WO2024057669A1 - Steel sheet, member, and method for manufacturing the foregoing - Google Patents
Steel sheet, member, and method for manufacturing the foregoing Download PDFInfo
- Publication number
- WO2024057669A1 WO2024057669A1 PCT/JP2023/024254 JP2023024254W WO2024057669A1 WO 2024057669 A1 WO2024057669 A1 WO 2024057669A1 JP 2023024254 W JP2023024254 W JP 2023024254W WO 2024057669 A1 WO2024057669 A1 WO 2024057669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- temperature
- steel
- cooling
- content
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 142
- 239000010959 steel Substances 0.000 title claims abstract description 142
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 26
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 80
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 61
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 238000001816 cooling Methods 0.000 claims description 110
- 230000000717 retained effect Effects 0.000 claims description 54
- 238000000137 annealing Methods 0.000 claims description 49
- 229910001563 bainite Inorganic materials 0.000 claims description 43
- 238000005246 galvanizing Methods 0.000 claims description 19
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims description 19
- 239000010960 cold rolled steel Substances 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 8
- 238000005097 cold rolling Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 238000005304 joining Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 230000014759 maintenance of location Effects 0.000 claims description 5
- 238000005554 pickling Methods 0.000 claims description 4
- 238000005244 galvannealing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 40
- 229910052799 carbon Inorganic materials 0.000 abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- 230000000694 effects Effects 0.000 description 31
- 238000005259 measurement Methods 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000005096 rolling process Methods 0.000 description 16
- 238000002791 soaking Methods 0.000 description 16
- 229910000859 α-Fe Inorganic materials 0.000 description 16
- 230000007423 decrease Effects 0.000 description 12
- 229910052761 rare earth metal Inorganic materials 0.000 description 12
- 230000009466 transformation Effects 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 229910001335 Galvanized steel Inorganic materials 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000008397 galvanized steel Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 241000288113 Gallirallus australis Species 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000009740 moulding (composite fabrication) Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 241000282342 Martes americana Species 0.000 description 1
- 229910000794 TRIP steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000005279 austempering Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000000988 reflection electron microscopy Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to steel plates, members, and methods of manufacturing them. More specifically, the present invention relates to steel plates and members having a tensile strength (TS) of 780 MPa or more and excellent formability and material stability, and methods for manufacturing them. The present invention relates to steel plates and members used in various applications such as automobiles, and methods of manufacturing them.
- TS tensile strength
- TRIP steel sheets have been developed in which retained austenite is dispersed in the structure.
- steel containing C: 0.04 to 0.12%, Si: 0.8 to 2.5%, and Mn: 0.5 to 2.0% is annealed at 300 to 500°C.
- Austempering carbon distribution accompanying bainite transformation held for 10 to 900 seconds generates 2 to 10% residual ⁇ , resulting in high ductility of TS ⁇ El ⁇ 21000MPa ⁇ % and high stretch flange formability of 70% or more. It is disclosed that a steel plate having the following properties can be obtained.
- DP steel (Dual Phase steel) has been developed as a steel plate with low YR and excellent ductility that is effective in reducing springback.
- General DP steel is a multi-phase steel in which martensite is dispersed in a ferrite structure which is the main phase.
- DP steel has the disadvantage of poor stretch flange formability because cracks are likely to occur due to stress concentration at the interface between ferrite and martensite.
- Techniques for improving the stretch flange formability of DP steel include, for example, Patent Document 2 and Patent Document 3.
- the space factor of ferrite is controlled to 5 to 30% and the space factor of martensite to the entire structure is controlled to 50 to 95%, and the average grain size is fine ferrite with an equivalent circle diameter of 3 ⁇ m or less. It is disclosed that ductility and stretch flange formability can be improved by controlling the grain size to martensite having a circular equivalent diameter of 6 ⁇ m or less.
- the space factor of ferrite is controlled to be 50% or more and the space factor of martensite is controlled to 3 to 30% with respect to the entire structure, and the average crystal grain size of ferrite is controlled to be 10 ⁇ m or less, and the average grain size of martensite is controlled to be 10 ⁇ m or less.
- a technique has been disclosed in which deterioration in stretch flange formability is suppressed by controlling the crystal grain size to 5 ⁇ m or less.
- Patent No. 5515623 Japanese Patent Application Publication No. 2008-297609 Patent No. 3936440
- Patent Document 1 and Patent Document 2 disclose a method for producing a steel plate with excellent ductility and stretch-flange formability, it is necessary to form a large amount of soft phase ferrite, so that the tensile strength is 780 MPa, for example. It is difficult to further increase the strength.
- Patent Document 3 discloses a method for manufacturing a DP steel sheet that has low YR and excellent ductility and stretch-flange formability, but since it has a DP structure, the area ratio of martensitic structure is As ductility increases, ductility decreases, and fractures were observed at bending ridges where ductility is required for forming difficult-to-form parts such as center pillars, making it clear that ductility is not always sufficient.
- the present invention provides a steel plate and member having a tensile strength (TS) of 780 MPa or more, excellent press formability, ductility and stretch flange formability, and excellent material stability in the width direction.
- TS tensile strength
- the tensile strength refers to tensile strength (TS) obtained in accordance with JIS Z2241 (2011).
- "Excellent press formability” means that the yield ratio YR obtained according to JIS Z2241 (2011) is 0.8 or less.
- Excellent ductility means that the total elongation EL obtained in accordance with JIS Z2241 (2011) satisfies any of the following (A) to (C).
- the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24.
- measurement positions X are defined as measurement positions X.
- the present inventors investigated various factors affecting press formability, ductility, stretch-flange formability, and material stability for various thin steel sheets having a tensile strength of 780 MPa or more.
- the area ratio of polygonal ferrite is 10% or more and 80% or less, upper bainite, tempered martensite, and lower part.
- the total area ratio of bainite is 10% or more and 70% or less, the area ratio of retained austenite (residual ⁇ ) is 3% or more and 15% or less, and the area ratio of quenched martensite is 15% or less (including 0%). Then, with respect to the total area of quenched martensite and residual ⁇ , the total area ratio (space factor) of quenched martensite and residual ⁇ with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 ⁇ m or more is 20 % or less, and by creating a steel structure in which the area ratio of the C-enriched region (SC ⁇ 0.5 ) with respect to the entire structure is 20% or less with respect to the entire structure, excellent press formability is achieved. It has been found that a high-strength cold-rolled steel sheet having good ductility and stretch-flange formability and excellent material stability in the sheet width direction (with small material variations) can be obtained.
- the present invention was made based on the above findings, and the gist thereof is as follows. [1] In mass%, C: 0.05-0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol.
- Al 1.00% or less
- N Contains less than 0.015%
- it has a steel structure consisting of a residual structure, The total area ratio of hardened martensite and retained austenite having an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 ⁇ m or more is 20% or less with respect to the total area ratio of hardened martensite and retained austenite, A steel plate in which the area ratio of C-enriched regions (SC ⁇ 0.5 ) in which the C concentration is 0.5 mass% or more relative to the entire structure is 20% or less.
- the component composition further includes, in mass%, Ti: 0.1% or less, B: 0.01% or less, The steel plate according to [1], containing one or two selected from among the above.
- the component composition further includes, in mass%, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less, V: 0.5% or less, Nb: 0.1% or less, The steel plate according to [1] or [2], containing one or more selected from the following.
- the component composition further includes, in mass%, Mg: 0.0050% or less, Ca: 0.0050% or less, Sn: 0.1% or less, Sb: 0.1% or less, REM: 0.0050% or less,
- [6] A member using the steel plate according to any one of [1] to [5].
- the obtained cold rolled steel plate is A method of manufacturing a steel plate that undergoes annealing,
- the annealing is A holding step of heating the cold rolled steel plate to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds;
- a method for producing a steel sheet comprising: a third cooling step in which cooling is performed in a temperature range from the second cooling stop temperature to 50° C. at a third average cooling rate: 0.05 to 1.0° C./s.
- a steel plate can be obtained that has a high tensile strength TS of 780 MPa or more, has excellent press formability, ductility, and stretch flange formability, and has excellent material stability in the width direction.
- TS tensile strength
- ductility ductility
- stretch flange formability a steel plate
- material stability in the width direction.
- the steel plate of the present invention has C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, and P: 0.02% or less in mass %. , S: 0.01% or less, sol.
- the component composition contains Al: 1.00% or less, N: less than 0.015%, the balance is iron and inevitable impurities, and the area ratio of polygonal ferrite is 10% or more and 80% or less, and upper bainite.
- the total area ratio of tempered martensite and lower bainite is 10% or more and 70% or less, the volume ratio of retained austenite is 3% or more and 15% or less, and the area ratio of hardened martensite is 15% or less (0%). ), and further has a steel structure consisting of a residual structure, and has an aspect ratio of 3 or less with respect to the total area ratio of hardened martensite and retained austenite, and an equivalent circle diameter of 2.0 ⁇ m or more.
- the total area ratio of certain quenched martensite and retained austenite is 20% or less, and the area ratio of the C-enriched region (S C ⁇ 0.5 ) where the C concentration is 0.5 mass% or more with respect to the entire structure is 20%. % or less.
- the steel plate of the present invention will be described below in the order of its component composition and steel structure. First, the reason for limiting the component composition of the present invention will be explained. In the following description, all percentages indicating the components of steel are percentages by mass unless otherwise specified.
- C is contained from the viewpoint of securing a predetermined strength through transformation strengthening, and from the viewpoint of securing a predetermined amount of retained austenite (residual ⁇ ) to improve ductility. If the C content is less than 0.05%, these effects cannot be sufficiently ensured. On the other hand, when the C content exceeds 0.20%, the martensitic transformation start temperature (Ms point) decreases. As a result, in the third cooling process in which the temperature range from the second cooling stop temperature to 50°C is cooled at a third average cooling rate: 0.05 to 1.0°C/s, martensite transformation and subsequent martensite transformation occur. Tempering is not performed sufficiently.
- the C content is set to 0.05% or more and 0.20% or less.
- the C content is preferably 0.08% or more. Further, the C content is preferably 0.18% or less.
- Si is contained from the viewpoint of strengthening the ferrite and increasing its strength, and from the viewpoint of suppressing the formation of carbides in martensite and bainite to ensure a predetermined amount of residual ⁇ and improving ductility. If the Si content is less than 0.40%, these effects cannot be sufficiently ensured. On the other hand, when the Si content exceeds 1.50%, carbon distribution to untransformed austenite is excessively promoted, and the formation of a C-enriched region of 0.5 mass% or more ( SC ⁇ 0.5 ) is promoted. , stretch flange formability and material stability in the plate width direction decrease. Therefore, the Si content is set to 0.40% or more and 1.50% or less. The Si content is preferably 0.60% or more. Further, the Si content is preferably 1.20% or less.
- Mn improves the hardenability of steel sheets, promoting high strength through transformation strengthening, and, like Si, suppresses the formation of carbides in bainite and promotes the formation of retained austenite, which contributes to ductility. Contains from the viewpoint of improving. In order to obtain these effects, the Mn content needs to be 1.9% or more. On the other hand, when the Mn content exceeds 3.5%, bainite transformation is significantly delayed, a predetermined amount of retained austenite cannot be secured, and ductility decreases. Moreover, when the Mn content exceeds 3.5%, it becomes difficult to suppress the formation of coarse quenched martensite, and stretch flange formability deteriorates. Therefore, the Mn content is set to 1.9% or more and 3.5% or less. The Mn content is preferably 2.1% or more. Further, the Mn content is preferably 3.3% or less.
- P is an element that strengthens steel, but if its content is large, it deteriorates spot weldability. Therefore, the P content is 0.02% or less, preferably 0.01% or less. Note that although it is not necessary to contain P, it is preferable that the P content is 0.001% or more because reducing it to less than 0.001% requires a great deal of cost.
- S has the effect of improving scale peelability during hot rolling and suppressing nitridation during annealing, but is an element that has an adverse effect on spot weldability, bendability, and hole expandability.
- the S content is at least 0.01% or less, preferably 0.0020% or less.
- the S content is preferably 0.0001% or more from the viewpoint of manufacturing costs.
- the S content is more preferably 0.0005% or more, and still more preferably 0.0015% or more.
- Al 1.00% or less> Al is contained for the purpose of deoxidizing or obtaining residual ⁇ . sol. Although the lower limit of Al is not particularly specified, in order to perform deoxidation stably, sol.
- the Al content is preferably 0.005% or more. sol.
- the Al content is more preferably 0.010% or more, and still more preferably 0.020% or more.
- sol. If the Al content exceeds 1.00%, a large amount of Al-based coarse inclusions will increase, and stretch flange formability will deteriorate. For this reason, sol. Al content shall be 1.00% or less.
- N is an element that forms nitrides such as BN, AlN, and TiN in steel, and reduces stretch flange formability, so it is necessary to limit its content. Therefore, the N content should be less than 0.015%.
- the N content is preferably 0.010% or less, more preferably 0.005% or less. Note that although it is not necessary to contain N, reducing the N content to less than 0.0001% requires a great deal of cost, so the N content is preferably 0.0001% or more from the viewpoint of manufacturing costs.
- the N content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
- the component composition of the steel sheet in the present invention contains the above-mentioned component elements as basic components, and the remainder includes iron (Fe) and inevitable impurities.
- the component composition of the steel plate in the present invention has a component composition in which the balance consists of Fe and unavoidable impurities.
- the composition of the steel sheet of the present invention can appropriately contain one or more optional elements selected from the following (A) to (C).
- Ti fixes N in steel as TiN, and has the effect of improving hot ductility and the effect of B on improving hardenability. Further, the precipitation of TiC has the effect of making the structure finer. In order to obtain these effects, it is desirable that the Ti content be 0.002% or more. From the viewpoint of sufficiently fixing N, the Ti content is more preferably 0.008% or more. The Ti content is more preferably 0.010% or more. On the other hand, if the Ti content exceeds 0.1%, the rolling load will increase and the ductility will decrease due to an increase in the amount of precipitation strengthening, so if Ti is contained, the Ti content should be 0.1% or less. Preferably, the Ti content is 0.05% or less, more preferably 0.03% or less.
- B is an element that improves the hardenability of steel, and has the advantage of easily producing tempered martensite and/or bainite with a predetermined area ratio. Therefore, it is preferable that the B content is 0.0005% or more. Further, the B content is more preferably 0.0010% or more. On the other hand, when the B content exceeds 0.01%, the effect not only becomes saturated, but also causes a significant decrease in hot ductility and causes surface defects. Therefore, when B is contained, the B content is set to 0.01% or less. Preferably, the B content is 0.005% or less, more preferably 0.003% or less.
- Cu improves corrosion resistance in the automotive environment. Further, the corrosion products of Cu coat the surface of the steel sheet, which has the effect of suppressing hydrogen intrusion into the steel sheet.
- Cu is an element that is mixed in when scrap is used as a raw material, and by allowing Cu to be mixed in, recycled materials can be used as raw materials and manufacturing costs can be reduced. From such a viewpoint, it is preferable to contain Cu in an amount of 0.005% or more, and from the viewpoint of improving delayed fracture resistance, it is more preferable to contain Cu in an amount of 0.05% or more.
- the Cu content is more preferably 0.10% or more. More preferably, the Cu content is 0.25% or more, even more preferably 0.50% or more. However, if the Cu content becomes too large, surface defects will occur, so when Cu is contained, the Cu content is set to 1% or less.
- Ni is also an element that has the effect of improving corrosion resistance. Further, Ni has the effect of suppressing the occurrence of surface defects that are likely to occur when Cu is included. For this reason, it is desirable to contain Ni in an amount of 0.01% or more.
- the Ni content is more preferably 0.04% or more, and even more preferably 0.06% or more.
- the Ni content is set to 1% or less. Preferably, the Ni content is 0.5% or less, more preferably 0.3% or less.
- ⁇ Cr 1% or less> Cr can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite.
- the Cr content is preferably 0.01% or more.
