WO2024057800A1 - Method for controlling mobile object, transport device, and work system - Google Patents

Method for controlling mobile object, transport device, and work system Download PDF

Info

Publication number
WO2024057800A1
WO2024057800A1 PCT/JP2023/029395 JP2023029395W WO2024057800A1 WO 2024057800 A1 WO2024057800 A1 WO 2024057800A1 JP 2023029395 W JP2023029395 W JP 2023029395W WO 2024057800 A1 WO2024057800 A1 WO 2024057800A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature
real space
work
machine learning
moving body
Prior art date
Application number
PCT/JP2023/029395
Other languages
French (fr)
Japanese (ja)
Inventor
慎司 今井
一真 ▲高▼原
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2024057800A1 publication Critical patent/WO2024057800A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Definitions

  • the present invention relates to controlling the operation of a moving body for transporting objects.
  • Patent Document 1 discloses a mechanical system including a machine learning device for removing a workpiece from a basket by a robot.
  • the machine learning device uses simulation by a simulator to train a machine learning model.
  • a given position such as a target position is used as a reference point to control the position of the moving body.
  • the control device can recognize the positional relationship between the moving body and the reference point.
  • the position of a marker installed in real space or the position or pattern of a given location of an existing device is used as a reference point. used.
  • the control device detects the marker and controls the motion of the moving body based on the detected position of the marker to control the movement of the moving body in real space.
  • a reference point used as a position reference such as the presence of objects other than objects and moving objects. If the object is not detected in real space, a position reference cannot be obtained, making it difficult to control the movement of the moving object.
  • the present invention was devised in view of the above circumstances, and its purpose is to provide a technique for reliably realizing control of the motion of a moving body using simulation results.
  • a method for controlling a moving body includes a step of generating a machine learning model for generating a motion plan of the moving body for transporting a target object based on the position of the first feature in the simulation space. a step of identifying the position of the second feature in the real space; and a relationship between the position of the second feature in the real space and the position in the real space corresponding to the position of the first feature in the simulation space. and generating a motion plan for the moving object by applying the position and relationship in real space of the second feature to a machine learning model, and controlling the motion of the moving object according to the generated motion plan. and a step of doing so.
  • a conveying device generates a machine learning model for generating a motion plan for the moving body based on the moving body for conveying a target object and the position of the first feature in the simulation space.
  • a controller a data acquisition unit that acquires data for specifying the position of the second feature in the real space; and a data acquisition unit that obtains data for specifying the position of the second feature in the real space; and a memory for storing a relationship between the position in the space and the position in the space
  • the controller uses the data acquired by the data acquisition unit to specify the position in the real space of the second feature, and the controller identifies the position in the real space of the second feature.
  • a motion plan for the moving body is generated by applying the positions and relationships of the parts in real space to a machine learning model, and the moving body is operated according to the generated motion plan.
  • control of the motion of a moving object using simulation results is reliably realized.
  • FIG. 1 is a diagram for explaining an overview of a work system in an embodiment.
  • FIG. 1 is a diagram showing an example of a hardware configuration of a work system in an embodiment.
  • 3 is a flowchart of processing executed by the management device 100.
  • 3 is a diagram schematically showing an example of a simulation space defined by a simulator unit 112.
  • FIG. 3 is a flowchart of a subroutine of the transport process in step S3.
  • FIG. 1 is a diagram for explaining an overview of a work system in an embodiment.
  • the work system 1 in the embodiment includes a controlled device group 200 and a management device 100.
  • the controlled device group 200 includes a transfer robot 230, a working device 220, and a working device 240.
  • the transport robot 230 uses the arm 232 to transport the well plate 5 from the working device 220 to the target position Tp in the working device 240.
  • Arm 232 is an example of a "moving body" in the present disclosure.
  • the arm 232 is configured as a part of the transfer robot 230, and the arm 232 moves as the transfer robot 230 moves. In this sense, the transport robot 230 itself can be interpreted as an example of a "moving object.”
  • the well plate 5 accommodates samples used by the working device 220 and the working device 240.
  • the well plate 5 containing the sample is an example of the "object" in the present disclosure.
  • Each of the work device 220 and the work device 240 is an example of a device for work using a sample transported by the transport robot 230.
  • the working device 220 is a rack that holds the well plate 5.
  • the working device 240 is a dispensing device for dispensing the sample accommodated in the well plate 5.
  • a system for a bacterial culture experiment is adopted as an example of the work system 1
  • an experiment is adopted as an example of work on a target object
  • an apparatus for experiment is adopted as the work device.
  • the work on the object is not limited to experiments. Any type of work, such as metal processing, can be employed as the work on the object. Therefore, as the working device, any type of device that performs work on a target object can be employed, in addition to the device for experiments.
  • the management device 100 controls the operations of the transport robot 230, the work device 220, and the work device 240.
  • Management device 100 is an example of a controller.
  • the transport device 300 is a device that includes a management device 100 and a transport robot 230.
  • the transfer robot 230 is a six-axis vertically articulated robot with one arm. More specifically, the transfer robot 230 includes a main body 231, an arm 232, a gripper 233, and an imaging section 234. The main body portion 231 holds an arm 232. The arm 232 transports the well plate 5 from the working device 220 to the target position Tp in the working device 240. The gripper 233 is provided at the tip of the arm 232 and grips the well plate 5. Arm 232 includes one or more movable parts 8. By moving one or more movable parts 8, the arm 232 can move up and down, left and right, and back and forth. Thereby, the well plate 5 is transported by the arm 232 from the working device 220 to the target position Tp in the working device 240.
  • the controlled device group 200 includes a plurality of work devices, and the transport robot 230 transports an object (well plate) from one work device among the plurality of work devices to another work device. do.
  • the controlled device group 200 may be composed of a single working device, and the transport robot 230 may transport the object from one position to another within the single working device. .
  • the imaging unit 234 is provided on the arm 232 and acquires an image of the imaging target.
  • the operations of the arm 232, the gripper 233, and the imaging section 234 are controlled by the management device 100.
  • the mark Tm indicates the target position Tp. Furthermore, marks Rm1, Rm2, and Rm3 are pasted on objects around the transport robot 230.
  • the mark Rm1 indicates the reference position Rp1
  • the mark Rm2 indicates the reference position Rp2
  • the mark Rm3 indicates the reference position Rp3.
  • Each of the reference positions Rp1, Rp2, and Rp3 is located at a different location from the target position Tp.
  • mark Rm1, mark Rm2, and mark Rm3 will be referred to as "mark Rm” when attention is focused on their common property (indicating a reference position) and they do not need to be distinguished from each other.
  • the mark Rm may have any pattern as long as it can identify the posture of the mark Rm, such as an AR marker or a QR code (registered trademark).
  • "posture” includes position (relative position of the marker with respect to "imaging unit 234" described later) and orientation.
  • Mark Rm1, mark Rm2, and mark Rm3 are distinguishable from each other. For example, when mark Rm1, mark Rm2, and mark Rm3 are realized as QR codes, they are realized as QR codes having mutually different information.
  • the reference position Rp is located at a different location from the target position Tp.
  • the reference position Rp1, the reference position Rp2, and the reference position Rp3 will be focused on the common property (that they are reference positions), and if they do not need to be distinguished from each other, they will be referred to as "reference position Rp". It is called.
  • the target position Tp is an example of the first characteristic part
  • the reference position Rp is an example of the second characteristic part.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the work system in the embodiment.
  • the work system 1 includes a transport device 300, a work device 220, and a work device 240.
  • the transport device 300 includes a transport robot 230 and a management device 100.
  • the management device 100 is configured by, for example, a general-purpose computer.
  • the management device 100 includes a processor 101, a memory 102, a storage 103, an interface 104, a display 105, and an input device 106.
  • the processor 101 executes various programs in order for the management device 100 to perform various processes.
  • the processor 101 is composed of hardware elements such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit).
  • the processor 101 functions as a machine learning section 111, a simulator section 112, an information generation section 113, and a transport control section 114 by executing a given program.
  • the machine learning unit 111 performs processing for machine learning of a model for generating a motion plan for the arm 232.
  • the motion plan for arm 232 includes information that defines motion (eg, distance and/or speed of movement in each of three axes) of arm 232.
  • the operation plan of the arm 232 is the operation of elements other than the arm 232 (the gripper 233, the motor for rotating the wheels attached to the main body 231, etc.), and the operation plan of the arm 232 for conveying the object. may include information specifying actions that contribute to the actions of the user.
  • the simulator unit 112 performs a simulation of the operation of the arm 232 in the simulation space.
  • the simulator unit 112 generates time series data of the position of the arm 232.
  • the information generation unit 113 generates "positional relationship information" which will be described later.
  • the transport control unit 114 controls the operation of the transport robot 230 for transporting the well plate 5.
  • the memory 102 functions as a main storage device, and is configured with a volatile storage device such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory).
  • a volatile storage device such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory).
  • the storage 103 stores programs executed by the processor 101 and various data necessary for executing the programs, and is configured with a nonvolatile storage device such as an SSD (Solid State Drive) and/or a flash memory.
  • a nonvolatile storage device such as an SSD (Solid State Drive) and/or a flash memory.
  • the program may be provided not as a standalone program but as a part of any program.
  • the processing according to this embodiment is realized in cooperation with an arbitrary program. Even if the program does not include such a part of the module, it does not depart from the spirit of the management device 100 according to the present embodiment. Further, some or all of the functions provided by the program may be realized by dedicated hardware.
  • the data stored in the storage 103 includes a machine learning model 131.
  • Machine learning model 131 includes data (for example, values of one or more parameters that are learning results of the machine learning model) that constitute a machine learning model for generating a motion plan for arm 232.
  • the data stored in the storage 103 further includes positional relationship information 132.
  • the positional relationship information 132 indicates the positional relationship between two or more marks in real space.
  • the interface 104 relays communication between the management device 100 and external devices (for example, the transfer robot 230, the work device 220, the work device 240, etc.).
  • external devices for example, the transfer robot 230, the work device 220, the work device 240, etc.
  • the display 105 displays the results of the arithmetic processing by the processor 101, and the input device 106 (eg, mouse, keyboard, touch sensor, etc.) accepts data input operations to the processor 101.
  • the input device 106 eg, mouse, keyboard, touch sensor, etc.
  • the transport robot 230 includes an imaging section 234, an interface 235, a motor unit 236, and a driver unit 237.
  • the interface 235 relays communication between the transport robot 230 and the management device 100.
  • Motor unit 236 includes a motor associated with each of one or more movable parts 8.
  • Driver unit 237 includes a driver that drives each of the plurality of motors included in motor unit 236.
  • FIG. 3 is a flowchart of processing executed by the management device 100. In one implementation, the process of FIG. 3 is accomplished by processor 101 executing a given program.
  • the management device 100 performs a learning process for the machine learning model 131 in step S1, performs a positional relationship information generation process (generates positional relationship information 132) in step S2, Then, in step S3, a transport process for controlling the transport operation of the well plate 5 by the arm 232 is performed.
  • a learning process for the machine learning model 131 in step S1 performs a positional relationship information generation process (generates positional relationship information 132) in step S2
  • step S3 a transport process for controlling the transport operation of the well plate 5 by the arm 232 is performed.
  • the contents of each step will be explained in detail below.
  • Step S1 Learning Process
  • a reinforcement learning algorithm is used.
  • machine learning model 131 is trained according to a reinforcement learning algorithm.
  • an agent selects various actions a under a certain state s, and is rewarded for the action a at that time.
  • the machine learning model 131 is trained so that the agent learns a better action choice, ie, the correct value Q(s,a).
  • arm 232 is employed as the agent.
  • the motion plan of arm 232 is adopted as state s.
  • An example of data constituting the operation plan is the position where the transport robot 230 starts gripping the well plate 5, the movement path of the arm 232, and/or the position where the transport robot 230 ends gripping the well plate 5 (well plate 5 mounting positions).
  • the result of transporting the well plate 5 (success/failure) is adopted.
  • the machine learning unit 111 determines the result of transporting the well plate 5.
  • ⁇ Failure'' is identified as ⁇ failure''.
  • the machine learning unit 111 causes the simulator unit 112 to simulate the motion of the arm 232 according to each of a plurality of motion plans (state s).
  • FIG. 4 is a diagram schematically showing an example of a simulation space defined by the simulator section 112.
  • Simulation space 900 includes elements 905, 920, 930, and 940.
  • Element 905 corresponds to well plate 5 in real space.
  • Element 920 corresponds to work device 220 in real space.
  • Element 930 corresponds to transfer robot 230 in real space.
  • Element 940 corresponds to work device 240 in real space.
  • Element 930 includes elements 931, 932, and 933. Each of the elements 931, 932, and 933 corresponds to the main body 231, the arm 232, and the gripper 233 in real space.
  • Element Xp corresponds to target position Tp in real space.
  • the motion plan causes element 930 to transport element 905 from element 920 to element 940 (more specifically to the location specified by element Xp).
  • element 930 transports element 905 from element 920 to element 940.
  • the machine learning unit 111 obtains the results (rewards) of each movement (simulation) according to a plurality of movement plans. Then, the machine learning unit 111 performs a learning process on the machine learning model 131 using the combination of the state s and reward regarding each of the plurality of motion plans.
