WO2024057748A1 - Power transmission shaft and propeller shaft - Google Patents

Power transmission shaft and propeller shaft Download PDF

Info

Publication number
WO2024057748A1
WO2024057748A1 PCT/JP2023/028043 JP2023028043W WO2024057748A1 WO 2024057748 A1 WO2024057748 A1 WO 2024057748A1 JP 2023028043 W JP2023028043 W JP 2023028043W WO 2024057748 A1 WO2024057748 A1 WO 2024057748A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
power transmission
transmission shaft
serration
collision load
Prior art date
Application number
PCT/JP2023/028043
Other languages
French (fr)
Japanese (ja)
Inventor
莎 李
康史 穐田
賢人 春名
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024057748A1 publication Critical patent/WO2024057748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic

Definitions

  • the present invention relates to a power transmission shaft and a propeller shaft.
  • the propeller shaft as a power transmission shaft includes a first insertion part in which a first serration part is formed on the outer peripheral side of the first end of a cylindrical member made of FRP.
  • the first joint member is press-fitted through the first joint member, and a second insertion portion having a second serration portion formed on the outer circumferential side is press-fitted into the inner circumferential side of the second end of the FRP cylinder.
  • the first insertion part and the second serration part are formed with a first serration part and a second serration part having the same shape at the first end part and the second end part of the FRP cylinder body, respectively.
  • the insertion part was press-fitted. For this reason, when a vehicle collides, which of the first end and the second end of the FRP cylinder is destroyed first, that is, the first insertion part and the second insertion part with respect to the FRP cylinder. It was difficult to predict which one would sneak in first. This leaves room for improvement in that the collision performance of the propeller shaft as a power transmission shaft becomes unstable.
  • the present invention was devised in view of the technical problems of the conventional propeller shaft, and an object of the present invention is to provide a power transmission shaft and a propeller shaft that can improve the stability of collision performance. It is said that
  • a second collision load for releasing the fixed state between the tube and the second insertion section is set to be larger than a first collision load for releasing the fixed state between the tube and the first insertion section.
  • the stability of collision performance can be improved.
  • FIG. 2 is a layout diagram showing the arrangement of a power transmission shaft in a vehicle according to the present invention.
  • FIG. 1 is a half-longitudinal cross-sectional view showing the entire power transmission shaft according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the main part of the section taken along the line AA in FIG. 2;
  • FIG. 3 is a diagram showing a modified example of the power transmission shaft according to the present invention, and is an enlarged sectional view of a main part taken along line AA in FIG. 2.
  • FIG. 3 is a half-longitudinal cross-sectional view showing the state before and after the collapse of the power transmission shaft shown in FIG.
  • FIG. 7 is a half-longitudinal cross-sectional view showing the entire power transmission shaft according to the second embodiment of the present invention. It is a half-longitudinal sectional view showing the whole power transmission shaft concerning a 3rd embodiment of the present invention. It is a half-longitudinal sectional view showing the whole power transmission shaft concerning a 4th embodiment of the present invention.
  • FIG. 7 is a half-longitudinal cross-sectional view showing the entire power transmission shaft according to the second embodiment of the present invention. It is a half-longitudinal sectional view showing the whole power transmission shaft concerning a 3rd embodiment of the present invention. It is a half-longitudinal sectional view showing the whole power transmission shaft concerning a 4th embodiment of the present invention.
  • FIG. 7 is a half-longitudinal cross-sectional view showing a power transmission shaft according to a fifth embodiment of the present invention, in which (a) is an enlarged view of the vicinity of the first end of the tube, and (b) is an enlarged view of the vicinity of the second end of the tube. It is a figure which shows an enlarged view.
  • FIG. 7 is a layout diagram showing another example of the arrangement of the power transmission shaft in a vehicle according to the present invention.
  • FIG. 1 shows a layout diagram showing the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention.
  • the vehicle V is a so-called FR (front engine rear drive) vehicle, and has an engine EG and an engine EG on the front axle FD that connects the front wheels FT.
  • a transmission TM as a power transmission device (transmission device) is arranged.
  • a differential DF serving as a second power transmission device (differential device) that transmits power to the rear wheel axle RD is arranged at the center of the rear wheel axle RD that connects the rear wheels RT.
  • the transmission TM and the differential DF are connected to enable power transmission via a propeller shaft PS serving as a power transmission shaft.
  • FIG. 2 shows a first embodiment of a power transmission shaft according to the present invention.
  • the first joint member J1 side in FIG. 2 will be referred to as “front” and the second joint member J2 side will be referred to as “rear”.
  • the direction along the rotation axis Z in FIG. 2 will be referred to as an "axial direction,” the direction perpendicular to the rotation axis Z as a “radial direction,” and the direction around the rotation axis Z as a “circumferential direction.”
  • FIG. 2 shows the overall form of the propeller shaft PS1 according to the first embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS1 taken along the direction of the rotation axis Z.
  • the propeller shaft PS1 is arranged between a first power transmission device (not shown) located at the front of the vehicle and a second power transmission device (not shown) located at the rear of the vehicle.
  • the first power transmission device corresponds to a transmission TM (see FIG. 1) that is a speed change device
  • the second power transmission device corresponds to a differential DF (see FIG. 1) that is a differential device.
  • the propeller shaft PS1 is a so-called one-piece propeller shaft, in which the front end side is connected to the first power transmission device via the first joint member J1, and the rear end side is connected to the first power transmission device via the first joint member J1. It is connected to the second power transmission device via a joint member J2. That is, the propeller shaft PS1 includes a tube 1 formed in a generally cylindrical shape and a first joint member J1 that is inserted into the first end 11 that is the front end of the tube 1 and is connected to the first power transmission device. and a second joint member J2 that is inserted into the second end 12, which is the rear end of the tube 1, and serves for connection to the second power transmission device.
  • the power transmission shaft (propeller shaft) according to the present invention is applied to the one-piece structure propeller shaft having a single tube, but the present invention It is sufficient that the tube has a collapsible shaft joint, which will be described later, connected to both axial ends of the tube.
  • the power transmission shaft (propeller shaft) according to the present invention can be applied to a propeller shaft having a plurality of pieces, for example, which has a plurality of tubes and is formed by connecting these tubes with a shaft coupling.
  • the tube 1 is formed of a carbon fiber reinforced resin material (so-called CFRP) into a cylindrical shape having a constant inner diameter R1 in the axial direction. Further, the tube 1 is formed so that the respective wall thicknesses T1 and T2 of the first end portion 11 and the second end portion 12 are thicker than the wall thickness T3 of the general portion (axially intermediate portion). Specifically, the tube 1 is integrally formed by laminating the carbon fiber reinforced resin material (CFRP) in the radial direction, and has at least two inner and outer layers, an inner circumferential layer 13 and an outer circumferential layer 14. is formed.
  • CFRP carbon fiber reinforced resin material
  • the tube 1 is made of carbon fiber reinforced resin (CFRP), but the tube 1 can be made of a metal material, for example, in addition to fiber reinforced resin formed by hardening fibers with resin. It may be formed by Further, when the tube 1 is formed of fiber-reinforced resin, it may be formed of, for example, glass fiber-reinforced resin (FRP) in addition to the carbon fiber-reinforced resin (CFRP) according to this embodiment.
  • CFRP carbon fiber reinforced resin
  • FRP glass fiber-reinforced resin
  • the first joint member J1 includes a first shaft portion 2 that is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1, and a first joint portion that connects the first shaft portion 2 and the first power transmission device. 4 and has.
  • the first shaft portion 2 and the first joint portion 4 are fixed so as to be able to rotate together, and are integrally configured as a first joint member J1.
  • the second joint member J2 includes a second shaft portion 3 inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1, and a second joint portion that connects the second shaft portion 3 and the second power transmission device. 5 and has.
  • the second shaft portion 3 and the second joint portion 5 are fixed so as to be able to rotate together, and are integrally configured as a second joint member J2.
  • the first shaft portion 2 includes a first connecting base 21 that is exposed from the first end 11 of the tube 1 and connected to the first joint portion 4, and extends in the axial direction from the rear end of the first connecting base 21. , and a first insertion portion 22 inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1.
  • the first connection base 21 and the first insertion portion 22 are integrally formed of a metal material.
  • the first connection base 21 includes a first base 23, a first insertion side connection part 24 whose diameter is expanded in a stepped shape from the rear end of the first base 23, and which is connected to the first insertion part 22, and a first base 23.
  • the first joint side connecting portion 25 is tapered in diameter from the front end of the first joint portion 23 in a step-like manner and is connected to the first joint portion 4 .
  • the first connection base 21 and the first joint portion 4 constitute a first main body portion according to the present invention.
  • the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1.
  • the first insertion portion 22 has a first serration portion 26 formed on the outer circumferential side thereof over almost the entire axial direction, which can be connected to the tube 1 through serrations.
  • the first serration portion 26 is formed such that a groove 261 recessed inward in the radial direction extends in a direction parallel to the rotation axis Z, and the outer diameter D1 of the tooth tip 262 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the first serration portion 26 is formed by press-fitting the first insertion portion 22 into the first end portion 11 of the tube 1 and by biting the tooth tips 262 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. As a result, the first insertion portion 22 is fixedly supported by the inner peripheral portion 111 of the first end portion 11 of the tube 1 via the first serration portion 26 .
  • the first serration part 26 is disposed between the first serration part 26 and the tube 1 so that the first insertion part 22 can move the inner peripheral part of the tube 1 from the first end 11 to the second end 12 by releasing the fixed state with the tube 1.
  • a first collision load F1 that starts moving toward the side is set.
  • the first collision load F1 is a first engagement which is the engagement length (tooth width) of the first serration portion 26 that engages with the inner circumference 111 of the first end 11 of the tube 1. It is set based on the length L1.
  • the first joint part 4 is constituted by a universal joint (for example, a constant velocity joint in this embodiment), and is provided on the opposite side of the tube 1 in the axial direction with respect to the first shaft part 2. That is, the first joint part 4 is arranged to face the generally cylindrical inner ring member 41 fixed to the outer peripheral surface of the first joint side connecting part 25 of the first shaft part 2 and the outer peripheral side of the inner ring member 41. It has a generally cylindrical outer ring member 42 and a plurality of balls 43 that are rolling elements arranged between the outer ring member 42 and the inner ring member 41 so as to be rotatable.
  • a universal joint for example, a constant velocity joint in this embodiment
  • the outer diameter D3 of the outer ring member 42 is set larger than the outer diameter D1 of the first insertion portion 22.
  • the head 60 of the bolt 6 to be fastened is configured to come into contact with the end surface (first end surface 112) of the tube 1 on the first end 11 side.
  • a generally circular shaft through hole 411 through which the first joint side connecting portion 25 passes is axially penetrated on the inner peripheral side of the inner ring member 41. That is, the first joint side connecting portion 25 is press-fitted over almost the entire axial direction of the shaft through hole 411, and the first joint side connecting portion 25 and the inner ring member 41 can rotate together. Fixed.
  • an inner ring side axial groove 412 in which the balls 43 can roll is formed along the axial direction. That is, the ball 43 rolls between the inner ring side axial groove 412 and the outer ring side axial groove 421 (described later), allowing relative movement in the axial direction between the inner ring member 41 and the outer ring member 42, while also allowing the inner ring side axial direction
  • By engaging the balls 43 with the grooves 412 and the outer ring side axial grooves 421 By engaging the balls 43 with the grooves 412 and the outer ring side axial grooves 421, relative movement of the inner ring member 41 and the outer ring member 42 in the circumferential direction is restricted.
  • the outer ring member 42 is rotatably fixed to the first power transmission device via a plurality of bolts 6 passing through the outer ring member 42 in the axial direction. Further, on the inner peripheral side of the outer ring member 42, an outer ring side axial groove 421 in which the ball 43 can roll is formed along the axial direction. That is, the balls 43 roll between the outer ring side axial groove 421 and the inner ring side axial groove 412, allowing relative movement in the axial direction between the outer ring member 42 and the inner ring member 41. 421 and the inner ring side axial groove 412, the balls 43 engage to restrict the relative movement of the outer ring member 42 and the inner ring member 41 in the circumferential direction.
  • the first power transmission device and the outer ring member 42 rotate together, so that the rotational torque output from the first power transmission device is transmitted from the outer ring member 42 to the inner ring member 41 via the balls 43. be done. Based on this transmitted rotational torque, the inner ring member 41 and the first shaft portion 2 (first connection base portion 21) rotate together.
  • the second shaft portion 3 includes a second connection base 31 exposed from the second end 12 of the tube 1 and connected to the second joint portion 5, and extends in the axial direction from the front end of the second connection base 31.
  • the second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1.
  • the second connection base 31 and the second insertion portion 32 are integrally formed of a metal material.
  • the second connection base 31 includes a second base 33 , a second insertion side connection part 34 that is expanded in diameter from the front end of the second base 33 in a stepped manner and is connected to the second insertion part 32 , and a second insertion side connection part 34 that is connected to the second insertion part 32 . It has a second joint-side connecting portion 35 that is expanded in diameter in a stepped manner from the rear end portion and is connected to the second joint portion 5 . Note that the second connection base 31 and the second joint portion 5 constitute a second main body portion according to the present invention.
  • the second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1.
  • the second insertion portion 32 has a second serration portion 36 formed on the outer circumferential side thereof over almost the entire area in the axial direction, which can be connected to the tube 1 through serrations.
  • the second serration portion 36 is formed such that a groove 361 recessed radially inward extends in a direction parallel to the rotation axis Z, and the outer diameter D2 of the tooth tip 362 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the second serration portion 36 is formed by press-fitting the second insertion portion 32 into the second end portion 12 of the tube 1 and by biting the tooth tip 362 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. Thereby, the second insertion portion 32 is fixedly supported by the inner peripheral portion 121 of the second end portion 12 of the tube 1 via the second serration portion 36.
  • the outer diameter D2 of the tooth tip 362 of the second serration portion 36 is set to be the same as the outer diameter D1 of the tooth tip 262 of the first serration portion 26.
  • the second biting allowance X2 of the second serration portion 36 is set to be the same as the first biting allowance X1 of the first serration portion 26.
  • the second serration part 36 is disposed between the second serration part 36 and the tube 1 so that the second insertion part 32 can move the inner peripheral part of the tube 1 from the second end part 12 to the first end part 11 by releasing the fixed state with the tube 1.
  • a second collision load F2 is set that starts moving toward the side.
  • the second collision load F2 is a second engagement that is the engagement length (tooth width) of the second serration portion 36 that engages with the inner peripheral portion 121 of the second end portion 12 of the tube 1. It is set based on the length L2.
  • the second collision load F2 is set to be larger than the first collision load F1. That is, the second biting length L2 of the second serration portion 36 is formed to be longer than the first biting length L1 of the first serration portion 26. In other words, before the second insertion section 32 at the second end 12 of the tube 1 starts to move from the second end 12 to the first end 11 side, the second insertion section 32 at the first end 11 of the tube 1 The first insertion portion 22 is configured to start moving from the first end 11 to the second end 12 side. More specifically, the second biting length L2 is set to about twice the first biting length L1.
  • the second joint part 5 is constituted by a so-called rubber joint, and is provided on the opposite side of the tube 1 in the axial direction with respect to the second shaft part 3. That is, the second joint part 5 has a substantially annular shape, is arranged at equal intervals in the circumferential direction, and has three first bolt through holes 51 for connecting with the second joint side connecting part 35 of the second shaft part 3. , three second bolt through holes 52 arranged at equal intervals in the circumferential direction of the first bolt through holes 51 and used for connection with the second power transmission device.
  • the second joint side connecting portion 35 formed in a three-pronged shape and the second joint portion 5 are fastened together through the first bolt 61 passing through the first bolt through hole 51, so that they can rotate together. Fixed.
  • the second power transmission device formed in a three-pronged shape and the second joint portion 5 are fastened to each other via a second bolt (not shown) passing through the second bolt through hole 52, and are fixed so as to be rotatable together. be done.
  • the outer diameter D4 of the second joint portion 5 is set larger than the outer diameter D2 of the second insertion portion 32. Specifically, when the second shaft portion 3 sneaks into the tube 1 during a collision on the rear side of the vehicle, the inner end surface 351 of the second joint-side connecting portion 35 touches the second end portion 12 side of the tube 1. It is configured to be able to come into contact with the end surface (second end surface 122).
  • FIG. 3 shows an enlarged sectional view of the main part of the propeller shaft PS1, which shows the main part of the cross section cut along the line AA in FIG. 2.
  • FIG. 4 shows a modification of the first serration section 26 shown in FIG. 3.
  • the first serration part 26 and the second serration part 36 differ only in the tooth width corresponding to the biting length L1, and the height H of the tooth tip 262 is the same. Therefore, for convenience, the first serration section 26 will be explained below as an example, and detailed explanation of the second serration section 36 will be omitted.
  • the first serration portion 26 is formed so that the tooth tips 262 are sharply pointed.
  • the sharply pointed tooth tip 262 moves the inner circumference 111 of the first end 11 of the tube 1 in the axial direction.
  • the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 by scraping along the tube.
  • the first serration portion 26 is not limited to the shape of the sharp tooth tip 262 shown in FIG. 3, but may be formed in a rounded arc shape as shown in FIG. 4. At this time, it is desirable that the tooth tip 262 of the first serration portion 26 be formed by a radius Rx smaller than the radius Rv connecting the pair of tooth surfaces 263 of the first serration portion 26 . In this way, by setting the radius Rx of the tooth tip 262 to be relatively small, the surface pressure of the tooth tip 262 when press-fitting the first insertion portion 22 into the tube 1 is increased, and Good biting of the tooth tips 262 can be ensured.
  • (Collapse structure of propeller shaft) 5 is a half-longitudinal cross-sectional view showing the state before and after the collapse occurs in the propeller shaft PS1 shown in FIG. (c) shows a state where a collapse has occurred on the second end 12 side of the tube 1.
  • the tube first changes from the normal state shown in FIG. 5(a). Collapse occurs first on the first end 11 side of 1. That is, as shown in FIG. 5(b), between the first shaft portion 2 and the tube 1 which have received an axial load Fx larger than the first collision load F1, the first insertion portion 22 and the tube 1 are in a fixed state. is released (destroyed), and the first connection base 21 slips into the first end 11 of the tube 1.
  • the first insertion section 22 is inserted into the first end until the head 60 of each bolt 6 of the first joint section 4 comes into contact with the first end surface 112 of the tube 1. It moves from the section 11 to the second end section 12 side.
  • the axial load Fx is transmitted from the first shaft part 2 to the second shaft part 3 via the tube 1, and the propeller shaft PS1 is sandwiched between the second shaft part 3 and the second power transmission device (not shown).
  • the axial load Fx from the second power transmission device (not shown) acts on the second shaft portion 3 due to a reaction.
  • a collapse occurs on the second end 12 side of the tube 1 after the collapse on the first end 11 side. That is, as shown in FIG. 5(c), between the second shaft portion 3 and the tube 1 which have received an axial load Fx larger than the second collision load F2, the second insertion portion 32 and the tube 1 are in a fixed state.
  • the second connection base 31 slips into the second end 12 of the tube 1.
  • the second insertion section 32 is inserted into the second end 12 until the inner end surface 351 of the second joint-side connecting section 35 comes into contact with the second end surface 122 of the tube 1. It moves from there to the first end portion 11 side.
  • the first end 11 side of the tube 1 is destroyed first, and then the first end 11 side of the tube 1 is destroyed.
  • the state of collapse is controlled so that the second end 12 side of the tube 1 is destroyed.
  • the collapse occurring on the first end 11 side and the second end 12 side of the tube 1 buffers the axial load Fx and absorbs the collision energy of the vehicle.
  • the axial load Fx is normally buffered, and the propeller shaft PS1 is bent toward the vehicle body. problems are suppressed.
  • the conventional propeller shaft has a first insertion part and a second insertion part in which a first serration part and a second serration part of the same shape are formed at the first end part and the second end part of the FRP cylinder body, respectively. It had been press-fitted. Therefore, when a vehicle collides, depending on the processing error of the FRP cylinder, the first insertion part, and the second insertion part, which of the first end and the second end of the FRP cylinder breaks first. In other words, it was difficult to predict which of the first insertion portion and the second insertion portion would be inserted into the FRP cylinder first. This leaves room for improvement in that the collision performance of the propeller shaft PS1 becomes unstable.
  • the propeller shaft PS1 according to the present embodiment can solve the problems of the conventional propeller shaft by providing the following effects.
  • the propeller shaft PS1 is a power transmission shaft (propeller shaft) that transmits power between a first power transmission device (not shown) and a second power transmission device (not shown) of the vehicle, and is formed in a cylindrical shape.
  • the tube 1 is a first joint member, and includes a first main body portion (first connection base 21 and first joint portion 4), and a first insertion portion 22. , of the first end 11 and second end 12 that are a pair of ends in the direction of the rotational axis Z of the tube 1, the outer peripheral part of the first insertion part 22 is aligned with the inner peripheral part 111 of the first end 11.
  • first insertion section 22 When the first insertion section 22 is supported in a fixed state and the tube 1 is released from the fixed state with the tube 1, the first insertion section 22 starts to move from the first end 11 of the tube 1 toward the second end 12.