- the Cr content is more preferably 0.03% or more, and still more preferably 0.06% or more.
- the Cr content is set to 1% or less.
- Mo can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite.
- the Mo content is preferably 0.01% or more.
- the Mo content is more preferably 0.03% or more, and still more preferably 0.06% or more. More preferably, the Mo content is 0.1% or more, even more preferably 0.2% or more.
- the Mo content is set to 0.5% or less.
- V 0.5% or less> V is included because it has the effect of improving the hardenability of steel, suppressing the formation of carbides in martensite and upper/lower bainite, refining the structure, and precipitating carbides to improve delayed fracture resistance. be able to.
- the V content is preferably 0.003% or more.
- the V content is more preferably 0.005% or more, and still more preferably 0.010% or more. Even more preferably, the V content is 0.020% or more, even more preferably 0.050% or more. However, if a large amount of V is contained, the castability will be significantly deteriorated, so when V is contained, the V content should be 0.5% or less.
- the V content is 0.3% or less, more preferably 0.2% or less.
- Nb can be contained because it has the effect of refining the steel structure and increasing its strength, promoting bainite transformation through grain refinement, improving bendability, and improving delayed fracture resistance.
- the Nb content is preferably 0.002% or more.
- the Nb content is more preferably 0.004% or more, and still more preferably 0.010% or more.
- the Nb content is set to 0.1% or less.
- the Nb content is 0.05% or less, more preferably 0.03% or less.
- Mg fixes O as MgO and contributes to improving formability such as bendability. Therefore, the Mg content is preferably 0.0002% or more. The Mg content is more preferably 0.0004% or more, and further preferably 0.0006% or more. On the other hand, if a large amount of Mg is added, the surface quality and bendability are deteriorated, so when Mg is contained, the Mg content is set to 0.0050% or less, and preferably, the Mg content is set to 0.0040% or less.
- Ca fixes S as CaS and contributes to improving bendability and delayed fracture resistance.
- the Ca content is preferably 0.0002% or more.
- the Ca content is more preferably 0.0005% or more, and still more preferably 0.0010% or more.
- the Ca content should be 0.0050% or less.
- the Ca content is 0.0040% or less.
- the Sn content is preferably 0.002% or more.
- the Sn content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sn content is 0.008% or more, even more preferably 0.010% or more.
- the Sn content is preferably 0.030% or more, more preferably 0.060% or more.
- the Sb content is preferably 0.002% or more.
- the Sb content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sb content is 0.008% or more, even more preferably 0.010% or more.
- the Sb content is preferably 0.025% or more, more preferably 0.050% or more.
- REM is an element that suppresses the adverse effects of sulfide on stretch flange formability and improves stretch flange formability by making the shape of sulfide spheroidal.
- the REM content is preferably 0.0005% or more.
- the REM content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
- the REM content exceeds 0.0050%, the effect of improving stretch flange formability will be saturated, so when REM is contained, the REM content should be 0.0050% or less.
- REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71.
- the REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
- REM is not particularly limited, but preferably contains Sc, Y, Ce, and La.
- the optional elements contained in amounts less than the lower limit do not impair the effects of the present invention. Therefore, when the above-mentioned arbitrary element is included in an amount less than the lower limit value, the above-mentioned arbitrary element is included as an unavoidable impurity.
- the steel plate of the present invention has a tensile strength (TS) of 780 MPa or more.
- TS tensile strength
- the upper limit of the tensile strength is not particularly limited, from the viewpoint of coexistence with other properties, the tensile strength is preferably 1300 MPa or less.
- the total elongation EL is 16.0% or more when TS: 780 MPa or more, 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more is secured. Stability is greatly improved. Since cracking during press molding can be suppressed by ensuring a hole expansion rate ⁇ of 30% or more, ⁇ is set to 30% or more.
- the measurement position contact points for each width are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W.
- the region A has a length in the sheet width direction of 80% or more of the total sheet width.
- the deviation of EL in the board width direction is 10% or less with respect to the measured value at the board width center position
- the deviation of ⁇ in the board width direction is 10% or less with respect to the measured value at the board width center position.
- the area should be 80% or more of the entire board width area.
- the range of the unsteady portion is allowed to be up to 20% in total at both ends in the width direction. Because the end of the steel plate comes into contact with other structures during transportation and work processes, the end is not used to ensure quality. Therefore, the usable effective plate width does not reach 100%. Therefore, the effective plate width is preferably less than 100%.
- the area where the deviation of EL in the sheet width direction is 10% or less of the measured value at the center of the sheet width and the deviation of ⁇ is 10% or less to 80% or more of the entire sheet width, yields are significantly improved. Therefore, in the present invention, the area where the deviation of EL in the board width direction is 10% or less of the measured value at the center of the board width and the deviation of ⁇ is 10% or less is set to be 80% or more of the entire board width region. . Preferably it is 85% or more.
- a steel plate having a tensile strength of 780 MPa or more is defined as a high-strength steel plate.
- a steel plate having a yield ratio YR of 0.8 or less is a steel plate having excellent press formability.
- a steel plate with excellent ductility has a total elongation EL of 16.0% or more when TS: 780 MPa or more, 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more.
- d 0 is the initial hole diameter (mm)
- d is the hole diameter at the time of crack occurrence (mm)
- the hole expansion rate ⁇ (%) ⁇ (d - d 0 )/d 0 ⁇ 100
- the average value of the three points obtained during the test is evaluated as ⁇ .
- Steel having a ⁇ of 30% or more is judged to have excellent hole expandability and stretch flangeability. Preferably it is 40% or more.
- the plate width of the steel plate in the present invention is preferably 600 mm or more. Moreover, the plate width of the steel plate in the present invention is preferably 1700 mm or less.
- the area ratio of polygonal ferrite is 10% or more, and in order to obtain higher ductility, it is preferably 20% or more.
- the area ratio of the polygonal ferrite should be 80% or less, preferably 75% or less, and more preferably 70%.
- Total area ratio of upper bainite, tempered martensite, and lower bainite 10% or more and 70% or less>
- the total area ratio of upper bainite, tempered martensite, and lower bainite is set to 10% or more, and in order to obtain higher strength, it is preferably set to 15% or more.
- the area ratio is set to 70% or less. More preferably it is 65% or less, still more preferably 60% or less.
- volume fraction of retained austenite (retained ⁇ ): 3% or more and 15% or less>
- volume fraction of retained austenite is 3% or more, preferably 5% or more.
- the retained austenite is set to 15% or less. More preferably it is 13% or less.
- ⁇ Area ratio of quenched martensite 15% or less (including 0%)> Since the hard quenched martensitic structure lowers ⁇ , it is necessary to suppress its area ratio. In order to obtain the desired ⁇ , the area ratio of quenched martensite is set to 15% or less. In order to obtain ⁇ more stably, the area ratio of hardened martensite is preferably 12% or less, more preferably 10% or less.
- the steel structure other than the above, it consists of the remainder structure.
- the area ratio of the remaining tissue is preferably 5% or less.
- the remaining structure may be carbide or pearlite. These tissues may be determined by SEM observation as described later.
- the retained austenite becomes a hard martensitic structure due to the TRIP effect during press molding, tensile processing, etc. Therefore, in the present invention, from the viewpoint of stretch flangeability, quenched martensite and retained austenite are controlled together.
- hardened martensite or retained austenite with a circular equivalent diameter of 2.0 ⁇ m or more is formed, voids are formed at stress concentration areas at the interface with other structures, which may deteriorate stretch flange formability.
- the total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 ⁇ m or more shall be 20% or less of the total area ratio of hardened martensite and retained austenite.
- This total area ratio is preferably 18% or less, more preferably 16% or less.
- the hardness of quenched martensite is determined by the amount of C dissolved in the quenched martensite.
- the structures in which a large amount of solid solute C exists are quenched martensite and retained austenite.
- Retained austenite is a structure that contributes to high ductility, and the C concentration is 0.5 mass% or more, but the area ratio of the structure with a C concentration of 0.5 mass% or more is 20% or less of all constituent structures.
- the area ratio (occupation ratio) of the C-enriched region (SC ⁇ 0.5 ) where the C concentration is 0.5 mass% or more is 20% or less.
- This area ratio is preferably 15% or less, more preferably 12% or less.
- this area ratio is preferably 3% or more, more preferably 5% or more.
- polygonal ferrite To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
- Polygonal ferrite is a relatively equiaxed ferrite with almost no carbide inside. This is the area that appears blackest in the SEM.
- Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM.
- the area of ferrite with an aspect ratio ⁇ 2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated.
- the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. Take the ratio.
- the tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
- Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
- the residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM.
- Carbide has a structure with a particle size of 1 ⁇ m or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
- the quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be performed using image analysis software such as Image J (Fiji).
- image analysis software such as Image J (Fiji).
- a cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed.
- Each tissue can be identified and quantitatively evaluated using the Trainable Weka segmentation method that allows area identification.
- the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. do.
- the volume fraction of retained austenite is determined by chemically polishing a 1/4 thickness position from the surface layer and using X-ray diffraction.
- a Co-K ⁇ ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. Calculate the rate.
- the volume fraction of the retained austenite determined by X-ray diffraction can be taken as the area fraction of the retained austenite.
- the area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F is used. Then, the C concentration distribution is measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7 ⁇ 10 ⁇ 8 A, and a beam diameter of the minimum, and an area ratio at which the C concentration is 0.5 mass% or more is calculated. However, in order to eliminate the influence of contamination, background components are subtracted so that the average value of C obtained in the analysis is equal to the carbon content of the base material.
- FE-EPMA JEOL field emission electron A line microanalyzer
- the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. Let the amount of C be .
- the method for producing a steel plate of the present invention involves hot rolling, pickling and cold rolling a steel slab having the above-mentioned composition, and then annealing the obtained cold rolled steel plate.
- This is a manufacturing method, and the annealing includes a holding step of heating the cold rolled steel sheet to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds, and a holding step of heating the cold rolled steel plate to an annealing temperature of 350 to 550°C from the annealing temperature.
- a first cooling step in which the temperature range up to the first cooling stop temperature is set at a first average cooling rate of 2 to 50°C/s to the above first cooling stop temperature, and a residence temperature of 350 to 550°C for 10 seconds or more for 60 seconds.
- a second cooling step in which cooling is performed at a second average cooling rate of 3 to 50°C/s to a second cooling stop temperature of 150 to 360°C, and and a third cooling step in which the temperature range is cooled at a third average cooling rate: 0.05 to 1.0° C./s.
- Hot rolling steel slabs include rolling the slab after heating, directly rolling the slab after continuous casting without heating it, and rolling after subjecting the slab after continuous casting to a short heat treatment. and so on.
- Hot rolling may be carried out according to a conventional method, for example, the slab heating temperature is 1100 to 1300°C, the soaking temperature is 20 to 300 min, the finish rolling temperature is Ar 3 transformation point to Ar 3 transformation point + 200°C, and rolling The temperature may be 400 to 720°C.
- the winding temperature is preferably 430 to 530° C. from the viewpoint of suppressing plate thickness variations and stably ensuring high strength.
- the Ar 3 transformation point can be calculated from the composition of the steel plate and the following empirical formula (A).
- ⁇ Acid washing> Pickling may be carried out according to a conventional method.
- Cold rolling may be carried out according to a conventional method, and the cumulative rolling ratio may be 30 to 85%. From the viewpoint of stably securing high strength and reducing anisotropy, the rolling ratio is preferably 35 to 85%. Note that when the rolling load is high, it is possible to perform softening annealing treatment at 450 to 730° C. in a CAL (continuous annealing line) or BAF (box annealing furnace).
- CAL continuous annealing line
- BAF box annealing furnace
- a cold rolled steel plate (cold rolled steel plate) manufactured according to a conventional method is annealed under the following conditions.
- the annealing equipment is not particularly limited, it is preferable to use a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL) from the viewpoint of productivity and ensuring desired heating and cooling rates.
- CAL continuous annealing line
- CGL continuous hot-dip galvanizing line
- the annealing temperature (soaking temperature) exceeds 880°C, the temperature becomes an austenite single phase temperature, the desired polygonal ferrite cannot be obtained, and the YR increases and the ductility decreases. Therefore, the annealing temperature (soaking temperature) is set to 880° C. or lower.
- the annealing temperature (soaking temperature) is preferably 850°C or lower, more preferably 830°C or lower.
- the time for holding at the above annealing temperature is less than 10 seconds, austenite will not be formed sufficiently at the above annealing temperature (soaking temperature), and polygonal ferrite will increase, resulting in less than the specified amount.
- Upper bainite, tempered martensite, and lower bainite cannot be obtained, and not only the desired strength cannot be obtained, but also sufficient residual austenite cannot be obtained, and desired ductility cannot be secured.
- the time for holding at the above annealing temperature (soaking time) exceeds 500 seconds, the structure will significantly coarsen, making it impossible to secure the desired strength. Therefore, the time for holding at the above annealing temperature (soaking time) is set to 10 to 500 seconds.
- the time for holding at the annealing temperature is preferably 80 seconds or more, more preferably 100 seconds or more. Further, the time for holding at the annealing temperature (soaking time) is preferably 400 seconds or less, more preferably 300 seconds or less.
- First cooling step cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550°C to the first cooling stop temperature at a first average cooling rate of 2 to 50°C/s]
- the temperature range from the above annealing temperature to the first cooling stop temperature of 350 to 550°C is set at a first average cooling rate of 2 to 50°C/s. Cool it down. If the cooling rate is less than 2°C/s, operability will deteriorate, so the first average cooling rate is set to 2°C/s or more.
- the first average cooling rate is preferably 5°C/s or more.
- the first average cooling rate becomes too high, the plate shape will deteriorate, so it is set to 50° C./s or less.
- the first average cooling rate is preferably 40°C/s or less, more preferably less than 30°C/s.
- the first average cooling rate is "(annealing temperature (°C) - first cooling stop temperature (°C))/cooling time (seconds) from the annealing temperature to the first cooling stop temperature.”
- a temperature range (retention temperature) below the first cooling stop temperature and from 350° C. to 550° C. upper bainite is formed, a predetermined residual austenite can be obtained, and desired ductility can be obtained.
- the residence time exceeds 60 seconds, the concentration of C from bainite to lumpy untransformed ⁇ progresses, leading to an increase in the amount of remaining lumpy structure, making it impossible to obtain the desired ⁇ . Therefore, the residence time is set to 10 seconds or more and 60 seconds or less.
- the second average cooling rate is preferably 5°C/s or more, more preferably 8°C/s or more. If the cooling rate in this temperature range becomes too high, the plate shape will deteriorate, so the cooling rate in this temperature range (second average cooling rate) is set to 50° C./s or less. Preferably it is 40°C/s or less.
- the second cooling stop temperature exceeds 360° C., the area ratio of tempered martensite or lower bainite does not reach the predetermined area ratio, the area ratio of hardened martensite after annealing increases, and stretch flange formability deteriorates. Therefore, the second cooling stop temperature is set to 360° C. or lower.
- the second cooling stop temperature is set to 150°C or higher.
- the second average cooling rate is "retention end temperature (°C) - second cooling stop temperature (°C)/cooling time (seconds) from the residence end temperature to the second cooling stop temperature".
- the cooling rate (third average cooling rate) in the temperature range from the second cooling stop temperature is set to 0.05°C/s or more.
- the third average cooling rate is preferably 0.08°C/s or more, more preferably 0.10°C/s or more.
- the third average cooling rate is preferably 0.80°C/s or less, more preferably 0.60°C/s or less.
- the third average cooling rate is "second cooling stop temperature (°C) - 50°C/cooling time (seconds) from the second cooling stop temperature (°C) to 50°C".
- the surface of the steel sheet may be galvanized to obtain a steel sheet having a galvanized layer on the surface.
- the type of plating treatment is not particularly limited, and may be either hot-dip galvanizing or electrogalvanizing.
- the alloying hot-dip galvanizing treatment a plating treatment in which alloying is performed after hot-dip galvanizing may be performed. Hot-dip galvanizing is used for automobile steel sheets and the like.