  • the method for generating the machine learning model 131 is not limited to using the reinforcement learning algorithm described above.
  • the machine learning model 131 searches for a trajectory according to a rule-based method using information that specifies a movement route prepared using a given method (e.g., grasp start point, grasp end point, and passing point). (For example, a search for a trajectory connecting each of the above points) may be performed.
  • Step S2 Positional relationship information generation process
  • information specifying the positional relationship between at least one of the reference positions Rp1, Rp2, and Rp3 and the target position Tp is generated. generated.
  • the information generation unit 113 images the mark Rm using the imaging unit 234, identifies the orientation of the mark Rm in the captured image, and identifies the position of the reference position Rp in real space based on the orientation of the mark Rm. . Furthermore, the information generation unit 113 images the mark Tm using the imaging unit 234, identifies the orientation of the mark Tm in the captured image, and identifies the position of the target position Tp in the real space based on the orientation of the mark Tm. The information generation unit 113 then generates positional relationship information as data representing the relationship between the reference position Rp and the target position Tp in the real space. The generated positional relationship information is stored in the storage 103 as positional relationship information 132. An example of positional relationship information is the difference between the coordinates of the reference position Rp in real space and the coordinates of target position Tp in real space.
  • the information generation unit 113 specifies the respective positions of the reference positions Rp1, Rp2, and Rp3 in the real space, and determines the relationship between the position of the reference position Rp1 and the position of the target position Tp as positional relationship information.
  • data representing the relationship between the reference position Rp2 and the target position Tp, and data representing the relationship between the reference position Rp3 and the target position Tp may be generated. .
  • Step S3 Conveyance Processing
  • FIG. 5 is a flowchart of the subroutine of the conveyance process in Step S3.
  • step S31 the processor 101 instructs the transport robot 230 to start searching for the mark Rm. More specifically, the processor 101 instructs the imaging unit 234 to start imaging, and instructs the drivers corresponding to each of the one or more movable parts 8 to start driving the motor. Thereby, imaging by the imaging unit 234 is started, and the arm 232 moves up and down, left and right, and back and forth. The imaging unit 234 transmits the acquired image to the processor 101.
  • step S32 the processor 101 determines whether the mark Rm has been found.
  • the processor 101 determines that the mark Rm has been found when the image transmitted from the imaging unit 234 includes pixels indicating the mark Rm. If the mark Rm is found (YES in step S32), the processor 101 advances the control to step S33.
  • step S33 the processor 101 instructs the transport robot 230 to end the search for the mark Rm. More specifically, the processor 101 instructs the imaging unit 234 to end imaging, and instructs the drivers corresponding to each of the one or more movable parts 8 to stop driving the motor. As a result, the arm 232 stops at the attitude (position and orientation) at the timing when the mark Rm was found.
  • step S34 the processor 101 instructs the imaging unit 234 to take an image.
  • the captured image includes pixels indicating the mark Rm.
  • the processor 101 may bring the imaging unit 234 (arm 232) closer to the mark Rm before instructing the imaging unit 234 to take an image in step S34.
  • the captured image can include more detailed information about the mark Rm.
  • step S35 the processor 101 identifies the position of the reference position Rp in real space using the image captured according to the command in step S34. More specifically, the processor 101 identifies the orientation of the mark Rm in the image, and identifies the position of the reference position Rp in the real space based on the identified orientation and the position of the imaging unit 234 in the real space. .
  • step S36 the processor 101 reads the positional relationship information 132 from the storage 103.
  • step S37 the processor 101 derives the position of the target position in real space.
  • the processor 101 uses the positional relationship information and the position of the reference position Rp (identified in step S35) in the real space.
  • the processor 101 derives the coordinates of the target position in the real space by adding the coordinates stored as positional relationship information to the coordinates of the reference position Rp in the real space, and The coordinates are treated as the location of the target location in real space. Theoretically, the derived target position coincides with the target position Tp shown in FIG.
  • step S38 the processor 101 generates a motion plan for the transport robot 230 using the position derived in step S37 (the position of the target position in real space). More specifically, processor 101 generates a motion plan using machine learning model 131. More specifically, the processor 101 inputs the position derived in step S37 (the position of the target position in real space) as the target position for transporting the well plate 5 to the machine learning model 131, and generate a motion plan.
  • step S39 the processor 101 operates the transfer robot 230 (arm 232) according to the operation plan generated in step S38. More specifically, the processor 101 instructs the transfer robot 230 to operate according to the operation plan. Thereafter, processor 101 returns control to the process of FIG. 3.
  • the position of the second feature part in real space (the position of the reference position Rm) is identified.
  • a relationship (positional relationship information) between the position of the second feature part in real space and the position in real space corresponding to the position of the first feature part in the simulation space (the position identified by the element Xp) is acquired.
  • the machine learning model generates a motion plan for the moving body using the position of the second feature part in real space and the above relationship. That is, when generating the motion plan, the position in real space corresponding to the position of the first feature part in the simulation space is indirectly identified, so there is no need to directly detect the position of the first feature part in real space. Therefore, even if there is something that may be an obstacle to detecting the position of the first feature part in real space, a situation in which it becomes difficult to control the motion of the moving body is avoided. Therefore, control of the motion of the moving body is reliably realized.
  • the reference position Rp used together with the positional relationship information in step S37 may be singular or plural. That is, the marker indicating the reference position Rp may be composed of one element (for example, any one of the marks Rm1, Rm2, Rm3), or may be composed of a plurality of elements (for example, the marks Rm1, Rm2, Rm3). (two or more of the following).
  • step S34 the processor 101 performs control to capture an image including pixels indicating the mark Rm1, an image including pixels indicating the mark Rm2, and an image including pixels indicating the mark Rm3.
  • step S35 control is performed to specify the positions of the reference positions Rp1, Rp2, and Rp3 in the real space.
  • step S37 the processor 101 derives a first temporary target position using the positional relationship information and the position of the reference position Rp1 in the real space, and derives the first temporary target position using the positional relationship information and the position of the reference position Rp2 in the real space.
  • a second temporary target position is derived using the above, and a third temporary target position is derived using the positional relationship information and the position of the reference position Rp3 in the real space. Then, the processor 101 derives the final position of the target position in real space as the average value of the first to third temporary target positions (for example, the average value of coordinates).
  • the mark Rm indicating the reference position Rp is affixed to the work devices 220 and 240. That is, the mark Rm is configured separately from the working devices 220 and 240.
  • the processor 101 recognizes pixels corresponding to the image information registered as the mark Rm from the image captured by the imaging unit 234.
  • the mark Rm may be formed by a portion of the work device 220 and/or the work device 240 (for example, a logo portion of the manufacturer of the work device attached to the work device).
  • the storage 103 may store image information for identifying part of the work device 220 and/or the work device 240 as the mark Rm.
  • the processor 101 uses the image captured by the imaging unit 234 and the image information stored in the storage 103 to identify the posture of the portion, and the position of the portion in real space. Good too.
  • an image captured by the imaging unit 234 is used as a method for specifying the position of the second feature point in real space.
  • the imaging unit 234 is an example of a data acquisition unit that acquires data for specifying the position of the second feature in real space.
  • the method for specifying the position of the second feature point in real space may be a method other than the method using a captured image, such as a method using a beacon.
  • a beacon receiver may be installed in the transport robot 230.
  • the second feature may be comprised of a plurality of beacons.
  • the processor 101 may identify the position of the second characteristic portion in real space based on the reception strength of the signal from each of a plurality of (three or more) beacons.
  • the receiver that receives the signal from the beacon constitutes an example of a data acquisition unit that acquires data for specifying the position of the second feature in real space.
  • a method for controlling a moving object includes a machine learning model for generating a motion plan for the moving object for transporting a target object based on the position of the first feature in the simulation space. a step of identifying a position of the second feature in real space; a position of the second feature in real space; and a position in real space corresponding to the position of the first feature in simulation space. , and generating a motion plan for the moving body by applying the position of the second feature in real space and the positional relationship to the machine learning model; The method may further include the step of controlling the motion of the mobile body according to the motion plan determined.
  • the operation of the moving body can be reliably controlled using the results of the simulation.
  • the second characteristic portion may include a part of a working device for working using the target object.
  • the number of types of components used to implement the control method is minimized.
  • the second characteristic portion includes a marker configured separately from a work device for work using the target object. You can stay there.
  • an element having a structure or form suitable for use as the second feature can be used as the second feature.
  • the second characteristic portion may include a plurality of mutually distinguishable elements.
  • the position of the second characteristic part in the real space can be specified using the position of each of the plurality of elements, and thereby the position of the second characteristic part
  • the accuracy with which a position in real space is specified can be improved.
  • the learning process of a machine learning model for generating a complex motion plan can be easily performed.
  • the position of the second feature in real space and the positional relationship are applied to the machine learning model.
  • the method may include deriving a position in the real space corresponding to a position of the first feature in the simulation space from a position of the second feature in the real space using the positional relationship.
  • the position of the second characteristic part in real space and the method of using the above relationship can be specifically presented.
  • the conveying device includes a moving body for conveying a target object, and machine learning for generating a motion plan for the moving body based on the position of the first characteristic part in the simulation space.
  • a controller that generates a model;
  • a data acquisition unit that acquires data for specifying the position of the second feature in real space; and a simulation space of the position of the second feature in real space and the first feature.
  • a motion plan of the moving body is generated by specifying the position of the second feature in the real space and the positional relationship to the machine learning model, and the movement is performed according to the generated motion plan. You can also move your body.
  • control of the movement of the moving body using the simulation results is reliably realized.
  • the controller may recognize, as the second characteristic part, a part of a working device for work using the target object.
  • the number of types of components used for transporting the moving body can be minimized.
  • the controller recognizes, as the second characteristic part, a marker configured separately from the work device for work using the target object. You may.
  • an element having a structure and form suitable for use as the second feature can be used as the second feature.
  • the controller may recognize each of a plurality of mutually distinguishable elements as the second characteristic portion. .
  • the position of the second characteristic part in the real space can be specified using the position of each of the plurality of elements, and thereby, the position of the second characteristic part in the real space can be specified.
  • the accuracy with which the location is determined may be improved.
  • applying the position of the second feature in real space and the positional relationship to the machine learning model may include The method may include deriving a position in the real space corresponding to a position of the first feature in the simulation space from a position of the second feature in the real space using a positional relationship.
  • the position of the second characteristic portion in real space and the method of utilizing the above relationship can be specifically presented.
  • a work system includes the transport device described in any one of Paragraphs 7 to 12, and a work device for work using an object transported by the transport device. , may be provided.
  • control of the movement of a moving body using the simulation results is reliably realized.
  • the work system according to Item 13 may further include one or more elements constituting the second feature, which are configured separately from the work device.
  • the work system can be constructed more reliably.
  • the embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive.
  • the scope of the present disclosure is indicated by the claims rather than the description of the embodiments described above, and it is intended that all changes within the meaning and range equivalent to the claims are included.
  • each technique in the embodiments can be implemented alone or in combination with other techniques in the embodiments as necessary.
  • 1 Work system 5 Well plate, 8 Moving part, 100 Management device, 101 Processor, 102 Memory, 103 Storage, 104, 235 Interface, 105 Display, 106 Input device, 111 Machine learning section, 112 Simulator section, 113 Information generation section , 114 Transfer control unit, 131 Machine learning model, 132 Positional relationship information, 200 Controlled device group, 220, 240 Working device, 230 Transfer robot, 231 Main body, 232 Arm, 233 Gripper, 234 Imaging unit, 236 Motor unit, 237 driver unit, 300 transport device, 900 simulation space, 905, 920, 930, 931, 932, 933, 940, Xp element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A management device (100) performs, as a method for controlling a mobile object: a step for generating a machine learning model for generating an operation plan for a mobile object for transporting an object, on the basis of the position of a first feature portion in a simulation space; a step for identifying the position of a second feature portion in the real space; a step for acquiring the relationship between the position of the second feature portion in the real space and a position in the real space corresponding to the position of the first feature portion in the simulation space; a step for applying the position of the second feature portion in the real space and the relationship to the machine learning model, to thereby generate an operation plan for the mobile object; and a step for controlling the operation of the mobile object in accordance with the generated operation plan.

