WO2024057891A1 - Thermoplastic resin composition and molded article thereof - Google Patents

Thermoplastic resin composition and molded article thereof Download PDF

Info

Publication number
WO2024057891A1
WO2024057891A1 PCT/JP2023/030921 JP2023030921W WO2024057891A1 WO 2024057891 A1 WO2024057891 A1 WO 2024057891A1 JP 2023030921 W JP2023030921 W JP 2023030921W WO 2024057891 A1 WO2024057891 A1 WO 2024057891A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
mass
copolymer
monomer
parts
Prior art date
Application number
PCT/JP2023/030921
Other languages
French (fr)
Japanese (ja)
Inventor
圭太郎 杉村
尚季 大橋
Original Assignee
テクノUmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノUmg株式会社 filed Critical テクノUmg株式会社
Publication of WO2024057891A1 publication Critical patent/WO2024057891A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic resin composition containing a vinyl copolymer, a rubber-reinforced graft copolymer, and a polyamide elastomer. According to the thermoplastic resin composition of the present invention, it is possible to obtain a molded article with excellent sheet molding productivity and excellent chemical resistance, transparency, and rigidity. The present invention also relates to a molded article formed by molding this thermoplastic resin composition.
  • Rubber-reinforced styrene obtained by graft copolymerizing a rubbery polymer such as diene rubber with an aromatic vinyl compound such as styrene or ⁇ -methylstyrene and a vinyl cyanide compound such as acrylonitrile or methacrylonitrile.
  • the resin has excellent impact resistance, mechanical strength such as rigidity, moldability, and cost performance. For this reason, rubber-reinforced styrene resins are widely used in fields such as home appliances, communication-related equipment, transportation containers, general goods, and medical-related equipment.
  • rubber-reinforced styrene resins are sometimes used as films and sheets.
  • sheet molding a resin with relatively low fluidity in sheet or film molding (hereinafter collectively referred to as "sheet molding"). Therefore, in order to reduce fluidity, the ratio of the rubbery polymer in the rubber-reinforced styrenic resin is designed to be high.
  • rubber-reinforced styrene resins are generally opaque, but depending on the product, transparency like polymethyl methacrylate or polycarbonate resins may be required.
  • transparency like polymethyl methacrylate or polycarbonate resins may be required.
  • Patent Document 1 it is possible to obtain transparency even in rubber-reinforced styrene resin by adjusting the composition ratio of each constituent component of the resin. It has been known.
  • Examples of uses for transparent sheet materials include transportation equipment and transportation containers for precision parts. In such applications, there is a risk that the resin will deteriorate due to the adhesion of cleaning agents used for precision parts, resulting in a decrease in transparency and the occurrence of cracks and cracks. Therefore, from the viewpoint of preventing such problems, chemical resistance is also required.
  • Patent Document 2 and Patent Document 3 conventionally provided transparent materials made of rubber-reinforced styrene resins can be made transparent by increasing the ratio of (meth)acrylic acid ester in the composition. is improving. For this reason, as a result of increasing the (meth)acrylic acid ester ratio, chemical resistance to cleaning agents such as isopropyl alcohol was insufficient.
  • Patent Document 3 proposes the following thermoplastic resin composition, aiming not at sheet moldability or chemical resistance but at improving adhesiveness with organic solvents, impact resistance, antistatic property, and color tone. At least 5 to 40% by mass of aromatic vinyl monomer (a1), 30 to 80% by mass of (meth)acrylic acid ester monomer (a2), and 10 to 50% by mass of vinyl cyanide monomer (a3) %, a vinyl copolymer (A) obtained by copolymerizing a vinyl monomer mixture (a) containing at least an aromatic vinyl monomer (b1) in the presence of a rubbery polymer (r).
  • a vinyl monomer mixture ( A thermoplastic resin composition comprising a graft copolymer (B) obtained by graft copolymerizing mb) and a polyamide elastomer (C), the thermoplastic resin composition comprising a vinyl copolymer (A) and a graft copolymer.
  • a thermoplastic resin composition containing 1 part or more.
  • Patent Document 3 does not have the problem of improving sheet molding productivity and chemical resistance.
  • the vinyl copolymer (A) has a small molecular weight and the proportion of the rubber-reinforced graft copolymer (B) in the resin component is also small, which is an issue in the present invention. It is not possible to obtain the sheet formability that is desired.
  • Patent Document 4 discloses a technique for regulating the acrylonitrile content in the acetone soluble content of a thermoplastic resin composition.
  • this technique is used to improve chemical resistance or impart antistatic properties by blending polyamide elastomer, there is a problem in that transparency is significantly impaired.
  • An object of the present invention is to provide a thermoplastic resin composition that has excellent sheet molding productivity and can yield molded products with excellent chemical resistance, transparency, rigidity, and heat resistance.
  • thermoplastic resin composition containing a specific vinyl copolymer, a rubber-reinforced graft copolymer, and a polyamide elastomer in a predetermined ratio can solve the above problems. That is, the gist of the present invention is as follows.
  • the vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3).
  • the vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3).
  • the vinyl copolymer (A) further contains an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a maleimide monomer (a4).
  • a vinyl copolymer (A2) obtained by copolymerizing a vinyl monomer mixture (ma2) containing a vinyl monomer mixture (ma2) and having a weight average molecular weight of 100,000 to 250,000, [ The thermoplastic resin composition according to any one of [1] to [3].
  • the refractive index of the vinyl copolymer (A), the acetone-soluble content of the rubber-reinforced graft copolymer (B), and the polyamide elastomer (C) is in the range of 1.505 to 1.520,
  • thermoplastic resin composition Any of [1] to [5], wherein the content of the vinyl cyanide monomer component in 100% by mass of the acetone soluble content of the thermoplastic resin composition is 0.5 to 10% by mass.
  • thermoplastic resin composition A molded article made of the thermoplastic resin composition according to any one of [1] to [6].
  • thermoplastic resin composition of the present invention it is possible to provide a molded article, especially a sheet-like molded article, which has excellent productivity in sheet molding and has excellent chemical resistance, transparency, rigidity, and heat resistance.
  • molded article refers to an article formed by molding a thermoplastic resin composition.
  • (co)polymerization” and “(co)polymer” refer to “homopolymerization” and/or “copolymerization” and “homopolymer” and/or “copolymer”, respectively.
  • (Meth)acrylic” and “(meth)acrylate” mean “acrylic” and/or “methacrylic” and “acrylate” and/or “methacrylate”, respectively.
  • sheet molding productivity may be simply referred to as "sheet moldability”.
  • the thermoplastic resin composition of the present invention includes: Vinyl copolymer (A) obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2) and, Contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a cyanide vinyl monomer (b3) in the presence of a rubbery polymer (r).
  • Vinyl copolymer (A) obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2) and, Contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a cyanide vinyl monomer (b3) in the presence of a rubbery polymer (r).
  • the vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3).
  • the rubber-reinforced graft copolymer (B) may be simply referred to as "graft copolymer (B)".
  • the thermoplastic resin composition of the present invention comprises a vinyl copolymer (A) containing the vinyl copolymer (A1), a rubber-reinforced graft copolymer (B), and a polyamide elastomer (C) in a predetermined ratio. and the vinyl copolymer (A1) has a weight average molecular weight of 50,000 to 300,000, thereby improving the transparency, rigidity, and heat resistance of the resulting molded product. Moreover, by containing the rubber-reinforced graft copolymer (B), the chemical resistance of the molded article and the fluidity suitable for sheet molding can be improved. Furthermore, by containing the polyamide elastomer (C), the chemical resistance of the molded article can be improved.
  • the vinyl copolymer (A) is obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2). That's what happens.
  • the vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). It contains a vinyl copolymer (A1) formed by copolymerizing a monomer mixture (ma1) and having a weight average molecular weight of 50,000 to 300,000.
  • the vinyl copolymer (A) preferably includes a vinyl copolymer (A1), Copolymerizing a vinyl monomer mixture (ma2) containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a maleimide monomer (a4) It contains a vinyl copolymer (A2) having a weight average molecular weight of 100,000 to 250,000 in a suitable content as described below.
  • the vinyl copolymer (A) may consist only of the vinyl copolymer (A1) and may not contain the vinyl copolymer (A2), or may be composed of the vinyl copolymer (A1) and the vinyl copolymer (A1). It may also contain a vinyl copolymer (A2).
  • a vinyl copolymer (A2) only one type of vinyl copolymer (A1) may be used, or two or more types having different monomer compositions, physical properties, etc. may be used as a mixture.
  • the vinyl copolymer (A2) only one type may be used, or two or more types having different monomer compositions, physical properties, etc. may be used in combination.
  • the vinyl copolymer (A1) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). It is obtained by copolymerizing a monomer mixture (ma1).
  • the vinyl copolymer (A1) contains 5 to 40% by mass of an aromatic vinyl monomer (a1), 30 to 85% by mass of a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer.
  • it is obtained by copolymerizing a vinyl monomer mixture (ma1) containing 2 to 30% by mass of monomer (a3) according to a conventional method.
  • the vinyl monomer mixture (ma1) is copolymerized with an aromatic vinyl monomer (a1), a (meth)acrylate monomer (a2), and a vinyl cyanide monomer (a3). It may further contain other possible vinyl copolymers.
  • aromatic vinyl monomer (a1) examples include styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, vinyltoluene, t-butylstyrene, and the like. These may be used alone or in combination of two or more. Among these, styrene is preferred from the viewpoint of improving the moldability of the thermoplastic resin composition and the rigidity of the resulting molded product.
  • the content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma1) is preferably 5% by mass or more based on the total 100% by mass of the vinyl monomer mixture (ma1). , more preferably 10% by mass or more, still more preferably 19% by mass or more. If the content of the aromatic vinyl monomer (a1) is at least the above-mentioned lower limit, the moldability of the thermoplastic resin composition (A1) and the rigidity of the resulting molded product can be further improved.
  • the content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma1) is preferably 40% by mass or less based on the total 100% by mass of the vinyl monomer mixture (ma1). , more preferably 30% by mass or less, still more preferably 27% by mass or less. If the content of the aromatic vinyl monomer (a1) is below the above upper limit, the impact resistance and transparency of the resulting molded product can be further improved.
  • the (meth)acrylic acid ester monomer (a2) is not particularly limited, but esters of alcohols having 1 to 6 carbon atoms and acrylic acid or methacrylic acid are preferred.
  • the ester of an alcohol having 1 to 6 carbon atoms and acrylic acid or methacrylic acid may further have a substituent such as a hydroxyl group or a halogen group.
  • Examples of esters of alcohols having 1 to 6 carbon atoms and acrylic acid or methacrylic acid include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and n-(meth)acrylate.
  • the content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma1) is preferably 30% by mass out of the total 100% by mass of the vinyl monomer mixture (ma1). or more, more preferably 50% by mass or more, still more preferably 65% by mass or more.
  • the content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma1) is preferably 85% by mass out of the total 100% by mass of the vinyl monomer mixture (ma1). or less, more preferably 80% by mass or less, still more preferably 75% by mass or less. If the content of the (meth)acrylic acid ester monomer (a2) is below the above upper limit, the chemical resistance and transparency of the resulting molded product can be further improved.
  • Examples of the vinyl cyanide monomer (a3) include acrylonitrile, methacrylonitrile, ethacrylonitrile, and the like. These may be used alone or in combination of two or more. Among these, acrylonitrile is preferred from the viewpoint of further improving the chemical resistance of the molded product obtained.
  • the content of the vinyl cyanide monomer (a3) in the vinyl monomer mixture (ma1) shall be 2 to 30% by mass based on the total 100% by mass of the vinyl monomer mixture (ma1). is preferred. If the content of the vinyl cyanide monomer (a3) is less than 2% by mass, chemical resistance tends to decrease. Therefore, the content of the vinyl cyanide monomer (a3) is preferably 2% by mass or more, more preferably 5% by mass or more, and still more preferably 6% by mass or more. On the other hand, if the content of the vinyl cyanide monomer (a3) exceeds 30% by mass, the yellowness (YI) of the obtained molded article tends to increase and the color tone tends to decrease.
  • the content of the vinyl cyanide monomer (a3) in the vinyl monomer mixture (ma1) is preferably 30% by mass or less, more preferably 20% by mass or less, even more preferably 10% by mass. % or less, particularly 9% by weight or less, most preferably 8% by weight or less.
  • Examples of unsaturated fatty acids include itaconic acid, maleic acid, fumaric acid, butenoic acid, acrylic acid, and methacrylic acid.
  • Examples of the acrylamide monomer include acrylamide, methacrylamide, and N-methylacrylamide.
  • Examples of maleimide monomers include N-methylmaleimide, N-ethylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-hexylmaleimide, N-octylmaleimide, N-dodecylmaleimide, N-cyclohexylmaleimide, Examples include N-phenylmaleimide.
  • the content of the other vinyl copolymers in 100% by mass of the vinyl monomer mixture (ma1) is It is preferably 10% by mass or less, more preferably 0 to 5% by mass. If the content of other vinyl copolymers is below the above upper limit, aromatic vinyl monomer (a1), (meth)acrylic acid ester monomer (a2) and vinyl cyanide monomer The effect of using (a3) at a predetermined ratio can be effectively obtained.
  • the vinyl copolymer (A2) is a vinyl monomer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a maleimide monomer (a4). It is obtained by copolymerizing a mixture of substances (ma2).
  • the vinyl copolymer (A2) contains 2 to 30% by mass of aromatic vinyl monomer (a1), 30 to 80% by mass of (meth)acrylic acid ester monomer (a2), and maleimide monomer.
  • (a4) Preferably, it is obtained by copolymerizing a vinyl monomer mixture (ma2) containing 10 to 50% by mass according to a conventional method.
  • the vinyl monomer mixture (ma2) is copolymerizable with the aromatic vinyl monomer (a1), the (meth)acrylic acid ester monomer (a2), and the maleimide monomer (a4). It may further contain other monomers.
  • aromatic vinyl monomer (a1) examples include those exemplified as the aromatic vinyl monomer (a1) used in the vinyl copolymer (A1). Styrene is preferred as the aromatic vinyl monomer (a1).
  • the content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma2) is preferably 2% by mass or more based on the total 100% by mass of the vinyl monomer mixture (ma2). , more preferably 5% by mass or more.
  • the content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma2) is preferably 30% by mass or less based on the total 100% by mass of the vinyl monomer mixture (ma2). , more preferably 20% by mass or less, still more preferably 15% by mass or less. If the content of the aromatic vinyl monomer (a1) is below the above upper limit, the impact resistance and transparency of the resulting molded product can be further improved.
  • Examples of the (meth)acrylic ester monomer (a2) include those exemplified as the (meth)acrylic ester monomer (a2) used in the vinyl copolymer (A1).
  • As the (meth)acrylic acid ester monomer (a2) methyl (meth)acrylate is preferable.
  • the content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma2) is preferably 30% by mass out of the total 100% by mass of the vinyl monomer mixture (ma2).
  • the content is preferably at least 50% by mass, and even more preferably at least 55% by mass.
  • the transparency of the resulting molded product can be further improved.
  • the content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma2) is preferably 80% by mass out of the total 100% by mass of the vinyl monomer mixture (ma2).
  • the content is not more than 75% by mass, more preferably not more than 70% by mass. If the content of the (meth)acrylic acid ester monomer (a2) is below the above upper limit, the chemical resistance of the resulting molded product can be further improved.
  • maleimide monomer (a4) examples include those exemplified as maleimide monomers for other vinyl copolymers that may be used as needed in the vinyl copolymer (A1).
  • maleimide monomer (a4) N-phenylmaleimide is preferred.
  • the content of the maleimide monomer (a4) in the vinyl monomer mixture (ma2) is preferably 10 to 50% by mass based on the total 100% by mass of the vinyl monomer mixture (ma2). preferable.
  • the content of the maleimide monomer (a4) is preferably 10% by mass or more, more preferably 15 parts by mass or more.
  • the content of the maleimide monomer (a4) exceeds 50% by mass, the fluidity of the thermoplastic resin composition tends to decrease. Therefore, the content of the maleimide monomer (a4) is preferably 50% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less.
  • aromatic vinyl monomer (a1) aromatic vinyl monomer (a1)
  • (meth)acrylic acid ester monomer (a2) vinyl monomer (a2)
  • maleimide monomer (a4) maleimide monomer
  • vinyl monomers other than those mentioned above as long as they do not impair the effects of the present invention.
  • Specific examples include vinyl cyanide monomers, unsaturated fatty acids, and acrylamide monomers.
  • Examples of the vinyl cyanide monomer include those exemplified as the vinyl cyanide monomer (a3) used in the vinyl copolymer (A1).
  • Examples of the unsaturated fatty acid and acrylamide monomer include those exemplified as other vinyl copolymers used in the vinyl copolymer (A1).
  • the content of the other vinyl copolymers in 100% by mass of the vinyl monomer mixture (ma2) is It is preferably 10% by mass or less, more preferably 0 to 5% by mass. If the content of other vinyl copolymers is below the above upper limit, aromatic vinyl monomer (a1), (meth)acrylic acid ester monomer (a2) and maleimide monomer (a4) ) in a predetermined ratio can be effectively obtained.
  • the weight average molecular weight (Mw) of the vinyl copolymer (A1) is 50,000 to 300,000, preferably 100,000 to 250,000.
  • the weight average molecular weight (Mw) of the vinyl copolymer (A2) is preferably 100,000 to 250,000. If the weight average molecular weight of each of the vinyl copolymer (A1) and the vinyl copolymer (A2) is at least the above lower limit, the resulting thermoplastic resin composition will have low fluidity and will have excellent sheet formability.
  • the vinyl copolymer (A1) having a weight average molecular weight (Mw) of 50,000 to 300,000 and the vinyl copolymer (A2) having a weight average molecular weight (Mw) of 100,000 to 250,000 are, for example, can be easily produced by using an initiator and a chain transfer agent, which will be described later, and by adjusting the polymerization temperature to a preferable range, which will be described later.
  • the refractive index of the vinyl copolymer (A) is preferably 1.505 to 1.520, more preferably 1.509 to 1.519, and preferably 1.510 to 1.517. More preferred. If the refractive index of the vinyl copolymer (A) is within the above range, the difference in refractive index with the rubber-reinforced graft copolymer (B) described below can be reduced, and the resulting molded product will have excellent transparency. It can be done.
  • the difference between the refractive index of the vinyl copolymer (A) and the refractive index of the acetone-soluble portion of the rubber-reinforced graft copolymer (B) and the refractive index of the polyamide elastomer (C), which will be described later, is 0.03 or less, especially It is preferable that it is 0.01 or less from the viewpoint of transparency of the molded product obtained.
  • the refractive index of the vinyl copolymer (A) mainly depends on the composition of the raw material vinyl monomer, so the refractive index can be adjusted by appropriately selecting the type and composition ratio of the vinyl monomer. It can be within any desired range.
  • the weight average molecular weight (Mw) and refractive index of the vinyl copolymer (A) are measured by the method described in the Examples section below.
  • the method for producing the vinyl copolymer (A) is not particularly limited, and the aforementioned vinyl monomer mixture (ma) (vinyl monomer mixture (ma1) or vinyl monomer mixture (ma2)) is used.
  • a raw material it can be produced by a known polymerization method. From the viewpoint of improving the moldability, transparency, and color stability of the resulting thermoplastic resin composition, continuous bulk polymerization or continuous solution polymerization is preferably used.
  • Any method can be used to produce the vinyl copolymer (A) by continuous bulk polymerization or continuous solution polymerization.
  • a method can be mentioned in which the vinyl monomer mixture (ma) is polymerized in a polymerization tank and then the monomer is removed (solvent removal/devolatilization).
  • the graft copolymer (B) contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a vinyl cyanide monomer in the presence of a rubbery polymer (r). It is obtained by graft copolymerizing a vinyl monomer mixture (mb) containing monomer (b3).
  • the graft copolymer (B) contains 5 to 40% by mass of an aromatic vinyl monomer (b1) and a (meth)acrylic acid ester monomer (b2) in the presence of a rubbery polymer (r).
  • a vinyl monomer mixture (mb) containing 30 to 85% by mass and 2 to 30% by mass of vinyl cyanide monomer (b3).
  • the vinyl monomer mixture (mb) is copolymerized with an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a vinyl cyanide monomer (b3). It may further contain other possible vinyl copolymers.
  • Examples of the rubbery polymer (r) include polybutadiene, polyisoprene, butyl rubber, styrene-butadiene copolymer (styrene content is preferably 5 to 60% by mass), styrene-isoprene copolymer, acrylonitrile-butadiene copolymer, Ethylene- ⁇ -olefin copolymer, ethylene- ⁇ -olefin-polyene copolymer, silicone rubber, acrylic rubber, butadiene-(meth)acrylate copolymer, polyisoprene, styrene-butadiene block copolymer, styrene Examples include -isoprene block copolymers, hydrogenated styrene-butadiene block copolymers, hydrogenated butadiene polymers, and ethylene ionomers.
  • the styrene-butadiene block copolymer and styrene-isoprene block copolymer include those having an AB type, ABA type, tapered type, or radial teleblock type structure.
  • Hydrogenated butadiene-based polymers include hydrogenated products of polystyrene blocks and styrene-butadiene random copolymer blocks in addition to hydrogenated products of the block copolymer; 1,2-vinyl bond content in polybutadiene 20% by mass or less and a polybutadiene block having a 1,2-vinyl bond content of more than 20% by mass.
  • the amount of rubbery polymer (r) used per 100 parts by mass of the rubbery polymer (r) constituting the rubber reinforced graft copolymer (B) and the vinyl monomer mixture (mb) described below. is preferably 20 to 80 parts by mass. If the amount of the rubbery polymer (r) used is 20 parts by mass or more, the impact resistance of the resulting molded product can be further improved.
  • the content of the rubbery polymer (r) is more preferably 35 parts by mass or more. If the content of the rubbery polymer (r) is 80 parts by mass or less, the moldability of the thermoplastic resin composition can be further improved.
  • the content of the rubbery polymer (r) is more preferably 60 parts by mass or less.
  • the volume average particle diameter of the rubbery polymer (r) is not particularly limited, but from the viewpoint of further improving the impact resistance of the molded product obtained, it is preferably 80 nm or more, and more preferably 150 nm or more. From the viewpoint of improving the transparency of the resulting molded product, the volume average particle diameter of the rubbery polymer (r) is preferably 500 nm or less, more preferably 350 nm or less, and even more preferably 300 nm or less.
  • the volume average particle diameters of the rubbery polymer (r) and the rubber-reinforced graft copolymer (B) described below are measured by the method described in the Examples section below.
  • aromatic vinyl monomer (b1) examples include those exemplified as the aromatic vinyl monomer (a1). Styrene is preferred as the aromatic vinyl monomer (b1).
  • the content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture (mb) is preferably 5% by mass or more based on the total 100% by mass of the vinyl monomer mixture (mb). , more preferably 10% by mass or more. If the content of the aromatic vinyl monomer (b1) is at least the above lower limit, the moldability of the thermoplastic resin composition and the rigidity of the resulting molded product can be further improved.
  • the content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture (mb) is preferably 40% by mass or less based on the total 100% by mass of the vinyl monomer mixture (mb). , more preferably 30% by mass or less. If the content of the aromatic vinyl monomer (b1) is below the above upper limit, the impact resistance and transparency of the resulting molded product can be further improved.
  • Examples of the (meth)acrylic ester monomer (b2) include those exemplified as the (meth)acrylic ester monomer (a2).
  • As the (meth)acrylic acid ester monomer (b2) methyl (meth)acrylate is preferable.
  • the content of the (meth)acrylic acid ester monomer (b2) in the vinyl monomer mixture (mb) is preferably 30% by mass out of the total 100% by mass of the vinyl monomer mixture (mb). or more, and more preferably 50% by mass or more.
  • the content of the (meth)acrylic acid ester monomer (b2) in the vinyl monomer mixture (mb) is preferably 85% by mass out of the total 100% by mass of the vinyl monomer mixture (mb). It is not more than 75% by mass, and more preferably not more than 75% by mass. If the content of the (meth)acrylic acid ester monomer (b2) is below the above upper limit, the chemical resistance of the resulting molded product can be further improved.
  • Examples of the vinyl cyanide monomer (b3) include those exemplified as the vinyl cyanide monomer (a3).
  • As the vinyl cyanide monomer (b3) acrylonitrile is preferred.
  • the content of the vinyl cyanide monomer (b3) in the vinyl monomer mixture (mb) shall be 2 to 30% by mass based on the total 100% by mass of the vinyl monomer mixture (mb). is preferred.
  • the content of the vinyl cyanide monomer (b3) is preferably 2% by mass or more, more preferably 5% by mass or more.
  • the content of the vinyl cyanide monomer (b3) exceeds 30% by mass, the yellowness (YI) of the obtained molded article tends to increase and the color tone tends to decrease. Therefore, the content of the vinyl cyanide monomer unit (b3) is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the weight average molecular weight (Mw) of the acetone soluble portion of the rubber reinforced graft copolymer (B) is preferably 30,000 to 500,000, more preferably 40,000 to 250,000, 50,000 to 150, 000 is more preferred.
  • the rubber-reinforced graft copolymer (B) having a weight average molecular weight of 30,000 to 500,000 can be produced by, for example, using an initiator or a chain transfer agent as described below, or setting the polymerization temperature within the preferred range as described below. , can be easily manufactured.
  • the volume average particle diameter of the rubber-reinforced graft copolymer (B) is preferably 80 to 500 nm, particularly 100 to 300 nm, from the viewpoint of transparency.
  • the refractive index of the acetone-soluble portion of the rubber reinforced graft copolymer (B) is preferably 1.505 to 1.520, more preferably 1.509 to 1.519, and 1.510 to 1. More preferably, it is .517. If the refractive index of the acetone-soluble portion of the rubber-reinforced graft copolymer (B) is within the above range, a rubber-reinforced graft copolymer (B) with excellent transparency can be obtained.
  • the refractive index difference between the acetone-soluble portion of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B) and the polyamide elastomer (C) described below is 0.03 or less, particularly 0. It is preferable that it is .01 or less from the viewpoint of transparency of the molded product obtained.
  • the graft ratio of the graft copolymer (B) and the refractive index of the acetone soluble content are measured by the method described in the Examples section below.
  • the acetone soluble content which is the graft component of the rubber-reinforced graft copolymer (B)
  • To improve the transparency of the obtained molded product by reducing the difference between the refractive index of the rubber-reinforced graft copolymer (B) and the refractive index of the graft component and the rubbery polymer (r) to 0.03 or less. Can be done.
  • the refractive index of the graft component of the rubber-reinforced graft copolymer (B) mainly depends on the composition of the raw material vinyl monomer. Therefore, by appropriately selecting the type and composition ratio of the vinyl monomer mixture (mb), the refractive index can be set within a desired range. In particular, when the polymerization conversion rate is increased to 95% or more by emulsion polymerization, the composition of the graft component is approximately the same as the composition of the vinyl monomer mixture (mb).
  • the refractive index of the rubbery polymer (r) is shown in general literature. For example, in the case of polybutadiene rubber, it is 1.516.
  • the refractive index of the graft component of the graft copolymer (B) is determined by dissolving the graft copolymer (B) in acetone and drying the residue obtained by filtering the acetone-soluble content. It can be measured in the same manner as for polymer (A).
  • the method for producing the graft copolymer (B) is not particularly limited, and any method such as emulsion polymerization, suspension polymerization, continuous bulk polymerization, continuous solution polymerization, etc. can be used. Among these, emulsion polymerization method or bulk polymerization method is preferred, and emulsion polymerization method is more preferred. If the emulsion polymerization method is used, the particle size of the rubbery polymer (r) can be easily adjusted to a desired range, and the polymerization stability can be easily adjusted by removing heat during polymerization.
  • the method of charging the rubbery polymer (r) and the vinyl monomer mixture (mb) is not particularly limited. For example, all of these may be initially prepared at once. In addition, in order to adjust the distribution of the copolymer composition, a part of the vinyl monomer mixture (mb) may be continuously charged, or a part or all of the vinyl monomer mixture (mb) may be added. You can also divide it and prepare it.
  • “continuously charging a part of the vinyl monomer mixture (mb)” means that a part of the vinyl monomer mixture (mb) is initially charged and the rest is continuously charged over time. means. Feeding part or all of the vinyl monomer mixture (mb) in portions means feeding part or all of the vinyl monomer mixture (mb) at a later point in time than the initial feeding. .
