WO2024057670A1 - Steel sheet, member, and methods for producing same - Google Patents

Steel sheet, member, and methods for producing same Download PDF

Info

Publication number
WO2024057670A1
WO2024057670A1 PCT/JP2023/024255 JP2023024255W WO2024057670A1 WO 2024057670 A1 WO2024057670 A1 WO 2024057670A1 JP 2023024255 W JP2023024255 W JP 2023024255W WO 2024057670 A1 WO2024057670 A1 WO 2024057670A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
cooling
steel
steel plate
Prior art date
Application number
PCT/JP2023/024255
Other languages
French (fr)
Japanese (ja)
Inventor
三周 知場
洋一郎 松井
琴未 野口
英之 木村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023567951A priority Critical patent/JP7485240B1/en
Publication of WO2024057670A1 publication Critical patent/WO2024057670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel plates, members, and methods of manufacturing them. More specifically, the present invention relates to steel plates and members having a tensile strength (TS) of 980 MPa or more and excellent formability and material stability, and methods for manufacturing them.
  • the steel plate of the present invention is suitable as a material for automobile frame members.
  • TRIP steel sheets have been developed in which retained austenite is dispersed in the structure.
  • steel containing C: 0.04 to 0.12%, Si: 0.8 to 2.5%, and Mn: 0.5 to 2.0% is annealed at 300 to 500°C.
  • Austempering carbon distribution accompanying bainite transformation held for 10 to 900 seconds generates 2 to 10% residual ⁇ , resulting in high ductility of TS ⁇ El ⁇ 21000MPa ⁇ % and high stretch flange formability of 70% or more. It is disclosed that a steel plate having the following properties can be obtained.
  • Patent Document 2 during the cooling process, the temperature is once cooled to a temperature range between the martensitic transformation start temperature (Ms point) and the martensitic transformation completion temperature (Mf point), and then, the residual austenite is stabilized by reheating and holding.
  • a technique has been disclosed for increasing the ductility of a steel sheet by utilizing the principle of so-called Q&P; Quenching & Partitioning (quenching and distribution of carbon from martensite to austenite).
  • a cold rolled steel sheet having a predetermined chemical composition is held at a first soaking temperature of 750°C or higher, then cooled to a cooling stop temperature in a temperature range of 150 to 350°C, and then heated to a temperature range of 350 to 500°C.
  • a retained austenite volume fraction of 5% to 15% is achieved, which achieves both TS of 980 MPa or more and ductility of 17% or more, and an excellent hole expansion rate of 50% or more.
  • the present invention discloses a steel plate having good hole expandability and a method for manufacturing the same.
  • DP steel (Dual Phase steel) has been developed as a steel plate that has a low yield ratio that is effective in reducing springback.
  • General DP steel is a multi-phase steel in which martensite is dispersed in the ferrite structure as the main phase, and has a high TS, low yield ratio, and excellent ductility.
  • DP steel has the disadvantage of poor stretch flange formability because cracks are likely to occur due to stress concentration at the interface between ferrite and martensite. Examples of techniques for improving the stretch flange formability of DP steel include Patent Document 3 and Patent Document 4.
  • the space factor of ferrite is controlled to be 50% or more and the space factor of martensite is controlled to 3 to 30% with respect to the entire structure, and the average crystal grain size of ferrite is controlled to be 10 ⁇ m or less, and the average crystal grain of martensite is controlled to be 10 ⁇ m or less.
  • a technique is disclosed in which deterioration of stretch flange formability is suppressed by setting the diameter to 5 ⁇ m or less.
  • the space factor of ferrite is controlled to 5 to 30% and the space factor of martensite to the entire structure is controlled to 50 to 95%, and fine ferrite particles with an average grain size of 3 ⁇ m or less in equivalent circle diameter are formed. It is disclosed that ductility and stretch flange formability can be improved by controlling the average grain size to martensite having a circular equivalent diameter of 6 ⁇ m or less.
  • Patent Document 1 and Patent Document 4 mentioned above disclose a method for manufacturing a steel plate with excellent ductility and stretch-flange formability, it is necessary to form a large amount of soft phase ferrite, so for example, a high temperature of 780 MPa or more is required. Strengthening is difficult.
  • Patent Document 2 has excellent ductility and stretch flange formability, since the steel plate has a YR of 0.8 or more, dimensional accuracy may be impaired due to springback during press forming.
  • Patent Document 3 discloses a method for manufacturing a DP steel sheet that has low YR and excellent stretch flange formability, but since it has a DP structure, ductility is not necessarily sufficient.
  • the present invention provides a steel plate and member having a tensile strength (TS) of 980 MPa or more, excellent press formability, ductility and stretch flange formability, and excellent material stability in the width direction.
  • TS tensile strength
  • the tensile strength refers to tensile strength (TS) obtained in accordance with JIS Z2241 (2011).
  • TS tensile strength
  • Excellent press formability means that the yield ratio YR obtained according to JIS Z2241 (2011) is 0.8 or less.
  • Excellent ductility means that the total elongation EL obtained according to JIS Z2241 (2011) satisfies either (A) or (B) below.
  • the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24.
  • measurement positions X are defined as measurement positions X.
  • the present inventors investigated various factors affecting press formability, ductility, stretch-flange formability, and material stability for various thin steel sheets having a tensile strength of 980 MPa or more, and investigated the chemical composition of the steel sheets.
  • mass % C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol.
  • the area ratio of polygonal ferrite is 10% to 57%, and the total area of upper bainite, tempered martensite, and lower bainite
  • the aspect ratio is 40% or more and 80% or less, the area ratio of retained austenite (residual ⁇ ) is 3% or more and 15% or less, and the area ratio of quenched martensite is 12% or less (including 0%).
  • a C-enriched region (S C ⁇ 0 By making the steel structure have an area ratio of 15% or less to the entire structure of .5 ), it has excellent press formability, ductility and stretch flange formability, and also has excellent material stability in the sheet width direction ( It was discovered that high-strength cold-rolled steel sheets with small material variations can be obtained.
  • the present invention has been made based on the above findings, and the gist thereof is as follows. [1] In mass%, C: 0.05-0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol.
  • the component composition further includes, in mass%, Ti: 0.1% or less, B: 0.01% or less, The steel plate according to [1], containing one or two selected from among the above.
  • the component composition further includes, in mass%, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less, V: 0.5% or less, Nb: 0.1% or less, The steel plate according to [1] or [2], containing one or more selected from the following.
  • the component composition further includes, in mass%, Mg: 0.0050% or less, Ca: 0.0050% or less, Sn: 0.1% or less, Sb: 0.1% or less, REM: 0.0050% or less,
  • [6] A member using the steel plate according to any one of [1] to [5].
  • the obtained cold rolled steel plate is A method of manufacturing a steel plate that undergoes annealing,
  • the annealing is A holding step of heating the cold rolled steel plate to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds;
  • a method for manufacturing steel plates comprising the step of subjecting the steel plate according to any one of [1] to [5] to at least one of forming and bonding to produce a member.
  • a steel plate can be obtained that has a high tensile strength TS of 980 MPa or more, has excellent press formability, ductility, and stretch flange formability, and has excellent material stability in the width direction.
  • the steel sheet of the present invention can be applied to, for example, automobile structural members with complex shapes, thereby reducing the weight of the automobile body, and also reducing environmental load by improving yield during manufacturing.
  • the steel plate of the present invention contains, by mass%, C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol. Al: 0.005 to 0.50%, N: less than 0.015%, with the balance being iron and unavoidable impurities.
  • the steel plate of the present invention has a composition comprising: C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol.
  • the steel has a volume fraction of austenite: 3% or more and 15% or less, an area fraction of quenched martensite: 12% or less (including 0%), and a steel structure consisting of a remaining structure, in which the total area fraction of the quenched martensite and retained austenite having an aspect ratio of 3 or less and a circle equivalent diameter of 1.6 ⁇ m or more is 20% or less relative to the total area fraction of the quenched martensite and retained austenite, and the area fraction of C-enriched regions (S C ⁇ 0.5 ) having a C concentration of 0.5 mass% or more relative to the entire structure is 15% or less.
  • C is contained from the viewpoint of securing a predetermined strength through transformation strengthening, and from the viewpoint of securing a predetermined amount of retained austenite (residual ⁇ ) to improve ductility. If the C content is less than 0.05%, these effects cannot be sufficiently ensured. On the other hand, when the C content exceeds 0.20%, the martensitic transformation start temperature (Ms point) decreases. As a result, in the third cooling process in which cooling is performed in the temperature range from the reheating temperature to 50°C at a third average cooling rate: 0.05 to 1.0°C/s, martensitic transformation and subsequent tempering of martensite occur. is not done enough.
  • the C content is set to 0.05% or more and 0.20% or less.
  • the C content is preferably 0.08% or more. Further, the C content is preferably 0.18% or less.
  • Si is contained from the viewpoint of strengthening the ferrite and increasing its strength, and from the viewpoint of suppressing the formation of carbides in martensite and bainite to ensure a predetermined amount of residual ⁇ and improving ductility. If the Si content is less than 0.40%, these effects cannot be sufficiently ensured. On the other hand, when the Si content exceeds 1.50%, carbon distribution to untransformed austenite is excessively promoted, and the formation of a C-enriched region of 0.5 mass% or more ( SC ⁇ 0.5 ) is promoted. , stretch flange formability and material stability in the plate width direction decrease. Therefore, the Si content is set to 0.40% or more and 1.50% or less. The Si content is preferably 0.60% or more. Further, the Si content is preferably 1.20% or less.
  • Mn improves the hardenability of steel sheets, suppresses excessive transformation of ferrite, and promotes high strength through transformation strengthening, and similarly to Si, suppresses the formation of carbides in bainite and contributes to ductility. It is included from the viewpoint of further promoting the formation of retained austenite and further improving ductility. In order to obtain these effects, the Mn content needs to be 1.9% or more. On the other hand, when the Mn content exceeds 3.5%, bainite transformation is delayed, a predetermined amount of retained austenite cannot be secured, and ductility decreases.
  • the Mn content is set to 1.9% or more and 3.5% or less.
  • the Mn content is preferably 2.1% or more. Further, the Mn content is preferably 3.3% or less, more preferably 3.0% or less.
  • P is an element that strengthens steel, but if its content is large, it deteriorates spot weldability. Therefore, the P content is 0.02% or less, preferably 0.01% or less. Note that although it is not necessary to contain P, it is preferable that the P content is 0.001% or more because reducing it to less than 0.001% requires a great deal of cost. The P content is more preferably 0.002% or more, and still more preferably 0.005% or more.
  • S has the effect of improving scale peelability during hot rolling and suppressing nitridation during annealing, but is an element that has an adverse effect on spot weldability, bendability, and hole expandability.
  • the S content is at least 0.01% or less, preferably 0.0020% or less.
  • the S content is preferably 0.0001% or more from the viewpoint of manufacturing costs.
  • the S content is more preferably 0.0005% or more, and still more preferably 0.0015% or more.
  • sol. Al 0.005-0.50%> Al is contained for the purpose of deoxidizing or obtaining residual ⁇ .
  • Al content shall be 0.005% or more.
  • N is an element that forms nitrides such as BN, AlN, and TiN in steel, and reduces stretch flange formability, so it is necessary to limit its content. Therefore, the N content should be less than 0.015%. Note that although it is not necessary to contain N, reducing the N content to less than 0.0001% requires a great deal of cost, so the N content is preferably 0.0001% or more from the viewpoint of manufacturing costs. The N content is more preferably 0.0005% or more, and even more preferably 0.0015% or more.
  • the component composition of the steel sheet in the present invention contains the above-mentioned component elements as basic components, and the remainder includes iron (Fe) and inevitable impurities.
  • the component composition of the steel plate in the present invention has a component composition in which the balance consists of Fe and unavoidable impurities.
  • the composition of the steel sheet of the present invention can appropriately contain one or more optional elements selected from the following (A) to (C).
  • Ti fixes N in steel as TiN, and has the effect of improving hot ductility and the effect of B on improving hardenability. Further, the precipitation of TiC has the effect of making the structure finer. In order to obtain these effects, it is desirable that the Ti content be 0.002% or more. From the viewpoint of sufficiently fixing N, the Ti content is more preferably 0.008% or more. The Ti content is more preferably 0.010% or more. On the other hand, if the Ti content exceeds 0.1%, the rolling load will increase and the ductility will decrease due to an increase in the amount of precipitation strengthening, so if Ti is contained, the Ti content should be 0.1% or less. Preferably, the Ti content is 0.05% or less, more preferably 0.03% or less.
  • B is an element that improves the hardenability of steel, and has the advantage of easily producing tempered martensite and/or bainite with a predetermined area ratio. Therefore, it is preferable that the B content is 0.0005% or more. Further, the B content is more preferably 0.0010% or more. On the other hand, when the B content exceeds 0.01%, the effect not only becomes saturated, but also causes a significant decrease in hot ductility and causes surface defects. Therefore, when B is contained, the B content is set to 0.01% or less. Preferably, the B content is 0.005% or less, more preferably 0.003% or less.
  • Cu improves corrosion resistance in the automotive environment. Further, the corrosion products of Cu coat the surface of the steel sheet, which has the effect of suppressing hydrogen intrusion into the steel sheet.
  • Cu is an element that is mixed in when scrap is used as a raw material, and by allowing Cu to be mixed in, recycled materials can be used as raw materials and manufacturing costs can be reduced. From this viewpoint, it is preferable to contain Cu in an amount of 0.005% or more, and from the viewpoint of improving delayed fracture resistance, it is more desirable to contain Cu in an amount of 0.05% or more. More preferably, it is 0.10% or more. However, if the Cu content becomes too large, surface defects will occur, so when Cu is contained, the Cu content is set to 1% or less.
  • Ni is also an element that has the effect of improving corrosion resistance. Further, Ni has the effect of suppressing the occurrence of surface defects that are likely to occur when Cu is included. For this reason, it is desirable to contain Ni in an amount of 0.01% or more.
  • the Ni content is more preferably 0.04% or more, still more preferably 0.06% or more.
  • the Ni content is set to 1% or less.
  • the Ni content is 0.5% or less, more preferably 0.3% or less.
  • ⁇ Cr 1% or less> Cr can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite.
  • the Cr content is preferably 0.01% or more.
  • the Cr content is more preferably 0.03% or more, and still more preferably 0.06% or more.
  • the Cr content is set to 1% or less.
  • Mo can be contained because it has the effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite.
  • the Mo content is preferably 0.01% or more.
  • the content is more preferably 0.03% or more, and even more preferably 0.06% or more. More preferably, the Mo content is 0.1% or more, even more preferably 0.2% or more.
  • the Mo content is set to 0.5% or less.
  • V 0.5% or less> V is included because it has the effect of improving the hardenability of steel, suppressing the formation of carbides in martensite and upper/lower bainite, refining the structure, and precipitating carbides to improve delayed fracture resistance. be able to.
  • the V content is preferably 0.003% or more.
  • the V content is more preferably 0.05% or more, and still more preferably 0.015% or more. Even more preferably, the V content is 0.02% or more, even more preferably 0.05% or more.
  • the V content is preferably 0.15% or more, more preferably 0.25% or more. However, if a large amount of V is contained, the castability will be significantly deteriorated, so when V is contained, the V content should be 0.5% or less.
  • the V content is 0.4% or less, more preferably 0.3% or less.
  • Nb can be contained because it has the effect of refining the steel structure and increasing its strength, promoting bainite transformation through grain refinement, improving bendability, and improving delayed fracture resistance.
  • the Nb content is preferably 0.002% or more.
  • the Nb content is more preferably 0.004% or more, and still more preferably 0.010% or more.
  • the Nb content is set to 0.1% or less.
  • the Nb content is 0.07% or less, more preferably 0.05% or less.
  • Mg fixes O as MgO and contributes to improving formability such as bendability. Therefore, the Mg content is preferably 0.0002% or more. The Mg content is more preferably 0.0004% or more, and still more preferably 0.0006% or more. On the other hand, if a large amount of Mg is added, the surface quality and bendability will deteriorate, so when Mg is included, the Mg content should be 0.0050% or less. Preferably, the Mg content is 0.0030% or less.
  • Ca fixes S as CaS and contributes to improving bendability and delayed fracture resistance.
  • the Ca content is preferably 0.0002% or more.
  • the Ca content is more preferably 0.0005% or more, and still more preferably 0.0010% or more.
  • the Ca content should be 0.0050% or less.
  • the Ca content is 0.0040% or less.
  • Sn suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance.
  • the Sn content is preferably 0.002% or more.
  • the Sn content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sn content is 0.01% or more, even more preferably 0.05% or more.
  • the Sn content exceeds 0.1%, castability deteriorates. Furthermore, Sn is segregated at the prior ⁇ grain boundaries, deteriorating the delayed fracture resistance. Therefore, when Sn is contained, the Sn content is 0.1% or less.
  • Sb suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance.
  • the Sb content is preferably 0.002% or more.
  • the Sb content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sb content is 0.01% or more, even more preferably 0.05% or more.
  • the Sb content exceeds 0.1%, castability deteriorates, and Sb segregates at prior ⁇ grain boundaries, degrading delayed fracture resistance. Therefore, when Sb is contained, the Sb content is set to 0.1% or less.
  • REM is an element that suppresses the adverse effects of sulfide on stretch flange formability and improves stretch flange formability by making the shape of sulfide spheroidal.
  • the REM content is preferably 0.0005% or more.
  • the REM content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
  • the REM content exceeds 0.0050%, the effect of improving stretch flange formability will be saturated, so when REM is contained, the REM content should be 0.0050% or less.
  • REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71.
  • Y yttrium
  • La lanthanum
  • Lu lutetium
  • the REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
  • the optional elements contained in amounts less than the lower limit do not impair the effects of the present invention. Therefore, when the above-mentioned arbitrary element is included in an amount less than the lower limit value, the above-mentioned arbitrary element is included as an unavoidable impurity.
  • the steel plate of the present invention has a tensile strength (TS) of 980 MPa or more.
  • TS tensile strength
  • the upper limit of the tensile strength is not particularly limited, from the viewpoint of coexistence with other properties, the tensile strength is preferably 1300 MPa or less.
  • the stability of press forming is significantly improved by ensuring the total elongation EL is 14.0% or more at TS: 980 MPa or more, and 12.0% or more at TS: 1180 MPa or more.
  • is set to 40% or more.
  • the measurement position contact points for each width are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W.
  • the region A has a length in the sheet width direction of 80% or more of the total sheet width.
  • the deviation of EL in the sheet width direction is 10% or less with respect to the measured value at the sheet width center position, and the deviation of ⁇ in the sheet width direction is less than 10% with respect to the measured value at the sheet width center position.
  • the area where the thickness is 10% or less shall be 80% or more of the entire board width area.
  • the range of the unsteady portion is allowed to be up to 20% in total at both ends in the width direction. Because the end of the steel plate comes into contact with other structures during transportation and work processes, the end is not used to ensure quality. Therefore, the usable effective plate width does not reach 100%. Therefore, the effective plate width is preferably less than 100%.