Description

移動体の制御方法、搬送装置、および作業システムMobile object control method, transport device, and work system
 本発明は、対象物の搬送のための移動体の動作の制御に関する。 The present invention relates to controlling the operation of a moving body for transporting objects.
 従来、ロボットなどの移動体が、対象物の搬送に利用されている。このような移動体の動作の制御について、種々検討がなされている。たとえば、特許第6457421号公報(特許文献1)は、ロボットによってワークを籠から取り出すための機械学習装置を含む機械システムを開示している。この機械システムでは、機械学習装置は、シミュレータによるシミュレーションを利用して、機械学習モデルの訓練を実施する。 Conventionally, moving objects such as robots have been used to transport objects. Various studies have been made on controlling the motion of such moving objects. For example, Japanese Patent No. 6457421 (Patent Document 1) discloses a mechanical system including a machine learning device for removing a workpiece from a basket by a robot. In this machine system, the machine learning device uses simulation by a simulator to train a machine learning model.
特許第6457421号公報Patent No. 6457421
 移動体の動作の制御において、目標位置などの所与の位置が基準点として利用されて、移動体の位置が制御される。シミュレーション空間では、制御装置は、移動体と基準点の位置関係を認識できる。一方、現実空間では、制御装置が移動体と基準点の位置関係を認識するために、現実空間に設置されたマーカの位置や既存の装置の所与の場所の位置や模様などが基準点として利用される。マーカが設置された場合、現実空間における移動体の動作の制御では、制御装置は、マーカを検出し、検出されたマーカの位置に基づいて、移動体の動作を制御する。 In controlling the operation of a moving body, a given position such as a target position is used as a reference point to control the position of the moving body. In the simulation space, the control device can recognize the positional relationship between the moving body and the reference point. On the other hand, in real space, in order for a control device to recognize the positional relationship between a moving object and a reference point, the position of a marker installed in real space or the position or pattern of a given location of an existing device is used as a reference point. used. When a marker is installed, the control device detects the marker and controls the motion of the moving body based on the detected position of the marker to control the movement of the moving body in real space.
 現実空間では、対象物および移動体以外の物体の存在など、位置の基準として利用される基準点の検出に対して障害となり得るものが存在し得る。現実空間において、上記物体が検出されなければ、位置の基準が得られず、移動体の動作の制御が困難になる。 In real space, there may be obstacles to detecting a reference point used as a position reference, such as the presence of objects other than objects and moving objects. If the object is not detected in real space, a position reference cannot be obtained, making it difficult to control the movement of the moving object.
 本発明は、係る実情に鑑み考え出されたものであり、その目的は、シミュレーションの結果を利用した移動体の動作の制御を確実に実現するための技術を提供することである。 The present invention was devised in view of the above circumstances, and its purpose is to provide a technique for reliably realizing control of the motion of a moving body using simulation results.
 本開示のある局面に従う移動体の制御方法は、第1特徴部のシミュレーション空間における位置に基づいて、対象物を搬送するための移動体の動作計画を生成するための機械学習モデルを生成するステップと、第2特徴部の現実空間における位置を特定するステップと、第2特徴部の現実空間における位置と、第1特徴部のシミュレーション空間における位置に相当する現実空間における位置と、の間の関係を取得するステップと、第2特徴部の現実空間における位置および関係を機械学習モデルに適用することにより、移動体の動作計画を生成するステップと、生成された動作計画に従って移動体の動作を制御するステップと、を備える。 A method for controlling a moving body according to an aspect of the present disclosure includes a step of generating a machine learning model for generating a motion plan of the moving body for transporting a target object based on the position of the first feature in the simulation space. a step of identifying the position of the second feature in the real space; and a relationship between the position of the second feature in the real space and the position in the real space corresponding to the position of the first feature in the simulation space. and generating a motion plan for the moving object by applying the position and relationship in real space of the second feature to a machine learning model, and controlling the motion of the moving object according to the generated motion plan. and a step of doing so.
 本開示のある局面に従う搬送装置は、対象物を搬送するための移動体と、第1特徴部のシミュレーション空間における位置に基づいて、移動体の動作計画を生成するための機械学習モデルを生成するコントローラと、第2特徴部の現実空間における位置を特定するためのデータを取得するデータ取得ユニットと、第2特徴部の現実空間における位置と、第1特徴部のシミュレーション空間における位置に相当する現実空間における位置と、の間の関係を格納するメモリと、を備え、コントローラは、データ取得ユニットによって取得されたデータを利用して、第2特徴部の現実空間における位置を特定し、第2特徴部の現実空間における位置および関係を機械学習モデルに適用することにより、移動体の動作計画を生成し、生成された動作計画に従って移動体を動作させる。 A conveying device according to an aspect of the present disclosure generates a machine learning model for generating a motion plan for the moving body based on the moving body for conveying a target object and the position of the first feature in the simulation space. a controller; a data acquisition unit that acquires data for specifying the position of the second feature in the real space; and a data acquisition unit that obtains data for specifying the position of the second feature in the real space; and a memory for storing a relationship between the position in the space and the position in the space, the controller uses the data acquired by the data acquisition unit to specify the position in the real space of the second feature, and the controller identifies the position in the real space of the second feature. A motion plan for the moving body is generated by applying the positions and relationships of the parts in real space to a machine learning model, and the moving body is operated according to the generated motion plan.
 本開示のある局面に従うと、シミュレーションの結果を利用した移動体の動作の制御が確実に実現される。 According to a certain aspect of the present disclosure, control of the motion of a moving object using simulation results is reliably realized.
実施の形態における作業システムの概要を説明するための図である。FIG. 1 is a diagram for explaining an overview of a work system in an embodiment. 実施の形態における作業システムのハードウェア構成の一例を示す図である。FIG. 1 is a diagram showing an example of a hardware configuration of a work system in an embodiment. 管理装置100によって実行される処理のフローチャートである。3 is a flowchart of processing executed by the management device 100. シミュレータ部112によって定義されるシミュレーション空間の一例を模式的に示す図である。3 is a diagram schematically showing an example of a simulation space defined by a simulator unit 112. FIG. ステップS3の搬送処理のサブルーチンのフローチャートである。3 is a flowchart of a subroutine of the transport process in step S3.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。以下で説明される実施の形態および変形例は、適宜選択的に組み合わされてもよい。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the same or corresponding parts in the figures are designated by the same reference numerals, and the description thereof will not be repeated. The embodiments and modifications described below may be selectively combined as appropriate.
 [作業システムの概要]
 図1は、実施の形態における作業システムの概要を説明するための図である。実施の形態における作業システム1は、被制御装置群200と、管理装置100とを含む。被制御装置群200は、搬送ロボット230と、作業装置220と、作業装置240とを含む。
[Overview of work system]
FIG. 1 is a diagram for explaining an overview of a work system in an embodiment. The work system 1 in the embodiment includes a controlled device group 200 and a management device 100. The controlled device group 200 includes a transfer robot 230, a working device 220, and a working device 240.
 搬送ロボット230は、アーム232を利用して、ウェルプレート5を作業装置220から作業装置240内の目的位置Tpまで搬送する。アーム232は、本開示における「移動体」の一例である。アーム232は、搬送ロボット230の一部として構成され、アーム232は、搬送ロボット230の移動に伴って移動する。この意味において、搬送ロボット230自体が「移動体」の一例であるとも解釈され得る。ウェルプレート5には、作業装置220および作業装置240によって利用されるサンプルが収容されている。サンプルが収容されたウェルプレート5は、本開示における「対象物」の一例である。作業装置220および作業装置240のそれぞれは、搬送ロボット230によって搬送されるサンプルを利用した作業のための装置の一例である。作業装置220は、ウェルプレート5を保持するラックである。作業装置240は、ウェルプレート5に収容されたサンプルを分注するための分注装置である。 The transport robot 230 uses the arm 232 to transport the well plate 5 from the working device 220 to the target position Tp in the working device 240. Arm 232 is an example of a "moving body" in the present disclosure. The arm 232 is configured as a part of the transfer robot 230, and the arm 232 moves as the transfer robot 230 moves. In this sense, the transport robot 230 itself can be interpreted as an example of a "moving object." The well plate 5 accommodates samples used by the working device 220 and the working device 240. The well plate 5 containing the sample is an example of the "object" in the present disclosure. Each of the work device 220 and the work device 240 is an example of a device for work using a sample transported by the transport robot 230. The working device 220 is a rack that holds the well plate 5. The working device 240 is a dispensing device for dispensing the sample accommodated in the well plate 5.
 本実施の形態では、作業システム1の一例として菌の培養実験のためのシステムが採用され、対象物に対する作業の一例として実験が採用され、そして、作業装置として実験のための装置が採用される。なお、対象物に対する作業は、実験に限定されない。対象物に対する作業として、金属加工など、いかなる種類の作業が採用され得る。したがって、作業装置として、実験のための装置以外にも、対象物に対して作業を実施するいかなる種類の装置が採用され得る。 In this embodiment, a system for a bacterial culture experiment is adopted as an example of the work system 1, an experiment is adopted as an example of work on a target object, and an apparatus for experiment is adopted as the work device. . Note that the work on the object is not limited to experiments. Any type of work, such as metal processing, can be employed as the work on the object. Therefore, as the working device, any type of device that performs work on a target object can be employed, in addition to the device for experiments.
 管理装置100は、搬送ロボット230と、作業装置220と、作業装置240との動作を制御する。管理装置100は、コントローラの一例である。搬送装置300は、管理装置100と、搬送ロボット230とを含む装置である。 The management device 100 controls the operations of the transport robot 230, the work device 220, and the work device 240. Management device 100 is an example of a controller. The transport device 300 is a device that includes a management device 100 and a transport robot 230.
 搬送ロボット230は、1本のアームを有する6軸の垂直多関節ロボットである。より具体的には、搬送ロボット230は、本体部231と、アーム232と、グリッパー233と、撮像部234とを含む。本体部231は、アーム232を保持する。アーム232は、ウェルプレート5を作業装置220から作業装置240内の目的位置Tpまで搬送する。グリッパー233は、アーム232の先端に設けられ、ウェルプレート5を把持する。アーム232は、1つ以上の可動部8を含む。1つ以上の可動部8が動くことにより、アーム232は上下、左右、および前後に動くことができる。これにより、アーム232によって、ウェルプレート5が作業装置220から作業装置240内の目的位置Tpまで搬送される。 The transfer robot 230 is a six-axis vertically articulated robot with one arm. More specifically, the transfer robot 230 includes a main body 231, an arm 232, a gripper 233, and an imaging section 234. The main body portion 231 holds an arm 232. The arm 232 transports the well plate 5 from the working device 220 to the target position Tp in the working device 240. The gripper 233 is provided at the tip of the arm 232 and grips the well plate 5. Arm 232 includes one or more movable parts 8. By moving one or more movable parts 8, the arm 232 can move up and down, left and right, and back and forth. Thereby, the well plate 5 is transported by the arm 232 from the working device 220 to the target position Tp in the working device 240.
 図1の例では、被制御装置群200は、複数の作業装置を含み、搬送ロボット230は、当該複数の作業装置の中のある作業装置から他の作業装置へ対象物(ウェルプレート)を搬送する。なお、被制御装置群200は、単一の作業装置によって構成されてもよく、搬送ロボット230は、単一の作業装置の中のある位置から他の位置へ、対象物を搬送してもよい。 In the example of FIG. 1, the controlled device group 200 includes a plurality of work devices, and the transport robot 230 transports an object (well plate) from one work device among the plurality of work devices to another work device. do. Note that the controlled device group 200 may be composed of a single working device, and the transport robot 230 may transport the object from one position to another within the single working device. .
 撮像部234は、アーム232に設けられ、撮像対象の画像を取得する。アーム232と、グリッパー233と、撮像部234との動作は管理装置100によって制御される。 The imaging unit 234 is provided on the arm 232 and acquires an image of the imaging target. The operations of the arm 232, the gripper 233, and the imaging section 234 are controlled by the management device 100.
 作業システム1において、マークTmは、目的位置Tpを示す。さらに、搬送ロボット230の周囲の物体には、マークRm1,マークRm2,マークRm3が貼られている。マークRm1は基準位置Rp1を示し、マークRm2は基準位置Rp2を示し、マークRm3は基準位置Rp3を示す。基準位置Rp1,Rp2,Rp3のそれぞれは、目的位置Tpとは異なる場所に位置する。 In the work system 1, the mark Tm indicates the target position Tp. Furthermore, marks Rm1, Rm2, and Rm3 are pasted on objects around the transport robot 230. The mark Rm1 indicates the reference position Rp1, the mark Rm2 indicates the reference position Rp2, and the mark Rm3 indicates the reference position Rp3. Each of the reference positions Rp1, Rp2, and Rp3 is located at a different location from the target position Tp.
 以下の説明において、マークRm1、マークRm2、およびマークRm3は、共通の性質(基準位置を示すこと)について着目され、互いに区別されることを必要とされない場合には、「マークRm」と称される。マークRmは、マークRmの姿勢を特定可能なパターンであればよく、例えば、ARマーカ、QRコード(登録商標)等である。本実施の形態において、「姿勢」は位置(後述される「撮像部234」に対するマーカの相対的な位置)および向きを含む。マークRm1、マークRm2、およびマークRm3は互いに識別可能である。たとえば、マークRm1、マークRm2、およびマークRm3は、QRコードとして実現される場合、互いに異なる情報を有するQRコードとして実現される。 In the following description, mark Rm1, mark Rm2, and mark Rm3 will be referred to as "mark Rm" when attention is focused on their common property (indicating a reference position) and they do not need to be distinguished from each other. Ru. The mark Rm may have any pattern as long as it can identify the posture of the mark Rm, such as an AR marker or a QR code (registered trademark). In this embodiment, "posture" includes position (relative position of the marker with respect to "imaging unit 234" described later) and orientation. Mark Rm1, mark Rm2, and mark Rm3 are distinguishable from each other. For example, when mark Rm1, mark Rm2, and mark Rm3 are realized as QR codes, they are realized as QR codes having mutually different information.