  • rubber-reinforced graft copolymer (B) only one type of rubber-reinforced graft copolymer (B) may be used, or two or more types of rubber-reinforced graft copolymer (B) having different types, vinyl monomer compositions, physical properties, etc. may be mixed. It may also be used as
  • polyamide elastomer (C) constituting the thermoplastic resin composition of the present invention
  • examples of the polyamide elastomer (C) constituting the thermoplastic resin composition of the present invention include aminocarboxylic acids or lactams having 6 or more carbon atoms, or salts of diamines and dicarboxylic acids having 6 or more carbon atoms, and poly(alkylene oxide).
  • Graft copolymers or block copolymers with glycol are preferred.
  • poly(alkylene oxide) glycol polyethylene oxide glycol is preferably used.
  • aminocarboxylic acids or lactams having 6 or more carbon atoms, or salts of diamines and dicarboxylic acids having 6 or more carbon atoms include ⁇ -aminocaproic acid, ⁇ -aminoenantoic acid, ⁇ -aminocaprylic acid, ⁇ - Aminocarboxylic acids such as aminopergonic acid, ⁇ -aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid; Lactams such as caprolactam, enantlactam, capryllactam, laurolactam; Hexamethylenediamine-adipate, hexamethylene Examples include nylon salts such as diamine-sebacate and hexamethylenediamine-isophthalate. Two or more types of these may be used.
  • poly(alkylene oxide) glycol examples include polyethylene oxide glycol, poly(1,2-propylene oxide) glycol, poly(1,3-propylene oxide) glycol, poly(tetramethylene oxide) glycol, and poly(hexamethylene oxide) glycol. ) glycol, block or random copolymers of ethylene oxide and propylene oxide, block or random copolymers of ethylene oxide and tetrahydrofuran, and the like. Two or more types of these may be used. Furthermore, bisphenol A, alkylene oxide adducts of fatty acids, etc. may be copolymerized.
  • the number average molecular weight of the poly(alkylene oxide) glycol is preferably 200 or more, and more preferably 300 or more. From the viewpoint of further improving chemical resistance, the number average molecular weight of poly(alkylene oxide) glycol is preferably 6,000 or less, more preferably 4,000 or less.
  • Both ends of the poly(alkylene oxide) glycol may be aminated or carboxylated as necessary.
  • the bond between the aminocarboxylic acid or lactam having 6 or more carbon atoms, or the salt of diamine and dicarboxylic acid having 6 or more carbon atoms, and poly(alkylene oxide) glycol is usually an ester bond and an amide bond. However, it is not particularly limited to these.
  • a third component such as a dicarboxylic acid or diamine
  • a reaction component such as a dicarboxylic acid or diamine
  • terephthalic acid dicarboxylic acid
  • the dicarboxylic acid is preferably a dicarboxylic acid having 4 to 20 carbon atoms from the viewpoint of further improving polymerizability, color tone, and physical properties.
  • aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4-dicarboxylic acid, diphenoxyethanedicarboxylic acid, sodium 3-sulfoisophthalate; 1, Alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, dicyclohexyl-4,4-dicarboxylic acid; succinic acid, oxalic acid, adipic acid, sebacic acid, 1,10-decanedicarboxylic acid, etc. aliphatic dicarboxylic acids; and the like.
  • diamine aromatic, alicyclic and aliphatic diamines are used.
  • hexamethylene diamine which is an aliphatic diamine, is preferably used.
  • the method for producing the polyamide elastomer (C) is not particularly limited, and any known production method can be used.
  • any known production method can be used.
  • methods (1) to (3) below may be used.
  • the melting point of the polyamide elastomer (C) is preferably 140°C or higher, more preferably 180°C or higher, and even more preferably 190°C or higher.
  • the upper limit of the melting point of the polyamide elastomer (C) is usually 220°C or lower.
  • the refractive index of the polyamide elastomer (C) is preferably 1.505 to 1.520, more preferably 1.509 to 1.519, and even more preferably 1.510 to 1.517. If the refractive index of the polyamide elastomer (C) is within the above range, the difference in refractive index between the polyamide elastomer (C) and the rubber-reinforced graft copolymer (B) can be reduced, which is preferable from the viewpoint of transparency of the resulting molded product.
  • the difference between the refractive index of the vinyl copolymer (A), the refractive index of the acetone-soluble portion of the rubber-reinforced graft copolymer (B), and the refractive index of the polyamide elastomer (C) is 0.03 or less. In particular, it is preferably 0.01 or less from the viewpoint of transparency of the molded product obtained.
  • the melting point of the polyamide elastomer (C) is measured by the method described in the Examples section below.
  • the refractive index of the polyamide elastomer (C) can be measured by the method described in the Examples section below. However, for commercially available products, catalog values can be used.
  • polyamide elastomer (C) only one type of polyamide elastomer (C) may be used, or two or more types having different segment compositions, physical properties, etc. may be used as a mixture.
  • a nylon 6-based polyamide elastomer and a nylon 12-based polyamide elastomer can be used together, or polyamide elastomers having different melting points can be used together.
  • polyamide elastomer (C) A commercially available product may be used as the polyamide elastomer (C).
  • Commercially available polyamide elastomers (C) include Pellestat M-140, Pellestat NC6321, Pellestat M-330, Pellestat N1200, and Pellestat AS manufactured by Sanyo Chemical Co., Ltd.
  • the thermoplastic resin composition of the present invention includes a vinyl copolymer (A) (the vinyl copolymer (A) may be only a vinyl copolymer (A1), and a vinyl copolymer (A1)). and a vinyl copolymer (A2)), the rubber-reinforced graft copolymer (B), and the polyamide elastomer (C) (hereinafter referred to as "(A) to (C)").
  • 100 parts by mass, a total of 60 to 92 parts by mass of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B), and 100 parts by mass of the polyamide elastomer (C ) is a thermoplastic resin composition containing 8 to 40 parts by mass.
  • the proportion of the vinyl copolymer (A) out of the total 100% by mass of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B) is preferably is 20 to 80% by weight, more preferably 25 to 75% by weight, and even more preferably 30 to 70% by weight.
  • the proportion of one rubber-reinforced graft copolymer (B) is preferably 20 to 80% by mass, more preferably 25 to 75% by mass, and even more preferably 30 to 70% by mass. This is because, if the content ratio of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B) is within the above range, chemical resistance and transparency will be excellent.
  • thermoplastic resin composition of the present invention contains a total of 60 to 92 parts of vinyl copolymer (A) and rubber-reinforced graft copolymer (B) in 100 parts by mass of (A) to (C). 8 to 40 parts by mass of polyamide elastomer (C). This blending ratio can be adjusted as appropriate within the above range depending on the purpose.
  • the content of the rubbery polymer (r) in 100% by mass of the thermoplastic resin composition of the present invention (hereinafter sometimes referred to as "rubber content") is preferably 8 to 35% by mass, and more preferably Preferably it is 10 to 30% by mass.
  • the lower limit of the content of the rubbery polymer (r) is more preferably 11% by mass or more, particularly preferably 12% by mass or more, and most preferably 13% by mass or more.
  • the upper limit of the content of the rubbery polymer (r) is more preferably 28% by mass or less, particularly preferably 25% by mass or less, most preferably 23% by mass or less. This is because if the content of the rubbery polymer (r) in the thermoplastic resin composition is within the above range, the chemical resistance, transparency, and sheet appearance will be excellent.
  • the rubber content in the thermoplastic resin composition can be calculated by a blending ratio using the content of the rubbery polymer (r) in the rubber-reinforced graft copolymer (B), or by an infrared spectrometer. It can be determined by measuring the rubber content.
  • the content of the vinyl cyanide monomer component in 100% by mass of the acetone soluble content of the thermoplastic resin composition is preferably 0.5 to 10% by mass. If the content of the vinyl cyanide monomer component is less than 0.5% by mass, the dispersibility will be poor and antistatic properties will be difficult to obtain when mixed with the polyamide elastomer (C).
  • the content of the vinyl cyanide monomer component is more preferably 1.0% by mass or more, even more preferably 2.0% by mass or more, particularly preferably 3.0% by mass or more, and most preferably 4.0% by mass. % or more.
  • the content of the vinyl cyanide monomer component is more preferably 9.0% by mass or less, further preferably 8.0% by mass or less, particularly preferably 7.0% by mass or less, and most preferably 6.5% by mass. % or less, more preferably in the order of 6.0% by mass or less, 5.5% by mass or less, and 5.0% by mass or less.
  • the content of the vinyl cyanide monomer component in 100% by mass of the acetone soluble content of the thermoplastic resin composition can be set to the above range, transparency can be achieved in sheet processing with lower shear force compared to injection molding. While maintaining this, chemical resistance can also be sufficiently developed.
  • the content of the vinyl cyanide monomer component in the acetone-soluble portion of the thermoplastic resin composition can be determined by preparing a calibration curve in advance using an infrared spectrometer. After extracting, it is measured by a measuring device described in the Examples section below.
  • the extraction of the acetone-soluble portion of the polymer was performed as follows. 2 g of each thermoplastic resin composition obtained in Examples and Comparative Examples was added to 40 mL of acetone, shaken for 2 hours with a shaker at a temperature of 25°C, and then shaken at a temperature of 5°C. The mixture was centrifuged for 60 minutes using a centrifuge (rotation speed: 23,000 rpm) to separate acetone-soluble and acetone-insoluble components. The obtained acetone-soluble content was dropped into methanol to precipitate the polymer component, and then the solid content was filtered out and dried in a vacuum dryer for 24 hours to obtain the acetone-soluble content in the thermoplastic resin composition.
  • Extract as a polymer component The content of the vinyl cyanide monomer component in the acetone-soluble matter can be measured by direct extraction and measurement as described above, or by measuring the content of the vinyl cyanide monomer component in the acetone-soluble matter of each raw material used. It can be determined by calculating from the blending ratio using the amount.
  • the weight average molecular weight of the acetone soluble portion of the thermoplastic resin composition is preferably 60,000 to 280,000. Being within this range is preferable because transparency can be maintained even during sheet molding and subsequent processing steps.
  • the weight average molecular weight of the acetone soluble component is more preferably 65,000 to 250,000, still more preferably 70,000 to 200,000, particularly preferably 75,000 to 150,000.
  • the weight average molecular weight of the acetone soluble component in the thermoplastic resin composition can be measured as a polystyrene equivalent value by GPC.
  • the weight average molecular weight of the acetone-soluble component can be measured by the measuring device described in the Examples section below after extracting the acetone-soluble polymer by the method described above.
  • thermoplastic resin composition of the present invention contains 20 to 65 parts by mass of a vinyl copolymer (A) and a rubber-reinforced graft copolymer (B) based on a total of 100 parts by mass of (A) to (C). It is preferable to contain 5 to 72 parts by mass of polyamide elastomer (C) and 8 to 30 parts by mass of polyamide elastomer (C).
  • the thermoplastic resin composition of the present invention contains 20 to 40 parts by mass of the vinyl copolymer (A) and a rubber-reinforced graft copolymer (100 parts by mass in total of (A) to (C)). Even if it contains 47 to 65 parts by mass of B), 8 to 13 parts by mass of polyamide elastomer (C), and 35 parts by mass or less of the vinyl copolymer (A1) in the vinyl copolymer (A). good.
  • the content of the vinyl copolymer (A) in the total of 100 parts by mass of (A) to (C) is less than the above lower limit, the rigidity of the molded product obtained by containing the vinyl copolymer (A) Therefore, the effect of improving heat resistance cannot be sufficiently obtained. If the content of the vinyl copolymer (A) exceeds the above upper limit, the moldability of the sheet will decrease.
  • a more preferable content of the vinyl copolymer (A) in a total of 100 parts by mass of (A) to (C) is as described above.
  • the content of the vinyl copolymer (A1) in the vinyl copolymer (A) is determined from the viewpoint of transparency and rigidity of the obtained molded product, out of a total of 100 parts by mass of (A) to (C). It is preferably 35 parts by mass or less, more preferably 30 mass% or less.
  • the content of the vinyl copolymer (A2) is determined by the heat resistance and chemical resistance. From the viewpoint of sheet formability, it is preferably 20 parts by mass or less, more preferably 5 to 20 parts by mass, and even more preferably 8 to 18 parts by mass, based on a total of 100 parts by mass of (A) to (C).
  • the content of the graft copolymer (B) in the total of 100 parts by mass of (A) to (C) is less than the above lower limit, the chemical resistance of the molded product due to the inclusion of the rubber-reinforced graft copolymer (B) In this case, the effect of improving fluidity suitable for sheet molding cannot be sufficiently obtained. If the content of the graft copolymer (B) exceeds the above upper limit, the rigidity and heat resistance of the molded article will not be sufficiently improved.
  • a more preferable content of the graft copolymer (B) in a total of 100 parts by mass of (A) to (C) is as described above.
  • the content of the polyamide elastomer (C) in the total of 100 parts by mass of (A) to (C) is less than 8 parts by mass, the effect of improving chemical resistance due to the inclusion of the polyamide elastomer (C) cannot be sufficiently obtained. However, the chemical resistance of the resulting molded product decreases.
  • the content of the polyamide elastomer (C) is 8 parts by mass or more, particularly preferably 10 parts by mass or more.
  • the content of the polyamide elastomer (C) in the total of 100 parts by mass of (A) to (C) is 40 parts by mass or less, preferably 30 parts by mass.
  • the amount is more preferably 25 parts by mass or less, still more preferably 20 parts by mass or less, particularly preferably 18 parts by mass or less, particularly preferably 13 parts by mass or less.
  • the thermoplastic resin composition of the present invention contains resins and elastomers other than the vinyl copolymer (A), the graft copolymer (B), and the polyamide elastomer (C) within a range that does not impair the effects of the present invention. can do.
  • these other resins and elastomers include one or more transparent resins such as polycarbonate resin and polymethyl methacrylate.
  • the content is the vinyl copolymer (A), the graft copolymer (B), the polyamide elastomer (C) and the other It is preferably 10 parts by mass or less in a total of 100 parts by mass of the resin and elastomer. If the content is below the above upper limit, the effects of the present invention can be effectively obtained by using the vinyl copolymer (A), the graft copolymer (B), and the polyamide elastomer (C) in a predetermined ratio. be able to.
  • the thermoplastic resin composition of the present invention may contain antioxidants such as hindered phenols, sulfur-containing organic compounds, and phosphorus-containing organic compounds; Heat stabilizers; ultraviolet absorbers such as benzotriazole, benzophenone, and salicylates; various stabilizers such as organic nickel and hindered amine light stabilizers; lubricants such as metal salts of higher fatty acids and higher fatty acid amides; Plasticizers such as phthalates and phosphates; anti-drip agents such as polytetrafluoroethylene; nonionic, anionic, cationic or amphoteric surfactants; pigments such as carbon black and titanium oxide; A dye; a liquid such as water, silicone oil, or liquid paraffin can also be blended. In addition, fillers can also be blended.
  • antioxidants such as hindered phenols, sulfur-containing organic compounds, and phosphorus-containing organic compounds
  • Heat stabilizers such as benzotriazole, benzophenone, and salicylates
  • various stabilizers
  • the filler examples include those in the form of fibers, plates, powders, particles, etc., and any of them may be used in the present invention. Specifically, polyacrylonitrile (PAN)-based and pitch-based carbon fibers; stainless steel fibers, metal fibers such as aluminum fibers and brass fibers; organic fibers such as aromatic polyamide fibers; gypsum fibers, ceramic fibers, asbestos fibers, and zirconia fibers.
  • PAN polyacrylonitrile
  • pitch-based carbon fibers such as stainless steel fibers, metal fibers such as aluminum fibers and brass fibers
  • organic fibers such as aromatic polyamide fibers
  • gypsum fibers ceramic fibers, asbestos fibers, and zirconia fibers.
  • Fibrous or whisker-like fillers such as fibers, alumina fibers, silica fibers, titanium oxide fibers, silicon carbide fibers, glass fibers, rock wool, potassium titanate whiskers, barium titanate whiskers, aluminum borate whiskers, silicon nitride whiskers; Powdered materials such as mica, talc, kaolin, silica, calcium carbonate, glass flakes, glass beads, glass microballoons, clay, molybdenum disulfide, wollastenite, montmorillonite, titanium oxide, zinc oxide, barium sulfate, calcium polyphosphate, graphite, etc. Examples include granular or plate-shaped fillers. Two or more types of these may be used. Among these, glass fiber is preferably used. The type of glass fiber is not particularly limited as long as it is generally used for reinforcing resins. For example, long fiber type or short fiber type chopped strands, milled fibers, etc. can be mentioned.
  • the surface of the filler may be treated with an arbitrary coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.) or other surface treatment agent.
  • the filler may be coated or bundled with a thermoplastic resin such as an ethylene/vinyl acetate copolymer or a thermosetting resin such as an epoxy resin.
  • the filler may be treated with a coupling agent such as aminosilane or epoxysilane.
  • thermoplastic resin composition of the present invention contains a filler
  • the content thereof is 100 parts by mass in total of the vinyl copolymer (A), graft copolymer (B), and polyamide elastomer (C). It is preferably 0.01 to 10 parts by mass.
  • thermoplastic resin composition contains a vinyl copolymer (A), a graft copolymer (B), a polyamide elastomer (C), and other components used as necessary in the above-mentioned predetermined ratios.
  • thermoplastic resin composition of the present invention can be molded by known methods such as injection molding, extrusion molding, calendar molding, blow molding, vacuum molding, compression molding, and gas-assisted molding.
  • the melt volume rate (MVR) of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 50 cm 3 /10 minutes or less, more preferably is 30 cm 3 /10 minutes or less, more preferably 20 cm 3 /10 minutes or less.
  • the MVR of the thermoplastic resin composition of the present invention is preferably 2 cm 3 /10 minutes or more, more preferably 4 cm 3 /10 minutes or more, from the viewpoint of sheet moldability and sheet appearance. More preferably, it is 6 cm 3 /10 minutes or more.
  • the total light transmittance of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 85% or more, and preferably 87% or more. It is more preferable.
  • the bending modulus of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 900 MPa or more, more preferably 1,000 MPa or more. .
  • the heat distortion temperature of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 58°C or higher, and preferably 60°C or higher. More preferably, the temperature is 63°C or higher.
  • the molded article of the present invention is obtained by molding the thermoplastic resin composition of the present invention using the various molding methods described above.
  • the molded article of the present invention can be applied to a wide range of fields of use, such as home appliances, communication-related equipment, transportation containers, general miscellaneous goods, and medical-related equipment.
  • thermoplastic resin composition of the present invention is preferably used as a film or sheet by T-die molding or calendar molding because of its excellent sheet formability, chemical resistance, transparency, rigidity, and heat resistance.
  • the molded article of the present invention is particularly suitable for use as transportation equipment or transportation containers for precision parts, and in this case, even if a chemical solution such as a cleaning agent is attached, the molded article of the present invention maintains high transparency and is free from cracks and cracks. can be prevented.
  • the molded product of the present invention can be widely used not only for general products such as transparent storage cases, but also as parts for producing industrial products such as photomasks.
  • the obtained suspended acetone solution was centrifuged at 14,000 rpm for 30 minutes using a centrifuge (“CR21E” manufactured by Hitachi Koki Co., Ltd.) to separate the precipitate component (acetone insoluble component) and the acetone solution (acetone soluble component). was separated. Then, the precipitated component (acetone-insoluble component) was dried, its weight (Q (g)) was measured, and the grafting rate was calculated using the following formula (1).
  • Q in formula (1) is the weight (g) of the acetone-insoluble portion of the graft copolymer (B).
  • W is the total weight (g) of the graft copolymer (B) used when determining Q.
  • the rubber fraction is the content of the rubbery polymer (r) contained in the graft copolymer (B).
  • Grafting rate (%) ⁇ (Q-W ⁇ rubber fraction)/W ⁇ rubber fraction ⁇ 100...(1)
  • Polymerization conversion rate (%) (total weight of charged raw materials x solid component ratio - total weight of raw materials other than monomers) / weight of charged monomers x 100...
  • the glass transition temperature (Tg) of the vinyl copolymer (A-2-1) was determined by differential scanning calorimetry (DSC) by heating a sample from 35°C to 250°C at a rate of 10°C/min in a nitrogen atmosphere. After that, it was cooled to 35°C, and the glass transition temperature observed when the temperature was raised again to 250°C was measured.
  • DSC differential scanning calorimetry
  • Tm melting point
  • MVR Liquidity
  • the thickness of the test piece is 2.5 mm.
  • the following evaluations were conducted regarding environmental impacts. After measuring the total transmittance of the test piece, the test piece was placed in a constant temperature and high humidity bath at a temperature of 40° C. and a humidity of 70% for one week. Thereafter, the test piece was taken out and the total light transmittance was measured again. The difference between the total light transmittance before placing in the constant temperature and high humidity tank and the total light transmittance after placing in the constant temperature and high humidity tank was checked and judged according to the following rank. The smaller the difference, the smaller the environmental impact, and the A judgment is the best.
  • D More than 5%
  • a test piece was molded from a pelletized thermoplastic resin composition using an ESC mold (thickness 2 mm, width 12 mm, length 15 mm) using an injection molding machine ("IS55FP-1.5A" manufactured by Toshiba Machinery Co., Ltd.). .
  • This test piece was set in a constant strain jig with a strain rate of 0.2 to 1.6%, and isopropyl alcohol (Wako Pure Chemical Industries, Ltd.) was dropped onto it. After that, 23°C, 50% R. H. After being left in the atmosphere for 48 hours, the test piece was removed from the jig, and the critical strain (%) of the material at which deterioration and cracking occurred was determined. The larger the critical strain (%), the better the chemical resistance.
  • thermoplastic resin composition was manufactured by the following method. Alternatively, the following commercially available products were used.
  • the polymerization temperature of the first unit was controlled at 110°C, and the average residence time was 2.0 hours.
  • the obtained polymer solution was continuously taken out in an amount equal to the amount supplied of styrene, acrylonitrile, methyl methacrylate, toluene, a molecular weight regulator, and a polymerization initiator using a pump installed outside the first reaction vessel. It was supplied to the first reaction vessel.
  • the polymerization temperature of the second reaction vessel was 130°C.
  • the copolymer solution obtained in the second reaction vessel was used to directly devolatilize the unreacted monomers and solvent using a two-screw three-stage vented extruder, and then the vinyl copolymer (A-1 -1) was obtained.
  • the analysis results of this vinyl copolymer (A-1-1) were as follows. Weight average molecular weight (Mw): 120,000 Refractive index: 1.517
  • Vinyl copolymer (A-1-2) except that 21 parts of styrene, 13 parts of acrylonitrile, 67 parts of methyl methacrylate, 0.4 parts of tert-dodecyl mercaptan, and 0.1 part of dicumyl peroxide were used.
  • a powdered vinyl copolymer (A-1-2) was obtained in the same manner as in the production.
  • the analysis results of this vinyl copolymer (A-1-2) were as follows. Weight average molecular weight (Mw): 80,000 Refractive index: 1.517
  • Vinyl copolymer (A-1) was produced in the same manner as in the production of vinyl copolymer (A-1-1), except that the amount of tert-dodecyl mercaptan used as a molecular weight regulator was 0.27 parts. -3) was obtained.
  • the analysis results of this vinyl copolymer (A-1-3) were as follows. Weight average molecular weight (Mw): 85,000 Refractive index: 1.517
  • Latex (r-1) solid content concentration 50% containing 45 parts of polybutadiene rubber with a volume average particle diameter of 280 nm and a gel content of 90% was charged into a separable flask with an internal volume of 10 L equipped with a stirrer. Thereafter, 0.5 parts of potassium oleate, 0.2 parts of glucose, 0.2 parts of sodium pyrophosphate, 0.01 parts of ferrous sulfate, and 100 parts of deionized water were added.
  • the grafting rate of the grafted polybutadiene (acetone insoluble portion) obtained by acetone treatment of the graft copolymer (B-1) was 52%, and the volume average particle diameter was 260 nm. Furthermore, the liberated methyl methacrylate/styrene/acrylonitrile copolymer (acetone soluble portion) had a refractive index of 1.517 and a weight average molecular weight of 54,000.
  • Polyamide elastomer (C) As the polyamide elastomer (C), "Pellestat M-140 (refractive index: 1.510)" manufactured by Sanyo Chemical Co., Ltd., which is a polyether ester amide block polymer based on nylon 6, was used. The melting point of this polyamide elastomer (C) was measured and found to be as follows. Melting point: 192°C
  • ⁇ Compatibilizer (E-1)> As the compatibilizer (E-1), acrylonitrile/ ⁇ -methylstyrene/acrylic acid copolymer (acrylonitrile/ ⁇ -methylstyrene/acrylic acid 20/75/5 (mass ratio)), weight average molecular weight: 67, 000) was used.
  • Examples 1 to 24, Comparative Examples 1 to 8 The components shown in Tables 1 to 3 were blended in the amounts shown in Tables 1 to 3, and 0.00005 parts of Solvent Blue 97 was added as a dye, and mixed at 23°C using a Henschel mixer. The obtained mixture was melt-kneaded at an extrusion temperature of 230° C. using a 30 mm ⁇ twin-screw extruder, and extruded into strands to form pellets. Using the obtained pellets of the thermoplastic resin composition, evaluation was performed by the method described above. The results are shown in Tables 1 to 3.
  • Comparative Examples 1, 2, and 4 that do not contain polyamide elastomer (C) have significantly inferior chemical resistance.
  • Comparative Example 3 which contains the polyamide elastomer (C) in a small amount, has poor chemical resistance.
  • Comparative Example 5 in which polyamide, which is a hard segment of polyamide elastomer (C), was used instead of polyamide elastomer (C) had poor transparency. In addition, the sheet appearance and readability are also poor.
  • Comparative Example 6 in which polyethylene glycol, which is a soft segment of polyamide elastomer (C), was used instead of polyamide elastomer (C), low fluidity (sheet moldability) tended to be poor.
  • Comparative Example 7 which does not contain the vinyl copolymer (A1) component, has too low a fluidity value and is poor in moldability, and is also poor in transparency, sheet appearance, and readability.
  • Comparative Example 8 in which polyamide elastomer (C) was blended in excess had poor transparency, sheet appearance, and readability, and had low rigidity. It also has poor chemical resistance.
  • the drawbacks of the compositions shown in these comparative examples are not at a level that can be adjusted by setting conditions such as molding processing, so they are not practical.
  • thermoplastic resin compositions of Examples 1 to 24 that meet the specifications of the present invention have low fluidity (sheet formability), transparency, sheet appearance, readability, impact resistance, chemical resistance, and heat resistance. Excellent balance in all aspects.
  • Example 7 which contains a large amount of the graft copolymer (B) even though it contains a sufficient amount of the polyamide elastomer (C), the heat resistance is slightly inferior to the other examples.
  • Example 8 which contains a large amount of vinyl copolymer (A1), sheet formability tends to be poor, but these are all at a practical level.
  • Example 9 which contains a relatively large amount of polyamide elastomer (C), tends to have lower rigidity than other Examples, it can be used depending on the application.
  • Example 10 using a vinyl copolymer (A-1-2) with a weight average molecular weight of 80,000 tends to have low fluidity (sheet formability) and poor chemical resistance, but can be used. be.
  • Examples 11 to 24 are excellent in low fluidity (sheet formability), transparency, impact resistance, chemical resistance, and heat resistance in a well-balanced manner. Furthermore, the environmental impact of the total light transmittance is small, the sheet appearance is excellent, and the readability (distance) is also excellent. Therefore, it can be suitably used for applications such as photomask cases.
  • the polyamide elastomer (C) is also expected to have an antistatic effect. For example, after leaving a disc (diameter 100 mm, thickness 2 mm) obtained by molding pellets of the thermoplastic resin composition of Example 23 under conditions of a temperature of 23° C. and a humidity of 50% RH for one day, When the surface resistivity ( ⁇ ) was measured at an applied voltage of 500 V, it showed a good value of 5 ⁇ 10 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermoplastic resin composition containing a vinyl copolymer (A), obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2), a rubber-reinforced graft copolymer (B), obtained by graft copolymerizing at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a vinyl cyanide monomer (b3) in the presence of a rubbery polymer (r), and a polyamide elastomer (C), wherein the vinyl copolymer (A) contains a vinyl copolymer (A1) having a weight average molecular weight of 50,000 to 300,000, obtained by copolymerizing a vinyl monomer mixture (ma1) containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3), and the thermoplastic resin composition contains a total of 60 to 92 mass parts of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B) and 8 to 40 mass parts of the polyamide elastomer (C) per 100 total mass parts of the vinyl copolymer (A), rubber-reinforced graft copolymer (B), and polyamide elastomer (C).