- the steel sheet When applying hot-dip galvanizing, the steel sheet is immersed in a hot-dip galvanizing bath in a continuous annealing furnace at the front stage of the continuous hot-dip galvanizing line after the above-mentioned annealing holding step and first cooling step to form a hot-dip galvanized layer on the surface of the steel sheet. It is sufficient to form an alloyed galvanized steel sheet by subsequently performing an alloying treatment.
- hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment can be performed on the surface of the steel sheet.
- the soaking and cooling steps and the plating step described above may be performed in separate lines.
- electrogalvanizing can be performed after annealing, that is, after the third cooling step.
- the thickness of the steel plate of the present invention obtained as described above is preferably 0.5 mm or more. Further, the thickness of the steel plate of the present invention is preferably 2.0 mm or less. Further, the plate width is preferably 600 mm or more. Moreover, it is preferable that the plate width of the steel plate of the present invention is 1700 mm or less.
- the member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and bonding. Further, the method for manufacturing the member of the present invention includes the step of subjecting the steel plate of the present invention to at least one of forming and bonding to produce a member.
- the steel sheet of the present invention has a tensile strength of 780 MPa or more, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Therefore, members obtained using the steel sheet of the present invention also have high strength, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Furthermore, by using the member of the present invention, it is possible to reduce the weight. Therefore, the member of the present invention can be suitably used for, for example, vehicle body frame parts.
- the members of the invention also include welded joints.
- general processing methods such as press working can be used without restriction.
- general welding such as spot welding and arc welding, rivet joining, caulking joining, etc. can be used without limitation.
- a slab manufactured by continuous casting having the composition shown in Table 1 was heated to 1200°C, and the soaking time was 200 min.
- Table 2 shows a cold-rolled steel sheet with a thickness of 1.4 mm manufactured by cold rolling at a rolling ratio of 50% after a hot rolling process with a finish rolling temperature of 900°C and a coiling temperature of 550°C.
- a steel plate of the present invention and a steel plate of a comparative example were manufactured by processing under the annealing conditions shown in . The width of all the obtained steel plates was 1500 mm.
- a steel plate was immersed in a galvanizing bath at a temperature of 440° C. or higher and 500° C. or lower to perform hot-dip galvanizing treatment, and then the amount of plating deposited was adjusted by gas wiping or the like.
- a galvanizing bath having an Al content of 0.10% or more and 0.22% or less was used for the hot-dip galvanizing.
- hot-dip galvanized steel sheets were subjected to alloying treatment after the hot-dip galvanizing treatment to obtain alloyed hot-dip galvanized steel sheets (GA).
- alloying treatment was performed in a temperature range of 460° C. or higher and 550° C. or lower.
- steel plates cold rolled steel plates: CR
- EG electrogalvanized steel plates
- the steel structure was measured using the following method. The measurement results are shown in Table 3. To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis. Polygonal ferrite is a relatively equiaxed ferrite with almost no carbide inside. This is the area that appears blackest in the SEM. Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM.
- the area of ferrite with an aspect ratio ⁇ 2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated.
- the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. It was compared.
- the tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
- Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
- the residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM.
- Carbide has a structure with a particle size of 1 ⁇ m or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
- the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. did.
- the volume fraction of retained austenite was determined by X-ray diffraction after chemically polishing a 1/4 thickness position from the surface layer.
- a Co-K ⁇ ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. calculated the rate.
- the area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F was used. Then, the C concentration distribution was measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7 ⁇ 10 ⁇ 8 A, and a minimum beam diameter, and an area ratio at which the C concentration was 0.5 mass% or more was calculated. However, in order to eliminate the influence of contamination, background components were subtracted so that the average value of C obtained in the analysis was equal to the carbon content of the base material.
- the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location.
- the amount of C was set to .
- d 0 is the initial hole diameter (mm)
- d is the hole diameter at the time of crack occurrence (mm)
- the hole expansion rate ⁇ (%) ⁇ (d - d 0 )/d 0 ⁇ 100
- the material stability evaluation in the board width direction 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (12W/24 position (W: board width)). (including the width center position), and the EL and ⁇ at each position (measurement position X) were determined. Then, the material stability in the board width direction was evaluated by determining the ratio of the difference between the measured value at the board width center position and each position to the measured value at the center position. Using EL and ⁇ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and ⁇ is 10% or less are defined as areas where the difference in EL and ⁇ is 10% or less, and this area is defined for the entire board width.
- members obtained by forming, joining, and forming and joining the steel sheets of the invention examples have a high quality. It has high strength, excellent press formability, ductility, stretch flange formability, and material stability in the sheet width direction. It was found that it has excellent stretch flange formability and material stability in the width direction of the plate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Provided are: a steel sheet and a member that have tensile strength of at least 780 MPa, excellent press-moldability, ductility, and expansion flange moldability, and excellent material stability in a sheet width direction; and a method of manufacturing the steel sheet and the member. The present invention has a component composition and a steel structure with prescribed ranges. The combined surface modulus of quenched martensite and residual austenite with an aspect ratio of 3 or less and a circle-equivalent diameter of at least 2.0 μm, with respect to the total surface modulus of quenched martensite and residual austenite, is 20% or less. The surface modulus of a carbon-concentrated region where the carbon concentration is at least 0.5% by mass is 20% or less with respect to the entire structure.
Description
本発明は、鋼板、部材およびそれらの製造方法に関する。より詳細には、本発明は、引張強度(TS)が780MPa以上であり、優れた成形性と材質安定性とを有する鋼板、部材およびそれらの製造方法に関する。本発明は、自動車等の各種の用途において使用される鋼板、部材およびそれらの製造方法に関する。
The present invention relates to steel plates, members, and methods of manufacturing them. More specifically, the present invention relates to steel plates and members having a tensile strength (TS) of 780 MPa or more and excellent formability and material stability, and methods for manufacturing them. The present invention relates to steel plates and members used in various applications such as automobiles, and methods of manufacturing them.
近年、地球環境保全の観点から自動車のCO2排出ガス規制の強化が国際的な枠組みのなかで進められている。自動車の燃費改善には、自動車骨格用部材に用いられる鋼板の薄肉化による自動車の車体軽量化が最も有効であり、自動車の低燃費に寄与する目的で高強度鋼板の使用量が増加している。一般的に鋼板の高強度化に伴い、延性や伸びフランジ成形性の低下に起因したプレス成形時の割れが生じやすくなる。このため、従来と比べて延性と伸びフランジ成形性を向上させた鋼板が望まれる。また、高強度化に伴い、降伏比:YR(YR=降伏強度YS/引張強度TS)が高くなることから、成形後のスプリングバックが増大するため、プレス成形後の寸法精度が低下するという課題があり、プレス成形性の観点から低YRの鋼板が望まれる。
In recent years, from the perspective of preserving the global environment, stricter regulations on CO2 emissions from automobiles have been promoted within an international framework. The most effective way to improve the fuel efficiency of automobiles is to reduce the weight of automobile bodies by making the steel plates used in automobile frame parts thinner, and the amount of high-strength steel plates used is increasing in order to contribute to the fuel efficiency of automobiles. . Generally, as the strength of steel sheets increases, cracks are more likely to occur during press forming due to a decrease in ductility and stretch flange formability. Therefore, a steel plate with improved ductility and stretch-flange formability compared to conventional steel sheets is desired. In addition, as the strength increases, the yield ratio: YR (YR = yield strength YS / tensile strength TS) increases, which increases springback after molding, resulting in a decrease in dimensional accuracy after press molding. Therefore, a steel plate with low YR is desired from the viewpoint of press formability.
一方で、カーボンニュートラルの観点では、材料の製造から製品の製造までの全ての過程で生じるCO2排出量も重要な指標となる。従って、製品を製造する際に生じるスクラップ量が増加すると、排出されるCO2の総量が増加するため、環境負荷が増大することが懸念される。このため、製造過程における材料の使い切り(歩留まり改善)が求められ、板幅方向での優れた材質の安定性も鋼板に求められる。しかしながら、鋼板の高強度化に伴い、板幅方向の延性や穴広げ性などの成形性のバラつきが顕在化する。そして、これに起因してプレス成形時に割れが生じやすくなるため、品質を確保する目的でブランキング位置に制限を設ける必要が生じ、歩留まりが低下するという課題がある。
On the other hand, from the perspective of carbon neutrality, the amount of CO 2 emissions generated in all processes from material production to product production is also an important indicator. Therefore, if the amount of scrap generated when manufacturing a product increases, the total amount of CO 2 emitted will increase, and there is a concern that the environmental burden will increase. For this reason, it is required to use up the material in the manufacturing process (improving yield), and steel sheets are also required to have excellent material stability in the width direction. However, as the strength of steel sheets increases, variations in formability such as ductility in the sheet width direction and hole expandability become apparent. As a result of this, cracks are likely to occur during press molding, making it necessary to limit the blanking position in order to ensure quality, resulting in a lower yield.
高強度鋼板の成形性を改善する技術として、組織中に残留オーステナイトを分散させたTRIP鋼板が開発されている。例えば、特許文献1では、C:0.04~0.12%、Si:0.8~2.5%、Mn:0.5~2.0%を含む鋼を焼鈍後に300~500℃で10~900sec保持するオーステンパー(ベイナイト変態に伴う炭素分配)により、2~10%の残留γを生成させることでTS×El≧21000MPa・%の高い延性と70%以上の高い伸びフランジ成形性を有する鋼板が得られることが開示されている。
As a technology to improve the formability of high-strength steel sheets, TRIP steel sheets have been developed in which retained austenite is dispersed in the structure. For example, in Patent Document 1, steel containing C: 0.04 to 0.12%, Si: 0.8 to 2.5%, and Mn: 0.5 to 2.0% is annealed at 300 to 500°C. Austempering (carbon distribution accompanying bainite transformation) held for 10 to 900 seconds generates 2 to 10% residual γ, resulting in high ductility of TS×El≧21000MPa・% and high stretch flange formability of 70% or more. It is disclosed that a steel plate having the following properties can be obtained.
スプリングバックの低減に有効な低YRかつ延性に優れた鋼板として、DP鋼(Dual Phase鋼)が開発されている。一般的なDP鋼は、主相であるフェライト組織中にマルテンサイトを分散させた複相組織鋼である。しかしながら、フェライトとマルテンサイトの界面に応力が集中することで、クラックが発生しやすいため、DP鋼には伸びフランジ成形性に劣るという欠点がある。DP鋼の伸びフランジ成形性を改善する技術として、例えば、特許文献2、特許文献3がある。
DP steel (Dual Phase steel) has been developed as a steel plate with low YR and excellent ductility that is effective in reducing springback. General DP steel is a multi-phase steel in which martensite is dispersed in a ferrite structure which is the main phase. However, DP steel has the disadvantage of poor stretch flange formability because cracks are likely to occur due to stress concentration at the interface between ferrite and martensite. Techniques for improving the stretch flange formability of DP steel include, for example, Patent Document 2 and Patent Document 3.
特許文献2では、全組織に対するフェライトの占積率を5~30%、マルテンサイトの占積率を50~95%に制御し、平均粒径が円相当直径で3μm以下の微細なフェライトと平均粒径が円相当直径で6μm以下のマルテンサイトに制御することで、延性と伸びフランジ成形性を改善することが開示されている。
In Patent Document 2, the space factor of ferrite is controlled to 5 to 30% and the space factor of martensite to the entire structure is controlled to 50 to 95%, and the average grain size is fine ferrite with an equivalent circle diameter of 3 μm or less. It is disclosed that ductility and stretch flange formability can be improved by controlling the grain size to martensite having a circular equivalent diameter of 6 μm or less.
また、特許文献3では、全組織に対するフェライトの占積率を50%以上、マルテンサイトの占積率を3~30%に制御し、かつフェライトの平均結晶粒径を10μm以下、マルテンサイトの平均結晶粒径を5μm以下とすることで伸びフランジ成形性の劣化を抑制する技術が開示されている。
In addition, in Patent Document 3, the space factor of ferrite is controlled to be 50% or more and the space factor of martensite is controlled to 3 to 30% with respect to the entire structure, and the average crystal grain size of ferrite is controlled to be 10 μm or less, and the average grain size of martensite is controlled to be 10 μm or less. A technique has been disclosed in which deterioration in stretch flange formability is suppressed by controlling the crystal grain size to 5 μm or less.
しかしながら、特許文献1および特許文献2は、延性および伸びフランジ成形性に優れた鋼板の製造方法が開示されているものの、軟質相のフェライトを多く形成する必要があるため、例えば、引張強度が780MPa以上のさらなる高強度化は困難である。また、特許文献3は、低YRかつ延性と伸びフランジ成形性に優れたDP鋼板の製造方法を開示しているが、DP組織であるため、鋼板の高強度化に伴いマルテンサイト組織の面積率が増加することで延性が低下し、センターピラー等の難成型部品の成形では延性が必要とされる曲げ稜線部で破断が認められ、必ずしも十分ではないことが明らかとなった。また、いずれの特許文献においても、板幅方向の延性および伸びフランジ成形性のバラつきを抑制する技術は開示されていない。従って、プレス成形性の観点から、低YRでかつ優れた延性と伸びフランジ成形性を有し、材料の歩留まり改善の観点から、優れた板幅方向の材質安定性を有する高強度鋼板の開発が求められている。
本発明は、かかる事情に鑑み、780MPa以上の引張強度(TS)を有し、かつ、プレス成形性、延性および伸びフランジ成形性に優れ、かつ板幅方向の材質安定性に優れた鋼板、部材およびそれらの製造方法を提供することを目的とする。 However, although Patent Document 1 and Patent Document 2 disclose a method for producing a steel plate with excellent ductility and stretch-flange formability, it is necessary to form a large amount of soft phase ferrite, so that the tensile strength is 780 MPa, for example. It is difficult to further increase the strength. In addition, Patent Document 3 discloses a method for manufacturing a DP steel sheet that has low YR and excellent ductility and stretch-flange formability, but since it has a DP structure, the area ratio of martensitic structure is As ductility increases, ductility decreases, and fractures were observed at bending ridges where ductility is required for forming difficult-to-form parts such as center pillars, making it clear that ductility is not always sufficient. Further, none of the patent documents discloses a technique for suppressing variations in ductility and stretch flange formability in the sheet width direction. Therefore, from the perspective of press formability, it is necessary to develop a high-strength steel plate that has low YR, excellent ductility and stretch-flange formability, and from the perspective of improving material yield, it has excellent material stability in the width direction. It has been demanded.
In view of the above circumstances, the present invention provides a steel plate and member having a tensile strength (TS) of 780 MPa or more, excellent press formability, ductility and stretch flange formability, and excellent material stability in the width direction. The purpose of this invention is to provide methods for producing the same.
本発明は、かかる事情に鑑み、780MPa以上の引張強度(TS)を有し、かつ、プレス成形性、延性および伸びフランジ成形性に優れ、かつ板幅方向の材質安定性に優れた鋼板、部材およびそれらの製造方法を提供することを目的とする。 However, although Patent Document 1 and Patent Document 2 disclose a method for producing a steel plate with excellent ductility and stretch-flange formability, it is necessary to form a large amount of soft phase ferrite, so that the tensile strength is 780 MPa, for example. It is difficult to further increase the strength. In addition, Patent Document 3 discloses a method for manufacturing a DP steel sheet that has low YR and excellent ductility and stretch-flange formability, but since it has a DP structure, the area ratio of martensitic structure is As ductility increases, ductility decreases, and fractures were observed at bending ridges where ductility is required for forming difficult-to-form parts such as center pillars, making it clear that ductility is not always sufficient. Further, none of the patent documents discloses a technique for suppressing variations in ductility and stretch flange formability in the sheet width direction. Therefore, from the perspective of press formability, it is necessary to develop a high-strength steel plate that has low YR, excellent ductility and stretch-flange formability, and from the perspective of improving material yield, it has excellent material stability in the width direction. It has been demanded.