  • the area where the deviation of EL in the sheet width direction is 10% or less of the measured value at the center of the sheet width and the deviation of ⁇ is 10% or less to 80% or more of the entire sheet width, yields are significantly improved. Therefore, in the present invention, the area where the deviation of EL in the board width direction is 10% or less of the measured value at the center of the board width, and the deviation of ⁇ is 10% or less is 80% or more of the entire board width region. . Preferably it is 85% or more.
  • a steel plate having a tensile strength of 980 MPa or more is defined as a high-strength steel plate.
  • a steel plate having a yield ratio YR of 0.8 or less is a steel plate having excellent press formability.
  • a steel plate with excellent ductility has a total elongation EL of 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more.
  • d 0 is the initial hole diameter (mm)
  • d is the hole diameter at the time of crack occurrence (mm)
  • the hole expansion rate ⁇ (%) ⁇ (d - d 0 )/d 0 ⁇ 100
  • the plate width of the steel plate in the present invention is preferably 600 mm or more. Moreover, the plate width of the steel plate in the present invention is preferably 1700 mm or less.
  • the area ratio of polygonal ferrite is 10% or more, and in order to obtain higher ductility, it is preferably 20% or more.
  • the area ratio of the polygonal ferrite is 57% or less, preferably 55% or less. More preferably it is 50% or less.
  • Total area ratio of upper bainite, tempered martensite, and lower bainite 40% or more and 80% or less>
  • the total area ratio of upper bainite, tempered martensite, and lower bainite is set to 40% or more, and in order to obtain higher strength, it is preferably set to 45% or more.
  • the area ratio is set to 80% or less. More preferably, it is 75% or less.
  • volume fraction of retained austenite (retained ⁇ ): 3% or more and 15% or less>
  • the volume fraction of retained austenite is 3% or more, preferably 5% or more.
  • the retained austenite is set to 15% or less. More preferably it is 13% or less.
  • ⁇ Quenched martensite 12% or less (including 0%)> Since the hard quenched martensitic structure lowers ⁇ , it is necessary to suppress its area ratio. In order to obtain the desired ⁇ , the area ratio of hardened martensite is set to 12% or less. In order to obtain ⁇ more stably, the area ratio of hardened martensite is preferably 10% or less.
  • the steel structure other than the above, it consists of the remainder structure.
  • the area ratio of the remaining tissue is preferably 5% or less.
  • the remaining structure may be carbide or pearlite. These tissues may be determined by SEM observation as described later.
  • the retained austenite becomes a hard martensitic structure due to the TRIP effect during press molding, tensile processing, etc. Therefore, in the present invention, from the viewpoint of stretch flangeability, quenched martensite and retained austenite are controlled together.
  • hardened martensite or retained austenite with a circular equivalent diameter of 1.6 ⁇ m or more is formed, voids are formed at stress concentration areas at the interface with other structures, making it impossible to obtain the desired stretch flange formability.
  • the total area ratio of hardened martensite and retained austenite is set to 20% or less. Preferably it is 18% or less.
  • the hardness of quenched martensite is determined by the amount of C dissolved in the quenched martensite.
  • the structures in which a large amount of solid solute C exists are quenched martensite and retained austenite.
  • Retained austenite is a structure that contributes to high ductility, and the C concentration is 0.5 mass% or more, but the area ratio of the structure with a C concentration of 0.5 mass% or more is 15% or less of all constituent structures.
  • the space factor of the C-enriched region (SC ⁇ 0.5 ) where the C concentration is 0.5 mass% or more is 15% or less.
  • the C concentration is 0.5 mass% or more
  • it is 12% or less, more preferably 10% or less.
  • it is preferably 6% or more, more preferably 8% or more.
  • polygonal ferrite To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
  • Polygonal ferrite is a relatively equiaxed ferrite with almost no carbides inside. This is the area that appears blackest in the SEM.
  • Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM.
  • the area of ferrite with an aspect ratio ⁇ 2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated.
  • the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. Take the ratio.
  • the tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
  • Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
  • the remaining structure is a carbide and/or pearlite structure, which can be confirmed by white contrast in SEM, but the carbide is a structure with a particle size of 1 ⁇ m or less, and the pearlite is a lamellar (layer) structure. It is possible to distinguish it from the fact that it has a similar structure.
  • the quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be performed using image analysis software such as Image J (Fiji).
  • image analysis software such as Image J (Fiji).
  • a cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed.
  • Each tissue can be identified and quantitatively evaluated using the Trainable Weka segmentation method that allows area identification.
  • the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. do.
  • the volume fraction of retained austenite is determined by chemically polishing a 1/4 thickness position from the surface layer and using X-ray diffraction.
  • a Co-K ⁇ ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. Calculate the rate.
  • the volume fraction of retained austenite determined by X-ray diffraction can be taken as the area fraction of retained austenite.
  • the area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F is used. Then, the C concentration distribution is measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7 ⁇ 10 ⁇ 8 A, and a beam diameter of the minimum, and an area ratio at which the C concentration is 0.5 mass% or more is calculated. However, in order to eliminate the influence of contamination, background components are subtracted so that the average value of C obtained in the analysis is equal to the carbon content of the base material.
  • FE-EPMA JEOL field emission electron A line microanalyzer
  • the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. Let the amount of C be .
  • the method for producing a steel plate of the present invention includes hot rolling, pickling, and cold rolling a steel slab having a chemical composition, and then annealing the obtained cold rolled steel plate.
  • the annealing includes a holding step in which the cold rolled steel sheet is heated to an annealing temperature of 750 to 880°C and held at the annealing temperature for 10 to 500 seconds, and a holding step at 350 to 550°C from the annealing temperature.
  • a first cooling step in which the temperature range up to the cooling stop temperature is cooled to the first cooling stop temperature with a first average cooling rate of 2 to 50°C/s, and a residence temperature of 350 to 550°C for 10 seconds to 60 seconds. After that, a second cooling step of cooling to a second cooling stop temperature of 100 to 300 ° C.
  • a second average cooling rate 3 to 50 ° C / s
  • Hot rolling steel slabs include rolling the slab after heating, directly rolling the slab after continuous casting without heating it, and rolling after subjecting the slab after continuous casting to a short heat treatment. and so on.
  • Hot rolling may be carried out according to a conventional method, for example, the slab heating temperature is 1100 to 1300°C, the soaking temperature is 20 to 300 min, the finish rolling temperature is Ar 3 transformation point to Ar 3 transformation point + 200°C, and rolling The temperature may be 400 to 720°C.
  • the winding temperature is preferably 430 to 530° C. from the viewpoint of suppressing plate thickness variations and stably ensuring high strength.
  • the Ar 3 transformation point can be calculated from the composition of the steel plate and the following empirical formula (A).
  • ⁇ Acid washing> Pickling may be carried out according to a conventional method.
  • Cold rolling may be carried out according to a conventional method, and the cumulative rolling ratio may be 30 to 85%. From the viewpoint of stably securing high strength and reducing anisotropy, the rolling ratio is preferably 35 to 85%. Note that when the rolling load is high, it is possible to perform softening annealing treatment at 450 to 730° C. in a CAL (continuous annealing line) or BAF (box annealing furnace).
  • CAL continuous annealing line
  • BAF box annealing furnace
  • a cold rolled steel plate (cold rolled steel plate) manufactured according to a conventional method is annealed under the following conditions.
  • the annealing equipment is not particularly limited, it is preferable to use a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL) from the viewpoint of productivity and ensuring desired heating and cooling rates.
  • CAL continuous annealing line
  • CGL continuous hot-dip galvanizing line
  • the annealing temperature (soaking temperature) is set to 750°C or higher.
  • the annealing temperature (soaking temperature) exceeds 880°C, the temperature becomes an austenite single phase temperature, the desired polygonal ferrite cannot be obtained, and the YR increases and the ductility decreases. Therefore, the annealing temperature (soaking temperature) is set to 880° C. or lower.
  • the annealing temperature (soaking temperature) is preferably 850°C or lower, more preferably 830°C or lower.
  • the time for holding at the above annealing temperature is less than 10 seconds, austenite will not be formed sufficiently at the above annealing temperature (soaking temperature), and polygonal ferrite will become excessive, resulting in a specified amount of Since upper bainite, tempered martensite, and lower bainite cannot be obtained, not only the desired strength cannot be obtained, but also sufficient residual austenite cannot be obtained, and the desired ductility cannot be secured.
  • the time for holding at the above annealing temperature (soaking time) exceeds 500 seconds, the structure will significantly coarsen, making it impossible to secure the desired strength. Therefore, the time for holding at the above annealing temperature (soaking time) is set to 10 to 500 seconds.
  • the time for holding at the annealing temperature is preferably 80 seconds or more, more preferably 100 seconds or more. Further, the time for holding at the annealing temperature (soaking time) is preferably 400 seconds or less, more preferably 300 seconds or less.
  • First cooling step cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550°C to the first cooling stop temperature at a first average cooling rate of 2 to 50°C/s]
  • the temperature range from the above annealing temperature to the first cooling stop temperature of 350 to 550°C is set at a first average cooling rate of 2 to 50°C/s. Cool it down. If the cooling rate is less than 2°C/s, operability will deteriorate, so the first average cooling rate is set to 2°C/s or more.
  • the first average cooling rate is preferably 5°C/s or more.
  • the first average cooling rate becomes too high, the plate shape will deteriorate, so it is set to 50° C./s or less.
  • the first average cooling rate is preferably 40°C/s or less, more preferably less than 30°C/s.
  • the first average cooling rate is "(annealing temperature (°C) - first cooling stop temperature (°C))/cooling time (seconds) from the annealing temperature to the first cooling stop temperature.”
  • a temperature range (retention temperature) below the first cooling stop temperature and from 350° C. to 550° C. upper bainite is formed, a predetermined retained austenite can be obtained, and desired ductility can be obtained.
  • Bainite transformation has an incubation period, and must be allowed to stay in a residence temperature range that includes a residence start temperature and a residence end temperature for a certain period of time.
  • the residence temperature range is less than 350°C or more than 550°C, bainite transformation is suppressed, resulting in suppressed formation of retained austenite, and desired ductility cannot be obtained.
  • the residence temperature range is less than 350° C.
  • martensitic transformation occurs, which may unnecessarily increase YR and reduce press formability. Therefore, the residence temperature range is 350 to 550°C.
  • the residence time is less than 10 seconds, the desired amount of bainite cannot be obtained, and as a result of suppressing the formation of retained austenite, the desired ductility cannot be obtained.
  • the residence time exceeds 60 seconds, the concentration of C from bainite to lumpy untransformed ⁇ progresses, leading to an increase in coarse quenched martensite with a high C concentration, resulting in the desired stretch flange formability and plate width direction. material stability cannot be obtained. Therefore, the residence time is set to 10 seconds or more and 60 seconds or less.
  • the second average cooling rate is preferably 5°C/s.
  • the second average cooling rate is set to 50°C/s or less.
  • the second cooling stop temperature exceeds 300° C., a predetermined tempered martensite cannot be obtained, and as a result, coarse quenched martensite increases, and desired stretch flange formability cannot be obtained. Therefore, the second cooling stop temperature is set to 300°C or less.
  • the second cooling stop temperature is preferably 290°C or lower.
  • the cooling stop temperature is set to 100°C or higher.
  • the second average cooling rate is "retention end temperature (°C) - second cooling stop temperature (°C)/cooling time (seconds) from the residence end temperature to the second cooling stop temperature".
  • the reheating temperature is set to a cooling stop temperature +50°C or more and 340°C or less.
  • the average heating rate is less than 2.0° C./s, carbide precipitation is promoted more than carbon distribution, and as a result, the desired retained austenite cannot be obtained.
  • the temperature range from the cooling stop temperature to 340°C or less is set to an average heating rate of 2.0°C/s or more.
  • the average heating rate is "reheating temperature (°C) - second cooling stop temperature (°C)/heating time from the second cooling stop temperature to the reheating temperature (seconds)".
  • the cooling rate is set to 0.05°C/s or more.
  • the third average cooling rate is "reheating temperature (°C) - 50°C/cooling time (seconds) from reheating temperature (°C) to 50°C".
  • the surface of the steel sheet may be galvanized to obtain a steel sheet having a galvanized layer on the surface.
  • the type of plating treatment is not particularly limited, and may be either hot-dip galvanizing or electrogalvanizing.
  • the alloying hot-dip galvanizing treatment a plating treatment in which alloying is performed after hot-dip galvanizing may be performed. Hot-dip galvanizing is used for automobile steel sheets and the like.
  • the steel sheet When applying hot-dip galvanizing, the steel sheet is immersed in a hot-dip galvanizing bath in a continuous annealing furnace at the front stage of the continuous hot-dip galvanizing line after the above-mentioned annealing holding step and first cooling step to form a hot-dip galvanized layer on the surface of the steel sheet. It is sufficient to form an alloyed galvanized steel sheet by subsequently performing an alloying treatment.
  • hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment can be performed on the surface of the steel sheet.
  • the soaking and cooling steps and the plating step described above may be performed in separate lines.
  • electrogalvanizing can be performed after annealing, that is, after the third cooling step.
  • the thickness of the steel plate of the present invention obtained as described above is preferably 0.5 mm or more. Further, the thickness of the steel plate of the present invention is preferably 2.0 mm or less. Further, the plate width is preferably 600 mm or more. Moreover, it is preferable that the plate width of the steel plate of the present invention is 1700 mm or less.
  • the member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and bonding. Furthermore, the method for manufacturing the member of the present invention includes the step of subjecting the steel plate of the present invention to at least one of forming and joining to produce a member.
  • the steel sheet of the present invention has a tensile strength of 980 MPa or more, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Therefore, members obtained using the steel sheet of the present invention also have high strength, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Furthermore, by using the member of the present invention, it is possible to reduce the weight. Therefore, the member of the present invention can be suitably used for, for example, vehicle body frame parts.
  • the members of the invention also include welded joints.
  • general processing methods such as press working can be used without restriction.
  • general welding such as spot welding and arc welding, rivet joining, caulking joining, etc. can be used without limitation.
  • a slab manufactured by continuous casting having the composition shown in Table 1 was heated to 1200°C, and the soaking time was 200 min.
  • Table 2 shows a cold-rolled steel sheet with a thickness of 1.4 mm manufactured by cold rolling at a rolling ratio of 50% after a hot rolling process with a finish rolling temperature of 900°C and a coiling temperature of 550°C.
  • a steel plate of the present invention and a steel plate of a comparative example were manufactured by processing under the annealing conditions shown in . The width of all the obtained steel plates was 1500 mm.
  • a steel plate was immersed in a galvanizing bath at a temperature of 440° C. or higher and 550° C. or lower to perform hot-dip galvanizing treatment, and then the amount of plating deposited was adjusted by gas wiping or the like.
  • a galvanizing bath having an Al content of 0.10% or more and 0.22% or less was used for the hot-dip galvanizing.
  • hot-dip galvanized steel sheets were subjected to alloying treatment after the hot-dip galvanizing treatment to obtain alloyed hot-dip galvanized steel sheets (GA).
  • alloying treatment was performed in a temperature range of 460° C. or higher and 550° C. or lower.
  • steel plates cold rolled steel plates: CR
  • EG electrogalvanized steel plates
  • the steel structure was measured using the following method. The measurement results are shown in Table 3. To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis. Polygonal ferrite is a relatively equiaxed ferrite with almost no carbides inside. This is the area that appears blackest in the SEM. Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM.
  • the area of ferrite with an aspect ratio ⁇ 2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated.
  • the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. With ratio.
  • the tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
  • Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
  • the residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM.
  • Carbide has a structure with a particle size of 1 ⁇ m or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
  • the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. did.
  • the volume fraction of retained austenite was determined by X-ray diffraction after chemically polishing a 1/4 thickness position from the surface layer.
  • a Co-K ⁇ ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. calculated the rate.
  • the area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F was used. Then, the C concentration distribution was measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7 ⁇ 10 ⁇ 8 A, and a minimum beam diameter, and an area ratio at which the C concentration was 0.5 mass% or more was calculated. However, in order to eliminate the influence of contamination, background components were subtracted so that the average value of C obtained in the analysis was equal to the carbon content of the base material.
  • the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location.
  • the amount of C was set to .
  • d 0 is the initial hole diameter (mm)
  • d is the hole diameter at the time of crack occurrence (mm)
  • the hole expansion rate ⁇ (%) ⁇ (d-d 0 )/d 0 ⁇ 100 is calculated.
  • the average value of the three points was evaluated as ⁇ . Steels having a ⁇ of 40% or more were judged to have excellent hole expandability and stretch flangeability.
  • the material stability evaluation in the board width direction 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (12W/24 position (W: board width)). (including the width center position), and determine EL and ⁇ at each position (measurement position X). Then, the material stability in the board width direction was evaluated by determining the ratio of the difference between the measured values at the board width center position and each position relative to the measured value at the center position. Using EL and ⁇ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and ⁇ is 10% or less are defined as areas where the difference in EL and ⁇ is 10% or less, and this area is defined for the entire board width.
  • members obtained by forming, joining, and forming and joining the steel sheets of the invention examples have a high quality. It has high strength, excellent press formability, ductility, stretch flange formability, and material stability in the sheet width direction. It was found that it has excellent stretch flange formability and material stability in the width direction of the plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are: a steel sheet that has a tensile strength of 980 MPa or more, excellent press moldability, ductility, and stretch-flangeability, and excellent material stability in the sheet width direction; a member; and methods for producing the same. The steel sheet has a component composition and a steel structure of specific ranges. The total area ratio of hardened martensite and retained austenite having an aspect ratio of 3 or less and an equivalent circle diameter of 1.6 μm or more to the total area ratio of hardened martensite and retained austenite is 20% or less, and the area ratio of C-enriched regions (SC≥0.5) in which the C concentration is 0.5 mass% or more to the total structure is 15% or less.