Description

熱可塑性樹脂組成物及びその成形品Thermoplastic resin compositions and molded products thereof
 本発明は、ビニル系共重合体、ゴム強化グラフト共重合体及びポリアミドエラストマーを含む熱可塑性樹脂組成物に関する。本発明の熱可塑性樹脂組成物によれば、シート成形の生産性に優れ、耐薬品性、透明性及び剛性に優れた成形品を得ることができる。本発明はまた、この熱可塑性樹脂組成物を成形してなる成形品に関する。 The present invention relates to a thermoplastic resin composition containing a vinyl copolymer, a rubber-reinforced graft copolymer, and a polyamide elastomer. According to the thermoplastic resin composition of the present invention, it is possible to obtain a molded article with excellent sheet molding productivity and excellent chemical resistance, transparency, and rigidity. The present invention also relates to a molded article formed by molding this thermoplastic resin composition.
 ジエン系ゴムなどのゴム質重合体に、スチレン、α-メチルスチレンなどの芳香族ビニル系化合物と、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル系化合物とをグラフト共重合して得られるゴム強化スチレン系樹脂は、耐衝撃性、剛性などの機械的強度、成形性及びコストパフォーマンスなどに優れる。このため、ゴム強化スチレン系樹脂は、家電製品、通信関連機器、搬送容器、一般雑貨及び医療関連機器などの用途分野で幅広く利用されている。 Rubber-reinforced styrene obtained by graft copolymerizing a rubbery polymer such as diene rubber with an aromatic vinyl compound such as styrene or α-methylstyrene and a vinyl cyanide compound such as acrylonitrile or methacrylonitrile. The resin has excellent impact resistance, mechanical strength such as rigidity, moldability, and cost performance. For this reason, rubber-reinforced styrene resins are widely used in fields such as home appliances, communication-related equipment, transportation containers, general goods, and medical-related equipment.
 このような幅広い用途において、ゴム強化スチレン系樹脂はフィルムやシートとして利用されることがある。この場合、生産性の観点から、シートないしはフィルム成形(以下、これらをまとめて「シート成形」と称す。)では比較的流動性が低い樹脂であることが好ましい。このため、流動性を低減すべく、ゴム強化スチレン系樹脂中のゴム質重合体の比率が高めに設計される。 In such a wide range of applications, rubber-reinforced styrene resins are sometimes used as films and sheets. In this case, from the viewpoint of productivity, it is preferable to use a resin with relatively low fluidity in sheet or film molding (hereinafter collectively referred to as "sheet molding"). Therefore, in order to reduce fluidity, the ratio of the rubbery polymer in the rubber-reinforced styrenic resin is designed to be high.
 一方で、ゴム強化スチレン系樹脂は一般的に不透明であるが、製品によってはポリメチルメタクリレートやポリカーボネート樹脂のような透明性が要求される場合がある。このような要求に対して、例えば特許文献1に記載されているように、樹脂を構成する各構成成分の組成割合を調整することにより、ゴム強化スチレン系樹脂においても透明性を得ることができることが知られている。 On the other hand, rubber-reinforced styrene resins are generally opaque, but depending on the product, transparency like polymethyl methacrylate or polycarbonate resins may be required. In response to such demands, for example, as described in Patent Document 1, it is possible to obtain transparency even in rubber-reinforced styrene resin by adjusting the composition ratio of each constituent component of the resin. It has been known.
 透明なシート材料の用途の一例として、精密部品の搬送機器や運搬容器が挙げられる。このような用途において、精密部品に使用される洗浄剤などが付着することで、樹脂が劣化し、透明性の低下、ヒビやワレの発生を引き起こすおそれがある。このため、このような問題を防止する観点から、耐薬品性も要求される。 Examples of uses for transparent sheet materials include transportation equipment and transportation containers for precision parts. In such applications, there is a risk that the resin will deteriorate due to the adhesion of cleaning agents used for precision parts, resulting in a decrease in transparency and the occurrence of cracks and cracks. Therefore, from the viewpoint of preventing such problems, chemical resistance is also required.
 しかし、従来提供されているゴム強化スチレン系樹脂の透明材料は、例えば特許文献2、特許文献3に記載されているように、組成中の(メタ)アクリル酸エステル比率を高くすることで透明性を向上させている。このため、(メタ)アクリル酸エステル比率を高くする結果、イソプロピルアルコールのような洗浄剤に対する耐薬品性が不十分であった。 However, as described in Patent Document 2 and Patent Document 3, conventionally provided transparent materials made of rubber-reinforced styrene resins can be made transparent by increasing the ratio of (meth)acrylic acid ester in the composition. is improving. For this reason, as a result of increasing the (meth)acrylic acid ester ratio, chemical resistance to cleaning agents such as isopropyl alcohol was insufficient.
 特許文献3には、シート成形性や耐薬品性ではなく、有機溶剤による接着性、耐衝撃性、制電性及び色調の改善を課題として、以下の熱可塑性樹脂組成物が提案されている。
 少なくとも芳香族ビニル系単量体(a1)5~40質量%、(メタ)アクリル酸エステル系単量体(a2)30~80質量%及びシアン化ビニル系単量体(a3)10~50質量%を含有するビニル系単量体混合物(a)を共重合してなるビニル系共重合体(A)、ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(b1)10~30質量%、(メタ)アクリル酸エステル系単量体(b2)30~80質量%及びシアン化ビニル系単量体(b3)1~10質量%を含有するビニル系単量体混合物(mb)をグラフト共重合してなるグラフト共重合体(B)、及び、ポリアミドエラストマー(C)を配合してなる熱可塑性樹脂組成物であって、ビニル系共重合体(A)とグラフト共重合体(B)の合計100質量部に対して、ビニル系共重合体(A)を40~90質量部、グラフト共重合体(B)を10~60質量部、ポリアミドエラストマー(C)を3質量部以上配合してなる熱可塑性樹脂組成物。
 しかし、特許文献3には、シート成形の生産性や耐薬品性の向上という課題は存在しない。また、特許文献3の熱可塑性樹脂組成物は、ビニル系共重合体(A)の分子量が小さく、また樹脂成分中のゴム強化グラフト共重合体(B)の割合も少なく、本発明で課題とするシート成形性を得ることはできない。
Patent Document 3 proposes the following thermoplastic resin composition, aiming not at sheet moldability or chemical resistance but at improving adhesiveness with organic solvents, impact resistance, antistatic property, and color tone.
At least 5 to 40% by mass of aromatic vinyl monomer (a1), 30 to 80% by mass of (meth)acrylic acid ester monomer (a2), and 10 to 50% by mass of vinyl cyanide monomer (a3) %, a vinyl copolymer (A) obtained by copolymerizing a vinyl monomer mixture (a) containing at least an aromatic vinyl monomer (b1) in the presence of a rubbery polymer (r). A vinyl monomer mixture ( A thermoplastic resin composition comprising a graft copolymer (B) obtained by graft copolymerizing mb) and a polyamide elastomer (C), the thermoplastic resin composition comprising a vinyl copolymer (A) and a graft copolymer. For a total of 100 parts by mass of the polymer (B), 40 to 90 parts by mass of the vinyl copolymer (A), 10 to 60 parts by mass of the graft copolymer (B), and 3 parts by mass of the polyamide elastomer (C). A thermoplastic resin composition containing 1 part or more.
However, Patent Document 3 does not have the problem of improving sheet molding productivity and chemical resistance. In addition, in the thermoplastic resin composition of Patent Document 3, the vinyl copolymer (A) has a small molecular weight and the proportion of the rubber-reinforced graft copolymer (B) in the resin component is also small, which is an issue in the present invention. It is not possible to obtain the sheet formability that is desired.
 また、特許文献4には、熱可塑性樹脂組成物のアセトン可溶分中のアクリロニトリル含有量を規定する技術が公開されている。しかし、この技術により、ポリアミドエラストマーの配合で耐薬品性の向上や帯電防止性の付与を図ろうとすると透明性が大きく損なわれる問題がある。 Further, Patent Document 4 discloses a technique for regulating the acrylonitrile content in the acetone soluble content of a thermoplastic resin composition. However, when this technique is used to improve chemical resistance or impart antistatic properties by blending polyamide elastomer, there is a problem in that transparency is significantly impaired.
特開平4-180907号公報Japanese Unexamined Patent Publication No. 4-180907 特開2003-147152号公報Japanese Patent Application Publication No. 2003-147152 特開2017-145365号公報JP 2017-145365 Publication 国際公開第2016/104259号International Publication No. 2016/104259
 本発明は、シート成形の生産性に優れ、耐薬品性、透明性、剛性及び耐熱性に優れた成形品を得ることのできる熱可塑性樹脂組成物を提供することを課題とする。 An object of the present invention is to provide a thermoplastic resin composition that has excellent sheet molding productivity and can yield molded products with excellent chemical resistance, transparency, rigidity, and heat resistance.
 本発明者は、特定のビニル系共重合体と、ゴム強化グラフト共重合体と、ポリアミドエラストマーとを所定の割合で含む熱可塑性樹脂組成物が、上記課題を解決し得ることを知見した。
 即ち、本発明は以下を要旨とする。
The present inventors have discovered that a thermoplastic resin composition containing a specific vinyl copolymer, a rubber-reinforced graft copolymer, and a polyamide elastomer in a predetermined ratio can solve the above problems.
That is, the gist of the present invention is as follows.
[1] 芳香族ビニル系単量体(a1)及び(メタ)アクリル酸エステル系単量体(a2)を含有するビニル系単量体混合物(ma)を共重合してなるビニル系共重合体(A)と、
 ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)及びシアン化ビニル系単量体(b3)を含有するビニル系単量体混合物(mb)をグラフト共重合してなるゴム強化グラフト共重合体(B)と、
 ポリアミドエラストマー(C)と
を含む熱可塑性樹脂組成物であって、
 ビニル系共重合体(A)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含有するビニル系単量体混合物(ma1)を共重合してなり、重量平均分子量が50,000~300,000であるビニル系共重合体(A1)を含み、
 ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、
 ビニル系共重合体(A)とゴム強化グラフト共重合体(B)とを合計で60~92質量部、
 ポリアミドエラストマー(C)を8~40質量部
含有する熱可塑性樹脂組成物。
[1] A vinyl copolymer obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2) (A) and
Contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a cyanide vinyl monomer (b3) in the presence of a rubbery polymer (r). A rubber-reinforced graft copolymer (B) obtained by graft copolymerizing a vinyl monomer mixture (mb);
A thermoplastic resin composition comprising a polyamide elastomer (C),
The vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). A vinyl copolymer (A1) formed by copolymerizing a monomer mixture (ma1) and having a weight average molecular weight of 50,000 to 300,000,
For a total of 100 parts by mass of the vinyl copolymer (A), rubber reinforced graft copolymer (B) and polyamide elastomer (C),
A total of 60 to 92 parts by mass of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B),
A thermoplastic resin composition containing 8 to 40 parts by mass of polyamide elastomer (C).
[2] ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、
 ビニル系共重合体(A)を20~65質量部、ゴム強化グラフト共重合体(B)を5~72質量部、ポリアミドエラストマー(C)を8~30質量部含有する、[1]に記載の熱可塑性樹脂組成物。
[2] Based on a total of 100 parts by mass of the vinyl copolymer (A), rubber reinforced graft copolymer (B) and polyamide elastomer (C),
Containing 20 to 65 parts by mass of vinyl copolymer (A), 5 to 72 parts by mass of rubber-reinforced graft copolymer (B), and 8 to 30 parts by mass of polyamide elastomer (C), described in [1] thermoplastic resin composition.
[3] 芳香族ビニル系単量体(a1)及び(メタ)アクリル酸エステル系単量体(a2)を含有するビニル系単量体混合物(ma)を共重合してなるビニル系共重合体(A)と、
 ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)及びシアン化ビニル系単量体(b3)を含有するビニル系単量体混合物(mb)をグラフト共重合してなるゴム強化グラフト共重合体(B)と、
 ポリアミドエラストマー(C)と
を含む熱可塑性樹脂組成物であって、
 ビニル系共重合体(A)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含有するビニル系単量体混合物(ma1)を共重合してなり、重量平均分子量が100,000~250,000であるビニル系共重合体(A1)を含み、
 ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、
 ビニル系共重合体(A)を20~40質量部、ゴム強化グラフト共重合体(B)を47~65質量部、
 ポリアミドエラストマー(C)を8~13質量部、
 ビニル系共重合体(A1)を35質量部以下
含有する、[1]又は[2]に記載の熱可塑性樹脂組成物。
[3] A vinyl copolymer obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2) (A) and
Contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a cyanide vinyl monomer (b3) in the presence of a rubbery polymer (r). A rubber-reinforced graft copolymer (B) obtained by graft copolymerizing a vinyl monomer mixture (mb);
A thermoplastic resin composition comprising a polyamide elastomer (C),
The vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). A vinyl copolymer (A1) obtained by copolymerizing a monomer mixture (ma1) and having a weight average molecular weight of 100,000 to 250,000,
For a total of 100 parts by mass of the vinyl copolymer (A), rubber reinforced graft copolymer (B) and polyamide elastomer (C),
20 to 40 parts by mass of vinyl copolymer (A), 47 to 65 parts by mass of rubber reinforced graft copolymer (B),
8 to 13 parts by mass of polyamide elastomer (C),
The thermoplastic resin composition according to [1] or [2], containing 35 parts by mass or less of the vinyl copolymer (A1).
[4] 前記ビニル系共重合体(A)は、さらに、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びマレイミド系単量体(a4)を含有するビニル系単量体混合物(ma2)を共重してなり、重量平均分子量が100,000~250,000であるビニル系共重合体(A2)を含有し、
 ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、ビニル系共重合体(A2)を20質量部以下含有する、[1]~[3]のいずれかに記載の熱可塑性樹脂組成物。
[4] The vinyl copolymer (A) further contains an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a maleimide monomer (a4). Contains a vinyl copolymer (A2) obtained by copolymerizing a vinyl monomer mixture (ma2) containing a vinyl monomer mixture (ma2) and having a weight average molecular weight of 100,000 to 250,000,
[ The thermoplastic resin composition according to any one of [1] to [3].
[5] 前記ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)のアセトン可溶分、及びポリアミドエラストマー(C)の屈折率が1.505~1.520の範囲であり、
 これら各成分の屈折率差が0.03以下である、[1]~[4]のいずれかに記載の熱可塑性樹脂組成物。
[5] The refractive index of the vinyl copolymer (A), the acetone-soluble content of the rubber-reinforced graft copolymer (B), and the polyamide elastomer (C) is in the range of 1.505 to 1.520,
The thermoplastic resin composition according to any one of [1] to [4], wherein the difference in refractive index between these components is 0.03 or less.
[6] 該熱可塑性樹脂組成物のアセトン可溶分100質量%中のシアン化ビニル系単量体成分の含有量が0.5~10質量%である、[1]~[5]のいずれかに記載の熱可塑性樹脂組成物。 [6] Any of [1] to [5], wherein the content of the vinyl cyanide monomer component in 100% by mass of the acetone soluble content of the thermoplastic resin composition is 0.5 to 10% by mass. The thermoplastic resin composition according to claim 1.
[7] [1]ないし[6]のいずれかに記載の熱可塑性樹脂組成物からなる成形品。 [7] A molded article made of the thermoplastic resin composition according to any one of [1] to [6].
[8] シート状成形品である、[7]に記載の成形品。 [8] The molded product according to [7], which is a sheet-like molded product.
 本発明の熱可塑性樹脂組成物によれば、シート成形の生産性に優れ、耐薬品性、透明性、剛性及び耐熱性に優れた成形品、特にシート状成形品を提供することができる。 According to the thermoplastic resin composition of the present invention, it is possible to provide a molded article, especially a sheet-like molded article, which has excellent productivity in sheet molding and has excellent chemical resistance, transparency, rigidity, and heat resistance.
 以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.
 本明細書において、「成形品」とは、熱可塑性樹脂組成物を成形してなるものを意味する。
 本明細書において、「(共)重合」及び「(共)重合体」は、夫々、「単独重合」及び/又は「共重合」、並びに、「単独重合体」及び/又は「共重合体」を意味する。「(メタ)アクリル」及び「(メタ)アクリレート」は、夫々、「アクリル」及び/又は「メタクリル」、並びに、「アクリレート」及び/又は「メタクリレート」を意味する。
 以下において、「シート成形の生産性」を単に「シート成形性」と称す場合がある。
As used herein, the term "molded article" refers to an article formed by molding a thermoplastic resin composition.
In this specification, "(co)polymerization" and "(co)polymer" refer to "homopolymerization" and/or "copolymerization" and "homopolymer" and/or "copolymer", respectively. means. "(Meth)acrylic" and "(meth)acrylate" mean "acrylic" and/or "methacrylic" and "acrylate" and/or "methacrylate", respectively.
Hereinafter, "sheet molding productivity" may be simply referred to as "sheet moldability".
[熱可塑性樹脂組成物]
 本発明の熱可塑性樹脂組成物は、
 芳香族ビニル系単量体(a1)及び(メタ)アクリル酸エステル系単量体(a2)を含有するビニル系単量体混合物(ma)を共重合してなるビニル系共重合体(A)と、
 ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)及びシアン化ビニル系単量体(b3)を含有するビニル系単量体混合物(mb)をグラフト共重合してなるゴム強化グラフト共重合体(B)と、
 ポリアミドエラストマー(C)と
を含む熱可塑性樹脂組成物であって、
 ビニル系共重合体(A)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含有するビニル系単量体混合物(ma1)を共重合してなり、重量平均分子量が50,000~300,000であるビニル系共重合体(A1)を含み、
 ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、
 ビニル系共重合体(A)とゴム強化グラフト共重合体(B)とを合計で60~92質量部、
 ポリアミドエラストマー(C)を8~40質量部
含有することを特徴とする。
 以下において、ゴム強化グラフト共重合体(B)を単に「グラフト共重合体(B)」と称す場合がある。
[Thermoplastic resin composition]
The thermoplastic resin composition of the present invention includes:
Vinyl copolymer (A) obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2) and,
Contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a cyanide vinyl monomer (b3) in the presence of a rubbery polymer (r). A rubber-reinforced graft copolymer (B) obtained by graft copolymerizing a vinyl monomer mixture (mb);
A thermoplastic resin composition comprising a polyamide elastomer (C),
The vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). A vinyl copolymer (A1) obtained by copolymerizing a monomer mixture (ma1) and having a weight average molecular weight of 50,000 to 300,000,
For a total of 100 parts by mass of the vinyl copolymer (A), rubber reinforced graft copolymer (B) and polyamide elastomer (C),
A total of 60 to 92 parts by mass of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B),
It is characterized by containing 8 to 40 parts by mass of polyamide elastomer (C).
Hereinafter, the rubber-reinforced graft copolymer (B) may be simply referred to as "graft copolymer (B)".
 本発明の熱可塑性樹脂組成物は、上記ビニル系共重合体(A1)を含有するビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)を所定の割合で含有し、かつビニル系共重合体(A1)の重量平均分子量が50,000~300,000であることにより、得られる成形品の透明性、剛性及び耐熱性を向上させることができる。また、ゴム強化グラフト共重合体(B)を含有することにより、成形品の耐薬品性とシート成形に適した流動性を向上させることができる。更に、ポリアミドエラストマー(C)を含有することにより、成形品の耐薬品性を向上させることができる。 The thermoplastic resin composition of the present invention comprises a vinyl copolymer (A) containing the vinyl copolymer (A1), a rubber-reinforced graft copolymer (B), and a polyamide elastomer (C) in a predetermined ratio. and the vinyl copolymer (A1) has a weight average molecular weight of 50,000 to 300,000, thereby improving the transparency, rigidity, and heat resistance of the resulting molded product. Moreover, by containing the rubber-reinforced graft copolymer (B), the chemical resistance of the molded article and the fluidity suitable for sheet molding can be improved. Furthermore, by containing the polyamide elastomer (C), the chemical resistance of the molded article can be improved.
<ビニル系共重合体(A)>
 ビニル系共重合体(A)は、芳香族ビニル系単量体(a1)及び(メタ)アクリル酸エステル系単量体(a2)を含有するビニル系単量体混合物(ma)を共重合してなるものである。ビニル系共重合体(A)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含有するビニル系単量体混合物(ma1)を共重合してなり、重量平均分子量が50,000~300,000であるビニル系共重合体(A1)を含む。
<Vinyl copolymer (A)>
The vinyl copolymer (A) is obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2). That's what happens. The vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). It contains a vinyl copolymer (A1) formed by copolymerizing a monomer mixture (ma1) and having a weight average molecular weight of 50,000 to 300,000.
 ビニル系共重合体(A)は、好ましくは、ビニル系共重合体(A1)と、
 芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びマレイミド系単量体(a4)を含有するビニル系単量体混合物(ma2)を共重合してなり、重量平均分子量が100,000~250,000であるビニル系共重合体(A2)とを、後述の好適含有量となるように含有するものである。
The vinyl copolymer (A) preferably includes a vinyl copolymer (A1),
Copolymerizing a vinyl monomer mixture (ma2) containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a maleimide monomer (a4) It contains a vinyl copolymer (A2) having a weight average molecular weight of 100,000 to 250,000 in a suitable content as described below.
 即ち、ビニル系共重合体(A)はビニル系共重合体(A1)のみからなり、ビニル系共重合体(A2)を含まないものであってもよく、ビニル系共重合体(A1)とビニル系共重合体(A2)とを含むものであってもよい。
 本発明において、ビニル系共重合体(A1)は1種のみを用いてもよく、単量体組成や物性等の異なるものの2種以上を混合して用いてもよい。ビニル系共重合体(A2)についても、1種のみを用いてもよく、単量体組成や物性等の異なるものの2種以上を混合して用いてもよい。
That is, the vinyl copolymer (A) may consist only of the vinyl copolymer (A1) and may not contain the vinyl copolymer (A2), or may be composed of the vinyl copolymer (A1) and the vinyl copolymer (A1). It may also contain a vinyl copolymer (A2).
In the present invention, only one type of vinyl copolymer (A1) may be used, or two or more types having different monomer compositions, physical properties, etc. may be used as a mixture. Regarding the vinyl copolymer (A2), only one type may be used, or two or more types having different monomer compositions, physical properties, etc. may be used in combination.
(ビニル系共重合体(A1))
 ビニル系共重合体(A1)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含有するビニル系単量体混合物(ma1)を共重合したものである。ビニル系共重合体(A1)は、芳香族ビニル系単量体(a1)5~40質量%、(メタ)アクリル酸エステル系単量体(a2)30~85質量%及びシアン化ビニル系単量体(a3)2~30質量%を含有するビニル系単量体混合物(ma1)を常法に従って共重合して得られるものであることが好ましい。該ビニル系単量体混合物(ma1)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)と共重合可能な他のビニル系共重合体をさらに含有していてもよい。
(Vinyl copolymer (A1))
The vinyl copolymer (A1) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). It is obtained by copolymerizing a monomer mixture (ma1). The vinyl copolymer (A1) contains 5 to 40% by mass of an aromatic vinyl monomer (a1), 30 to 85% by mass of a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer. Preferably, it is obtained by copolymerizing a vinyl monomer mixture (ma1) containing 2 to 30% by mass of monomer (a3) according to a conventional method. The vinyl monomer mixture (ma1) is copolymerized with an aromatic vinyl monomer (a1), a (meth)acrylate monomer (a2), and a vinyl cyanide monomer (a3). It may further contain other possible vinyl copolymers.
 芳香族ビニル系単量体(a1)としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、ビニルトルエン、t-ブチルスチレンなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、熱可塑性樹脂組成物の成形性及び得られる成形品の剛性を向上させる観点から、スチレンが好ましい。 Examples of the aromatic vinyl monomer (a1) include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, vinyltoluene, t-butylstyrene, and the like. These may be used alone or in combination of two or more. Among these, styrene is preferred from the viewpoint of improving the moldability of the thermoplastic resin composition and the rigidity of the resulting molded product.
 ビニル系単量体混合物(ma1)中の芳香族ビニル系単量体(a1)の含有率は、ビニル系単量体混合物(ma1)の合計100質量%中、好ましくは5質量%以上であり、より好ましくは10質量%以上、さらに好ましくは19質量%以上である。芳香族ビニル系単量体(a1)の含有率が上記下限以上であれば、熱可塑性樹脂組成物(A1)の成形性及び得られる成形品の剛性をより向上させることができる。ビニル系単量体混合物(ma1)中の芳香族ビニル系単量体(a1)の含有率は、ビニル系単量体混合物(ma1)の合計100質量%中、好ましくは40質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは27質量%以下である。芳香族ビニル系単量体(a1)の含有率が上記上限以下であれば、得られる成形品の耐衝撃性及び透明性をより向上させることができる。 The content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma1) is preferably 5% by mass or more based on the total 100% by mass of the vinyl monomer mixture (ma1). , more preferably 10% by mass or more, still more preferably 19% by mass or more. If the content of the aromatic vinyl monomer (a1) is at least the above-mentioned lower limit, the moldability of the thermoplastic resin composition (A1) and the rigidity of the resulting molded product can be further improved. The content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma1) is preferably 40% by mass or less based on the total 100% by mass of the vinyl monomer mixture (ma1). , more preferably 30% by mass or less, still more preferably 27% by mass or less. If the content of the aromatic vinyl monomer (a1) is below the above upper limit, the impact resistance and transparency of the resulting molded product can be further improved.
 (メタ)アクリル酸エステル系単量体(a2)としては、特に制限はないが、炭素数1~6のアルコールとアクリル酸又はメタクリル酸とのエステルが好ましい。炭素数1~6のアルコールとアクリル酸又はメタクリル酸とのエステルは、さらに水酸基やハロゲン基などの置換基を有してもよい。炭素数1~6のアルコールとアクリル酸又はメタクリル酸とのエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチルなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、得られる成形品の透明性を向上させる観点から、(メタ)アクリル酸メチルが好ましい。 The (meth)acrylic acid ester monomer (a2) is not particularly limited, but esters of alcohols having 1 to 6 carbon atoms and acrylic acid or methacrylic acid are preferred. The ester of an alcohol having 1 to 6 carbon atoms and acrylic acid or methacrylic acid may further have a substituent such as a hydroxyl group or a halogen group. Examples of esters of alcohols having 1 to 6 carbon atoms and acrylic acid or methacrylic acid include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and n-(meth)acrylate. -Butyl, t-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, chloromethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, (meth)acrylate Examples include 2,3,4,5,6-pentahydroxyhexyl acid and 2,3,4,5-tetrahydroxypentyl (meth)acrylate. These may be used alone or in combination of two or more. Among these, methyl (meth)acrylate is preferred from the viewpoint of improving the transparency of the molded product obtained.