In view of the above circumstances, the present invention provides a steel plate and member having a tensile strength (TS) of 780 MPa or more, excellent press formability, ductility and stretch flange formability, and excellent material stability in the width direction. The purpose of this invention is to provide methods for producing the same.
ここで、引張強度は、JIS Z2241(2011)に準拠して得られる引張強度(TS)のことを指す。
プレス成形性に優れるとは、JIS Z2241(2011)に準拠して得られる降伏比YRが0.8以下であることを指す。
延性に優れるとは、JIS Z2241(2011)に準拠して得られる全伸びELが以下の(A)~(C)のいずれかを満たすことを指す。
(A)TS:780MPa以上980MPa未満の場合、EL:16.0%以上、
(B)TS:980MPa以上1180MPa未満の場合、EL:14.0%以上、
(C)TS:1180MPa以上の場合、EL:12.0%以上
伸びフランジ成形性に優れるとは、JFST1001の規定に準拠した穴広げ試験により得られる穴広げ率λ(%)(={(d-d0)/d0}×100)が30%以上であることを指す。
板幅方向の材質安定性に優れるとは、板幅方向の測定位置XにおけるELおよびλに関し、以下の式(1)及び式(2)を連続して満たす領域Aの板幅が、全板幅に対して80%以上であることを指す。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
(式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所(板幅Wを24個の均等な幅に分割する際の23箇所の隣接し合う各幅の接触箇所)とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。)
ここで、例えば、式(1)及び式(2)を連続して満たす測定位置Xが2W/24~20W/24の場合、式(1)及び式(2)を連続して満たす領域Aの板幅は、全板幅に対して、100×(20-2+1)/23=83%となる。 Here, the tensile strength refers to tensile strength (TS) obtained in accordance with JIS Z2241 (2011).
"Excellent press formability" means that the yield ratio YR obtained according to JIS Z2241 (2011) is 0.8 or less.
Excellent ductility means that the total elongation EL obtained in accordance with JIS Z2241 (2011) satisfies any of the following (A) to (C).
(A) TS: 780 MPa or more and less than 980 MPa, EL: 16.0% or more,
(B) TS: 980 MPa or more and less than 1180 MPa, EL: 14.0% or more,
(C) When TS: 1180 MPa or more, EL: 12.0% or more Excellent stretch flange formability means hole expansion rate λ (%) (={(d -d 0 )/d 0 }×100) is 30% or more.
Excellent material stability in the sheet width direction means that the sheet width in region A continuously satisfies the following equations (1) and (2) regarding EL and λ at measurement position X in the sheet width direction. Refers to 80% or more of the width.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
(In formulas (1) and (2), the measurement position In other words, the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24. , 9W/24, 10W/24, 11W/24, 12W/24, 13W/24, 14W/24, 15W/24, 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W /24, 22W/24, 23W/24, a total of 23 locations, are defined as measurement positions X.)
Here, for example, if the measurement position X that continuously satisfies equations (1) and (2) is 2W/24 to 20W/24, then The plate width is 100×(20-2+1)/23=83% of the total plate width.
プレス成形性に優れるとは、JIS Z2241(2011)に準拠して得られる降伏比YRが0.8以下であることを指す。
延性に優れるとは、JIS Z2241(2011)に準拠して得られる全伸びELが以下の(A)~(C)のいずれかを満たすことを指す。
(A)TS:780MPa以上980MPa未満の場合、EL:16.0%以上、
(B)TS:980MPa以上1180MPa未満の場合、EL:14.0%以上、
(C)TS:1180MPa以上の場合、EL:12.0%以上
伸びフランジ成形性に優れるとは、JFST1001の規定に準拠した穴広げ試験により得られる穴広げ率λ(%)(={(d-d0)/d0}×100)が30%以上であることを指す。
板幅方向の材質安定性に優れるとは、板幅方向の測定位置XにおけるELおよびλに関し、以下の式(1)及び式(2)を連続して満たす領域Aの板幅が、全板幅に対して80%以上であることを指す。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
(式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所(板幅Wを24個の均等な幅に分割する際の23箇所の隣接し合う各幅の接触箇所)とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。)
ここで、例えば、式(1)及び式(2)を連続して満たす測定位置Xが2W/24~20W/24の場合、式(1)及び式(2)を連続して満たす領域Aの板幅は、全板幅に対して、100×(20-2+1)/23=83%となる。 Here, the tensile strength refers to tensile strength (TS) obtained in accordance with JIS Z2241 (2011).
"Excellent press formability" means that the yield ratio YR obtained according to JIS Z2241 (2011) is 0.8 or less.
Excellent ductility means that the total elongation EL obtained in accordance with JIS Z2241 (2011) satisfies any of the following (A) to (C).
(A) TS: 780 MPa or more and less than 980 MPa, EL: 16.0% or more,
(B) TS: 980 MPa or more and less than 1180 MPa, EL: 14.0% or more,
(C) When TS: 1180 MPa or more, EL: 12.0% or more Excellent stretch flange formability means hole expansion rate λ (%) (={(d -d 0 )/d 0 }×100) is 30% or more.
Excellent material stability in the sheet width direction means that the sheet width in region A continuously satisfies the following equations (1) and (2) regarding EL and λ at measurement position X in the sheet width direction. Refers to 80% or more of the width.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
(In formulas (1) and (2), the measurement position In other words, the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24. , 9W/24, 10W/24, 11W/24, 12W/24, 13W/24, 14W/24, 15W/24, 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W /24, 22W/24, 23W/24, a total of 23 locations, are defined as measurement positions X.)
Here, for example, if the measurement position X that continuously satisfies equations (1) and (2) is 2W/24 to 20W/24, then The plate width is 100×(20-2+1)/23=83% of the total plate width.
本発明者らは、上記の課題を解決するため、780MPa以上の引張強度を有する種々の薄鋼板について、プレス成形性、延性、伸びフランジ成形性および材質安定性に及ぼす各種要因について鋼板の成分組成およびミクロ組織、製造条件の観点から鋭意検討した。その結果、質量%で、C:0.05~0.20%、Si:0.40~1.50%、Mn:1.9~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:1.00%以下、N:0.015%未満を含有し、ポリゴナルフェライトの面積率を10%以上80%以下とし、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率を10%以上70%以下とし、残留オーステナイト(残留γ)の面積率を3%以上15%以下とし、焼入れマルテンサイトの面積率を15%以下(0%を含む)とした上で、焼入れマルテンサイトおよび残留γの合計面積に対して、アスペクト比が3以下で、かつ円相当径2.0μm以上の焼入れマルテンサイトおよび残留γの合計面積率(占積率)を20%以下とし、C濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の組織全体に対する面積率が20%以下である鋼組織とすることで、優れたプレス成形性、延性および伸びフランジ成形性を有し、さらに板幅方向の材質安定性に優れた(材質バラつきの小さな)高強度冷延鋼板が得られることを知見した。
In order to solve the above-mentioned problems, the present inventors investigated various factors affecting press formability, ductility, stretch-flange formability, and material stability for various thin steel sheets having a tensile strength of 780 MPa or more. We conducted extensive studies from the viewpoints of microstructure, manufacturing conditions, and microstructure. As a result, in mass %, C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol.Al: 1.00% or less, N: less than 0.015%, the area ratio of polygonal ferrite is 10% or more and 80% or less, upper bainite, tempered martensite, and lower part. The total area ratio of bainite is 10% or more and 70% or less, the area ratio of retained austenite (residual γ) is 3% or more and 15% or less, and the area ratio of quenched martensite is 15% or less (including 0%). Then, with respect to the total area of quenched martensite and residual γ, the total area ratio (space factor) of quenched martensite and residual γ with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more is 20 % or less, and by creating a steel structure in which the area ratio of the C-enriched region (SC ≧0.5 ) with respect to the entire structure is 20% or less with respect to the entire structure, excellent press formability is achieved. It has been found that a high-strength cold-rolled steel sheet having good ductility and stretch-flange formability and excellent material stability in the sheet width direction (with small material variations) can be obtained.
本発明は、上記知見に基づきなされたもので、その要旨は以下の通りである。
[1]質量%で、
C:0.05~0.20%、
Si:0.40~1.50%、
Mn:1.9~3.5%、
P:0.02%以下、
S:0.01%以下、
sol.Al:1.00%以下、
N:0.015%未満を含有し、
残部が鉄および不可避的不純物からなる成分組成と、
ポリゴナルフェライトの面積率:10%以上80%以下であり、
上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:10%以上70%以下であり、
残留オーステナイトの体積率:3%以上15%以下であり、
焼入れマルテンサイトの面積率:15%以下(0%を含む)であり、
さらに残部組織からなる鋼組織と、を有し、
焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径が2.0μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、
全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が20%以下である、鋼板。
[2]前記成分組成として、さらに、質量%で、
Ti:0.1%以下、
B:0.01%以下、
のうちから選ばれる1種または2種を含有する、[1]に記載の鋼板。
[3]前記成分組成として、さらに、質量%で、
Cu:1%以下、
Ni:1%以下、
Cr:1%以下、
Mo:0.5%以下、
V:0.5%以下、
Nb:0.1%以下、
のうちから選ばれる1種または2種以上を含有する、[1]または[2]に記載の鋼板。
[4]前記成分組成として、さらに、質量%で、
Mg:0.0050%以下、
Ca:0.0050%以下、
Sn:0.1%以下、
Sb:0.1%以下、
REM:0.0050%以下、
のうちから選んだ1種または2種以上を含有する、[1]~[3]のいずれかに記載の鋼板。
[5]表面に亜鉛めっき層を有する、[1]~[4]のいずれかに記載の鋼板。
[6][1]~[5]のいずれかに記載の鋼板を用いてなる部材。
[7][1]~[4]のいずれかに記載の成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、
前記焼鈍は、
前記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、前記焼鈍温度で10~500秒保持する保持工程と、
前記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして前記第一冷却停止温度まで冷却する第一冷却工程と、
350~550℃の滞留温度で10s以上60s以下滞留させた後、150~360℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却を行う第二冷却工程と、
前記第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程と、を有する鋼板の製造方法。
[8]前記第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行う、[7]に記載の鋼板の製造方法。
[9]前記焼鈍の後、鋼板表面に電気亜鉛めっき処理を行う、[7]に記載の鋼板の製造方法。
[10][1]~[5]のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。 The present invention was made based on the above findings, and the gist thereof is as follows.
[1] In mass%,
C: 0.05-0.20%,
Si: 0.40 to 1.50%,
Mn: 1.9 to 3.5%,
P: 0.02% or less,
S: 0.01% or less,
sol. Al: 1.00% or less,
N: Contains less than 0.015%,
A component composition in which the remainder consists of iron and unavoidable impurities,
Area ratio of polygonal ferrite: 10% or more and 80% or less,
Total area ratio of upper bainite, tempered martensite, and lower bainite: 10% or more and 70% or less,
Volume fraction of retained austenite: 3% or more and 15% or less,
Area ratio of quenched martensite: 15% or less (including 0%),
Furthermore, it has a steel structure consisting of a residual structure,
The total area ratio of hardened martensite and retained austenite having an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more is 20% or less with respect to the total area ratio of hardened martensite and retained austenite,
A steel plate in which the area ratio of C-enriched regions (SC ≧0.5 ) in which the C concentration is 0.5 mass% or more relative to the entire structure is 20% or less.
[2] The component composition further includes, in mass%,
Ti: 0.1% or less,
B: 0.01% or less,
The steel plate according to [1], containing one or two selected from among the above.
[3] The component composition further includes, in mass%,
Cu: 1% or less,
Ni: 1% or less,
Cr: 1% or less,
Mo: 0.5% or less,
V: 0.5% or less,
Nb: 0.1% or less,
The steel plate according to [1] or [2], containing one or more selected from the following.
[4] The component composition further includes, in mass%,
Mg: 0.0050% or less,
Ca: 0.0050% or less,
Sn: 0.1% or less,
Sb: 0.1% or less,
REM: 0.0050% or less,
The steel plate according to any one of [1] to [3], containing one or more selected from the following.
[5] The steel sheet according to any one of [1] to [4], which has a galvanized layer on the surface.
[6] A member using the steel plate according to any one of [1] to [5].
[7] After hot rolling, pickling and cold rolling a steel slab having the composition according to any one of [1] to [4], the obtained cold rolled steel plate is A method of manufacturing a steel plate that undergoes annealing,
The annealing is
A holding step of heating the cold rolled steel plate to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds;
A first cooling step of cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550 ° C. to the first cooling stop temperature at a first average cooling rate of 2 to 50 ° C./s;
A second cooling step of cooling at a second average cooling rate: 3 to 50 °C/s to a second cooling stop temperature of 150 to 360 °C, after retaining at a retention temperature of 350 to 550 °C for 10 seconds to 60 seconds;
A method for producing a steel sheet, comprising: a third cooling step in which cooling is performed in a temperature range from the second cooling stop temperature to 50° C. at a third average cooling rate: 0.05 to 1.0° C./s.
[8] The steel sheet according to [7], wherein in the second cooling step, the steel sheet surface is subjected to hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment when the steel sheet is retained at a residence temperature of 350 to 550° C. for 10 seconds or more and 60 seconds or less. manufacturing method.
[9] The method for producing a steel sheet according to [7], wherein after the annealing, the surface of the steel sheet is electrogalvanized.
[10] A method for manufacturing a member, comprising the step of subjecting the steel plate according to any one of [1] to [5] to at least one of forming and bonding to produce a member.
[1]質量%で、
C:0.05~0.20%、
Si:0.40~1.50%、
Mn:1.9~3.5%、
P:0.02%以下、
S:0.01%以下、
sol.Al:1.00%以下、
N:0.015%未満を含有し、
残部が鉄および不可避的不純物からなる成分組成と、
ポリゴナルフェライトの面積率:10%以上80%以下であり、
上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:10%以上70%以下であり、
残留オーステナイトの体積率:3%以上15%以下であり、
焼入れマルテンサイトの面積率:15%以下(0%を含む)であり、
さらに残部組織からなる鋼組織と、を有し、
焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径が2.0μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、
全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が20%以下である、鋼板。
[2]前記成分組成として、さらに、質量%で、
Ti:0.1%以下、
B:0.01%以下、
のうちから選ばれる1種または2種を含有する、[1]に記載の鋼板。
[3]前記成分組成として、さらに、質量%で、
Cu:1%以下、
Ni:1%以下、
Cr:1%以下、
Mo:0.5%以下、
V:0.5%以下、
Nb:0.1%以下、
のうちから選ばれる1種または2種以上を含有する、[1]または[2]に記載の鋼板。
[4]前記成分組成として、さらに、質量%で、
Mg:0.0050%以下、
Ca:0.0050%以下、
Sn:0.1%以下、
Sb:0.1%以下、
REM:0.0050%以下、
のうちから選んだ1種または2種以上を含有する、[1]~[3]のいずれかに記載の鋼板。
[5]表面に亜鉛めっき層を有する、[1]~[4]のいずれかに記載の鋼板。
[6][1]~[5]のいずれかに記載の鋼板を用いてなる部材。
[7][1]~[4]のいずれかに記載の成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、
前記焼鈍は、
前記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、前記焼鈍温度で10~500秒保持する保持工程と、
前記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして前記第一冷却停止温度まで冷却する第一冷却工程と、
350~550℃の滞留温度で10s以上60s以下滞留させた後、150~360℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却を行う第二冷却工程と、
前記第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程と、を有する鋼板の製造方法。
[8]前記第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行う、[7]に記載の鋼板の製造方法。
[9]前記焼鈍の後、鋼板表面に電気亜鉛めっき処理を行う、[7]に記載の鋼板の製造方法。
[10][1]~[5]のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。 The present invention was made based on the above findings, and the gist thereof is as follows.