Description

鋼板、部材およびそれらの製造方法Steel plates, members and their manufacturing methods
 本発明は、鋼板、部材およびそれらの製造方法に関する。より詳細には、本発明は、引張強度(TS)が980MPa以上であり、優れた成形性と材質安定性とを有する鋼板、部材およびそれらの製造方法に関する。本発明の鋼板は、自動車用骨格部材の素材に好適である。 The present invention relates to steel plates, members, and methods of manufacturing them. More specifically, the present invention relates to steel plates and members having a tensile strength (TS) of 980 MPa or more and excellent formability and material stability, and methods for manufacturing them. The steel plate of the present invention is suitable as a material for automobile frame members.
 近年、地球環境保全の観点から、自動車のCO排出ガス規制の強化が国際的な枠組みのなかで進められている。自動車の燃費改善には、自動車骨格用部材に用いられる鋼板の薄肉化による自動車の車体軽量化が最も有効である。このため、自動車の低燃費に寄与する目的で、高強度鋼板の使用量が増加している。しかしながら、鋼板の高強度化に伴い、延性の低下や伸びフランジ成形性の低下に起因したプレス成形時の割れが生じやすくなる。このため、従来と比べて延性と伸びフランジ成形性に優れた鋼板が望まれる。 In recent years, from the perspective of preserving the global environment, stricter regulations on CO2 emissions from automobiles have been promoted within an international framework. The most effective way to improve the fuel efficiency of automobiles is to reduce the weight of automobile bodies by thinning the steel plates used in automobile frame members. For this reason, the amount of high-strength steel sheets used is increasing in order to contribute to lower fuel consumption of automobiles. However, as the strength of steel sheets increases, cracks are more likely to occur during press forming due to decreased ductility and stretch flange formability. Therefore, a steel plate with superior ductility and stretch-flange formability compared to conventional steel sheets is desired.
 また、カーボンニュートラルの観点では材料の使い切り(歩留まり改善)が求められ、板幅方向での優れた材質の安定性も鋼板に求められる。しかしながら、鋼板の高強度化に伴い、板幅方向の延性や穴広げ性などの成形性のバラつきが顕在化し、プレス成形時に割れが生じやすくなるため、ブランキング位置に制限を設ける必要が生じ、歩留まりが低下する課題がある。 Additionally, from the perspective of carbon neutrality, material usage up (improved yield) is required, and steel sheets are also required to have excellent material stability in the width direction. However, as the strength of steel sheets increases, variations in formability such as ductility and hole expandability in the sheet width direction become apparent, and cracks are more likely to occur during press forming, so it is necessary to set limits on the blanking position. There is a problem of decreased yield.
 また、一般的に高強度化に伴い、降伏比:YR(YR=降伏強度YS/引張強度TS)は高くなるため、成形後のスプリングバックが増大するという課題がある。 Additionally, as the strength increases, the yield ratio: YR (YR=yield strength YS/tensile strength TS) generally increases, so there is a problem that springback after molding increases.
 高強度鋼板の成形性を改善する技術として、組織中に残留オーステナイトを分散させたTRIP鋼板が開発されている。例えば、特許文献1では、C:0.04~0.12%、Si:0.8~2.5%、Mn:0.5~2.0%を含む鋼を焼鈍後に300~500℃で10~900sec保持するオーステンパー(ベイナイト変態に伴う炭素分配)により、2~10%の残留γを生成させることでTS×El≧21000MPa・%の高い延性と70%以上の高い伸びフランジ成形性を有する鋼板が得られることが開示されている。 As a technology to improve the formability of high-strength steel sheets, TRIP steel sheets have been developed in which retained austenite is dispersed in the structure. For example, in Patent Document 1, steel containing C: 0.04 to 0.12%, Si: 0.8 to 2.5%, and Mn: 0.5 to 2.0% is annealed at 300 to 500°C. Austempering (carbon distribution accompanying bainite transformation) held for 10 to 900 seconds generates 2 to 10% residual γ, resulting in high ductility of TS×El≧21000MPa・% and high stretch flange formability of 70% or more. It is disclosed that a steel plate having the following properties can be obtained.
 また、特許文献2では、冷却過程で一度マルテンサイト変態開始温度(Ms点)~マルテンサイト変態完了温度(Mf点)の間の温度域まで冷却し、その後、再加熱保持して残留オーステナイトを安定化させる、所謂、Q&P;Quenching & Partitioning(焼入れとマルテンサイトからオーステナイトへの炭素の分配)という原理を利用して鋼板の高延性化を図る技術が開示されている。具体的には所定の化学成分を有する冷延鋼板を750℃以上の第一均熱温度で保持後、150~350℃の温度域の冷却停止温度まで冷却した後、350~500℃の温度域まで再加熱することで、残留オーステナイトを体積分率で5~15%を確保し、980MPa以上のTSと伸びが17%以上である延性を両立し、かつ穴広げ率が50%以上である優れた穴広げ性を有する鋼板およびその製造方法を開示している。 Furthermore, in Patent Document 2, during the cooling process, the temperature is once cooled to a temperature range between the martensitic transformation start temperature (Ms point) and the martensitic transformation completion temperature (Mf point), and then, the residual austenite is stabilized by reheating and holding. A technique has been disclosed for increasing the ductility of a steel sheet by utilizing the principle of so-called Q&P; Quenching & Partitioning (quenching and distribution of carbon from martensite to austenite). Specifically, a cold rolled steel sheet having a predetermined chemical composition is held at a first soaking temperature of 750°C or higher, then cooled to a cooling stop temperature in a temperature range of 150 to 350°C, and then heated to a temperature range of 350 to 500°C. By reheating to 100%, a retained austenite volume fraction of 5% to 15% is achieved, which achieves both TS of 980 MPa or more and ductility of 17% or more, and an excellent hole expansion rate of 50% or more. The present invention discloses a steel plate having good hole expandability and a method for manufacturing the same.
 一方、スプリングバックの低減に有効な低降伏比を得る鋼板として、DP鋼(Dual Phase鋼)が開発されている。一般的なDP鋼は、主相であるフェライト組織中にマルテンサイトを分散させた複相組織鋼であり、TSが高く、低降伏比で延性に優れる。しかしながらフェライトとマルテンサイトの界面に応力が集中することで、クラックが発生しやすいため、DP鋼には伸びフランジ成形性に劣るという欠点がある。DP鋼の伸びフランジ成形性を改善する技術として例えば、特許文献3、特許文献4がある。 On the other hand, DP steel (Dual Phase steel) has been developed as a steel plate that has a low yield ratio that is effective in reducing springback. General DP steel is a multi-phase steel in which martensite is dispersed in the ferrite structure as the main phase, and has a high TS, low yield ratio, and excellent ductility. However, DP steel has the disadvantage of poor stretch flange formability because cracks are likely to occur due to stress concentration at the interface between ferrite and martensite. Examples of techniques for improving the stretch flange formability of DP steel include Patent Document 3 and Patent Document 4.
 特許文献3では、全組織に対するフェライトの占積率を50%以上、マルテンサイトの占積率を3~30%に制御し、かつフェライトの平均結晶粒径を10μm以下、マルテンサイトの平均結晶粒径を5μm以下とすることで伸びフランジ成形性の劣化を抑制する技術が開示されている。 In Patent Document 3, the space factor of ferrite is controlled to be 50% or more and the space factor of martensite is controlled to 3 to 30% with respect to the entire structure, and the average crystal grain size of ferrite is controlled to be 10 μm or less, and the average crystal grain of martensite is controlled to be 10 μm or less. A technique is disclosed in which deterioration of stretch flange formability is suppressed by setting the diameter to 5 μm or less.
 また、特許文献4では、全組織に対するフェライトの占積率を5~30%、マルテンサイトの占積率を50~95%に制御し、平均粒径が円相当直径で3μm以下の微細なフェライトと平均粒径が円相当直径で6μm以下のマルテンサイトに制御することで、延性と伸びフランジ成形性を改善することが開示されている。 Furthermore, in Patent Document 4, the space factor of ferrite is controlled to 5 to 30% and the space factor of martensite to the entire structure is controlled to 50 to 95%, and fine ferrite particles with an average grain size of 3 μm or less in equivalent circle diameter are formed. It is disclosed that ductility and stretch flange formability can be improved by controlling the average grain size to martensite having a circular equivalent diameter of 6 μm or less.
特許第5515623号公報Patent No. 5515623 特許第5821911号公報Patent No. 5821911 特許第3936440号公報Patent No. 3936440 特開2008-297609号公報Japanese Patent Application Publication No. 2008-297609
 上述の特許文献1および特許文献4は、延性および伸びフランジ成形性に優れた鋼板の製造方法を開示しているものの、軟質相のフェライトを多く形成する必要があるため、例えば、780MPa以上の高強度化は困難である。また、特許文献2は、優れた延性と伸びフランジ成形性を有するものの、YRが0.8以上の鋼板であるためプレス成形時のスプリングバックにより寸法精度が損なわれる場合がある。また、特許文献3は、低YRかつ伸びフランジ成形性に優れたDP鋼板の製造方法を開示しているが、DP組織であるため、延性は必ずしも十分ではない。また、いずれの特許文献においても、板幅方向の延性および伸びフランジ成形性のバラつきを抑制する技術は開示されていない。従って、優れた延性、優れた伸びフランジに加え、優れた板幅方向の材質安定性を有する高強度鋼板の開発が求められている。
 本発明は、かかる事情に鑑み、980MPa以上の引張強度(TS)を有し、かつ、プレス成形性、延性および伸びフランジ成形性に優れ、かつ板幅方向の材質安定性に優れた鋼板、部材およびそれらの製造方法を提供することを目的とする。
Although Patent Document 1 and Patent Document 4 mentioned above disclose a method for manufacturing a steel plate with excellent ductility and stretch-flange formability, it is necessary to form a large amount of soft phase ferrite, so for example, a high temperature of 780 MPa or more is required. Strengthening is difficult. Further, although Patent Document 2 has excellent ductility and stretch flange formability, since the steel plate has a YR of 0.8 or more, dimensional accuracy may be impaired due to springback during press forming. Further, Patent Document 3 discloses a method for manufacturing a DP steel sheet that has low YR and excellent stretch flange formability, but since it has a DP structure, ductility is not necessarily sufficient. Further, none of the patent documents discloses a technique for suppressing variations in ductility and stretch flange formability in the sheet width direction. Therefore, there is a need to develop a high-strength steel plate that has excellent ductility, excellent stretch flanges, and excellent material stability in the width direction.
In view of the above circumstances, the present invention provides a steel plate and member having a tensile strength (TS) of 980 MPa or more, excellent press formability, ductility and stretch flange formability, and excellent material stability in the width direction. The purpose of this invention is to provide methods for producing the same.
 ここで、引張強度は、JIS Z2241(2011)に準拠して得られる引張強度(TS)のことを指す。
 プレス成形性に優れるとは、JIS Z2241(2011)に準拠して得られる降伏比YRが0.8以下であることを指す。
 延性に優れるとは、JIS Z2241(2011)に準拠して得られる全伸びELが以下の(A)、(B)のいずれかを満たすことを指す。
(A)TS:980MPa以上1180MPa未満の場合、EL:14.0%以上、
(B)TS:1180MPa以上の場合、EL:12.0%以上
 伸びフランジ成形性に優れるとは、JFST1001の規定に準拠した穴広げ試験により得られる穴広げ率λ(%)(={(d-d)/d}×100)が40%以上であることを指す。
 板幅方向の材質安定性に優れるとは、板幅方向の測定位置XにおけるELおよびλに関し、以下の式(1)及び式(2)を連続して満たす領域Aの板幅が、全板幅に対して80%以上であることを指す。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
(式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所(板幅Wを24個の均等な幅に分割する際の23箇所の隣接し合う各幅の接触箇所)とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。)
ここで、例えば、式(1)及び式(2)を連続して満たす測定位置Xが2W/24~20W/24の場合、式(1)及び式(2)を連続して満たす領域Aの板幅は、全板幅に対して、100×(20-2+1)/23=83%となる。
Here, the tensile strength refers to tensile strength (TS) obtained in accordance with JIS Z2241 (2011).
"Excellent press formability" means that the yield ratio YR obtained according to JIS Z2241 (2011) is 0.8 or less.
"Excellent ductility" means that the total elongation EL obtained according to JIS Z2241 (2011) satisfies either (A) or (B) below.
(A) TS: 980 MPa or more and less than 1180 MPa, EL: 14.0% or more,
(B) When TS: 1180 MPa or more, EL: 12.0% or more Excellent stretch flange formability means hole expansion rate λ (%) (={(d -d 0 )/d 0 }×100) is 40% or more.
Excellent material stability in the sheet width direction means that the sheet width in region A continuously satisfies the following equations (1) and (2) regarding EL and λ at measurement position X in the sheet width direction. Refers to 80% or more of the width.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
(In formulas (1) and (2), the measurement position In other words, the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24. , 9W/24, 10W/24, 11W/24, 12W/24, 13W/24, 14W/24, 15W/24, 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W /24, 22W/24, 23W/24, a total of 23 locations, are defined as measurement positions X.)
Here, for example, if the measurement position X that continuously satisfies equations (1) and (2) is 2W/24 to 20W/24, then The plate width is 100×(20-2+1)/23=83% of the total plate width.
 本発明者らは、上記の課題を解決するため、980MPa以上の引張強度を有する種々の薄鋼板について、プレス成形性、延性、伸びフランジ成形性および材質安定性に及ぼす各種要因について鋼板の成分組成およびミクロ組織、製造条件の観点から鋭意検討した。その結果、質量%で、C:0.05~0.20%、Si:0.40~1.50%、Mn:1.9~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:0.005~0.50%、N:0.015%未満を含有し、ポリゴナルフェライトの面積率を10%以上57%以下とし、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率を40%以上80%以下とし、残留オーステナイト(残留γ)の面積率を3%以上15%以下とし、焼入れマルテンサイトの面積率を12%以下(0%を含む)とした上で、アスペクト比が3以下で、かつ円相当径1.6μm以上の焼入れマルテンサイトおよび残留γの合計面積率を20%以下とし、C濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の組織全体に対する面積率が15%以下である鋼組織とすることで、優れたプレス成形性、延性と伸びフランジ成形性を有し、さらに板幅方向の材質安定性に優れた(材質バラつきの小さな)高強度冷延鋼板が得られることを知見した。 In order to solve the above-mentioned problems, the present inventors investigated various factors affecting press formability, ductility, stretch-flange formability, and material stability for various thin steel sheets having a tensile strength of 980 MPa or more, and investigated the chemical composition of the steel sheets. We conducted extensive studies from the viewpoints of microstructure, manufacturing conditions, and microstructure. As a result, in mass %, C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol. Contains Al: 0.005 to 0.50%, N: less than 0.015%, the area ratio of polygonal ferrite is 10% to 57%, and the total area of upper bainite, tempered martensite, and lower bainite The aspect ratio is 40% or more and 80% or less, the area ratio of retained austenite (residual γ) is 3% or more and 15% or less, and the area ratio of quenched martensite is 12% or less (including 0%). A C-enriched region (S C≧0 By making the steel structure have an area ratio of 15% or less to the entire structure of .5 ), it has excellent press formability, ductility and stretch flange formability, and also has excellent material stability in the sheet width direction ( It was discovered that high-strength cold-rolled steel sheets with small material variations can be obtained.
 本発明は以上の知見に基づいてなされたものであり、その要旨は以下の通りである。
[1]質量%で、
C:0.05~0.20%、
Si:0.40~1.50%、
Mn:1.9~3.5%、
P:0.02%以下、
S:0.01%以下、
sol.Al:0.005~0.50%、
N:0.015%未満を含有し、
残部が鉄および不可避的不純物からなる成分組成と、
ポリゴナルフェライトの面積率:10%以上57%以下であり、
上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:40%以上80%以下であり、
残留オーステナイトの体積率:3%以上15%以下であり、
焼入れマルテンサイトの面積率:12%以下(0%を含む)であり、
さらに残部組織からなる組織を有し、
焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径1.6μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、
全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が15%以下である、鋼板。
[2]前記成分組成として、さらに、質量%で、
Ti:0.1%以下、
B:0.01%以下、
のうちから選ばれる1種または2種を含有する、[1]に記載の鋼板。
[3]前記成分組成として、さらに、質量%で、
Cu:1%以下、
Ni:1%以下、
Cr:1%以下、
Mo:0.5%以下、
V:0.5%以下、
Nb:0.1%以下、
のうちから選ばれる1種または2種以上を含有する、[1]または[2]に記載の鋼板。
[4]前記成分組成として、さらに、質量%で、
Mg:0.0050%以下、
Ca:0.0050%以下、
Sn:0.1%以下、
Sb:0.1%以下、
REM:0.0050%以下、
のうちから選んだ1種または2種以上を含有する、[1]~[3]のいずれかに記載の鋼板。
[5]表面に亜鉛めっき層を有する、[1]~[4]のいずれかに記載の鋼板。
[6][1]~[5]のいずれかに記載の鋼板を用いてなる部材。
[7][1]~[4]のいずれかに記載の成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、
前記焼鈍は、
前記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、前記焼鈍温度で10~500秒保持する保持工程と、
前記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして前記第一冷却停止温度まで冷却する第一冷却工程と、
350~550℃の滞留温度で10s以上60s以下滞留させた後、100~300℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却する第二冷却工程と、
前記第二冷却停止温度から平均加熱速度:2.0℃/s以上で第二冷却停止温度+50℃以上340℃以下の再加熱温度まで加熱する再加熱工程と、
前記再加熱工程後、前記再加熱温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで100s以上滞留させながら冷却する第三冷却工程と、を含む、鋼板の製造方法。
[8]前記第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行う、[7]に記載の鋼板の製造方法。
[9]前記焼鈍の後、鋼板表面に電気亜鉛めっき処理を行う、[7]に記載の鋼板の製造方法。
[10][1]~[5]のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In mass%,
C: 0.05-0.20%,
Si: 0.40 to 1.50%,
Mn: 1.9 to 3.5%,
P: 0.02% or less,
S: 0.01% or less,
sol. Al: 0.005-0.50%,
N: Contains less than 0.015%,
A component composition in which the remainder consists of iron and unavoidable impurities,
Area ratio of polygonal ferrite: 10% or more and 57% or less,
Total area ratio of upper bainite, tempered martensite, and lower bainite: 40% or more and 80% or less,
Volume fraction of retained austenite: 3% or more and 15% or less,
Area ratio of quenched martensite: 12% or less (including 0%),
Furthermore, it has a structure consisting of residual tissue,
The total area ratio of hardened martensite and retained austenite having an aspect ratio of 3 or less and an equivalent circle diameter of 1.6 μm or more is 20% or less with respect to the total area ratio of hardened martensite and retained austenite,
A steel plate in which the area ratio of C-enriched regions (SC ≧0.5 ) in which the C concentration is 0.5 mass% or more relative to the entire structure is 15% or less.
[2] The component composition further includes, in mass%,
Ti: 0.1% or less,
B: 0.01% or less,
The steel plate according to [1], containing one or two selected from among the above.
[3] The component composition further includes, in mass%,
Cu: 1% or less,
Ni: 1% or less,
Cr: 1% or less,
Mo: 0.5% or less,
V: 0.5% or less,
Nb: 0.1% or less,
The steel plate according to [1] or [2], containing one or more selected from the following.
[4] The component composition further includes, in mass%,
Mg: 0.0050% or less,
Ca: 0.0050% or less,
Sn: 0.1% or less,
Sb: 0.1% or less,
REM: 0.0050% or less,
The steel plate according to any one of [1] to [3], containing one or more selected from among the above.
[5] The steel sheet according to any one of [1] to [4], which has a galvanized layer on the surface.
[6] A member using the steel plate according to any one of [1] to [5].
[7] After hot rolling, pickling and cold rolling a steel slab having the composition according to any one of [1] to [4], the obtained cold rolled steel plate is A method of manufacturing a steel plate that undergoes annealing,
The annealing is
A holding step of heating the cold rolled steel plate to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds;
A first cooling step of cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550 ° C. to the first cooling stop temperature at a first average cooling rate of 2 to 50 ° C./s;
A second cooling step of cooling at a second average cooling rate: 3 to 50 °C/s to a second cooling stop temperature of 100 to 300 °C, after retaining at a retention temperature of 350 to 550 °C for 10 seconds to 60 seconds;
A reheating step of heating from the second cooling stop temperature to a reheating temperature of the second cooling stop temperature + 50 ° C or more and 340 ° C or less at an average heating rate of 2.0 ° C / s or more,
After the reheating step, a third cooling step of cooling the temperature range from the reheating temperature to 50 ° C. at a third average cooling rate of 0.05 to 1.0 ° C./s while retaining for 100 seconds or more. , a method for manufacturing steel plates.
[8] The steel plate according to [7], wherein in the second cooling step, the steel plate surface is subjected to hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment when staying at a residence temperature of 350 to 550 ° C. for 10 seconds or more and 60 seconds or less. manufacturing method.
[9] The method for manufacturing a steel sheet according to [7], wherein after the annealing, the surface of the steel sheet is electrogalvanized.
[10] A method for manufacturing a member, comprising the step of subjecting the steel plate according to any one of [1] to [5] to at least one of forming and bonding to produce a member.
 本発明によれば、引張強度TSが980MPa以上の高強度で、優れたプレス成形性、延性および伸びフランジ成形性を有し、板幅方向の材質安定性に優れた鋼板が得られる。
 本発明の鋼板は、例えば複雑形状の自動車構造部材に適用することが可能となり、自動車の車体軽量化が達成され、また、製造時には歩留まり向上により環境負荷を低減可能である。
According to the present invention, a steel plate can be obtained that has a high tensile strength TS of 980 MPa or more, has excellent press formability, ductility, and stretch flange formability, and has excellent material stability in the width direction.