 ビニル系単量体混合物(ma1)中の(メタ)アクリル酸エステル系単量体(a2)の含有率は、ビニル系単量体混合物(ma1)の合計100質量%中、好ましくは30質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは65質量%以上である。(メタ)アクリル酸エステル系単量体(a2)の含有率が上記下限以上であれば、得られる成形品の透明性をより向上させることができる。ビニル系単量体混合物(ma1)中の(メタ)アクリル酸エステル系単量体(a2)の含有率は、ビニル系単量体混合物(ma1)の合計100質量%中、好ましくは85質量%以下であり、より好ましくは80質量%以下であり、さらに好ましくは75質量%以下である。(メタ)アクリル酸エステル系単量体(a2)の含有率が上記上限以下であれば、得られる成形品の耐薬品性及び透明性をより向上させることができる。 The content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma1) is preferably 30% by mass out of the total 100% by mass of the vinyl monomer mixture (ma1). or more, more preferably 50% by mass or more, still more preferably 65% by mass or more. When the content of the (meth)acrylic acid ester monomer (a2) is at least the above lower limit, the transparency of the resulting molded product can be further improved. The content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma1) is preferably 85% by mass out of the total 100% by mass of the vinyl monomer mixture (ma1). or less, more preferably 80% by mass or less, still more preferably 75% by mass or less. If the content of the (meth)acrylic acid ester monomer (a2) is below the above upper limit, the chemical resistance and transparency of the resulting molded product can be further improved.
 シアン化ビニル系単量体(a3)としては、例えば、アクリロニトリル、メタクリロニトリル、エタクリロニトリルなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、得られる成形品の耐薬品性をより向上させる観点から、アクリロニトリルが好ましい。 Examples of the vinyl cyanide monomer (a3) include acrylonitrile, methacrylonitrile, ethacrylonitrile, and the like. These may be used alone or in combination of two or more. Among these, acrylonitrile is preferred from the viewpoint of further improving the chemical resistance of the molded product obtained.
 ビニル系単量体混合物(ma1)中のシアン化ビニル系単量体(a3)の含有率は、ビニル系単量体混合物(ma1)の合計100質量%中、2~30質量%であることが好ましい。シアン化ビニル系単量体(a3)の含有率が2質量%未満であると、耐薬品性が低下する傾向がある。このため、シアン化ビニル系単量体(a3)の含有量は好ましくは2質量%以上であり、より好ましくは5質量%以上、さらに好ましくは6質量%以上である。一方、シアン化ビニル系単量体(a3)の含有量が30質量%を超えると、得られる成形品の黄色度(YI)が増大し、色調が低下する傾向がある。このため、ビニル系単量体混合物(ma1)中のシアン化ビニル系単量体(a3)の含有率は好ましくは30質量%以下であり、より好ましくは20質量%以下、さらに好ましくは10質量%以下であり、特に9質量%以下であり、最も好ましくは8質量%以下である。 The content of the vinyl cyanide monomer (a3) in the vinyl monomer mixture (ma1) shall be 2 to 30% by mass based on the total 100% by mass of the vinyl monomer mixture (ma1). is preferred. If the content of the vinyl cyanide monomer (a3) is less than 2% by mass, chemical resistance tends to decrease. Therefore, the content of the vinyl cyanide monomer (a3) is preferably 2% by mass or more, more preferably 5% by mass or more, and still more preferably 6% by mass or more. On the other hand, if the content of the vinyl cyanide monomer (a3) exceeds 30% by mass, the yellowness (YI) of the obtained molded article tends to increase and the color tone tends to decrease. Therefore, the content of the vinyl cyanide monomer (a3) in the vinyl monomer mixture (ma1) is preferably 30% by mass or less, more preferably 20% by mass or less, even more preferably 10% by mass. % or less, particularly 9% by weight or less, most preferably 8% by weight or less.
 これらと共重合可能な他のビニル系共重合体は、前述の芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)、シアン化ビニル系単量体(a3)以外のビニル系単量体であって、本発明の効果を損なわないものであれば特に制限はない。具体的には、不飽和脂肪酸、アクリルアミド系単量体、マレイミド系単量体などが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Other vinyl copolymers that can be copolymerized with these include the above-mentioned aromatic vinyl monomer (a1), (meth)acrylic acid ester monomer (a2), vinyl cyanide monomer ( There are no particular limitations on vinyl monomers other than a3) as long as they do not impair the effects of the present invention. Specific examples include unsaturated fatty acids, acrylamide monomers, maleimide monomers, and the like. These may be used alone or in combination of two or more.
 不飽和脂肪酸としては、例えば、イタコン酸、マレイン酸、フマル酸、ブテン酸、アクリル酸、メタクリル酸等が挙げられる。
 アクリルアミド系単量体としては、例えば、アクリルアミド、メタクリルアミド、N-メチルアクリルアミド等が挙げられる。
 マレイミド系単量体としては、例えば、N-メチルマレイミド、N-エチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ヘキシルマレイミド、N-オクチルマレイミド、N-ドデシルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等が挙げられる。
Examples of unsaturated fatty acids include itaconic acid, maleic acid, fumaric acid, butenoic acid, acrylic acid, and methacrylic acid.
Examples of the acrylamide monomer include acrylamide, methacrylamide, and N-methylacrylamide.
Examples of maleimide monomers include N-methylmaleimide, N-ethylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-hexylmaleimide, N-octylmaleimide, N-dodecylmaleimide, N-cyclohexylmaleimide, Examples include N-phenylmaleimide.
 ビニル系単量体混合物(ma1)が、これらの他のビニル系共重合体を含有する場合、ビニル系単量体混合物(ma1)100質量%中の他のビニル系共重合体の含有率は10質量%以下であることが好ましく、0~5質量%であることがより好ましい。他のビニル系共重合体の含有率が上記上限以下であれば、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を所定の割合で用いることによる効果を有効に得ることができる。 When the vinyl monomer mixture (ma1) contains these other vinyl copolymers, the content of the other vinyl copolymers in 100% by mass of the vinyl monomer mixture (ma1) is It is preferably 10% by mass or less, more preferably 0 to 5% by mass. If the content of other vinyl copolymers is below the above upper limit, aromatic vinyl monomer (a1), (meth)acrylic acid ester monomer (a2) and vinyl cyanide monomer The effect of using (a3) at a predetermined ratio can be effectively obtained.
(ビニル系共重合体(A2))
 ビニル系共重合体(A2)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びマレイミド系単量体(a4)を含有するビニル系単量体混合物(ma2)を共重合したものである。ビニル系共重合体(A2)は、芳香族ビニル系単量体(a1)2~30質量%、(メタ)アクリル酸エステル系単量体(a2)30~80質量%及びマレイミド系単量体(a4)10~50質量%を含有するビニル系単量体混合物(ma2)を常法に従って共重合して得られるものであることが好ましい。該ビニル系単量体混合物(ma2)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びマレイミド系単量体(a4)と共重合可能な他の単量体をさらに含有していてもよい。
(Vinyl copolymer (A2))
The vinyl copolymer (A2) is a vinyl monomer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a maleimide monomer (a4). It is obtained by copolymerizing a mixture of substances (ma2). The vinyl copolymer (A2) contains 2 to 30% by mass of aromatic vinyl monomer (a1), 30 to 80% by mass of (meth)acrylic acid ester monomer (a2), and maleimide monomer. (a4) Preferably, it is obtained by copolymerizing a vinyl monomer mixture (ma2) containing 10 to 50% by mass according to a conventional method. The vinyl monomer mixture (ma2) is copolymerizable with the aromatic vinyl monomer (a1), the (meth)acrylic acid ester monomer (a2), and the maleimide monomer (a4). It may further contain other monomers.
 芳香族ビニル系単量体(a1)としては、ビニル系共重合体(A1)に用いる芳香族ビニル系単量体(a1)として例示したものが挙げられる。芳香族ビニル系単量体(a1)としては、スチレンが好ましい。 Examples of the aromatic vinyl monomer (a1) include those exemplified as the aromatic vinyl monomer (a1) used in the vinyl copolymer (A1). Styrene is preferred as the aromatic vinyl monomer (a1).
 ビニル系単量体混合物(ma2)中の芳香族ビニル系単量体(a1)の含有率は、ビニル系単量体混合物(ma2)の合計100質量%中、好ましくは2質量%以上であり、より好ましくは5質量%以上である。芳香族ビニル系単量体(a1)の含有率が上記下限以上であれば、熱可塑性樹脂組成物の成形性及び得られる成形品の剛性をより向上させることができる。ビニル系単量体混合物(ma2)中の芳香族ビニル系単量体(a1)の含有率は、ビニル系単量体混合物(ma2)の合計100質量%中、好ましくは30質量%以下であり、より好ましくは20質量%以下、更に好ましくは15質量%以下である。芳香族ビニル系単量体(a1)の含有率が上記上限以下であれば、得られる成形品の耐衝撃性及び透明性をより向上させることができる。 The content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma2) is preferably 2% by mass or more based on the total 100% by mass of the vinyl monomer mixture (ma2). , more preferably 5% by mass or more. When the content of the aromatic vinyl monomer (a1) is at least the above lower limit, the moldability of the thermoplastic resin composition and the rigidity of the resulting molded product can be further improved. The content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (ma2) is preferably 30% by mass or less based on the total 100% by mass of the vinyl monomer mixture (ma2). , more preferably 20% by mass or less, still more preferably 15% by mass or less. If the content of the aromatic vinyl monomer (a1) is below the above upper limit, the impact resistance and transparency of the resulting molded product can be further improved.
 (メタ)アクリル酸エステル系単量体(a2)としては、ビニル系共重合体(A1)に用いる(メタ)アクリル酸エステル系単量体(a2)として例示したものが挙げられる。(メタ)アクリル酸エステル系単量体(a2)としては、(メタ)アクリル酸メチルが好ましい。 Examples of the (meth)acrylic ester monomer (a2) include those exemplified as the (meth)acrylic ester monomer (a2) used in the vinyl copolymer (A1). As the (meth)acrylic acid ester monomer (a2), methyl (meth)acrylate is preferable.
 ビニル系単量体混合物(ma2)中の(メタ)アクリル酸エステル系単量体(a2)の含有率は、ビニル系単量体混合物(ma2)の合計100質量%中、好ましくは30質量%以上であり、より好ましくは50質量%以上、更に好ましくは55質量%以上である。(メタ)アクリル酸エステル系単量体(a2)の含有率が上記下限以上であれば、得られる成形品の透明性をより向上させることができる。ビニル系単量体混合物(ma2)中の(メタ)アクリル酸エステル系単量体(a2)の含有率は、ビニル系単量体混合物(ma2)の合計100質量%中、好ましくは80質量%以下であり、より好ましくは75質量%以下、更に好ましくは70質量%以下である。(メタ)アクリル酸エステル系単量体(a2)の含有率が上記上限以下であれば、得られる成形品の耐薬品性をより向上させることができる。 The content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma2) is preferably 30% by mass out of the total 100% by mass of the vinyl monomer mixture (ma2). The content is preferably at least 50% by mass, and even more preferably at least 55% by mass. When the content of the (meth)acrylic acid ester monomer (a2) is at least the above lower limit, the transparency of the resulting molded product can be further improved. The content of the (meth)acrylic acid ester monomer (a2) in the vinyl monomer mixture (ma2) is preferably 80% by mass out of the total 100% by mass of the vinyl monomer mixture (ma2). The content is not more than 75% by mass, more preferably not more than 70% by mass. If the content of the (meth)acrylic acid ester monomer (a2) is below the above upper limit, the chemical resistance of the resulting molded product can be further improved.
 マレイミド系単量体(a4)としては、ビニル系共重合体(A1)に必要に応じて用いられるその他のビニル系共重合体のマレイミド系単量体として例示したものが挙げられる。マレイミド系単量体(a4)としては、N-フェニルマレイミドが好ましい。 Examples of the maleimide monomer (a4) include those exemplified as maleimide monomers for other vinyl copolymers that may be used as needed in the vinyl copolymer (A1). As the maleimide monomer (a4), N-phenylmaleimide is preferred.
 ビニル系単量体混合物(ma2)中のマレイミド系単量体(a4)の含有率は、ビニル系単量体混合物(ma2))の合計100質量%中、10~50質量%であることが好ましい。マレイミド系単量体(a4)の含有率が10質量%未満であると、耐熱性が低下する傾向がある。このため、マレイミド系単量体(a4)の含有率は好ましくは10質量%以上で、より好ましくは15質量部以上である。マレイミド系単量体(a4)の含有率が50質量%を超えると、熱可塑性樹脂組成物の流動性が低下する傾向がある。このため、マレイミド系単量体(a4)の含有率は好ましくは50質量%以下であり、より好ましくは35質量%以下、更に好ましくは30質量%以下である。 The content of the maleimide monomer (a4) in the vinyl monomer mixture (ma2) is preferably 10 to 50% by mass based on the total 100% by mass of the vinyl monomer mixture (ma2). preferable. When the content of the maleimide monomer (a4) is less than 10% by mass, heat resistance tends to decrease. Therefore, the content of the maleimide monomer (a4) is preferably 10% by mass or more, more preferably 15 parts by mass or more. When the content of the maleimide monomer (a4) exceeds 50% by mass, the fluidity of the thermoplastic resin composition tends to decrease. Therefore, the content of the maleimide monomer (a4) is preferably 50% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less.
 これらと共重合可能な他のビニル系共重合体は、前述の芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)、マレイミド系単量体(a4)以外のビニル系単量体であって、本発明の効果を損なわないものであれば特に制限はない。具体的には、シアン化ビニル系単量体、不飽和脂肪酸、アクリルアミド系単量体などが挙げられる。 Other vinyl copolymers that can be copolymerized with these include the above-mentioned aromatic vinyl monomer (a1), (meth)acrylic acid ester monomer (a2), and maleimide monomer (a4). There is no particular restriction on vinyl monomers other than those mentioned above, as long as they do not impair the effects of the present invention. Specific examples include vinyl cyanide monomers, unsaturated fatty acids, and acrylamide monomers.
 シアン化ビニル系単量体としては、ビニル系共重合体(A1)に用いられるシアン化ビニル系単量体(a3)として例示したものが挙げられる。 Examples of the vinyl cyanide monomer include those exemplified as the vinyl cyanide monomer (a3) used in the vinyl copolymer (A1).
 不飽和脂肪酸及びアクリルアミド系単量体としては、ビニル系共重合体(A1)に用いられるその他のビニル系共重合体として例示したものが挙げられる。 Examples of the unsaturated fatty acid and acrylamide monomer include those exemplified as other vinyl copolymers used in the vinyl copolymer (A1).
 ビニル系単量体混合物(ma2)が、これらの他のビニル系共重合体を含有する場合、ビニル系単量体混合物(ma2)100質量%中の他のビニル系共重合体の含有率は10質量%以下であることが好ましく、0~5質量%であることがより好ましい。他のビニル系共重合体の含有率が上記上限以下であれば、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びマレイミド系単量体(a4)を所定の割合で用いることによる効果を有効に得ることができる。 When the vinyl monomer mixture (ma2) contains these other vinyl copolymers, the content of the other vinyl copolymers in 100% by mass of the vinyl monomer mixture (ma2) is It is preferably 10% by mass or less, more preferably 0 to 5% by mass. If the content of other vinyl copolymers is below the above upper limit, aromatic vinyl monomer (a1), (meth)acrylic acid ester monomer (a2) and maleimide monomer (a4) ) in a predetermined ratio can be effectively obtained.
(ビニル系共重合体(A)の物性)
 本発明において、ビニル系共重合体(A1)の重量平均分子量(Mw)は50,000~300,000であり、好ましくは100,000~250,000である。ビニル系共重合体(A2)の重量平均分子量(Mw)は、好ましくは100,000~250,000である。ビニル系共重合体(A1)及びビニル系共重合体(A2)のそれぞれの重量平均分子量が上記下限以上であれば、得られる熱可塑性樹脂組成物が低流動性となり、シート成形性に優れる。ビニル系共重合体(A1)及びビニル系共重合体(A2)のそれぞれの重量平均分子量が上記上限を超えると、低流動になりすぎてシート成形性が劣る傾向がある。
 重量平均分子量(Mw)が50,000~300,000のビニル系共重合体(A1)及び重量平均分子量(Mw)が100,000~250,000のビニル系共重合体(A2)は、例えば、後述する開始剤や連鎖移動剤を用いること、重合温度を後述の好ましい範囲にすることなどにより、容易に製造することができる。
(Physical properties of vinyl copolymer (A))
In the present invention, the weight average molecular weight (Mw) of the vinyl copolymer (A1) is 50,000 to 300,000, preferably 100,000 to 250,000. The weight average molecular weight (Mw) of the vinyl copolymer (A2) is preferably 100,000 to 250,000. If the weight average molecular weight of each of the vinyl copolymer (A1) and the vinyl copolymer (A2) is at least the above lower limit, the resulting thermoplastic resin composition will have low fluidity and will have excellent sheet formability. When the weight average molecular weight of each of the vinyl copolymer (A1) and the vinyl copolymer (A2) exceeds the above upper limit, fluidity tends to be too low and sheet formability tends to be poor.
The vinyl copolymer (A1) having a weight average molecular weight (Mw) of 50,000 to 300,000 and the vinyl copolymer (A2) having a weight average molecular weight (Mw) of 100,000 to 250,000 are, for example, can be easily produced by using an initiator and a chain transfer agent, which will be described later, and by adjusting the polymerization temperature to a preferable range, which will be described later.
 ビニル系共重合体(A)の屈折率は1.505~1.520であることが好ましく、1.509~1.519であることがより好ましく、1.510~1.517であることが更に好ましい。ビニル系共重合体(A)の屈折率が上記範囲内であれば、後述のゴム強化グラフト共重合体(B)との屈折率差を小さくでき、得られる成形品の透明性を優れたものとすることができる。 The refractive index of the vinyl copolymer (A) is preferably 1.505 to 1.520, more preferably 1.509 to 1.519, and preferably 1.510 to 1.517. More preferred. If the refractive index of the vinyl copolymer (A) is within the above range, the difference in refractive index with the rubber-reinforced graft copolymer (B) described below can be reduced, and the resulting molded product will have excellent transparency. It can be done.
 ビニル系共重合体(A)の屈折率と後述のゴム強化グラフト共重合体(B)のアセトン可溶分の屈折率及びポリアミドエラストマー(C)の屈折率との差は0.03以下、特に0.01以下であることが、得られる成形品の透明性の観点から好ましい。 The difference between the refractive index of the vinyl copolymer (A) and the refractive index of the acetone-soluble portion of the rubber-reinforced graft copolymer (B) and the refractive index of the polyamide elastomer (C), which will be described later, is 0.03 or less, especially It is preferable that it is 0.01 or less from the viewpoint of transparency of the molded product obtained.
 ビニル系共重合体(A)の屈折率は、主に原料となるビニル系単量体の組成に依存するため、ビニル系単量体の種類や組成比を適宜選択することにより、屈折率を所望の範囲にすることができる。 The refractive index of the vinyl copolymer (A) mainly depends on the composition of the raw material vinyl monomer, so the refractive index can be adjusted by appropriately selecting the type and composition ratio of the vinyl monomer. It can be within any desired range.
 ビニル系共重合体(A)の重量平均分子量(Mw)及び屈折率は、後掲の実施例の項に記載の方法で測定される。 The weight average molecular weight (Mw) and refractive index of the vinyl copolymer (A) are measured by the method described in the Examples section below.
(ビニル系共重合体(A)の製造方法)
 ビニル系共重合体(A)の製造方法は特に限定されず、前述のビニル系単量体混合物(ma)(ビニル系単量体混合物(ma1)又はビニル系単量体混合物(ma2))を原料として、公知の重合法により製造することができる。得られる熱可塑性樹脂組成物の成形性、透明性及び色調安定性を向上させる観点から、連続塊状重合法又は連続溶液重合法が好ましく用いられる。
(Method for producing vinyl copolymer (A))
The method for producing the vinyl copolymer (A) is not particularly limited, and the aforementioned vinyl monomer mixture (ma) (vinyl monomer mixture (ma1) or vinyl monomer mixture (ma2)) is used. As a raw material, it can be produced by a known polymerization method. From the viewpoint of improving the moldability, transparency, and color stability of the resulting thermoplastic resin composition, continuous bulk polymerization or continuous solution polymerization is preferably used.
 連続塊状重合法又は連続溶液重合法によりビニル系共重合体(A)を製造する方法としては、任意の方法が採用可能である。例えば、ビニル系単量体混合物(ma)を重合槽で重合した後、脱モノマー(脱溶媒・脱揮)する方法を挙げることができる。 Any method can be used to produce the vinyl copolymer (A) by continuous bulk polymerization or continuous solution polymerization. For example, a method can be mentioned in which the vinyl monomer mixture (ma) is polymerized in a polymerization tank and then the monomer is removed (solvent removal/devolatilization).
<ゴム強化グラフト共重合体(B)>
 グラフト共重合体(B)は、ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)及びシアン化ビニル系単量体(b3)を含有するビニル系単量体混合物(mb)をグラフト共重合してなるものである。
 グラフト共重合体(B)は、ゴム質重合体(r)の存在下に、芳香族ビニル系単量体(b1)5~40質量%、(メタ)アクリル酸エステル系単量体(b2)30~85質量%及びシアン化ビニル系単量体(b3)2~30質量%を含有するビニル系単量体混合物(mb)をグラフト共重合して得られるものであることが好ましい。該ビニル系単量体混合物(mb)は、芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)及びシアン化ビニル系単量体(b3)と共重合可能な他のビニル系共重合体をさらに含有していてもよい。
<Rubber reinforced graft copolymer (B)>
The graft copolymer (B) contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a vinyl cyanide monomer in the presence of a rubbery polymer (r). It is obtained by graft copolymerizing a vinyl monomer mixture (mb) containing monomer (b3).
The graft copolymer (B) contains 5 to 40% by mass of an aromatic vinyl monomer (b1) and a (meth)acrylic acid ester monomer (b2) in the presence of a rubbery polymer (r). It is preferably obtained by graft copolymerizing a vinyl monomer mixture (mb) containing 30 to 85% by mass and 2 to 30% by mass of vinyl cyanide monomer (b3). The vinyl monomer mixture (mb) is copolymerized with an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a vinyl cyanide monomer (b3). It may further contain other possible vinyl copolymers.
 ゴム質重合体(r)としては、ポリブタジエン、ポリイソプレン、ブチルゴム、スチレン-ブタジエン共重合体(スチレン含量5~60質量%が好ましい。)、スチレン-イソプレン共重合体、アクリロニトリル-ブタジエン共重合体、エチレン-α-オレフィン共重合体、エチレン-α-オレフィン-ポリエン共重合体、シリコンゴム、アクリルゴム、ブタジエン-(メタ)アクリル酸エステル共重合体、ポリイソプレン、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体、水素化スチレン-ブタジエンブロック共重合体、水素化ブタジエン系重合体、エチレン系アイオノマー等が挙げられる。上記スチレン-ブタジエンブロック共重合体及びスチレン-イソプレンブロック共重合体には、AB型、ABA型、テーパー型、又はラジアルテレブロック型の構造を有するもの等が含まれる。水素化ブタジエン系重合体は、前記ブロック共重合体の水添物の他に、ポリスチレンブロックとスチレン-ブタジエンランダム共重合体のブロックとの水添物;ポリブタジエン中の1,2-ビニル結合含有量が20質量%以下のブロックと1,2-ビニル結合含量が20質量%を越えるポリブタジエンブロックとからなる重合体の水素化物;が含まれる。 Examples of the rubbery polymer (r) include polybutadiene, polyisoprene, butyl rubber, styrene-butadiene copolymer (styrene content is preferably 5 to 60% by mass), styrene-isoprene copolymer, acrylonitrile-butadiene copolymer, Ethylene-α-olefin copolymer, ethylene-α-olefin-polyene copolymer, silicone rubber, acrylic rubber, butadiene-(meth)acrylate copolymer, polyisoprene, styrene-butadiene block copolymer, styrene Examples include -isoprene block copolymers, hydrogenated styrene-butadiene block copolymers, hydrogenated butadiene polymers, and ethylene ionomers. The styrene-butadiene block copolymer and styrene-isoprene block copolymer include those having an AB type, ABA type, tapered type, or radial teleblock type structure. Hydrogenated butadiene-based polymers include hydrogenated products of polystyrene blocks and styrene-butadiene random copolymer blocks in addition to hydrogenated products of the block copolymer; 1,2-vinyl bond content in polybutadiene 20% by mass or less and a polybutadiene block having a 1,2-vinyl bond content of more than 20% by mass.
 これらのうち、ゴム質重合体(r)としては、ポリブタジエン及びエチレン-α-オレフィン共重合体等が多く用いられる。 Among these, polybutadiene, ethylene-α-olefin copolymer, etc. are often used as the rubbery polymer (r).
 これらのゴム質重合体(r)は1種のみ用いてもよく、2種以上を用いてもよい。 Only one type of these rubbery polymers (r) may be used, or two or more types may be used.
 ゴム強化グラフト共重合体(B)を構成するゴム質重合体(r)及び後述するビニル系単量体混合物(mb)の総量100質量部に対して、ゴム質重合体(r)の使用量は、20~80質量部が好ましい。ゴム質重合体(r)の使用量が20質量部以上であれば、得られる成形品の耐衝撃性をより向上させることができる。ゴム質重合体(r)の含有量は35質量部以上がより好ましい。ゴム質重合体(r)の含有量が80質量部以下であれば、熱可塑性樹脂組成物の成形性をより向上させることができる。ゴム質重合体(r)の含有量は60質量部以下がより好ましい。 The amount of rubbery polymer (r) used per 100 parts by mass of the rubbery polymer (r) constituting the rubber reinforced graft copolymer (B) and the vinyl monomer mixture (mb) described below. is preferably 20 to 80 parts by mass. If the amount of the rubbery polymer (r) used is 20 parts by mass or more, the impact resistance of the resulting molded product can be further improved. The content of the rubbery polymer (r) is more preferably 35 parts by mass or more. If the content of the rubbery polymer (r) is 80 parts by mass or less, the moldability of the thermoplastic resin composition can be further improved. The content of the rubbery polymer (r) is more preferably 60 parts by mass or less.
 ゴム質重合体(r)の体積平均粒子径は、特に制限はないが、得られる成形品の耐衝撃性をより向上させる観点から、80nm以上が好ましく、150nm以上がより好ましい。得られる成形品の透明性を向上させる観点から、ゴム質重合体(r)の体積平均粒子径は、500nm以下が好ましく、350nm以下がより好ましく、300nm以下がさらに好ましい。 The volume average particle diameter of the rubbery polymer (r) is not particularly limited, but from the viewpoint of further improving the impact resistance of the molded product obtained, it is preferably 80 nm or more, and more preferably 150 nm or more. From the viewpoint of improving the transparency of the resulting molded product, the volume average particle diameter of the rubbery polymer (r) is preferably 500 nm or less, more preferably 350 nm or less, and even more preferably 300 nm or less.
 ゴム質重合体(r)及び後述のゴム強化グラフト共重合体(B)の体積平均粒子径は、後掲の実施例の項に記載の方法で測定される。 The volume average particle diameters of the rubbery polymer (r) and the rubber-reinforced graft copolymer (B) described below are measured by the method described in the Examples section below.
 芳香族ビニル系単量体(b1)としては、芳香族ビニル系単量体(a1)として例示したものが挙げられる。芳香族ビニル系単量体(b1)としては、スチレンが好ましい。 Examples of the aromatic vinyl monomer (b1) include those exemplified as the aromatic vinyl monomer (a1). Styrene is preferred as the aromatic vinyl monomer (b1).
 ビニル系単量体混合物(mb)中の芳香族ビニル系単量体(b1)の含有率は、ビニル系単量体混合物(mb)の合計100質量%中、好ましくは5質量%以上であり、より好ましくは10質量%以上である。芳香族ビニル系単量体(b1)の含有率が上記下限以上であれば、熱可塑性樹脂組成物の成形性及び得られる成形品の剛性をより向上させることができる。ビニル系単量体混合物(mb)中の芳香族ビニル系単量体(b1)の含有率は、ビニル系単量体混合物(mb)の合計100質量%中、好ましくは40質量%以下であり、より好ましくは30質量%以下である。芳香族ビニル系単量体(b1)の含有率が上記上限以下であれば、得られる成形品の耐衝撃性及び透明性をより向上させることができる。 The content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture (mb) is preferably 5% by mass or more based on the total 100% by mass of the vinyl monomer mixture (mb). , more preferably 10% by mass or more. If the content of the aromatic vinyl monomer (b1) is at least the above lower limit, the moldability of the thermoplastic resin composition and the rigidity of the resulting molded product can be further improved. The content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture (mb) is preferably 40% by mass or less based on the total 100% by mass of the vinyl monomer mixture (mb). , more preferably 30% by mass or less. If the content of the aromatic vinyl monomer (b1) is below the above upper limit, the impact resistance and transparency of the resulting molded product can be further improved.