 基準位置Rpは、目的位置Tpとは異なる場所に位置する。なお、以下の説明において、基準位置Rp1、基準位置Rp2、および基準位置Rp3は、共通の性質(基準位置であること)について着目され、互いに区別される必要がない場合には「基準位置Rp」と称される。 The reference position Rp is located at a different location from the target position Tp. In the following explanation, the reference position Rp1, the reference position Rp2, and the reference position Rp3 will be focused on the common property (that they are reference positions), and if they do not need to be distinguished from each other, they will be referred to as "reference position Rp". It is called.
 本実施の形態において、目的位置Tpは第1特徴部の一例であり、基準位置Rpは第2特徴部の一例である。 In this embodiment, the target position Tp is an example of the first characteristic part, and the reference position Rp is an example of the second characteristic part.
 [作業システムのハードウェア構成]
 図2は、実施の形態における作業システムのハードウェア構成の一例を示す図である。作業システム1は、搬送装置300と、作業装置220と、作業装置240とを含む。搬送装置300は、搬送ロボット230と、管理装置100とを含む。
[Hardware configuration of work system]
FIG. 2 is a diagram showing an example of the hardware configuration of the work system in the embodiment. The work system 1 includes a transport device 300, a work device 220, and a work device 240. The transport device 300 includes a transport robot 230 and a management device 100.
 管理装置100は、たとえば汎用のコンピュータによって構成される。図2の例では、管理装置100は、プロセッサ101と、メモリ102と、ストレージ103と、インターフェイス104と、ディスプレイ105と、入力装置106とを含む。 The management device 100 is configured by, for example, a general-purpose computer. In the example of FIG. 2, the management device 100 includes a processor 101, a memory 102, a storage 103, an interface 104, a display 105, and an input device 106.
 プロセッサ101は、管理装置100が種々の処理を実施するために、各種のプログラムを実行する。プロセッサ101は、例えばCPU(Central Processing Unit)やMPU(Micro-Processing Unit)などのハードウェア要素で構成される。 The processor 101 executes various programs in order for the management device 100 to perform various processes. The processor 101 is composed of hardware elements such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit).
 プロセッサ101は、所与のプログラムを実行することにより、機械学習部111、シミュレータ部112、情報生成部113、および搬送制御部114として機能する。 The processor 101 functions as a machine learning section 111, a simulator section 112, an information generation section 113, and a transport control section 114 by executing a given program.
 機械学習部111は、アーム232の動作計画を生成するためのモデルの機械学習のための処理を実施する。一実現例では、アーム232の動作計画は、アーム232の動作(たとえば、3軸方向のそれぞれについての移動の距離および/または速度)を規定する情報を含む。なお、アーム232の動作計画は、アーム232以外の要素(グリッパー233、本体部231に取り付けられた車輪を回転させるためのモータ、など)の動作であって、対象物の搬送のためのアーム232の動作に寄与する動作を規定する情報が含み得る。 The machine learning unit 111 performs processing for machine learning of a model for generating a motion plan for the arm 232. In one implementation, the motion plan for arm 232 includes information that defines motion (eg, distance and/or speed of movement in each of three axes) of arm 232. Note that the operation plan of the arm 232 is the operation of elements other than the arm 232 (the gripper 233, the motor for rotating the wheels attached to the main body 231, etc.), and the operation plan of the arm 232 for conveying the object. may include information specifying actions that contribute to the actions of the user.
 シミュレータ部112は、シミュレーション空間において、アーム232の動作のシミュレーションを実施する。一実現例では、シミュレータ部112は、アーム232の位置の時系列データを生成する。情報生成部113は、後述される「位置関係情報」を生成する。搬送制御部114は、搬送ロボット230によるウェルプレート5の搬送のための動作を制御する。 The simulator unit 112 performs a simulation of the operation of the arm 232 in the simulation space. In one implementation example, the simulator unit 112 generates time series data of the position of the arm 232. The information generation unit 113 generates "positional relationship information" which will be described later. The transport control unit 114 controls the operation of the transport robot 230 for transporting the well plate 5.
 メモリ102は、主記憶装置として機能し、例えばDRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)などの揮発性記憶装置で構成される。 The memory 102 functions as a main storage device, and is configured with a volatile storage device such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory).
 ストレージ103は、プロセッサ101によって実行されるプログラム、および、プログラムの実行に必要な各種のデータを格納し、例えばSSD(Solid State Drive)および/またはフラッシュメモリなどの不揮発性記憶装置で構成される。 The storage 103 stores programs executed by the processor 101 and various data necessary for executing the programs, and is configured with a nonvolatile storage device such as an SSD (Solid State Drive) and/or a flash memory.
 なお、プログラムは、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、任意のプログラムと協働して本実施の形態に従う処理が実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う管理装置100の趣旨を逸脱するものではない。また、プログラムによって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。 Note that the program may be provided not as a standalone program but as a part of any program. In this case, the processing according to this embodiment is realized in cooperation with an arbitrary program. Even if the program does not include such a part of the module, it does not depart from the spirit of the management device 100 according to the present embodiment. Further, some or all of the functions provided by the program may be realized by dedicated hardware.
 ストレージ103に格納されるデータは、機械学習モデル131を含む。機械学習モデル131は、アーム232の動作計画を生成するための機械学習モデルを構成するデータ(たとえば、機械学習モデルの学習結果である1以上のパラメータの値)を含む。ストレージ103に格納されるデータは、さらに、位置関係情報132を含む。位置関係情報132は、2以上のマーク間の現実空間における位置関係を示す。 The data stored in the storage 103 includes a machine learning model 131. Machine learning model 131 includes data (for example, values of one or more parameters that are learning results of the machine learning model) that constitute a machine learning model for generating a motion plan for arm 232. The data stored in the storage 103 further includes positional relationship information 132. The positional relationship information 132 indicates the positional relationship between two or more marks in real space.
 インターフェイス104は、管理装置100と外部装置(例えば、搬送ロボット230、作業装置220、作業装置240等)との通信を中継する。 The interface 104 relays communication between the management device 100 and external devices (for example, the transfer robot 230, the work device 220, the work device 240, etc.).
 ディスプレイ105は、プロセッサ101の演算処理の結果を表示し、入力装置106(例えば、マウス、キーボード、タッチセンサ等)は、プロセッサ101へのデータの入力操作を受け付ける。 The display 105 displays the results of the arithmetic processing by the processor 101, and the input device 106 (eg, mouse, keyboard, touch sensor, etc.) accepts data input operations to the processor 101.
 搬送ロボット230は、撮像部234と、インターフェイス235と、モータユニット236と、ドライバユニット237とを含む。インターフェイス235は、搬送ロボット230と管理装置100との通信を中継する。モータユニット236は、1つ以上の可動部8のそれぞれに対応付けられたモータを含む。ドライバユニット237は、モータユニット236に含まれる複数のモータをそれぞれ駆動するドライバを含む。 The transport robot 230 includes an imaging section 234, an interface 235, a motor unit 236, and a driver unit 237. The interface 235 relays communication between the transport robot 230 and the management device 100. Motor unit 236 includes a motor associated with each of one or more movable parts 8. Driver unit 237 includes a driver that drives each of the plurality of motors included in motor unit 236.
 [処理の流れ]
 図3は、管理装置100によって実行される処理のフローチャートである。一実現例では、図3の処理は、プロセッサ101が所与のプログラムを実行することによって実現される。
[Processing flow]
FIG. 3 is a flowchart of processing executed by the management device 100. In one implementation, the process of FIG. 3 is accomplished by processor 101 executing a given program.
 図3に示されるように、管理装置100は、ステップS1において、機械学習モデル131の学習処理を実施し、ステップS2において、位置関係情報の生成処理(位置関係情報132の生成)を実施し、そして、ステップS3において、アーム232によるウェルプレート5の搬送動作を制御するための搬送処理を実施する。以下、各ステップの内容について詳細に説明する。 As shown in FIG. 3, the management device 100 performs a learning process for the machine learning model 131 in step S1, performs a positional relationship information generation process (generates positional relationship information 132) in step S2, Then, in step S3, a transport process for controlling the transport operation of the well plate 5 by the arm 232 is performed. The contents of each step will be explained in detail below.
 (1)ステップS1:学習処理
 学習処理の一例では、強化学習のアルゴリズムが利用される。この例では、機械学習モデル131は、強化学習のアルゴリズムに従って訓練される。
(1) Step S1: Learning Process In an example of the learning process, a reinforcement learning algorithm is used. In this example, machine learning model 131 is trained according to a reinforcement learning algorithm.
 強化学習では、エージェントは、ある状態sの下で様々な行動aを選択し、そのときの行動aに対して報酬が与えられる。それにより、機械学習モデル131は、エージェントがより良い行動の選択、すなわち、正しい価値Q(s,a)を学習するように訓練される。 In reinforcement learning, an agent selects various actions a under a certain state s, and is rewarded for the action a at that time. Thereby, the machine learning model 131 is trained so that the agent learns a better action choice, ie, the correct value Q(s,a).
 本実施の形態では、エージェントとして、アーム232が採用される。
 状態sとして、アーム232の動作計画が採用される。動作計画を構成するデータの一例は、搬送ロボット230がウェルプレート5の把持を開始する位置、アーム232の移動経路、および/または、搬送ロボット230がウェルプレート5の把持を終了する位置(ウェルプレート5の載置位置)を含む。
In this embodiment, arm 232 is employed as the agent.
The motion plan of arm 232 is adopted as state s. An example of data constituting the operation plan is the position where the transport robot 230 starts gripping the well plate 5, the movement path of the arm 232, and/or the position where the transport robot 230 ends gripping the well plate 5 (well plate 5 mounting positions).
 報酬として、ウェルプレート5の搬送の結果(成功/失敗)が採用される。一実現例では、アーム232が動作計画に従って動作した後のウェルプレート5の位置(ウェルプレート5の載置位置)が所与の範囲内の場所に位置する場合、機械学習部111は、ウェルプレート5の搬送の結果として「成功」を特定する。アーム232が動作計画に従って動作した後のウェルプレート5の位置(ウェルプレート5の載置位置)が所与の範囲外の場所に位置する場合、機械学習部111は、ウェルプレート5の搬送の結果として「失敗」を特定する。 As a reward, the result of transporting the well plate 5 (success/failure) is adopted. In one implementation example, if the position of the well plate 5 after the arm 232 operates according to the operation plan (the placement position of the well plate 5) is within a given range, the machine learning unit 111 5. Specify "success" as the result of transport. If the position of the well plate 5 after the arm 232 operates according to the operation plan (the placement position of the well plate 5) is outside the given range, the machine learning unit 111 determines the result of transporting the well plate 5. ``Failure'' is identified as ``failure''.
 学習処理では、機械学習部111は、シミュレータ部112に、複数の動作計画(状態s)のそれぞれに従ったアーム232の動作のシミュレーションを実施させる。 In the learning process, the machine learning unit 111 causes the simulator unit 112 to simulate the motion of the arm 232 according to each of a plurality of motion plans (state s).
 図4は、シミュレータ部112によって定義されるシミュレーション空間の一例を模式的に示す図である。シミュレーション空間900は、要素905,920,930,940を含む。 FIG. 4 is a diagram schematically showing an example of a simulation space defined by the simulator section 112. Simulation space 900 includes elements 905, 920, 930, and 940.
 要素905は、現実空間におけるウェルプレート5に相当する。要素920は、現実空間における作業装置220に相当する。要素930は、現実空間における搬送ロボット230に相当する。要素940は、現実空間における作業装置240に相当する。要素930は、要素931,932,933を含む。要素931,932,933のそれぞれは、現実空間における、本体部231、アーム232、グリッパー233のそれぞれに相当する。要素Xpは、現実空間における目的位置Tpに相当する。上述のシミュレーションにおいて、動作計画は、要素930に、要素905を、要素920から要素940まで(より具体的には、要素Xpによって特定される場所まで)搬送させる。これにより、シミュレーションでは、要素930が、要素905を、要素920から要素940まで搬送する。 Element 905 corresponds to well plate 5 in real space. Element 920 corresponds to work device 220 in real space. Element 930 corresponds to transfer robot 230 in real space. Element 940 corresponds to work device 240 in real space. Element 930 includes elements 931, 932, and 933. Each of the elements 931, 932, and 933 corresponds to the main body 231, the arm 232, and the gripper 233 in real space. Element Xp corresponds to target position Tp in real space. In the simulation described above, the motion plan causes element 930 to transport element 905 from element 920 to element 940 (more specifically to the location specified by element Xp). Thus, in the simulation, element 930 transports element 905 from element 920 to element 940.
 機械学習部111は、複数の動作計画に従った動作(シミュレーション)の各々の結果(報酬)を取得する。そして、機械学習部111は、複数の動作計画の各々に関する状態sと報酬の組み合わせを利用して、機械学習モデル131の学習処理を実施する。 The machine learning unit 111 obtains the results (rewards) of each movement (simulation) according to a plurality of movement plans. Then, the machine learning unit 111 performs a learning process on the machine learning model 131 using the combination of the state s and reward regarding each of the plurality of motion plans.
 なお、機械学習モデル131の生成方法は、上述のような強化学習のアルゴリズムを利用したものに限定されない。機械学習モデル131は、所与の手法で準備された移動経路を特定する情報(たとえば、把持開始点、把持終了点、および、通過点)を利用した、ルールベースによる手法に従った軌道の探索(たとえば、上記各点を結ぶ軌道の探索)に従って生成されてもよい。 Note that the method for generating the machine learning model 131 is not limited to using the reinforcement learning algorithm described above. The machine learning model 131 searches for a trajectory according to a rule-based method using information that specifies a movement route prepared using a given method (e.g., grasp start point, grasp end point, and passing point). (For example, a search for a trajectory connecting each of the above points) may be performed.
 (2)ステップS2:位置関係情報生成処理
 位置関係情報生成処理では、基準位置Rp1,Rp2,Rp3の中の少なくとも1つと目的位置Tpとの間の位置関係を特定する情報(位置関係情報)が生成される。
(2) Step S2: Positional relationship information generation process In the positional relationship information generation process, information (positional relationship information) specifying the positional relationship between at least one of the reference positions Rp1, Rp2, and Rp3 and the target position Tp is generated. generated.
