere. In order to precipitate boric acid contained in the obtained solution, the solution was cooled, and the solution was suction-filtered using a 0.2 μm filter and a rotary pump. In order to further remove the solvent from the obtained solution, the solution was dried under reduced pressure to obtain 168 mg of yellow powder, which was stored in a glove box under a nitrogen atmosphere.
2 mg was collected into a screw tube in a glove box under a nitrogen atmosphere, and 1 mL of acetonitrile solvent was added to prepare a borohydride sheet solution. Quartz wool (A grade 2-6 μm) was placed in a quartz tube, and the borohydride sheet solution was dropped onto the quartz wool. During dropping, nitrogen was flowed into the quartz tube to reduce exposure of the sample to the atmosphere. In addition, nitrogen was flowed through the quartz wool to which the borohydride sheet solution had adhered to evaporate the acetonitrile solvent, thereby supporting the borohydride sheet on the quartz wool. After supporting by dropping, both ends of the quartz tube were sealed with septa to make the tube airtight.
《比較例1》
 本比較例では、担体を使用せずに、ホウ化水素シートのみを石英管に充填した。石英ウールを使用することを除いては、実施例1の操作を繰り返した。すなわち、窒素雰囲気下のグローブボックス内でホウ化水素シートの37mgを石英管に入れ、石英管の両端をセプタムにより封をした。
《Comparative example 1》
In this comparative example, only the borohydride sheet was filled into a quartz tube without using a carrier. The procedure of Example 1 was repeated except that quartz wool was used. That is, 37 mg of the borohydride sheet was placed in a quartz tube in a glove box under a nitrogen atmosphere, and both ends of the quartz tube were sealed with septa.
《水素放出実験》
 実施例1及び比較例1で得られたサンプルに対し、紫外線を照射して、水素分子(H)の放出量を測定した。実施例1を図2に示し、比較例1を図3に示す。
 水銀キセノンランプを用いて、1mmの距離でサンプルへ紫外線を照射した。実施例1と比較例1のサンプルに対する照射は、照射面積が同じになるようにした。発生した水素ガス濃度をガスクロマトグラフィーで測定し、水素濃度の変化を120分間測定した。測定時間中に得られた水素濃度の積算値を表1に示す。
 照射後、実施例1のサンプルは白色に変化していた。石英管の側面を見ると、白色に変化したのは、紫外線が照射した側であり、紫外線が照射しなかった側は色の変化が少なかった。一方で、比較例1のサンプルは実施例1のサンプルと比べて少ない箇所が茶色く変化していた。石英管の側面を見ると、茶色く変化したのは、紫外線が照射した側であり、紫外線が照射しなかった側に色の変化は見られなかった。
 実施例1及び比較例1で用いたHBシート重量、石英管の容積と水素濃度積算値とから、水素発生量と、実施例1及び比較例1で用いたHBシートが持つ、全水素量に占める水素発生量の割合を計算した。但し、標準状態の気体体積を22.4L/mol、HBシートの分子量を11.8g/molとし、計算に用いた。計算の結果を表に示す。
《Hydrogen release experiment》
The samples obtained in Example 1 and Comparative Example 1 were irradiated with ultraviolet rays, and the amount of hydrogen molecules (H 2 ) released was measured. Example 1 is shown in FIG. 2, and Comparative Example 1 is shown in FIG.
The sample was irradiated with ultraviolet light at a distance of 1 mm using a mercury xenon lamp. The samples of Example 1 and Comparative Example 1 were irradiated so that the irradiation areas were the same. The concentration of the generated hydrogen gas was measured by gas chromatography, and changes in the hydrogen concentration were measured for 120 minutes. Table 1 shows the integrated values of hydrogen concentration obtained during the measurement time.
After irradiation, the sample of Example 1 had turned white. When looking at the side of the quartz tube, the side that was irradiated with ultraviolet rays turned white, while the side that was not irradiated with ultraviolet rays showed less color change. On the other hand, compared to the sample of Example 1, the sample of Comparative Example 1 had a smaller number of brown spots. When looking at the side of the quartz tube, the side that was irradiated with ultraviolet rays turned brown, and no change in color was observed on the side that was not irradiated with ultraviolet rays.