  • 1 collision load F1 is set, and the first main body part (first connection base part 21 and first joint part 4) is opposite to the first insertion part 22 from the first end part 11 in the direction of the rotation axis Z.
  • a first joint member J1 and a second joint member which are provided on the side and connected to the first power transmission device (not shown), and include a second main body portion (second connection base 31 and second joint portion 5).
  • a second collision load F2 is set in which the fixed state with the tube 1 is released and the second insertion portion 32 begins to move from the second end 12 of the tube 1 toward the first end 11.
  • the second collision load F2 is set to be larger than the first collision load F1
  • the second main body part (the second connection base part 31 and the second joint part 5) has a second collision load F2 in the direction of the rotation axis Z.
  • a second joint member J2 is provided on the opposite side of the second insertion portion 32 from the end portion 12 and connected to the second power transmission device (not shown).
  • the second collision load F2 which is larger than the first collision load F1 that causes the first insertion part 22 and the tube 1 to be released from the fixed state, acts on the second collision load F2, the second insertion part 32 It is configured so that the fixed state with the tube 1 is released. Therefore, at the time of a vehicle collision, that is, when an axial load Fx is applied to the propeller shaft PS1, the first insertion portion 22 is released from the fixed state before the second insertion portion 32, and the first insertion portion 22 is released from the fixed state before the second insertion portion 32 is It becomes possible to control the release of fixation of the first insertion section 22 and the second insertion section 32. Thereby, the stability of the collision performance of the propeller shaft PS1 can be improved.
  • the tube 1 is made of a material made by hardening fibers with resin.
  • the tube 1 is made of a material made by hardening fibers with resin. Therefore, compared to the case where the tube 1 is formed of a metal material, the tube 1 can be made lighter, which contributes to improving the fuel efficiency of the automobile.
  • the tube 1 is formed of carbon fiber reinforced resin (CFRP).
  • CFRP carbon fiber reinforced resin
  • the tube 1 is made of carbon fiber reinforced resin (CFRP)
  • the tube 1 is made of carbon fiber reinforced resin (CFRP). It has high strength and can further reduce the weight of the tube 1.
  • the tube 1 can be formed of glass fiber reinforced resin (FRP) as described above.
  • FRP glass fiber reinforced resin
  • the tube 1 can be formed at a lower cost than when the tube 1 is formed from other fiber-reinforced resins, such as carbon fiber-reinforced resin (CFRP).
  • CFRP carbon fiber-reinforced resin
  • the first insertion section 22 has a first serration section 26 on the outer circumferential part of the first insertion section 22 that engages with the inner circumferential surface of the first end 11 of the tube 1.
  • 1 collision load F1 is set by a first engagement length L1 of the first serration portion 26 biting into the inner circumferential surface of the first end portion 11 of the tube 1 in the direction of the rotation axis Z, and a second collision load F1.
  • the insertion part 32 has a second serration part 36 on the outer peripheral part of the second insertion part 32 that engages with the inner peripheral surface of the second end part 12 of the tube 1, and the second collision load F2 is applied to the rotation axis.
  • the second serration portion 36 is set by a second engagement length L2 that engages the inner peripheral surface of the second end portion 12 of the tube 1, and the second engagement length L2 is set by a second engagement length L2 that engages the inner peripheral surface of the second end portion 12 of the tube 1. It is set longer than the biting length L1.
  • the second collision load F2 is set to be larger than the first collision load F1.
  • the biting allowance of the second insertion part 32 with respect to the tube 1 second biting allowance
  • the strength of the tube 1 can be ensured compared to the case where the second collision load F2 is set larger than the first collision load F1 by setting the second collision load F2 to be larger than the first collision load F1 (first bite width X1 to be described later).
  • the collision load of the propeller shaft PS1 can also be easily controlled.
  • the biting allowance of the first insertion part 22 and the second insertion part 32 By increasing the width, the outer diameters of the first insertion portion 22 and the second insertion portion 32 become larger. As a result, the first insertion section 22 and the second insertion section 32 will push the first end 11 and second end 12 of the tube 1 widely apart, which may reduce the strength of the tube 1. .
  • the first insertion portion 22 and the second insertion portion 32 do not change their outer diameters. Thereby, there is no fear that the strength of the tube 1 will be reduced. Moreover, by not changing the outer diameters of the first insertion section 22 and the second insertion section 32, there is no need to review the strength design of the tube 1. As a result, compared to the case where the first collision load F1 and the second collision load F2 are controlled based on the biting allowance of the first insertion part 22 and the second insertion part 32, the first collision load F1 and the second collision load F2 are controlled. There is an advantage that the collision load F2 can be controlled relatively easily.
  • the first insertion section 22 has a first serration section 26 on the outer circumferential part of the first insertion section 22 that engages with the inner circumferential surface of the first end 11 of the tube 1.
  • the second insertion portion 32 has a second serration portion 36 on the outer circumference of the second insertion portion 32 that engages with the inner circumference of the second end portion 12 of the tube 1, and includes a first serration portion 26 and a second serration portion 36. At least one of the distal ends of the portion 36 is formed into a sharp shape when viewed in a cross section perpendicular to the rotation axis Z.
  • the tip end of at least one of the first serration section 26 and the second serration section 36 is formed into a sharp shape when viewed in a cross section perpendicular to the rotation axis Z of the tube 1. There is. As described above, since the tip of at least one of the first serration section 26 and the second serration section 36 is formed sharply, the first serration section 26 or the second serration section 36 can easily be caught in the tube 1. Therefore, the manufacturing workability of the propeller shaft PS1 is improved, and the productivity of the propeller shaft PS1 can be improved.
  • the second insertion section 32 has a second serration section 36 on the outer circumference of the second insertion section 32 that fits into the inner circumference of the second end 12 of the tube 1.
  • at least one of the tips of the first serration section 26 and the second serration section 36 may be formed in an arc shape when viewed in a cross section perpendicular to the rotation axis Z.
  • the tip portions of the first serration portion 26 to the second serration portion 36 are rounded, thereby preventing the generation of burrs when processing the first serration portion 26 to the second serration portion 36. It becomes possible to suppress this. Thereby, an unintended increase in collision load due to the burr is suppressed, and the controllability of the collision load on the propeller shaft PS1 can be improved.
  • the first power transmission device (not shown) is a transmission TM
  • the second power transmission device (not shown) is a differential DF.
  • the first collision load F1 on the first end 11 side of the tube 1 connected to the transmission TM mounted relatively in the front of the vehicle is set relatively low. Normally, vehicles often collide from the front, so safety can be improved by setting the collision load on the front side of the vehicle to be relatively low.
  • FIG. 6 shows a second embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted.
  • the first joint member J1 side in FIG. 6 will be referred to as "front” and the second joint member J2 side will be referred to as "rear”, and the direction along the rotation axis Z in FIG. will be described as an "axial direction,” a direction perpendicular to the rotational axis Z as a "radial direction,” and a direction around the rotational axis Z as a “circumferential direction.”
  • FIG. 6 shows the overall form of the propeller shaft PS2 according to the second embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS2 taken along the direction of the rotation axis Z.
  • the propeller shaft PS2 is configured such that the first engagement length L1 of the first insertion portion 22 and the second engagement length L2 of the second insertion portion 32 are the same. is set to .
  • the first collision load F1 is based on the first biting allowance X1 of the first serration part 26 biting into the inner peripheral part 111 of the first end 11 of the tube 1. It is set.
  • the second collision load F2 is set based on the second biting allowance X2 at which the second serration portion 36 bites into the inner peripheral portion 121 of the second end portion 12 of the tube 1.
  • the second biting allowance X2 of the second serration portion 36 is formed to be larger than the first biting allowance X1 of the first serration portion 26. Specifically, the second biting allowance X2 is set to approximately twice the first biting allowance X1.
  • the first insertion section 22 has a first insertion section 22 that is inserted into the outer circumference of the first insertion section 22 and that is inserted into the inner circumference of the first end 11 of the tube 1.
  • the first collision load F1 is caused by a first biting allowance X1 in which the first serrations 26 bites into the inner circumferential surface of the first end 11 of the tube 1 in the direction of the rotation axis Z.
  • the second insertion portion 32 has a second serration portion 36 on the outer circumference thereof that engages with the inner circumference of the second end portion 12 of the tube 1, and
  • the load F2 is set by a second biting allowance X2 in which the second serration portion 36 bites into the inner circumferential surface of the second end portion 12 of the tube 1 in the direction of the rotation axis Z.
  • X2 is set larger than the first biting allowance X1.
  • the second biting allowance X2 is set larger than the first biting allowance X1, so that the second collision load F2 is set larger than the first collision load F1. ing.
  • the collision load is controlled by making the second biting allowance X2 of the second insertion part 32 relatively larger than the first biting allowance X1 of the first insertion part 22. This allows relatively large torque to be transmitted.
  • the biting length of the second insertion part 32 Since it is possible to shorten the second insertion portion 32 by setting L2 relatively short, it is possible to reduce the manufacturing cost of the propeller shaft PS2.
  • FIG. 7 shows a third embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted.
  • the first joint member J1 side in FIG. 7 will be referred to as "front” and the second joint member J2 side will be referred to as "rear”, and the direction along the rotation axis Z in FIG. will be described as an "axial direction,” a direction perpendicular to the rotational axis Z as a "radial direction,” and a direction around the rotational axis Z as a “circumferential direction.”
  • FIG. 7 shows the overall form of a propeller shaft PS3 according to a third embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS3 taken along the direction of the rotation axis Z.
  • the first engagement length L1 of the first insertion portion 22 and the second engagement length L2 of the second insertion portion 32 are set to be the same. ing.
  • the first serration section 26 bites into the inner circumferential surface of the first end 11 of the tube 1, so that the first insertion section 22 is inserted into the first end 11 of the tube 1. It is supported in a fixed state by the section 11.
  • the second serration portion 36 bites into the inner peripheral surface of the second end portion 12 of the tube 1, and the second serration portion 36 and the second end portion 12 of the tube 1
  • the second insertion portion 32 is fixedly supported by the second end portion 12 of the tube 1 by being bonded to the inner circumferential surface of the tube 1 with the adhesive G.
  • the first collision load F1 is set based on the first biting length L1 of the first serration portion 26, while the second collision load F2 is set based on the first bite length L1 of the second serration portion 36. It is set based on the second biting length L2 and the adhesive force of the adhesive G.
  • the second collision load F2 is set larger than the first collision load F1.
  • the first insertion section 22 has a first insertion section 22 that is inserted into the outer circumference of the first insertion section 22 and that is inserted into the inner circumference of the first end 11 of the tube 1.
  • the second insertion portion 32 has a second serration portion 36 on the outer circumference of the second insertion portion 32 that engages with the inner circumference of the second end portion 12 of the tube 1.
  • the two serrations 36 and the tube 1 are bonded together with an adhesive G.
  • the second collision load F2 is set larger than the first collision load F1 by bonding the second serration portion 36 and the tube 1 with the adhesive G.
  • the second collision load F2 is controlled to be relatively large by applying the adhesive G to the second serration part 36, precise machining of the first serration part 26 and the second serration part 36 is possible. No longer needed.
  • the adhesive force of the adhesive G can ensure the second collision load F2. Thereby, it is possible to reduce the manufacturing cost of the propeller shaft PS3.
  • FIG. 8 shows a fourth embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted.
  • the first joint member J1 side in FIG. 8 will be referred to as "front” and the second joint member J2 side will be referred to as "rear”, and the direction along the rotation axis Z in FIG. will be described as an "axial direction,” a direction perpendicular to the rotational axis Z as a "radial direction,” and a direction around the rotational axis Z as a “circumferential direction.”
  • FIG. 8 shows the overall form of the propeller shaft PS4 according to the fourth embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS4 taken along the direction of the rotation axis Z.
  • the tube 1 is formed of a metal material.
  • the first insertion section 22 is spline-coupled to the first end 11 of the tube 1
  • the second insertion section 32 is spline-coupled to the second end 12 of the tube 1.
  • first female spline portion 15 extending along the axial direction is formed on the inner peripheral portion 111 of the first end portion 11 of the tube 1.
  • second female spline portion 16 extending along the axial direction is formed on the inner peripheral portion 121 of the second end portion 12 of the tube 1 .
  • a first male spline portion 27 is formed on the outer circumferential portion of the first insertion portion 22 to engage with the first female spline portion 15 of the tube 1 and to be movable in the axial direction along the first female spline portion 15.
  • the first insertion portion 22 is press-fitted into the first female spline portion 15 of the tube 1 via the first male spline portion 27 .
  • a second male spline is provided that engages with the second female spline portion 16 of the tube 1 and is movable in the axial direction along the second female spline portion 16.
  • a portion 37 is formed.
  • the second insertion portion 32 is press-fitted into the second female spline portion 16 of the tube 1 via the second male spline portion 37 .
  • the first collision load F1 is set by the first engagement length L1 at which the first female spline portion 15 engages with the first male spline portion 27.
  • the second collision load F2 is set by the second engagement length L2 at which the second female spline portion 16 engages with the second male spline portion 37.
  • the second biting length L2 is set longer than the first biting length L1.
  • the first collision load F1 is set by the first biting length L1
  • the second collision load F2 is set by the second biting length L2.
  • the first collision load F1 may be set by the first biting allowance X1
  • the second collision load F2 may be set by the second biting allowance X2.
  • the second female spline portion 16 and the second male spline portion 37 may be bonded together using adhesive G as in the third embodiment.
  • the first female spline portion 15 is formed on the inner peripheral portion 111 of the first end portion 11 of the tube 1, and the first female spline portion 15 is formed on the outer peripheral portion of the first insertion portion 22. is formed with a first male spline portion 27 that engages with the first female spline portion 15 and is movable in the direction relative to the rotational axis Z, and the outer peripheral portion of the first insertion portion 22 is connected to the first end portion 11 of the tube 1.
  • a second female spline portion 16 is press-fitted into the inner peripheral portion 111 , and a second female spline portion 16 is formed on the inner peripheral portion 121 of the second end portion 12 of the tube 1 .
  • a second male spline portion 37 is formed that engages with the spline portion 16 and is movable in the direction relative to the rotation axis Z, and the outer circumferential portion of the second insertion portion 32 is connected to the inner circumferential portion 121 of the second end portion 12 of the tube 1. It is press-fitted.
  • the tube 1, the first insertion section 22, and the second insertion section 32 are respectively coupled via splines. Therefore, unlike the first, second, and third embodiments, the tube 1 can be made of iron-based material. Thereby, the propeller shaft PS4 can be manufactured relatively inexpensively compared to the case where the tube 1 is formed of fiber-reinforced resin.
  • FIG. 9 shows a fifth embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS4 according to the fourth embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the fourth embodiment, so the same reference numerals are given to the same configurations as those of the fourth embodiment, and the explanation thereof will be omitted. In addition, in the description of this embodiment, for convenience, the left side of FIG. 9 will be referred to as "front” and the right side will be referred to as "rear”, and the direction along rotation axis Z in FIG. The orthogonal direction will be referred to as a "radial direction” and the direction around the rotational axis Z will be referred to as a "circumferential direction”.
  • FIG. 9 shows a half-sectional view of the propeller shaft PS5 according to the fifth embodiment of the present invention taken along the direction of the rotational axis Z, and (a) shows the area near the first end 11 of the tube 1. An enlarged view is shown, and (b) shows an enlarged view of the vicinity of the second end 12 of the tube 1.
  • a through hole 17 is formed along the radial direction.
  • a first pin insertion hole 28 into which the first pin P1 can be inserted is formed in the first insertion portion 22 at a position facing the first pin through hole 17 in the radial direction. Then, the first pin P1 is press-fitted from the first pin through hole 17 side so as to straddle the first pin through hole 17 and the first pin insertion hole 28, so that the first insertion portion 22 is inserted into the tube 1. It is fixedly supported by the first end 11.
  • the first collision load F1 is set based on the strength at which the first pin P1 breaks.
  • a first seal member S1 is arranged at a position outside the first pin P1.
  • the first seal member S1 is a first seal member S1 formed at the first end 11 of the tube 1 between the inner circumference 111 of the first end 11 and the outer circumference of the first insertion portion 22 of the first shaft portion 2.
  • the first gap is liquid-tightly sealed to prevent moisture and foreign matter from entering through the first gap.
  • a generally annular first cover member C1 having an L-shaped longitudinal section is fixed to the outer peripheral edge of the first end 11 of the tube 1 by caulking.
  • the first cover member C1 prevents the first pin P1 from falling off by having the first outer peripheral portion C11 covering the outer peripheral side of the tube 1 and facing the first pin P1 in the radial direction.
  • the first cover member C1 has a first axial end face C12 that covers the first end face 112 of the tube 1 and faces the first seal member S1 in the axial direction, so that the first seal member S1 can come off. to regulate.
  • a pin through hole 18 is formed along the radial direction.
  • a second pin insertion hole 38 into which the second pin P2 can be inserted is formed in the second insertion portion 32 at a position facing the second pin through hole 18 in the radial direction. Then, the second pin P2 is press-fitted from the second pin through hole 18 side so as to straddle the second pin through hole 18 and the second pin insertion hole 38, so that the second insertion portion 32 is inserted into the tube 1. It is fixedly supported by the second end 12.
  • the second collision load F2 is set based on the strength at which the second pin P2 breaks.
  • the outer diameter of the second pin P2 is set to be relatively larger than the outer diameter of the first pin P1, so that the breaking strength of the second pin P2 is set larger than the breaking strength of the first pin P1.
  • the second collision load F2 is set to be larger than the first collision load F1.
  • a second seal member S2 is arranged at a position outside the second pin P2.
  • the second seal member S2 is a second seal member S2 formed at the second end 12 of the tube 1 between the inner peripheral part 121 of the second end 12 and the outer peripheral part of the second insertion part 32 of the second shaft part 3.
  • the second gap is liquid-tightly sealed to prevent moisture and foreign matter from entering through the second gap.
  • a generally annular second cover member C2 having an L-shaped longitudinal section is fixed to the outer peripheral edge of the second end 12 of the tube 1 by caulking.
  • the second cover member C2 prevents the second pin P2 from falling off by having the second outer peripheral portion C21 covering the outer peripheral side of the tube 1 and facing the second pin P2 in the radial direction.
  • the second cover member C2 has a second axial end face C22 that covers the second end face 122 of the tube 1 and faces the second seal member S2 in the axial direction, so that the second seal member S2 can come off. to regulate.
  • the first end portion 11 and the first insertion portion 22 of the tube 1 have a diameter relative to the first end portion 11 and the first insertion portion 22 of the tube 1.
  • a first pin hole (first pin through hole 17 and first pin insertion hole 28) into which the first pin P1 can be inserted is formed so as to straddle the second end portion 12 of the tube 1 and the second insertion portion 32.
  • the second pin hole (second pin through hole 18 and second pin insertion hole) into which the second pin P2 can be inserted so as to straddle the second end portion 12 and the second insertion portion 32 of the tube 1 in the radial direction.
  • a hole 38) is formed, and the breaking strength of the second pin P2 is greater than the breaking strength of the first pin P1.
  • the tube 1, the first insertion section 22, and the second insertion section 32 are coupled via the first pin P1 and the second pin P2, respectively.
  • the first joint member J1 and the second joint member J2 are spline-coupled to both ends of the tube 1, except for the first pin P1 and the second pin P2 related to the setting of the first collision load F1 and the second collision load F2.
  • the manufacturing cost of the propeller shaft PS5 can be reduced.
  • the collision load is controlled only by the coupling means using the first pin P1 and the second pin P2, the collision load is relatively controlled compared to other coupling means, such as the serrations according to the first embodiment. It has the advantage of being easy.
  • the present invention is not limited to the configurations and aspects exemplified in the above-described embodiments, etc., and can be freely modified according to the specifications, cost, etc. of the object to be applied, as long as it can achieve the effects of the present invention described above. It can be changed to
  • the first power transmission device (not shown) is a transmission TM mounted on a vehicle
  • the second power transmission device (not shown) is a differential DF mounted on a vehicle.
  • the configuration may be reversed.
  • the engine EG and transmission TM are mounted at the rear of the vehicle, and the driving force of the engine EG output from the transmission TM is transmitted to the front of the vehicle by a propeller shaft PS.
  • the first power transmission device (not shown) may be a differential DF
  • the second power transmission device may be a transmission TM.
  • the first collision load F1 on the first end 11 side of the tube 1 connected to the differential DF that is mounted relatively at the rear of the vehicle is set relatively low.
  • the collision load on the rear side of the vehicle is set relatively low.
  • the first power transmission device (not shown) is used as a drive source such as an engine
  • the second power transmission device (not shown) is used as a drive source such as an engine. It may be a transmission TM or vice versa.
  • the present invention can also be applied to a vehicle that uses an electric motor as a stepless reducer instead of the transmission TM as the first power transmission device (not shown).
  • the present invention provides a first biting length L1, a second biting length L2, a first biting width X1, a second biting width X2, an adhesive G, and a pin.
  • Controlling the first collision load F1 and the second collision load F2 by P means that the end of the first insertion part 22 on the first connection base 21 side and the end of the second insertion part 32 on the second connection base 31 side This is particularly effective when each section does not have a flange section.
  • each flange portion may be controlled by the outer diameter of the part or the like.