[1] In mass%,
C: 0.05-0.20%,
Si: 0.40 to 1.50%,
Mn: 1.9 to 3.5%,
P: 0.02% or less,
S: 0.01% or less,
sol. Al: 1.00% or less,
N: Contains less than 0.015%,
A component composition in which the remainder consists of iron and unavoidable impurities,
Area ratio of polygonal ferrite: 10% or more and 80% or less,
Total area ratio of upper bainite, tempered martensite, and lower bainite: 10% or more and 70% or less,
Volume fraction of retained austenite: 3% or more and 15% or less,
Area ratio of quenched martensite: 15% or less (including 0%),
Furthermore, it has a steel structure consisting of a residual structure,
The total area ratio of hardened martensite and retained austenite having an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more is 20% or less with respect to the total area ratio of hardened martensite and retained austenite,
A steel plate in which the area ratio of C-enriched regions (SC ≧0.5 ) in which the C concentration is 0.5 mass% or more relative to the entire structure is 20% or less.
[2] The component composition further includes, in mass%,
Ti: 0.1% or less,
B: 0.01% or less,
The steel plate according to [1], containing one or two selected from among the above.
[3] The component composition further includes, in mass%,
Cu: 1% or less,
Ni: 1% or less,
Cr: 1% or less,
Mo: 0.5% or less,
V: 0.5% or less,
Nb: 0.1% or less,
The steel plate according to [1] or [2], containing one or more selected from the following.
[4] The component composition further includes, in mass%,
Mg: 0.0050% or less,
Ca: 0.0050% or less,
Sn: 0.1% or less,
Sb: 0.1% or less,
REM: 0.0050% or less,
The steel plate according to any one of [1] to [3], containing one or more selected from the following.
[5] The steel sheet according to any one of [1] to [4], which has a galvanized layer on the surface.
[6] A member using the steel plate according to any one of [1] to [5].
[7] After hot rolling, pickling and cold rolling a steel slab having the composition according to any one of [1] to [4], the obtained cold rolled steel plate is A method of manufacturing a steel plate that undergoes annealing,
The annealing is
A holding step of heating the cold rolled steel plate to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds;
A first cooling step of cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550 ° C. to the first cooling stop temperature at a first average cooling rate of 2 to 50 ° C./s;
A second cooling step of cooling at a second average cooling rate: 3 to 50 °C/s to a second cooling stop temperature of 150 to 360 °C, after retaining at a retention temperature of 350 to 550 °C for 10 seconds to 60 seconds;
A method for producing a steel sheet, comprising: a third cooling step in which cooling is performed in a temperature range from the second cooling stop temperature to 50° C. at a third average cooling rate: 0.05 to 1.0° C./s.
[8] The steel sheet according to [7], wherein in the second cooling step, the steel sheet surface is subjected to hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment when the steel sheet is retained at a residence temperature of 350 to 550° C. for 10 seconds or more and 60 seconds or less. manufacturing method.
[9] The method for producing a steel sheet according to [7], wherein after the annealing, the surface of the steel sheet is electrogalvanized.
[10] A method for manufacturing a member, comprising the step of subjecting the steel plate according to any one of [1] to [5] to at least one of forming and bonding to produce a member.
本発明によれば、引張強度TSが780MPa以上の高強度で、優れたプレス成形性、延性および伸びフランジ成形性を有し、板幅方向の材質安定性に優れた鋼板が得られる。
本発明の鋼板を自動車車体の骨格部材に適用する場合、複雑形状の難成形性部材を冷間プレス加工により製造できるため、自動車の車体軽量化に大きく貢献できる。さらに、板幅方向の材質のバラつきが小さいことから、鋼板のブランキング位置が制限されず、材料の歩留まりを著しく改善することが可能である。 According to the present invention, a steel plate can be obtained that has a high tensile strength TS of 780 MPa or more, has excellent press formability, ductility, and stretch flange formability, and has excellent material stability in the width direction.
When the steel sheet of the present invention is applied to a frame member of an automobile body, a difficult-to-form member with a complicated shape can be manufactured by cold pressing, and thus it can greatly contribute to reducing the weight of the automobile body. Furthermore, since the variation in material quality in the sheet width direction is small, the blanking position of the steel sheet is not restricted, and the material yield can be significantly improved.
本発明の鋼板を自動車車体の骨格部材に適用する場合、複雑形状の難成形性部材を冷間プレス加工により製造できるため、自動車の車体軽量化に大きく貢献できる。さらに、板幅方向の材質のバラつきが小さいことから、鋼板のブランキング位置が制限されず、材料の歩留まりを著しく改善することが可能である。 According to the present invention, a steel plate can be obtained that has a high tensile strength TS of 780 MPa or more, has excellent press formability, ductility, and stretch flange formability, and has excellent material stability in the width direction.
When the steel sheet of the present invention is applied to a frame member of an automobile body, a difficult-to-form member with a complicated shape can be manufactured by cold pressing, and thus it can greatly contribute to reducing the weight of the automobile body. Furthermore, since the variation in material quality in the sheet width direction is small, the blanking position of the steel sheet is not restricted, and the material yield can be significantly improved.
以下、本発明について具体的に説明する。なお、本発明は以下の実施形態に限定されない。
本発明の鋼板は、質量%で、C:0.05~0.20%、Si:0.40~1.50%、Mn:1.9~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:1.00%以下、N:0.015%未満を含有し、残部が鉄および不可避的不純物からなる成分組成と、ポリゴナルフェライトの面積率:10%以上80%以下であり、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:10%以上70%以下であり、残留オーステナイトの体積率:3%以上15%以下であり、焼入れマルテンサイトの面積率:15%以下(0%を含む)であり、さらに残部組織からなる鋼組織と、を有し、焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径が2.0μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が20%以下である。
以下、成分組成、鋼組織の順で本発明の鋼板を説明する。まず、本発明の成分組成の限定理由を説明する。なお、以下の説明において、鋼の成分を示す%は、特に説明の無い限り、すべて質量%である。 The present invention will be explained in detail below. Note that the present invention is not limited to the following embodiments.
The steel plate of the present invention has C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, and P: 0.02% or less in mass %. , S: 0.01% or less, sol. The component composition contains Al: 1.00% or less, N: less than 0.015%, the balance is iron and inevitable impurities, and the area ratio of polygonal ferrite is 10% or more and 80% or less, and upper bainite. The total area ratio of tempered martensite and lower bainite is 10% or more and 70% or less, the volume ratio of retained austenite is 3% or more and 15% or less, and the area ratio of hardened martensite is 15% or less (0%). ), and further has a steel structure consisting of a residual structure, and has an aspect ratio of 3 or less with respect to the total area ratio of hardened martensite and retained austenite, and an equivalent circle diameter of 2.0 μm or more. The total area ratio of certain quenched martensite and retained austenite is 20% or less, and the area ratio of the C-enriched region (S C ≥ 0.5 ) where the C concentration is 0.5 mass% or more with respect to the entire structure is 20%. % or less.
The steel plate of the present invention will be described below in the order of its component composition and steel structure. First, the reason for limiting the component composition of the present invention will be explained. In the following description, all percentages indicating the components of steel are percentages by mass unless otherwise specified.
本発明の鋼板は、質量%で、C:0.05~0.20%、Si:0.40~1.50%、Mn:1.9~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:1.00%以下、N:0.015%未満を含有し、残部が鉄および不可避的不純物からなる成分組成と、ポリゴナルフェライトの面積率:10%以上80%以下であり、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:10%以上70%以下であり、残留オーステナイトの体積率:3%以上15%以下であり、焼入れマルテンサイトの面積率:15%以下(0%を含む)であり、さらに残部組織からなる鋼組織と、を有し、焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径が2.0μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が20%以下である。
以下、成分組成、鋼組織の順で本発明の鋼板を説明する。まず、本発明の成分組成の限定理由を説明する。なお、以下の説明において、鋼の成分を示す%は、特に説明の無い限り、すべて質量%である。 The present invention will be explained in detail below. Note that the present invention is not limited to the following embodiments.
The steel plate of the present invention has C: 0.05 to 0.20%, Si: 0.40 to 1.50%, Mn: 1.9 to 3.5%, and P: 0.02% or less in mass %. , S: 0.01% or less, sol. The component composition contains Al: 1.00% or less, N: less than 0.015%, the balance is iron and inevitable impurities, and the area ratio of polygonal ferrite is 10% or more and 80% or less, and upper bainite. The total area ratio of tempered martensite and lower bainite is 10% or more and 70% or less, the volume ratio of retained austenite is 3% or more and 15% or less, and the area ratio of hardened martensite is 15% or less (0%). ), and further has a steel structure consisting of a residual structure, and has an aspect ratio of 3 or less with respect to the total area ratio of hardened martensite and retained austenite, and an equivalent circle diameter of 2.0 μm or more. The total area ratio of certain quenched martensite and retained austenite is 20% or less, and the area ratio of the C-enriched region (S C ≥ 0.5 ) where the C concentration is 0.5 mass% or more with respect to the entire structure is 20%. % or less.
The steel plate of the present invention will be described below in the order of its component composition and steel structure. First, the reason for limiting the component composition of the present invention will be explained. In the following description, all percentages indicating the components of steel are percentages by mass unless otherwise specified.
<C:0.05~0.20%>
Cは変態強化により所定の強度を確保する観点、および所定量の残留オーステナイト(残留γ)を確保して延性を向上させる観点から含有する。C含有量が0.05%未満では、これらの効果が十分に確保できない。
一方、C含有量が0.20%を超えると、マルテンサイト変態開始温度(Ms点)が低下する。これにより、第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程において、マルテンサイト変態とその後のマルテンサイトの焼戻しが十分に行われなくなる。そのため、焼入れマルテンサイトおよび0.5mass%以上のC濃化領域(SC≧0.5)の形成が促進され、伸びフランジ成形性および板幅方向の材質安定性が低下する。
このため、C含有量は0.05%以上0.20%以下とする。C含有量は、好ましくは0.08%以上である。また、C含有量は、好ましくは0.18%以下である。 <C: 0.05-0.20%>
C is contained from the viewpoint of securing a predetermined strength through transformation strengthening, and from the viewpoint of securing a predetermined amount of retained austenite (residual γ) to improve ductility. If the C content is less than 0.05%, these effects cannot be sufficiently ensured.
On the other hand, when the C content exceeds 0.20%, the martensitic transformation start temperature (Ms point) decreases. As a result, in the third cooling process in which the temperature range from the second cooling stop temperature to 50°C is cooled at a third average cooling rate: 0.05 to 1.0°C/s, martensite transformation and subsequent martensite transformation occur. Tempering is not performed sufficiently. Therefore, the formation of quenched martensite and a C enriched region of 0.5 mass% or more ( SC≧0.5 ) is promoted, and stretch flange formability and material stability in the plate width direction are reduced.
Therefore, the C content is set to 0.05% or more and 0.20% or less. The C content is preferably 0.08% or more. Further, the C content is preferably 0.18% or less.
Cは変態強化により所定の強度を確保する観点、および所定量の残留オーステナイト(残留γ)を確保して延性を向上させる観点から含有する。C含有量が0.05%未満では、これらの効果が十分に確保できない。
一方、C含有量が0.20%を超えると、マルテンサイト変態開始温度(Ms点)が低下する。これにより、第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程において、マルテンサイト変態とその後のマルテンサイトの焼戻しが十分に行われなくなる。そのため、焼入れマルテンサイトおよび0.5mass%以上のC濃化領域(SC≧0.5)の形成が促進され、伸びフランジ成形性および板幅方向の材質安定性が低下する。
このため、C含有量は0.05%以上0.20%以下とする。C含有量は、好ましくは0.08%以上である。また、C含有量は、好ましくは0.18%以下である。 <C: 0.05-0.20%>
C is contained from the viewpoint of securing a predetermined strength through transformation strengthening, and from the viewpoint of securing a predetermined amount of retained austenite (residual γ) to improve ductility. If the C content is less than 0.05%, these effects cannot be sufficiently ensured.
On the other hand, when the C content exceeds 0.20%, the martensitic transformation start temperature (Ms point) decreases. As a result, in the third cooling process in which the temperature range from the second cooling stop temperature to 50°C is cooled at a third average cooling rate: 0.05 to 1.0°C/s, martensite transformation and subsequent martensite transformation occur. Tempering is not performed sufficiently. Therefore, the formation of quenched martensite and a C enriched region of 0.5 mass% or more ( SC≧0.5 ) is promoted, and stretch flange formability and material stability in the plate width direction are reduced.
Therefore, the C content is set to 0.05% or more and 0.20% or less. The C content is preferably 0.08% or more. Further, the C content is preferably 0.18% or less.
<Si:0.40~1.50%>
Siは、フェライトを強化して強度を上昇させる観点、およびマルテンサイトやベイナイト中の炭化物生成を抑制して所定量の残留γを確保して延性を向上させる観点から含有する。Si含有量が0.40%未満ではこれらの効果が十分に確保できない。
一方、Si含有量が1.50%を超えると、未変態オーステナイトへの炭素分配が過度に促進され、0.5mass%以上のC濃化領域(SC≧0.5)の形成が促進され、伸びフランジ成形性および板幅方向の材質安定性が低下する。このためSi含有量は0.40%以上1.50%以下とする。Si含有量は、好ましくは0.60%以上である。また、Si含有量は、好ましくは1.20%以下とする。 <Si: 0.40-1.50%>
Si is contained from the viewpoint of strengthening the ferrite and increasing its strength, and from the viewpoint of suppressing the formation of carbides in martensite and bainite to ensure a predetermined amount of residual γ and improving ductility. If the Si content is less than 0.40%, these effects cannot be sufficiently ensured.
On the other hand, when the Si content exceeds 1.50%, carbon distribution to untransformed austenite is excessively promoted, and the formation of a C-enriched region of 0.5 mass% or more ( SC≧0.5 ) is promoted. , stretch flange formability and material stability in the plate width direction decrease. Therefore, the Si content is set to 0.40% or more and 1.50% or less. The Si content is preferably 0.60% or more. Further, the Si content is preferably 1.20% or less.
Siは、フェライトを強化して強度を上昇させる観点、およびマルテンサイトやベイナイト中の炭化物生成を抑制して所定量の残留γを確保して延性を向上させる観点から含有する。Si含有量が0.40%未満ではこれらの効果が十分に確保できない。
一方、Si含有量が1.50%を超えると、未変態オーステナイトへの炭素分配が過度に促進され、0.5mass%以上のC濃化領域(SC≧0.5)の形成が促進され、伸びフランジ成形性および板幅方向の材質安定性が低下する。このためSi含有量は0.40%以上1.50%以下とする。Si含有量は、好ましくは0.60%以上である。また、Si含有量は、好ましくは1.20%以下とする。 <Si: 0.40-1.50%>
Si is contained from the viewpoint of strengthening the ferrite and increasing its strength, and from the viewpoint of suppressing the formation of carbides in martensite and bainite to ensure a predetermined amount of residual γ and improving ductility. If the Si content is less than 0.40%, these effects cannot be sufficiently ensured.
On the other hand, when the Si content exceeds 1.50%, carbon distribution to untransformed austenite is excessively promoted, and the formation of a C-enriched region of 0.5 mass% or more ( SC≧0.5 ) is promoted. , stretch flange formability and material stability in the plate width direction decrease. Therefore, the Si content is set to 0.40% or more and 1.50% or less. The Si content is preferably 0.60% or more. Further, the Si content is preferably 1.20% or less.
<Mn:1.9~3.5%>
Mnは、鋼板の焼入れ性を向上させ、変態強化による高強度化を促進する観点、およびSiと同様にベイナイト中の炭化物の生成を抑制して延性に寄与する残留オーステナイトの形成を促進させて延性を向上させる観点から含有する。これらの効果を得るために、Mn含有量は1.9%以上必要となる。
一方、Mn含有量が3.5%を超えると、ベイナイト変態が著しく遅延し、所定量の残留オーステナイトを確保できず、延性が低下する。
また、Mn含有量が3.5%を超えると、粗大な焼入れマルテンサイトの生成を抑制することは難しくなり、伸びフランジ成形性が劣化する。
このため、Mn含有量は1.9%以上3.5%以下とする。Mn含有量は、好ましくは2.1%以上である。また、Mn含有量は、好ましくは3.3%以下である。 <Mn: 1.9 to 3.5%>
Mn improves the hardenability of steel sheets, promoting high strength through transformation strengthening, and, like Si, suppresses the formation of carbides in bainite and promotes the formation of retained austenite, which contributes to ductility. Contains from the viewpoint of improving. In order to obtain these effects, the Mn content needs to be 1.9% or more.