From the weight of the HB sheet used in Example 1 and Comparative Example 1, the volume of the quartz tube, and the integrated value of hydrogen concentration, the amount of hydrogen generated and the total amount of hydrogen possessed by the HB sheet used in Example 1 and Comparative Example 1 were determined. The proportion of hydrogen generation was calculated. However, the gas volume in the standard state was 22.4 L/mol, and the molecular weight of the HB sheet was 11.8 g/mol, which were used in the calculation. The results of the calculations are shown in the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以下の参考例及び実施例では、本発明の請求項の範囲の具体例を説明する。実施例2は請求項1に記載の透過度および、請求項2に記載の容積比が請求項に記載の範囲内にある例である。参考例1は請求項2に記載の気孔率および容積比が請求項に記載の範囲内にある例である。 In the following Reference Examples and Examples, specific examples within the scope of the claims of the present invention will be explained. Example 2 is an example in which the transmittance as recited in claim 1 and the volume ratio as recited in claim 2 are within the ranges recited in the claims. Reference Example 1 is an example in which the porosity and volume ratio are within the ranges described in claim 2.
《実施例2》
 本実施例2では、担体として薄いシート状の石英ウール(厚さ0.1mm)を用い、ホウ化水素シートを含む組成物を作製した。アルゴン雰囲気下のグローブボックス内で10.52mgのホウ化水素シートをスクリュー管へ採取し、1mLのアセトニトリル溶媒を加え、ホウ化水素シート溶液を調製した。8.58mgの石英ウール(Aグレード2~6μm)に対し、前記ホウ化水素シート溶液を滴下し、空気雰囲気下で乾燥させた。
《Example 2》
In Example 2, a composition containing a borohydride sheet was prepared using a thin sheet of quartz wool (thickness: 0.1 mm) as a carrier. In a glove box under an argon atmosphere, 10.52 mg of borohydride sheet was collected into a screw tube, and 1 mL of acetonitrile solvent was added to prepare a borohydride sheet solution. The borohydride sheet solution was added dropwise to 8.58 mg of quartz wool (A grade 2-6 μm) and dried under an air atmosphere.
《参考例1》
 本参考例1では、担体として丸まった形状の石英ウールを用い、ホウ化水素シートを含む組成物を作製した。アルゴン雰囲気下のグローブボックス内で3mgのホウ化水素シートをスクリュー管へ採取し、1mLのアセトニトリル溶媒を加え、ホウ化水素シート溶液を調製した。6.44mgの石英ウール(Aグレード2~6μm)に対し、前記ホウ化水素シート溶液を滴下し、空気雰囲気下で乾燥させた。
《Reference example 1》
In Reference Example 1, a composition containing a borohydride sheet was prepared using curled quartz wool as a carrier. In a glove box under an argon atmosphere, 3 mg of borohydride sheet was collected into a screw tube, and 1 mL of acetonitrile solvent was added to prepare a borohydride sheet solution. The borohydride sheet solution was added dropwise to 6.44 mg of quartz wool (A grade 2-6 μm) and dried under an air atmosphere.
《容積比の計算》
 参考例1および実施例2で得られたサンプルに対し、ホウ化水素シート、石英ウール密度からそれぞれの容積を計算し、容積比を計算した。但し、ホウ化水素シートの密度は2360mg/cm、石英ウールの密度は2200mg/cmで近似した。計算結果を表に示す。
《Volume ratio calculation》
For the samples obtained in Reference Example 1 and Example 2, the respective volumes were calculated from the borohydride sheet and quartz wool density, and the volume ratio was calculated. However, the density of the borohydride sheet was approximated as 2360 mg/cm 2 and the density of quartz wool was approximated as 2200 mg/cm 2 . The calculation results are shown in the table.
《気孔率の測定》
 参考例1で得られたサンプルに対し、日本工業規格JISR1634:1998に定義された開気孔率の測定方法に準じた測定方法に基づいて、気孔率を測定した。測定結果を表に示す。
《Measurement of porosity》
The porosity of the sample obtained in Reference Example 1 was measured based on a measuring method conforming to the method for measuring open porosity defined in Japanese Industrial Standards JISR1634:1998. The measurement results are shown in the table.
《紫外線の透過度の計算》
 実施例1および実施例2で得られたサンプルに対し、紫外線の透過度を計算した。アセトニトリル溶媒にホウ化水素シートを溶かして、290nm~400nm間でモル吸光係数を測定した。この測定値および、ホウ化水素シートを含む組成物の濃度、厚さを用いて、Lambert-Beerの法則より、290,320,360,400nmにおける、ホウ化水素シートを含む組成物の透過度を計算した。計算結果を表に示す。
《Calculation of UV transmittance》
The transmittance of ultraviolet rays was calculated for the samples obtained in Example 1 and Example 2. A borohydride sheet was dissolved in an acetonitrile solvent, and the molar absorption coefficient was measured between 290 nm and 400 nm. Using this measurement value and the concentration and thickness of the composition containing the borohydride sheet, we can calculate the transmittance of the composition containing the borohydride sheet at 290, 320, 360, and 400 nm using the Lambert-Beer law. I calculated it. The calculation results are shown in the table.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の組成物及びそれを用いる水素放出方法は、水素の貯蔵及び輸送に用いることが可能であり、多くの水素分子(H)を産生することができる。 The composition of the present invention and the hydrogen release method using the same can be used to store and transport hydrogen, and can produce many hydrogen molecules (H 2 ).