Abstract

A propeller shaft (PS1) according to the present invention is a power transmission shaft, and is configured such that when a second collision load (F2), which is greater than a first collision load (F1) at which an anchored condition of a first insertion section (22) and a tube (1) is released, has acted thereon, an anchored condition of a second insertion section (32) and the tube (1) is released. Thus, at the time of a vehicle collision, i.e. when an axial direction load (Fx) has acted on the propeller shaft (PS1), the anchored condition of the first insertion section (22) is released before that of the second insertion section (32), allowing the order of release of the anchoring of the first insertion section (22) and the second insertion section (32) to the tube (1) to be controlled. Consequently, stability in the collision performance of the propeller shaft (PS1) can be improved.

Description

動力伝達軸及びプロペラシャフトPower transmission shaft and propeller shaft
 本発明は、動力伝達軸及びプロペラシャフトに関する。 The present invention relates to a power transmission shaft and a propeller shaft.
 従来の動力伝達軸であるプロペラシャフトとしては、例えば以下の特許文献1に記載されたものが知られている。 As a conventional propeller shaft that is a power transmission shaft, for example, the one described in Patent Document 1 below is known.
 概略を説明すれば、この動力伝達軸としてのプロペラシャフトは、筒部材であるFRP製筒体の第1端部の内周側に、外周側に第1セレーション部が形成された第1挿入部を介して第1継手部材が圧入されると共に、FRP製筒体の第2端部の内周側に、外周側に第2セレーション部が形成された第2挿入部が圧入されている。 Briefly speaking, the propeller shaft as a power transmission shaft includes a first insertion part in which a first serration part is formed on the outer peripheral side of the first end of a cylindrical member made of FRP. The first joint member is press-fitted through the first joint member, and a second insertion portion having a second serration portion formed on the outer circumferential side is press-fitted into the inner circumferential side of the second end of the FRP cylinder.
特開2000-329130号公報Japanese Patent Application Publication No. 2000-329130
 しかしながら、前記従来のプロペラシャフトでは、前記FRP製筒体の第1端部及び第2端部に、それぞれ同じ形状の第1セレーション部及び第2セレーション部が形成された第1挿入部及び第2挿入部が圧入されていた。このため、車両が衝突した際、FRP製筒体の第1端部及び第2端部のいずれが先に破壊されるか、すなわちFRP製筒体に対して第1挿入部及び第2挿入部のいずれが先に潜り込むかを予測することが困難であった。これにより、動力伝達軸としてのプロペラシャフトの衝突性能が不安定なものとなってしまう点で改善の余地が残されていた。 However, in the conventional propeller shaft, the first insertion part and the second serration part are formed with a first serration part and a second serration part having the same shape at the first end part and the second end part of the FRP cylinder body, respectively. The insertion part was press-fitted. For this reason, when a vehicle collides, which of the first end and the second end of the FRP cylinder is destroyed first, that is, the first insertion part and the second insertion part with respect to the FRP cylinder. It was difficult to predict which one would sneak in first. This leaves room for improvement in that the collision performance of the propeller shaft as a power transmission shaft becomes unstable.
 そこで、本発明は、前記従来のプロペラシャフトの技術的課題に鑑みて案出されたものであって、衝突性能の安定性を向上させることができる動力伝達軸及びプロペラシャフトを提供することを目的としている。 Therefore, the present invention was devised in view of the technical problems of the conventional propeller shaft, and an object of the present invention is to provide a power transmission shaft and a propeller shaft that can improve the stability of collision performance. It is said that
 本発明は、その一態様として、チューブと第2挿入部の固定状態を解除する第2衝突荷重が、チューブと第1挿入部の固定状態を解除する第1衝突荷重よりも大きく設定されている。 In one aspect of the present invention, a second collision load for releasing the fixed state between the tube and the second insertion section is set to be larger than a first collision load for releasing the fixed state between the tube and the first insertion section. .
 本発明によれば、衝突性能の安定性を向上させることができる。 According to the present invention, the stability of collision performance can be improved.
本発明に係る動力伝達軸の車両における配置を示すレイアウト図である。FIG. 2 is a layout diagram showing the arrangement of a power transmission shaft in a vehicle according to the present invention. 本発明の第1実施形態に係る動力伝達軸の全体を表した半縦断面図である。FIG. 1 is a half-longitudinal cross-sectional view showing the entire power transmission shaft according to the first embodiment of the present invention. 図2のA-A線断面の要部を拡大表示した要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the main part of the section taken along the line AA in FIG. 2; 本発明に係る動力伝達軸の変形例を示す図であって、図2のA-A線に沿う要部拡大断面図である。FIG. 3 is a diagram showing a modified example of the power transmission shaft according to the present invention, and is an enlarged sectional view of a main part taken along line AA in FIG. 2. 図2に示す動力伝達軸のコラプス発生前後の状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブの第1端部側にコラプスが生じた状態、(c)はチューブの第2端部側にコラプスが生じた状態、を示す図である。FIG. 3 is a half-longitudinal cross-sectional view showing the state before and after the collapse of the power transmission shaft shown in FIG. 2, in which (a) is a state where no collapse has occurred, and (b) is a state where a collapse has occurred on the first end side of the tube. (c) is a diagram showing a state in which collapse has occurred on the second end side of the tube. 本発明の第2実施形態に係る動力伝達軸の全体を表した半縦断面図である。FIG. 7 is a half-longitudinal cross-sectional view showing the entire power transmission shaft according to the second embodiment of the present invention. 本発明の第3実施形態に係る動力伝達軸の全体を表した半縦断面図である。It is a half-longitudinal sectional view showing the whole power transmission shaft concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る動力伝達軸の全体を表した半縦断面図である。It is a half-longitudinal sectional view showing the whole power transmission shaft concerning a 4th embodiment of the present invention. 本発明の第5実施形態に係る動力伝達軸を表した半縦断面図であって、(a)はチューブの第1端部近傍の拡大図、(b)はチューブの第2端部近傍の拡大図を示す図である。FIG. 7 is a half-longitudinal cross-sectional view showing a power transmission shaft according to a fifth embodiment of the present invention, in which (a) is an enlarged view of the vicinity of the first end of the tube, and (b) is an enlarged view of the vicinity of the second end of the tube. It is a figure which shows an enlarged view. 本発明に係る動力伝達軸の車両における配置の他例を示すレイアウト図である。FIG. 7 is a layout diagram showing another example of the arrangement of the power transmission shaft in a vehicle according to the present invention.
 以下に、本発明に係る動力伝達軸の実施形態について、図面に基づいて詳述する。なお、下記の実施形態では、当該動力伝達軸を、従来と同様に、自動車用のプロペラシャフトについて適用したものを例示して説明する。 Below, embodiments of the power transmission shaft according to the present invention will be described in detail based on the drawings. In addition, in the following embodiment, the power transmission shaft will be described by exemplifying and applying it to a propeller shaft for an automobile, as in the conventional case.
 図1は、本発明に係る動力伝達軸(プロペラシャフト)の車両における配置を表したレイアウト図を示している。 FIG. 1 shows a layout diagram showing the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention.
 図1に示すように、車両Vは、いわゆるFR(フロントエンジン・リヤドライブ)車両であって、前輪FT同士を繋ぐ前輪車軸FDの上に、エンジンEGと、エンジンEGの駆動力を伝達する第1動力伝達装置(変速装置)としてのトランスミッションTMとが配置される。一方、後輪RT同士を繋ぐ後輪車軸RDの中央部に、後輪車軸RDに動力を伝達する第2動力伝達装置(差動装置)としてのディファレンシャルDFが配置される。そして、トランスミッションTMとディファレンシャルDFとが、動力伝達軸としてのプロペラシャフトPSを介して、動力伝達可能に接続されている。 As shown in FIG. 1, the vehicle V is a so-called FR (front engine rear drive) vehicle, and has an engine EG and an engine EG on the front axle FD that connects the front wheels FT. A transmission TM as a power transmission device (transmission device) is arranged. On the other hand, a differential DF serving as a second power transmission device (differential device) that transmits power to the rear wheel axle RD is arranged at the center of the rear wheel axle RD that connects the rear wheels RT. The transmission TM and the differential DF are connected to enable power transmission via a propeller shaft PS serving as a power transmission shaft.
 〔第1実施形態〕
 図2~図5は、本発明に係る動力伝達軸の第1実施形態を示す。なお、当該実施形態の説明においては、便宜上、図2の第1継手部材J1側を「前」、第2継手部材J2側を「後」として説明する。また、図2の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」として説明する。
[First embodiment]
2 to 5 show a first embodiment of a power transmission shaft according to the present invention. In the description of this embodiment, for convenience, the first joint member J1 side in FIG. 2 will be referred to as "front" and the second joint member J2 side will be referred to as "rear". Further, the direction along the rotation axis Z in FIG. 2 will be referred to as an "axial direction," the direction perpendicular to the rotation axis Z as a "radial direction," and the direction around the rotation axis Z as a "circumferential direction."
 (プロペラシャフトの構成)
 図2は、本発明の第1実施形態に係るプロペラシャフトPS1の全体の形態を示し、当該プロペラシャフトPS1を回転軸線Zの方向に沿って切断した半断面図を示している。
(Propeller shaft configuration)
FIG. 2 shows the overall form of the propeller shaft PS1 according to the first embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS1 taken along the direction of the rotation axis Z.
 図2に示すように、プロペラシャフトPS1は、車両前方に配置される図示外の第1動力伝達装置と、車両後方に配置される図示外の第2動力伝達装置との間に配置される。なお、前記第1動力伝達装置は、変速装置であるトランスミッションTM(図1参照)に相当し、前記第2動力伝達装置は、差動装置であるディファレンシャルDF(図1参照)に相当する。 As shown in FIG. 2, the propeller shaft PS1 is arranged between a first power transmission device (not shown) located at the front of the vehicle and a second power transmission device (not shown) located at the rear of the vehicle. Note that the first power transmission device corresponds to a transmission TM (see FIG. 1) that is a speed change device, and the second power transmission device corresponds to a differential DF (see FIG. 1) that is a differential device.
 すなわち、本実施形態に係るプロペラシャフトPS1は、いわゆる1ピース構造のプロペラシャフトであって、前端側が、第1継手部材J1を介して前記第1動力伝達装置に接続され、後端側が、第2継手部材J2を介して前記第2動力伝達装置に接続される。すなわち、プロペラシャフトPS1は、概ね円筒状に形成されたチューブ1と、チューブ1の前端部である第1端部11に挿入され、前記第1動力伝達装置との接続に供する第1継手部材J1と、チューブ1の後端部である第2端部12に挿入され、前記第2動力伝達装置との接続に供する第2継手部材J2と、を有する。 That is, the propeller shaft PS1 according to the present embodiment is a so-called one-piece propeller shaft, in which the front end side is connected to the first power transmission device via the first joint member J1, and the rear end side is connected to the first power transmission device via the first joint member J1. It is connected to the second power transmission device via a joint member J2. That is, the propeller shaft PS1 includes a tube 1 formed in a generally cylindrical shape and a first joint member J1 that is inserted into the first end 11 that is the front end of the tube 1 and is connected to the first power transmission device. and a second joint member J2 that is inserted into the second end 12, which is the rear end of the tube 1, and serves for connection to the second power transmission device.
 なお、本実施形態では、本発明に係る動力伝達軸(プロペラシャフト)を、単一のチューブを有する前記1ピース構造のプロペラシャフトに適用したものを例示するが、本発明は、少なくとも1つのチューブを有し、当該チューブの軸方向両端部に後述するコラプスが可能な軸継手が接続されていれば足りる。換言すれば、本発明に係る動力伝達軸(プロペラシャフト)は、例えば複数のチューブを有し、これらのチューブを軸継手によって連結してなる複数ピース構造のプロペラシャフトにも適用可能である。 Note that in this embodiment, the power transmission shaft (propeller shaft) according to the present invention is applied to the one-piece structure propeller shaft having a single tube, but the present invention It is sufficient that the tube has a collapsible shaft joint, which will be described later, connected to both axial ends of the tube. In other words, the power transmission shaft (propeller shaft) according to the present invention can be applied to a propeller shaft having a plurality of pieces, for example, which has a plurality of tubes and is formed by connecting these tubes with a shaft coupling.
 チューブ1は、炭素繊維強化樹脂材料(いわゆるCFRP)により、軸方向において一定の内径R1を有する円筒状に形成されている。また、チューブ1は、第1端部11及び第2端部12のそれぞれの肉厚T1、T2が、一般部(軸方向中間部)の肉厚T3よりも厚く形成されている。具体的には、チューブ1は、前記炭素繊維強化樹脂材料(CFRP)を径方向において積層することにより一体に形成されたものであり、内周層13と外周層14とを有する少なくとも内外2層に形成されている。 The tube 1 is formed of a carbon fiber reinforced resin material (so-called CFRP) into a cylindrical shape having a constant inner diameter R1 in the axial direction. Further, the tube 1 is formed so that the respective wall thicknesses T1 and T2 of the first end portion 11 and the second end portion 12 are thicker than the wall thickness T3 of the general portion (axially intermediate portion). Specifically, the tube 1 is integrally formed by laminating the carbon fiber reinforced resin material (CFRP) in the radial direction, and has at least two inner and outer layers, an inner circumferential layer 13 and an outer circumferential layer 14. is formed.
 なお、本実施形態では、チューブ1が炭素繊維強化樹脂(CFRP)で形成されたものを例示するが、当該チューブ1は、繊維を樹脂で固めて形成される繊維強化樹脂のほか、例えば金属材料によって形成されていてもよい。また、チューブ1を繊維強化樹脂によって形成する場合には、本実施形態に係る炭素繊維強化樹脂(CFRP)のほか、例えばガラス繊維強化樹脂(FRP)で形成されていてもよい。 In this embodiment, the tube 1 is made of carbon fiber reinforced resin (CFRP), but the tube 1 can be made of a metal material, for example, in addition to fiber reinforced resin formed by hardening fibers with resin. It may be formed by Further, when the tube 1 is formed of fiber-reinforced resin, it may be formed of, for example, glass fiber-reinforced resin (FRP) in addition to the carbon fiber-reinforced resin (CFRP) according to this embodiment.
 第1継手部材J1は、チューブ1の第1端部11の内周部111に挿入される第1シャフト部2と、第1シャフト部2と前記第1動力伝達装置とを繋ぐ第1継手部4と、を有する。第1シャフト部2と第1継手部4とは、一体回転可能に固定されていて、第1継手部材J1として一体的に構成される。 The first joint member J1 includes a first shaft portion 2 that is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1, and a first joint portion that connects the first shaft portion 2 and the first power transmission device. 4 and has. The first shaft portion 2 and the first joint portion 4 are fixed so as to be able to rotate together, and are integrally configured as a first joint member J1.
 第2継手部材J2は、チューブ1の第2端部12の内周部121に挿入される第2シャフト部3と、第2シャフト部3と前記第2動力伝達装置とを繋ぐ第2継手部5と、を有する。第2シャフト部3と第2継手部5とは、一体回転可能に固定されていて、第2継手部材J2として一体的に構成される。 The second joint member J2 includes a second shaft portion 3 inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1, and a second joint portion that connects the second shaft portion 3 and the second power transmission device. 5 and has. The second shaft portion 3 and the second joint portion 5 are fixed so as to be able to rotate together, and are integrally configured as a second joint member J2.
 第1シャフト部2は、チューブ1の第1端部11から露出し、第1継手部4に接続される第1接続基部21と、第1接続基部21の後端部から軸方向に延出し、チューブ1の第1端部11の内周部111に挿入される第1挿入部22と、を有する。第1接続基部21と第1挿入部22とは、金属材料により一体に形成される。 The first shaft portion 2 includes a first connecting base 21 that is exposed from the first end 11 of the tube 1 and connected to the first joint portion 4, and extends in the axial direction from the rear end of the first connecting base 21. , and a first insertion portion 22 inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1. The first connection base 21 and the first insertion portion 22 are integrally formed of a metal material.
 第1接続基部21は、第1基部23と、第1基部23の後端部から段差状に拡径され、第1挿入部22に接続される第1挿入側接続部24と、第1基部23の前端部から段差状に縮径され、第1継手部4に接続される第1継手側接続部25と、を有する。なお、この第1接続基部21と第1継手部4とにより、本発明に係る第1本体部が構成される。 The first connection base 21 includes a first base 23, a first insertion side connection part 24 whose diameter is expanded in a stepped shape from the rear end of the first base 23, and which is connected to the first insertion part 22, and a first base 23. The first joint side connecting portion 25 is tapered in diameter from the front end of the first joint portion 23 in a step-like manner and is connected to the first joint portion 4 . Note that the first connection base 21 and the first joint portion 4 constitute a first main body portion according to the present invention.
 第1挿入部22は、所定の噛み合い手段(本実施形態ではセレーション)を介してチューブ1の第1端部11の内周部111に挿入され、チューブ1と一体回転可能に固定される。具体的には、第1挿入部22は、外周側に、チューブ1とセレーション結合可能な第1セレーション部26が、軸方向のほぼ全域にわたって形成されている。 The first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1. Specifically, the first insertion portion 22 has a first serration portion 26 formed on the outer circumferential side thereof over almost the entire axial direction, which can be connected to the tube 1 through serrations.
 第1セレーション部26は、径方向内側へ凹む溝261が回転軸線Zと平行な方向に延びるように形成されていて、歯先262の外径D1が、チューブ1の内径R1よりも若干大きく設定されている。すなわち、第1セレーション部26は、第1挿入部22がチューブ1の第1端部11の内部に圧入され、歯先262がチューブ1の内周面に食い込むことによって、第1挿入部22とチューブ1とを一体に回転可能に係合する。これにより、第1挿入部22は、チューブ1の第1端部11の内周部111に、第1セレーション部26を介して固定状態に支持される。 The first serration portion 26 is formed such that a groove 261 recessed inward in the radial direction extends in a direction parallel to the rotation axis Z, and the outer diameter D1 of the tooth tip 262 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the first serration portion 26 is formed by press-fitting the first insertion portion 22 into the first end portion 11 of the tube 1 and by biting the tooth tips 262 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. As a result, the first insertion portion 22 is fixedly supported by the inner peripheral portion 111 of the first end portion 11 of the tube 1 via the first serration portion 26 .
 また、第1セレーション部26は、チューブ1との間において、チューブ1との固定状態を解除して第1挿入部22がチューブ1の内周部を第1端部11から第2端部12側に向かって移動し始める、第1衝突荷重F1が設定されている。そして、本実施形態では、前記第1衝突荷重F1が、チューブ1の第1端部11の内周部111と噛み合う第1セレーション部26の噛み込み長さ(歯幅)である第1噛み込み長さL1に基づいて設定されている。 Further, the first serration part 26 is disposed between the first serration part 26 and the tube 1 so that the first insertion part 22 can move the inner peripheral part of the tube 1 from the first end 11 to the second end 12 by releasing the fixed state with the tube 1. A first collision load F1 that starts moving toward the side is set. In the present embodiment, the first collision load F1 is a first engagement which is the engagement length (tooth width) of the first serration portion 26 that engages with the inner circumference 111 of the first end 11 of the tube 1. It is set based on the length L1.
 第1継手部4は、自在継手(例えば本実施形態では等速ジョイント)により構成され、第1シャフト部2に対してチューブ1の軸方向の反対側に設けられている。すなわち、第1継手部4は、第1シャフト部2の第1継手側接続部25の外周面に固定された概ね円筒状の内輪部材41と、内輪部材41の外周側に対向して配置された概ね円筒状の外輪部材42と、外輪部材42と内輪部材41の間に転動可能に配置された転動体である複数のボール43と、を有する。 The first joint part 4 is constituted by a universal joint (for example, a constant velocity joint in this embodiment), and is provided on the opposite side of the tube 1 in the axial direction with respect to the first shaft part 2. That is, the first joint part 4 is arranged to face the generally cylindrical inner ring member 41 fixed to the outer peripheral surface of the first joint side connecting part 25 of the first shaft part 2 and the outer peripheral side of the inner ring member 41. It has a generally cylindrical outer ring member 42 and a plurality of balls 43 that are rolling elements arranged between the outer ring member 42 and the inner ring member 41 so as to be rotatable.
 また、第1継手部4は、外輪部材42の外径D3が第1挿入部22の外径D1よりも大きく設定される。具体的には、車両の前方側の衝突時において第1シャフト部2がチューブ1の内部へ潜り込んだ際、第1継手部4に対してチューブ1側からねじ込まれて前記第1動力伝達装置に締結されるボルト6の頭部60がチューブ1の第1端部11側の端面(第1端面112)と当接するように構成されている。 Furthermore, in the first joint portion 4, the outer diameter D3 of the outer ring member 42 is set larger than the outer diameter D1 of the first insertion portion 22. Specifically, when the first shaft portion 2 slips into the tube 1 during a collision on the front side of the vehicle, it is screwed into the first joint portion 4 from the tube 1 side and connected to the first power transmission device. The head 60 of the bolt 6 to be fastened is configured to come into contact with the end surface (first end surface 112) of the tube 1 on the first end 11 side.
 内輪部材41の内周側には、第1継手側接続部25が貫通する概ね円形の軸貫通孔411が、軸方向に沿って貫通されている。すなわち、第1継手側接続部25が軸貫通孔411の軸方向のほぼ全域にわたって第1継手側接続部25が圧入されていて、第1継手側接続部25と内輪部材41が一体回転可能に固定されている。 A generally circular shaft through hole 411 through which the first joint side connecting portion 25 passes is axially penetrated on the inner peripheral side of the inner ring member 41. That is, the first joint side connecting portion 25 is press-fitted over almost the entire axial direction of the shaft through hole 411, and the first joint side connecting portion 25 and the inner ring member 41 can rotate together. Fixed.
 また、内輪部材41の外周側には、ボール43が転動可能な内輪側軸方向溝412が、軸方向に沿って形成されている。すなわち、内輪側軸方向溝412と後述する外輪側軸方向溝421の間をボール43が転動することで内輪部材41と外輪部材42の軸方向の相対移動を許容しつつ、内輪側軸方向溝412と外輪側軸方向溝421とにボール43が係合することで内輪部材41と外輪部材42の周方向の相対移動が規制されるようになっている。 Further, on the outer peripheral side of the inner ring member 41, an inner ring side axial groove 412 in which the balls 43 can roll is formed along the axial direction. That is, the ball 43 rolls between the inner ring side axial groove 412 and the outer ring side axial groove 421 (described later), allowing relative movement in the axial direction between the inner ring member 41 and the outer ring member 42, while also allowing the inner ring side axial direction By engaging the balls 43 with the grooves 412 and the outer ring side axial grooves 421, relative movement of the inner ring member 41 and the outer ring member 42 in the circumferential direction is restricted.