 (メタ)アクリル酸エステル系単量体(b2)としては、(メタ)アクリル酸エステル系単量体(a2)として例示したものが挙げられる。(メタ)アクリル酸エステル系単量体(b2)としては、(メタ)アクリル酸メチルが好ましい。 Examples of the (meth)acrylic ester monomer (b2) include those exemplified as the (meth)acrylic ester monomer (a2). As the (meth)acrylic acid ester monomer (b2), methyl (meth)acrylate is preferable.
 ビニル系単量体混合物(mb)中の(メタ)アクリル酸エステル系単量体(b2)の含有率は、ビニル系単量体混合物(mb)の合計100質量%中、好ましくは30質量%以上であり、より好ましくは50質量%以上である。(メタ)アクリル酸エステル系単量体(b2)の含有率が上記下限以上であれば、得られる成形品の透明性をより向上させることができる。ビニル系単量体混合物(mb)中の(メタ)アクリル酸エステル系単量体(b2)の含有率は、ビニル系単量体混合物(mb)の合計100質量%中、好ましくは85質量%以下であり、より好ましくは75質量%以下である。(メタ)アクリル酸エステル系単量体(b2)の含有率が上記上限以下であれば、得られる成形品の耐薬品性をより向上させることができる。 The content of the (meth)acrylic acid ester monomer (b2) in the vinyl monomer mixture (mb) is preferably 30% by mass out of the total 100% by mass of the vinyl monomer mixture (mb). or more, and more preferably 50% by mass or more. When the content of the (meth)acrylic acid ester monomer (b2) is at least the above lower limit, the transparency of the resulting molded product can be further improved. The content of the (meth)acrylic acid ester monomer (b2) in the vinyl monomer mixture (mb) is preferably 85% by mass out of the total 100% by mass of the vinyl monomer mixture (mb). It is not more than 75% by mass, and more preferably not more than 75% by mass. If the content of the (meth)acrylic acid ester monomer (b2) is below the above upper limit, the chemical resistance of the resulting molded product can be further improved.
 シアン化ビニル系単量体(b3)としては、シアン化ビニル系単量体(a3)として例示したものが挙げられる。シアン化ビニル系単量体(b3)としては、アクリロニトリルが好ましい。 Examples of the vinyl cyanide monomer (b3) include those exemplified as the vinyl cyanide monomer (a3). As the vinyl cyanide monomer (b3), acrylonitrile is preferred.
 ビニル系単量体混合物(mb)中のシアン化ビニル系単量体(b3)の含有率は、ビニル系単量体混合物(mb)の合計100質量%中、2~30質量%であることが好ましい。シアン化ビニル系単量体(b3)の含有率が2質量%未満であると、得られる成形品の耐薬品性及び耐衝撃性が低下する傾向がある。このため、シアン化ビニル系単量体(b3)の含有率は好ましくは2質量%以上であり、より好ましくは5質量%以上である。シアン化ビニル系単量体(b3)の含有率が30質量%を超えると、得られる成形品の黄色度(YI)が増大し、色調が低下する傾向がある。このため、シアン化ビニル系単量体単位(b3)の含有率は、好ましくは30質量%以下であり、より好ましくは20質量%以下である。 The content of the vinyl cyanide monomer (b3) in the vinyl monomer mixture (mb) shall be 2 to 30% by mass based on the total 100% by mass of the vinyl monomer mixture (mb). is preferred. When the content of the vinyl cyanide monomer (b3) is less than 2% by mass, the chemical resistance and impact resistance of the resulting molded article tend to decrease. Therefore, the content of the vinyl cyanide monomer (b3) is preferably 2% by mass or more, more preferably 5% by mass or more. When the content of the vinyl cyanide monomer (b3) exceeds 30% by mass, the yellowness (YI) of the obtained molded article tends to increase and the color tone tends to decrease. Therefore, the content of the vinyl cyanide monomer unit (b3) is preferably 30% by mass or less, more preferably 20% by mass or less.
 これらと共重合可能な他の単量体は、前述の芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)、及びシアン化ビニル系単量体(b3)以外のビニル系単量体であって、本発明の効果を損なわないものであれば特に制限はない。具体的には、ビニル系単量体混合物(ma1)において他の単量体として例示したものが挙げられる。ビニル系単量体混合物(mb)が、これらの他の単量体を含む場合、その含有率は10質量%以下であることが好ましく、0~5質量%であることがより好ましい。 Other monomers copolymerizable with these include the above-mentioned aromatic vinyl monomer (b1), (meth)acrylic acid ester monomer (b2), and vinyl cyanide monomer (b3). ) There are no particular limitations on the vinyl monomers as long as they do not impair the effects of the present invention. Specifically, those exemplified as other monomers in the vinyl monomer mixture (ma1) may be mentioned. When the vinyl monomer mixture (mb) contains these other monomers, the content thereof is preferably 10% by mass or less, more preferably 0 to 5% by mass.
 ゴム強化グラフト共重合体(B)のアセトン可溶分の重量均分子量(Mw)は、30,000~500,000が好ましく、40,000~250,000がより好ましく、50,000~150,000がさらに好ましい。重量平均分子量が30,000~500,000であるゴム強化グラフト共重合体(B)は、例えば、後述する開始剤や連鎖移動剤を用いること、重合温度を後述の好ましい範囲にすることなどにより、容易に製造することができる。 The weight average molecular weight (Mw) of the acetone soluble portion of the rubber reinforced graft copolymer (B) is preferably 30,000 to 500,000, more preferably 40,000 to 250,000, 50,000 to 150, 000 is more preferred. The rubber-reinforced graft copolymer (B) having a weight average molecular weight of 30,000 to 500,000 can be produced by, for example, using an initiator or a chain transfer agent as described below, or setting the polymerization temperature within the preferred range as described below. , can be easily manufactured.
 ゴム強化グラフト共重合体(B)のグラフト率には特に制限はないが、得られる成形品の耐衝撃性をより向上させる観点から、10~150%が好ましく、40~120%がより好ましい。 There is no particular limit to the grafting ratio of the rubber-reinforced graft copolymer (B), but from the viewpoint of further improving the impact resistance of the resulting molded product, it is preferably 10 to 150%, more preferably 40 to 120%.
 ゴム強化グラフト共重合体(B)の体積平均粒子径は、透明性の観点から80~500nm、特に100~300nmであることが好ましい。 The volume average particle diameter of the rubber-reinforced graft copolymer (B) is preferably 80 to 500 nm, particularly 100 to 300 nm, from the viewpoint of transparency.
 ゴム強化グラフト共重合体(B)のアセトン可溶分の屈折率は1.505~1.520であることが好ましく、1.509~1.519であることがより好ましく、1.510~1.517であることが更に好ましい。ゴム強化グラフト共重合体(B)のアセトン可溶分の屈折率が上記範囲内であれば、透明性に優れたゴム強化グラフト共重合体(B)を得ることができる。 The refractive index of the acetone-soluble portion of the rubber reinforced graft copolymer (B) is preferably 1.505 to 1.520, more preferably 1.509 to 1.519, and 1.510 to 1. More preferably, it is .517. If the refractive index of the acetone-soluble portion of the rubber-reinforced graft copolymer (B) is within the above range, a rubber-reinforced graft copolymer (B) with excellent transparency can be obtained.
 前述の通り、ビニル系共重合体(A)とゴム強化グラフト共重合体(B)のアセトン可溶分と後述のポリアミドエラストマー(C)とはそれぞれの屈折率差が0.03以下、特に0.01以下であることが、得られる成形品の透明性の観点から好ましい。 As mentioned above, the refractive index difference between the acetone-soluble portion of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B) and the polyamide elastomer (C) described below is 0.03 or less, particularly 0. It is preferable that it is .01 or less from the viewpoint of transparency of the molded product obtained.
 グラフト共重合体(B)のグラフト率、及びアセトン可溶分の屈折率は、後掲の実施例の項に記載の方法で測定される。 The graft ratio of the graft copolymer (B) and the refractive index of the acetone soluble content are measured by the method described in the Examples section below.
 本発明において、ゴム強化グラフト共重合体(B)のグラフト成分であるアセトン可溶分は、ゴム質重合体(r)と屈折率の差が0.03以下であることが好ましく、0.01以下であることがより好ましい。ゴム強化グラフト共重合体(B)の屈折率とグラフト成分とゴム質重合体(r)の屈折率との差を0.03以下にすることにより、得られる成形品の透明性を向上させることができる。 In the present invention, it is preferable that the acetone soluble content, which is the graft component of the rubber-reinforced graft copolymer (B), has a refractive index difference of 0.03 or less with respect to the rubbery polymer (r), and preferably 0.01 It is more preferable that it is below. To improve the transparency of the obtained molded product by reducing the difference between the refractive index of the rubber-reinforced graft copolymer (B) and the refractive index of the graft component and the rubbery polymer (r) to 0.03 or less. Can be done.
 ゴム強化グラフト共重合体(B)のグラフト成分の屈折率は、主に原料となるビニル系単量体の組成に依存する。このため、ビニル系単量体混合物(mb)の種類や組成比を適宜選択することにより、屈折率を所望の範囲にすることができる。特に、乳化重合法により、重合転化率を95%以上にする場合、グラフト成分の組成は、ビニル系単量体混合物(mb)の組成とほぼ同等となる。 The refractive index of the graft component of the rubber-reinforced graft copolymer (B) mainly depends on the composition of the raw material vinyl monomer. Therefore, by appropriately selecting the type and composition ratio of the vinyl monomer mixture (mb), the refractive index can be set within a desired range. In particular, when the polymerization conversion rate is increased to 95% or more by emulsion polymerization, the composition of the graft component is approximately the same as the composition of the vinyl monomer mixture (mb).
 ゴム質重合体(r)の屈折率は、一般的な文献に示されている。例えば、ポリブタジエンゴムの場合は1.516である。 The refractive index of the rubbery polymer (r) is shown in general literature. For example, in the case of polybutadiene rubber, it is 1.516.
 グラフト共重合体(B)のグラフト成分の屈折率は、グラフト共重合体(B)をアセトンに溶解し、アセトン可溶分を濾過した残渣を乾燥することにより得られるグラフト成分について、ビニル系共重合体(A)と同様に測定することができる。 The refractive index of the graft component of the graft copolymer (B) is determined by dissolving the graft copolymer (B) in acetone and drying the residue obtained by filtering the acetone-soluble content. It can be measured in the same manner as for polymer (A).
 本発明において、グラフト共重合体(B)の製造方法に特に制限はなく、乳化重合法、懸濁重合法、連続塊状重合法、溶液連続重合法等の任意の方法を用いることができる。これらのうち、乳化重合法又は塊状重合法が好ましく、乳化重合法がより好ましい。乳化重合法であれば、ゴム質重合体(r)の粒子径を所望の範囲に容易に調整することができ、また、重合時の除熱により重合安定性を容易に調整することができる。 In the present invention, the method for producing the graft copolymer (B) is not particularly limited, and any method such as emulsion polymerization, suspension polymerization, continuous bulk polymerization, continuous solution polymerization, etc. can be used. Among these, emulsion polymerization method or bulk polymerization method is preferred, and emulsion polymerization method is more preferred. If the emulsion polymerization method is used, the particle size of the rubbery polymer (r) can be easily adjusted to a desired range, and the polymerization stability can be easily adjusted by removing heat during polymerization.
 グラフト共重合体(B)を乳化重合法により製造する場合、ゴム質重合体(r)とビニル系単量体混合物(mb)の仕込み方法は、特に限定されない。例えば、これら全てを初期一括仕込みしてもよい。また、共重合体組成の分布を調整するために、ビニル系単量体混合物(mb)の一部を連続的に仕込んでもよいし、ビニル系単量体混合物(mb)の一部又は全てを分割して仕込んでもよい。ここで、ビニル系単量体混合物(mb)の一部を連続的に仕込むとは、ビニル系単量体混合物(mb)の一部を初期に仕込み、残りを経時的に連続して仕込むことを意味する。ビニル系単量体混合物(mb)の一部又は全てを分割して仕込むとは、ビニル系単量体混合物(mb)の一部又は全てを、初期仕込みより後の時点で仕込むことを意味する。 When producing the graft copolymer (B) by an emulsion polymerization method, the method of charging the rubbery polymer (r) and the vinyl monomer mixture (mb) is not particularly limited. For example, all of these may be initially prepared at once. In addition, in order to adjust the distribution of the copolymer composition, a part of the vinyl monomer mixture (mb) may be continuously charged, or a part or all of the vinyl monomer mixture (mb) may be added. You can also divide it and prepare it. Here, "continuously charging a part of the vinyl monomer mixture (mb)" means that a part of the vinyl monomer mixture (mb) is initially charged and the rest is continuously charged over time. means. Feeding part or all of the vinyl monomer mixture (mb) in portions means feeding part or all of the vinyl monomer mixture (mb) at a later point in time than the initial feeding. .
 本発明において、ゴム強化グラフト共重合体(B)は1種のみを用いてもよく、ゴム質重合体(r)の種類やビニル系単量体組成、物性等の異なるものを2種以上混合して用いてもよい。 In the present invention, only one type of rubber-reinforced graft copolymer (B) may be used, or two or more types of rubber-reinforced graft copolymer (B) having different types, vinyl monomer compositions, physical properties, etc. may be mixed. It may also be used as
<ポリアミドエラストマー(C)>
 本発明の熱可塑性樹脂組成物を構成するポリアミドエラストマー(C)としては、例えば、炭素数6以上のアミノカルボン酸又はラクタム、或いは炭素数6以上のジアミンとジカルボン酸の塩と、ポリ(アルキレンオキシド)グリコールとのグラフト共重合体又はブロック共重合体が好ましい。ポリ(アルキレンオキシド)グリコールとしては、ポリエチレンオキシドグリコールが好ましく用いられる。
<Polyamide elastomer (C)>
Examples of the polyamide elastomer (C) constituting the thermoplastic resin composition of the present invention include aminocarboxylic acids or lactams having 6 or more carbon atoms, or salts of diamines and dicarboxylic acids having 6 or more carbon atoms, and poly(alkylene oxide). ) Graft copolymers or block copolymers with glycol are preferred. As the poly(alkylene oxide) glycol, polyethylene oxide glycol is preferably used.
 炭素数6以上のアミノカルボン酸又はラクタム、或いは炭素数6以上のジアミンとジカルボン酸の塩としては、具体的には、ω-アミノカプロン酸、ω-アミノエナント酸、ω-アミノカプリル酸、ω-アミノペルゴン酸、ω-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノカルボン酸;カプロラクタム、エナントラクタム、カプリルラクタム、ラウロラクタムなどのラクタム;ヘキサメチレンジアミン-アジピン酸塩、ヘキサメチレンジアミン-セバシン酸塩及びヘキサメチレンジアミン-イソフタル酸塩などのナイロン塩等が挙げられる。これらを2種以上用いてもよい。 Examples of aminocarboxylic acids or lactams having 6 or more carbon atoms, or salts of diamines and dicarboxylic acids having 6 or more carbon atoms include ω-aminocaproic acid, ω-aminoenantoic acid, ω-aminocaprylic acid, ω- Aminocarboxylic acids such as aminopergonic acid, ω-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid; Lactams such as caprolactam, enantlactam, capryllactam, laurolactam; Hexamethylenediamine-adipate, hexamethylene Examples include nylon salts such as diamine-sebacate and hexamethylenediamine-isophthalate. Two or more types of these may be used.
 ポリ(アルキレンオキシド)グリコールとしては、例えば、ポリエチレンオキシドグリコール、ポリ(1,2-プロピレンオキシド)グリコール、ポリ(1,3-プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドのブロック又はランダム共重合体、エチレンオキシドとテトラヒドロフランのブロック又はランダム共重合体などが挙げられる。これらを2種以上用いてもよい。さらにビスフェノールAや脂肪酸のアルキレンオキシド付加物などが共重合されていてもよい。 Examples of poly(alkylene oxide) glycol include polyethylene oxide glycol, poly(1,2-propylene oxide) glycol, poly(1,3-propylene oxide) glycol, poly(tetramethylene oxide) glycol, and poly(hexamethylene oxide) glycol. ) glycol, block or random copolymers of ethylene oxide and propylene oxide, block or random copolymers of ethylene oxide and tetrahydrofuran, and the like. Two or more types of these may be used. Furthermore, bisphenol A, alkylene oxide adducts of fatty acids, etc. may be copolymerized.
 ポリ(アルキレンオキシド)グリコールの数平均分子量は、ポリアミドエラストマー(C)の機械的特性を向上させる観点から、200以上が好ましく、300以上がより好ましい。ポリ(アルキレンオキシド)グリコールの数平均分子量は、耐薬品性をより向上させる観点から、6,000以下が好ましく、4,000以下がより好ましい。 From the viewpoint of improving the mechanical properties of the polyamide elastomer (C), the number average molecular weight of the poly(alkylene oxide) glycol is preferably 200 or more, and more preferably 300 or more. From the viewpoint of further improving chemical resistance, the number average molecular weight of poly(alkylene oxide) glycol is preferably 6,000 or less, more preferably 4,000 or less.
 ポリ(アルキレンオキシド)グリコールの両末端は、必要に応じてアミノ化又はカルボキシル化されていてもよい。 Both ends of the poly(alkylene oxide) glycol may be aminated or carboxylated as necessary.
 本発明において、炭素数6以上のアミノカルボン酸又はラクタム、或いは炭素数6以上のジアミンとジカルボン酸の塩と、ポリ(アルキレンオキシド)グリコールとの結合は、通常エステル結合とアミド結合である。ただし、特にこれらのみに限定されない。 In the present invention, the bond between the aminocarboxylic acid or lactam having 6 or more carbon atoms, or the salt of diamine and dicarboxylic acid having 6 or more carbon atoms, and poly(alkylene oxide) glycol is usually an ester bond and an amide bond. However, it is not particularly limited to these.
 ジカルボン酸やジアミンなどの第三成分を、反応成分として用いることも可能である。具体例として、ナイロン6とポリエチレングリコールを結合させるためにテレフタル酸(ジカルボン酸)を添加する例を挙げることができる。 It is also possible to use a third component such as a dicarboxylic acid or diamine as a reaction component. As a specific example, terephthalic acid (dicarboxylic acid) is added to bond nylon 6 and polyethylene glycol.
 ジカルボン酸やジアミンなどの第三成分を反応成分として用いる場合におけるジカルボン酸としては、重合性、色調及び物性をより向上させる観点から、炭素数4~20のジカルボン酸が好ましい。例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4-ジカルボン酸、ジフェノキシエタンジカルボン酸、3-スルホイソフタル酸ナトリウムなどの芳香族ジカルボン酸;1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、ジシクロヘキシル-4,4-ジカルボン酸などの脂環族ジカルボン酸;コハク酸、シュウ酸、アジピン酸、セバシン酸、1,10-デカンジカルボン酸などの脂肪族ジカルボン酸;等が挙げられる。 When using a third component such as a dicarboxylic acid or diamine as a reaction component, the dicarboxylic acid is preferably a dicarboxylic acid having 4 to 20 carbon atoms from the viewpoint of further improving polymerizability, color tone, and physical properties. For example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4-dicarboxylic acid, diphenoxyethanedicarboxylic acid, sodium 3-sulfoisophthalate; 1, Alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, dicyclohexyl-4,4-dicarboxylic acid; succinic acid, oxalic acid, adipic acid, sebacic acid, 1,10-decanedicarboxylic acid, etc. aliphatic dicarboxylic acids; and the like.
 ジアミンとしては、芳香族、脂環族及び脂肪族のジアミンが用いられる。中でも脂肪族ジアミンのヘキサメチレンジアミンが好ましく用いられる。 As the diamine, aromatic, alicyclic and aliphatic diamines are used. Among them, hexamethylene diamine, which is an aliphatic diamine, is preferably used.
 ポリアミドエラストマー(C)の製造方法については、特に限定されず、公知の製造方法を利用することができる。例えば、ポリ(アルキレンオキシド)グリコールを構成成分として含むグラフト共重合体又はブロック共重合体の場合、以下の(1)~(3)の方法などが挙げられる。
(1) (i)アミノカルボン酸又はラクタムもしくは炭素数6以上のジアミンとジカルボン酸の塩と、
(ii)ジカルボン酸
とを反応させて両末端がカルボン酸基のポリアミドプレポリマーを得、これに
(iii)ポリ(アルキレンオキシド)グリコール
を真空下に反応させる方法
(2) 上記の(i)、(ii)及び(iii)の化合物を反応槽に仕込み、水の存在下又は不存在下に、高温で加熱反応させることによりカルボン酸末端のポリアミドエラストマーを生成させ、その後、常圧又は減圧下で重合を進める方法
(3) 上記の(i)、(ii)及び(iii)の化合物を同時に反応槽に仕込み、溶融重合した後、高真空下で一挙に重合を進める方法 
The method for producing the polyamide elastomer (C) is not particularly limited, and any known production method can be used. For example, in the case of a graft copolymer or block copolymer containing poly(alkylene oxide) glycol as a component, methods (1) to (3) below may be used.
(1) (i) a salt of an aminocarboxylic acid or a lactam or a diamine having 6 or more carbon atoms and a dicarboxylic acid;
(ii) React with dicarboxylic acid to obtain a polyamide prepolymer with carboxylic acid groups at both ends;
(iii) Method of reacting poly(alkylene oxide) glycol under vacuum (2) The above compounds (i), (ii) and (iii) are charged into a reaction tank, and in the presence or absence of water, A method of producing a carboxylic acid-terminated polyamide elastomer by carrying out a heating reaction at high temperature, and then proceeding with polymerization under normal pressure or reduced pressure (3) Reacting the above compounds (i), (ii), and (iii) simultaneously. A method to proceed with polymerization all at once under high vacuum after charging into a tank and melt-polymerizing.
 ポリアミドエラストマー(C)の融点は、シート成形性の観点から、140℃以上であることが好ましく、180℃以上であることがより好ましく、190℃以上であることがさらに好ましい。ポリアミドエラストマー(C)の融点の上限には特に制限はないが、通常220℃以下である。 From the viewpoint of sheet formability, the melting point of the polyamide elastomer (C) is preferably 140°C or higher, more preferably 180°C or higher, and even more preferably 190°C or higher. There is no particular restriction on the upper limit of the melting point of the polyamide elastomer (C), but it is usually 220°C or lower.
 ポリアミドエラストマー(C)の屈折率は1.505~1.520であることが好ましく、1.509~1.519であることがより好ましく、1.510~1.517であることが更に好ましい。ポリアミドエラストマー(C)の屈折率が上記範囲内であれば、ゴム強化グラフト共重合体(B)との屈折率差を小さくでき、得られる成形品の透明性の観点から好ましい。 The refractive index of the polyamide elastomer (C) is preferably 1.505 to 1.520, more preferably 1.509 to 1.519, and even more preferably 1.510 to 1.517. If the refractive index of the polyamide elastomer (C) is within the above range, the difference in refractive index between the polyamide elastomer (C) and the rubber-reinforced graft copolymer (B) can be reduced, which is preferable from the viewpoint of transparency of the resulting molded product.
 前述の通り、ビニル系共重合体(A)の屈折率と、ゴム強化グラフト共重合体(B)のアセトン可溶分の屈折率とポリアミドエラストマー(C)の屈折率の差は0.03以下、特に0.01以下であることが、得られる成形品の透明性の観点から好ましい。 As mentioned above, the difference between the refractive index of the vinyl copolymer (A), the refractive index of the acetone-soluble portion of the rubber-reinforced graft copolymer (B), and the refractive index of the polyamide elastomer (C) is 0.03 or less. In particular, it is preferably 0.01 or less from the viewpoint of transparency of the molded product obtained.
 ポリアミドエラストマー(C)の融点は、後掲の実施例の項に記載の方法で測定される。ポリアミドエラストマー(C)の屈折率は後掲の実施例の項に記載の方法で測定することができる。ただし、市販品についてはカタログ値を採用することができる。 The melting point of the polyamide elastomer (C) is measured by the method described in the Examples section below. The refractive index of the polyamide elastomer (C) can be measured by the method described in the Examples section below. However, for commercially available products, catalog values can be used.
 本発明において、ポリアミドエラストマー(C)は1種のみを用いてもよく、各セグメント組成や物性等の異なるものを2種以上混合して用いてもよい。
 例えば、ナイロン6系のポリアミドエラストマーと、ナイロン12系のポリアミドエラストマーを併用する、或いは、融点の異なるポリアミドエラストマーを併用することができる。
In the present invention, only one type of polyamide elastomer (C) may be used, or two or more types having different segment compositions, physical properties, etc. may be used as a mixture.
For example, a nylon 6-based polyamide elastomer and a nylon 12-based polyamide elastomer can be used together, or polyamide elastomers having different melting points can be used together.
 ポリアミドエラストマー(C)は市販品を用いてもよい。ポリアミドエラストマー(C)の市販品としては、三洋化成株式会社製ペレスタットM-140、ペレスタットNC6321、ペレスタットM-330、ペレスタットN1200、ペレクトロンASが挙げられる。 A commercially available product may be used as the polyamide elastomer (C). Commercially available polyamide elastomers (C) include Pellestat M-140, Pellestat NC6321, Pellestat M-330, Pellestat N1200, and Pellestat AS manufactured by Sanyo Chemical Co., Ltd.
<配合割合>
 本発明の熱可塑性樹脂組成物は、ビニル系共重合体(A)(ビニル系共重合体(A)はビニル系共重合体(A1)のみであってよく、ビニル系共重合体(A1)とビニル系共重合体(A2)とからなるものであってもよい。)、ゴム強化グラフト共重合体(B)、及び該ポリアミドエラストマー(C)の合計(以下、「(A)~(C)の合計」と称す場合がある。)100質量部に対して、ビニル系共重合体(A)とゴム強化グラフト共重合体(B)とを合計で60~92質量部、ポリアミドエラストマー(C)を8~40質量部含む熱可塑性樹脂組成物である。
<Blending ratio>
The thermoplastic resin composition of the present invention includes a vinyl copolymer (A) (the vinyl copolymer (A) may be only a vinyl copolymer (A1), and a vinyl copolymer (A1)). and a vinyl copolymer (A2)), the rubber-reinforced graft copolymer (B), and the polyamide elastomer (C) (hereinafter referred to as "(A) to (C)"). ) 100 parts by mass, a total of 60 to 92 parts by mass of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B), and 100 parts by mass of the polyamide elastomer (C ) is a thermoplastic resin composition containing 8 to 40 parts by mass.
(ビニル系共重合体(A)とゴム強化グラフト共重合体(B)の割合)
 本発明の熱可塑性樹脂組成物において、ビニル系共重合体(A)と、ゴム強化グラフト共重合体(B)との合計100質量%のうち、ビニル系共重合体(A)の割合は好ましくは20~80質量%であり、より好ましくは25~75質量%であり、さらに好ましくは30~70質量%である。一方のゴム強化グラフト共重合体(B)の割合は好ましくは20~80質量%であり、より好ましくは25~75質量%であり、さらに好ましくは30~70質量%である。
 ビニル系共重合体(A)及びゴム強化グラフト共重合体(B)の含有割合が上記範囲内であれば、耐薬品性、透明性に優れるためである。
(Ratio of vinyl copolymer (A) and rubber reinforced graft copolymer (B))
In the thermoplastic resin composition of the present invention, the proportion of the vinyl copolymer (A) out of the total 100% by mass of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B) is preferably is 20 to 80% by weight, more preferably 25 to 75% by weight, and even more preferably 30 to 70% by weight. The proportion of one rubber-reinforced graft copolymer (B) is preferably 20 to 80% by mass, more preferably 25 to 75% by mass, and even more preferably 30 to 70% by mass.
This is because, if the content ratio of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B) is within the above range, chemical resistance and transparency will be excellent.
(ビニル系共重合体(A)とゴム強化グラフト共重合体(B)の合計とポリアミドエラストマー(C)の含有割合)
 本発明の熱可塑性樹脂組成物は、(A)~(C)の合計100質量部中に、ビニル系共重合体(A)とゴム強化グラフト共重合体(B)とを合計で60~92質量部、ポリアミドエラストマー(C)を8~40質量部含む。
 この配合割合は、上記範囲内において、目的に応じて適宜調整できるものである。
(Total of vinyl copolymer (A) and rubber reinforced graft copolymer (B) and content ratio of polyamide elastomer (C))
The thermoplastic resin composition of the present invention contains a total of 60 to 92 parts of vinyl copolymer (A) and rubber-reinforced graft copolymer (B) in 100 parts by mass of (A) to (C). 8 to 40 parts by mass of polyamide elastomer (C).
This blending ratio can be adjusted as appropriate within the above range depending on the purpose.