Claims (3)

  1.  ホウ化水素シート及び担体を含む組成物であって、紫外線の透過度が0%を超えて100%より小さい組成物。 A composition comprising a borohydride sheet and a carrier, the composition having a UV transmittance of more than 0% and less than 100%.
  2.  気孔率が0%を超えて、99.99%以下であり、ホウ化水素シート及び担体を、1:0.1~100の容積比で含む。請求項1に記載の組成物。 The porosity is more than 0% and 99.99% or less, and contains the borohydride sheet and the carrier in a volume ratio of 1:0.1 to 100. A composition according to claim 1.
  3.  請求項1又は2に記載の組成物に、紫外線を照射する工程、を含む、水素放出方法。 A hydrogen release method comprising the step of irradiating the composition according to claim 1 or 2 with ultraviolet rays.
PCT/JP2023/031726 2022-09-15 2023-08-31 Composition containing borohydride sheet and carrier, and hydrogen release method using same WO2024057944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-147127 2022-09-15
JP2022147127A JP2024042427A (en) 2022-09-15 2022-09-15 Composition containing borohydride sheet and carrier, and method for releasing hydrogen using the same

Publications (1)

Publication Number Publication Date
WO2024057944A1 true WO2024057944A1 (en) 2024-03-21

Family

ID=90275116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031726 WO2024057944A1 (en) 2022-09-15 2023-08-31 Composition containing borohydride sheet and carrier, and hydrogen release method using same

Country Status (2)

Country Link
JP (1) JP2024042427A (en)
WO (1) WO2024057944A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218251A (en) * 2018-06-22 2019-12-26 国立大学法人東京工業大学 Hydrogen generation method, hydrogen generation system, and fuel cell system
WO2021100481A1 (en) * 2019-11-18 2021-05-27 国立大学法人筑波大学 Hydrogen storage and release material, and method for producing same
WO2021210496A1 (en) * 2020-04-13 2021-10-21 三菱重工業株式会社 Hydrogen release/storage system, hydrogen release/storage method, ammonia production equipment, gas turbine, fuel cell, and steelworks
WO2021210351A1 (en) * 2020-04-13 2021-10-21 三菱重工業株式会社 Hydrogen release and storage system, hydrogen release and storage method, ammonia production apparatus, gas turbine, fuel cell, and ironworks factory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218251A (en) * 2018-06-22 2019-12-26 国立大学法人東京工業大学 Hydrogen generation method, hydrogen generation system, and fuel cell system
WO2021100481A1 (en) * 2019-11-18 2021-05-27 国立大学法人筑波大学 Hydrogen storage and release material, and method for producing same
WO2021210496A1 (en) * 2020-04-13 2021-10-21 三菱重工業株式会社 Hydrogen release/storage system, hydrogen release/storage method, ammonia production equipment, gas turbine, fuel cell, and steelworks
WO2021210351A1 (en) * 2020-04-13 2021-10-21 三菱重工業株式会社 Hydrogen release and storage system, hydrogen release and storage method, ammonia production apparatus, gas turbine, fuel cell, and ironworks factory