The steel sheet of the present invention can be applied to, for example, automobile structural members with complex shapes, thereby reducing the weight of the automobile body, and also reducing environmental load by improving yield during manufacturing.
 以下、本発明について具体的に説明する。なお、本発明は以下の実施形態に限定されない。
 本発明の鋼板は、質量%で、C:0.05~0.20%、Si:0.40~1.50%、Mn:1.9~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:0.005~0.50%、N:0.015%未満を含有し、残部が鉄および不可避的不純物からなる成分組成と、ポリゴナルフェライトの面積率:10%以上57%以下であり、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:40%以上80%以下であり、残留オーステナイトの体積率:3%以上15%以下であり、焼入れマルテンサイトの面積率:12%以下(0%を含む)であり、さらに残部組織からなる鋼組織と、を有し、焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径1.6μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が15%以下である。
以下、成分組成、鋼組織の順で本発明の鋼板を説明する。まず、本発明の成分組成の限定理由を説明する。なお、以下の説明において、鋼の成分を示す%は、特に説明の無い限り、すべて質量%である。
The present invention will be specifically described below. Note that the present invention is not limited to the following embodiments.
The steel plate of the present invention contains, by mass%, C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol. Al: 0.005 to 0.50%, N: less than 0.015%, with the balance being iron and unavoidable impurities. The steel plate of the present invention has a composition comprising: C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol. Al: 0.005 to 0.50%, N: less than 0.015%, with the balance being iron and unavoidable impurities; an area ratio of polygonal ferrite: 10% to 57%, a total area ratio of upper bainite, tempered martensite, and lower bainite: 40% to 80%, and a residual The steel has a volume fraction of austenite: 3% or more and 15% or less, an area fraction of quenched martensite: 12% or less (including 0%), and a steel structure consisting of a remaining structure, in which the total area fraction of the quenched martensite and retained austenite having an aspect ratio of 3 or less and a circle equivalent diameter of 1.6 μm or more is 20% or less relative to the total area fraction of the quenched martensite and retained austenite, and the area fraction of C-enriched regions (S C≧0.5 ) having a C concentration of 0.5 mass% or more relative to the entire structure is 15% or less.
Hereinafter, the steel sheet of the present invention will be described in the order of the chemical composition and the steel structure. First, the reasons for limiting the chemical composition of the present invention will be described. In the following description, all percentages indicating the steel composition are mass% unless otherwise specified.
 <C:0.05~0.20%>
 Cは変態強化により所定の強度を確保する観点、および所定量の残留オーステナイト(残留γ)を確保して延性を向上させる観点から含有する。C含有量が0.05%未満では、これらの効果が十分に確保できない。
一方、C含有量が0.20%を超えると、マルテンサイト変態開始温度(Ms点)が低下する。これにより、再加熱温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程において、マルテンサイト変態とその後のマルテンサイトの焼戻しが十分に行われなくなる。その結果、焼入れマルテンサイトおよび0.5mass%以上のC濃化領域(SC≧0.5)の形成が促進され、伸びフランジ成形性および板幅方向の材質安定性が低下する。
このため、C含有量は0.05%以上0.20%以下とする。C含有量は、好ましくは0.08%以上である。また、C含有量は、好ましくは0.18%以下とする。
<C: 0.05-0.20%>
C is contained from the viewpoint of securing a predetermined strength through transformation strengthening, and from the viewpoint of securing a predetermined amount of retained austenite (residual γ) to improve ductility. If the C content is less than 0.05%, these effects cannot be sufficiently ensured.
On the other hand, when the C content exceeds 0.20%, the martensitic transformation start temperature (Ms point) decreases. As a result, in the third cooling process in which cooling is performed in the temperature range from the reheating temperature to 50°C at a third average cooling rate: 0.05 to 1.0°C/s, martensitic transformation and subsequent tempering of martensite occur. is not done enough. As a result, the formation of quenched martensite and C-enriched regions of 0.5 mass% or more ( SC≧0.5 ) is promoted, and stretch flange formability and material stability in the plate width direction are reduced.
Therefore, the C content is set to 0.05% or more and 0.20% or less. The C content is preferably 0.08% or more. Further, the C content is preferably 0.18% or less.
 <Si:0.40~1.50%>
 Siはフェライトを強化して強度を上昇させる観点、およびマルテンサイトやベイナイト中の炭化物生成を抑制して所定量の残留γを確保して延性を向上させる観点から含有する。Si含有量は0.40%未満ではこれらの効果が十分に確保できない。
一方、Si含有量が1.50%を超えると、未変態オーステナイトへの炭素分配が過度に促進され、0.5mass%以上のC濃化領域(SC≧0.5)の形成が促進され、伸びフランジ成形性および板幅方向の材質安定性が低下する。このためSi含有量は0.40%以上1.50%以下とする。Si含有量は、好ましくは0.60%以上である。また、Si含有量は、好ましくは1.20%以下とする。
<Si: 0.40 to 1.50%>
Si is contained from the viewpoint of strengthening the ferrite and increasing its strength, and from the viewpoint of suppressing the formation of carbides in martensite and bainite to ensure a predetermined amount of residual γ and improving ductility. If the Si content is less than 0.40%, these effects cannot be sufficiently ensured.
On the other hand, when the Si content exceeds 1.50%, carbon distribution to untransformed austenite is excessively promoted, and the formation of a C-enriched region of 0.5 mass% or more ( SC≧0.5 ) is promoted. , stretch flange formability and material stability in the plate width direction decrease. Therefore, the Si content is set to 0.40% or more and 1.50% or less. The Si content is preferably 0.60% or more. Further, the Si content is preferably 1.20% or less.
 <Mn:1.9~3.5%>
 Mnは、鋼板の焼入れ性を向上させ、フェライトの過度の変態を抑制し、変態強化による高強度化を促進する観点、およびSiと同様にベイナイト中の炭化物の生成を抑制して延性に寄与する残留オーステナイトの形成をより促進させて延性をより向上させる観点から含有する。これらの効果を得るために、Mn含有量は1.9%以上必要となる。
一方、Mn含有量が3.5%を超えると、ベイナイト変態が遅延し、所定量の残留オーステナイトを確保できず、延性が低下する。
また、Mn含有量が3.5%を超えると、粗大な焼入れマルテンサイトの生成を抑制することは難しくなり、伸びフランジ成形性も劣化する。
このため、Mn含有量は1.9%以上3.5%以下とする。Mn含有量は、好ましくは2.1%以上である。また、Mn含有量は、好ましくは3.3%以下であり、より好ましくは3.0%以下である。
<Mn: 1.9 to 3.5%>
Mn improves the hardenability of steel sheets, suppresses excessive transformation of ferrite, and promotes high strength through transformation strengthening, and similarly to Si, suppresses the formation of carbides in bainite and contributes to ductility. It is included from the viewpoint of further promoting the formation of retained austenite and further improving ductility. In order to obtain these effects, the Mn content needs to be 1.9% or more.
On the other hand, when the Mn content exceeds 3.5%, bainite transformation is delayed, a predetermined amount of retained austenite cannot be secured, and ductility decreases.
Moreover, when the Mn content exceeds 3.5%, it becomes difficult to suppress the formation of coarse quenched martensite, and stretch flange formability also deteriorates.
Therefore, the Mn content is set to 1.9% or more and 3.5% or less. The Mn content is preferably 2.1% or more. Further, the Mn content is preferably 3.3% or less, more preferably 3.0% or less.
 <P:0.02%以下>
 Pは、鋼を強化する元素であるが、その含有量が多いとスポット溶接性を劣化させる。したがって、P含有量は0.02%以下とし、0.01%以下とすることが好ましい。なお、Pを含まなくてもよいが、0.001%未満に低減するには多大なコストがかかるため、P含有量は0.001%以上であることが好ましい。P含有量は、より好ましくは0.002%以上であり、さらに好ましくは0.005%以上である。
<P: 0.02% or less>
P is an element that strengthens steel, but if its content is large, it deteriorates spot weldability. Therefore, the P content is 0.02% or less, preferably 0.01% or less. Note that although it is not necessary to contain P, it is preferable that the P content is 0.001% or more because reducing it to less than 0.001% requires a great deal of cost. The P content is more preferably 0.002% or more, and still more preferably 0.005% or more.
 <S:0.01%以下>
 Sは、熱間圧延でのスケール剥離性を改善する効果、焼鈍時の窒化を抑制する効果があるが、スポット溶接性、曲げ性、穴広げ性に対して悪影響をもたらす元素である。これらの悪影響を低減するために、少なくともS含有量は0.01%以下とし、0.0020%以下とすることが好ましい。
なお、Sを含まなくてもよいが、0.0001%未満に低減するには多大なコストがかかるため、S含有量は製造コストの観点から0.0001%以上が好ましい。S含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0015%以上である。
<S: 0.01% or less>
S has the effect of improving scale peelability during hot rolling and suppressing nitridation during annealing, but is an element that has an adverse effect on spot weldability, bendability, and hole expandability. In order to reduce these adverse effects, the S content is at least 0.01% or less, preferably 0.0020% or less.
Although it is not necessary to contain S, reducing the S content to less than 0.0001% requires a great deal of cost, so the S content is preferably 0.0001% or more from the viewpoint of manufacturing costs. The S content is more preferably 0.0005% or more, and still more preferably 0.0015% or more.
 <sol.Al:0.005~0.50%>
 Alは、脱酸のため、あるいは残留γを得る目的で含有する。安定して脱酸を行うために、sol.Al含有量は0.005%以上とする。sol.Al含有量は0.01%以上であることが好ましい。
一方、sol.Al含有量が0.50%超えとなると、Al系の粗大介在物が多量に増加し、伸びフランジ成形性が低下する。このため、sol.Al含有量は0.50%以下とする。
<sol. Al: 0.005-0.50%>
Al is contained for the purpose of deoxidizing or obtaining residual γ. In order to stably deoxidize, sol. Al content shall be 0.005% or more. sol. It is preferable that the Al content is 0.01% or more.
On the other hand, sol. If the Al content exceeds 0.50%, a large amount of Al-based coarse inclusions will increase, and stretch flange formability will deteriorate. For this reason, sol. Al content shall be 0.50% or less.
 <N:0.015%未満>
 Nは、鋼中でBN、AlN、TiN等の窒化物を形成する元素であり、伸びフランジ成形性を低下させるので、その含有量を制限する必要がある。したがって、N含有量は、0.015%未満とする。
なお、Nを含まなくてもよいが、0.0001%未満に低減するには多大なコストがかかるため、N含有量は製造コストの点から0.0001%以上であることが好ましい。N含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0015%以上である。
<N: less than 0.015%>
N is an element that forms nitrides such as BN, AlN, and TiN in steel, and reduces stretch flange formability, so it is necessary to limit its content. Therefore, the N content should be less than 0.015%.
Note that although it is not necessary to contain N, reducing the N content to less than 0.0001% requires a great deal of cost, so the N content is preferably 0.0001% or more from the viewpoint of manufacturing costs. The N content is more preferably 0.0005% or more, and even more preferably 0.0015% or more.
 本発明における鋼板の成分組成は、上記の成分元素を基本成分として含有し、残部は鉄(Fe)及び不可避的不純物を含む。なお、本発明における鋼板の成分組成は、残部はFeおよび不可避的不純物からなる成分組成を有することが好ましい。
 本発明の鋼板の成分組成は、上記成分に加えて、以下の(A)~(C)から選んだ1つまたは2つ以上を任意元素として適宜含有することができる。
(A)Ti:0.1%以下、B:0.01%以下のうちから選ばれる1種または2種、
(B)Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:0.5%以下、V:0.5%以下、Nb:0.1%以下のうちから選ばれる1種または2種以上、
(C)Mg:0.0050%以下、Ca:0.0050%以下、Sn:0.1%以下、Sb:0.1%以下およびREM:0.0050%以下のうちから選んだ1種または2種以上
The component composition of the steel sheet in the present invention contains the above-mentioned component elements as basic components, and the remainder includes iron (Fe) and inevitable impurities. In addition, it is preferable that the component composition of the steel plate in the present invention has a component composition in which the balance consists of Fe and unavoidable impurities.
In addition to the above-mentioned components, the composition of the steel sheet of the present invention can appropriately contain one or more optional elements selected from the following (A) to (C).
(A) One or two types selected from Ti: 0.1% or less, B: 0.01% or less,
(B) 1 selected from Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less, V: 0.5% or less, Nb: 0.1% or less species or two or more species,
(C) One type selected from Mg: 0.0050% or less, Ca: 0.0050% or less, Sn: 0.1% or less, Sb: 0.1% or less, and REM: 0.0050% or less, or 2 or more types
 <Ti:0.1%以下>
 Tiは鋼中のNをTiNとして固定し、熱間延性を向上させる効果やBの焼入れ性向上効果を生じさせる作用がある。また、TiCの析出により組織を微細化する効果がある。これらの効果を得るためにTi含有量を0.002%以上にすることが望ましい。Nを十分固定する観点からはTi含有量は0.008%以上とすることがさらに好ましい。Ti含有量は、より好ましくは0.010%以上である。
一方、Ti含有量が0.1%を超えると圧延負荷の増大、析出強化量の増加による延性の低下を招くので、Tiを含有する場合、Ti含有量は0.1%以下とする。好ましくは、Ti含有量は、0.05%以下であり、より好ましくは0.03%以下である。
<Ti: 0.1% or less>
Ti fixes N in steel as TiN, and has the effect of improving hot ductility and the effect of B on improving hardenability. Further, the precipitation of TiC has the effect of making the structure finer. In order to obtain these effects, it is desirable that the Ti content be 0.002% or more. From the viewpoint of sufficiently fixing N, the Ti content is more preferably 0.008% or more. The Ti content is more preferably 0.010% or more.
On the other hand, if the Ti content exceeds 0.1%, the rolling load will increase and the ductility will decrease due to an increase in the amount of precipitation strengthening, so if Ti is contained, the Ti content should be 0.1% or less. Preferably, the Ti content is 0.05% or less, more preferably 0.03% or less.
 <B:0.01%以下>
 Bは、鋼の焼入れ性を向上させる元素であり、所定の面積率の焼き戻しマルテンサイトおよび/またはベイナイトを生成させやすい利点を有する。従って、B含有量を0.0005%以上にすることが好ましい。また、B含有量は0.0010%以上がより好ましい。
一方、B含有量が0.01%を超えると、その効果が飽和するだけでなく、熱間延性の著しい低下をもたらし表面欠陥を生じさせる。したがって、Bを含有する場合、B含有量は0.01%以下とする。好ましくは、B含有量は、0.005%以下であり、より好ましくは0.003%以下である。
<B: 0.01% or less>
B is an element that improves the hardenability of steel, and has the advantage of easily producing tempered martensite and/or bainite with a predetermined area ratio. Therefore, it is preferable that the B content is 0.0005% or more. Further, the B content is more preferably 0.0010% or more.
On the other hand, when the B content exceeds 0.01%, the effect not only becomes saturated, but also causes a significant decrease in hot ductility and causes surface defects. Therefore, when B is contained, the B content is set to 0.01% or less. Preferably, the B content is 0.005% or less, more preferably 0.003% or less.
 <Cu:1%以下>
 Cuは、自動車の使用環境での耐食性を向上させる。また、Cuの腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果がある。Cuは、スクラップを原料として活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを低減することができる。このような観点からCuは0.005%以上含有させることが好ましく、さらに耐遅れ破壊特性向上の観点からは、Cuは0.05%以上含有させることがより望ましい。さらに好ましくは0.10%以上である。しかしながら、Cu含有量が多くなりすぎると表面欠陥の発生を招来するので、Cuを含有する場合、Cu含有量は1%以下とする。
<Cu: 1% or less>
Cu improves corrosion resistance in the automotive environment. Further, the corrosion products of Cu coat the surface of the steel sheet, which has the effect of suppressing hydrogen intrusion into the steel sheet. Cu is an element that is mixed in when scrap is used as a raw material, and by allowing Cu to be mixed in, recycled materials can be used as raw materials and manufacturing costs can be reduced. From this viewpoint, it is preferable to contain Cu in an amount of 0.005% or more, and from the viewpoint of improving delayed fracture resistance, it is more desirable to contain Cu in an amount of 0.05% or more. More preferably, it is 0.10% or more. However, if the Cu content becomes too large, surface defects will occur, so when Cu is contained, the Cu content is set to 1% or less.
 <Ni:1%以下>
 Niも、Cuと同様、耐食性を向上する作用のある元素である。また、Niは、Cuを含有させる場合に生じやすい、表面欠陥の発生を抑制する作用がある。このため、Niは0.01%以上含有させることが望ましい。Ni含有量は、より好ましくは0.04%以上、さらに好ましくは0.06%以上である。
しかしながら、Ni含有量が多くなりすぎると、加熱炉内でのスケール生成が不均一になり、却って表面欠陥を発生させる原因になる。また、コスト増も招く。このため、Niを含有する場合、Ni含有量は1%以下とする。好ましくは、Ni含有量は、0.5%以下であり、より好ましくは0.3%以下である。
<Ni: 1% or less>
Like Cu, Ni is also an element that has the effect of improving corrosion resistance. Further, Ni has the effect of suppressing the occurrence of surface defects that are likely to occur when Cu is included. For this reason, it is desirable to contain Ni in an amount of 0.01% or more. The Ni content is more preferably 0.04% or more, still more preferably 0.06% or more.
However, if the Ni content becomes too large, scale formation within the heating furnace will become uneven, which may even cause surface defects to occur. Moreover, it also causes an increase in costs. Therefore, when Ni is contained, the Ni content is set to 1% or less. Preferably, the Ni content is 0.5% or less, more preferably 0.3% or less.
 <Cr:1%以下>
 Crは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することができる。このような効果を得るには、Cr含有量は0.01%以上とすることが好ましい。Cr含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.06%以上である。
しかしながら、Crを過剰に含有すると耐孔食性が劣化するため、Crを含有する場合、Cr含有量は1%以下とする。
<Cr: 1% or less>
Cr can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite. In order to obtain such effects, the Cr content is preferably 0.01% or more. The Cr content is more preferably 0.03% or more, and still more preferably 0.06% or more.
However, if Cr is contained excessively, the pitting corrosion resistance will deteriorate, so when Cr is contained, the Cr content is set to 1% or less.
 <Mo:0.5%以下>
 Moは鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することが出来る。このような効果を得るには、Mo含有量は0.01%以上が好ましい。より好ましくは0.03%以上、さらに好ましくは0.06%以上である。より好ましくは、Mo含有量は、0.1%以上であり、さらにより好ましくは、0.2%以上である。
しかしながら、Moは冷延鋼板の化成処理性を著しく劣化させるため、Moを含有する場合、Mo含有量は0.5%以下とする。
<Mo: 0.5% or less>
Mo can be contained because it has the effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite. In order to obtain such an effect, the Mo content is preferably 0.01% or more. The content is more preferably 0.03% or more, and even more preferably 0.06% or more. More preferably, the Mo content is 0.1% or more, even more preferably 0.2% or more.
However, since Mo significantly deteriorates the chemical conversion treatment property of cold rolled steel sheets, when Mo is contained, the Mo content is set to 0.5% or less.
 <V:0.5%以下>
 Vは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果、組織を微細化する効果、炭化物を析出させ耐遅れ破壊特性を改善する効果から含有することができる。これらの効果を得るためには、V含有量は0.003%以上とすることが好ましい。V含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.015%以上である。さらにより好ましくは、V含有量は、0.02%以上であり、0.05%以上であることがより一層好ましい。V含有量は、0.15%以上であることが好ましく、0.25%以上であることがより好ましい。
しかしながら、Vを多量に含有すると鋳造性が著しく劣化するため、Vを含有する場合、V含有量は0.5%以下とする。好ましくは、V含有量は、0.4%以下であり、より好ましくは0.3%以下である。
<V: 0.5% or less>
V is included because it has the effect of improving the hardenability of steel, suppressing the formation of carbides in martensite and upper/lower bainite, refining the structure, and precipitating carbides to improve delayed fracture resistance. be able to. In order to obtain these effects, the V content is preferably 0.003% or more. The V content is more preferably 0.05% or more, and still more preferably 0.015% or more. Even more preferably, the V content is 0.02% or more, even more preferably 0.05% or more. The V content is preferably 0.15% or more, more preferably 0.25% or more.
However, if a large amount of V is contained, the castability will be significantly deteriorated, so when V is contained, the V content should be 0.5% or less. Preferably, the V content is 0.4% or less, more preferably 0.3% or less.
 <Nb:0.1%以下>
 Nbは、鋼組織を微細化し高強度化する効果、細粒化を通じてベイナイト変態を促進する効果、曲げ性を改善する効果、耐遅れ破壊特性を向上させる効果から含有することができる。これらの効果を得るためには、Nb含有量は0.002%以上とすることが好ましい。Nb含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.010%以上である。
しかしながら、Nbを多量に含有すると析出強化が強くなりすぎ延性が低下する。また、圧延荷重の増大、鋳造性の劣化を招く。このため、Nbを含有する場合、Nb含有量は0.1%以下とする。好ましくは、Nb含有量は、0.07%以下であり、より好ましくは0.05%以下である。
<Nb: 0.1% or less>
Nb can be contained because it has the effect of refining the steel structure and increasing its strength, promoting bainite transformation through grain refinement, improving bendability, and improving delayed fracture resistance. In order to obtain these effects, the Nb content is preferably 0.002% or more. The Nb content is more preferably 0.004% or more, and still more preferably 0.010% or more.
However, if a large amount of Nb is contained, precipitation strengthening becomes too strong and ductility decreases. Moreover, this results in an increase in rolling load and deterioration in castability. Therefore, when Nb is contained, the Nb content is set to 0.1% or less. Preferably, the Nb content is 0.07% or less, more preferably 0.05% or less.
 <Mg:0.0050%以下>
 Mgは、MgOとしてOを固定し、曲げ性などの成形性の改善に寄与する。このため、Mg含有量は0.0002%以上とすることが好ましい。Mg含有量は、より好ましくは0.0004%以上であり、さらに好ましくは0.0006%以上である。