On the other hand, when the Mn content exceeds 3.5%, bainite transformation is significantly delayed, a predetermined amount of retained austenite cannot be secured, and ductility decreases.
Moreover, when the Mn content exceeds 3.5%, it becomes difficult to suppress the formation of coarse quenched martensite, and stretch flange formability deteriorates.
Therefore, the Mn content is set to 1.9% or more and 3.5% or less. The Mn content is preferably 2.1% or more. Further, the Mn content is preferably 3.3% or less.
Mnは、鋼板の焼入れ性を向上させ、変態強化による高強度化を促進する観点、およびSiと同様にベイナイト中の炭化物の生成を抑制して延性に寄与する残留オーステナイトの形成を促進させて延性を向上させる観点から含有する。これらの効果を得るために、Mn含有量は1.9%以上必要となる。
一方、Mn含有量が3.5%を超えると、ベイナイト変態が著しく遅延し、所定量の残留オーステナイトを確保できず、延性が低下する。
また、Mn含有量が3.5%を超えると、粗大な焼入れマルテンサイトの生成を抑制することは難しくなり、伸びフランジ成形性が劣化する。
このため、Mn含有量は1.9%以上3.5%以下とする。Mn含有量は、好ましくは2.1%以上である。また、Mn含有量は、好ましくは3.3%以下である。 <Mn: 1.9 to 3.5%>
Mn improves the hardenability of steel sheets, promoting high strength through transformation strengthening, and, like Si, suppresses the formation of carbides in bainite and promotes the formation of retained austenite, which contributes to ductility. Contains from the viewpoint of improving. In order to obtain these effects, the Mn content needs to be 1.9% or more.
On the other hand, when the Mn content exceeds 3.5%, bainite transformation is significantly delayed, a predetermined amount of retained austenite cannot be secured, and ductility decreases.
Moreover, when the Mn content exceeds 3.5%, it becomes difficult to suppress the formation of coarse quenched martensite, and stretch flange formability deteriorates.
Therefore, the Mn content is set to 1.9% or more and 3.5% or less. The Mn content is preferably 2.1% or more. Further, the Mn content is preferably 3.3% or less.
<P:0.02%以下>
Pは、鋼を強化する元素であるが、その含有量が多いとスポット溶接性を劣化させる。したがって、P含有量は0.02%以下とし、0.01%以下とすることが好ましい。なお、Pを含まなくてもよいが、0.001%未満に低減するには多大なコストがかかるため、P含有量は0.001%以上であることが好ましい。 <P: 0.02% or less>
P is an element that strengthens steel, but if its content is large, it deteriorates spot weldability. Therefore, the P content is 0.02% or less, preferably 0.01% or less. Note that although it is not necessary to contain P, it is preferable that the P content is 0.001% or more because reducing it to less than 0.001% requires a great deal of cost.
Pは、鋼を強化する元素であるが、その含有量が多いとスポット溶接性を劣化させる。したがって、P含有量は0.02%以下とし、0.01%以下とすることが好ましい。なお、Pを含まなくてもよいが、0.001%未満に低減するには多大なコストがかかるため、P含有量は0.001%以上であることが好ましい。 <P: 0.02% or less>
P is an element that strengthens steel, but if its content is large, it deteriorates spot weldability. Therefore, the P content is 0.02% or less, preferably 0.01% or less. Note that although it is not necessary to contain P, it is preferable that the P content is 0.001% or more because reducing it to less than 0.001% requires a great deal of cost.
<S:0.01%以下>
Sは、熱間圧延でのスケール剥離性を改善する効果、焼鈍時の窒化を抑制する効果があるが、スポット溶接性、曲げ性、穴広げ性に対して悪影響をもたらす元素である。これらの悪影響を低減するために、少なくともS含有量は0.01%以下とし、0.0020%以下とすることが好ましい。
なお、Sを含まなくてもよいが、0.0001%未満に低減するには多大なコストがかかるため、S含有量は製造コストの観点から0.0001%以上とすることが好ましい。S含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0015%以上である。 <S: 0.01% or less>
S has the effect of improving scale peelability during hot rolling and suppressing nitridation during annealing, but is an element that has an adverse effect on spot weldability, bendability, and hole expandability. In order to reduce these adverse effects, the S content is at least 0.01% or less, preferably 0.0020% or less.
Although it is not necessary to contain S, reducing the S content to less than 0.0001% requires a great deal of cost, so the S content is preferably 0.0001% or more from the viewpoint of manufacturing costs. The S content is more preferably 0.0005% or more, and still more preferably 0.0015% or more.
Sは、熱間圧延でのスケール剥離性を改善する効果、焼鈍時の窒化を抑制する効果があるが、スポット溶接性、曲げ性、穴広げ性に対して悪影響をもたらす元素である。これらの悪影響を低減するために、少なくともS含有量は0.01%以下とし、0.0020%以下とすることが好ましい。
なお、Sを含まなくてもよいが、0.0001%未満に低減するには多大なコストがかかるため、S含有量は製造コストの観点から0.0001%以上とすることが好ましい。S含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0015%以上である。 <S: 0.01% or less>
S has the effect of improving scale peelability during hot rolling and suppressing nitridation during annealing, but is an element that has an adverse effect on spot weldability, bendability, and hole expandability. In order to reduce these adverse effects, the S content is at least 0.01% or less, preferably 0.0020% or less.
Although it is not necessary to contain S, reducing the S content to less than 0.0001% requires a great deal of cost, so the S content is preferably 0.0001% or more from the viewpoint of manufacturing costs. The S content is more preferably 0.0005% or more, and still more preferably 0.0015% or more.
<sol.Al:1.00%以下>
Alは、脱酸のため、あるいは残留γを得る目的で含有する。sol.Alの下限は特に規定しないが、安定して脱酸を行うために、sol.Al含有量は0.005%以上とすることが好ましい。sol.Al含有量は、より好ましくは0.010%以上であり、さらに好ましくは0.020%以上である。
一方、sol.Al含有量が1.00%超えとなると、Al系の粗大介在物が多量に増加し、伸びフランジ成形性が低下する。このため、sol.Al含有量は1.00%以下とする。 <sol. Al: 1.00% or less>
Al is contained for the purpose of deoxidizing or obtaining residual γ. sol. Although the lower limit of Al is not particularly specified, in order to perform deoxidation stably, sol. The Al content is preferably 0.005% or more. sol. The Al content is more preferably 0.010% or more, and still more preferably 0.020% or more.
On the other hand, sol. If the Al content exceeds 1.00%, a large amount of Al-based coarse inclusions will increase, and stretch flange formability will deteriorate. For this reason, sol. Al content shall be 1.00% or less.
Alは、脱酸のため、あるいは残留γを得る目的で含有する。sol.Alの下限は特に規定しないが、安定して脱酸を行うために、sol.Al含有量は0.005%以上とすることが好ましい。sol.Al含有量は、より好ましくは0.010%以上であり、さらに好ましくは0.020%以上である。
一方、sol.Al含有量が1.00%超えとなると、Al系の粗大介在物が多量に増加し、伸びフランジ成形性が低下する。このため、sol.Al含有量は1.00%以下とする。 <sol. Al: 1.00% or less>
Al is contained for the purpose of deoxidizing or obtaining residual γ. sol. Although the lower limit of Al is not particularly specified, in order to perform deoxidation stably, sol. The Al content is preferably 0.005% or more. sol. The Al content is more preferably 0.010% or more, and still more preferably 0.020% or more.
On the other hand, sol. If the Al content exceeds 1.00%, a large amount of Al-based coarse inclusions will increase, and stretch flange formability will deteriorate. For this reason, sol. Al content shall be 1.00% or less.
<N:0.015%未満>
Nは、鋼中でBN、AlN、TiN等の窒化物を形成する元素であり、伸びフランジ成形性を低下させるので、その含有量を制限する必要がある。したがって、N含有量は、0.015%未満とする。N含有量は、好ましくは0.010%以下であり、より好ましくは0.005%以下である。
なお、Nを含まなくてもよいが、0.0001%未満に低減するには多大なコストがかかるため、N含有量は製造コストの点から0.0001%以上であることが好ましい。N含有量は、より好ましくは0.0010%以上であり、さらに好ましくは0.0020%以上である。 <N: less than 0.015%>
N is an element that forms nitrides such as BN, AlN, and TiN in steel, and reduces stretch flange formability, so it is necessary to limit its content. Therefore, the N content should be less than 0.015%. The N content is preferably 0.010% or less, more preferably 0.005% or less.
Note that although it is not necessary to contain N, reducing the N content to less than 0.0001% requires a great deal of cost, so the N content is preferably 0.0001% or more from the viewpoint of manufacturing costs. The N content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
Nは、鋼中でBN、AlN、TiN等の窒化物を形成する元素であり、伸びフランジ成形性を低下させるので、その含有量を制限する必要がある。したがって、N含有量は、0.015%未満とする。N含有量は、好ましくは0.010%以下であり、より好ましくは0.005%以下である。
なお、Nを含まなくてもよいが、0.0001%未満に低減するには多大なコストがかかるため、N含有量は製造コストの点から0.0001%以上であることが好ましい。N含有量は、より好ましくは0.0010%以上であり、さらに好ましくは0.0020%以上である。 <N: less than 0.015%>
N is an element that forms nitrides such as BN, AlN, and TiN in steel, and reduces stretch flange formability, so it is necessary to limit its content. Therefore, the N content should be less than 0.015%. The N content is preferably 0.010% or less, more preferably 0.005% or less.
Note that although it is not necessary to contain N, reducing the N content to less than 0.0001% requires a great deal of cost, so the N content is preferably 0.0001% or more from the viewpoint of manufacturing costs. The N content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
本発明における鋼板の成分組成は、上記の成分元素を基本成分として含有し、残部は鉄(Fe)及び不可避的不純物を含む。なお、本発明における鋼板の成分組成は、残部はFeおよび不可避的不純物からなる成分組成を有することが好ましい。
本発明の鋼板の成分組成は、上記成分に加えて、以下の(A)~(C)から選んだ1つまたは2つ以上を任意元素として適宜含有することができる。
(A)Ti:0.1%以下、B:0.01%以下のうちから選ばれる1種または2種、
(B)Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:0.5%以下、V:0.5%以下、Nb:0.1%以下のうちから選ばれる1種または2種以上、
(C)Mg:0.0050%以下、Ca:0.0050%以下、Sn:0.1%以下、Sb:0.1%以下およびREM:0.0050%以下のうちから選んだ1種または2種以上 The component composition of the steel sheet in the present invention contains the above-mentioned component elements as basic components, and the remainder includes iron (Fe) and inevitable impurities. In addition, it is preferable that the component composition of the steel plate in the present invention has a component composition in which the balance consists of Fe and unavoidable impurities.
In addition to the above-mentioned components, the composition of the steel sheet of the present invention can appropriately contain one or more optional elements selected from the following (A) to (C).
(A) One or two types selected from Ti: 0.1% or less, B: 0.01% or less,
(B) 1 selected from Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less, V: 0.5% or less, Nb: 0.1% or less species or two or more species,
(C) One type selected from Mg: 0.0050% or less, Ca: 0.0050% or less, Sn: 0.1% or less, Sb: 0.1% or less, and REM: 0.0050% or less, or 2 or more types
本発明の鋼板の成分組成は、上記成分に加えて、以下の(A)~(C)から選んだ1つまたは2つ以上を任意元素として適宜含有することができる。
(A)Ti:0.1%以下、B:0.01%以下のうちから選ばれる1種または2種、
(B)Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:0.5%以下、V:0.5%以下、Nb:0.1%以下のうちから選ばれる1種または2種以上、
(C)Mg:0.0050%以下、Ca:0.0050%以下、Sn:0.1%以下、Sb:0.1%以下およびREM:0.0050%以下のうちから選んだ1種または2種以上 The component composition of the steel sheet in the present invention contains the above-mentioned component elements as basic components, and the remainder includes iron (Fe) and inevitable impurities. In addition, it is preferable that the component composition of the steel plate in the present invention has a component composition in which the balance consists of Fe and unavoidable impurities.
In addition to the above-mentioned components, the composition of the steel sheet of the present invention can appropriately contain one or more optional elements selected from the following (A) to (C).
(A) One or two types selected from Ti: 0.1% or less, B: 0.01% or less,
(B) 1 selected from Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less, V: 0.5% or less, Nb: 0.1% or less species or two or more species,
(C) One type selected from Mg: 0.0050% or less, Ca: 0.0050% or less, Sn: 0.1% or less, Sb: 0.1% or less, and REM: 0.0050% or less, or 2 or more types
<Ti:0.1%以下>
Tiは鋼中のNをTiNとして固定し、熱間延性を向上させる効果やBの焼入れ性向上効果を生じさせる作用がある。また、TiCの析出により組織を微細化する効果がある。これらの効果を得るためにTi含有量を0.002%以上にすることが望ましい。Nを十分固定する観点からはTi含有量は0.008%以上とすることがさらに好ましい。Ti含有量は、より好ましくは0.010%以上である。
一方、Ti含有量が0.1%を超えると圧延負荷の増大、析出強化量の増加による延性の低下を招くので、Tiを含有する場合、Ti含有量は0.1%以下とする。好ましくは、Ti含有量は、0.05%以下であり、より好ましくは0.03%以下である。 <Ti: 0.1% or less>
Ti fixes N in steel as TiN, and has the effect of improving hot ductility and the effect of B on improving hardenability. Further, the precipitation of TiC has the effect of making the structure finer. In order to obtain these effects, it is desirable that the Ti content be 0.002% or more. From the viewpoint of sufficiently fixing N, the Ti content is more preferably 0.008% or more. The Ti content is more preferably 0.010% or more.
On the other hand, if the Ti content exceeds 0.1%, the rolling load will increase and the ductility will decrease due to an increase in the amount of precipitation strengthening, so if Ti is contained, the Ti content should be 0.1% or less. Preferably, the Ti content is 0.05% or less, more preferably 0.03% or less.
Tiは鋼中のNをTiNとして固定し、熱間延性を向上させる効果やBの焼入れ性向上効果を生じさせる作用がある。また、TiCの析出により組織を微細化する効果がある。これらの効果を得るためにTi含有量を0.002%以上にすることが望ましい。Nを十分固定する観点からはTi含有量は0.008%以上とすることがさらに好ましい。Ti含有量は、より好ましくは0.010%以上である。
一方、Ti含有量が0.1%を超えると圧延負荷の増大、析出強化量の増加による延性の低下を招くので、Tiを含有する場合、Ti含有量は0.1%以下とする。好ましくは、Ti含有量は、0.05%以下であり、より好ましくは0.03%以下である。 <Ti: 0.1% or less>
Ti fixes N in steel as TiN, and has the effect of improving hot ductility and the effect of B on improving hardenability. Further, the precipitation of TiC has the effect of making the structure finer. In order to obtain these effects, it is desirable that the Ti content be 0.002% or more. From the viewpoint of sufficiently fixing N, the Ti content is more preferably 0.008% or more. The Ti content is more preferably 0.010% or more.
On the other hand, if the Ti content exceeds 0.1%, the rolling load will increase and the ductility will decrease due to an increase in the amount of precipitation strengthening, so if Ti is contained, the Ti content should be 0.1% or less. Preferably, the Ti content is 0.05% or less, more preferably 0.03% or less.