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONDO TAKAHIRO, MIYAUCHI MASAHIRO: "Hydrogen Evolution Induced by UV Light Irradiation on Borohydride Sheets, Surface and Vacuum", VACUUM AND SURFACE SCIENCE, THE JAPAN SOCIETY OF VACUUM AND SURFACE SCIENCE, vol. 63, no. 7, 10 July 2020 (2020-07-10), pages 352 - 357, XP093024509, ISSN: 2433-5835, DOI: 10.1380/vss.63.352 *

Also Published As

Publication number Publication date
JP2024042427A (en) 2024-03-28

Similar Documents

Publication Publication Date Title
Tanaka et al. Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway
Park et al. Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent
Chakraborty et al. MOF–aminoclay composites for superior CO 2 capture, separation and enhanced catalytic activity in chemical fixation of CO 2
Zahn et al. A water-born Zr-based porous coordination polymer: Modulated synthesis of Zr-fumarate MOF
Arnold et al. Oriented crystallisation on supports and anisotropic mass transport of the metal‐organic framework manganese formate
Furtado et al. Mesoporous silica–metal organic composite: synthesis, characterization, and ammonia adsorption
Singh et al. Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel
Li et al. High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels
Ogawa Mesoporous silica layer: preparation and opportunity
JP6482054B2 (en) Metal-supported carbon material and method for producing the same
Wan et al. Ordered mesoporous carbon coating on cordierite: Synthesis and application as an efficient adsorbent
Massasso et al. Nanocomposites based on Hofmann-type structure Ni II (pz)[Ni II (CN) 4](pz= pyrazine) nanoparticles for reversible iodine capture
Bashkova et al. Insight into the role of the oxidized graphite precursor on the properties of copper-based MOF/graphite oxide composites
Santos et al. Al-MCM-41 synthesized from kaolin via hydrothermal route: Structural characterization and use as an efficient adsorbent of methylene blue
WO2024057944A1 (en) Composition containing borohydride sheet and carrier, and hydrogen release method using same
Komkova et al. Facilitated transport of ammonia in ultra-thin Prussian Blue membranes with potential-tuned selectivity
Ge et al. Enhanced hydrogen separation by vertically-aligned carbon nanotube membranes with zeolite imidazolate frameworks as a selective layer
Vicente et al. Synthesis of Pt pillared clay nanocomposite catalysts from [Pt II (NH 3) 4] Cl 2 precursor
Jung et al. Facile preparation of C u (I) impregnated MIL‐101 (C r) and its use in a mixed matrix membrane for olefin/paraffin separation
CN111344251A (en) For CO2Captured and converted 3D cage-type high nitrogen containing mesoporous carbon-nitrogen compounds from diaminoguanidine precursors
Dewal et al. Manipulating the cavity of a porous material changes the photoreactivity of included guests
Bamdadi et al. Synthesis of Meso/Macroporous γ‐Alumina via Aluminum Pellet with Controllable Porosity: Ammonium Bicarbonate Influences through Drying and Calcination Steps
Yang et al. A Systematic Study on the Preparation and Hydrogen Storage of Zeolite 13X‐Templated Microporous Carbons
WO2022260116A1 (en) Structural body including boron, hydrogen, and oxygen, and method for producing same
Wang et al. Development of HKUST-1 composites for methane storage by adsorption through incorporation and carbonization