 外輪部材42は、当該外輪部材42を軸方向に貫通する複数のボルト6を介して、前記第1動力伝達装置に一体回転可能に固定される。また、外輪部材42の内周側には、ボール43が転動可能な外輪側軸方向溝421が、軸方向に沿って形成されている。すなわち、外輪側軸方向溝421と内輪側軸方向溝412との間をボール43が転動することで外輪部材42と内輪部材41の軸方向の相対移動を許容しつつ、外輪側軸方向溝421と内輪側軸方向溝412とにボール43が係合することで外輪部材42と内輪部材41の周方向の相対移動が規制されるようになっている。 The outer ring member 42 is rotatably fixed to the first power transmission device via a plurality of bolts 6 passing through the outer ring member 42 in the axial direction. Further, on the inner peripheral side of the outer ring member 42, an outer ring side axial groove 421 in which the ball 43 can roll is formed along the axial direction. That is, the balls 43 roll between the outer ring side axial groove 421 and the inner ring side axial groove 412, allowing relative movement in the axial direction between the outer ring member 42 and the inner ring member 41. 421 and the inner ring side axial groove 412, the balls 43 engage to restrict the relative movement of the outer ring member 42 and the inner ring member 41 in the circumferential direction.
 かかる構成から、前記第1動力伝達装置と外輪部材42とが一体に回転することにより、前記第1動力伝達装置から出力された回転トルクが外輪部材42からボール43を介して内輪部材41に伝達される。そして、この伝達された回転トルクに基づいて、内輪部材41と第1シャフト部2(第1接続基部21)とが一体に回転する。 With this configuration, the first power transmission device and the outer ring member 42 rotate together, so that the rotational torque output from the first power transmission device is transmitted from the outer ring member 42 to the inner ring member 41 via the balls 43. be done. Based on this transmitted rotational torque, the inner ring member 41 and the first shaft portion 2 (first connection base portion 21) rotate together.
 第2シャフト部3は、チューブ1の第2端部12から露出し、第2継手部5に接続される第2接続基部31と、第2接続基部31の前端部から軸方向に延出し、チューブ1の第2端部12の内周部121に挿入される第2挿入部32と、を有する。第2接続基部31と第2挿入部32とは、金属材料により一体に形成される。 The second shaft portion 3 includes a second connection base 31 exposed from the second end 12 of the tube 1 and connected to the second joint portion 5, and extends in the axial direction from the front end of the second connection base 31. The second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1. The second connection base 31 and the second insertion portion 32 are integrally formed of a metal material.
 第2接続基部31は、第2基部33と、第2基部33の前端部から段差状に拡径され、第2挿入部32に接続される第2挿入側接続部34と、第2基部33の後端部から段差状に拡径され、第2継手部5に接続される第2継手側接続部35と、を有する。なお、この第2接続基部31と第2継手部5とにより、本発明に係る第2本体部が構成される。 The second connection base 31 includes a second base 33 , a second insertion side connection part 34 that is expanded in diameter from the front end of the second base 33 in a stepped manner and is connected to the second insertion part 32 , and a second insertion side connection part 34 that is connected to the second insertion part 32 . It has a second joint-side connecting portion 35 that is expanded in diameter in a stepped manner from the rear end portion and is connected to the second joint portion 5 . Note that the second connection base 31 and the second joint portion 5 constitute a second main body portion according to the present invention.
 第2挿入部32は、所定の噛み合い手段(本実施形態ではセレーション)を介してチューブ1の第2端部12の内周部121に挿入され、チューブ1と一体回転可能に固定される。具体的には、第2挿入部32は、外周側に、チューブ1とセレーション結合可能な第2セレーション部36が、軸方向のほぼ全域にわたって形成されている。 The second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1. Specifically, the second insertion portion 32 has a second serration portion 36 formed on the outer circumferential side thereof over almost the entire area in the axial direction, which can be connected to the tube 1 through serrations.
 第2セレーション部36は、径方向内側へ凹む溝361が回転軸線Zと平行な方向に延びるように形成されていて、歯先362の外径D2が、チューブ1の内径R1よりも若干大きく設定されている。すなわち、第2セレーション部36は、第2挿入部32がチューブ1の第2端部12の内部に圧入され、歯先362がチューブ1の内周面に食い込むことによって、第2挿入部32とチューブ1とを一体に回転可能に係合する。これにより、第2挿入部32は、チューブ1の第2端部12の内周部121に、第2セレーション部36を介して固定状態に支持される。なお、本実施形態では、第2セレーション部36の歯先362の外径D2は、第1セレーション部26の歯先262の外径D1と同じに設定されている。換言すれば、第2セレーション部36の第2噛み込み代X2は、第1セレーション部26の第1噛み込み代X1と同じに設定されている。 The second serration portion 36 is formed such that a groove 361 recessed radially inward extends in a direction parallel to the rotation axis Z, and the outer diameter D2 of the tooth tip 362 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the second serration portion 36 is formed by press-fitting the second insertion portion 32 into the second end portion 12 of the tube 1 and by biting the tooth tip 362 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. Thereby, the second insertion portion 32 is fixedly supported by the inner peripheral portion 121 of the second end portion 12 of the tube 1 via the second serration portion 36. In this embodiment, the outer diameter D2 of the tooth tip 362 of the second serration portion 36 is set to be the same as the outer diameter D1 of the tooth tip 262 of the first serration portion 26. In other words, the second biting allowance X2 of the second serration portion 36 is set to be the same as the first biting allowance X1 of the first serration portion 26.
 また、第2セレーション部36は、チューブ1との間において、チューブ1との固定状態を解除して第2挿入部32がチューブ1の内周部を第2端部12から第1端部11側に向かって移動し始める、第2衝突荷重F2が設定されている。そして、本実施形態では、前記第2衝突荷重F2が、チューブ1の第2端部12の内周部121と噛み合う第2セレーション部36の噛み込み長さ(歯幅)である第2噛み込み長さL2に基づいて設定されている。 Further, the second serration part 36 is disposed between the second serration part 36 and the tube 1 so that the second insertion part 32 can move the inner peripheral part of the tube 1 from the second end part 12 to the first end part 11 by releasing the fixed state with the tube 1. A second collision load F2 is set that starts moving toward the side. In the present embodiment, the second collision load F2 is a second engagement that is the engagement length (tooth width) of the second serration portion 36 that engages with the inner peripheral portion 121 of the second end portion 12 of the tube 1. It is set based on the length L2.
 そして、本実施形態では、前記第2衝突荷重F2が、前記第1衝突荷重F1よりも大きくなるように設定されている。すなわち、第2セレーション部36の第2噛み込み長さL2が、第1セレーション部26の第1噛み込み長さL1よりも長くなるように形成されている。換言すれば、チューブ1の第2端部12において第2挿入部32が第2端部12から第1端部11側へ移動し始めるよりも先に、チューブ1の第1端部11において第1挿入部22が第1端部11から第2端部12側へ移動し始めるように構成されている。より具体的には、第2噛み込み長さL2が、第1噛み込み長さL1の2倍程度に設定されている。 In this embodiment, the second collision load F2 is set to be larger than the first collision load F1. That is, the second biting length L2 of the second serration portion 36 is formed to be longer than the first biting length L1 of the first serration portion 26. In other words, before the second insertion section 32 at the second end 12 of the tube 1 starts to move from the second end 12 to the first end 11 side, the second insertion section 32 at the first end 11 of the tube 1 The first insertion portion 22 is configured to start moving from the first end 11 to the second end 12 side. More specifically, the second biting length L2 is set to about twice the first biting length L1.
 第2継手部5は、いわゆるラバージョイントにより構成され、第2シャフト部3に対してチューブ1の軸方向の反対側に設けられている。すなわち、第2継手部5は、ほぼ環状を呈し、周方向に等間隔に配置され、第2シャフト部3の第2継手側接続部35との接続に供する3つの第1ボルト貫通孔51と、第1ボルト貫通孔51の周方向間に等間隔に配置され、前記第2動力伝達装置との接続に供する3つの第2ボルト貫通孔52と、を有する。 The second joint part 5 is constituted by a so-called rubber joint, and is provided on the opposite side of the tube 1 in the axial direction with respect to the second shaft part 3. That is, the second joint part 5 has a substantially annular shape, is arranged at equal intervals in the circumferential direction, and has three first bolt through holes 51 for connecting with the second joint side connecting part 35 of the second shaft part 3. , three second bolt through holes 52 arranged at equal intervals in the circumferential direction of the first bolt through holes 51 and used for connection with the second power transmission device.
 すなわち、第1ボルト貫通孔51を貫通する第1ボルト61を介して、三つ叉状に形成された第2継手側接続部35と第2継手部5とが締結されて、一体回転可能に固定されている。他方、第2ボルト貫通孔52を貫通する図示外の第2ボルトを介して、三つ叉状に形成された前記第2動力伝達装置と第2継手部5が締結され、一体回転可能に固定される。 That is, the second joint side connecting portion 35 formed in a three-pronged shape and the second joint portion 5 are fastened together through the first bolt 61 passing through the first bolt through hole 51, so that they can rotate together. Fixed. On the other hand, the second power transmission device formed in a three-pronged shape and the second joint portion 5 are fastened to each other via a second bolt (not shown) passing through the second bolt through hole 52, and are fixed so as to be rotatable together. be done.
 また、第2継手部5は、第2継手部5の外径D4が第2挿入部32の外径D2よりも大きく設定される。具体的には、車両の後方側の衝突時において第2シャフト部3がチューブ1の内部へ潜り込んだ際、第2継手側接続部35の内側端面351がチューブ1の第2端部12側の端面(第2端面122)と当接可能に構成されている。 Further, the outer diameter D4 of the second joint portion 5 is set larger than the outer diameter D2 of the second insertion portion 32. Specifically, when the second shaft portion 3 sneaks into the tube 1 during a collision on the rear side of the vehicle, the inner end surface 351 of the second joint-side connecting portion 35 touches the second end portion 12 side of the tube 1. It is configured to be able to come into contact with the end surface (second end surface 122).
 図3は、図2のA-A線に沿って切断した断面の要部を拡大して表示した、プロペラシャフトPS1の要部拡大断面図を示している。図4は、図3に示す第1セレーション部26の変形例を示している。なお、本実施形態では、第1セレーション部26と第2セレーション部36とは、噛み込み長さL1に相当する歯幅が異なるのみであり、歯先262の高さHは同じである。したがって、便宜上、以下では、第1セレーション部26を例に説明し、第2セレーション部36については、詳細な説明を省略する。 FIG. 3 shows an enlarged sectional view of the main part of the propeller shaft PS1, which shows the main part of the cross section cut along the line AA in FIG. 2. FIG. 4 shows a modification of the first serration section 26 shown in FIG. 3. As shown in FIG. In addition, in this embodiment, the first serration part 26 and the second serration part 36 differ only in the tooth width corresponding to the biting length L1, and the height H of the tooth tip 262 is the same. Therefore, for convenience, the first serration section 26 will be explained below as an example, and detailed explanation of the second serration section 36 will be omitted.
 図3に示すように、第1セレーション部26は、歯先262が鋭利状に尖るように形成されている。これにより、第1挿入部22がチューブ1の第1端部11に圧入される際、前記鋭利状に尖った歯先262がチューブ1の第1端部11の内周部111を軸方向に沿って削るようにして、第1挿入部22がチューブ1の第1端部11の内周部111に挿入される。 As shown in FIG. 3, the first serration portion 26 is formed so that the tooth tips 262 are sharply pointed. As a result, when the first insertion portion 22 is press-fitted into the first end 11 of the tube 1, the sharply pointed tooth tip 262 moves the inner circumference 111 of the first end 11 of the tube 1 in the axial direction. The first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 by scraping along the tube.
 また、第1セレーション部26は、図3に示す鋭利状の歯先262の態様に限定されるものではなく、図4に示すように、丸みを帯びた円弧状に形成されてもよい。なお、この際、第1セレーション部26の歯先262は、当該第1セレーション部26の一対の歯面263を繋ぐアールRvよりも小さいアールRxにより形成されることが望ましい。このように、歯先262のアールRxを比較的小さく設定することにより、第1挿入部22をチューブ1に圧入する際の歯先262の面圧が高められ、チューブ1の内周部111に対する歯先262の良好な噛み込みを確保することができる。 Further, the first serration portion 26 is not limited to the shape of the sharp tooth tip 262 shown in FIG. 3, but may be formed in a rounded arc shape as shown in FIG. 4. At this time, it is desirable that the tooth tip 262 of the first serration portion 26 be formed by a radius Rx smaller than the radius Rv connecting the pair of tooth surfaces 263 of the first serration portion 26 . In this way, by setting the radius Rx of the tooth tip 262 to be relatively small, the surface pressure of the tooth tip 262 when press-fitting the first insertion portion 22 into the tube 1 is increased, and Good biting of the tooth tips 262 can be ensured.
 (プロペラシャフトのコラプス構造)
 図5は、図2に示すプロペラシャフトPS1におけるコラプス発生前後の状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブ1の第1端部11側にコラプスが生じた状態、(c)はチューブ1の第2端部12側にコラプスが生じた状態、を示している。
(Collapse structure of propeller shaft)
5 is a half-longitudinal cross-sectional view showing the state before and after the collapse occurs in the propeller shaft PS1 shown in FIG. (c) shows a state where a collapse has occurred on the second end 12 side of the tube 1.
 なお、以下において、「コラプス」とは、プロペラシャフトPS1に対して軸方向荷重Fxが入力されることによって、チューブ1に対する第1挿入部22及び第2挿入部32の固定状態が解除(破壊)され、第1シャフト部2(第1接続基部21)及び第2シャフト部3(第2接続基部31)がチューブ1の内部に潜り込むことをいう。 In addition, in the following, "collapse" means that the fixation state of the first insertion part 22 and the second insertion part 32 to the tube 1 is released (destruction) by inputting an axial load Fx to the propeller shaft PS1. This means that the first shaft portion 2 (first connection base 21) and the second shaft portion 3 (second connection base 31) slip into the inside of the tube 1.
 例えば、車両が前方から衝突してプロペラシャフトPS1の前端側から第2衝突荷重F2よりも大きい圧縮方向の軸方向荷重Fxが作用した場合を例に説明する。この軸方向荷重Fxは、図示外の前記第1動力伝達装置から第1継手部4を介して第1シャフト部2に伝達される。 For example, a case will be described in which a vehicle collides from the front and an axial load Fx in the compression direction that is larger than the second collision load F2 is applied from the front end side of the propeller shaft PS1. This axial load Fx is transmitted from the first power transmission device (not shown) to the first shaft portion 2 via the first joint portion 4.
 すると、本実施形態に係るプロペラシャフトPS1は、第2衝突荷重F2に対して第1衝突荷重F1が相対的に小さく設定されているため、図5(a)に示す通常の状態から、まずチューブ1の第1端部11側が先行してコラプスが発生する。すなわち、第1衝突荷重F1よりも大きい軸方向荷重Fxを受けた第1シャフト部2とチューブ1の間において、図5(b)に示すように、第1挿入部22とチューブ1の固定状態が解除(破壊)され、第1接続基部21がチューブ1の第1端部11の内部へ潜り込む。具体的には、チューブ1の第1端部11において、第1継手部4の各ボルト6の頭部60がチューブ1の第1端面112と当接するまで、第1挿入部22が第1端部11から第2端部12側へ移動する。 Then, in the propeller shaft PS1 according to the present embodiment, since the first collision load F1 is set to be relatively small with respect to the second collision load F2, the tube first changes from the normal state shown in FIG. 5(a). Collapse occurs first on the first end 11 side of 1. That is, as shown in FIG. 5(b), between the first shaft portion 2 and the tube 1 which have received an axial load Fx larger than the first collision load F1, the first insertion portion 22 and the tube 1 are in a fixed state. is released (destroyed), and the first connection base 21 slips into the first end 11 of the tube 1. Specifically, at the first end 11 of the tube 1, the first insertion section 22 is inserted into the first end until the head 60 of each bolt 6 of the first joint section 4 comes into contact with the first end surface 112 of the tube 1. It moves from the section 11 to the second end section 12 side.
 続いて、プロペラシャフトPS1では、第1シャフト部2からチューブ1を介して第2シャフト部3へと軸方向荷重Fxが伝達されて、図示外の前記第2動力伝達装置との間に挟まれる第2シャフト部3が、反作用によって図示外の前記第2動力伝達装置から前記軸方向荷重Fxが作用する。すると、上記第1端部11側のコラプスに遅れて、チューブ1の第2端部12側において、コラプスが発生する。すなわち、第2衝突荷重F2よりも大きい軸方向荷重Fxを受けた第2シャフト部3とチューブ1の間において、図5(c)に示すように、第2挿入部32とチューブ1の固定状態が解除(破壊)され、第2接続基部31がチューブ1の第2端部12の内部へ潜り込む。具体的には、チューブ1の第2端部12において、第2継手側接続部35の内側端面351がチューブ1の第2端面122と当接するまで、第2挿入部32が第2端部12から第1端部11側へ移動する。 Subsequently, in the propeller shaft PS1, the axial load Fx is transmitted from the first shaft part 2 to the second shaft part 3 via the tube 1, and the propeller shaft PS1 is sandwiched between the second shaft part 3 and the second power transmission device (not shown). The axial load Fx from the second power transmission device (not shown) acts on the second shaft portion 3 due to a reaction. Then, a collapse occurs on the second end 12 side of the tube 1 after the collapse on the first end 11 side. That is, as shown in FIG. 5(c), between the second shaft portion 3 and the tube 1 which have received an axial load Fx larger than the second collision load F2, the second insertion portion 32 and the tube 1 are in a fixed state. is released (destroyed), and the second connection base 31 slips into the second end 12 of the tube 1. Specifically, at the second end 12 of the tube 1, the second insertion section 32 is inserted into the second end 12 until the inner end surface 351 of the second joint-side connecting section 35 comes into contact with the second end surface 122 of the tube 1. It moves from there to the first end portion 11 side.
 このように、本実施形態では、第1衝突荷重F1と第2衝突荷重F2の大小関係に基づき、軸方向荷重Fxの作用時には、チューブ1の第1端部11側が先行して破壊され、その後にチューブ1の第2端部12側が破壊されるように、コラプスの状態が制御されている。そして、このチューブ1の第1端部11側及び第2端部12側に生じたコラプスにより、前記軸方向荷重Fxが緩衝され、車両の衝突エネルギが吸収されることとなる。換言すれば、第1接続基部21及び第2接続基部31がそれぞれチューブ1の内部へと正常に潜り込むことで、前記軸方向荷重Fxが正常に緩衝され、プロペラシャフトPS1が車体側へ屈曲するなどの不具合が抑制される。 As described above, in this embodiment, based on the magnitude relationship between the first collision load F1 and the second collision load F2, when the axial load Fx is applied, the first end 11 side of the tube 1 is destroyed first, and then the first end 11 side of the tube 1 is destroyed. The state of collapse is controlled so that the second end 12 side of the tube 1 is destroyed. The collapse occurring on the first end 11 side and the second end 12 side of the tube 1 buffers the axial load Fx and absorbs the collision energy of the vehicle. In other words, when the first connection base 21 and the second connection base 31 each enter the inside of the tube 1 normally, the axial load Fx is normally buffered, and the propeller shaft PS1 is bent toward the vehicle body. problems are suppressed.
 (本実施形態の作用効果)
 前記従来のプロペラシャフトは、FRP製筒体の第1端部及び第2端部に、それぞれ同じ形状の第1セレーション部及び第2セレーション部が形成された第1挿入部及び第2挿入部が圧入されていた。このため、車両が衝突した際、FRP製筒体や第1挿入部及び第2挿入部の加工誤差等によっては、FRP製筒体の第1端部及び第2端部のいずれが先に破壊されるか、すなわちFRP製筒体に対して第1挿入部及び第2挿入部のいずれが先に潜り込むかを予測することが困難であった。これにより、プロペラシャフトPS1の衝突性能が不安定なものとなってしまう点で改善の余地が残されていた。
(Operations and effects of this embodiment)
The conventional propeller shaft has a first insertion part and a second insertion part in which a first serration part and a second serration part of the same shape are formed at the first end part and the second end part of the FRP cylinder body, respectively. It had been press-fitted. Therefore, when a vehicle collides, depending on the processing error of the FRP cylinder, the first insertion part, and the second insertion part, which of the first end and the second end of the FRP cylinder breaks first. In other words, it was difficult to predict which of the first insertion portion and the second insertion portion would be inserted into the FRP cylinder first. This leaves room for improvement in that the collision performance of the propeller shaft PS1 becomes unstable.
 これに対して、本実施形態に係るプロペラシャフトPS1では、以下の作用効果が奏せられることにより、前記従来のプロペラシャフトの課題を解決することができる。 In contrast, the propeller shaft PS1 according to the present embodiment can solve the problems of the conventional propeller shaft by providing the following effects.
 前記プロペラシャフトPS1は、車両の第1動力伝達装置(図示外)と第2動力伝達装置(図示外)との間において動力を伝達する動力伝達軸(プロペラシャフト)であって、筒状に形成されたチューブ1と、第1継手部材であって、第1本体部(第1接続基部21及び第1継手部4)と、第1挿入部22と、を有し、第1挿入部22は、チューブ1の回転軸線Zの方向における一対の端部である第1端部11と第2端部12のうち、第1挿入部22の外周部が第1端部11の内周部111に固定状態に支持され、チューブ1との間において、チューブ1との固定状態が解除されて第1挿入部22がチューブ1の第1端部11から第2端部12に向かって移動し始める第1衝突荷重F1が設定されていて、第1本体部(第1接続基部21及び第1継手部4)は、前記回転軸線Zの方向において第1端部11よりも第1挿入部22の反対側に設けられ、前記第1動力伝達装置(図示外)と繋がる、第1継手部材J1と、第2継手部材であって、第2本体部(第2接続基部31及び第2継手部5)と、第2挿入部32と、を有し、第2挿入部32は、第2挿入部32の外周部がチューブ1の第2端部12の内周部121に固定状態に支持され、チューブ1との間において、チューブ1との固定状態が解除されて第2挿入部32がチューブ1の第2端部12から第1端部11に向かって移動し始める第2衝突荷重F2が設定されると共に、第2衝突荷重F2が第1衝突荷重F1よりも大きく設定されていて、第2本体部(第2接続基部31及び第2継手部5)は、前記回転軸線Zの方向において第2端部12よりも第2挿入部32の反対側に設けられ、前記第2動力伝達装置(図示外)と繋がる、第2継手部材J2と、を備えている。 The propeller shaft PS1 is a power transmission shaft (propeller shaft) that transmits power between a first power transmission device (not shown) and a second power transmission device (not shown) of the vehicle, and is formed in a cylindrical shape. The tube 1 is a first joint member, and includes a first main body portion (first connection base 21 and first joint portion 4), and a first insertion portion 22. , of the first end 11 and second end 12 that are a pair of ends in the direction of the rotational axis Z of the tube 1, the outer peripheral part of the first insertion part 22 is aligned with the inner peripheral part 111 of the first end 11. When the first insertion section 22 is supported in a fixed state and the tube 1 is released from the fixed state with the tube 1, the first insertion section 22 starts to move from the first end 11 of the tube 1 toward the second end 12. 1 collision load F1 is set, and the first main body part (first connection base part 21 and first joint part 4) is opposite to the first insertion part 22 from the first end part 11 in the direction of the rotation axis Z. A first joint member J1 and a second joint member, which are provided on the side and connected to the first power transmission device (not shown), and include a second main body portion (second connection base 31 and second joint portion 5). and a second insertion portion 32, the outer peripheral portion of the second insertion portion 32 is supported in a fixed state by the inner peripheral portion 121 of the second end portion 12 of the tube 1, and the second insertion portion 32 has a 1, a second collision load F2 is set in which the fixed state with the tube 1 is released and the second insertion portion 32 begins to move from the second end 12 of the tube 1 toward the first end 11. At the same time, the second collision load F2 is set to be larger than the first collision load F1, and the second main body part (the second connection base part 31 and the second joint part 5) has a second collision load F2 in the direction of the rotation axis Z. A second joint member J2 is provided on the opposite side of the second insertion portion 32 from the end portion 12 and connected to the second power transmission device (not shown).