<B:0.01%以下>
Bは、鋼の焼入れ性を向上させる元素であり、所定の面積率の焼戻しマルテンサイトおよび/またはベイナイトを生成させやすい利点を有する。従って、B含有量を0.0005%以上にすることが好ましい。また、B含有量は0.0010%以上がより好ましい。
一方、B含有量が0.01%を超えると、その効果が飽和するだけでなく、熱間延性の著しい低下をもたらし表面欠陥を生じさせる。したがって、Bを含有する場合、B含有量は0.01%以下とする。好ましくは、B含有量は、0.005%以下であり、より好ましくは0.003%以下である。 <B: 0.01% or less>
B is an element that improves the hardenability of steel, and has the advantage of easily producing tempered martensite and/or bainite with a predetermined area ratio. Therefore, it is preferable that the B content is 0.0005% or more. Further, the B content is more preferably 0.0010% or more.
On the other hand, when the B content exceeds 0.01%, the effect not only becomes saturated, but also causes a significant decrease in hot ductility and causes surface defects. Therefore, when B is contained, the B content is set to 0.01% or less. Preferably, the B content is 0.005% or less, more preferably 0.003% or less.
Bは、鋼の焼入れ性を向上させる元素であり、所定の面積率の焼戻しマルテンサイトおよび/またはベイナイトを生成させやすい利点を有する。従って、B含有量を0.0005%以上にすることが好ましい。また、B含有量は0.0010%以上がより好ましい。
一方、B含有量が0.01%を超えると、その効果が飽和するだけでなく、熱間延性の著しい低下をもたらし表面欠陥を生じさせる。したがって、Bを含有する場合、B含有量は0.01%以下とする。好ましくは、B含有量は、0.005%以下であり、より好ましくは0.003%以下である。 <B: 0.01% or less>
B is an element that improves the hardenability of steel, and has the advantage of easily producing tempered martensite and/or bainite with a predetermined area ratio. Therefore, it is preferable that the B content is 0.0005% or more. Further, the B content is more preferably 0.0010% or more.
On the other hand, when the B content exceeds 0.01%, the effect not only becomes saturated, but also causes a significant decrease in hot ductility and causes surface defects. Therefore, when B is contained, the B content is set to 0.01% or less. Preferably, the B content is 0.005% or less, more preferably 0.003% or less.
<Cu:1%以下>
Cuは、自動車の使用環境での耐食性を向上させる。また、Cuの腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果がある。Cuは、スクラップを原料として活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを低減することができる。このような観点から、Cuは0.005%以上含有させることが好ましく、さらに耐遅れ破壊特性向上の観点からは、Cuは0.05%以上含有させることがより好ましい。Cu含有量は、さらに好ましくは0.10%以上である。より好ましくは、Cu含有量は、0.25%以上であり、さらにより好ましくは、0.50%以上である。
しかしながら、Cu含有量が多くなりすぎると表面欠陥の発生を招来するので、Cuを含有する場合、Cu含有量は1%以下とする。 <Cu: 1% or less>
Cu improves corrosion resistance in the automotive environment. Further, the corrosion products of Cu coat the surface of the steel sheet, which has the effect of suppressing hydrogen intrusion into the steel sheet. Cu is an element that is mixed in when scrap is used as a raw material, and by allowing Cu to be mixed in, recycled materials can be used as raw materials and manufacturing costs can be reduced. From such a viewpoint, it is preferable to contain Cu in an amount of 0.005% or more, and from the viewpoint of improving delayed fracture resistance, it is more preferable to contain Cu in an amount of 0.05% or more. The Cu content is more preferably 0.10% or more. More preferably, the Cu content is 0.25% or more, even more preferably 0.50% or more.
However, if the Cu content becomes too large, surface defects will occur, so when Cu is contained, the Cu content is set to 1% or less.
Cuは、自動車の使用環境での耐食性を向上させる。また、Cuの腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果がある。Cuは、スクラップを原料として活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを低減することができる。このような観点から、Cuは0.005%以上含有させることが好ましく、さらに耐遅れ破壊特性向上の観点からは、Cuは0.05%以上含有させることがより好ましい。Cu含有量は、さらに好ましくは0.10%以上である。より好ましくは、Cu含有量は、0.25%以上であり、さらにより好ましくは、0.50%以上である。
しかしながら、Cu含有量が多くなりすぎると表面欠陥の発生を招来するので、Cuを含有する場合、Cu含有量は1%以下とする。 <Cu: 1% or less>
Cu improves corrosion resistance in the automotive environment. Further, the corrosion products of Cu coat the surface of the steel sheet, which has the effect of suppressing hydrogen intrusion into the steel sheet. Cu is an element that is mixed in when scrap is used as a raw material, and by allowing Cu to be mixed in, recycled materials can be used as raw materials and manufacturing costs can be reduced. From such a viewpoint, it is preferable to contain Cu in an amount of 0.005% or more, and from the viewpoint of improving delayed fracture resistance, it is more preferable to contain Cu in an amount of 0.05% or more. The Cu content is more preferably 0.10% or more. More preferably, the Cu content is 0.25% or more, even more preferably 0.50% or more.
However, if the Cu content becomes too large, surface defects will occur, so when Cu is contained, the Cu content is set to 1% or less.
<Ni:1%以下>
Niも、Cuと同様、耐食性を向上させる作用のある元素である。また、Niは、Cuを含有させる場合に生じやすい、表面欠陥の発生を抑制する作用がある。このため、Niは0.01%以上含有させることが望ましい。Ni含有量は、より好ましくは0.04%以上であり、さらに好ましくは0.06%以上である。
しかしながら、Ni含有量が多くなりすぎると、加熱炉内でのスケール生成が不均一になり、却って表面欠陥を発生させる原因になる。また、コスト増も招く。このため、Niを含有する場合、Ni含有量は1%以下とする。好ましくは、Ni含有量は、0.5%以下であり、より好ましくは0.3%以下である。 <Ni: 1% or less>
Like Cu, Ni is also an element that has the effect of improving corrosion resistance. Further, Ni has the effect of suppressing the occurrence of surface defects that are likely to occur when Cu is included. For this reason, it is desirable to contain Ni in an amount of 0.01% or more. The Ni content is more preferably 0.04% or more, and even more preferably 0.06% or more.
However, if the Ni content becomes too large, scale formation within the heating furnace will become uneven, which may even cause surface defects to occur. Moreover, it also causes an increase in costs. Therefore, when Ni is contained, the Ni content is set to 1% or less. Preferably, the Ni content is 0.5% or less, more preferably 0.3% or less.
Niも、Cuと同様、耐食性を向上させる作用のある元素である。また、Niは、Cuを含有させる場合に生じやすい、表面欠陥の発生を抑制する作用がある。このため、Niは0.01%以上含有させることが望ましい。Ni含有量は、より好ましくは0.04%以上であり、さらに好ましくは0.06%以上である。
しかしながら、Ni含有量が多くなりすぎると、加熱炉内でのスケール生成が不均一になり、却って表面欠陥を発生させる原因になる。また、コスト増も招く。このため、Niを含有する場合、Ni含有量は1%以下とする。好ましくは、Ni含有量は、0.5%以下であり、より好ましくは0.3%以下である。 <Ni: 1% or less>
Like Cu, Ni is also an element that has the effect of improving corrosion resistance. Further, Ni has the effect of suppressing the occurrence of surface defects that are likely to occur when Cu is included. For this reason, it is desirable to contain Ni in an amount of 0.01% or more. The Ni content is more preferably 0.04% or more, and even more preferably 0.06% or more.
However, if the Ni content becomes too large, scale formation within the heating furnace will become uneven, which may even cause surface defects to occur. Moreover, it also causes an increase in costs. Therefore, when Ni is contained, the Ni content is set to 1% or less. Preferably, the Ni content is 0.5% or less, more preferably 0.3% or less.
<Cr:1%以下>
Crは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することができる。このような効果を得るには、Cr含有量は0.01%以上とすることが好ましい。Cr含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.06%以上である。
しかしながら、Crを過剰に含有すると耐孔食性が劣化するため、Crを含有する場合、Cr含有量は1%以下とする。 <Cr: 1% or less>
Cr can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite. In order to obtain such effects, the Cr content is preferably 0.01% or more. The Cr content is more preferably 0.03% or more, and still more preferably 0.06% or more.
However, if Cr is contained excessively, the pitting corrosion resistance will deteriorate, so when Cr is contained, the Cr content is set to 1% or less.
Crは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することができる。このような効果を得るには、Cr含有量は0.01%以上とすることが好ましい。Cr含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.06%以上である。
しかしながら、Crを過剰に含有すると耐孔食性が劣化するため、Crを含有する場合、Cr含有量は1%以下とする。 <Cr: 1% or less>
Cr can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite. In order to obtain such effects, the Cr content is preferably 0.01% or more. The Cr content is more preferably 0.03% or more, and still more preferably 0.06% or more.
However, if Cr is contained excessively, the pitting corrosion resistance will deteriorate, so when Cr is contained, the Cr content is set to 1% or less.
<Mo:0.5%以下>
Moは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することができる。このような効果を得るには、Mo含有量は0.01%以上とすることが好ましい。Mo含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.06%以上である。より好ましくは、Mo含有量は、0.1%以上であり、さらにより好ましくは、0.2%以上である。
しかしながら、Moは冷延鋼板の化成処理性を著しく劣化させるため、Moを含有する場合、Mo含有量は0.5%以下とする。 <Mo: 0.5% or less>
Mo can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite. In order to obtain such effects, the Mo content is preferably 0.01% or more. The Mo content is more preferably 0.03% or more, and still more preferably 0.06% or more. More preferably, the Mo content is 0.1% or more, even more preferably 0.2% or more.
However, since Mo significantly deteriorates the chemical conversion treatment property of cold rolled steel sheets, when Mo is contained, the Mo content is set to 0.5% or less.
Moは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することができる。このような効果を得るには、Mo含有量は0.01%以上とすることが好ましい。Mo含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.06%以上である。より好ましくは、Mo含有量は、0.1%以上であり、さらにより好ましくは、0.2%以上である。
しかしながら、Moは冷延鋼板の化成処理性を著しく劣化させるため、Moを含有する場合、Mo含有量は0.5%以下とする。 <Mo: 0.5% or less>
Mo can be contained because of its effect of improving the hardenability of steel and suppressing the formation of carbides in martensite and upper/lower bainite. In order to obtain such effects, the Mo content is preferably 0.01% or more. The Mo content is more preferably 0.03% or more, and still more preferably 0.06% or more. More preferably, the Mo content is 0.1% or more, even more preferably 0.2% or more.
However, since Mo significantly deteriorates the chemical conversion treatment property of cold rolled steel sheets, when Mo is contained, the Mo content is set to 0.5% or less.
<V:0.5%以下>
Vは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果、組織を微細化する効果、炭化物を析出させ耐遅れ破壊特性を改善する効果から含有することができる。これらの効果を得るためには、V含有量は0.003%以上とすることが好ましい。V含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。さらにより好ましくは、V含有量は、0.020%以上であり、0.050%以上であることがより一層好ましい。
しかしながら、Vを多量に含有すると鋳造性が著しく劣化するため、Vを含有する場合、V含有量は0.5%以下とする。好ましくは、V含有量は、0.3%以下であり、より好ましくは0.2%以下である。 <V: 0.5% or less>
V is included because it has the effect of improving the hardenability of steel, suppressing the formation of carbides in martensite and upper/lower bainite, refining the structure, and precipitating carbides to improve delayed fracture resistance. be able to. In order to obtain these effects, the V content is preferably 0.003% or more. The V content is more preferably 0.005% or more, and still more preferably 0.010% or more. Even more preferably, the V content is 0.020% or more, even more preferably 0.050% or more.
However, if a large amount of V is contained, the castability will be significantly deteriorated, so when V is contained, the V content should be 0.5% or less. Preferably, the V content is 0.3% or less, more preferably 0.2% or less.
Vは、鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果、組織を微細化する効果、炭化物を析出させ耐遅れ破壊特性を改善する効果から含有することができる。これらの効果を得るためには、V含有量は0.003%以上とすることが好ましい。V含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。さらにより好ましくは、V含有量は、0.020%以上であり、0.050%以上であることがより一層好ましい。
しかしながら、Vを多量に含有すると鋳造性が著しく劣化するため、Vを含有する場合、V含有量は0.5%以下とする。好ましくは、V含有量は、0.3%以下であり、より好ましくは0.2%以下である。 <V: 0.5% or less>
V is included because it has the effect of improving the hardenability of steel, suppressing the formation of carbides in martensite and upper/lower bainite, refining the structure, and precipitating carbides to improve delayed fracture resistance. be able to. In order to obtain these effects, the V content is preferably 0.003% or more. The V content is more preferably 0.005% or more, and still more preferably 0.010% or more. Even more preferably, the V content is 0.020% or more, even more preferably 0.050% or more.
However, if a large amount of V is contained, the castability will be significantly deteriorated, so when V is contained, the V content should be 0.5% or less. Preferably, the V content is 0.3% or less, more preferably 0.2% or less.
<Nb:0.1%以下>
Nbは、鋼組織を微細化し高強度化する効果、細粒化を通じてベイナイト変態を促進する効果、曲げ性を改善する効果、耐遅れ破壊特性を向上させる効果から含有することができる。これらの効果を得るためには、Nb含有量は0.002%以上とすることが好ましい。Nb含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.010%以上である。
しかしながら、Nbを多量に含有すると析出強化が強くなりすぎ延性が低下する。また、圧延荷重の増大、鋳造性の劣化を招く。このため、Nbを含有する場合、Nb含有量は0.1%以下とする。好ましくは、Nb含有量は、0.05%以下であり、より好ましくは0.03%以下である。 <Nb: 0.1% or less>
Nb can be contained because it has the effect of refining the steel structure and increasing its strength, promoting bainite transformation through grain refinement, improving bendability, and improving delayed fracture resistance. In order to obtain these effects, the Nb content is preferably 0.002% or more. The Nb content is more preferably 0.004% or more, and still more preferably 0.010% or more.
However, if a large amount of Nb is contained, precipitation strengthening becomes too strong and ductility decreases. Moreover, this results in an increase in rolling load and deterioration in castability. Therefore, when Nb is contained, the Nb content is set to 0.1% or less. Preferably, the Nb content is 0.05% or less, more preferably 0.03% or less.
Nbは、鋼組織を微細化し高強度化する効果、細粒化を通じてベイナイト変態を促進する効果、曲げ性を改善する効果、耐遅れ破壊特性を向上させる効果から含有することができる。これらの効果を得るためには、Nb含有量は0.002%以上とすることが好ましい。Nb含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.010%以上である。
しかしながら、Nbを多量に含有すると析出強化が強くなりすぎ延性が低下する。また、圧延荷重の増大、鋳造性の劣化を招く。このため、Nbを含有する場合、Nb含有量は0.1%以下とする。好ましくは、Nb含有量は、0.05%以下であり、より好ましくは0.03%以下である。 <Nb: 0.1% or less>
Nb can be contained because it has the effect of refining the steel structure and increasing its strength, promoting bainite transformation through grain refinement, improving bendability, and improving delayed fracture resistance. In order to obtain these effects, the Nb content is preferably 0.002% or more. The Nb content is more preferably 0.004% or more, and still more preferably 0.010% or more.
However, if a large amount of Nb is contained, precipitation strengthening becomes too strong and ductility decreases. Moreover, this results in an increase in rolling load and deterioration in castability. Therefore, when Nb is contained, the Nb content is set to 0.1% or less. Preferably, the Nb content is 0.05% or less, more preferably 0.03% or less.
<Mg:0.0050%以下>
Mgは、MgOとしてOを固定し、曲げ性などの成形性の改善に寄与する。このため、Mg含有量は0.0002%以上とすることが好ましい。Mg含有量は、より好ましくは0.0004%以上であり、さらに好ましくは0.0006%以上である。
一方、Mgを多量に添加すると表面品質や曲げ性が劣化するので、Mgを含有する場合、Mg含有量は0.0050%以下とする。好ましくは、Mg含有量は0.0040%以下である。 <Mg: 0.0050% or less>
Mg fixes O as MgO and contributes to improving formability such as bendability. Therefore, the Mg content is preferably 0.0002% or more. The Mg content is more preferably 0.0004% or more, and further preferably 0.0006% or more.