 一実現例では、情報生成部113は、撮像部234によってマークRmを撮像し、撮像画像におけるマークRmの姿勢を特定し、マークRmの姿勢に基づいて現実空間における基準位置Rpの位置を特定する。また、情報生成部113は、撮像部234によってマークTmを撮像し、撮像画像におけるマークTmの姿勢を特定し、マークTmの姿勢に基づいて現実空間における目的位置Tpの位置を特定する。そして、情報生成部113は、現実空間における基準位置Rpの位置と目的位置Tpの位置との間の関係を表すデータとして、位置関係情報を生成する。生成された位置関係情報は、位置関係情報132としてストレージ103に格納される。位置関係情報の一例は、現実空間における基準位置Rpの座標と、現実空間における目的位置Tpの座標の差分である。 In one implementation example, the information generation unit 113 images the mark Rm using the imaging unit 234, identifies the orientation of the mark Rm in the captured image, and identifies the position of the reference position Rp in real space based on the orientation of the mark Rm. . Furthermore, the information generation unit 113 images the mark Tm using the imaging unit 234, identifies the orientation of the mark Tm in the captured image, and identifies the position of the target position Tp in the real space based on the orientation of the mark Tm. The information generation unit 113 then generates positional relationship information as data representing the relationship between the reference position Rp and the target position Tp in the real space. The generated positional relationship information is stored in the storage 103 as positional relationship information 132. An example of positional relationship information is the difference between the coordinates of the reference position Rp in real space and the coordinates of target position Tp in real space.
 なお、情報生成部113は、現実空間における基準位置Rp1,Rp2,Rp3のそれぞれの位置を特定し、そして、位置関係情報として、基準位置Rp1の位置と目的位置Tpの位置との間の関係を表すデータ、基準位置Rp2の位置と目的位置Tpの位置との間の関係を表すデータ、および、基準位置Rp3の位置と目的位置Tpの位置との間の関係を表すデータを生成してもよい。 Note that the information generation unit 113 specifies the respective positions of the reference positions Rp1, Rp2, and Rp3 in the real space, and determines the relationship between the position of the reference position Rp1 and the position of the target position Tp as positional relationship information. data representing the relationship between the reference position Rp2 and the target position Tp, and data representing the relationship between the reference position Rp3 and the target position Tp may be generated. .
 (3)ステップS3:搬送処理
 図5は、ステップS3の搬送処理のサブルーチンのフローチャートである。
(3) Step S3: Conveyance Processing FIG. 5 is a flowchart of the subroutine of the conveyance process in Step S3.
 ステップS31において、プロセッサ101は、搬送ロボット230に対し、マークRmの探索開始を指令する。より具体的には、プロセッサ101は、撮像部234に対し撮像の開始を指令し、1つ以上の可動部8のそれぞれに対応するドライバに対しモータの駆動開始を指令する。これにより、撮像部234による撮像が開始され、アーム232が上下、左右、および前後に動く。撮像部234は、取得した画像をプロセッサ101へ送信する。 In step S31, the processor 101 instructs the transport robot 230 to start searching for the mark Rm. More specifically, the processor 101 instructs the imaging unit 234 to start imaging, and instructs the drivers corresponding to each of the one or more movable parts 8 to start driving the motor. Thereby, imaging by the imaging unit 234 is started, and the arm 232 moves up and down, left and right, and back and forth. The imaging unit 234 transmits the acquired image to the processor 101.
 ステップS32において、プロセッサ101は、マークRmが見つかったか否かを判定する。プロセッサ101は、撮像部234から送信されてきた画像内にマークRmを示す画素が含まれる場合に、マークRmが見つかったと判定する。マークRmが見つかった場合には(ステップS32においてYES)、プロセッサ101は、ステップS33へ制御を進める。 In step S32, the processor 101 determines whether the mark Rm has been found. The processor 101 determines that the mark Rm has been found when the image transmitted from the imaging unit 234 includes pixels indicating the mark Rm. If the mark Rm is found (YES in step S32), the processor 101 advances the control to step S33.
 ステップS33において、プロセッサ101は、搬送ロボット230に対し、マークRmの探索の終了を指令する。より具体的には、プロセッサ101は、撮像部234に対し撮像の終了を指令し、1つ以上の可動部8のそれぞれに対応するドライバに対しモータの駆動停止を指令する。これにより、アーム232は、マークRmが見つかったタイミングにおける姿勢(位置および向き)で停止する。 In step S33, the processor 101 instructs the transport robot 230 to end the search for the mark Rm. More specifically, the processor 101 instructs the imaging unit 234 to end imaging, and instructs the drivers corresponding to each of the one or more movable parts 8 to stop driving the motor. As a result, the arm 232 stops at the attitude (position and orientation) at the timing when the mark Rm was found.
 ステップS34において、プロセッサ101は、撮像部234に対し撮像を指令する。撮像された画像は、マークRmを示す画素を含む。なお、プロセッサ101は、ステップS34において、撮像部234に撮像を指令する前に、撮像部234(アーム232)をマークRmに近づけてもよい。これにより、撮像された画像が、マークRmのより詳細な情報を含み得る。 In step S34, the processor 101 instructs the imaging unit 234 to take an image. The captured image includes pixels indicating the mark Rm. Note that the processor 101 may bring the imaging unit 234 (arm 232) closer to the mark Rm before instructing the imaging unit 234 to take an image in step S34. Thereby, the captured image can include more detailed information about the mark Rm.
 ステップS35において、プロセッサ101は、ステップS34における指令に従って撮像された画像を利用して、基準位置Rpの現実空間における位置を特定する。より具体的には、プロセッサ101は、上記画像におけるマークRmの姿勢を特定し、特定された姿勢と撮像部234の現実空間における位置とに基づいて、基準位置Rpの現実空間における位置を特定する。 In step S35, the processor 101 identifies the position of the reference position Rp in real space using the image captured according to the command in step S34. More specifically, the processor 101 identifies the orientation of the mark Rm in the image, and identifies the position of the reference position Rp in the real space based on the identified orientation and the position of the imaging unit 234 in the real space. .
 ステップS36において、プロセッサ101は、ストレージ103から、位置関係情報132を読み出す。 In step S36, the processor 101 reads the positional relationship information 132 from the storage 103.
 ステップS37において、プロセッサ101は、目的位置の現実空間における位置を導出する。 In step S37, the processor 101 derives the position of the target position in real space.
 目的位置の現実空間における位置を導出するために、プロセッサ101は、位置関係情報と、(ステップS35において特定された)基準位置Rpの現実空間における位置とを利用する。一例では、プロセッサ101は、基準位置Rpの現実空間における座標に、位置関係情報として格納される座標を足しあわせることにより、目的位置の現実空間における座標を導出し、そして、このように導出された座標を、目的位置の現実空間における位置として扱う。理論上は、導出された目的位置の位置は、図1に示される目的位置Tpと一致する。 In order to derive the position of the target position in the real space, the processor 101 uses the positional relationship information and the position of the reference position Rp (identified in step S35) in the real space. In one example, the processor 101 derives the coordinates of the target position in the real space by adding the coordinates stored as positional relationship information to the coordinates of the reference position Rp in the real space, and The coordinates are treated as the location of the target location in real space. Theoretically, the derived target position coincides with the target position Tp shown in FIG.
 ステップS38において、プロセッサ101は、ステップS37において導出された位置(目的位置の現実空間における位置)を利用して、搬送ロボット230の動作計画を生成する。より具体的には、プロセッサ101は、機械学習モデル131を利用して、動作計画を生成する。さらに具体的には、プロセッサ101は、機械学習モデル131に、ウェルプレート5の搬送の目的位置として、ステップS37において導出された位置(目的位置の現実空間における位置)を入力して、搬送ロボット230の動作計画を生成させる。 In step S38, the processor 101 generates a motion plan for the transport robot 230 using the position derived in step S37 (the position of the target position in real space). More specifically, processor 101 generates a motion plan using machine learning model 131. More specifically, the processor 101 inputs the position derived in step S37 (the position of the target position in real space) as the target position for transporting the well plate 5 to the machine learning model 131, and generate a motion plan.
 ステップS39において、プロセッサ101は、ステップS38において生成された動作計画に従って、搬送ロボット230(アーム232)を動作させる。より具体的には、プロセッサ101は、搬送ロボット230に対して、動作計画に従って動作するように指令する。その後、プロセッサ101は、制御を図3の処理へとリターンさせる。 In step S39, the processor 101 operates the transfer robot 230 (arm 232) according to the operation plan generated in step S38. More specifically, the processor 101 instructs the transfer robot 230 to operate according to the operation plan. Thereafter, processor 101 returns control to the process of FIG. 3.
 以上説明された本実施の形態では、第2特徴部の現実空間における位置(基準位置Rmの位置)が特定される。また、第2特徴部の現実空間における位置と、第1特徴部のシミュレーション空間における位置(要素Xpによって特定される位置)に相当する現実空間における位置と、の間の関係(位置関係情報)が取得される。そして、機械学習モデルは、第2特徴部の現実空間における位置と、上記関係とを利用して、移動体の動作計画を生成する。すなわち、動作計画の生成の際に、第1特徴部のシミュレーション空間における位置に相当する現実空間における位置が間接的に特定されるため、第1特徴部の現実空間における位置を直接的に検出する必要がない。したがって、第1特徴部の現実空間における位置の検出に対して障害となり得るものが存在したとしても、移動体の動作の制御が困難になるという事態が回避される。したがって、移動体の動作の制御が確実に実現される。 In the present embodiment described above, the position of the second feature part in real space (the position of the reference position Rm) is identified. In addition, a relationship (positional relationship information) between the position of the second feature part in real space and the position in real space corresponding to the position of the first feature part in the simulation space (the position identified by the element Xp) is acquired. Then, the machine learning model generates a motion plan for the moving body using the position of the second feature part in real space and the above relationship. That is, when generating the motion plan, the position in real space corresponding to the position of the first feature part in the simulation space is indirectly identified, so there is no need to directly detect the position of the first feature part in real space. Therefore, even if there is something that may be an obstacle to detecting the position of the first feature part in real space, a situation in which it becomes difficult to control the motion of the moving body is avoided. Therefore, control of the motion of the moving body is reliably realized.
 [変形例]
 ステップS37において位置関係情報とともに用いられる基準位置Rpの位置は、単数であってもよいし、複数であってもよい。すなわち、基準位置Rpを示すマーカは、1つの要素(たとえば、マークRm1,Rm2,Rm3の中のいずれか1つ)から構成されてもよいし、複数の要素(たとえば、マークRm1,Rm2,Rm3の中の2つ以上)から構成されてもよい。
[Modified example]
The reference position Rp used together with the positional relationship information in step S37 may be singular or plural. That is, the marker indicating the reference position Rp may be composed of one element (for example, any one of the marks Rm1, Rm2, Rm3), or may be composed of a plurality of elements (for example, the marks Rm1, Rm2, Rm3). (two or more of the following).
 ステップS37において、位置関係情報とともに3つの基準位置Rp1,Rp2,Rp3が利用される場合の処理の流れが、以下に具体的に説明される。 The flow of processing when the three reference positions Rp1, Rp2, and Rp3 are used together with the positional relationship information in step S37 will be specifically explained below.
 この場合、マークRm1、マークRm2、およびマークRm3のそれぞれについて、ステップS31~S35の制御が実施される。これにより、ステップS34として、プロセッサ101は、マークRm1を示す画素を含む画像、マークRm2を示す画素を含む画像、および、マークRm3を示す画素を含む画像を撮像する制御が実施される。ステップS35として、基準位置Rp1,Rp2,Rp3のそれぞれの現実空間における位置を特定する制御が実施される。そして、ステップS37において、プロセッサ101は、位置関係情報と基準位置Rp1の現実空間における位置とを利用して第1の仮の目的位置を導出し、位置関係情報と基準位置Rp2の現実空間における位置とを利用して第2の仮の目的位置を導出し、位置関係情報と基準位置Rp3の現実空間における位置とを利用して第3の仮の目的位置を導出する。そして、プロセッサ101は、第1~第3の仮の目的位置の平均値(たとえば、座標の平均値)として、最終的な、目的位置の現実空間における位置を導出する。 In this case, the control in steps S31 to S35 is performed for each of the marks Rm1, Rm2, and Rm3. As a result, in step S34, the processor 101 performs control to capture an image including pixels indicating the mark Rm1, an image including pixels indicating the mark Rm2, and an image including pixels indicating the mark Rm3. As step S35, control is performed to specify the positions of the reference positions Rp1, Rp2, and Rp3 in the real space. Then, in step S37, the processor 101 derives a first temporary target position using the positional relationship information and the position of the reference position Rp1 in the real space, and derives the first temporary target position using the positional relationship information and the position of the reference position Rp2 in the real space. A second temporary target position is derived using the above, and a third temporary target position is derived using the positional relationship information and the position of the reference position Rp3 in the real space. Then, the processor 101 derives the final position of the target position in real space as the average value of the first to third temporary target positions (for example, the average value of coordinates).
 また、本実施の形態では、基準位置Rpを示すマークRmは、作業装置220,240に貼り付けられている。すなわち、マークRmは、作業装置220,240に対して別体で構成されている。プロセッサ101は、マークRmとして登録されている画像情報に対応する画素を、撮像部234によって撮像された画像から認識する。なお、マークRmは、作業装置220および/または作業装置240の一部分(たとえば、作業装置に貼付された、作業装置のメーカのロゴ部分)によって構成されてもよい。この場合、ストレージ103には、マークRmとして、作業装置220および/または作業装置240の一部分を特定するための画像情報が格納されていてもよい。プロセッサ101は、撮像部234によって撮像された画像とストレージ103内に格納されている画像情報とを利用して、上記一部分の姿勢を特定し、そして、上記一部分の現実空間における位置を特定してもよい。 Furthermore, in this embodiment, the mark Rm indicating the reference position Rp is affixed to the work devices 220 and 240. That is, the mark Rm is configured separately from the working devices 220 and 240. The processor 101 recognizes pixels corresponding to the image information registered as the mark Rm from the image captured by the imaging unit 234. Note that the mark Rm may be formed by a portion of the work device 220 and/or the work device 240 (for example, a logo portion of the manufacturer of the work device attached to the work device). In this case, the storage 103 may store image information for identifying part of the work device 220 and/or the work device 240 as the mark Rm. The processor 101 uses the image captured by the imaging unit 234 and the image information stored in the storage 103 to identify the posture of the portion, and the position of the portion in real space. Good too.