 このように、本実施形態では、第1挿入部22とチューブ1との固定状態が解除される第1衝突荷重F1よりも大きい第2衝突荷重F2が作用したときに、第2挿入部32とチューブ1との固定状態が解除されるように構成されている。このため、車両衝突時、すなわちプロペラシャフトPS1に軸方向荷重Fxが作用したときに、第2挿入部32よりも先に第1挿入部22の固定状態が解除されることとなり、チューブ1に対する第1挿入部22及び第2挿入部32の固定解除の先後を制御(コントロール)することが可能となる。これにより、プロペラシャフトPS1の衝突性能の安定性を向上させることができる。 As described above, in this embodiment, when the second collision load F2, which is larger than the first collision load F1 that causes the first insertion part 22 and the tube 1 to be released from the fixed state, acts on the second collision load F2, the second insertion part 32 It is configured so that the fixed state with the tube 1 is released. Therefore, at the time of a vehicle collision, that is, when an axial load Fx is applied to the propeller shaft PS1, the first insertion portion 22 is released from the fixed state before the second insertion portion 32, and the first insertion portion 22 is released from the fixed state before the second insertion portion 32 is It becomes possible to control the release of fixation of the first insertion section 22 and the second insertion section 32. Thereby, the stability of the collision performance of the propeller shaft PS1 can be improved.
 また、本実施形態では、チューブ1は、繊維を樹脂で固めて形成した材料によって形成されている。 Furthermore, in this embodiment, the tube 1 is made of a material made by hardening fibers with resin.
 このように、本実施形態では、チューブ1が繊維を樹脂で固めて形成した材料によって形成されている。このため、チューブ1を金属材料で形成する場合に比べて、チューブ1を軽量化することが可能となり、自動車の燃費の向上に供する。 As described above, in this embodiment, the tube 1 is made of a material made by hardening fibers with resin. Therefore, compared to the case where the tube 1 is formed of a metal material, the tube 1 can be made lighter, which contributes to improving the fuel efficiency of the automobile.
 とりわけ、本実施形態では、チューブ1は、炭素繊維強化樹脂(CFRP)によって形成されている。 In particular, in this embodiment, the tube 1 is formed of carbon fiber reinforced resin (CFRP).
 このように、本実施形態では、チューブ1が炭素繊維強化樹脂(CFRP)によって形成されているため、チューブ1が他の繊維強化樹脂、例えばガラス繊維強化樹脂(FRP)と比べて、チューブ1の強度が高く、また、チューブ1をより軽量化することができる。 As described above, in this embodiment, since the tube 1 is made of carbon fiber reinforced resin (CFRP), the tube 1 is made of carbon fiber reinforced resin (CFRP). It has high strength and can further reduce the weight of the tube 1.
 また、本実施形態の他例として、前述のように、チューブ1は、ガラス繊維強化樹脂(FRP)によって形成することも可能である。この場合、チューブ1を他の繊維強化樹脂、例えば炭素繊維強化樹脂(CFRP)で形成する場合と比べて、チューブ1をより安価に形成することができる。 Furthermore, as another example of this embodiment, the tube 1 can be formed of glass fiber reinforced resin (FRP) as described above. In this case, the tube 1 can be formed at a lower cost than when the tube 1 is formed from other fiber-reinforced resins, such as carbon fiber-reinforced resin (CFRP).
 また、本実施形態では、第1挿入部22は、当該第1挿入部22の外周部に、チューブ1の第1端部11の内周面に噛み込む第1セレーション部26を有し、第1衝突荷重F1は、前記回転軸線Zの方向において、第1セレーション部26がチューブ1の第1端部11の内周面に噛み込む第1噛み込み長さL1によって設定されていて、第2挿入部32は、当該第2挿入部32の外周部に、チューブ1の第2端部12の内周面に噛み込む第2セレーション部36を有し、第2衝突荷重F2は、前記回転軸線Zの方向において、第2セレーション部36がチューブ1の第2端部12の内周面に噛み込む第2噛み込み長さL2によって設定されていて、第2噛み込み長さL2が、第1噛み込み長さL1よりも長く設定されている。 Further, in the present embodiment, the first insertion section 22 has a first serration section 26 on the outer circumferential part of the first insertion section 22 that engages with the inner circumferential surface of the first end 11 of the tube 1. 1 collision load F1 is set by a first engagement length L1 of the first serration portion 26 biting into the inner circumferential surface of the first end portion 11 of the tube 1 in the direction of the rotation axis Z, and a second collision load F1. The insertion part 32 has a second serration part 36 on the outer peripheral part of the second insertion part 32 that engages with the inner peripheral surface of the second end part 12 of the tube 1, and the second collision load F2 is applied to the rotation axis. In the Z direction, the second serration portion 36 is set by a second engagement length L2 that engages the inner peripheral surface of the second end portion 12 of the tube 1, and the second engagement length L2 is set by a second engagement length L2 that engages the inner peripheral surface of the second end portion 12 of the tube 1. It is set longer than the biting length L1.
 このように、本実施形態では、第2噛み込み長さL2が第1噛み込み長さL1よりも長く設定されることで、第2衝突荷重F2が第1衝突荷重F1よりも大きく設定されている。このため、後述する本発明の第2実施形態のように、チューブ1に対する第2挿入部32の噛み込み代(後述する第2噛み込み代X2)をチューブ1に対する第1挿入部22の噛み込み代(後述する第1噛み込み代X1)よりも大きく設定して第2衝突荷重F2を第1衝突荷重F1よりも大きく設定する場合に比べて、チューブ1の強度を担保することができるうえ、プロペラシャフトPS1の衝突荷重の制御も容易なものとなる。 As described above, in the present embodiment, by setting the second biting length L2 to be longer than the first biting length L1, the second collision load F2 is set to be larger than the first collision load F1. There is. For this reason, as in the second embodiment of the present invention described later, the biting allowance of the second insertion part 32 with respect to the tube 1 (second biting allowance The strength of the tube 1 can be ensured compared to the case where the second collision load F2 is set larger than the first collision load F1 by setting the second collision load F2 to be larger than the first collision load F1 (first bite width X1 to be described later). The collision load of the propeller shaft PS1 can also be easily controlled.
 すなわち、第1挿入部22及び第2挿入部32の噛み込み代に基づいて第1衝突荷重F1及び第2衝突荷重F2を制御する場合、第1挿入部22及び第2挿入部32の噛み込み代を大きくすることで、第1挿入部22及び第2挿入部32の外径が大きくなってしまう。その結果、第1挿入部22及び第2挿入部32がチューブ1の第1端部11及び第2端部12を大きく押し広げることとなり、当該チューブ1の強度が低下してしまう可能性がある。これに対して、本実施形態のように、第1噛み込み長さL1及び第2噛み込み長さL2に基づいて第1衝突荷重F1及び第2衝突荷重F2を制御する場合、第1挿入部22及び第2挿入部32の外径を変化させることがない。これにより、チューブ1の強度の低下を招来してしまうおそれもない。また、第1挿入部22及び第2挿入部32の外径を変化させないことで、チューブ1の強度設計を見直す必要がない。これにより、前述した第1挿入部22及び第2挿入部32の噛み込み代に基づいて第1衝突荷重F1及び第2衝突荷重F2を制御する場合と比べて、第1衝突荷重F1及び第2衝突荷重F2の制御を比較的容易に行えるメリットがある。 That is, when controlling the first collision load F1 and the second collision load F2 based on the biting allowance of the first insertion part 22 and the second insertion part 32, the biting allowance of the first insertion part 22 and the second insertion part 32 By increasing the width, the outer diameters of the first insertion portion 22 and the second insertion portion 32 become larger. As a result, the first insertion section 22 and the second insertion section 32 will push the first end 11 and second end 12 of the tube 1 widely apart, which may reduce the strength of the tube 1. . On the other hand, when controlling the first collision load F1 and the second collision load F2 based on the first bite length L1 and the second bite length L2 as in the present embodiment, the first insertion portion 22 and the second insertion portion 32 do not change their outer diameters. Thereby, there is no fear that the strength of the tube 1 will be reduced. Moreover, by not changing the outer diameters of the first insertion section 22 and the second insertion section 32, there is no need to review the strength design of the tube 1. As a result, compared to the case where the first collision load F1 and the second collision load F2 are controlled based on the biting allowance of the first insertion part 22 and the second insertion part 32, the first collision load F1 and the second collision load F2 are controlled. There is an advantage that the collision load F2 can be controlled relatively easily.
 また、本実施形態では、第1挿入部22は、当該第1挿入部22の外周部に、チューブ1の第1端部11の内周面に噛み込む第1セレーション部26を有し、第2挿入部32は、当該第2挿入部32の外周部に、チューブ1の第2端部12の内周面に噛み込む第2セレーション部36を有し、第1セレーション部26及び第2セレーション部36の先端部の少なくとも一方が、前記回転軸線Zに対して直交した断面で見たときに鋭利な形状に形成されている。 Further, in the present embodiment, the first insertion section 22 has a first serration section 26 on the outer circumferential part of the first insertion section 22 that engages with the inner circumferential surface of the first end 11 of the tube 1. The second insertion portion 32 has a second serration portion 36 on the outer circumference of the second insertion portion 32 that engages with the inner circumference of the second end portion 12 of the tube 1, and includes a first serration portion 26 and a second serration portion 36. At least one of the distal ends of the portion 36 is formed into a sharp shape when viewed in a cross section perpendicular to the rotation axis Z.
 このように、本実施形態では、第1セレーション部26と第2セレーション部36の少なくとも一方の先端部が、チューブ1の回転軸線Zに直交した断面で見たときに鋭利な形状に形成されている。このように、第1セレーション部26と第2セレーション部36の少なくとも一方の先端部が鋭利に形成されていることにより、当該第1セレーション部26ないし第2セレーション部36がチューブ1に噛み込みやすくなり、プロペラシャフトPS1の製造作業性が向上し、当該プロペラシャフトPS1の生産性を向上させることができる。 As described above, in the present embodiment, the tip end of at least one of the first serration section 26 and the second serration section 36 is formed into a sharp shape when viewed in a cross section perpendicular to the rotation axis Z of the tube 1. There is. As described above, since the tip of at least one of the first serration section 26 and the second serration section 36 is formed sharply, the first serration section 26 or the second serration section 36 can easily be caught in the tube 1. Therefore, the manufacturing workability of the propeller shaft PS1 is improved, and the productivity of the propeller shaft PS1 can be improved.
 なお、本実施形態の変形例として、図4に示すように、第1挿入部22は、当該第1挿入部22の外周部に、チューブ1の第1端部11の内周面に噛み込む第1セレーション部26を有し、第2挿入部32は、当該第2挿入部32の外周部に、チューブ1の第2端部12の内周面に噛み込む第2セレーション部36を有し、第1セレーション部26及び第2セレーション部36の先端部の少なくとも一方が、前記回転軸線Zに対して直交した断面で見たときに円弧状に形成されていてもよい。 In addition, as a modification of this embodiment, as shown in FIG. The second insertion section 32 has a second serration section 36 on the outer circumference of the second insertion section 32 that fits into the inner circumference of the second end 12 of the tube 1. , at least one of the tips of the first serration section 26 and the second serration section 36 may be formed in an arc shape when viewed in a cross section perpendicular to the rotation axis Z.
 この変形例のように、第1セレーション部26ないし第2セレーション部36の先端部が丸められていることにより、当該第1セレーション部26ないし第2セレーション部36を加工する際においてバリの発生を抑制することが可能となる。これにより、前記バリによる意図しない衝突荷重の増大が抑制され、プロペラシャフトPS1の衝突荷重の制御性を向上させることができる。 As in this modification, the tip portions of the first serration portion 26 to the second serration portion 36 are rounded, thereby preventing the generation of burrs when processing the first serration portion 26 to the second serration portion 36. It becomes possible to suppress this. Thereby, an unintended increase in collision load due to the burr is suppressed, and the controllability of the collision load on the propeller shaft PS1 can be improved.
 また、本実施形態では、図示外の前記第1動力伝達装置は、トランスミッションTMであり、図示外の前記第2動力伝達装置は、ディファレンシャルDFである。 Furthermore, in this embodiment, the first power transmission device (not shown) is a transmission TM, and the second power transmission device (not shown) is a differential DF.
 このように、本実施形態では、比較的車両の前方に搭載されるトランスミッションTMと繋がるチューブ1の第1端部11側の第1衝突荷重F1が相対的に低く設定されている。通常、車両は前方から衝突することが多いため、車両前方側の衝突荷重を相対的に低く設定することにより、安全性を高めることができる。 As described above, in this embodiment, the first collision load F1 on the first end 11 side of the tube 1 connected to the transmission TM mounted relatively in the front of the vehicle is set relatively low. Normally, vehicles often collide from the front, so safety can be improved by setting the collision load on the front side of the vehicle to be relatively low.
 〔第2実施形態〕
 図6は本発明に係る動力伝達軸(プロペラシャフト)の第2実施形態を示し、前記第1実施形態に係るプロペラシャフトPS1における第1衝突荷重F1及び第2衝突荷重F2に係る構成を変更したものである。なお、当該変更点以外の基本的な構成は、前記第1実施形態と同様であるため、当該第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。また、当該実施形態の説明においては、便宜上、図6の第1継手部材J1側を「前」、第2継手部材J2側を「後」として説明すると共に、図6の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」、として説明する。
[Second embodiment]
FIG. 6 shows a second embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted. In addition, in the description of the embodiment, for convenience, the first joint member J1 side in FIG. 6 will be referred to as "front" and the second joint member J2 side will be referred to as "rear", and the direction along the rotation axis Z in FIG. will be described as an "axial direction," a direction perpendicular to the rotational axis Z as a "radial direction," and a direction around the rotational axis Z as a "circumferential direction."
 (プロペラシャフトの構成)
 図6は、本発明の第2実施形態に係るプロペラシャフトPS2の全体の形態を示し、当該プロペラシャフトPS2を回転軸線Zの方向に沿って切断した半断面図を示している。
(Propeller shaft configuration)
FIG. 6 shows the overall form of the propeller shaft PS2 according to the second embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS2 taken along the direction of the rotation axis Z.
 図6に示すように、本実施形態に係るプロペラシャフトPS2は、第1挿入部22の第1噛み込み長さL1と第2挿入部32の第2噛み込み長さL2とが同一となるように設定されている。そして、チューブ1の第1端部11では、第1衝突荷重F1は、第1セレーション部26がチューブ1の第1端部11の内周部111に噛み込む第1噛み込み代X1に基づいて設定されている。また、第2衝突荷重F2は、第2セレーション部36がチューブ1の第2端部12の内周部121に噛み込む第2噛み込み代X2に基づいて設定されている。すなわち、第2セレーション部36の第2噛み込み代X2が、第1セレーション部26の第1噛み込み代X1よりも大きく形成されている。具体的には、第2噛み込み代X2が、第1噛み込み代X1のおよそ2倍に設定されている。 As shown in FIG. 6, the propeller shaft PS2 according to the present embodiment is configured such that the first engagement length L1 of the first insertion portion 22 and the second engagement length L2 of the second insertion portion 32 are the same. is set to . At the first end 11 of the tube 1, the first collision load F1 is based on the first biting allowance X1 of the first serration part 26 biting into the inner peripheral part 111 of the first end 11 of the tube 1. It is set. Further, the second collision load F2 is set based on the second biting allowance X2 at which the second serration portion 36 bites into the inner peripheral portion 121 of the second end portion 12 of the tube 1. That is, the second biting allowance X2 of the second serration portion 36 is formed to be larger than the first biting allowance X1 of the first serration portion 26. Specifically, the second biting allowance X2 is set to approximately twice the first biting allowance X1.
 (本実施形態の作用効果)
 以上のように、本実施形態に係るプロペラシャフトPS2は、第1挿入部22は、当該第1挿入部22の外周部に、チューブ1の第1端部11の内周面に噛み込む第1セレーション部26を有し、第1衝突荷重F1は、前記回転軸線Zの方向において、第1セレーション部26がチューブ1の第1端部11の内周面に噛み込む第1噛み込み代X1によって設定されていて、第2挿入部32は、当該第2挿入部32の外周部に、チューブ1の第2端部12の内周面に噛み込む第2セレーション部36を有し、第2衝突荷重F2は、前記回転軸線Zの方向において、第2セレーション部36がチューブ1の第2端部12の内周面に噛み込む第2噛み込み代X2によって設定されていて、第2噛み込み代X2が、第1噛み込み代X1よりも大きく設定されている。
(Operations and effects of this embodiment)
As described above, in the propeller shaft PS2 according to the present embodiment, the first insertion section 22 has a first insertion section 22 that is inserted into the outer circumference of the first insertion section 22 and that is inserted into the inner circumference of the first end 11 of the tube 1. The first collision load F1 is caused by a first biting allowance X1 in which the first serrations 26 bites into the inner circumferential surface of the first end 11 of the tube 1 in the direction of the rotation axis Z. The second insertion portion 32 has a second serration portion 36 on the outer circumference thereof that engages with the inner circumference of the second end portion 12 of the tube 1, and The load F2 is set by a second biting allowance X2 in which the second serration portion 36 bites into the inner circumferential surface of the second end portion 12 of the tube 1 in the direction of the rotation axis Z. X2 is set larger than the first biting allowance X1.
 このように、本実施形態では、第2噛み込み代X2が、第1噛み込み代X1よりも大きく設定されていることにより、第2衝突荷重F2が、第1衝突荷重F1よりも大きく設定されている。このように、本実施形態では、第2挿入部32の第2噛み込み代X2を第1挿入部22の第1噛み込み代X1よりも相対的に大きくすることによって衝突荷重を制御(コントロール)することにより、比較的大きなトルクの伝達が可能になる。また、第1挿入部22の噛み込み代X1に対して、第2挿入部32の噛み込み代X2を大きくして衝突荷重を制御(コントロール)する場合、第2挿入部32の噛み込み長さL2を比較的短く設定して当該第2挿入部32の短縮化を図ることが可能となるため、プロペラシャフトPS2の製造コストの低減化を図ることができる。 As described above, in the present embodiment, the second biting allowance X2 is set larger than the first biting allowance X1, so that the second collision load F2 is set larger than the first collision load F1. ing. In this way, in the present embodiment, the collision load is controlled by making the second biting allowance X2 of the second insertion part 32 relatively larger than the first biting allowance X1 of the first insertion part 22. This allows relatively large torque to be transmitted. In addition, when controlling the collision load by increasing the biting allowance X2 of the second insertion part 32 with respect to the biting allowance X1 of the first insertion part 22, the biting length of the second insertion part 32 Since it is possible to shorten the second insertion portion 32 by setting L2 relatively short, it is possible to reduce the manufacturing cost of the propeller shaft PS2.
 〔第3実施形態〕
 図7は本発明に係る動力伝達軸(プロペラシャフト)の第3実施形態を示し、前記第1実施形態に係るプロペラシャフトPS1における第1衝突荷重F1及び第2衝突荷重F2に係る構成を変更したものである。なお、当該変更点以外の基本的な構成は、前記第1実施形態と同様であるため、当該第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。また、当該実施形態の説明においては、便宜上、図7の第1継手部材J1側を「前」、第2継手部材J2側を「後」として説明すると共に、図7の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」、として説明する。
[Third embodiment]
FIG. 7 shows a third embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted. In addition, in the description of the embodiment, for convenience, the first joint member J1 side in FIG. 7 will be referred to as "front" and the second joint member J2 side will be referred to as "rear", and the direction along the rotation axis Z in FIG. will be described as an "axial direction," a direction perpendicular to the rotational axis Z as a "radial direction," and a direction around the rotational axis Z as a "circumferential direction."
 (プロペラシャフトの構成)
 図7は、本発明の第3実施形態に係るプロペラシャフトPS3の全体の形態を示し、当該プロペラシャフトPS3を回転軸線Zの方向に沿って切断した半断面図を示している。
(Propeller shaft configuration)
FIG. 7 shows the overall form of a propeller shaft PS3 according to a third embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS3 taken along the direction of the rotation axis Z.
 図7に示すように、本実施形態に係るプロペラシャフトPS3は、第1挿入部22の第1噛み込み長さL1と第2挿入部32の第2噛み込み長さL2とが同一に設定されている。そして、チューブ1の第1端部11においては、第1セレーション部26がチューブ1の第1端部11の内周面に噛み込むことで、第1挿入部22が、チューブ1の第1端部11に固定状態に支持されている。一方、チューブ1の第2端部12においては、第2セレーション部36がチューブ1の第2端部12の内周面に噛み込むと共に、第2セレーション部36とチューブ1の第2端部12の内周面との間が接着剤Gにより接着されることで、第2挿入部32が、チューブ1の第2端部12に固定状態に支持されている。かかる構成により、本実施形態では、第1衝突荷重F1が、第1セレーション部26の第1噛み込み長さL1に基づいて設定される一方、第2衝突荷重F2が、第2セレーション部36の第2噛み込み長さL2と、接着剤Gの接着力に基づいて設定されている。これにより、第2衝突荷重F2が第1衝突荷重F1よりも大きく設定されている。 As shown in FIG. 7, in the propeller shaft PS3 according to the present embodiment, the first engagement length L1 of the first insertion portion 22 and the second engagement length L2 of the second insertion portion 32 are set to be the same. ing. At the first end 11 of the tube 1, the first serration section 26 bites into the inner circumferential surface of the first end 11 of the tube 1, so that the first insertion section 22 is inserted into the first end 11 of the tube 1. It is supported in a fixed state by the section 11. On the other hand, at the second end portion 12 of the tube 1, the second serration portion 36 bites into the inner peripheral surface of the second end portion 12 of the tube 1, and the second serration portion 36 and the second end portion 12 of the tube 1 The second insertion portion 32 is fixedly supported by the second end portion 12 of the tube 1 by being bonded to the inner circumferential surface of the tube 1 with the adhesive G. With this configuration, in this embodiment, the first collision load F1 is set based on the first biting length L1 of the first serration portion 26, while the second collision load F2 is set based on the first bite length L1 of the second serration portion 36. It is set based on the second biting length L2 and the adhesive force of the adhesive G. Thereby, the second collision load F2 is set larger than the first collision load F1.
 (本実施形態の作用効果)
 以上のように、本実施形態に係るプロペラシャフトPS3は、第1挿入部22は、当該第1挿入部22の外周部に、チューブ1の第1端部11の内周面に噛み込む第1セレーション部26を有し、第2挿入部32は、当該第2挿入部32の外周部に、チューブ1の第2端部12の内周面に噛み込む第2セレーション部36を有し、第2セレーション部36とチューブ1との間は、接着剤Gにより接着されている。
(Operations and effects of this embodiment)
As described above, in the propeller shaft PS3 according to the present embodiment, the first insertion section 22 has a first insertion section 22 that is inserted into the outer circumference of the first insertion section 22 and that is inserted into the inner circumference of the first end 11 of the tube 1. The second insertion portion 32 has a second serration portion 36 on the outer circumference of the second insertion portion 32 that engages with the inner circumference of the second end portion 12 of the tube 1. The two serrations 36 and the tube 1 are bonded together with an adhesive G.
 このように、本実施形態では、第2セレーション部36とチューブ1の間を接着剤Gにより接着することで、第2衝突荷重F2が第1衝突荷重F1よりも大きく設定されている。こうして、第2セレーション部36に接着剤Gを塗布することによって第2衝突荷重F2が相対的に大きくなるように制御することで、第1セレーション部26及び第2セレーション部36について精密な加工が不要となる。換言すれば、第1セレーション部26及び第2セレーション部36の加工精度が比較的低いものであっても、接着剤Gの接着力によって第2衝突荷重F2を担保することが可能となる。これにより、プロペラシャフトPS3の製造コストの低減化を図ることができる。 As described above, in this embodiment, the second collision load F2 is set larger than the first collision load F1 by bonding the second serration portion 36 and the tube 1 with the adhesive G. In this way, by controlling the second collision load F2 to be relatively large by applying the adhesive G to the second serration part 36, precise machining of the first serration part 26 and the second serration part 36 is possible. No longer needed. In other words, even if the processing accuracy of the first serration portion 26 and the second serration portion 36 is relatively low, the adhesive force of the adhesive G can ensure the second collision load F2. Thereby, it is possible to reduce the manufacturing cost of the propeller shaft PS3.
 〔第4実施形態〕