(熱可塑性樹脂組成物中のゴム含有率)
 本発明の熱可塑性樹脂組成物100質量%中のゴム質重合体(r)の含有率(以下(「ゴム含有率」と称す場合がある。)は好ましくは8~35質量%であり、より好ましくは10~30質量%である。ゴム質重合体(r)の含有率の下限値は、さらに好ましくは11質量%以上、特に好ましくは12質量%以上、最も好ましくは13質量%以上である。ゴム質重合体(r)の含有率の上限値は、さらに好ましくは28質量%以下、特に好ましくは25質量%以下、最も好ましくは23質量%以下である。
 熱可塑性樹脂組成物中のゴム質重合体(r)の含有率が上記範囲内であれば、耐薬品性、透明性、さらに、シート外観に優れるためである。
(Rubber content in thermoplastic resin composition)
The content of the rubbery polymer (r) in 100% by mass of the thermoplastic resin composition of the present invention (hereinafter sometimes referred to as "rubber content") is preferably 8 to 35% by mass, and more preferably Preferably it is 10 to 30% by mass.The lower limit of the content of the rubbery polymer (r) is more preferably 11% by mass or more, particularly preferably 12% by mass or more, and most preferably 13% by mass or more. The upper limit of the content of the rubbery polymer (r) is more preferably 28% by mass or less, particularly preferably 25% by mass or less, most preferably 23% by mass or less.
This is because if the content of the rubbery polymer (r) in the thermoplastic resin composition is within the above range, the chemical resistance, transparency, and sheet appearance will be excellent.
 熱可塑性樹脂組成物中のゴム含有量は、ゴム強化グラフト共重合体(B)中のゴム質重合体(r)の含有率を用いて、配合割合によって算出する方法や、赤外分光分析装置によりゴム含有量を測定することで求めることができる。 The rubber content in the thermoplastic resin composition can be calculated by a blending ratio using the content of the rubbery polymer (r) in the rubber-reinforced graft copolymer (B), or by an infrared spectrometer. It can be determined by measuring the rubber content.
(熱可塑性樹脂組成物のアセトン可溶分中のシアン化ビニル系単量体の含有率)
 熱可塑性樹脂組成物のアセトン可溶分100質量%中のシアン化ビニル系単量体成分の含有率は好ましくは0.5~10質量%である。シアン化ビニル系単量体成分の含有率が0.5質量%未満であると、ポリアミドエラストマー(C)との混合において、分散性が悪くなり帯電防止性が得られにくくなる。シアン化ビニル系単量体成分の含有率は、より好ましくは1.0質量%以上、さらに好ましくは2.0質量%以上、特に好ましくは3.0質量%以上、最も好ましくは4.0質量%以上である。一方、シアン化ビニル系単量体成分の含有量が10質量%を超えると、シート加工時の加工性および、透明性が低下する。シアン化ビニル系単量体成分の含有率は、より好ましくは9.0質量%以下、さらに好ましくは8.0質量%以下、特に好ましくは7.0質量%以下、最も好ましくは6.5質量%以下であり、6.0質量%以下、5.5質量%以下、5.0質量%以下の順でより好ましい。
(Content of vinyl cyanide monomer in acetone soluble content of thermoplastic resin composition)
The content of the vinyl cyanide monomer component in 100% by mass of the acetone soluble content of the thermoplastic resin composition is preferably 0.5 to 10% by mass. If the content of the vinyl cyanide monomer component is less than 0.5% by mass, the dispersibility will be poor and antistatic properties will be difficult to obtain when mixed with the polyamide elastomer (C). The content of the vinyl cyanide monomer component is more preferably 1.0% by mass or more, even more preferably 2.0% by mass or more, particularly preferably 3.0% by mass or more, and most preferably 4.0% by mass. % or more. On the other hand, if the content of the vinyl cyanide monomer component exceeds 10% by mass, the processability and transparency during sheet processing will decrease. The content of the vinyl cyanide monomer component is more preferably 9.0% by mass or less, further preferably 8.0% by mass or less, particularly preferably 7.0% by mass or less, and most preferably 6.5% by mass. % or less, more preferably in the order of 6.0% by mass or less, 5.5% by mass or less, and 5.0% by mass or less.
 熱可塑性樹脂組成物のアセトン可溶分100質量%中のシアン化ビニル系単量体成分の含有率を上記範囲とすることで、射出成形に比べて低いせん断力となるシート加工において、透明性を維持しつつ、耐薬品性も十分に発現させることができる。 By setting the content of the vinyl cyanide monomer component in 100% by mass of the acetone soluble content of the thermoplastic resin composition to the above range, transparency can be achieved in sheet processing with lower shear force compared to injection molding. While maintaining this, chemical resistance can also be sufficiently developed.
 熱可塑性樹脂組成物中のアセトン可溶分のシアン化ビニル系単量体成分の含有率は、赤外分光分析装置を用いて、あらかじめ検量線などを作成しておき、アセトン可溶分のポリマーを抽出した後、後掲の実施例の項に記載される測定装置などにより測定される。 The content of the vinyl cyanide monomer component in the acetone-soluble portion of the thermoplastic resin composition can be determined by preparing a calibration curve in advance using an infrared spectrometer. After extracting, it is measured by a measuring device described in the Examples section below.
 なお、後掲の実施例において、アセトン可溶分のポリマーの抽出は、以下のようにして行った。
 実施例及び比較例で得られた各々の熱可塑性樹脂組成物2gをアセトン40mLに投入し、25℃の温度条件下で、振とう機により2時間振とうした後、5℃の温度条件下で、遠心分離機(回転数:23,000rpm)で60分間遠心分離し、アセトン可溶分とアセトン不溶分とを分離した。得られたアセトン可溶分をメタノール中に滴下して、ポリマー成分を析出させ、その後、ろ過して取り出した固形分を真空乾燥機24時間乾燥したものを熱可塑性樹脂組成物中のアセトン可溶分のポリマー成分として抽出する。
 なお、アセトン可溶分中のシアン化ビニル単量体成分の含有量は、上述のように直接抽出測定する方法や、各使用原料のアセトン可溶分中のシアン化ビニル単量体成分の含有量を用いて配合割合から算出する方法で求めることができる。
In addition, in the Examples described later, the extraction of the acetone-soluble portion of the polymer was performed as follows.
2 g of each thermoplastic resin composition obtained in Examples and Comparative Examples was added to 40 mL of acetone, shaken for 2 hours with a shaker at a temperature of 25°C, and then shaken at a temperature of 5°C. The mixture was centrifuged for 60 minutes using a centrifuge (rotation speed: 23,000 rpm) to separate acetone-soluble and acetone-insoluble components. The obtained acetone-soluble content was dropped into methanol to precipitate the polymer component, and then the solid content was filtered out and dried in a vacuum dryer for 24 hours to obtain the acetone-soluble content in the thermoplastic resin composition. Extract as a polymer component.
The content of the vinyl cyanide monomer component in the acetone-soluble matter can be measured by direct extraction and measurement as described above, or by measuring the content of the vinyl cyanide monomer component in the acetone-soluble matter of each raw material used. It can be determined by calculating from the blending ratio using the amount.
(熱可塑性樹脂組成物中のアセトン可溶分の重量平均分子量)
 熱可塑性樹脂組成物のアセトン可溶分の重量平均分子量は60,000~280,000にあることが好ましい。この範囲にあることで、シート成形、その後の加工工程においても透明性を維持できるため、好ましい。アセトン可溶分の重量平均分子量は、より好ましくは65,000~250,000であり、さらに好ましくは70,000~200,000、特に好ましくは75,000~150,000である。
(Weight average molecular weight of acetone soluble content in thermoplastic resin composition)
The weight average molecular weight of the acetone soluble portion of the thermoplastic resin composition is preferably 60,000 to 280,000. Being within this range is preferable because transparency can be maintained even during sheet molding and subsequent processing steps. The weight average molecular weight of the acetone soluble component is more preferably 65,000 to 250,000, still more preferably 70,000 to 200,000, particularly preferably 75,000 to 150,000.
 熱可塑性樹脂組成物中のアセトン可溶分の重量平均分子量は、GPCによるポリスチレン換算の値として測定することができる。アセトン可溶分の重量平均分子量は、上記の方法によりアセトン可溶分のポリマーを抽出した後、後掲の実施例の項に記載される測定装置などにより測定することができる。 The weight average molecular weight of the acetone soluble component in the thermoplastic resin composition can be measured as a polystyrene equivalent value by GPC. The weight average molecular weight of the acetone-soluble component can be measured by the measuring device described in the Examples section below after extracting the acetone-soluble polymer by the method described above.
(各成分の含有量)
 本発明の熱可塑性樹脂組成物は、(A)~(C)の合計100質量部に対して、ビニル系共重合体(A)を20~65質量部、ゴム強化グラフト共重合体(B)を5~72質量部、ポリアミドエラストマー(C)を8~30質量部含有することが好ましい。より好ましくはビニル系共重合体(A)を20~60質量部、ゴム強化グラフト共重合体(B)を15~72質量部、ポリアミドエラストマー(C)を8~25質量部、さらに好ましくはビニル系共重合体(A)を20~55質量部、ゴム強化グラフト共重合体(B)を25~72質量部、ポリアミドエラストマー(C)を8~20質量部含むものである。
 また、本発明の熱可塑性樹脂組成物は、(A)~(C)の合計100質量部に対して、ビニル系共重合体(A)を20~40質量部、ゴム強化グラフト共重合体(B)を47~65質量部、ポリアミドエラストマー(C)を8~13質量部、ビニル系共重合体(A)中のビニル系共重合体(A1)を35質量部以下含むものであってもよい。
(Content of each component)
The thermoplastic resin composition of the present invention contains 20 to 65 parts by mass of a vinyl copolymer (A) and a rubber-reinforced graft copolymer (B) based on a total of 100 parts by mass of (A) to (C). It is preferable to contain 5 to 72 parts by mass of polyamide elastomer (C) and 8 to 30 parts by mass of polyamide elastomer (C). More preferably 20 to 60 parts by mass of the vinyl copolymer (A), 15 to 72 parts by mass of the rubber reinforced graft copolymer (B), and 8 to 25 parts by mass of the polyamide elastomer (C), even more preferably vinyl It contains 20 to 55 parts by mass of the system copolymer (A), 25 to 72 parts by mass of the rubber-reinforced graft copolymer (B), and 8 to 20 parts by mass of the polyamide elastomer (C).
Furthermore, the thermoplastic resin composition of the present invention contains 20 to 40 parts by mass of the vinyl copolymer (A) and a rubber-reinforced graft copolymer (100 parts by mass in total of (A) to (C)). Even if it contains 47 to 65 parts by mass of B), 8 to 13 parts by mass of polyamide elastomer (C), and 35 parts by mass or less of the vinyl copolymer (A1) in the vinyl copolymer (A). good.
 (A)~(C)の合計100質量部中のビニル系共重合体(A)の含有量が上記下限未満では、ビニル系共重合体(A)を含有することによる得られる成形品の剛性と耐熱性を向上させる効果を十分に得ることができない。ビニル系共重合体(A)の含有量が上記上限を超えるとシートの成形性が低下する。(A)~(C)の合計100質量部中のビニル系共重合体(A)のより好ましい含有量は、上記の通りである。 If the content of the vinyl copolymer (A) in the total of 100 parts by mass of (A) to (C) is less than the above lower limit, the rigidity of the molded product obtained by containing the vinyl copolymer (A) Therefore, the effect of improving heat resistance cannot be sufficiently obtained. If the content of the vinyl copolymer (A) exceeds the above upper limit, the moldability of the sheet will decrease. A more preferable content of the vinyl copolymer (A) in a total of 100 parts by mass of (A) to (C) is as described above.
 ビニル系共重合体(A)中のビニル系共重合体(A1)の含有量は、得られる成形品の透明性と剛性の観点から、(A)~(C)の合計100質量部中、好ましくは35質量部以下であり、30質量%以下がより好ましい。
 ビニル系共重合体(A)がビニル系共重合体(A1)とビニル系共重合体(A2)とを含む場合、ビニル系共重合体(A2)の含有量は、耐熱性、耐薬品性およびシート成形性の観点から、(A)~(C)の合計100質量部に対して20質量部以下が好ましく、5~20質量部がより好ましく、8~18質量部がさらに好ましい。
The content of the vinyl copolymer (A1) in the vinyl copolymer (A) is determined from the viewpoint of transparency and rigidity of the obtained molded product, out of a total of 100 parts by mass of (A) to (C). It is preferably 35 parts by mass or less, more preferably 30 mass% or less.
When the vinyl copolymer (A) contains a vinyl copolymer (A1) and a vinyl copolymer (A2), the content of the vinyl copolymer (A2) is determined by the heat resistance and chemical resistance. From the viewpoint of sheet formability, it is preferably 20 parts by mass or less, more preferably 5 to 20 parts by mass, and even more preferably 8 to 18 parts by mass, based on a total of 100 parts by mass of (A) to (C).
 (A)~(C)の合計100質量部中のグラフト共重合体(B)の含有量が上記下限未満では、ゴム強化グラフト共重合体(B)を含有することによる成形品の耐薬品性とシート成形に適した流動性を向上させる効果を十分に得ることができない。グラフト共重合体(B)の含有量が上記上限を超えると、成形品の剛性と耐熱性の効果が十分に得られない。(A)~(C)の合計100質量部中のグラフト共重合体(B)のより好ましい含有量は、上記の通りである。 If the content of the graft copolymer (B) in the total of 100 parts by mass of (A) to (C) is less than the above lower limit, the chemical resistance of the molded product due to the inclusion of the rubber-reinforced graft copolymer (B) In this case, the effect of improving fluidity suitable for sheet molding cannot be sufficiently obtained. If the content of the graft copolymer (B) exceeds the above upper limit, the rigidity and heat resistance of the molded article will not be sufficiently improved. A more preferable content of the graft copolymer (B) in a total of 100 parts by mass of (A) to (C) is as described above.
 (A)~(C)の合計100質量部中のポリアミドエラストマー(C)の含有量が8質量部未満では、ポリアミドエラストマー(C)を含むことによる耐薬品性の向上効果を十分に得ることができず、得られる成形品の耐薬品性が低下する。ポリアミドエラストマー(C)の含有量は8質量部以上であり、特に10質量部以上であることが好ましい。一方、得られる成形品の剛性を向上させる観点から、(A)~(C)の合計100質量部中のポリアミドエラストマー(C)の含有量は、40質量部以下であり、好ましくは30質量部以下、より好ましくは25質量部以下、さらに好ましくは20質量部以下、特に好ましくは18質量部以下、とりわけ好ましくは13質量部以下である。 If the content of the polyamide elastomer (C) in the total of 100 parts by mass of (A) to (C) is less than 8 parts by mass, the effect of improving chemical resistance due to the inclusion of the polyamide elastomer (C) cannot be sufficiently obtained. However, the chemical resistance of the resulting molded product decreases. The content of the polyamide elastomer (C) is 8 parts by mass or more, particularly preferably 10 parts by mass or more. On the other hand, from the viewpoint of improving the rigidity of the obtained molded product, the content of the polyamide elastomer (C) in the total of 100 parts by mass of (A) to (C) is 40 parts by mass or less, preferably 30 parts by mass. The amount is more preferably 25 parts by mass or less, still more preferably 20 parts by mass or less, particularly preferably 18 parts by mass or less, particularly preferably 13 parts by mass or less.
<その他の成分>
 本発明の熱可塑性樹脂組成物には、本発明の効果を損なわない範囲で、ビニル系共重合体(A)、グラフト共重合体(B)及びポリアミドエラストマー(C)以外の樹脂やエラストマーを配合することができる。これらのその他の樹脂やエラストマーとしては、ポリカーボネート樹脂、ポリメチルメタクリレート等の透明樹脂の1種又は2種以上が挙げられる。
<Other ingredients>
The thermoplastic resin composition of the present invention contains resins and elastomers other than the vinyl copolymer (A), the graft copolymer (B), and the polyamide elastomer (C) within a range that does not impair the effects of the present invention. can do. Examples of these other resins and elastomers include one or more transparent resins such as polycarbonate resin and polymethyl methacrylate.
 本発明の熱可塑性樹脂組成物が、これらの樹脂やエラストマーを含有する場合、その含有量は、ビニル系共重合体(A)、グラフト共重合体(B)及びポリアミドエラストマー(C)とその他の樹脂やエラストマーとの合計100質量部中に10質量部以下であることが好ましい。該含有量が、上記上限以下であれば、ビニル系共重合体(A)、グラフト共重合体(B)及びポリアミドエラストマー(C)を所定の割合で用いることによる本発明の効果を有効に得ることができる。 When the thermoplastic resin composition of the present invention contains these resins and elastomers, the content is the vinyl copolymer (A), the graft copolymer (B), the polyamide elastomer (C) and the other It is preferably 10 parts by mass or less in a total of 100 parts by mass of the resin and elastomer. If the content is below the above upper limit, the effects of the present invention can be effectively obtained by using the vinyl copolymer (A), the graft copolymer (B), and the polyamide elastomer (C) in a predetermined ratio. be able to.
 本発明の熱可塑性樹脂組成物には、本発明の効果を損なわない範囲で、ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系などの酸化防止剤;フェノール系、アクリレート系などの熱安定剤;ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系などの紫外線吸収剤;有機ニッケル系、ヒンダードアミン系などの光安定剤などの各種安定剤:高級脂肪酸の金属塩類、高級脂肪酸アミド類などの滑剤;フタル酸エステル類、リン酸エステル類などの可塑剤;ポリテトラフルオロエチレンなどのドリップ防止剤;非イオン系、アニオン系、カチオン系又は両性系の界面活性剤;カーボンブラック、酸化チタンなどの顔料及び染料;水やシリコーンオイル、流動パラフィンなどの液体;を配合することもできる。また、充填材を配合することもできる。 The thermoplastic resin composition of the present invention may contain antioxidants such as hindered phenols, sulfur-containing organic compounds, and phosphorus-containing organic compounds; Heat stabilizers; ultraviolet absorbers such as benzotriazole, benzophenone, and salicylates; various stabilizers such as organic nickel and hindered amine light stabilizers; lubricants such as metal salts of higher fatty acids and higher fatty acid amides; Plasticizers such as phthalates and phosphates; anti-drip agents such as polytetrafluoroethylene; nonionic, anionic, cationic or amphoteric surfactants; pigments such as carbon black and titanium oxide; A dye; a liquid such as water, silicone oil, or liquid paraffin can also be blended. In addition, fillers can also be blended.
 充填材としては、繊維状、板状、粉末状、粒状などの形状のものが挙げられ、本発明においてはいずれを用いてもよい。具体的には、ポリアクリロニトリル(PAN)系やピッチ系の炭素繊維;ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維;芳香族ポリアミド繊維などの有機繊維;石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ガラス繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカーなどの繊維状又はウィスカー状充填材;マイカ、タルク、カオリン、シリカ、炭酸カルシウム、ガラスフレーク、ガラスビーズ、ガラスマイクロバルーン、クレー、二硫化モリブデン、ワラステナイト、モンモリロナイト、酸化チタン、酸化亜鉛、硫酸バリウム、ポリリン酸カルシウム、グラファイトなどの粉状、粒状又は板状の充填材;などが挙げられる。これらは2種以上用いてもよい。これらの中でも、ガラス繊維が好ましく用いられる。ガラス繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はない。例えば、長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどを挙げることができる。 Examples of the filler include those in the form of fibers, plates, powders, particles, etc., and any of them may be used in the present invention. Specifically, polyacrylonitrile (PAN)-based and pitch-based carbon fibers; stainless steel fibers, metal fibers such as aluminum fibers and brass fibers; organic fibers such as aromatic polyamide fibers; gypsum fibers, ceramic fibers, asbestos fibers, and zirconia fibers. Fibrous or whisker-like fillers such as fibers, alumina fibers, silica fibers, titanium oxide fibers, silicon carbide fibers, glass fibers, rock wool, potassium titanate whiskers, barium titanate whiskers, aluminum borate whiskers, silicon nitride whiskers; Powdered materials such as mica, talc, kaolin, silica, calcium carbonate, glass flakes, glass beads, glass microballoons, clay, molybdenum disulfide, wollastenite, montmorillonite, titanium oxide, zinc oxide, barium sulfate, calcium polyphosphate, graphite, etc. Examples include granular or plate-shaped fillers. Two or more types of these may be used. Among these, glass fiber is preferably used. The type of glass fiber is not particularly limited as long as it is generally used for reinforcing resins. For example, long fiber type or short fiber type chopped strands, milled fibers, etc. can be mentioned.
 前記充填材はその表面が任意のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤により処理されていてもよい。前記充填材は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂で被覆あるいは集束処理されていてもよい。前記充填材は、アミノシランやエポキシシランなどのカップリング剤などで処理されていてもよい。 The surface of the filler may be treated with an arbitrary coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.) or other surface treatment agent. The filler may be coated or bundled with a thermoplastic resin such as an ethylene/vinyl acetate copolymer or a thermosetting resin such as an epoxy resin. The filler may be treated with a coupling agent such as aminosilane or epoxysilane.
 本発明の熱可塑性樹脂組成物が充填材を含有する場合、その含有量は、前記ビニル系共重合体(A)、グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して0.01~10質量部が好ましい。充填材の含有量を上記範囲とすることにより、得られる成形品の剛性及び耐熱性をより向上させることができる。 When the thermoplastic resin composition of the present invention contains a filler, the content thereof is 100 parts by mass in total of the vinyl copolymer (A), graft copolymer (B), and polyamide elastomer (C). It is preferably 0.01 to 10 parts by mass. By setting the content of the filler within the above range, the rigidity and heat resistance of the resulting molded product can be further improved.
<熱可塑性樹脂組成物の製造方法>
 熱可塑性樹脂組成物の製造方法に特に制限はない。本発明の熱可塑性樹脂組成物は、ビニル系共重合体(A)、グラフト共重合体(B)及びポリアミドエラストマー(C)と必要に応じて用いられるその他の成分を前述の所定の割合で配合することにより製造される。
<Method for manufacturing thermoplastic resin composition>
There are no particular limitations on the method for producing the thermoplastic resin composition. The thermoplastic resin composition of the present invention contains a vinyl copolymer (A), a graft copolymer (B), a polyamide elastomer (C), and other components used as necessary in the above-mentioned predetermined ratios. Manufactured by
 生産性の点から、ビニル系共重合体(A)、グラフト共重合体(B)、ポリアミドエラストマー(C)及び必要に応じてその他の成分を溶融混練する方法が一般的である。前述の添加剤などを配合する場合、その配合方法についても特に制限はなく、種々の方法を用いることができる。 From the viewpoint of productivity, it is common to melt-knead the vinyl copolymer (A), graft copolymer (B), polyamide elastomer (C), and other components as necessary. When blending the above-mentioned additives, etc., there is no particular restriction on the blending method, and various methods can be used.
<熱可塑性樹脂組成物の成形方法>
 本発明の熱可塑性樹脂組成物は、射出成形、押出成形、カレンダー成形、ブロー成形、真空成形、圧縮成形、ガスアシスト成形などの公知の方法によって成形することができる。
<Method for molding thermoplastic resin composition>
The thermoplastic resin composition of the present invention can be molded by known methods such as injection molding, extrusion molding, calendar molding, blow molding, vacuum molding, compression molding, and gas-assisted molding.
<熱可塑性樹脂組成物の物性>
 後掲の実施例の項に記載の方法で測定される本発明の熱可塑性樹脂組成物のメルトボリュームレート(MVR)は、シート成形性の観点から、好ましくは50cm/10分以下、より好ましくは30cm/10分以下、さらに好ましくは20cm/10分以下である。一方、本発明の熱可塑性樹脂組成物のMVRは、シート成形性、さらに、シート外観の観点から2cm/10分以上であることが好ましく、4cm/10分以上であることがより好ましく、6cm/10分以上であることがさらに好ましい。
<Physical properties of thermoplastic resin composition>
From the viewpoint of sheet formability, the melt volume rate (MVR) of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 50 cm 3 /10 minutes or less, more preferably is 30 cm 3 /10 minutes or less, more preferably 20 cm 3 /10 minutes or less. On the other hand, the MVR of the thermoplastic resin composition of the present invention is preferably 2 cm 3 /10 minutes or more, more preferably 4 cm 3 /10 minutes or more, from the viewpoint of sheet moldability and sheet appearance. More preferably, it is 6 cm 3 /10 minutes or more.
 透明性の観点から、後掲の実施例の項に記載の方法で測定される本発明の熱可塑性樹脂組成物の全光線透過率は、85%以上であることが好ましく、87%以上であることがより好ましい。 From the viewpoint of transparency, the total light transmittance of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 85% or more, and preferably 87% or more. It is more preferable.
 剛性の観点から、後掲の実施例の項に記載の方法で測定される本発明の熱可塑性樹脂組成物の曲げモジュラスは900MPa以上であることが好ましく、1,000MPa以上であることがより好ましい。 From the viewpoint of rigidity, the bending modulus of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 900 MPa or more, more preferably 1,000 MPa or more. .
 耐熱性の観点から、後掲の実施例の項に記載の方法で測定される本発明の熱可塑性樹脂組成物の熱変形温度は58℃以上であることが好ましく、60℃以上であることがより好ましく、63℃以上であることがさらに好ましい。 From the viewpoint of heat resistance, the heat distortion temperature of the thermoplastic resin composition of the present invention measured by the method described in the Examples section below is preferably 58°C or higher, and preferably 60°C or higher. More preferably, the temperature is 63°C or higher.
[成形品]
 本発明の成形品は、本発明の熱可塑性樹脂組成物を上記のような各種の成形方法で成形してなるものである。本発明の成形品は、家電製品、通信関連機器、搬送容器、一般雑貨及び医療関連機器などの幅広い用途分野に適用することができる。
[Molding]
The molded article of the present invention is obtained by molding the thermoplastic resin composition of the present invention using the various molding methods described above. The molded article of the present invention can be applied to a wide range of fields of use, such as home appliances, communication-related equipment, transportation containers, general miscellaneous goods, and medical-related equipment.
 特に本発明の熱可塑性樹脂組成物は、その優れたシート成形性、耐薬品性、透明性、剛性、耐熱性から、特にTダイ成形またはカレンダー成形によるフィルム又はシートとして好ましく用いられる。本発明の本発明の成形品は、とりわけ精密部品の搬送機器や運搬容器として好ましく、この場合において、洗浄剤等の薬液が付着しても、高透明性を維持すること共に、ヒビやワレなどを防止することができる。
 本発明の成形品は、例えば、透明収納ケースなどの一般向けの製品だけでなく、フォトマスク用途などの工業製品を生産する際の部品としても幅広く使用可能である。
In particular, the thermoplastic resin composition of the present invention is preferably used as a film or sheet by T-die molding or calendar molding because of its excellent sheet formability, chemical resistance, transparency, rigidity, and heat resistance. The molded article of the present invention is particularly suitable for use as transportation equipment or transportation containers for precision parts, and in this case, even if a chemical solution such as a cleaning agent is attached, the molded article of the present invention maintains high transparency and is free from cracks and cracks. can be prevented.
The molded product of the present invention can be widely used not only for general products such as transparent storage cases, but also as parts for producing industrial products such as photomasks.
 以下に、実施例及び比較例を挙げて本発明をより具体的に説明する。本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
 なお、以下において、「部」は「質量部」、「%」は「質量%」を意味する。