一方、Mgを多量に添加すると表面品質や曲げ性が劣化するので、Mgを含有する場合、Mg含有量は0.0050%以下とする。好ましくは、Mg含有量は0.0030%以下である。
<Mg: 0.0050% or less>
Mg fixes O as MgO and contributes to improving formability such as bendability. Therefore, the Mg content is preferably 0.0002% or more. The Mg content is more preferably 0.0004% or more, and still more preferably 0.0006% or more.
On the other hand, if a large amount of Mg is added, the surface quality and bendability will deteriorate, so when Mg is included, the Mg content should be 0.0050% or less. Preferably, the Mg content is 0.0030% or less.
 <Ca:0.0050%以下>
 Caは、SをCaSとして固定し、曲げ性の改善や耐遅れ破壊特性の改善に寄与する。このため、Ca含有量は0.0002%以上とすることが好ましい。Ca含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。一方、Caは多量に添加すると表面品質や曲げ性を劣化させるので、Caを含有する場合、Ca含有量は0.0050%以下とする。好ましくは、Ca含有量は0.0040%以下である。
<Ca: 0.0050% or less>
Ca fixes S as CaS and contributes to improving bendability and delayed fracture resistance. For this reason, the Ca content is preferably 0.0002% or more. The Ca content is more preferably 0.0005% or more, and still more preferably 0.0010% or more. On the other hand, if a large amount of Ca is added, the surface quality and bendability will be deteriorated, so when Ca is contained, the Ca content should be 0.0050% or less. Preferably, the Ca content is 0.0040% or less.
 <Sn:0.1%以下>
 Snは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。この効果で、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐疲労特性が改善する。このような観点から、Sn含有量は0.002%以上とすることが好ましい。Sn含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.006%以上である。より好ましくは、Sn含有量は、0.01%以上であり、さらにより好ましくは、0.05%以上である。
一方、Sn含有量が0.1%を超えると、鋳造性が劣化する。また、旧γ粒界にSnが偏析して、耐遅れ破壊特性が劣化する。そのため、Snを含有する場合、Sn含有量は0.1%以下とする。
<Sn: 0.1% or less>
Sn suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance. From this point of view, the Sn content is preferably 0.002% or more. The Sn content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sn content is 0.01% or more, even more preferably 0.05% or more.
On the other hand, when the Sn content exceeds 0.1%, castability deteriorates. Furthermore, Sn is segregated at the prior γ grain boundaries, deteriorating the delayed fracture resistance. Therefore, when Sn is contained, the Sn content is 0.1% or less.
 <Sb:0.1%以下>
 Sbは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。この効果で、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐疲労特性が改善する。このような観点から、Sb含有量は0.002%以上とすることが好ましい。Sb含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.006%以上である。より好ましくは、Sb含有量は、0.01%以上であり、さらにより好ましくは、0.05%以上である。
一方、Sb含有量が0.1%を超えると、鋳造性が劣化し、また、旧γ粒界に偏析して、耐遅れ破壊特性が劣化する。そのため、Sbを含有する場合、Sb含有量は0.1%以下とする。
<Sb: 0.1% or less>
Sb suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance. From this point of view, the Sb content is preferably 0.002% or more. The Sb content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sb content is 0.01% or more, even more preferably 0.05% or more.
On the other hand, when the Sb content exceeds 0.1%, castability deteriorates, and Sb segregates at prior γ grain boundaries, degrading delayed fracture resistance. Therefore, when Sb is contained, the Sb content is set to 0.1% or less.
 <REM:0.0050%以下>
 REMは、硫化物の形状を球状化することで、伸びフランジ成形性に及ぼす硫化物の悪影響を抑制し、伸びフランジ成形性を改善する元素である。これらの効果を得るために、REM含有量を0.0005%以上にすることが好ましい。REM含有量は、より好ましくは0.0010%以上であり、さらに好ましくは0.0020%以上である。
一方、REM含有量が0.0050%を超えると、伸びフランジ成形性の改善効果が飽和するため、REMを含有する場合、REM含有量は0.0050%以下とする。
<REM: 0.0050% or less>
REM is an element that suppresses the adverse effects of sulfide on stretch flange formability and improves stretch flange formability by making the shape of sulfide spheroidal. In order to obtain these effects, the REM content is preferably 0.0005% or more. The REM content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
On the other hand, if the REM content exceeds 0.0050%, the effect of improving stretch flange formability will be saturated, so when REM is contained, the REM content should be 0.0050% or less.
 なお、本発明でいうREMとは、原子番号21番のスカンジウム(Sc)と原子番号39番のイットリウム(Y)及び、原子番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイドの元素のことを指す。本発明におけるREM濃度とは、上述のREMから選択された1種または2種以上の元素の総含有量である。 In addition, REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71. Refers to lanthanide elements. The REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
 上記任意成分を下限値未満で含む場合、下限値未満で含まれる任意元素は本発明の効果を害さない。そこで、上記任意元素を下限値未満で含む場合、上記任意元素は、不可避的不純物として含まれるとする。 When the above-mentioned optional components are contained in amounts less than the lower limit, the optional elements contained in amounts less than the lower limit do not impair the effects of the present invention. Therefore, when the above-mentioned arbitrary element is included in an amount less than the lower limit value, the above-mentioned arbitrary element is included as an unavoidable impurity.
 次に、本発明が対象とする鋼板(材質安定性に優れた冷延鋼板)の機械的特性について説明する。 Next, the mechanical properties of the steel sheet (cold-rolled steel sheet with excellent material stability) targeted by the present invention will be explained.
 本発明の鋼板は、引張強度(TS)は980MPa以上とする。引張強度の上限は特に限定されないが、他の特性との両立の観点から、引張強度は1300MPa以下であることが好ましい。 The steel plate of the present invention has a tensile strength (TS) of 980 MPa or more. Although the upper limit of the tensile strength is not particularly limited, from the viewpoint of coexistence with other properties, the tensile strength is preferably 1300 MPa or less.
 本発明の鋼板では、全伸びELは、TS:980MPa以上では14.0%以上、TS:1180MPa以上では12.0%以上確保することでプレス成形の安定性は格段に向上する。
穴広げ率λは、40%以上確保することでプレス成形時の割れを抑制できるため、難成形性の複雑成形部材への適用も可能となる。このため、λは40%以上とする。
In the steel plate of the present invention, the stability of press forming is significantly improved by ensuring the total elongation EL is 14.0% or more at TS: 980 MPa or more, and 12.0% or more at TS: 1180 MPa or more.
By ensuring a hole expansion rate λ of 40% or more, cracking during press molding can be suppressed, so that it can be applied to complex molded parts that are difficult to form. Therefore, λ is set to 40% or more.
 本発明の鋼板では、板幅方向の測定位置XにおけるELおよびλに関し、以下の式(1)及び式(2)を連続して満たす領域Aの板幅が、全板幅に対して80%以上である。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所(板幅Wを24個の均等な幅に分割する際の23箇所の隣接し合う各幅の接触箇所)とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。
ここで、例えば、式(1)及び式(2)を連続して満たす測定位置Xが2W/24~20W/24の場合、式(1)及び式(2)を連続して満たす領域Aの板幅は、全板幅に対して、100×(20-2+1)/23=83%となる。
 本発明の鋼板では、上記の領域Aが板幅方向に、全板幅の80%以上の長さを有する。
すなわち、本発明の鋼板では、板幅方向におけるELの偏差が板幅中央位置の測定値に対して10%以下であり、かつ板幅方向におけるλの偏差が板幅中央位置の測定値に対して10%以下となる領域を、全板幅領域に対して80%以上とする。非定常部の範囲は、幅方向両端部合計で最大で20%まで許容される。
鋼板の最端部は鋼板の運搬や作業工程で他の構造体との接触が生じるため品質確保を目的に最端部は使用しない。このため使用可能な有効板幅は100%に達しない。このため、有効板幅は100%未満とすることが好ましい。
板幅方向におけるELの偏差が板幅中央位置の測定値の10%以下、かつλの偏差が10%以下となる領域を全板幅に対して80%以上とすることで、歩留まりを著しく改善できるため、本発明では板幅方向におけるELの偏差が板幅中央位置の測定値の10%以下、かつλの偏差が10%以下となる領域が全板幅領域に対して80%以上とする。好ましくは85%以上である。
In the steel plate of the present invention, regarding EL and λ at the measurement position That's all.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
In equations (1) and (2), the measurement position contact points for each width). That is, the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W. /24, 12W/24, 13W/24, 14W/24, 15W/24, 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W/24, 22W/24, 23W/24 A total of 23 locations are defined as measurement positions X.
Here, for example, if the measurement position X that continuously satisfies equations (1) and (2) is 2W/24 to 20W/24, then The plate width is 100×(20-2+1)/23=83% of the total plate width.
In the steel sheet of the present invention, the region A has a length in the sheet width direction of 80% or more of the total sheet width.
That is, in the steel sheet of the present invention, the deviation of EL in the sheet width direction is 10% or less with respect to the measured value at the sheet width center position, and the deviation of λ in the sheet width direction is less than 10% with respect to the measured value at the sheet width center position. The area where the thickness is 10% or less shall be 80% or more of the entire board width area. The range of the unsteady portion is allowed to be up to 20% in total at both ends in the width direction.
Because the end of the steel plate comes into contact with other structures during transportation and work processes, the end is not used to ensure quality. Therefore, the usable effective plate width does not reach 100%. Therefore, the effective plate width is preferably less than 100%.
By setting the area where the deviation of EL in the sheet width direction is 10% or less of the measured value at the center of the sheet width and the deviation of λ is 10% or less to 80% or more of the entire sheet width, yields are significantly improved. Therefore, in the present invention, the area where the deviation of EL in the board width direction is 10% or less of the measured value at the center of the board width, and the deviation of λ is 10% or less is 80% or more of the entire board width region. . Preferably it is 85% or more.
<YR≦0.8、TS≧980MPa、EL≧14.0%>
<YR≦0.8、TS≧1180MPa、EL≧12.0%>
 引張特性の評価はJIS5号引張試験片を板幅中央位置から採取し、引張試験(JIS Z2241(2011)に準拠)をN=3で実施する。各評価については、3点の平均値に基づいて行う。引張強度が980MPa以上である鋼板を高強度鋼板とする。降伏比YRが0.8以下である鋼板をプレス成形性に優れる鋼板とする。全伸びELはTS:980MPa以上では14.0%以上、TS:1180MPa以上では12.0%以上を延性に優れる鋼板とする。
<YR≦0.8, TS≧980MPa, EL≧14.0%>
<YR≦0.8, TS≧1180MPa, EL≧12.0%>
For evaluation of tensile properties, a JIS No. 5 tensile test piece is taken from the center position of the plate width, and a tensile test (based on JIS Z2241 (2011)) is performed at N=3. Each evaluation is performed based on the average value of the three points. A steel plate having a tensile strength of 980 MPa or more is defined as a high-strength steel plate. A steel plate having a yield ratio YR of 0.8 or less is a steel plate having excellent press formability. A steel plate with excellent ductility has a total elongation EL of 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more.
 <λ≧40%>
 伸びフランジ成形性の評価は板幅中央位置から試験片を採取し、日本鉄鋼連盟規格JFST1001の規定に準拠した穴広げ試験をN=3で実施する。すなわち、100mm×100mm角サイズのサンプルにポンチ径10mm、クリアランス:13%の打ち抜き工具を用いて打ち抜き後、頂角60度の円錐ポンチを用いて、打ち抜き穴形成の際に発生したバリが外側になるようにして、板厚を貫通する割れが発生するまで穴広げを行う。この際のd:初期穴径(mm)、d:割れ発生時の穴径(mm)として、穴広げ率λ(%)={(d-d)/d}×100として求め、実施して得られた3点の平均値をλとして評価する。40%以上のλを有する鋼を穴広げ性に優れ、伸びフランジ性に優れると判断する。
<λ≧40%>
For evaluation of stretch flange formability, a test piece is taken from the center of the plate width, and a hole expansion test is conducted at N=3 in accordance with the Japan Iron and Steel Federation standard JFST1001. That is, after punching a sample with a square size of 100 mm x 100 mm using a punching tool with a punch diameter of 10 mm and a clearance of 13%, a conical punch with a 60 degree apex angle was used to remove the burrs generated when forming the punched hole on the outside. The hole is enlarged until a crack that penetrates through the plate thickness occurs. In this case, d 0 is the initial hole diameter (mm), d is the hole diameter at the time of crack occurrence (mm), and the hole expansion rate λ (%) = {(d - d 0 )/d 0 }×100, The average value of the three points obtained during the test is evaluated as λ. Steel having a λ of 40% or more is judged to have excellent hole expandability and stretch flangeability.
 <板幅方向の材質安定性評価>
 板幅方向の材質安定性評価として、板幅中央位置(前述した12W/24の位置)から100mm以内の間隔で両板幅方向から評価材を23点(23点には板幅中央位置を含む。)採取し、各位置(測定位置X)でのELおよびλを求める。そして、板幅中央位置の測定値に対する板幅中央位置と各位置の測定値の差の割合を求めることで、板幅方向の材質安定性を評価する。
板幅中央位置のELおよびλを基準として、ELおよびλの差が10%以下となる連続した測定群をELおよびλの差が10%以下の領域とし、全板幅に対してこの領域が80%以上の割合を有する鋼を材質安定性に優れると判断する。
なお、本発明における鋼板の板幅は、好ましくは600mm以上である。また、本発明における鋼板の板幅は、好ましくは1700mm以下である。
<Evaluation of material stability in the board width direction>
To evaluate the material stability in the board width direction, 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (the 12W/24 position mentioned above) (23 points include the board width center position). .) and determine EL and λ at each position (measurement position X). Then, the material stability in the board width direction is evaluated by determining the ratio of the difference between the measured value at the board width center position and each position to the measured value at the board width center position.
Using EL and λ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and λ is 10% or less are defined as areas where the difference in EL and λ is 10% or less, and this area is defined for the entire board width. Steel having a ratio of 80% or more is judged to have excellent material stability.
In addition, the plate width of the steel plate in the present invention is preferably 600 mm or more. Moreover, the plate width of the steel plate in the present invention is preferably 1700 mm or less.
 次に、本発明の鋼板の鋼組織について、説明する。 Next, the steel structure of the steel plate of the present invention will be explained.
 <ポリゴナルフェライトの面積率:10%以上57%以下>
 低YRで、かつ高い延性を確保する観点から、ポリゴナルフェライトは面積率で10%以上とし、より高い延性を得るためには好ましくは20%以上とする。
一方、ポリゴナルフェライトが57%を超えると所定の強度が得られなくなるため、ポリゴナルフェライトは面積率で57%以下とし、好ましくは55%以下とする。より好ましくは50%以下である。
<Area ratio of polygonal ferrite: 10% or more and 57% or less>
From the viewpoint of ensuring low YR and high ductility, the area ratio of polygonal ferrite is 10% or more, and in order to obtain higher ductility, it is preferably 20% or more.
On the other hand, if the polygonal ferrite exceeds 57%, the desired strength cannot be obtained, so the area ratio of the polygonal ferrite is 57% or less, preferably 55% or less. More preferably it is 50% or less.
 <上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率:40%以上80%以下>
 所望の強度を得るために、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率は40%以上とし、より高強度を得るため、好ましくは45%以上とする。
しかしながら、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率が80%を超えると、過度な高強度化により延性が低下するため、その面積率は80%以下とする。より好ましくは75%以下とする。
<Total area ratio of upper bainite, tempered martensite, and lower bainite: 40% or more and 80% or less>
In order to obtain the desired strength, the total area ratio of upper bainite, tempered martensite, and lower bainite is set to 40% or more, and in order to obtain higher strength, it is preferably set to 45% or more.
However, if the total area ratio of upper bainite, tempered martensite, and lower bainite exceeds 80%, ductility decreases due to excessively high strength, so the area ratio is set to 80% or less. More preferably, it is 75% or less.
 <残留オーステナイト(残留γ)の体積率:3%以上15%以下>
 所望の延性を確保するためには、残留オーステナイトの体積率を3%以上とすることが有効である。よって、残留オーステナイトの体積率は3%以上とし、好ましくは5%以上である。
一方、残留オーステナイトが15%を超えると、伸びフランジ成形性が低下するため、残留オーステナイトは15%以下とする。より好ましくは13%以下である。
<Volume fraction of retained austenite (retained γ): 3% or more and 15% or less>
In order to ensure desired ductility, it is effective to set the volume fraction of retained austenite to 3% or more. Therefore, the volume fraction of retained austenite is 3% or more, preferably 5% or more.
On the other hand, if the retained austenite exceeds 15%, stretch flange formability deteriorates, so the retained austenite is set to 15% or less. More preferably it is 13% or less.
 <焼入れマルテンサイト:12%以下(0%を含む)>
 硬質な焼入れマルテンサイト組織はλを低下させるため、その面積率を抑制する必要がある。所望のλを得るためには焼入れマルテンサイトの面積率を12%以下とする。より安定的にλを得るために、焼入れマルテンサイトの面積率は、好ましくは10%以下である。
<Quenched martensite: 12% or less (including 0%)>
Since the hard quenched martensitic structure lowers λ, it is necessary to suppress its area ratio. In order to obtain the desired λ, the area ratio of hardened martensite is set to 12% or less. In order to obtain λ more stably, the area ratio of hardened martensite is preferably 10% or less.
 <残部組織>
 鋼組織については、上記以外については、残部組織からなる。残部組織の面積率は5%以下とすることが好ましい。残部組織は、炭化物、パーライトとしてよい。これらの組織は、後述のようにSEM観察で判定すればよい。
<Remaining organization>
Regarding the steel structure, other than the above, it consists of the remainder structure. The area ratio of the remaining tissue is preferably 5% or less. The remaining structure may be carbide or pearlite. These tissues may be determined by SEM observation as described later.
 <焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対する、アスペクト比が3以下で、かつ円相当径1.6μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率:20%以下>
 残留オーステナイトは、プレス成形や引張加工などでTRIP効果により硬質なマルテンサイト組織となる。そのため、本発明では伸びフランジ性の観点で、焼入れマルテンサイトと残留オーステナイトを合わせて制御する。円相当径で1.6μm以上の焼入れマルテンサイトあるいは残留オーステナイトが形成されると、他組織との界面の応力集中部でボイドが形成され、所望の伸びフランジ成形性を得られない。
また、焼入れマルテンサイトあるいは残留オーステナイトのアスペクト比が3以下になると他組織との界面に応力集中が生じやすくなるため、ボイド形成を助長し、伸びフランジ成形性を劣化させる。そのため、焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下で、かつ円相当径1.6μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率は、20%以下とする。好ましくは18%以下とする。
焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対する、アスペクト比が3以下であり、かつ円相当径2.0μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率は、特に下限は設けないが、操業性の観点から0%に制御することは困難であるため、好ましくは2%以上とし、より好ましくは4%以上とする。
上記の円相当径は、好ましくは20.0μm以下である。
<Total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 1.6 μm or more relative to the total area ratio of hardened martensite and retained austenite: 20% or less>
The retained austenite becomes a hard martensitic structure due to the TRIP effect during press molding, tensile processing, etc. Therefore, in the present invention, from the viewpoint of stretch flangeability, quenched martensite and retained austenite are controlled together. When hardened martensite or retained austenite with a circular equivalent diameter of 1.6 μm or more is formed, voids are formed at stress concentration areas at the interface with other structures, making it impossible to obtain the desired stretch flange formability.
Furthermore, when the aspect ratio of quenched martensite or retained austenite is 3 or less, stress concentration tends to occur at the interface with other structures, which promotes void formation and deteriorates stretch flange formability. Therefore, with respect to the total area ratio of hardened martensite and retained austenite, the total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 1.6 μm or more is set to 20% or less. Preferably it is 18% or less.
There is no lower limit for the total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more, but there is no lower limit for the total area ratio of hardened martensite and retained austenite, but operability Since it is difficult to control the content to 0% from the viewpoint of the above, it is preferably set to 2% or more, more preferably 4% or more.
The above-mentioned equivalent circle diameter is preferably 20.0 μm or less.
 <全組織に対するC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率:15%以下>
 焼入れマルテンサイトの硬度は、焼入れマルテンサイト中に固溶するC量で決定される。焼入れマルテンサイトと他組織との硬度差が増加すると、応力集中部の界面にボイドの形成が助長される。固溶Cが多く存在する組織は焼入れマルテンサイトと残留オーステナイトである。残留オーステナイトは高延性化に寄与する組織であり、C濃度は0.5mass%以上となるが、すべての構成組織に対して、C濃度が0.5mass%以上の組織の面積率が15%以下であれば、延性を向上させつつ伸びフランジ成形性を確保することができるとともに、板幅方向の材質のばらつきも低減でき、材質安定性に優れた鋼板の製造が可能となる。このため、C濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の占積率は15%以下とする。
好ましくは12%以下であり、より好ましくは10%以下である。
また、好ましくは6%以上であり、より好ましくは8%以上である。
<Area ratio of C-enriched regions (SC ≧0.5 ) where the C concentration is 0.5 mass% or more relative to the whole tissue: 15% or less>