 図8は本発明に係る動力伝達軸(プロペラシャフト)の第4実施形態を示し、前記第1実施形態に係るプロペラシャフトPS1における第1衝突荷重F1及び第2衝突荷重F2に係る構成を変更したものである。なお、当該変更点以外の基本的な構成は、前記第1実施形態と同様であるため、当該第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。また、当該実施形態の説明においては、便宜上、図8の第1継手部材J1側を「前」、第2継手部材J2側を「後」として説明すると共に、図8の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」、として説明する。
[Fourth embodiment]
FIG. 8 shows a fourth embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted. In addition, in the description of the embodiment, for convenience, the first joint member J1 side in FIG. 8 will be referred to as "front" and the second joint member J2 side will be referred to as "rear", and the direction along the rotation axis Z in FIG. will be described as an "axial direction," a direction perpendicular to the rotational axis Z as a "radial direction," and a direction around the rotational axis Z as a "circumferential direction."
 (プロペラシャフトの構成)
 図8は、本発明の第4実施形態に係るプロペラシャフトPS4の全体の形態を示し、当該プロペラシャフトPS4を回転軸線Zの方向に沿って切断した半断面図を示している。
(Propeller shaft configuration)
FIG. 8 shows the overall form of the propeller shaft PS4 according to the fourth embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS4 taken along the direction of the rotation axis Z.
 図8に示すように、本実施形態に係るプロペラシャフトPS4は、チューブ1が金属材料によって形成されている。そして、プロペラシャフトPS4では、チューブ1の第1端部11に第1挿入部22がスプライン結合され、チューブ1の第2端部12に第2挿入部32がスプライン結合されている。 As shown in FIG. 8, in the propeller shaft PS4 according to this embodiment, the tube 1 is formed of a metal material. In the propeller shaft PS4, the first insertion section 22 is spline-coupled to the first end 11 of the tube 1, and the second insertion section 32 is spline-coupled to the second end 12 of the tube 1.
 すなわち、チューブ1の第1端部11の内周部111には、軸方向に沿って延びる第1雌スプライン部15が形成されている。同様に、チューブ1の第2端部12の内周部121には、軸方向に沿って延びる第2雌スプライン部16が形成されている。 That is, the first female spline portion 15 extending along the axial direction is formed on the inner peripheral portion 111 of the first end portion 11 of the tube 1. Similarly, a second female spline portion 16 extending along the axial direction is formed on the inner peripheral portion 121 of the second end portion 12 of the tube 1 .
 また、第1挿入部22の外周部には、チューブ1の第1雌スプライン部15と噛み合い、かつ当該第1雌スプライン部15に沿って軸方向に移動可能な第1雄スプライン部27が形成されている。そして、第1挿入部22は、第1雄スプライン部27を介してチューブ1の第1雌スプライン部15に圧入されている。同様に、チューブ1の第2挿入部32の外周部には、チューブ1の第2雌スプライン部16と噛み合い、かつ当該第2雌スプライン部16に沿って軸方向に移動可能な第2雄スプライン部37が形成されている。そして、第2挿入部32は、第2雄スプライン部37を介してチューブ1の第2雌スプライン部16に圧入されている。 Further, a first male spline portion 27 is formed on the outer circumferential portion of the first insertion portion 22 to engage with the first female spline portion 15 of the tube 1 and to be movable in the axial direction along the first female spline portion 15. has been done. The first insertion portion 22 is press-fitted into the first female spline portion 15 of the tube 1 via the first male spline portion 27 . Similarly, on the outer periphery of the second insertion portion 32 of the tube 1, a second male spline is provided that engages with the second female spline portion 16 of the tube 1 and is movable in the axial direction along the second female spline portion 16. A portion 37 is formed. The second insertion portion 32 is press-fitted into the second female spline portion 16 of the tube 1 via the second male spline portion 37 .
 そして、第1衝突荷重F1は、第1雌スプライン部15が第1雄スプライン部27と噛み合う第1噛み込み長さL1によって設定されている。一方、第2衝突荷重F2は、第2雌スプライン部16が第2雄スプライン部37と噛み合う第2噛み込み長さL2によって設定されている。さらに、本実施形態では、第2噛み込み長さL2が、第1噛み込み長さL1よりも長く設定されている。 The first collision load F1 is set by the first engagement length L1 at which the first female spline portion 15 engages with the first male spline portion 27. On the other hand, the second collision load F2 is set by the second engagement length L2 at which the second female spline portion 16 engages with the second male spline portion 37. Furthermore, in this embodiment, the second biting length L2 is set longer than the first biting length L1.
 なお、本実施形態では、第1衝突荷重F1が第1噛み込み長さL1によって設定され、第2衝突荷重F2が第2噛み込み長さL2によって設定された態様を例示するが、前記第2実施形態のように、第1衝突荷重F1が第1噛み込み代X1によって設定され、第2衝突荷重F2が第2噛み込み代X2によって設定されてもよい。また、前記第3実施形態のように、第2雌スプライン部16と第2雄スプライン部37とが接着剤Gによって接着されてもよい。 In addition, in this embodiment, the first collision load F1 is set by the first biting length L1, and the second collision load F2 is set by the second biting length L2. As in the embodiment, the first collision load F1 may be set by the first biting allowance X1, and the second collision load F2 may be set by the second biting allowance X2. Further, the second female spline portion 16 and the second male spline portion 37 may be bonded together using adhesive G as in the third embodiment.
 (本実施形態の作用効果)
 以上のように、本実施形態に係るプロペラシャフトPS4は、チューブ1の第1端部11の内周部111には、第1雌スプライン部15が形成され、第1挿入部22の外周部には、第1雌スプライン部15と噛み合い、前記回転軸線Zに対する方向に移動可能な第1雄スプライン部27が形成され、第1挿入部22の外周部は、チューブ1の第1端部11の内周部111に圧入されていて、チューブ1の第2端部12の内周部121には、第2雌スプライン部16が形成され、第2挿入部32の外周部には、第2雌スプライン部16と噛み合い、前記回転軸線Zに対する方向に移動可能な第2雄スプライン部37が形成され、第2挿入部32の外周部は、チューブ1の第2端部12の内周部121に圧入されている。
(Operations and effects of this embodiment)
As described above, in the propeller shaft PS4 according to the present embodiment, the first female spline portion 15 is formed on the inner peripheral portion 111 of the first end portion 11 of the tube 1, and the first female spline portion 15 is formed on the outer peripheral portion of the first insertion portion 22. is formed with a first male spline portion 27 that engages with the first female spline portion 15 and is movable in the direction relative to the rotational axis Z, and the outer peripheral portion of the first insertion portion 22 is connected to the first end portion 11 of the tube 1. A second female spline portion 16 is press-fitted into the inner peripheral portion 111 , and a second female spline portion 16 is formed on the inner peripheral portion 121 of the second end portion 12 of the tube 1 . A second male spline portion 37 is formed that engages with the spline portion 16 and is movable in the direction relative to the rotation axis Z, and the outer circumferential portion of the second insertion portion 32 is connected to the inner circumferential portion 121 of the second end portion 12 of the tube 1. It is press-fitted.
 このように、本実施形態では、チューブ1と第1挿入部22及び第2挿入部32とがそれぞれスプラインを介して結合されている。このため、前記第1、第2、第3実施形態と異なり、チューブ1を鉄系材料で形成することが可能となる。これにより、チューブ1を繊維強化樹脂によって形成する場合と比べて、プロペラシャフトPS4を比較的安価に製造することができる。 As described above, in this embodiment, the tube 1, the first insertion section 22, and the second insertion section 32 are respectively coupled via splines. Therefore, unlike the first, second, and third embodiments, the tube 1 can be made of iron-based material. Thereby, the propeller shaft PS4 can be manufactured relatively inexpensively compared to the case where the tube 1 is formed of fiber-reinforced resin.
 〔第5実施形態〕
 図9は本発明に係る動力伝達軸(プロペラシャフト)の第5実施形態を示し、前記第4実施形態に係るプロペラシャフトPS4における第1衝突荷重F1及び第2衝突荷重F2に係る構成を変更したものである。なお、当該変更点以外の基本的な構成は、前記第4実施形態と同様であるため、当該第4実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。また、当該実施形態の説明においては、便宜上、図9の左側を「前」、右側を「後」として説明すると共に、図9の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」、として説明する。
[Fifth embodiment]
FIG. 9 shows a fifth embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration related to the first collision load F1 and the second collision load F2 in the propeller shaft PS4 according to the fourth embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the fourth embodiment, so the same reference numerals are given to the same configurations as those of the fourth embodiment, and the explanation thereof will be omitted. In addition, in the description of this embodiment, for convenience, the left side of FIG. 9 will be referred to as "front" and the right side will be referred to as "rear", and the direction along rotation axis Z in FIG. The orthogonal direction will be referred to as a "radial direction" and the direction around the rotational axis Z will be referred to as a "circumferential direction".
 (プロペラシャフトの構成)
 図9は、本発明の第5実施形態に係るプロペラシャフトPS5を回転軸線Zの方向に沿って切断した半断面図を示しており、(a)はチューブ1の第1端部11の近傍の拡大図を示し、(b)はチューブ1の第2端部12の近傍の拡大図を示している。
(Propeller shaft configuration)
FIG. 9 shows a half-sectional view of the propeller shaft PS5 according to the fifth embodiment of the present invention taken along the direction of the rotational axis Z, and (a) shows the area near the first end 11 of the tube 1. An enlarged view is shown, and (b) shows an enlarged view of the vicinity of the second end 12 of the tube 1.
 すなわち、本実施形態に係るプロペラシャフトPS5では、図9(a)に示すように、チューブ1の第1端部11に、概ね円柱状に形成された第1ピンP1が貫通可能な第1ピン貫通孔17が、径方向に沿って形成されている。一方、第1挿入部22には、第1ピン貫通孔17と径方向において対向する位置に、第1ピンP1を挿入可能な第1ピン挿入孔28が形成されている。そして、第1ピンP1が、第1ピン貫通孔17と第1ピン挿入孔28とに跨るように、第1ピン貫通孔17側から圧入されることにより、第1挿入部22がチューブ1の第1端部11に固定状態に支持されている。なお、本実施形態では、第1衝突荷重F1は、第1ピンP1の破断する強度によって設定されている。 That is, in the propeller shaft PS5 according to this embodiment, as shown in FIG. A through hole 17 is formed along the radial direction. On the other hand, a first pin insertion hole 28 into which the first pin P1 can be inserted is formed in the first insertion portion 22 at a position facing the first pin through hole 17 in the radial direction. Then, the first pin P1 is press-fitted from the first pin through hole 17 side so as to straddle the first pin through hole 17 and the first pin insertion hole 28, so that the first insertion portion 22 is inserted into the tube 1. It is fixedly supported by the first end 11. In addition, in this embodiment, the first collision load F1 is set based on the strength at which the first pin P1 breaks.
 また、チューブ1の第1端部11の開口端部には、当該第1端部11の内周部111と第1シャフト部2の第1挿入部22の外周部との間であって第1ピンP1よりも外側の位置に、第1シール部材S1が配置されている。第1シール部材S1は、チューブ1の第1端部11において当該第1端部11の内周部111と第1シャフト部2の第1挿入部22の外周部との間に形成される第1隙間を液密にシールし、当該第1隙間からの水分や異物の侵入を抑制する。 Further, at the open end of the first end 11 of the tube 1, there is a space between the inner peripheral part 111 of the first end 11 and the outer peripheral part of the first insertion part 22 of the first shaft part 2. A first seal member S1 is arranged at a position outside the first pin P1. The first seal member S1 is a first seal member S1 formed at the first end 11 of the tube 1 between the inner circumference 111 of the first end 11 and the outer circumference of the first insertion portion 22 of the first shaft portion 2. The first gap is liquid-tightly sealed to prevent moisture and foreign matter from entering through the first gap.
 さらに、チューブ1の第1端部11の外周縁部には、縦断面がL字状をなす概ね円環状の第1カバー部材C1が、カシメ固定されている。第1カバー部材C1は、第1外周辺部C11がチューブ1の外周側に被さって径方向において第1ピンP1と対向することによって、当該第1ピンP1の脱落を規制する。また、同時に、第1カバー部材C1は、第1軸方向端面C12がチューブ1の第1端面112に被さって軸方向において第1シール部材S1と対向することによって、当該第1シール部材S1の脱落を規制する。 Furthermore, a generally annular first cover member C1 having an L-shaped longitudinal section is fixed to the outer peripheral edge of the first end 11 of the tube 1 by caulking. The first cover member C1 prevents the first pin P1 from falling off by having the first outer peripheral portion C11 covering the outer peripheral side of the tube 1 and facing the first pin P1 in the radial direction. At the same time, the first cover member C1 has a first axial end face C12 that covers the first end face 112 of the tube 1 and faces the first seal member S1 in the axial direction, so that the first seal member S1 can come off. to regulate.
 同様に、本実施形態に係るプロペラシャフトPS5では、図9(b)に示すように、チューブ1の第2端部12に、概ね円柱状に形成された第2ピンP2が貫通可能な第2ピン貫通孔18が、径方向に沿って形成されている。一方、第2挿入部32には、第2ピン貫通孔18と径方向において対向する位置に、第2ピンP2を挿入可能な第2ピン挿入孔38が形成されている。そして、第2ピンP2が、第2ピン貫通孔18と第2ピン挿入孔38とに跨るように、第2ピン貫通孔18側から圧入されることにより、第2挿入部32がチューブ1の第2端部12に固定状態に支持されている。なお、本実施形態では、第2衝突荷重F2は、第2ピンP2の破断する強度によって設定されている。すなわち、例えば第2ピンP2の外径を第1ピンP1の外径よりも相対的に大きく設定するなど、第2ピンP2の破断する強度が第1ピンP1の破断する強度よりも大きく設定されることで、第2衝突荷重F2が第1衝突荷重F1よりも大きくなるように設定されている。 Similarly, in the propeller shaft PS5 according to the present embodiment, as shown in FIG. A pin through hole 18 is formed along the radial direction. On the other hand, a second pin insertion hole 38 into which the second pin P2 can be inserted is formed in the second insertion portion 32 at a position facing the second pin through hole 18 in the radial direction. Then, the second pin P2 is press-fitted from the second pin through hole 18 side so as to straddle the second pin through hole 18 and the second pin insertion hole 38, so that the second insertion portion 32 is inserted into the tube 1. It is fixedly supported by the second end 12. In this embodiment, the second collision load F2 is set based on the strength at which the second pin P2 breaks. That is, for example, the outer diameter of the second pin P2 is set to be relatively larger than the outer diameter of the first pin P1, so that the breaking strength of the second pin P2 is set larger than the breaking strength of the first pin P1. As a result, the second collision load F2 is set to be larger than the first collision load F1.
 また、チューブ1の第2端部12の開口端部には、当該第2端部12の内周部121と第2シャフト部3の第2挿入部32の外周部との間であって第2ピンP2よりも外側の位置に、第2シール部材S2が配置されている。第2シール部材S2は、チューブ1の第2端部12において当該第2端部12の内周部121と第2シャフト部3の第2挿入部32の外周部との間に形成される第2隙間を液密にシールし、当該第2隙間からの水分や異物の侵入を抑制する。 Further, at the open end of the second end 12 of the tube 1, there is a hole located between the inner circumference 121 of the second end 12 and the outer circumference of the second insertion section 32 of the second shaft section 3. A second seal member S2 is arranged at a position outside the second pin P2. The second seal member S2 is a second seal member S2 formed at the second end 12 of the tube 1 between the inner peripheral part 121 of the second end 12 and the outer peripheral part of the second insertion part 32 of the second shaft part 3. The second gap is liquid-tightly sealed to prevent moisture and foreign matter from entering through the second gap.
 さらに、チューブ1の第2端部12の外周縁部には、縦断面がL字状をなす概ね円環状の第2カバー部材C2が、カシメ固定されている。第2カバー部材C2は、第2外周辺部C21がチューブ1の外周側に被さって径方向において第2ピンP2と対向することによって、当該第2ピンP2の脱落を規制する。また、同時に、第2カバー部材C2は、第2軸方向端面C22がチューブ1の第2端面122に被さって軸方向において第2シール部材S2と対向することによって、当該第2シール部材S2の脱落を規制する。 Furthermore, a generally annular second cover member C2 having an L-shaped longitudinal section is fixed to the outer peripheral edge of the second end 12 of the tube 1 by caulking. The second cover member C2 prevents the second pin P2 from falling off by having the second outer peripheral portion C21 covering the outer peripheral side of the tube 1 and facing the second pin P2 in the radial direction. At the same time, the second cover member C2 has a second axial end face C22 that covers the second end face 122 of the tube 1 and faces the second seal member S2 in the axial direction, so that the second seal member S2 can come off. to regulate.
 (本実施形態の作用効果)
 以上のように、本実施形態に係るプロペラシャフトPS5は、チューブ1の第1端部11及び第1挿入部22には、チューブ1の第1端部11及び第1挿入部22に対して径方向に跨るように第1ピンP1を挿入可能な第1ピン孔(第1ピン貫通孔17及び第1ピン挿入孔28)が形成され、チューブ1の第2端部12及び第2挿入部32には、チューブ1の第2端部12及び第2挿入部32に対して径方向に跨るように第2ピンP2を挿入可能な第2ピン孔(第2ピン貫通孔18及び第2ピン挿入孔38)が形成され、第2ピンP2の破断する強度は、第1ピンP1の破断する強度よりも大きい。
(Operations and effects of this embodiment)
As described above, in the propeller shaft PS5 according to the present embodiment, the first end portion 11 and the first insertion portion 22 of the tube 1 have a diameter relative to the first end portion 11 and the first insertion portion 22 of the tube 1. A first pin hole (first pin through hole 17 and first pin insertion hole 28) into which the first pin P1 can be inserted is formed so as to straddle the second end portion 12 of the tube 1 and the second insertion portion 32. The second pin hole (second pin through hole 18 and second pin insertion hole) into which the second pin P2 can be inserted so as to straddle the second end portion 12 and the second insertion portion 32 of the tube 1 in the radial direction. A hole 38) is formed, and the breaking strength of the second pin P2 is greater than the breaking strength of the first pin P1.
 このように、本実施形態では、チューブ1と第1挿入部22及び第2挿入部32とが、それぞれ第1ピンP1及び第2ピンP2を介して結合されている。このため、第1衝突荷重F1及び第2衝突荷重F2の設定に係る第1ピンP1及び第2ピンP2以外について、チューブ1の両端部に第1継手部材J1及び第2継手部材J2がスプライン結合されてなる従来のプロペラシャフトの部品を共用可能となる。これにより、プロペラシャフトPS5の製造コストを低減することができる。また、第1ピンP1及び第2ピンP2による結合手段のみによって衝突荷重の制御を行うため、他の結合手段、例えば前記第1実施形態に係るセレーション等と比べて、衝突荷重の制御が比較的容易となるメリットがある。 In this way, in this embodiment, the tube 1, the first insertion section 22, and the second insertion section 32 are coupled via the first pin P1 and the second pin P2, respectively. For this reason, the first joint member J1 and the second joint member J2 are spline-coupled to both ends of the tube 1, except for the first pin P1 and the second pin P2 related to the setting of the first collision load F1 and the second collision load F2. It becomes possible to share parts of conventional propeller shafts. Thereby, the manufacturing cost of the propeller shaft PS5 can be reduced. Furthermore, since the collision load is controlled only by the coupling means using the first pin P1 and the second pin P2, the collision load is relatively controlled compared to other coupling means, such as the serrations according to the first embodiment. It has the advantage of being easy.
 本発明は、前記実施形態等で例示した構成や態様に限定されるものではなく、前述した本発明の作用効果を奏し得るような形態であれば、適用対象の仕様やコスト等に応じて自由に変更可能である。 The present invention is not limited to the configurations and aspects exemplified in the above-described embodiments, etc., and can be freely modified according to the specifications, cost, etc. of the object to be applied, as long as it can achieve the effects of the present invention described above. It can be changed to
 例えば、前記各実施形態では、図示外の前記第1動力伝達装置を車両に搭載されたトランスミッションTM、図示外の前記第2動力伝達装置を車両に搭載されたディファレンシャルDFとしたものを例示したが、図10に示すように、その逆の構成であってもよい。具体的には、例えばリヤエンジン・オールホイールドライブの駆動方式を有する車両、エンジンEG及びトランスミッションTMが車両後方に搭載され、トランスミッションTMから出力されるエンジンEGの駆動力をプロペラシャフトPSによって車両前方に搭載されるディファレンシャルDFに伝達するような駆動方式を有する車両にも適用可能である。すなわち、図示外の前記第1動力伝達装置は、ディファレンシャルDFであり、前記第2動力伝達装置は、トランスミッションTMであってもよい。 For example, in each of the embodiments, the first power transmission device (not shown) is a transmission TM mounted on a vehicle, and the second power transmission device (not shown) is a differential DF mounted on a vehicle. , as shown in FIG. 10, the configuration may be reversed. Specifically, for example, in a vehicle having a rear engine/all-wheel drive drive system, the engine EG and transmission TM are mounted at the rear of the vehicle, and the driving force of the engine EG output from the transmission TM is transmitted to the front of the vehicle by a propeller shaft PS. It is also applicable to vehicles having a drive system that transmits information to a mounted differential DF. That is, the first power transmission device (not shown) may be a differential DF, and the second power transmission device may be a transmission TM.
 かかる変形例によれば、比較的車両の後方に搭載されるディファレンシャルDFと繋がるチューブ1の第1端部11側の第1衝突荷重F1が相対的に低く設定されている。このように、車両後方側の衝突荷重を相対的に低く設定することで、車両が後方から衝突した場合の安全性を高めることができるメリットがある。 According to this modification, the first collision load F1 on the first end 11 side of the tube 1 connected to the differential DF that is mounted relatively at the rear of the vehicle is set relatively low. In this way, by setting the collision load on the rear side of the vehicle to be relatively low, there is an advantage that safety can be improved when the vehicle collides from the rear.
 また、前記トランスミッションTMが駆動輪(後輪)側に設けられた車両の場合は、図示外の前記第1動力伝達装置を例えばエンジン等の駆動源として、図示外の前記第2動力伝達装置をトランスミッションTMとしてもよく、また、その逆であってもよい。 In addition, in the case of a vehicle in which the transmission TM is provided on the drive wheel (rear wheel) side, the first power transmission device (not shown) is used as a drive source such as an engine, and the second power transmission device (not shown) is used as a drive source such as an engine. It may be a transmission TM or vice versa.
 また、図示外の前記第1動力伝達装置として、前記トランスミッションTMの代わりに電動モータを無段減速機として使用する車両に対しても適用することができる。 Furthermore, the present invention can also be applied to a vehicle that uses an electric motor as a stepless reducer instead of the transmission TM as the first power transmission device (not shown).
 また、本発明は、前記各実施形態のように、第1噛み込み長さL1及び第2噛み込み長さL2、第1噛み込み代X1及び第2噛み込み代X2、接着剤G、及びピンPによって第1衝突荷重F1及び第2衝突荷重F2を制御することは、第1挿入部22の第1接続基部21側の端部、及び第2挿入部32の第2接続基部31側の端部にそれぞれフランジ部を有しない場合において、特に有効である。換言すれば、第1挿入部22の第1接続基部21側の端部、及び第2挿入部32の第2接続基部31側の端部にそれぞれフランジ部が形成される態様では、当該各フランジ部の外径等によって第1衝突荷重F1及び第2衝突荷重F2を制御してもよい。 Further, the present invention, as in each of the embodiments described above, provides a first biting length L1, a second biting length L2, a first biting width X1, a second biting width X2, an adhesive G, and a pin. Controlling the first collision load F1 and the second collision load F2 by P means that the end of the first insertion part 22 on the first connection base 21 side and the end of the second insertion part 32 on the second connection base 31 side This is particularly effective when each section does not have a flange section. In other words, in an embodiment in which a flange portion is formed at the end of the first insertion portion 22 on the first connection base 21 side and the end of the second insertion portion 32 on the second connection base 31 side, each flange The first collision load F1 and the second collision load F2 may be controlled by the outer diameter of the part or the like.