The present invention will be explained in more detail below by giving Examples and Comparative Examples. The present invention is not limited to the following examples in any way unless it exceeds the gist thereof.
In the following, "part" means "part by mass" and "%" means "% by mass."
[測定・評価方法]
 以下の実施例及び比較例における各種測定及び評価方法は以下の通りである。
[Measurement/evaluation method]
Various measurement and evaluation methods in the following Examples and Comparative Examples are as follows.
<体積平均粒子径>
 日機装社製のNanotrac UPA-EX150を用いて動的光散乱法より求めた。
<Volume average particle diameter>
It was determined by dynamic light scattering using Nanotrac UPA-EX150 manufactured by Nikkiso Co., Ltd.
<グラフト率>
 グラフト共重合体(B)1g(W:サンプル重量)を80mLのアセトンに添加し、65~70℃にて3時間加熱還流した。得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpm、30分間遠心分離して、沈殿成分(アセトン不溶分)とアセトン溶液(アセトン可溶成分)を分取した。そして、沈殿成分(アセトン不溶分)を乾燥させてその重量(Q(g))を測定し、下記式(1)によりグラフト率を算出した。
 式(1)におけるQは、グラフト共重合体(B)のアセトン不溶分の重量(g)である。WはQを求める際に使用したグラフト共重合体(B)の全重量(g)である。ゴム分率はグラフト共重合体(B)に含まれるゴム質重合体(r)の含有率である。
  グラフト率(%)={(Q-W×ゴム分率)/W×ゴム分率}×100…(1)
<Graft rate>
1 g (W: sample weight) of the graft copolymer (B) was added to 80 mL of acetone, and the mixture was heated under reflux at 65 to 70° C. for 3 hours. The obtained suspended acetone solution was centrifuged at 14,000 rpm for 30 minutes using a centrifuge (“CR21E” manufactured by Hitachi Koki Co., Ltd.) to separate the precipitate component (acetone insoluble component) and the acetone solution (acetone soluble component). was separated. Then, the precipitated component (acetone-insoluble component) was dried, its weight (Q (g)) was measured, and the grafting rate was calculated using the following formula (1).
Q in formula (1) is the weight (g) of the acetone-insoluble portion of the graft copolymer (B). W is the total weight (g) of the graft copolymer (B) used when determining Q. The rubber fraction is the content of the rubbery polymer (r) contained in the graft copolymer (B).
Grafting rate (%) = {(Q-W×rubber fraction)/W×rubber fraction}×100...(1)
<重合転化率>
 グラフト共重合体(B)のラテックスを1g採取して精秤し、それを熱風乾燥器中で150℃、1時間乾燥し、その乾燥後の重量を固形分量として精秤した。次に、乾燥前後の精秤結果の比率をラテックス中の固形成分比率として求めた。最後に、この固形成分比率を用いて、下記式(2)により重合転化率を算出した。
重合転化率(%)=(仕込み原料総重量×固形成分比率-モノマー以外の原料総重量)/仕込みモノマー重量×100…(2)
<Polymerization conversion rate>
1 g of the latex of the graft copolymer (B) was taken and accurately weighed, dried in a hot air dryer at 150° C. for 1 hour, and the weight after drying was accurately weighed as the solid content. Next, the ratio of the accurate weighing results before and after drying was determined as the solid component ratio in the latex. Finally, the polymerization conversion rate was calculated using the following formula (2) using this solid component ratio.
Polymerization conversion rate (%) = (total weight of charged raw materials x solid component ratio - total weight of raw materials other than monomers) / weight of charged monomers x 100... (2)
<赤外分光分析>
 FT-IR「FT-720」(株)堀場製作所製フーリエ変換赤外分光光度計を用いて以下の(1),(2)の測定を行った。
(1) アセトン可溶分中のシアン化ビニル系単量体成分の含有量(表1~3中、「AN含有率」と記載する。)
(2) 製造したビニル系共重合体(A)及びゴム強化グラフト共重合体(B)の各ポリマー組成の比率
<Infrared spectroscopy>
The following measurements (1) and (2) were performed using an FT-IR "FT-720" Fourier transform infrared spectrophotometer manufactured by Horiba, Ltd.
(1) Content of vinyl cyanide monomer component in acetone soluble matter (described as "AN content" in Tables 1 to 3)
(2) Ratio of each polymer composition of the produced vinyl copolymer (A) and rubber reinforced graft copolymer (B)
<重量平均分子量(Mw)>
 GPC(GPC:Waters社製「GPC/V2000」、カラム:昭和電工社製「Shodex AT-G+AT-806MS」)を用い、ポリスチレン換算での重量平均分子量(Mw)を測定した。
<Weight average molecular weight (Mw)>
The weight average molecular weight (Mw) in terms of polystyrene was measured using GPC (GPC: "GPC/V2000" manufactured by Waters, column: "Shodex AT-G+AT-806MS" manufactured by Showa Denko).
<屈折率>
 島津製作所製アッベ式屈折率計「KPR-30A」を用いて、23℃で測定した。
 各共重合体の屈折率は、ビニル系共重合体(A1)またはグラフト共重合体(B)の水性分散液からイソプロピルアルコールで共重合体を沈殿回収し、乾燥したものについて測定した。
<Refractive index>
Measurement was performed at 23° C. using an Abbe refractometer “KPR-30A” manufactured by Shimadzu Corporation.
The refractive index of each copolymer was measured by precipitating and recovering the copolymer from an aqueous dispersion of the vinyl copolymer (A1) or graft copolymer (B) with isopropyl alcohol, and drying the copolymer.
<ガラス転移温度>
 ビニル系共重合体(A-2-1)のガラス転移温度(Tg)は、示差走査熱量測定(DSC)により、試料を窒素雰囲気下、10℃/minで、35℃から250℃まで昇温した後、35℃まで冷却し、再度250℃まで昇温した場合に観測されるガラス転移温度を測定した。
<Glass transition temperature>
The glass transition temperature (Tg) of the vinyl copolymer (A-2-1) was determined by differential scanning calorimetry (DSC) by heating a sample from 35°C to 250°C at a rate of 10°C/min in a nitrogen atmosphere. After that, it was cooled to 35°C, and the glass transition temperature observed when the temperature was raised again to 250°C was measured.
<融点(Tm)>
 JIS K 7121-1987に準じて、DSC(示差走査熱量計)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度を融点(Tm)とした。
<Melting point (Tm)>
According to JIS K 7121-1987, endothermic changes were measured using a DSC (differential scanning calorimeter) at a constant temperature increase rate of 20°C per minute, and the peak temperature of the endothermic pattern obtained was determined as the melting point (Tm). did.
<流動性(MVR)>
 溶融混練で得られた熱可塑性樹脂組成物について、ISO 1133規格に従って、220℃、10kgfでMVRを測定した。MVRは熱可塑性樹脂組成物の流動性の目安となる。
<Liquidity (MVR)>
The MVR of the thermoplastic resin composition obtained by melt-kneading was measured at 220° C. and 10 kgf according to the ISO 1133 standard. MVR is a measure of the fluidity of a thermoplastic resin composition.
<全光線透過率>
 ASTM 1003に準じて測定した。試験片の厚さは2.5mmである。
 また、環境影響として、以下の評価を行った。
 試験片の全線透過率を測定した後、試験片を温度40℃、湿度70%の恒温高湿槽に一週間入れた。その後、試験片を取り出し、再度、全線透過率を測定した。恒温高湿槽に入れる前の全光線透過率と、恒温高湿槽に入れた後の全線透過率との差を確認して以下のランクで判定した。この差が小さいほど、環境影響が小さく、A判定が最も優れている。
 A:1%以下
 B:1%を超え3%以下
 C:3%を超え5%以下
 D:5%を超える
<Total light transmittance>
Measured according to ASTM 1003. The thickness of the test piece is 2.5 mm.
Additionally, the following evaluations were conducted regarding environmental impacts.
After measuring the total transmittance of the test piece, the test piece was placed in a constant temperature and high humidity bath at a temperature of 40° C. and a humidity of 70% for one week. Thereafter, the test piece was taken out and the total light transmittance was measured again. The difference between the total light transmittance before placing in the constant temperature and high humidity tank and the total light transmittance after placing in the constant temperature and high humidity tank was checked and judged according to the following rank. The smaller the difference, the smaller the environmental impact, and the A judgment is the best.
A: 1% or less B: More than 1% and less than 3% C: More than 3% and less than 5% D: More than 5%
<シート成形>
 各樹脂組成物を押出成形によって、220mm(幅)×320mm(長さ)×1mm(厚さ)の樹脂シートを作成した。
(評価-1:シート外観)
 樹脂シートの外観を目視観察して以下の基準で判定した。判定はAが優れる
 A:良好(問題無し)
 B:小さな不良がやや見受けられる(用途によって使用可能)
 C:小さな不良の発生領域が大きい(かなり用途を制限して使用可能)
 D:不良(製品として使用不可)
<Sheet molding>
A resin sheet of 220 mm (width) x 320 mm (length) x 1 mm (thickness) was created by extrusion molding each resin composition.
(Evaluation-1: Seat appearance)
The appearance of the resin sheet was visually observed and judged based on the following criteria. Judgment: A is excellent A: Good (no problems)
B: Some small defects are visible (can be used depending on the purpose)
C: The area where small defects occur is large (can be used with very limited applications)
D: Defective (unusable as a product)
(評価-2:読取性:2次元バーコード)
 2次元バーコード(大きさ13×13mm)と、スマートフォンを用い、両者を対面させて間隔130mmで固定した。この間に樹脂シートを挿入し、スマートフォン側から2次元バーコード側に、樹脂シートを移動させて、スマートフォンが2次元バーコードを読み取った際の、2次元バーコードから樹脂シートの距離を計測した。この距離が大きいほど、2次元バーコードの画像情報を透過しやすく、優れる。なお、NDは読取が出来なかったことを示す。
 この評価は、シートを製品(透明ケース)と見た立てて、その中に2次元バーコード付きの部品を収納した状態で、外部カメラから読み取れるか否かを想定した評価である。
(Evaluation-2: Readability: 2D barcode)
A two-dimensional barcode (size 13 x 13 mm) and a smartphone were used, and the two were fixed facing each other with an interval of 130 mm. During this time, a resin sheet was inserted, the resin sheet was moved from the smartphone side to the two-dimensional barcode side, and the distance of the resin sheet from the two-dimensional barcode when the smartphone read the two-dimensional barcode was measured. The larger this distance is, the easier it is to transmit the image information of the two-dimensional barcode, which is better. Note that ND indicates that reading was not possible.
This evaluation assumes that the sheet can be viewed as a product (transparent case) and that parts with two-dimensional barcodes stored therein can be read by an external camera.
<曲げモジュラス(剛性)>
 ISO178に従って測定した。
<Bending modulus (rigidity)>
Measured according to ISO178.
<耐薬品性(ベンディングフォーム法)>
 ペレット状の熱可塑性樹脂組成物から、ESC金型(厚み2mm、幅12mm、長さ15mm)で射出成形機(東芝機械株式会社製「IS55FP-1.5A」)を用いて試験片を成形した。この試験片を、0.2~1.6%歪率の定歪治具にセットし、その上にイソプロピルアルコール(和光純薬(株))を滴下した。その後、23℃、50%R.H.の雰囲気中に48時間放置した後に試験片を治具から取り外し、劣化及びクラックが発生する材料の臨界歪(%)を求めた。臨界歪(%)が大きいほど耐薬品性に優れる。
<Chemical resistance (bending foam method)>
A test piece was molded from a pelletized thermoplastic resin composition using an ESC mold (thickness 2 mm, width 12 mm, length 15 mm) using an injection molding machine ("IS55FP-1.5A" manufactured by Toshiba Machinery Co., Ltd.). . This test piece was set in a constant strain jig with a strain rate of 0.2 to 1.6%, and isopropyl alcohol (Wako Pure Chemical Industries, Ltd.) was dropped onto it. After that, 23°C, 50% R. H. After being left in the atmosphere for 48 hours, the test piece was removed from the jig, and the critical strain (%) of the material at which deterioration and cracking occurred was determined. The larger the critical strain (%), the better the chemical resistance.
<熱変形温度(HDT)>
 ASTM D648に準じ、荷重18.56kg/cmで熱変形温度(HDT)を測定した。試験片の厚さは、1/2インチである。
<Heat distortion temperature (HDT)>
Heat distortion temperature (HDT) was measured at a load of 18.56 kg/cm 2 according to ASTM D648. The thickness of the specimen is 1/2 inch.
[配合成分の製造・準備]
 以下の実施例及び比較例で、熱可塑性樹脂組成物の製造に用いた各成分は以下の方法で製造した。或いは、以下の市販品を用いた。
[Manufacture and preparation of ingredients]
In the following Examples and Comparative Examples, each component used for manufacturing the thermoplastic resin composition was manufactured by the following method. Alternatively, the following commercially available products were used.
<ビニル系共重合体(A-1-1)の製造>
 内容積30リットルのリボン翼を備えたステンレス製オートクレーブを2基連結し、窒素置換した後、1基目の反応容器にスチレン21部、アクリロニトリル7部、メチルメタクリレート72部、トルエン20部を連続的に添加した。分子量調節剤としてtert-ドデシルメルカプタン0.15部およびトルエン5部の溶液および重合開始剤としてジクミルパーオキサイド0.1部およびトルエン5部の溶液を連続的に供給した。1基目の重合温度は110℃にコントロールし、平均滞留時間は2.0時間であった。得られた重合体溶液は、1基目の反応容器の外部に設けられたポンプによりスチレン、アクリロニトリル、メチルメタクリレート、トルエン、分子量調節剤及び重合開始剤の供給量と同量を連続的に取り出し2基目の反応容器に供給した。2基目の反応容器の重合温度は130℃とした。2基目の反応容器で得られた共重合体溶液は、2軸3段ベント付き押出機を用いて、直接未反応単量体と溶剤を脱揮し、ビニル系共重合体(A-1-1)を得た。
 このビニル系共重合体(A-1-1)の分析結果は以下の通りであった。
 重量平均分子量(Mw):120,000
 屈折率:1.517
<Production of vinyl copolymer (A-1-1)>
Two stainless steel autoclaves each equipped with ribbon blades each having an internal volume of 30 liters were connected, and after the atmosphere was replaced with nitrogen, 21 parts of styrene, 7 parts of acrylonitrile, 72 parts of methyl methacrylate, and 20 parts of toluene were continuously added to the first reaction vessel. added to. A solution of 0.15 parts of tert-dodecyl mercaptan and 5 parts of toluene as a molecular weight regulator, and a solution of 0.1 part of dicumyl peroxide and 5 parts of toluene as a polymerization initiator were continuously fed. The polymerization temperature of the first unit was controlled at 110°C, and the average residence time was 2.0 hours. The obtained polymer solution was continuously taken out in an amount equal to the amount supplied of styrene, acrylonitrile, methyl methacrylate, toluene, a molecular weight regulator, and a polymerization initiator using a pump installed outside the first reaction vessel. It was supplied to the first reaction vessel. The polymerization temperature of the second reaction vessel was 130°C. The copolymer solution obtained in the second reaction vessel was used to directly devolatilize the unreacted monomers and solvent using a two-screw three-stage vented extruder, and then the vinyl copolymer (A-1 -1) was obtained.
The analysis results of this vinyl copolymer (A-1-1) were as follows.
Weight average molecular weight (Mw): 120,000
Refractive index: 1.517
<ビニル系共重合体(A-1-2)の製造>
 スチレン21部、アクリロニトリル13部、メチルメタクリレート67部、tert-ドデシルメルカプタン0.4部、及びジクミルパーオキサイド0.1部を用いたこと以外はビニル系共重合体(A-1-1)の製造と同様に行って、粉末状のビニル系共重合体(A-1-2)を得た。
 このビニル系共重合体(A-1-2)の分析結果は以下の通りであった。
 重量平均分子量(Mw):80,000
 屈折率:1.517
<Production of vinyl copolymer (A-1-2)>
Vinyl copolymer (A-1-1) except that 21 parts of styrene, 13 parts of acrylonitrile, 67 parts of methyl methacrylate, 0.4 parts of tert-dodecyl mercaptan, and 0.1 part of dicumyl peroxide were used. A powdered vinyl copolymer (A-1-2) was obtained in the same manner as in the production.
The analysis results of this vinyl copolymer (A-1-2) were as follows.
Weight average molecular weight (Mw): 80,000
Refractive index: 1.517
<ビニル系共重合体(A-1-3)の製造>
 分子量調節剤のtert-ドデシルメルカプタンの使用量を0.27部としたこと以外は、ビニル系共重合体(A-1-1)の製造と同様にして、ビニル系共重合体(A-1-3)を得た。
 このビニル系共重合体(A-1-3)の分析結果は以下の通りであった。
 重量平均分子量(Mw):85,000
 屈折率:1.517
<Production of vinyl copolymer (A-1-3)>
Vinyl copolymer (A-1) was produced in the same manner as in the production of vinyl copolymer (A-1-1), except that the amount of tert-dodecyl mercaptan used as a molecular weight regulator was 0.27 parts. -3) was obtained.
The analysis results of this vinyl copolymer (A-1-3) were as follows.
Weight average molecular weight (Mw): 85,000
Refractive index: 1.517
<ビニル系共重合体(A-2-1)>
 ビニル系共重合体(A-2-1)としては、株式会社日本触媒製「ポリイミレックスPML203(屈折率:1.516)」を使用した。ビニル系共重合体(A-2-1)の単量体組成(質量比率)は以下の通りであり、重量平均分子量(Mw)、ガラス転移温度(Tg)を測定したところ、以下の通りであった。
 単量体組成:メタクリル酸メチル/N-フェニルマレイミド/スチレン/=67/28/5(質量比)
 重量平均分子量(Mw):200,000
 ガラス転移温度(Tg):140℃
<Vinyl copolymer (A-2-1)>
As the vinyl copolymer (A-2-1), "Polyimilex PML203 (refractive index: 1.516)" manufactured by Nippon Shokubai Co., Ltd. was used. The monomer composition (mass ratio) of the vinyl copolymer (A-2-1) is as follows, and the weight average molecular weight (Mw) and glass transition temperature (Tg) were measured as follows. there were.
Monomer composition: methyl methacrylate/N-phenylmaleimide/styrene/=67/28/5 (mass ratio)
Weight average molecular weight (Mw): 200,000
Glass transition temperature (Tg): 140℃
<グラフト共重合体(B-1)の製造>
 攪拌機を備えた内容積10Lのセパラブルフラスコに、体積平均粒子径が280nmでありゲル含率が90%であるポリブタジエンゴム45部を含むラテックス(r-1)(固形分濃度50%)を仕込んだ後、オレイン酸カリウム0.5部、ブドウ糖0.2部、ピロリン酸ナトリウム0.2部、硫酸第一鉄0.01部及び脱イオン水100部を添加した。次いで、この混合物を攪拌しながら昇温し、メタクリル酸メチル39.1部、スチレン12.7部、アクリロニトリル3.2部、ジイソプロピルベンゼンハイドロパーオキサイド0.4部及びt-ドデシルメルカプタン0.8部からなる単量体混合物を、5時間に亘って連続的に添加しつつ、70℃で重合を行った。得られたラテックスを凝固、水洗及び乾燥に供して、グラフト化ポリブタジエンからなる微粒子と、遊離したメタクリル酸メチル・スチレン・アクリロニトリル共重合体とを含有する、粉末状のグラフト共重合体(B-1)を得た(重合転化率98%)。
 グラフト共重合体(B-1)のアセトン処理により得られたグラフト化ポリブタジエン(アセトン不溶分)のグラフト率は52%であり、体積平均粒子径は260nmであった。また、遊離したメタクリル酸メチル・スチレン・アクリロニトリル共重合体(アセトン可溶分)の屈折率は1.517、重量平均分子量は54,000であった。
<Production of graft copolymer (B-1)>
Latex (r-1) (solid content concentration 50%) containing 45 parts of polybutadiene rubber with a volume average particle diameter of 280 nm and a gel content of 90% was charged into a separable flask with an internal volume of 10 L equipped with a stirrer. Thereafter, 0.5 parts of potassium oleate, 0.2 parts of glucose, 0.2 parts of sodium pyrophosphate, 0.01 parts of ferrous sulfate, and 100 parts of deionized water were added. Next, the temperature of this mixture was raised while stirring, and 39.1 parts of methyl methacrylate, 12.7 parts of styrene, 3.2 parts of acrylonitrile, 0.4 part of diisopropylbenzene hydroperoxide, and 0.8 part of t-dodecyl mercaptan were added. Polymerization was carried out at 70° C. while continuously adding a monomer mixture consisting of the following over a period of 5 hours. The obtained latex is coagulated, washed with water, and dried to produce a powdery graft copolymer (B-1) containing fine particles of grafted polybutadiene and liberated methyl methacrylate/styrene/acrylonitrile copolymer. ) was obtained (polymerization conversion rate 98%).
The grafting rate of the grafted polybutadiene (acetone insoluble portion) obtained by acetone treatment of the graft copolymer (B-1) was 52%, and the volume average particle diameter was 260 nm. Furthermore, the liberated methyl methacrylate/styrene/acrylonitrile copolymer (acetone soluble portion) had a refractive index of 1.517 and a weight average molecular weight of 54,000.
<ポリアミドエラストマー(C)>
 ポリアミドエラストマー(C)は、ナイロン6ベースのポリエーテルエステルアミドブロックポリマーである三洋化成株式会社製「ペレスタットM-140(屈折率:1.510)」を使用した。このポリアミドエラストマー(C)について、融点を測定したところ、下記の通りであった。
 融点:192℃
<Polyamide elastomer (C)>
As the polyamide elastomer (C), "Pellestat M-140 (refractive index: 1.510)" manufactured by Sanyo Chemical Co., Ltd., which is a polyether ester amide block polymer based on nylon 6, was used. The melting point of this polyamide elastomer (C) was measured and found to be as follows.
Melting point: 192℃
<滑剤(D-1)>
 滑剤(D-1)としては、日油株式会社製「アルフローH50S」を用いた。
<Lubricant (D-1)>
As the lubricant (D-1), "Alflo H50S" manufactured by NOF Corporation was used.
<相溶化剤(E-1)>
 相溶化剤(E-1)として、アクリロニトリル/α-メチルスチレン/アクリル酸共重合体(アクリロニトリル/α-メチルスチレン/アクリル酸=20/75/5(質量比))、重量平均分子量:67,000)を用いた。
<Compatibilizer (E-1)>
As the compatibilizer (E-1), acrylonitrile/α-methylstyrene/acrylic acid copolymer (acrylonitrile/α-methylstyrene/acrylic acid = 20/75/5 (mass ratio)), weight average molecular weight: 67, 000) was used.
<その他の成分>
 ポリアミド:東レ株式会社製「アミランCM1017」
 ポリエチレングリコール:三洋化成工業株式会社製「PEG6000S」
<Other ingredients>
Polyamide: “Amilan CM1017” manufactured by Toray Industries, Inc.
Polyethylene glycol: “PEG6000S” manufactured by Sanyo Chemical Industries, Ltd.
[実施例1~24、比較例1~8]
 表1~3に示す各成分を表1~3に示す配合量で配合し、さらに、染料としてソルベントブルー97を0.00005部配合して、ヘンシェルミキサーにより23℃で混合した。得られた混合物を、30mmφ二軸押出機により押出温度230℃で溶融混練し、ストランド状に押出してペレット化した。得られた熱可塑性樹脂組成物のペレットを用いて、前述の方法により評価を行った。結果を表1~3に示す。
[Examples 1 to 24, Comparative Examples 1 to 8]
The components shown in Tables 1 to 3 were blended in the amounts shown in Tables 1 to 3, and 0.00005 parts of Solvent Blue 97 was added as a dye, and mixed at 23°C using a Henschel mixer. The obtained mixture was melt-kneaded at an extrusion temperature of 230° C. using a 30 mmφ twin-screw extruder, and extruded into strands to form pellets. Using the obtained pellets of the thermoplastic resin composition, evaluation was performed by the method described above. The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3より次のことが明らかである。
 ポリアミドエラストマー(C)を含まない比較例1,2,4では、耐薬品性が大きく劣る。
 ポリアミドエラストマー(C)を含んでいてもその配合量が少ない比較例3では、耐薬品性が劣る。
 ポリアミドエラストマー(C)の代りに、ポリアミドエラストマー(C)のハードセグメントであるポリアミドを用いた比較例5では、透明性に劣る。また、シート外観及び読取性も劣る。
 ポリアミドエラストマー(C)の代りに、ポリアミドエラストマー(C)のソフトセグメントであるポリエチレングリコールを用いた比較例6では、低流動性(シート成形性)が劣る傾向にある。しかも、透明性、シート外観、読取性、耐熱性が極端に劣る。
 ビニル系共重合体(A1)成分を含まない比較例7は、流動性の値が低すぎて成形性に劣り、また、透明性、シート外観、読取性にも劣る。
 ポリアミドエラストマー(C)を過剰に配合した比較例8は、透明性、シート外観、読取性が悪く、剛性も低い。また、耐薬品性も劣っている。
 これらの比較例で示された組成物の欠点は、成形加工などの条件設定により調整できるレベルではないため実用的ではない。
The following is clear from Tables 1 to 3.
Comparative Examples 1, 2, and 4 that do not contain polyamide elastomer (C) have significantly inferior chemical resistance.
Comparative Example 3, which contains the polyamide elastomer (C) in a small amount, has poor chemical resistance.
Comparative Example 5 in which polyamide, which is a hard segment of polyamide elastomer (C), was used instead of polyamide elastomer (C) had poor transparency. In addition, the sheet appearance and readability are also poor.
In Comparative Example 6, in which polyethylene glycol, which is a soft segment of polyamide elastomer (C), was used instead of polyamide elastomer (C), low fluidity (sheet moldability) tended to be poor. Furthermore, transparency, sheet appearance, readability, and heat resistance are extremely poor.
Comparative Example 7, which does not contain the vinyl copolymer (A1) component, has too low a fluidity value and is poor in moldability, and is also poor in transparency, sheet appearance, and readability.
Comparative Example 8 in which polyamide elastomer (C) was blended in excess had poor transparency, sheet appearance, and readability, and had low rigidity. It also has poor chemical resistance.
The drawbacks of the compositions shown in these comparative examples are not at a level that can be adjusted by setting conditions such as molding processing, so they are not practical.
 これに対し、本発明の規定を満たす実施例1~24の熱可塑性樹脂組成物は、低い流動性(シート成形性)、透明性、シート外観、読取性、耐衝撃性、耐薬品性、耐熱性のすべてにバランスよく優れている。 In contrast, the thermoplastic resin compositions of Examples 1 to 24 that meet the specifications of the present invention have low fluidity (sheet formability), transparency, sheet appearance, readability, impact resistance, chemical resistance, and heat resistance. Excellent balance in all aspects.
 ポリアミドエラストマー(C)を十分に含んでいてもグラフト共重合体(B)が多い実施例7では、耐熱性が他の実施例よりわずかに劣る。ビニル共重合体(A1)が多い実施例8では、シート成形性が劣る傾向にあるが、これらはいずれも実用レベルである。
 ポリアミドエラストマー(C)を比較的多く含む実施例9では、他の実施例より剛性が劣る傾向にあるものの、用途によっては使用可能である。
 重量平均分子量が80,000のビニル系共重合体(A-1-2)を用いた実施例10では、低流動性(シート成形性)、耐薬品性に劣る傾向にあるが、使用可能である。
In Example 7, which contains a large amount of the graft copolymer (B) even though it contains a sufficient amount of the polyamide elastomer (C), the heat resistance is slightly inferior to the other examples. In Example 8, which contains a large amount of vinyl copolymer (A1), sheet formability tends to be poor, but these are all at a practical level.
Although Example 9, which contains a relatively large amount of polyamide elastomer (C), tends to have lower rigidity than other Examples, it can be used depending on the application.
Example 10 using a vinyl copolymer (A-1-2) with a weight average molecular weight of 80,000 tends to have low fluidity (sheet formability) and poor chemical resistance, but can be used. be.
 実施例11~24では、低い流動性(シート成形性)、透明性、耐衝撃性、耐薬品性、耐熱性のすべてにバランスよく優れている。しかも、全線透過率の環境影響も小さく、シート外観も優れ、読取性(距離)においても優れている。このため、フォトマスクケース等の用途にも好適に使用できる。 Examples 11 to 24 are excellent in low fluidity (sheet formability), transparency, impact resistance, chemical resistance, and heat resistance in a well-balanced manner. Furthermore, the environmental impact of the total light transmittance is small, the sheet appearance is excellent, and the readability (distance) is also excellent. Therefore, it can be suitably used for applications such as photomask cases.
 なお、ポリアミドエラストマー(C)は、帯電防止性の効果も期待される。例えば、実施例23の熱可塑性樹脂組成物のペレットを成形して得られた円板(直径100mm、厚さ2mm)を、温度23℃、湿度50%RHの条件下で1日間放置した後、印加電圧500Vで表面固有抵抗(Ω)を測定したところ、5×1010と良好な値を示した。 Note that the polyamide elastomer (C) is also expected to have an antistatic effect. For example, after leaving a disc (diameter 100 mm, thickness 2 mm) obtained by molding pellets of the thermoplastic resin composition of Example 23 under conditions of a temperature of 23° C. and a humidity of 50% RH for one day, When the surface resistivity (Ω) was measured at an applied voltage of 500 V, it showed a good value of 5×10 10 .
 本発明を特定の態様を用いて詳細に説明したが、発明の効果が奏される範囲内で様々な変更が可能であることは当業者に明らかである。
 本出願は、2022年9月16日付で出願された日本特許出願2022-148261に基づいており、その全体が引用により援用される。