The hardness of quenched martensite is determined by the amount of C dissolved in the quenched martensite. When the difference in hardness between the hardened martensite and other structures increases, the formation of voids at the interface of the stress concentration area is promoted. The structures in which a large amount of solid solute C exists are quenched martensite and retained austenite. Retained austenite is a structure that contributes to high ductility, and the C concentration is 0.5 mass% or more, but the area ratio of the structure with a C concentration of 0.5 mass% or more is 15% or less of all constituent structures. If so, stretch flange formability can be ensured while improving ductility, and variations in material quality in the sheet width direction can also be reduced, making it possible to manufacture a steel sheet with excellent material stability. Therefore, the space factor of the C-enriched region (SC ≧0.5 ) where the C concentration is 0.5 mass% or more is 15% or less.
Preferably it is 12% or less, more preferably 10% or less.
Moreover, it is preferably 6% or more, more preferably 8% or more.
 次に鋼組織の測定方法について説明する。 Next, the method for measuring the steel structure will be explained.
 ポリゴナルフェライト、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、焼入れマルテンサイト(フレッシュマルテンサイト)の面積率の測定は、圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、撮影した組織写真を画像解析で定量化する。
ポリゴナルフェライトは内部に殆ど炭化物を伴わず、比較的等軸なフェライトを対象とした。SEMでは最も黒色に見える領域である。
上部ベイナイトは、内部にSEMでは白色に見える炭化物または残留オーステナイトの生成を伴うフェライト組織である。なお上部ベイナイトとポリゴナルフェライトの識別が難しい場合は、アスペクト比≦2.0の形態のフェライトの領域をポリゴナルフェライトとし、アスペクト比>2.0の領域を上部ベイナイトに分類し面積率を算出する。ここで、アスペクト比は、粒子長さが最も長くなる長軸長さaを求め、それに垂直な方向で最も粒子を長く横切るときの粒子長さを短軸長さbとし、a/bをアスペクト比とする。
焼戻しマルテンサイトおよび下部ベイナイトは、SEMでは内部にラス状の下部組織と炭化物の析出を伴う領域である。
焼入れマルテンサイト(フレッシュマルテンサイト)は、SEMでは内部に下部組織が見えずに白く見える塊状の領域である。
残部組織は、炭化物および/またはパーライト組織のことであり、SEMでは白いコントラストで確認することができる組織であるが、炭化物は粒子径が1μm以下の組織であり、また、パーライトはラメラー(層)状の組織であることから区別することが可能である。
To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
Polygonal ferrite is a relatively equiaxed ferrite with almost no carbides inside. This is the area that appears blackest in the SEM.
Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM. If it is difficult to distinguish between upper bainite and polygonal ferrite, the area of ferrite with an aspect ratio ≦2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated. do. Here, the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. Take the ratio.
The tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
The remaining structure is a carbide and/or pearlite structure, which can be confirmed by white contrast in SEM, but the carbide is a structure with a particle size of 1 μm or less, and the pearlite is a lamellar (layer) structure. It is possible to distinguish it from the fact that it has a similar structure.
 上述した組織の定量評価、および焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径の測定は、画像解析ソフト、例えばImage J(Fiji)を用いて行うことができる。
圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、Image J(Fiji)の機械学習で領域識別可能なTrainable Weka segmentation法を用いて各組織を識別して定量評価できる。また、焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径は、同じくImage Jの機能である粒子解析プログラムにより測定可能であり、前記の通り識別した焼入れマルテンサイト、残留オーステナイトのみを抽出して測定する。
The quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be performed using image analysis software such as Image J (Fiji).
A cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed. Each tissue can be identified and quantitatively evaluated using the Trainable Weka segmentation method that allows area identification. In addition, the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. do.
 残留オーステナイトの体積率は、表層から1/4厚み位置を化学研磨し、X線回折にて求める。入射X線にはCo-Kα線源を用い、フェライトの(200)、(211)、(220)面とオーステナイトの(200)、(220)、(311)面の強度比から残留オーステナイトの体積率を計算する。ここで、残留オーステナイトはランダムに分布しているので、X線回折で求めた残留オーステナイトの体積率は、残留オーステナイトの面積率とすることができる。 The volume fraction of retained austenite is determined by chemically polishing a 1/4 thickness position from the surface layer and using X-ray diffraction. A Co-Kα ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. Calculate the rate. Here, since retained austenite is randomly distributed, the volume fraction of retained austenite determined by X-ray diffraction can be taken as the area fraction of retained austenite.
 C濃度が0.5mass%以上であるC濃化領域の面積率SC≧0.5の測定は、圧延方向に平行な板厚断面の板厚1/4位置において日本電子製電界放出型電子線マイクロアナライザ(FE-EPMA)JXA-8500Fを用いる。そして、加速電圧6kV、照射電流7×10-8A、ビーム径を最小としてC濃度分布をマッピング分析することにより測定し、C濃度が0.5mass%以上となる面積率を算出する。
ただし、コンタミネーションの影響を排除するために、分析で得られたCの平均値が母材の炭素量に等しくなる様、バックグラウンド分を差し引く。つまり、測定された炭素量の平均値が母材の炭素量より多い場合、その増加分はコンタミネーションと考え、各位置での分析値からその増加分を一律差し引いた値を各位置での真のC量とする。
The area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F is used. Then, the C concentration distribution is measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7×10 −8 A, and a beam diameter of the minimum, and an area ratio at which the C concentration is 0.5 mass% or more is calculated.
However, in order to eliminate the influence of contamination, background components are subtracted so that the average value of C obtained in the analysis is equal to the carbon content of the base material. In other words, if the average value of the measured carbon content is greater than the carbon content of the base material, the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. Let the amount of C be .
 次に、本発明の鋼板の製造方法について説明する。
 本発明の鋼板の製造方法は、成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、上記焼鈍は、上記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、上記焼鈍温度で10~500秒保持する保持工程と、上記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして上記第一冷却停止温度まで冷却する第一冷却工程と、350~550℃の滞留温度で10s以上60s以下滞留させた後、100~300℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却する第二冷却工程と、上記第二冷却停止温度から平均加熱速度:2.0℃/s以上で第二冷却停止温度+50℃以上340℃以下の再加熱温度まで加熱する再加熱工程と、上記再加熱工程後、上記再加熱温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで100s以上滞留させながら冷却する第三冷却工程と、を含む。
Next, a method for manufacturing a steel plate according to the present invention will be explained.
The method for producing a steel plate of the present invention includes hot rolling, pickling, and cold rolling a steel slab having a chemical composition, and then annealing the obtained cold rolled steel plate. The annealing includes a holding step in which the cold rolled steel sheet is heated to an annealing temperature of 750 to 880°C and held at the annealing temperature for 10 to 500 seconds, and a holding step at 350 to 550°C from the annealing temperature. A first cooling step in which the temperature range up to the cooling stop temperature is cooled to the first cooling stop temperature with a first average cooling rate of 2 to 50°C/s, and a residence temperature of 350 to 550°C for 10 seconds to 60 seconds. After that, a second cooling step of cooling to a second cooling stop temperature of 100 to 300 ° C. at a second average cooling rate: 3 to 50 ° C / s, and a second cooling step of cooling from the second cooling stop temperature to the second cooling stop temperature: 2.0 A reheating step of heating at ℃/s or more to a reheating temperature of the second cooling stop temperature + 50℃ or more and 340℃ or less, and after the above reheating step, a third average cooling in the temperature range from the above reheating temperature to 50℃ It includes a third cooling step of cooling while retaining at a speed of 0.05 to 1.0° C./s for 100 seconds or more.
 <熱間圧延>
 鋼スラブを熱間圧延する方法には、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などがある。熱間圧延は、常法にしたがって実施すればよく、例えば、スラブ加熱温度は1100~1300℃、均熱温度は20~300min、仕上圧延温度はAr変態点~Ar変態点+200℃、巻取温度は400~720℃とすればよい。巻取温度は、板厚変動を抑制し高い強度を安定して確保する観点からは、430~530℃とするのが好ましい。
Ar変態点は鋼板の成分と下記の経験式(A)から算出することができる。
Ar=910-203×[C]+44.7×[Mn]-30×[Si]+700×[P]+400×[sol.Al]-20×[B]+31.5×[Mo]+104×[V]+400×[Ti] ・・・(A)
 式(A)中、[元素]は各元素の含有量(質量%)を意味する。(含有しない元素は0(零)質量%とする。)
<Hot rolling>
Methods for hot rolling steel slabs include rolling the slab after heating, directly rolling the slab after continuous casting without heating it, and rolling after subjecting the slab after continuous casting to a short heat treatment. and so on. Hot rolling may be carried out according to a conventional method, for example, the slab heating temperature is 1100 to 1300°C, the soaking temperature is 20 to 300 min, the finish rolling temperature is Ar 3 transformation point to Ar 3 transformation point + 200°C, and rolling The temperature may be 400 to 720°C. The winding temperature is preferably 430 to 530° C. from the viewpoint of suppressing plate thickness variations and stably ensuring high strength.
The Ar 3 transformation point can be calculated from the composition of the steel plate and the following empirical formula (A).
Ar 3 =910-203×[C]+44.7×[Mn]-30×[Si]+700×[P]+400×[sol. Al]-20×[B]+31.5×[Mo]+104×[V]+400×[Ti]...(A)
In formula (A), [element] means the content (mass%) of each element. (Elements not contained are considered to be 0 (zero) mass%.)
 <酸洗>
 酸洗は常法に従って行えばよい。
<Acid washing>
Pickling may be carried out according to a conventional method.
 <冷間圧延>
 冷間圧延は常法に従って行えばよく、累積圧延率を30~85%とすればよい。高い強度を安定して確保し、異方性を小さくする観点からは、圧延率は35~85%にすることが好ましい。なお、圧延荷重が高い場合は、450~730℃でCAL(連続焼鈍ライン)またはBAF(箱焼鈍炉)にて軟質化の焼鈍処理をすることが可能である。
<Cold rolling>
Cold rolling may be carried out according to a conventional method, and the cumulative rolling ratio may be 30 to 85%. From the viewpoint of stably securing high strength and reducing anisotropy, the rolling ratio is preferably 35 to 85%. Note that when the rolling load is high, it is possible to perform softening annealing treatment at 450 to 730° C. in a CAL (continuous annealing line) or BAF (box annealing furnace).
 <焼鈍>
 常法に従って製造した冷延鋼板(冷間圧延鋼板)について、以下の条件で焼鈍を行う。焼鈍設備は特に限定されないが、生産性、および所望の加熱速度および冷却速度を確保するという観点から、連続焼鈍ライン(CAL)または連続溶融亜鉛めっきライン(CGL)で実施することが好ましい。
<Annealing>
A cold rolled steel plate (cold rolled steel plate) manufactured according to a conventional method is annealed under the following conditions. Although the annealing equipment is not particularly limited, it is preferable to use a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL) from the viewpoint of productivity and ensuring desired heating and cooling rates.
 [保持工程:750~880℃の焼鈍温度域の焼鈍温度に加熱し、焼鈍温度で10~500秒保持]
 焼鈍温度(均熱温度)が750℃を下回ると、ポリゴナルフェライトが過多となることで逆変態オーステナイト中に濃化するCおよびMnが増加する。これにより、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、残留オーステナイトの少なくともいずれかを十分に得られず、また、焼入れマルテンサイトの硬度が増加することで、所望の強度と延性と伸びフランジ成形性とを確保できない。また、焼鈍温度(均熱温度)が750℃を下回ると、再結晶が十分に起こらず、冷間圧延時の加工組織が残存することで成形性を低下させる場合がある。このため、焼鈍温度(均熱温度)は750℃以上とする。
一方、焼鈍温度(均熱温度)が880℃を超えると、オーステナイト単相温度となり、所定のポリゴナルフェライトが得られず、YRが増加するとともに延性が低下する。このため、焼鈍温度(均熱温度)は880℃以下とする。焼鈍温度(均熱温度)は、好ましくは850℃以下であり、より好ましくは830℃以下である。
[Holding step: heated to an annealing temperature in the annealing temperature range of 750 to 880°C and held at the annealing temperature for 10 to 500 seconds]
When the annealing temperature (soaking temperature) is lower than 750° C., the amount of polygonal ferrite becomes excessive, which increases the amount of C and Mn concentrated in the reverse transformed austenite. As a result, at least one of upper bainite, tempered martensite, lower bainite, and retained austenite cannot be obtained sufficiently, and the hardness of hardened martensite increases, resulting in desired strength, ductility, and stretch-flange formability. cannot be secured. Furthermore, when the annealing temperature (soaking temperature) is lower than 750°C, recrystallization does not occur sufficiently, and the processed structure during cold rolling remains, which may reduce formability. For this reason, the annealing temperature (soaking temperature) is set to 750°C or higher.
On the other hand, when the annealing temperature (soaking temperature) exceeds 880°C, the temperature becomes an austenite single phase temperature, the desired polygonal ferrite cannot be obtained, and the YR increases and the ductility decreases. Therefore, the annealing temperature (soaking temperature) is set to 880° C. or lower. The annealing temperature (soaking temperature) is preferably 850°C or lower, more preferably 830°C or lower.
 また、上記焼鈍温度で保持する時間(均熱時間)が10秒未満であると、上記焼鈍温度(均熱温度)におけるオーステナイトの形成が十分に行われず、ポリゴナルフェライトが過多になり、規定量の上部ベイナイト、焼戻しマルテンサイト、下部ベイナイトが得られずに、所望の強度が得られないのみならず、残留オーステナイトを十分に得ることができず、所望の延性が確保されない。
一方、上記焼鈍温度で保持する時間(均熱時間)が500秒超えであると、組織の粗大化が顕著に生じるため、所望の強度を確保できない。
よって、上記焼鈍温度で保持する時間(均熱時間)は、10~500秒とする。焼鈍温度で保持する時間(均熱時間)は、好ましくは、80秒以上であり、より好ましくは100秒以上である。また、焼鈍温度で保持する時間(均熱時間)は、好ましくは、400秒以下であり、より好ましくは300秒以下である。
In addition, if the time for holding at the above annealing temperature (soaking time) is less than 10 seconds, austenite will not be formed sufficiently at the above annealing temperature (soaking temperature), and polygonal ferrite will become excessive, resulting in a specified amount of Since upper bainite, tempered martensite, and lower bainite cannot be obtained, not only the desired strength cannot be obtained, but also sufficient residual austenite cannot be obtained, and the desired ductility cannot be secured.
On the other hand, if the time for holding at the above annealing temperature (soaking time) exceeds 500 seconds, the structure will significantly coarsen, making it impossible to secure the desired strength.
Therefore, the time for holding at the above annealing temperature (soaking time) is set to 10 to 500 seconds. The time for holding at the annealing temperature (soaking time) is preferably 80 seconds or more, more preferably 100 seconds or more. Further, the time for holding at the annealing temperature (soaking time) is preferably 400 seconds or less, more preferably 300 seconds or less.
 [第一冷却工程:焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして第一冷却停止温度まで冷却]
 750℃から880℃の均熱温度での保持後(上記保持工程後)、上記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度2~50℃/sで冷却する。2℃/sを下回ると操業性が低下するため、第一平均冷却速度は2℃/s以上とする。第一平均冷却速度は、好ましくは5℃/s以上である。
一方、第一平均冷却速度が大きくなりすぎると、板形状が悪化するので、50℃/s以下とする。第一平均冷却速度は、好ましくは40℃/s以下であり、より好ましくは30℃/s未満である。
 ここで、第一平均冷却速度とは、「(焼鈍温度(℃)-第一冷却停止温度(℃))/焼鈍温度から第一冷却停止温度までの冷却時間(秒)」である。
[First cooling step: cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550°C to the first cooling stop temperature at a first average cooling rate of 2 to 50°C/s]
After holding at a soaking temperature of 750°C to 880°C (after the above holding step), the temperature range from the above annealing temperature to the first cooling stop temperature of 350 to 550°C is set at a first average cooling rate of 2 to 50°C/s. Cool it down. If the cooling rate is less than 2°C/s, operability will deteriorate, so the first average cooling rate is set to 2°C/s or more. The first average cooling rate is preferably 5°C/s or more.
On the other hand, if the first average cooling rate becomes too high, the plate shape will deteriorate, so it is set to 50° C./s or less. The first average cooling rate is preferably 40°C/s or less, more preferably less than 30°C/s.
Here, the first average cooling rate is "(annealing temperature (°C) - first cooling stop temperature (°C))/cooling time (seconds) from the annealing temperature to the first cooling stop temperature."
 [第二冷却工程(1):350~550℃の滞留温度で10s以上60s以下滞留]
 上記の第一冷却停止温度以下、かつ350℃から550℃までの温度範囲(滞留温度)において、上部ベイナイトを形成させ、所定の残留オーステナイト得ることができ、所望の延性が得られる。ベイナイト変態は潜伏期間があり、滞留開始温度と滞留終了温度を含む滞留温度域に一定時間滞留させなければならない。
滞留温度域が350℃未満あるいは550℃超となる場合、ベイナイト変態が抑制される結果、残留オーステナイトの形成が抑制され、所望の延性が得られない。また、滞留温度域が350℃未満となると、マルテンサイト変態が生じるため、不要にYRを高めることになり、プレス成形性が低下する場合がある。このため、滞留温度の範囲は350~550℃とする。
また、滞留時間が10s未満であると所望の量のベイナイトが得られず、残留オーステナイトの形成が抑制される結果、所望の延性が得られない。
一方、滞留時間が60sを超えるとベイナイトから塊状の未変態γへのCの濃化が進行し、粗大かつC濃度の高い焼入れマルテンサイトの増加を招き、所望の伸びフランジ成形性および板幅方向の材質安定性が得られない。したがって、滞留時間は10s以上60s以下とする。
[Second cooling step (1): Retention for 10 seconds or more and 60 seconds or less at a residence temperature of 350 to 550°C]
In a temperature range (retention temperature) below the first cooling stop temperature and from 350° C. to 550° C., upper bainite is formed, a predetermined retained austenite can be obtained, and desired ductility can be obtained. Bainite transformation has an incubation period, and must be allowed to stay in a residence temperature range that includes a residence start temperature and a residence end temperature for a certain period of time.
When the residence temperature range is less than 350°C or more than 550°C, bainite transformation is suppressed, resulting in suppressed formation of retained austenite, and desired ductility cannot be obtained. Furthermore, if the residence temperature range is less than 350° C., martensitic transformation occurs, which may unnecessarily increase YR and reduce press formability. Therefore, the residence temperature range is 350 to 550°C.
Furthermore, if the residence time is less than 10 seconds, the desired amount of bainite cannot be obtained, and as a result of suppressing the formation of retained austenite, the desired ductility cannot be obtained.
On the other hand, if the residence time exceeds 60 seconds, the concentration of C from bainite to lumpy untransformed γ progresses, leading to an increase in coarse quenched martensite with a high C concentration, resulting in the desired stretch flange formability and plate width direction. material stability cannot be obtained. Therefore, the residence time is set to 10 seconds or more and 60 seconds or less.
 [第二冷却工程(2):100~300℃の第二冷却停止温度までの温度範囲を第二平均冷却速度:3~50℃/sで冷却]
 上記滞留後、過度なベイナイト変態による、焼戻しマルテンサイト量の低下、粗大な焼入れマルテンサイトあるいは残留オーステナイトの形成、および、残留オーステナイトへの過度な炭素濃化が生じることで、強度、伸びフランジ成形性および板幅方向の材質安定性の低下が生じないよう、速やかに冷却する必要がある。このため、上記滞留終了温度から100℃以上300以下の冷却停止温度までの温度範囲における平均冷却速度(第二平均冷却速度)を3℃/s以上とする。第二平均冷却速度は、好ましくは5℃/sとする。
一方、第二平均冷却速度が50℃/s超となると、板形状が劣化するため第二平均冷却速度は50℃/s以下とする。
第二冷却停止温度が300℃を超えると、所定の焼戻しマルテンサイトが得られず、その結果、粗大な焼入れマルテンサイトが増加することで、所望の伸びフランジ成形性が得られない。このため、第二冷却停止温度は300℃以下とする。第二冷却停止温度は、好ましくは290℃以下である。
一方、第二冷却停止温度が100℃未満となると、過度にマルテンサイト変態が進み、所定の体積率の残留オーステナイトを得ることができず、所望の延性を得られない。このため、冷却停止温度は100℃以上とする。
 ここで、第二平均冷却速度とは、「滞留終了温度(℃)-第二冷却停止温度(℃)/滞留終了温度から第二冷却停止温度までの冷却時間(秒)」である。
[Second cooling step (2): Cooling the temperature range up to the second cooling stop temperature of 100 to 300°C at a second average cooling rate: 3 to 50°C/s]
After the above residence, excessive bainite transformation causes a decrease in the amount of tempered martensite, the formation of coarse hardened martensite or retained austenite, and excessive carbon enrichment in the retained austenite, resulting in improved strength and stretch flange formability. In addition, it is necessary to cool the material quickly so that the stability of the material in the width direction of the board does not deteriorate. For this reason, the average cooling rate (second average cooling rate) in the temperature range from the residence end temperature to the cooling stop temperature of 100° C. or more and 300° C. or less is set to 3° C./s or more. The second average cooling rate is preferably 5°C/s.
On the other hand, if the second average cooling rate exceeds 50°C/s, the plate shape deteriorates, so the second average cooling rate is set to 50°C/s or less.
When the second cooling stop temperature exceeds 300° C., a predetermined tempered martensite cannot be obtained, and as a result, coarse quenched martensite increases, and desired stretch flange formability cannot be obtained. Therefore, the second cooling stop temperature is set to 300°C or less. The second cooling stop temperature is preferably 290°C or lower.