Claims (14)

  1.  車両の第1動力伝達装置と第2動力伝達装置との間において動力を伝達する動力伝達軸であって、
     筒状に形成されたチューブと、
     第1継手部材であって、第1本体部と、第1挿入部と、を有し、
     前記第1挿入部は、前記チューブの回転軸線の方向における一対の端部である第1端部と第2端部のうち、前記第1挿入部の外周部が前記第1端部の内周部に固定状態に支持され、前記チューブとの間において、前記チューブとの固定状態が解除されて前記第1挿入部が前記チューブの前記第1端部から前記第2端部に向かって移動し始める第1衝突荷重が設定されていて、
     前記第1本体部は、前記回転軸線の方向において前記第1端部よりも前記第1挿入部の反対側に設けられ、前記第1動力伝達装置と繋がる、
     前記第1継手部材と、
     第2継手部材であって、第2本体部と、第2挿入部と、を有し、
     前記第2挿入部は、前記第2挿入部の外周部が前記チューブの前記第2端部の内周部に固定状態に支持され、前記チューブとの間において、前記チューブとの固定状態が解除されて前記第2挿入部が前記チューブの前記第2端部から前記第1端部に向かって移動し始める第2衝突荷重が設定されると共に、前記第2衝突荷重が前記第1衝突荷重よりも大きく設定されていて、
     前記第2本体部は、前記回転軸線の方向において前記第2端部よりも前記第2挿入部の反対側に設けられ、前記第2動力伝達装置と繋がる、
     前記第2継手部材と、
     を備えたことを特徴とする動力伝達軸。
    A power transmission shaft that transmits power between a first power transmission device and a second power transmission device of a vehicle,
    A tube formed into a cylindrical shape,
    A first joint member, comprising a first main body portion and a first insertion portion,
    The first insertion section has a first end and a second end that are a pair of ends in the direction of the rotational axis of the tube, and the outer circumference of the first insertion section is equal to the inner circumference of the first end. The first insertion portion is supported in a fixed state by the tube, and the first insertion portion is moved from the first end toward the second end of the tube when the fixed state with the tube is released. The first collision load to start is set,
    The first main body portion is provided on the opposite side of the first insertion portion from the first end portion in the direction of the rotation axis, and is connected to the first power transmission device.
    the first joint member;
    A second joint member, comprising a second main body portion and a second insertion portion,
    The second insertion portion has an outer peripheral portion fixedly supported by an inner peripheral portion of the second end of the tube, and a fixed state with respect to the tube is released between the second insertion portion and the tube. A second collision load is set at which the second insertion portion starts to move from the second end of the tube toward the first end, and the second collision load is lower than the first collision load. is also set large,
    The second main body portion is provided on the opposite side of the second insertion portion from the second end portion in the direction of the rotation axis, and is connected to the second power transmission device.
    the second joint member;
    A power transmission shaft characterized by being equipped with.
  2.  請求項1に記載の動力伝達軸であって、
     前記チューブは、繊維を樹脂で固めて形成した材料によって形成されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The tube is made of a material made by hardening fibers with resin.
    A power transmission shaft characterized by:
  3.  請求項2に記載の動力伝達軸であって、
     前記第1挿入部は、前記外周部に、前記チューブの前記第1端部の内周面に噛み込む第1セレーション部を有し、
     前記第1衝突荷重は、前記回転軸線の方向において、前記第1セレーション部が前記チューブの前記第1端部の内周面に噛み込む第1噛み込み長さによって設定されていて、
     前記第2挿入部は、前記外周部に、前記チューブの前記第2端部の内周面に噛み込む第2セレーション部を有し、
     前記第2衝突荷重は、前記回転軸線の方向において、前記第2セレーション部が前記チューブの前記第2端部の内周面に噛み込む第2噛み込み長さによって設定されていて、
     前記第2噛み込み長さが、前記第1噛み込み長さよりも長く設定されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 2,
    The first insertion part has a first serration part on the outer peripheral part that engages with the inner peripheral surface of the first end of the tube,
    The first collision load is set by a first biting length at which the first serration part bites into the inner circumferential surface of the first end of the tube in the direction of the rotation axis,
    The second insertion part has a second serration part on the outer peripheral part that bites into the inner peripheral surface of the second end of the tube,
    The second collision load is set by a second engagement length at which the second serration section engages the inner circumferential surface of the second end of the tube in the direction of the rotation axis,
    the second biting length is set longer than the first biting length;
    A power transmission shaft characterized by:
  4.  請求項2に記載の動力伝達軸であって、
     前記第1挿入部は、前記外周部に、前記チューブの前記第1端部の内周面に噛み込む第1セレーション部を有し、
     前記第1衝突荷重は、前記回転軸線の方向において、前記第1セレーション部が前記チューブの前記第1端部の内周面に噛み込む第1噛み込み代によって設定されていて、
     前記第2挿入部は、前記外周部に、前記チューブの前記第2端部の内周面に噛み込む第2セレーション部を有し、
     前記第2衝突荷重は、前記回転軸線の方向において、前記第2セレーション部が前記チューブの前記第2端部の内周面に噛み込む第2噛み込み代によって設定されていて、
     前記第2噛み込み代が、前記第1噛み込み代よりも大きく設定されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 2,
    The first insertion part has a first serration part on the outer peripheral part that bites into the inner peripheral surface of the first end of the tube,
    The first collision load is set by a first biting allowance in which the first serration part bites into the inner circumferential surface of the first end of the tube in the direction of the rotation axis,
    The second insertion part has a second serration part on the outer peripheral part that engages with the inner peripheral surface of the second end of the tube,
    The second collision load is set by a second biting allowance in which the second serration part bites into the inner circumferential surface of the second end of the tube in the direction of the rotation axis,
    the second biting allowance is set larger than the first biting allowance;
    A power transmission shaft characterized by:
  5.  請求項2に記載の動力伝達軸であって、
     前記第1挿入部は、前記外周部に、前記チューブの前記第1端部の内周面に噛み込む第1セレーション部を有し、
     前記第2挿入部は、前記外周部に、前記チューブの前記第2端部の内周面に噛み込む第2セレーション部を有し、
     前記第2セレーション部と前記チューブとの間は、接着剤により接着されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 2,
    The first insertion part has a first serration part on the outer peripheral part that bites into the inner peripheral surface of the first end of the tube,
    The second insertion part has a second serration part on the outer peripheral part that engages with the inner peripheral surface of the second end of the tube,
    The second serration portion and the tube are bonded together with an adhesive;
    A power transmission shaft characterized by:
  6.  請求項2に記載の動力伝達軸であって、
     前記第1挿入部は、前記外周部に、前記チューブの前記第1端部の内周面に噛み込む第1セレーション部を有し、
     前記第2挿入部は、前記外周部に、前記チューブの前記第2端部の内周面に噛み込む第2セレーション部を有し、
     前記第1セレーション部及び前記第2セレーション部の先端部の少なくとも一方が、前記回転軸線に対して直交した断面で見たときに鋭利な形状に形成されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 2,
    The first insertion part has a first serration part on the outer peripheral part that bites into the inner peripheral surface of the first end of the tube,
    The second insertion part has a second serration part on the outer peripheral part that engages with the inner peripheral surface of the second end of the tube,
    At least one of the tips of the first serration part and the second serration part is formed into a sharp shape when viewed in a cross section perpendicular to the rotational axis.
    A power transmission shaft characterized by:
  7.  請求項2に記載の動力伝達軸であって、
     前記第1挿入部は、前記外周部に、前記チューブの前記第1端部の内周面に噛み込む第1セレーション部を有し、
     前記第2挿入部は、前記外周部に、前記チューブの前記第2端部の内周面に噛み込む第2セレーション部を有し、
     前記第1セレーション部及び前記第2セレーション部の先端部の少なくとも一方が、前記回転軸線に対して直交した断面で見たときに円弧状に形成されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 2,
    The first insertion part has a first serration part on the outer peripheral part that bites into the inner peripheral surface of the first end of the tube,
    The second insertion part has a second serration part on the outer peripheral part that engages with the inner peripheral surface of the second end of the tube,
    At least one of the tips of the first serration part and the second serration part is formed in an arc shape when viewed in a cross section perpendicular to the rotational axis.
    A power transmission shaft characterized by:
  8.  請求項2に記載の動力伝達軸であって、
     前記繊維は、炭素繊維である、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 2,
    the fibers are carbon fibers,
    A power transmission shaft characterized by:
  9.  請求項2に記載の動力伝達軸であって、
     前記繊維は、ガラス繊維である、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 2,
    the fibers are glass fibers,
    A power transmission shaft characterized by:
  10.  請求項1に記載の動力伝達軸であって、
     前記第1動力伝達装置は、トランスミッションであり、
     前記第2動力伝達装置は、ディファレンシャルである、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The first power transmission device is a transmission,
    the second power transmission device is a differential;
    A power transmission shaft characterized by:
  11.  請求項1に記載の動力伝達軸であって、
     前記第1動力伝達装置は、ディファレンシャルであり、
     前記第2動力伝達装置は、トランスミッションである、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The first power transmission device is a differential,
    the second power transmission device is a transmission;
    A power transmission shaft characterized by:
  12.  請求項1に記載の動力伝達軸であって、
     前記チューブの前記第1端部の内周部には、第1雌スプライン部が形成され、
     前記第1挿入部の外周部には、前記第1雌スプライン部と噛み合い、前記回転軸線に対する方向に移動可能な第1雄スプライン部が形成され、
     前記第1挿入部の外周部は、前記チューブの前記第1端部の内周部に圧入されていて、
     前記チューブの前記第2端部の内周部には、第2雌スプライン部が形成され、
     前記第2挿入部の外周部には、前記第2雌スプライン部と噛み合い、前記回転軸線に対する方向に移動可能な第2雄スプライン部が形成され、
     前記第2挿入部の外周部は、前記チューブの前記第2端部の内周部に圧入されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    A first female spline portion is formed on an inner peripheral portion of the first end of the tube,
    A first male spline portion is formed on the outer circumferential portion of the first insertion portion, and engages with the first female spline portion and is movable in a direction relative to the rotation axis;
    The outer peripheral part of the first insertion part is press-fitted into the inner peripheral part of the first end of the tube,
    A second female spline portion is formed on the inner circumference of the second end of the tube,
    A second male spline portion is formed on an outer peripheral portion of the second insertion portion, and is engaged with the second female spline portion and is movable in a direction relative to the rotation axis;
    The outer circumference of the second insertion portion is press-fitted into the inner circumference of the second end of the tube.
    A power transmission shaft characterized by:
  13.  請求項1に記載の動力伝達軸であって、
     前記チューブの前記第1端部及び前記第1挿入部には、前記チューブの前記第1端部及び前記第1挿入部に対して径方向に跨るように第1ピンを挿入可能な第1ピン孔が形成され、
     前記チューブの前記第2端部及び前記第2挿入部には、前記チューブの前記第2端部及び前記第2挿入部に対して径方向に跨るように第2ピンを挿入可能な第2ピン孔が形成され、
     前記第2ピンの破断する強度は、前記第1ピンの破断する強度よりも大きい、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    A first pin can be inserted into the first end portion and the first insertion portion of the tube so as to straddle the first end portion and the first insertion portion of the tube in a radial direction. pores are formed,
    A second pin can be inserted into the second end of the tube and the second insertion portion so as to straddle the second end of the tube and the second insertion portion in the radial direction. pores are formed,
    The breaking strength of the second pin is greater than the breaking strength of the first pin.
    A power transmission shaft characterized by:
  14.  車両の第1動力伝達装置と第2動力伝達装置との間において動力を伝達するプロペラシャフトであって、
     筒状に形成されたチューブと、
     第1継手部材であって、第1本体部と、第1挿入部と、を有し、
     前記第1挿入部は、前記チューブの回転軸線の方向における一対の端部である第1端部と第2端部のうち、前記第1挿入部の外周部が前記第1端部の内周部に固定状態に支持され、前記チューブとの間において、前記チューブとの固定状態が解除されて前記第1挿入部が前記チューブの前記第1端部から前記第2端部に向かって移動し始める第1衝突荷重が設定されていて、
     前記第1本体部は、前記回転軸線の方向において前記第1端部よりも前記第1挿入部の反対側に設けられ、前記第1動力伝達装置と繋がる、
     前記第1継手部材と、
     第2継手部材であって、第2本体部と、第2挿入部と、を有し、
     前記第2挿入部は、前記第2挿入部の外周部が前記チューブの前記第2端部の内周部に固定状態に支持され、前記チューブとの間において、前記チューブとの固定状態が解除されて前記第2挿入部が前記チューブの前記第2端部から前記第1端部に向かって移動し始める第2衝突荷重が設定されると共に、前記第2衝突荷重が前記第1衝突荷重よりも大きく設定されていて、
     前記第2本体部は、前記回転軸線の方向において前記第2端部よりも前記第2挿入部の反対側に設けられ、前記第2動力伝達装置と繋がる、
     前記第2継手部材と、
     を備えたことを特徴とするプロペラシャフト。
    A propeller shaft that transmits power between a first power transmission device and a second power transmission device of a vehicle,
    A tube formed into a cylindrical shape,
    A first joint member, comprising a first main body portion and a first insertion portion,
    The first insertion section has a first end and a second end that are a pair of ends in the direction of the rotational axis of the tube, and the outer circumference of the first insertion section is equal to the inner circumference of the first end. The first insertion portion is supported in a fixed state by the tube, and the first insertion portion is moved from the first end toward the second end of the tube when the fixed state with the tube is released. The first collision load to start is set,
    The first main body portion is provided on the opposite side of the first insertion portion from the first end portion in the direction of the rotation axis, and is connected to the first power transmission device.
    the first joint member;
    A second joint member, comprising a second main body portion and a second insertion portion,
    The second insertion portion has an outer peripheral portion supported in a fixed state by an inner peripheral portion of the second end of the tube, and a fixed state with respect to the tube is released between the second insertion portion and the tube. A second collision load is set at which the second insertion portion starts to move from the second end of the tube toward the first end, and the second collision load is lower than the first collision load. is also set large,
    The second main body portion is provided on the opposite side of the second insertion portion from the second end portion in the direction of the rotation axis, and is connected to the second power transmission device.
    the second joint member;
    A propeller shaft characterized by being equipped with.
PCT/JP2023/028043 2022-09-12 2023-08-01 Power transmission shaft and propeller shaft WO2024057748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144267 2022-09-12
JP2022144267 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024057748A1 true WO2024057748A1 (en) 2024-03-21