 また、本実施の形態では、第2特徴点の現実空間における位置を特定する方法として、撮像部234によって撮像された画像が利用される。この意味において、撮像部234は、第2特徴部の現実空間における位置を特定するためのデータを取得するデータ取得ユニットの一例である。なお、第2特徴点の現実空間における位置を特定する方法は、ビーコンを利用する方法など、撮像画像を利用する方法以外の方法であってもよい。たとえば、搬送ロボット230にビーコンの受信器が、設置されていてもよい。第2特徴部は、複数のビーコンによって構成されてもよい。プロセッサ101は、複数(3以上)のビーコンのそれぞれからの信号の受信強度に基づいて、第2特徴部の現実空間における位置を特定してもよい。この場合、ビーコンからの信号を受信する受信器によって、第2特徴部の現実空間における位置を特定するためのデータを取得するデータ取得ユニットの一例が構成される。 Furthermore, in this embodiment, an image captured by the imaging unit 234 is used as a method for specifying the position of the second feature point in real space. In this sense, the imaging unit 234 is an example of a data acquisition unit that acquires data for specifying the position of the second feature in real space. Note that the method for specifying the position of the second feature point in real space may be a method other than the method using a captured image, such as a method using a beacon. For example, a beacon receiver may be installed in the transport robot 230. The second feature may be comprised of a plurality of beacons. The processor 101 may identify the position of the second characteristic portion in real space based on the reception strength of the signal from each of a plurality of (three or more) beacons. In this case, the receiver that receives the signal from the beacon constitutes an example of a data acquisition unit that acquires data for specifying the position of the second feature in real space.
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Mode]
It will be appreciated by those skilled in the art that the exemplary embodiments described above are specific examples of the following aspects.
 (第1項) 一態様にかかる移動体の制御方法は、第1特徴部のシミュレーション空間における位置に基づいて、対象物を搬送するための移動体の動作計画を生成するための機械学習モデルを生成するステップと、第2特徴部の現実空間における位置を特定するステップと、前記第2特徴部の現実空間における位置と、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置と、の間の関係を取得するステップと、前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することにより、前記移動体の動作計画を生成するステップと、生成された前記動作計画に従って前記移動体の動作を制御するステップと、を備えていてもよい。 (Section 1) A method for controlling a moving object according to one aspect includes a machine learning model for generating a motion plan for the moving object for transporting a target object based on the position of the first feature in the simulation space. a step of identifying a position of the second feature in real space; a position of the second feature in real space; and a position in real space corresponding to the position of the first feature in simulation space. , and generating a motion plan for the moving body by applying the position of the second feature in real space and the positional relationship to the machine learning model; The method may further include the step of controlling the motion of the mobile body according to the motion plan determined.
 第1項に記載の移動体の制御方法によれば、シミュレーションの結果を利用した移動体の動作の制御が確実に実現される。 According to the method for controlling a moving body described in item 1, the operation of the moving body can be reliably controlled using the results of the simulation.
 (第2項) 第1項に記載の移動体の制御方法では、前記第2特徴部は、前記対象物を利用した作業のための作業装置の一部分を含んでいてもよい。 (Section 2) In the method for controlling a moving body according to Item 1, the second characteristic portion may include a part of a working device for working using the target object.
 第2項に記載の移動体の制御方法によれば、制御方法の実施のために利用される構成要素の種類の数が最小限に抑えられる。 According to the method for controlling a moving body described in item 2, the number of types of components used to implement the control method is minimized.
 (第3項) 第1項に記載の移動体の制御方法では、前記第2特徴部は、前記対象物を利用した作業のための作業装置に対して別体で構成されたマーカを含んでいてもよい。 (Section 3) In the method for controlling a moving object according to Item 1, the second characteristic portion includes a marker configured separately from a work device for work using the target object. You can stay there.
 第3項に記載の移動体の制御方法によれば、第2特徴部としての利用に適した構造や形態を有する要素が、第2特徴部として利用され得る。 According to the method for controlling a moving body described in item 3, an element having a structure or form suitable for use as the second feature can be used as the second feature.
 (第4項) 第1項~第3項のいずれか1項に記載の移動体の制御方法では、前記第2特徴部は、互いに識別可能な複数の要素を含んでいてもよい。 (Section 4) In the method for controlling a moving body according to any one of Items 1 to 3, the second characteristic portion may include a plurality of mutually distinguishable elements.
 第4項に記載の移動体の制御方法によれば、第2特徴部の現実空間における位置を、複数の要素の各々の位置を用いて特定することができ、これにより、第2特徴部の現実空間における位置が特定される精度が向上し得る。 According to the method for controlling a moving object described in item 4, the position of the second characteristic part in the real space can be specified using the position of each of the plurality of elements, and thereby the position of the second characteristic part The accuracy with which a position in real space is specified can be improved.
 (第5項) 第1項~第4項のいずれか1項に記載の移動体の制御方法では、前記機械学習モデルの生成には強化学習のアルゴリズムが利用されてもよい。 (Section 5) In the method for controlling a moving body according to any one of Items 1 to 4, a reinforcement learning algorithm may be used to generate the machine learning model.
 第5項に記載の移動体の制御方法によれば、複雑な動作計画の生成のための機械学習モデルの学習処理が容易に実施され得る。 According to the method for controlling a moving object described in Section 5, the learning process of a machine learning model for generating a complex motion plan can be easily performed.
 (第6項) 第1項~第5項のいずれか1項に記載の移動体の制御方法では、前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することは、前記位置関係を利用して、前記第2特徴部の現実空間における位置から、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置を導出することを含んでいてもよい。 (Section 6) In the method for controlling a moving object according to any one of Items 1 to 5, the position of the second feature in real space and the positional relationship are applied to the machine learning model. The method may include deriving a position in the real space corresponding to a position of the first feature in the simulation space from a position of the second feature in the real space using the positional relationship.
 第6項に記載の移動体の制御方法によれば、第2特徴部の現実空間における位置および上記関係の利用方法が具体的に提示され得る。 According to the method for controlling a moving object described in item 6, the position of the second characteristic part in real space and the method of using the above relationship can be specifically presented.
 (第7項) 一態様にかかる搬送装置は、対象物を搬送するための移動体と、第1特徴部のシミュレーション空間における位置に基づいて、前記移動体の動作計画を生成するための機械学習モデルを生成するコントローラと、第2特徴部の現実空間における位置を特定するためのデータを取得するデータ取得ユニットと、前記第2特徴部の現実空間における位置と、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置と、の間の関係を格納するメモリと、を備え、前記コントローラは、前記データ取得ユニットによって取得されたデータを利用して、前記第2特徴部の現実空間における位置を特定し、前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することにより、前記移動体の動作計画を生成し、生成された前記動作計画に従って前記移動体を動作させてもよい。 (Section 7) The conveying device according to one embodiment includes a moving body for conveying a target object, and machine learning for generating a motion plan for the moving body based on the position of the first characteristic part in the simulation space. a controller that generates a model; a data acquisition unit that acquires data for specifying the position of the second feature in real space; and a simulation space of the position of the second feature in real space and the first feature. and a memory for storing a relationship between a position in the real space corresponding to a position in the second feature, and a memory for storing a relationship between the position in the real space corresponding to the position in the second feature, and the controller using the data acquired by the data acquisition unit to A motion plan of the moving body is generated by specifying the position of the second feature in the real space and the positional relationship to the machine learning model, and the movement is performed according to the generated motion plan. You can also move your body.
 第7項に記載の搬送装置によれば、シミュレーションの結果を利用した移動体の動作の制御が確実に実現される。 According to the transport device described in item 7, control of the movement of the moving body using the simulation results is reliably realized.
 (第8項) 第7項に記載の搬送装置では、前記コントローラは、前記第2特徴部として、前記対象物を利用した作業のための作業装置の一部分を認識してもよい。 (Section 8) In the conveyance device according to Item 7, the controller may recognize, as the second characteristic part, a part of a working device for work using the target object.
 第8項に記載の搬送装置によれば、移動体の搬送のために利用される構成要素の種類の数が最小限に抑えられる。 According to the transport device described in item 8, the number of types of components used for transporting the moving body can be minimized.
 (第9項) 第7項に記載の搬送装置では、前記コントローラは、前記第2特徴部として、前記対象物を利用した作業のための作業装置に対して別体で構成されたマーカを認識してもよい。 (Section 9) In the conveyance device according to Item 7, the controller recognizes, as the second characteristic part, a marker configured separately from the work device for work using the target object. You may.
 第9項に記載の搬送装置によれば、第2特徴部としての利用に適した構造や形態を有する要素が、第2特徴部として利用され得る。 According to the conveyance device described in item 9, an element having a structure and form suitable for use as the second feature can be used as the second feature.
 (第10項) 第7項~第9項のいずれか1項に記載の搬送装置では、前記コントローラは、前記第2特徴部として、互いに識別可能な複数の要素のそれぞれを認識してもよい。 (Section 10) In the conveyance device according to any one of Items 7 to 9, the controller may recognize each of a plurality of mutually distinguishable elements as the second characteristic portion. .
 第10項に記載の搬送装置によれば、第2特徴部の現実空間における位置を、複数の要素の各々の位置を用いて特定することができ、これにより、第2特徴部の現実空間における位置が特定される精度が向上し得る。 According to the conveyance device described in item 10, the position of the second characteristic part in the real space can be specified using the position of each of the plurality of elements, and thereby, the position of the second characteristic part in the real space can be specified. The accuracy with which the location is determined may be improved.
 (第11項) 第7項~第10項のいずれか1項に記載の搬送装置では、前記機械学習モデルの生成には強化学習のアルゴリズムが利用されてもよい。 (Section 11) In the transport device according to any one of Items 7 to 10, a reinforcement learning algorithm may be used to generate the machine learning model.
 第11項に記載の搬送装置によれば、複雑な動作計画の生成のための機械学習モデルの学習処理が容易に実施され得る。 According to the transport device described in item 11, learning processing of a machine learning model for generating a complicated motion plan can be easily performed.
 (第12項) 第7項~第11項のいずれか1項に記載の搬送装置では、前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することは、前記位置関係を利用して、前記第2特徴部の現実空間における位置から、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置を導出することを含んでいてもよい。 (Section 12) In the conveying device according to any one of Items 7 to 11, applying the position of the second feature in real space and the positional relationship to the machine learning model may include The method may include deriving a position in the real space corresponding to a position of the first feature in the simulation space from a position of the second feature in the real space using a positional relationship.
 第12項に記載の搬送装置によれば、第2特徴部の現実空間における位置および上記関係の利用方法が具体的に提示され得る。 According to the conveyance device described in item 12, the position of the second characteristic portion in real space and the method of utilizing the above relationship can be specifically presented.
 (第13項) 一態様にかかる作業システムは、第7項~第12項のいずれか1項に記載搬送装置と、当該搬送装置によって搬送される対象物を利用した作業のための作業装置と、を備えていてもよい。 (Paragraph 13) A work system according to one embodiment includes the transport device described in any one of Paragraphs 7 to 12, and a work device for work using an object transported by the transport device. , may be provided.
 第13項に記載の作業システムによれば、シミュレーションの結果を利用した移動体の動作の制御が確実に実現される。 According to the work system described in item 13, control of the movement of a moving body using the simulation results is reliably realized.
 (第14項) 第13項に記載の作業システムは、前記作業装置に対して別体で構成される、前記第2特徴部を構成する1以上の要素をさらに備えていてもよい。 (Section 14) The work system according to Item 13 may further include one or more elements constituting the second feature, which are configured separately from the work device.
 第14項に記載の作業システムによれば、作業システムがより確実に構築され得る。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、実施の形態中の各技術は、単独でも、また、必要に応じて実施の形態中の他の技術と可能な限り組み合わされても、実施され得ることが意図される。
According to the work system described in Section 14, the work system can be constructed more reliably.
The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the description of the embodiments described above, and it is intended that all changes within the meaning and range equivalent to the claims are included. Furthermore, it is intended that each technique in the embodiments can be implemented alone or in combination with other techniques in the embodiments as necessary.
 1 作業システム、5 ウェルプレート、8 可動部、100 管理装置、101 プロセッサ、102 メモリ、103 ストレージ、104,235 インターフェイス、105 ディスプレイ、106 入力装置、111 機械学習部、112 シミュレータ部、113 情報生成部、114 搬送制御部、131 機械学習モデル、132 位置関係情報、200 被制御装置群、220,240 作業装置、230 搬送ロボット、231 本体部、232 アーム、233 グリッパー、234 撮像部、236 モータユニット、237 ドライバユニット、300 搬送装置、900 シミュレーション空間、905,920,930,931,932,933,940,Xp 要素。 1 Work system, 5 Well plate, 8 Moving part, 100 Management device, 101 Processor, 102 Memory, 103 Storage, 104, 235 Interface, 105 Display, 106 Input device, 111 Machine learning section, 112 Simulator section, 113 Information generation section , 114 Transfer control unit, 131 Machine learning model, 132 Positional relationship information, 200 Controlled device group, 220, 240 Working device, 230 Transfer robot, 231 Main body, 232 Arm, 233 Gripper, 234 Imaging unit, 236 Motor unit, 237 driver unit, 300 transport device, 900 simulation space, 905, 920, 930, 931, 932, 933, 940, Xp element.