On the other hand, when the second cooling stop temperature is less than 100° C., martensitic transformation progresses excessively, making it impossible to obtain retained austenite at a predetermined volume fraction, and thus making it impossible to obtain desired ductility. Therefore, the cooling stop temperature is set to 100°C or higher.
Here, the second average cooling rate is "retention end temperature (°C) - second cooling stop temperature (°C)/cooling time (seconds) from the residence end temperature to the second cooling stop temperature".
 [再加熱工程:第二冷却停止温度から平均加熱速度:2.0℃/s以上で第二冷却停止温度+50℃以上340℃以下の再加熱温度まで加熱]
 マルテンサイトの焼戻し効果は高温ほど促進される。そのため、第二冷却停止温度で焼戻しを行うよりも第二冷却停止温度+50℃以上で焼戻しを行うことで、炭素濃化が促進され、残留オーステナイトの形成が促進され、伸びフランジ成形性を向上させつつ、延性を改善することができる。
一方で、再加熱温度が340℃を超えると炭化物析出が促進されるため、炭素濃化が抑制されて所定の残留オーステナイトが得られず、所望の延性を得られない。このため、再加熱温度は冷却停止温度+50℃以上340℃以下とする。
また、平均加熱速度が2.0℃/s未満となると、炭素分配よりも炭化物析出が促進される結果、所定の残留オーステナイトが得られない。このため、冷却停止温度から340℃以下までの温度範囲を平均加熱速度:2.0℃/s以上とする。
 ここで、平均加熱速度とは、「再加熱温度(℃)-第二冷却停止温度(℃)/第二冷却停止温度から再加熱温度までの加熱時間(秒)」である。
[Reheating step: heating from the second cooling stop temperature to a reheating temperature of the second cooling stop temperature + 50°C or more and 340°C or less at an average heating rate of 2.0°C/s or more]
The tempering effect of martensite is accelerated at higher temperatures. Therefore, by performing tempering at the second cooling stop temperature +50°C or higher, rather than performing tempering at the second cooling stop temperature, carbon concentration is promoted, the formation of retained austenite is promoted, and stretch flange formability is improved. At the same time, ductility can be improved.
On the other hand, if the reheating temperature exceeds 340° C., carbide precipitation is promoted, carbon concentration is suppressed, and the desired retained austenite cannot be obtained, making it impossible to obtain the desired ductility. For this reason, the reheating temperature is set to a cooling stop temperature +50°C or more and 340°C or less.
Moreover, when the average heating rate is less than 2.0° C./s, carbide precipitation is promoted more than carbon distribution, and as a result, the desired retained austenite cannot be obtained. For this reason, the temperature range from the cooling stop temperature to 340°C or less is set to an average heating rate of 2.0°C/s or more.
Here, the average heating rate is "reheating temperature (°C) - second cooling stop temperature (°C)/heating time from the second cooling stop temperature to the reheating temperature (seconds)".
 [第三冷却工程:再加熱温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで100s以上滞留させながら冷却]
 再加熱温度から50℃までの温度範囲の第三平均冷却速度が1.0℃/sを超えるとマルテンサイトの焼き戻し効果が十分に得られず、0.05mass%以上のC濃化領域(SC≧0.5)が増加することで、伸びフランジ成形性と板幅方向の材質安定性を劣化させる。このため、再加熱温度から50℃までの温度範囲を冷却速度は1.0℃/s以下とする。
なお、再加熱温度から50℃までの温度範囲を冷却速度1.0℃/s以下とすることで、板幅方向の温度ばらつきも低減して、板幅方向の材質安定性をさらに向上させることもできる。
一方、再加熱温度から50℃までの温度範囲の冷却速度(第三平均冷却速度)が遅くなると、処理時間が長時間となり、操業性を劣化させる。このため、冷却停止温度から50℃までの温度範囲を冷却速度(第三平均冷却速度)は0.05℃/s以上とする。
 ここで、第三平均冷却速度とは、「再加熱温度(℃)-50℃/再加熱温度(℃)から50℃までの冷却時間(秒)」である。
[Third cooling step: Cooling in the temperature range from the reheating temperature to 50°C at a third average cooling rate of 0.05 to 1.0°C/s while retaining for 100 seconds or more]
If the third average cooling rate in the temperature range from the reheating temperature to 50°C exceeds 1.0°C/s, the martensite tempering effect will not be sufficiently obtained, and the C enriched region of 0.05 mass% or more ( S C ≧ 0.5 ) increases, which deteriorates stretch flange formability and material stability in the plate width direction. For this reason, the cooling rate in the temperature range from the reheating temperature to 50°C is set to 1.0°C/s or less.
In addition, by setting the cooling rate to 1.0°C/s or less in the temperature range from the reheating temperature to 50°C, temperature variations in the sheet width direction are also reduced, further improving material stability in the sheet width direction. You can also do it.
On the other hand, if the cooling rate (third average cooling rate) in the temperature range from the reheating temperature to 50° C. becomes slow, the processing time becomes long and operability deteriorates. Therefore, the cooling rate (third average cooling rate) in the temperature range from the cooling stop temperature to 50°C is set to 0.05°C/s or more.
Here, the third average cooling rate is "reheating temperature (°C) - 50°C/cooling time (seconds) from reheating temperature (°C) to 50°C".
 また、鋼板の表面に、亜鉛めっき処理を施して、表面に亜鉛めっき層を有する鋼板を得てもよい。めっき処理の種類は特に限定されず、溶融亜鉛めっき、電気亜鉛めっきのいずれでもよい。また、合金化溶融亜鉛めっき処理として、溶融亜鉛めっき後に合金化を施すめっき処理を行ってもよい。
 溶融亜鉛めっきは、自動車用鋼板等に用いられる。溶融亜鉛めっきを施す場合には、連続溶融亜鉛めっきライン前段の連続焼鈍炉で、上記の焼鈍における保持工程、第一冷却工程後、溶融亜鉛めっき浴に浸漬して、鋼板表面に溶融亜鉛めっき層を形成すればよく、さらに、その後、合金化処理を施すことで合金化溶融亜鉛めっき鋼板としてもよい。
具体的には、前述した第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行うことができる。また、上記の均熱、冷却の工程とめっき工程はそれぞれ別のラインで行ってもよい。
 また、電気亜鉛めっきは、焼鈍後、すなわち、第三冷却工程後に行うことができる。
Alternatively, the surface of the steel sheet may be galvanized to obtain a steel sheet having a galvanized layer on the surface. The type of plating treatment is not particularly limited, and may be either hot-dip galvanizing or electrogalvanizing. Further, as the alloying hot-dip galvanizing treatment, a plating treatment in which alloying is performed after hot-dip galvanizing may be performed.
Hot-dip galvanizing is used for automobile steel sheets and the like. When applying hot-dip galvanizing, the steel sheet is immersed in a hot-dip galvanizing bath in a continuous annealing furnace at the front stage of the continuous hot-dip galvanizing line after the above-mentioned annealing holding step and first cooling step to form a hot-dip galvanized layer on the surface of the steel sheet. It is sufficient to form an alloyed galvanized steel sheet by subsequently performing an alloying treatment.
Specifically, in the second cooling step described above, when the steel sheet is retained at a residence temperature of 350 to 550° C. for 10 seconds or more and 60 seconds or less, hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment can be performed on the surface of the steel sheet. Further, the soaking and cooling steps and the plating step described above may be performed in separate lines.
Further, electrogalvanizing can be performed after annealing, that is, after the third cooling step.
 以上のように得られた本発明の鋼板の板厚は、0.5mm以上とすることが好ましい。また、本発明の鋼板の板厚は、2.0mm以下とすることが好ましい。
また、板幅は、600mm以上とすることが好ましい。また、本発明の鋼板の板幅は、1700mm以下とすることが好ましい。
The thickness of the steel plate of the present invention obtained as described above is preferably 0.5 mm or more. Further, the thickness of the steel plate of the present invention is preferably 2.0 mm or less.
Further, the plate width is preferably 600 mm or more. Moreover, it is preferable that the plate width of the steel plate of the present invention is 1700 mm or less.
 次に、本発明の部材およびその製造方法について説明する。 Next, the member of the present invention and its manufacturing method will be explained.
 本発明の部材は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施してなるものである。また、本発明の部材の製造方法は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む。 The member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and bonding. Furthermore, the method for manufacturing the member of the present invention includes the step of subjecting the steel plate of the present invention to at least one of forming and joining to produce a member.
 本発明の鋼板は、引張強さが980MPa以上であり、プレス成形性、延性および伸びフランジ成形性に優れ、かつ板幅方向の材質安定性に優れている。そのため、本発明の鋼板を用いて得た部材も高強度であり、プレス成形性、延性および伸びフランジ成形性に優れ、かつ板幅方向の材質安定性に優れている。また、本発明の部材を用いれば、軽量化が可能である。したがって、本発明の部材は、例えば、車体骨格部品に好適に用いることができる。本発明の部材は、溶接継手も含む。 The steel sheet of the present invention has a tensile strength of 980 MPa or more, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Therefore, members obtained using the steel sheet of the present invention also have high strength, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Furthermore, by using the member of the present invention, it is possible to reduce the weight. Therefore, the member of the present invention can be suitably used for, for example, vehicle body frame parts. The members of the invention also include welded joints.
 成形加工は、プレス加工等の一般的な加工方法を制限なく用いることができる。また、接合加工は、スポット溶接、アーク溶接等の一般的な溶接や、リベット接合、かしめ接合等を制限なく用いることができる。 For the molding process, general processing methods such as press working can be used without restriction. In addition, as the joining process, general welding such as spot welding and arc welding, rivet joining, caulking joining, etc. can be used without limitation.
 表1に示す成分組成を有する連続鋳造により製造したスラブを1200℃に加熱し、均熱時間は200min.とし、仕上げ圧延温度は900℃とし、巻取り温度を550℃とする熱間圧延工程後、50%の圧延率で冷間圧延して製造した板厚1.4mmの冷延鋼板を、表2に示す焼鈍条件で処理し、本発明の鋼板と比較例の鋼板とを製造した。
 得られた鋼板の板幅は全て1500mmであった。
A slab manufactured by continuous casting having the composition shown in Table 1 was heated to 1200°C, and the soaking time was 200 min. Table 2 shows a cold-rolled steel sheet with a thickness of 1.4 mm manufactured by cold rolling at a rolling ratio of 50% after a hot rolling process with a finish rolling temperature of 900°C and a coiling temperature of 550°C. A steel plate of the present invention and a steel plate of a comparative example were manufactured by processing under the annealing conditions shown in .
The width of all the obtained steel plates was 1500 mm.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 なお、一部の鋼板(冷延鋼板:CR)は、350~550℃の滞留温度で10s以上60s以下滞留させる際、溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)とした。ここでは、440℃以上550℃以下の亜鉛めっき浴中に鋼板を浸漬して溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整した。溶融亜鉛めっきはAl量が0.10%以上0.22%以下である亜鉛めっき浴を用いた。さらに、一部の溶融亜鉛めっき鋼板には、上記溶融亜鉛めっき処理後に合金化処理を施し、合金化溶融亜鉛めっき鋼板(GA)とした。ここでは、460℃以上550℃以下の温度域で合金化処理を施した。また、一部の鋼板(冷延鋼板:CR)は、電気めっきを施し、電気亜鉛めっき鋼板(EG)とした。 Note that some steel sheets (cold-rolled steel sheets: CR) are subjected to hot-dip galvanizing treatment when retained at a residence temperature of 350 to 550° C. for 10 seconds or more and 60 seconds or less, resulting in hot-dip galvanized steel sheets (GI). Here, a steel plate was immersed in a galvanizing bath at a temperature of 440° C. or higher and 550° C. or lower to perform hot-dip galvanizing treatment, and then the amount of plating deposited was adjusted by gas wiping or the like. For the hot-dip galvanizing, a galvanizing bath having an Al content of 0.10% or more and 0.22% or less was used. Further, some of the hot-dip galvanized steel sheets were subjected to alloying treatment after the hot-dip galvanizing treatment to obtain alloyed hot-dip galvanized steel sheets (GA). Here, alloying treatment was performed in a temperature range of 460° C. or higher and 550° C. or lower. Further, some of the steel plates (cold rolled steel plates: CR) were electroplated to form electrogalvanized steel plates (EG).
 鋼組織の測定は、以下の方法で行った。測定結果は表3に示す。
 ポリゴナルフェライト、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、焼入れマルテンサイト(フレッシュマルテンサイト)の面積率の測定は、圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、撮影した組織写真を画像解析で定量化した。
ポリゴナルフェライトは内部に殆ど炭化物を伴わず、比較的等軸なフェライトを対象とした。SEMでは最も黒色に見える領域である。
上部ベイナイトは、内部にSEMでは白色に見える炭化物または残留オーステナイトの生成を伴うフェライト組織である。なお上部ベイナイトとポリゴナルフェライトの識別が難しい場合は、アスペクト比≦2.0の形態のフェライトの領域をポリゴナルフェライトとし、アスペクト比>2.0の領域を上部ベイナイトに分類し面積率を算出した。ここで、アスペクト比は、粒子長さが最も長くなる長軸長さaを求め、それに垂直な方向で最も粒子を長く横切るときの粒子長さを短軸長さbとし、a/bをアスペクト比と。
焼戻しマルテンサイトおよび下部ベイナイトは、SEMでは内部にラス状の下部組織と炭化物の析出を伴う領域である。
焼入れマルテンサイト(フレッシュマルテンサイト)は、SEMでは内部に下部組織が見えずに白く見える塊状の領域である。
残部組織は、炭化物および/またはパーライト組織のことであり、SEMでは白いコントラストで確認することができる組織である。炭化物は粒子径が1μm以下の組織であり、また、パーライトはラメラー(層)状の組織であることから区別することが可能である。
The steel structure was measured using the following method. The measurement results are shown in Table 3.
To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
Polygonal ferrite is a relatively equiaxed ferrite with almost no carbides inside. This is the area that appears blackest in the SEM.
Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM. If it is difficult to distinguish between upper bainite and polygonal ferrite, the area of ferrite with an aspect ratio ≦2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated. did. Here, the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. With ratio.
The tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
The residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM. Carbide has a structure with a particle size of 1 μm or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
 上述した組織の定量評価、および焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径の測定は、画像解析ソフトとしてImage J(Fiji)を用いて行った。
圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、Image J(Fiji)の機械学習で領域識別可能なTrainable Weka segmentation法を用いて各組織を識別して定量評価した。また、焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径は、同じくImage Jの機能である粒子解析プログラムにより測定可能であり、前記の通り識別した焼入れマルテンサイト、残留オーステナイトのみを抽出して測定した。
The quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite were performed using Image J (Fiji) as image analysis software.
A cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed. Each tissue was identified and quantitatively evaluated using the Trainable Weka segmentation method that allows region identification. In addition, the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. did.
 残留オーステナイトの体積率は、表層から1/4厚み位置を化学研磨し、X線回折にて求めた。入射X線にはCo-Kα線源を用い、フェライトの(200)、(211)、(220)面とオーステナイトの(200)、(220)、(311)面の強度比から残留オーステナイトの体積率を計算した。 The volume fraction of retained austenite was determined by X-ray diffraction after chemically polishing a 1/4 thickness position from the surface layer. A Co-Kα ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. calculated the rate.
 C濃度が0.5mass%以上であるC濃化領域の面積率SC≧0.5の測定は、圧延方向に平行な板厚断面の板厚1/4位置において日本電子製電界放出型電子線マイクロアナライザ(FE-EPMA)JXA-8500Fを用いた。そして、加速電圧6kV、照射電流7×10-8A、ビーム径を最小としてC濃度分布をマッピング分析することにより測定し、C濃度が0.5mass%以上となる面積率を算出した。
ただし、コンタミネーションの影響を排除するために、分析で得られたCの平均値が母材の炭素量に等しくなる様、バックグラウンド分を差し引いた。つまり、測定された炭素量の平均値が母材の炭素量より多い場合、その増加分はコンタミネーションと考え、各位置での分析値からその増加分を一律差し引いた値を各位置での真のC量とした。
The area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F was used. Then, the C concentration distribution was measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7×10 −8 A, and a minimum beam diameter, and an area ratio at which the C concentration was 0.5 mass% or more was calculated.
However, in order to eliminate the influence of contamination, background components were subtracted so that the average value of C obtained in the analysis was equal to the carbon content of the base material. In other words, if the average value of the measured carbon content is greater than the carbon content of the base material, the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. The amount of C was set to .
 引張特性の評価はJIS5号引張試験片を板幅中央位置から採取し、引張試験(JIS Z2241(2011)に準拠)をN=3で実施した。各評価については、3点の平均値に基づいて行った。引張強度が980MPa以上である鋼板を強度に優れると判断した。降伏比YRが0.8以下である鋼板をプレス成形性に優れると判断した。全伸びはTS:980MPa以上では14.0%以上、TS:1180MPa以上では12.0%以上を延性に優れると判断した。 For evaluation of tensile properties, a JIS No. 5 tensile test piece was taken from the center position of the plate width, and a tensile test (based on JIS Z2241 (2011)) was performed at N=3. Each evaluation was performed based on the average value of three points. Steel plates with a tensile strength of 980 MPa or more were judged to have excellent strength. Steel plates with a yield ratio YR of 0.8 or less were judged to have excellent press formability. A total elongation of 14.0% or more at TS: 980 MPa or more, and a total elongation of 12.0% or more at TS: 1180 MPa or more were judged to be excellent in ductility.
 また、伸びフランジ成形性の評価は板幅中央位置から試験片を採取し、日本鉄鋼連盟規格JFST1001の規定に準拠した穴広げ試験をN=3で実施した。すなわち、100mm×100mm角サイズのサンプルにポンチ径10mm、クリアランス:13%の打ち抜き工具を用いて打ち抜き後、頂角60度の円錐ポンチを用いて、打ち抜き穴形成の際に発生したバリが外側になるようにして、板厚を貫通する割れが発生するまで穴広げを行った。この際のd:初期穴径(mm)、d:割れ発生時の穴径(mm)として、穴広げ率λ(%)={(d-d)/d}×100として求め、実施した3点の平均値をλとして評価した。40%以上のλを有する鋼を穴広げ性に優れ、伸びフランジ性に優れると判断した。 In addition, for evaluation of stretch flange formability, a test piece was taken from the center position of the plate width, and a hole expansion test was conducted at N=3 in accordance with the Japan Iron and Steel Federation standard JFST1001. That is, after punching a sample with a square size of 100 mm x 100 mm using a punching tool with a punch diameter of 10 mm and a clearance of 13%, a conical punch with a 60 degree apex angle was used to remove the burrs generated when forming the punched hole on the outside. The hole was enlarged until a crack that penetrated through the plate thickness occurred. In this case, d 0 is the initial hole diameter (mm), d is the hole diameter at the time of crack occurrence (mm), and the hole expansion rate λ (%) = {(d-d 0 )/d 0 }×100 is calculated. The average value of the three points was evaluated as λ. Steels having a λ of 40% or more were judged to have excellent hole expandability and stretch flangeability.
 板幅方向の材質安定性評価については、板幅中央位置(12W/24の位置(W:板幅))から100mm以内の間隔で両板幅方向から評価材を23点(23点には板幅中央位置を含む。)採取し、各位置(測定位置X)でのELおよびλを求める。そして、中央位置の測定値に対する板幅中央位置と各位置の測定値の差の割合を求めることで、板幅方向の材質安定性を評価した。
板幅中央位置のELおよびλを基準として、ELおよびλの差が10%以下となる連続した測定群をELおよびλの差が10%以下の領域とし、全板幅に対してこの領域が80%以上の割合を有する鋼を材質安定性に優れると判断した。
以下の式(1)及び式(2)を満たす領域Aの板幅が、全板幅に対して80%以上である場合を板幅方向の材質安定性に優れると判断した。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
(式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。)
Regarding the material stability evaluation in the board width direction, 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (12W/24 position (W: board width)). (including the width center position), and determine EL and λ at each position (measurement position X). Then, the material stability in the board width direction was evaluated by determining the ratio of the difference between the measured values at the board width center position and each position relative to the measured value at the center position.
Using EL and λ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and λ is 10% or less are defined as areas where the difference in EL and λ is 10% or less, and this area is defined for the entire board width. Steel having a ratio of 80% or more was judged to have excellent material stability.
A case where the plate width of region A satisfying the following formulas (1) and (2) is 80% or more of the total plate width was judged to have excellent material stability in the plate width direction.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
(In formulas (1) and (2), the measurement positions /24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W/24, 12W/24, 13W/24, 14W/24, 15W/24 , 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W/24, 22W/24, 23W/24, a total of 23 locations as measurement position X.)
 測定結果を表3に示す。 The measurement results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表2、3に示す本発明例は、強度、プレス成形性、延性、伸びフランジ成形性、および板幅方向の材質安定性に優れているのに対して、比較例はいずれかが劣っていた。 The inventive examples shown in Tables 2 and 3 were excellent in strength, press formability, ductility, stretch flange formability, and material stability in the sheet width direction, whereas the comparative examples were inferior in any of the following. .
 また、本発明例の鋼板を用いて、成形加工を施して得た部材、接合加工を施して得た部材、さらに成形加工および接合加工を施して得た部材は、本発明例の鋼板が高強度であり、プレス成形性、延性、伸びフランジ成形性、および板幅方向の材質安定性に優れていることから、本発明例の鋼板と同様に、高強度であり、プレス成形性、延性、伸びフランジ成形性、および板幅方向の材質安定性に優れていることがわかった。
 