Family

ID=90274640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028043 WO2024057748A1 (en) 2022-09-12 2023-08-01 Power transmission shaft and propeller shaft

Country Status (1)

Country Link
WO (1) WO2024057748A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968214A (en) * 1995-08-30 1997-03-11 Mitsubishi Motors Corp Propeller shaft
JP2003237396A (en) * 2002-02-20 2003-08-27 Toyota Industries Corp Frp propeller shaft
JP2011252547A (en) * 2010-06-02 2011-12-15 Ntn Corp Constant velocity universal joint
JP2016061366A (en) * 2014-09-18 2016-04-25 日立オートモティブシステムズ九州株式会社 Power transmission shaft and vehicle propeller shaft
WO2019054167A1 (en) * 2017-09-15 2019-03-21 日立オートモティブシステムズ株式会社 Power transmission shaft
JP2020076413A (en) * 2018-11-05 2020-05-21 日立オートモティブシステムズ株式会社 Power transmission shaft and manufacturing method thereof
JP2020159534A (en) * 2019-03-28 2020-10-01 藤倉コンポジット株式会社 FRP composite molded product
JP2021162137A (en) * 2020-04-03 2021-10-11 株式会社サンノハシ Core material for hinge, anti-theft tool, and method of manufacturing anti-theft tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968214A (en) * 1995-08-30 1997-03-11 Mitsubishi Motors Corp Propeller shaft
JP2003237396A (en) * 2002-02-20 2003-08-27 Toyota Industries Corp Frp propeller shaft
JP2011252547A (en) * 2010-06-02 2011-12-15 Ntn Corp Constant velocity universal joint
JP2016061366A (en) * 2014-09-18 2016-04-25 日立オートモティブシステムズ九州株式会社 Power transmission shaft and vehicle propeller shaft
WO2019054167A1 (en) * 2017-09-15 2019-03-21 日立オートモティブシステムズ株式会社 Power transmission shaft
JP2020076413A (en) * 2018-11-05 2020-05-21 日立オートモティブシステムズ株式会社 Power transmission shaft and manufacturing method thereof
JP2020159534A (en) * 2019-03-28 2020-10-01 藤倉コンポジット株式会社 FRP composite molded product
JP2021162137A (en) * 2020-04-03 2021-10-11 株式会社サンノハシ Core material for hinge, anti-theft tool, and method of manufacturing anti-theft tool

Similar Documents

Publication Publication Date Title
US7442127B2 (en) Propeller shaft and rotational power transmission mechanism equipped with this
JP7001696B2 (en) Power transmission shaft
JP6481797B2 (en) Telescopic shaft
WO2024057748A1 (en) Power transmission shaft and propeller shaft
EP1669622A1 (en) Fixed type constant velocity universal joint
US10422388B2 (en) Propeller shaft
JP3063583B2 (en) Propeller shaft
JPH07317754A (en) Bearing for supporting wheel
JP5321655B2 (en) Torque transmission device for steering device
JP2007040531A (en) Driving shaft with driving joint for use in automobile
WO2024057747A1 (en) Power transmission shaft and propeller shaft
JP2008207575A (en) Vehicular propulsion shaft
CN110869631A (en) Cross joint and transmission shaft
JPH1178563A (en) Shock absorbing structure for propeller shaft
CN214092774U (en) Drive shaft assembly
US8142294B2 (en) Power transmission shaft and propeller shaft for vehicle
JP4901506B2 (en) Constant velocity universal joint
JP2009090699A (en) Split type shaft device for steering equipment
JP4501384B2 (en) Drive pinion support structure of final reduction gear
WO2023218714A1 (en) Power transmission shaft, and vehicle equipped with same
JPH08145065A (en) Spline coupler
JP2008089112A (en) Constant velocity universal joint
KR20090013220U (en) Propeller shaft having impact energy absorbing function for automobile
WO2016114049A1 (en) Constant velocity universal joint
JP4924283B2 (en) Electric power steering device