Claims (14)

  1.  第1特徴部のシミュレーション空間における位置に基づいて、対象物を搬送するための移動体の動作計画を生成するための機械学習モデルを生成するステップと、
     第2特徴部の現実空間における位置を特定するステップと、
     前記第2特徴部の現実空間における位置と、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置と、の間の位置関係を取得するステップと、
     前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することにより、前記移動体の動作計画を生成するステップと、
     生成された前記動作計画に従って前記移動体の動作を制御するステップと、を備える、移動体の制御方法。
    Generating a machine learning model for generating a motion plan for the moving body to transport the object based on the position of the first feature in the simulation space;
    identifying the position of the second feature in real space;
    obtaining a positional relationship between a position of the second feature in real space and a position in real space corresponding to a position of the first feature in simulation space;
    generating a motion plan for the moving body by applying the position of the second feature in real space and the positional relationship to the machine learning model;
    A method for controlling a moving body, comprising: controlling the motion of the moving body according to the generated motion plan.
  2.  前記第2特徴部は、前記対象物を利用した作業のための作業装置の一部分を含む、請求項1に記載の移動体の制御方法。 The method of controlling a moving body according to claim 1, wherein the second characteristic part includes a part of a work device for work using the target object.
  3.  前記第2特徴部は、前記対象物を利用した作業のための作業装置に対して別体で構成されたマーカを含む、請求項1に記載の移動体の制御方法。 2. The method of controlling a moving body according to claim 1, wherein the second characteristic part includes a marker configured separately from a work device for work using the target object.
  4.  前記第2特徴部は、互いに識別可能な複数の要素を含む、請求項1に記載の移動体の制御方法。 The method for controlling a moving body according to claim 1, wherein the second characteristic portion includes a plurality of mutually distinguishable elements.
  5.  前記機械学習モデルの生成には強化学習のアルゴリズムが利用される、請求項1に記載の移動体の制御方法。 The method for controlling a moving body according to claim 1, wherein a reinforcement learning algorithm is used to generate the machine learning model.
  6.  前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することは、前記位置関係を利用して、前記第2特徴部の現実空間における位置から、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置を導出することを含む、請求項1に記載の移動体の制御方法。 The method for controlling a moving object according to claim 1, wherein applying the position in real space of the second feature and the positional relationship to the machine learning model includes deriving a position in real space that corresponds to the position in simulation space of the first feature from the position in real space of the second feature by using the positional relationship.
  7.  対象物を搬送するための移動体と、
     第1特徴部のシミュレーション空間における位置に基づいて、前記移動体の動作計画を生成するための機械学習モデルを生成するコントローラと、
     第2特徴部の現実空間における位置を特定するためのデータを取得するデータ取得ユニットと、
     前記第2特徴部の現実空間における位置と、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置と、の間の位置関係を格納するメモリと、を備え、
     前記コントローラは、
      前記データ取得ユニットによって取得されたデータを利用して、前記第2特徴部の現実空間における位置を特定し、
      前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することにより、前記移動体の動作計画を生成し、
      生成された前記動作計画に従って前記移動体を動作させる、搬送装置。
    a moving body for transporting the object;
    a controller that generates a machine learning model for generating a motion plan for the mobile body based on the position of the first feature in the simulation space;
    a data acquisition unit that acquires data for identifying the position of the second feature in real space;
    a memory that stores a positional relationship between a position of the second feature in real space and a position in real space that corresponds to a position of the first feature in simulation space;
    The controller includes:
    identifying the position of the second feature in real space using the data acquired by the data acquisition unit;
    Generating a motion plan for the moving object by applying the position of the second feature in real space and the positional relationship to the machine learning model;
    A transport device that operates the moving body according to the generated operation plan.
  8.  前記コントローラは、前記第2特徴部として、前記対象物を利用した作業のための作業装置の一部分を認識する、請求項7に記載の搬送装置。 The conveying device according to claim 7, wherein the controller recognizes, as the second characteristic part, a part of a working device for work using the target object.
  9.  前記コントローラは、前記第2特徴部として、前記対象物を利用した作業のための作業装置に対して別体で構成されたマーカを認識する、請求項7に記載の搬送装置。 The conveying device according to claim 7, wherein the controller recognizes, as the second characteristic part, a marker configured separately from a working device for work using the target object.
  10.  前記コントローラは、前記第2特徴部として、互いに識別可能な複数の要素のそれぞれを認識する、請求項7に記載の搬送装置。 The conveying device according to claim 7, wherein the controller recognizes each of a plurality of mutually distinguishable elements as the second characteristic portion.
  11.  前記機械学習モデルの生成には強化学習のアルゴリズムが利用される、請求項7に記載の搬送装置。 The conveyance device according to claim 7, wherein a reinforcement learning algorithm is used to generate the machine learning model.
  12.  前記第2特徴部の現実空間における位置および前記位置関係を前記機械学習モデルに適用することは、前記位置関係を利用して、前記第2特徴部の現実空間における位置から、前記第1特徴部のシミュレーション空間における位置に相当する現実空間における位置を導出することを含む、請求項7に記載の搬送装置。 Applying the position of the second feature in the real space and the positional relationship to the machine learning model means that the position of the second feature in the real space is used to calculate the first feature from the position of the second feature in the real space. 8. The conveying device according to claim 7, further comprising deriving a position in real space corresponding to a position in simulation space.
  13.  請求項7から9のいずれか1項に記載の搬送装置と、当該搬送装置によって搬送される対象物を利用した作業のための作業装置と、を備える、作業システム。 A work system comprising: the transport device according to any one of claims 7 to 9; and a work device for performing work using an object transported by the transport device.
  14.  前記作業装置に対して別体で構成される、前記第2特徴部を構成する1以上の要素をさらに備える、請求項13に記載の作業システム。 The work system according to claim 13, further comprising one or more elements constituting the second feature, which are configured separately from the work device.
PCT/JP2023/029395 2022-09-12 2023-08-14 Method for controlling mobile object, transport device, and work system WO2024057800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144481 2022-09-12
JP2022144481 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024057800A1 true WO2024057800A1 (en) 2024-03-21