 
Although the present invention has been described in detail using specific embodiments, it is clear to those skilled in the art that various changes can be made within the scope of achieving the effects of the invention.
This application is based on Japanese Patent Application No. 2022-148261 filed on September 16, 2022, and is incorporated by reference in its entirety.

Claims (8)

  1.  芳香族ビニル系単量体(a1)及び(メタ)アクリル酸エステル系単量体(a2)を含有するビニル系単量体混合物(ma)を共重合してなるビニル系共重合体(A)と、
     ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)及びシアン化ビニル系単量体(b3)を含有するビニル系単量体混合物(mb)をグラフト共重合してなるゴム強化グラフト共重合体(B)と、
     ポリアミドエラストマー(C)と
    を含む熱可塑性樹脂組成物であって、
     ビニル系共重合体(A)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含有するビニル系単量体混合物(ma1)を共重合してなり、重量平均分子量が50,000~300,000であるビニル系共重合体(A1)を含み、
     ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、
     ビニル系共重合体(A)とゴム強化グラフト共重合体(B)とを合計で60~92質量部、
     ポリアミドエラストマー(C)を8~40質量部
    含有する熱可塑性樹脂組成物。
    Vinyl copolymer (A) obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2) and,
    Contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a cyanide vinyl monomer (b3) in the presence of a rubbery polymer (r). A rubber-reinforced graft copolymer (B) obtained by graft copolymerizing a vinyl monomer mixture (mb);
    A thermoplastic resin composition comprising a polyamide elastomer (C),
    The vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). A vinyl copolymer (A1) obtained by copolymerizing a monomer mixture (ma1) and having a weight average molecular weight of 50,000 to 300,000,
    For a total of 100 parts by mass of the vinyl copolymer (A), rubber reinforced graft copolymer (B) and polyamide elastomer (C),
    A total of 60 to 92 parts by mass of the vinyl copolymer (A) and the rubber-reinforced graft copolymer (B),
    A thermoplastic resin composition containing 8 to 40 parts by mass of polyamide elastomer (C).
  2.  ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、
     ビニル系共重合体(A)を20~65質量部、ゴム強化グラフト共重合体(B)を5~72質量部、ポリアミドエラストマー(C)を8~30質量部含有する、請求項1に記載の熱可塑性樹脂組成物。
    For a total of 100 parts by mass of the vinyl copolymer (A), rubber reinforced graft copolymer (B) and polyamide elastomer (C),
    Claim 1, which contains 20 to 65 parts by mass of the vinyl copolymer (A), 5 to 72 parts by mass of the rubber-reinforced graft copolymer (B), and 8 to 30 parts by mass of the polyamide elastomer (C). thermoplastic resin composition.
  3.  芳香族ビニル系単量体(a1)及び(メタ)アクリル酸エステル系単量体(a2)を含有するビニル系単量体混合物(ma)を共重合してなるビニル系共重合体(A)と、
     ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)及びシアン化ビニル系単量体(b3)を含有するビニル系単量体混合物(mb)をグラフト共重合してなるゴム強化グラフト共重合体(B)と、
     ポリアミドエラストマー(C)と
    を含む熱可塑性樹脂組成物であって、
     ビニル系共重合体(A)は、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含有するビニル系単量体混合物(ma1)を共重合してなり、重量平均分子量が100,000~250,000であるビニル系共重合体(A1)を含み、
     ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、
     ビニル系共重合体(A)を20~40質量部、ゴム強化グラフト共重合体(B)を47~65質量部、
     ポリアミドエラストマー(C)を8~13質量部、
     ビニル系共重合体(A1)を35質量部以下
    含有する、請求項1に記載の熱可塑性樹脂組成物。
    Vinyl copolymer (A) obtained by copolymerizing a vinyl monomer mixture (ma) containing an aromatic vinyl monomer (a1) and a (meth)acrylic acid ester monomer (a2) and,
    Contains at least an aromatic vinyl monomer (b1), a (meth)acrylic acid ester monomer (b2), and a cyanide vinyl monomer (b3) in the presence of a rubbery polymer (r). A rubber-reinforced graft copolymer (B) obtained by graft copolymerizing a vinyl monomer mixture (mb);
    A thermoplastic resin composition comprising a polyamide elastomer (C),
    The vinyl copolymer (A) is a vinyl copolymer containing an aromatic vinyl monomer (a1), a (meth)acrylic acid ester monomer (a2), and a vinyl cyanide monomer (a3). A vinyl copolymer (A1) obtained by copolymerizing a monomer mixture (ma1) and having a weight average molecular weight of 100,000 to 250,000,
    For a total of 100 parts by mass of the vinyl copolymer (A), rubber reinforced graft copolymer (B) and polyamide elastomer (C),
    20 to 40 parts by mass of vinyl copolymer (A), 47 to 65 parts by mass of rubber reinforced graft copolymer (B),
    8 to 13 parts by mass of polyamide elastomer (C),
    The thermoplastic resin composition according to claim 1, containing 35 parts by mass or less of the vinyl copolymer (A1).
  4.  前記ビニル系共重合体(A)は、さらに、芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びマレイミド系単量体(a4)を含有するビニル系単量体混合物(ma2)を共重してなり、重量平均分子量が100,000~250,000であるビニル系共重合体(A2)を含有し、
     ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)及びポリアミドエラストマー(C)の合計100質量部に対して、ビニル系共重合体(A2)を20質量部以下含有する、請求項1に記載の熱可塑性樹脂組成物。
    The vinyl copolymer (A) further contains a vinyl aromatic monomer (a1), a (meth)acrylic acid ester monomer (a2), and a maleimide monomer (a4). A vinyl copolymer (A2) formed by copolymerizing a monomer mixture (ma2) and having a weight average molecular weight of 100,000 to 250,000,
    A claim containing 20 parts by mass or less of the vinyl copolymer (A2) based on a total of 100 parts by mass of the vinyl copolymer (A), the rubber-reinforced graft copolymer (B), and the polyamide elastomer (C). Thermoplastic resin composition according to item 1.
  5.  前記ビニル系共重合体(A)、ゴム強化グラフト共重合体(B)のアセトン可溶分、及びポリアミドエラストマー(C)の屈折率が1.505~1.520の範囲であり、
     これら各成分の屈折率差が0.03以下である、請求項1に記載の熱可塑性樹脂組成物。
    The refractive index of the vinyl copolymer (A), the acetone-soluble content of the rubber-reinforced graft copolymer (B), and the polyamide elastomer (C) is in the range of 1.505 to 1.520,
    The thermoplastic resin composition according to claim 1, wherein the difference in refractive index of each of these components is 0.03 or less.
  6.  該熱可塑性樹脂組成物のアセトン可溶分100質量%中のシアン化ビニル系単量体成分の含有量が0.5~10質量%である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the content of the vinyl cyanide monomer component in 100% by mass of the acetone soluble content of the thermoplastic resin composition is 0.5 to 10% by mass.
  7.  請求項1ないし6のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。 A molded article made of the thermoplastic resin composition according to any one of claims 1 to 6.
  8.  シート状成形品である、請求項7に記載の成形品。

     
    The molded article according to claim 7, which is a sheet-like molded article.

PCT/JP2023/030921 2022-09-16 2023-08-28 Thermoplastic resin composition and molded article thereof WO2024057891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022148261 2022-09-16
JP2022-148261 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024057891A1 true WO2024057891A1 (en) 2024-03-21

Family

ID=90275031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030921 WO2024057891A1 (en) 2022-09-16 2023-08-28 Thermoplastic resin composition and molded article thereof

Country Status (1)

Country Link
WO (1) WO2024057891A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292353A (en) * 1989-05-02 1990-12-03 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JP2006219643A (en) * 2005-02-14 2006-08-24 Techno Polymer Co Ltd Thermoplastic resin composition and molded article
JP2016175971A (en) * 2015-03-19 2016-10-06 東レ株式会社 Thermoplastic resin composition
JP2017145365A (en) * 2016-02-19 2017-08-24 東レ株式会社 Thermoplastic resin composition, method for producing the same, and molded product
JP2021091836A (en) * 2019-12-12 2021-06-17 東レ株式会社 Modified vinyl-based copolymer, method for producing the same, thermoplastic resin composition containing the same, and molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292353A (en) * 1989-05-02 1990-12-03 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JP2006219643A (en) * 2005-02-14 2006-08-24 Techno Polymer Co Ltd Thermoplastic resin composition and molded article
JP2016175971A (en) * 2015-03-19 2016-10-06 東レ株式会社 Thermoplastic resin composition
JP2017145365A (en) * 2016-02-19 2017-08-24 東レ株式会社 Thermoplastic resin composition, method for producing the same, and molded product
JP2021091836A (en) * 2019-12-12 2021-06-17 東レ株式会社 Modified vinyl-based copolymer, method for producing the same, thermoplastic resin composition containing the same, and molding

Similar Documents

Publication Publication Date Title
JP2007016123A (en) Flame retardant thermoplastic resin composition and molded product thereof
JPS63146960A (en) Thermoplastic resin composition
TW200831591A (en) Resin composition and molded body thereof
WO2004003075A1 (en) Glass fiber filled thermoplastic compositions with good surface appearance
WO2024057891A1 (en) Thermoplastic resin composition and molded article thereof
JP2006169356A (en) Flame-retardant thermoplastic resin composition and molded product therefrom
JPH01308444A (en) Thermoplastic resin composition
JP2007023098A (en) Thermoplastic resin composition and its molded article
JP2745572B2 (en) Thermoplastic resin composition
JPS6047304B2 (en) New thermoplastic resin composition
JP2021091836A (en) Modified vinyl-based copolymer, method for producing the same, thermoplastic resin composition containing the same, and molding
JP2007291161A (en) Thermoplastic resin composition and molded product comprising the same
JP6662085B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
JP4674712B2 (en) Transparent durable antistatic thermoplastic resin composition with excellent impact resistance
JPH11279370A (en) Slidable thermoplastic resin composition and molding made therefrom
JP2517635B2 (en) Thermoplastic resin composition
JPH10204251A (en) Thermoplastic resin composition excellent in sliding property
JP5632447B2 (en) Thermoplastic resin composition and molded article thereof
JP2004067753A (en) Thermoplastic resin composition and molding made from the composition
JP2001152011A (en) Thermoplastic resin composition
JP4363734B2 (en) Thermoplastic resin composition
JPS63235350A (en) Resin composition
JP2002212383A (en) Thermoplastic resin composition
JP2005281514A (en) Transparent thermoplastic resin composition for extrusion molding and molded article
JP2005194369A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865248

Country of ref document: EP

Kind code of ref document: A1