 
In addition, members obtained by forming, joining, and forming and joining the steel sheets of the invention examples have a high quality. It has high strength, excellent press formability, ductility, stretch flange formability, and material stability in the sheet width direction. It was found that it has excellent stretch flange formability and material stability in the width direction of the plate.


Claims (10)

  1.  質量%で、
    C:0.05~0.20%、
    Si:0.40~1.50%、
    Mn:1.9~3.5%、
    P:0.02%以下、
    S:0.01%以下、
    sol.Al:0.005~0.50%、
    N:0.015%未満を含有し、
    残部が鉄および不可避的不純物からなる成分組成と、
    ポリゴナルフェライトの面積率:10%以上57%以下であり、
    上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:40%以上80%以下であり、
    残留オーステナイトの体積率:3%以上15%以下であり、
    焼入れマルテンサイトの面積率:12%以下(0%を含む)であり、
    さらに残部組織からなる鋼組織と、
    を有し、
    焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径1.6μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、
    全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が15%以下である、鋼板。
    In mass%,
    C: 0.05-0.20%,
    Si: 0.40 to 1.50%,
    Mn: 1.9 to 3.5%,
    P: 0.02% or less,
    S: 0.01% or less,
    sol. Al: 0.005-0.50%,
    N: Contains less than 0.015%,
    A component composition in which the remainder consists of iron and unavoidable impurities,
    Area ratio of polygonal ferrite: 10% or more and 57% or less,
    Total area ratio of upper bainite, tempered martensite, and lower bainite: 40% or more and 80% or less,
    Volume fraction of retained austenite: 3% or more and 15% or less,
    Area ratio of quenched martensite: 12% or less (including 0%),
    Furthermore, a steel structure consisting of a residual structure,
    has
    The total area ratio of hardened martensite and retained austenite having an aspect ratio of 3 or less and an equivalent circle diameter of 1.6 μm or more is 20% or less with respect to the total area ratio of hardened martensite and retained austenite,
    A steel plate in which the area ratio of C-enriched regions (SC ≧0.5 ) in which the C concentration is 0.5 mass% or more relative to the entire structure is 15% or less.
  2.  前記成分組成として、さらに、質量%で、
    Ti:0.1%以下、
    B:0.01%以下、
    のうちから選ばれる1種または2種を含有する、請求項1に記載の鋼板。
    The component composition further includes, in mass%,
    Ti: 0.1% or less,
    B: 0.01% or less,
    The steel plate according to claim 1, containing one or two selected from among the above.
  3.  前記成分組成として、さらに、質量%で、
    Cu:1%以下、
    Ni:1%以下、
    Cr:1%以下、
    Mo:0.5%以下、
    V:0.5%以下、
    Nb:0.1%以下、
    のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の鋼板。
    The component composition further includes, in mass%,
    Cu: 1% or less,
    Ni: 1% or less,
    Cr: 1% or less,
    Mo: 0.5% or less,
    V: 0.5% or less,
    Nb: 0.1% or less,
    The steel plate according to claim 1 or 2, containing one or more selected from the following.
  4.  前記成分組成として、さらに、質量%で、
    Mg:0.0050%以下、
    Ca:0.0050%以下、
    Sn:0.1%以下、
    Sb:0.1%以下、
    REM:0.0050%以下、
    のうちから選んだ1種または2種以上を含有する、請求項1~3のいずれかに記載の鋼板。
    The component composition further includes, in mass%,
    Mg: 0.0050% or less,
    Ca: 0.0050% or less,
    Sn: 0.1% or less,
    Sb: 0.1% or less,
    REM: 0.0050% or less,
    The steel plate according to any one of claims 1 to 3, containing one or more selected from the following.
  5.  表面に亜鉛めっき層を有する、請求項1~4のいずれかに記載の鋼板。 The steel sheet according to any one of claims 1 to 4, having a galvanized layer on the surface.
  6.  請求項1~5のいずれかに記載の鋼板を用いてなる部材。 A member using the steel plate according to any one of claims 1 to 5.
  7.  請求項1~4のいずれかに記載の成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、
    前記焼鈍は、
    前記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、前記焼鈍温度で10~500秒保持する保持工程と、
    前記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして前記第一冷却停止温度まで冷却する第一冷却工程と、
    350~550℃の滞留温度で10s以上60s以下滞留させた後、100~300℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却を行う第二冷却工程と、
    前記第二冷却停止温度から平均加熱速度:2.0℃/s以上で第二冷却停止温度+50℃以上340℃以下の再加熱温度まで加熱する再加熱工程と、
    前記再加熱工程後、前記再加熱温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで100s以上滞留させながら冷却する第三冷却工程と、を含む、鋼板の製造方法。
    After subjecting a steel slab having the composition according to any one of claims 1 to 4 to hot rolling, pickling and cold rolling, the obtained cold rolled steel plate is subjected to annealing. It is a manufacturing method,
    The annealing is
    A holding step of heating the cold rolled steel plate to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds;
    A first cooling step of cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550 ° C. to the first cooling stop temperature at a first average cooling rate of 2 to 50 ° C./s;
    A second cooling step of cooling at a second average cooling rate: 3 to 50 °C/s to a second cooling stop temperature of 100 to 300 °C, after retaining at a retention temperature of 350 to 550 °C for 10 seconds to 60 seconds;
    A reheating step of heating from the second cooling stop temperature to a reheating temperature of the second cooling stop temperature + 50 ° C or more and 340 ° C or less at an average heating rate of 2.0 ° C / s or more,
    After the reheating step, a third cooling step of cooling the temperature range from the reheating temperature to 50 ° C. at a third average cooling rate of 0.05 to 1.0 ° C./s while retaining for 100 seconds or more. , a method for manufacturing steel plates.
  8.  前記第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行う、請求項7に記載の鋼板の製造方法。 The method for producing a steel sheet according to claim 7, wherein in the second cooling step, the steel sheet surface is subjected to hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment when retaining at a residence temperature of 350 to 550 ° C. for 10 seconds or more and 60 seconds or less. .
  9.  前記焼鈍の後、鋼板表面に電気亜鉛めっき処理を行う、請求項7に記載の鋼板の製造方法。 The method for manufacturing a steel sheet according to claim 7, wherein the surface of the steel sheet is subjected to electrogalvanizing treatment after the annealing.
  10.  請求項1~5のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
     
     
    A method for producing a member, the method comprising the step of subjecting the steel plate according to any one of claims 1 to 5 to at least one of forming and joining to produce a member.

PCT/JP2023/024255 2022-09-15 2023-06-29 Steel sheet, member, and methods for producing same WO2024057670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023567951A JP7485240B1 (en) 2022-09-15 2023-06-29 Steel plates, components and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022146743 2022-09-15
JP2022-146743 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024057670A1 true WO2024057670A1 (en) 2024-03-21

Family

ID=90274541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024255 WO2024057670A1 (en) 2022-09-15 2023-06-29 Steel sheet, member, and methods for producing same

Country Status (2)

Country Link
JP (1) JP7485240B1 (en)
WO (1) WO2024057670A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096596A1 (en) * 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
WO2017002883A1 (en) * 2015-06-30 2017-01-05 新日鐵住金株式会社 High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength galvannealed steel sheet
WO2017150117A1 (en) * 2016-02-29 2017-09-08 株式会社神戸製鋼所 High strength steel sheet and manufacturing method therefor
JP2020100894A (en) * 2018-12-21 2020-07-02 Jfeスチール株式会社 Thin steel sheet and method for manufacturing the same
WO2022019209A1 (en) * 2020-07-20 2022-01-27 日本製鉄株式会社 Steel sheet and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096596A1 (en) * 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
WO2017002883A1 (en) * 2015-06-30 2017-01-05 新日鐵住金株式会社 High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength galvannealed steel sheet
WO2017150117A1 (en) * 2016-02-29 2017-09-08 株式会社神戸製鋼所 High strength steel sheet and manufacturing method therefor
JP2020100894A (en) * 2018-12-21 2020-07-02 Jfeスチール株式会社 Thin steel sheet and method for manufacturing the same
WO2022019209A1 (en) * 2020-07-20 2022-01-27 日本製鉄株式会社 Steel sheet and method for producing same

Also Published As

Publication number Publication date
JPWO2024057670A1 (en) 2024-03-21
JP7485240B1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
CN109563586B (en) Steel sheet and plated steel sheet
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
US9255318B2 (en) High-steel galvanized steel sheet and method for manufacturing the same
WO2018011978A1 (en) Hot-dip galvanized steel sheet
JP6822488B2 (en) Steel plate
US12077831B2 (en) Steel sheet, member, and methods for producing them
KR20200083519A (en) High-strength galvanized steel sheet and manufacturing method thereof
EP2243852A1 (en) High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof
JP7226672B1 (en) Steel plate, member and manufacturing method thereof
KR20180031751A (en) High strength thin steel sheet and method for manufacturing same
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
JP7372560B2 (en) Hot rolled steel sheet and its manufacturing method
JP7332062B1 (en) Steel plate, member and manufacturing method thereof
KR20220060552A (en) Cold rolled steel sheet and its manufacturing method
JPWO2020203979A1 (en) Covered steel members, coated steel sheets and their manufacturing methods
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
CN113195772A (en) High-strength cold-rolled steel sheet having excellent bending workability and method for producing same
JP7031795B1 (en) Steel sheets, members and their manufacturing methods
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP7111280B1 (en) Steel plate, member and manufacturing method thereof
EP4043593B1 (en) High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet
EP4130305A1 (en) Steel sheet and method for producing same
JP7559978B2 (en) Steel plates, components and their manufacturing methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023567951

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865032

Country of ref document: EP

Kind code of ref document: A1