Family

ID=90274874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029395 WO2024057800A1 (en) 2022-09-12 2023-08-14 Method for controlling mobile object, transport device, and work system

Country Status (1)

Country Link
WO (1) WO2024057800A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125345A (en) * 2018-01-12 2019-07-25 キヤノン株式会社 Information processor, information processing method, program, and system
EP3733355A1 (en) * 2019-05-01 2020-11-04 Arrival Limited Robot motion optimization system and method
JP2020194432A (en) * 2019-05-29 2020-12-03 トヨタ自動車株式会社 Machine learning method and mobile robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125345A (en) * 2018-01-12 2019-07-25 キヤノン株式会社 Information processor, information processing method, program, and system
EP3733355A1 (en) * 2019-05-01 2020-11-04 Arrival Limited Robot motion optimization system and method
JP2020194432A (en) * 2019-05-29 2020-12-03 トヨタ自動車株式会社 Machine learning method and mobile robot

Similar Documents

Publication Publication Date Title
CN110198813B (en) Robot path generation device and robot system
CN110914024B (en) Path output method, path output system, and path output program
CN108177162B (en) The interference region setting device of mobile robot
Al-Sharo et al. Generalized Procedure for Determining the Collision-Free Trajectory for a Robotic Arm
CN100408278C (en) Robot program production system
US8504188B2 (en) Device and method for the computer-assisted generation of a manipulator path
JP2022542241A (en) Systems and methods for augmenting visual output from robotic devices
JP6538751B2 (en) Programming device and robot control method
CN104669264B (en) For the method and apparatus of the troubleshooting of robot
JP2007011978A (en) Motion controller for robot
JP2019084601A (en) Information processor, gripping system and information processing method
JP2019018272A (en) Motion generation method, motion generation device, system, and computer program
CN111319038B (en) Track generation system and track generation method
JP2008207262A (en) Manipulator system
JP2020508888A5 (en)
CN109278063A (en) Robot device, control method, assemble method and recording medium
Schwaner et al. Autonomous bi-manual surgical suturing based on skills learned from demonstration
CN115157245A (en) Mechanical arm control system and method based on deep learning
US20220066401A1 (en) Machine control system
US10933526B2 (en) Method and robotic system for manipulating instruments
WO2024057800A1 (en) Method for controlling mobile object, transport device, and work system
JP7475663B2 (en) Mobile manipulator and control method and program thereof
WO2022259600A1 (en) Information processing device, information processing system, information processing method, and program
JP2007331075A (en) Object holding system of mobile working robot and method therefor
Wu et al. Application of visual servoing for grasping and placing operation in slaughterhouse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865159

Country of ref document: EP

Kind code of ref document: A1