On the other hand, if a large amount of Mg is added, the surface quality and bendability are deteriorated, so when Mg is contained, the Mg content is set to 0.0050% or less, and preferably, the Mg content is set to 0.0040% or less.
Mgは、MgOとしてOを固定し、曲げ性などの成形性の改善に寄与する。このため、Mg含有量は0.0002%以上とすることが好ましい。Mg含有量は、より好ましくは0.0004%以上であり、さらに好ましくは0.0006%以上である。
一方、Mgを多量に添加すると表面品質や曲げ性が劣化するので、Mgを含有する場合、Mg含有量は0.0050%以下とする。好ましくは、Mg含有量は0.0040%以下である。 <Mg: 0.0050% or less>
Mg fixes O as MgO and contributes to improving formability such as bendability. Therefore, the Mg content is preferably 0.0002% or more. The Mg content is more preferably 0.0004% or more, and further preferably 0.0006% or more.
On the other hand, if a large amount of Mg is added, the surface quality and bendability are deteriorated, so when Mg is contained, the Mg content is set to 0.0050% or less, and preferably, the Mg content is set to 0.0040% or less.
<Ca:0.0050%以下>
Caは、SをCaSとして固定し、曲げ性の改善や耐遅れ破壊特性の改善に寄与する。このため、Ca含有量は0.0002%以上とすることが好ましい。Ca含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。
一方、Caは多量に添加すると表面品質や曲げ性を劣化させるので、Caを含有する場合、Ca含有量は0.0050%以下とする。好ましくは、Ca含有量は0.0040%以下である。 <Ca: 0.0050% or less>
Ca fixes S as CaS and contributes to improving bendability and delayed fracture resistance. For this reason, the Ca content is preferably 0.0002% or more. The Ca content is more preferably 0.0005% or more, and still more preferably 0.0010% or more.
On the other hand, if a large amount of Ca is added, the surface quality and bendability will be deteriorated, so when Ca is contained, the Ca content should be 0.0050% or less. Preferably, the Ca content is 0.0040% or less.
Caは、SをCaSとして固定し、曲げ性の改善や耐遅れ破壊特性の改善に寄与する。このため、Ca含有量は0.0002%以上とすることが好ましい。Ca含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。
一方、Caは多量に添加すると表面品質や曲げ性を劣化させるので、Caを含有する場合、Ca含有量は0.0050%以下とする。好ましくは、Ca含有量は0.0040%以下である。 <Ca: 0.0050% or less>
Ca fixes S as CaS and contributes to improving bendability and delayed fracture resistance. For this reason, the Ca content is preferably 0.0002% or more. The Ca content is more preferably 0.0005% or more, and still more preferably 0.0010% or more.
On the other hand, if a large amount of Ca is added, the surface quality and bendability will be deteriorated, so when Ca is contained, the Ca content should be 0.0050% or less. Preferably, the Ca content is 0.0040% or less.
<Sn:0.1%以下>
Snは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。この効果で、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐疲労特性が改善する。このような観点から、Sn含有量は0.002%以上とすることが好ましい。Sn含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.006%以上である。より好ましくは、Sn含有量は、0.008%以上であり、さらにより好ましくは、0.010%以上である。Sn含有量は、好ましくは0.030%以上であり、より好ましくは0.060%以上である。
一方、Sn含有量が0.1%を超えると、鋳造性が劣化する。また、旧γ粒界にSnが偏析して、耐遅れ破壊特性が劣化する。そのため、Snを含有する場合、Sn含有量は0.1%以下とする。 <Sn: 0.1% or less>
Sn suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance. From this point of view, the Sn content is preferably 0.002% or more. The Sn content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sn content is 0.008% or more, even more preferably 0.010% or more. The Sn content is preferably 0.030% or more, more preferably 0.060% or more.
On the other hand, when the Sn content exceeds 0.1%, castability deteriorates. Furthermore, Sn is segregated at the prior γ grain boundaries, deteriorating the delayed fracture resistance. Therefore, when Sn is contained, the Sn content is 0.1% or less.
Snは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。この効果で、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐疲労特性が改善する。このような観点から、Sn含有量は0.002%以上とすることが好ましい。Sn含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.006%以上である。より好ましくは、Sn含有量は、0.008%以上であり、さらにより好ましくは、0.010%以上である。Sn含有量は、好ましくは0.030%以上であり、より好ましくは0.060%以上である。
一方、Sn含有量が0.1%を超えると、鋳造性が劣化する。また、旧γ粒界にSnが偏析して、耐遅れ破壊特性が劣化する。そのため、Snを含有する場合、Sn含有量は0.1%以下とする。 <Sn: 0.1% or less>
Sn suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance. From this point of view, the Sn content is preferably 0.002% or more. The Sn content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sn content is 0.008% or more, even more preferably 0.010% or more. The Sn content is preferably 0.030% or more, more preferably 0.060% or more.
On the other hand, when the Sn content exceeds 0.1%, castability deteriorates. Furthermore, Sn is segregated at the prior γ grain boundaries, deteriorating the delayed fracture resistance. Therefore, when Sn is contained, the Sn content is 0.1% or less.
<Sb:0.1%以下>
Sbは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。この効果で、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐疲労特性が改善する。このような観点から、Sb含有量は0.002%以上とすることが好ましい。Sb含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.006%以上である。より好ましくは、Sb含有量は、0.008%以上であり、さらにより好ましくは、0.010%以上である。Sb含有量は、好ましくは0.025%以上であり、より好ましくは0.050%以上である。
一方、Sb含有量が0.1%を超えると、鋳造性が劣化し、また、旧γ粒界に偏析して、耐遅れ破壊特性が劣化する。そのため、Sbを含有する場合、Sb含有量は0.1%以下とする。 <Sb: 0.1% or less>
Sb suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance. From this point of view, the Sb content is preferably 0.002% or more. The Sb content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sb content is 0.008% or more, even more preferably 0.010% or more. The Sb content is preferably 0.025% or more, more preferably 0.050% or more.
On the other hand, when the Sb content exceeds 0.1%, castability deteriorates, and Sb segregates at prior γ grain boundaries, degrading delayed fracture resistance. Therefore, when Sb is contained, the Sb content is set to 0.1% or less.
Sbは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。この効果で、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐疲労特性が改善する。このような観点から、Sb含有量は0.002%以上とすることが好ましい。Sb含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.006%以上である。より好ましくは、Sb含有量は、0.008%以上であり、さらにより好ましくは、0.010%以上である。Sb含有量は、好ましくは0.025%以上であり、より好ましくは0.050%以上である。
一方、Sb含有量が0.1%を超えると、鋳造性が劣化し、また、旧γ粒界に偏析して、耐遅れ破壊特性が劣化する。そのため、Sbを含有する場合、Sb含有量は0.1%以下とする。 <Sb: 0.1% or less>
Sb suppresses oxidation and nitridation of the surface layer of the steel sheet, and thereby suppresses a reduction in the content of C and B in the surface layer. This effect suppresses the formation of ferrite in the surface layer of the steel sheet, increasing its strength and improving its fatigue resistance. From this point of view, the Sb content is preferably 0.002% or more. The Sb content is more preferably 0.004% or more, and still more preferably 0.006% or more. More preferably, the Sb content is 0.008% or more, even more preferably 0.010% or more. The Sb content is preferably 0.025% or more, more preferably 0.050% or more.
On the other hand, when the Sb content exceeds 0.1%, castability deteriorates, and Sb segregates at prior γ grain boundaries, degrading delayed fracture resistance. Therefore, when Sb is contained, the Sb content is set to 0.1% or less.
<REM:0.0050%以下>
REMは、硫化物の形状を球状化することで、伸びフランジ成形性に及ぼす硫化物の悪影響を抑制し、伸びフランジ成形性を改善する元素である。これらの効果を得るために、REM含有量を0.0005%以上にすることが好ましい。REM含有量は、より好ましくは0.0010%以上であり、さらに好ましくは0.0020%以上である。
一方、REM含有量が0.0050%を超えると、伸びフランジ成形性の改善効果が飽和するため、REMを含有する場合、REM含有量は0.0050%以下とする。 <REM: 0.0050% or less>
REM is an element that suppresses the adverse effects of sulfide on stretch flange formability and improves stretch flange formability by making the shape of sulfide spheroidal. In order to obtain these effects, the REM content is preferably 0.0005% or more. The REM content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
On the other hand, if the REM content exceeds 0.0050%, the effect of improving stretch flange formability will be saturated, so when REM is contained, the REM content should be 0.0050% or less.
REMは、硫化物の形状を球状化することで、伸びフランジ成形性に及ぼす硫化物の悪影響を抑制し、伸びフランジ成形性を改善する元素である。これらの効果を得るために、REM含有量を0.0005%以上にすることが好ましい。REM含有量は、より好ましくは0.0010%以上であり、さらに好ましくは0.0020%以上である。
一方、REM含有量が0.0050%を超えると、伸びフランジ成形性の改善効果が飽和するため、REMを含有する場合、REM含有量は0.0050%以下とする。 <REM: 0.0050% or less>
REM is an element that suppresses the adverse effects of sulfide on stretch flange formability and improves stretch flange formability by making the shape of sulfide spheroidal. In order to obtain these effects, the REM content is preferably 0.0005% or more. The REM content is more preferably 0.0010% or more, and still more preferably 0.0020% or more.
On the other hand, if the REM content exceeds 0.0050%, the effect of improving stretch flange formability will be saturated, so when REM is contained, the REM content should be 0.0050% or less.
なお、本発明でいうREMとは、原子番号21番のスカンジウム(Sc)と原子番号39番のイットリウム(Y)及び、原子番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイドの元素のことを指す。本発明におけるREM濃度とは、上述のREMから選択された1種または2種以上の元素の総含有量である。
REMとしては、特に限定されないが、Sc、Y、Ce、Laを含んでいることが好ましい。 In addition, REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71. Refers to lanthanide elements. The REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
REM is not particularly limited, but preferably contains Sc, Y, Ce, and La.
REMとしては、特に限定されないが、Sc、Y、Ce、Laを含んでいることが好ましい。 In addition, REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71. Refers to lanthanide elements. The REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
REM is not particularly limited, but preferably contains Sc, Y, Ce, and La.
上記任意成分を下限値未満で含む場合、下限値未満で含まれる任意元素は本発明の効果を害さない。そこで、上記任意元素を下限値未満で含む場合、上記任意元素は、不可避的不純物として含まれるとする。
When the above-mentioned optional components are contained in amounts less than the lower limit, the optional elements contained in amounts less than the lower limit do not impair the effects of the present invention. Therefore, when the above-mentioned arbitrary element is included in an amount less than the lower limit value, the above-mentioned arbitrary element is included as an unavoidable impurity.
次に、本発明が対象とする鋼板(材質安定性に優れた冷延鋼板)の機械的特性について説明する。
Next, the mechanical properties of the steel sheet (cold-rolled steel sheet with excellent material stability) targeted by the present invention will be explained.
本発明の鋼板は、引張強度(TS)は780MPa以上とする。引張強度の上限は特に限定されないが、他の特性との両立の観点から、引張強度は1300MPa以下であることが好ましい。
The steel plate of the present invention has a tensile strength (TS) of 780 MPa or more. Although the upper limit of the tensile strength is not particularly limited, from the viewpoint of coexistence with other properties, the tensile strength is preferably 1300 MPa or less.
本発明の鋼板では、全伸びELは、TS:780MPa以上では16.0%以上、TS:980MPa以上では14.0%以上、TS:1180MPa以上では12.0%以上確保することでプレス成形の安定性は格段に向上する。
穴広げ率λは、30%以上確保することでプレス成形時の割れを抑制できるため、λは30%以上とする。 In the steel sheet of the present invention, the total elongation EL is 16.0% or more when TS: 780 MPa or more, 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more is secured. Stability is greatly improved.
Since cracking during press molding can be suppressed by ensuring a hole expansion rate λ of 30% or more, λ is set to 30% or more.
穴広げ率λは、30%以上確保することでプレス成形時の割れを抑制できるため、λは30%以上とする。 In the steel sheet of the present invention, the total elongation EL is 16.0% or more when TS: 780 MPa or more, 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more is secured. Stability is greatly improved.
Since cracking during press molding can be suppressed by ensuring a hole expansion rate λ of 30% or more, λ is set to 30% or more.
本発明の鋼板では、板幅方向の測定位置XにおけるELおよびλに関し、以下の式(1)及び式(2)を連続して満たす領域Aの板幅が、全板幅に対して80%以上である。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所(板幅Wを24個の均等な幅に分割する際の23箇所の隣接し合う各幅の接触箇所)とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。
ここで、例えば、式(1)及び式(2)を連続して満たす測定位置Xが2W/24~20W/24の場合、式(1)及び式(2)を連続して満たす領域Aの板幅は、全板幅に対して、100×(20-2+1)/23=83%となる。
本発明の鋼板では、上記の領域Aが板幅方向に、全板幅の80%以上の長さを有する。
すなわち、板幅方向におけるELの偏差が板幅中央位置の測定値に対して10%以下であり、かつ板幅方向におけるλの偏差が板幅中央位置の測定値に対して10%以下となる領域を、全板幅領域に対して80%以上とする。非定常部の範囲は、幅方向両端部合計で最大で20%まで許容される。
鋼板の最端部は鋼板の運搬や作業工程で他の構造体との接触が生じるため品質確保を目的に最端部は使用しない。このため使用可能な有効板幅は100%に達しない。よって、有効板幅は100%未満とすることが好ましい。
板幅方向におけるELの偏差が板幅中央位置の測定値の10%以下、かつλの偏差が10%以下となる領域を全板幅に対して80%以上とすることで、歩留まりを著しく改善できるため、本発明では板幅方向におけるELの偏差が板幅中央位置の測定値の10%以下、かつλの偏差が10%以下となる領域を全板幅領域に対して80%以上とする。好ましくは85%以上である。 In the steel plate of the present invention, regarding EL and λ at the measurement position That's all.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
In equations (1) and (2), the measurement position contact points for each width). That is, the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W. /24, 12W/24, 13W/24, 14W/24, 15W/24, 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W/24, 22W/24, 23W/24 A total of 23 locations are defined as measurement positions X.
Here, for example, if the measurement position X that continuously satisfies equations (1) and (2) is 2W/24 to 20W/24, then The plate width is 100×(20-2+1)/23=83% of the total plate width.
In the steel sheet of the present invention, the region A has a length in the sheet width direction of 80% or more of the total sheet width.
That is, the deviation of EL in the board width direction is 10% or less with respect to the measured value at the board width center position, and the deviation of λ in the board width direction is 10% or less with respect to the measured value at the board width center position. The area should be 80% or more of the entire board width area. The range of the unsteady portion is allowed to be up to 20% in total at both ends in the width direction.
Because the end of the steel plate comes into contact with other structures during transportation and work processes, the end is not used to ensure quality. Therefore, the usable effective plate width does not reach 100%. Therefore, the effective plate width is preferably less than 100%.
By setting the area where the deviation of EL in the sheet width direction is 10% or less of the measured value at the center of the sheet width and the deviation of λ is 10% or less to 80% or more of the entire sheet width, yields are significantly improved. Therefore, in the present invention, the area where the deviation of EL in the board width direction is 10% or less of the measured value at the center of the board width and the deviation of λ is 10% or less is set to be 80% or more of the entire board width region. . Preferably it is 85% or more.
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所(板幅Wを24個の均等な幅に分割する際の23箇所の隣接し合う各幅の接触箇所)とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。
ここで、例えば、式(1)及び式(2)を連続して満たす測定位置Xが2W/24~20W/24の場合、式(1)及び式(2)を連続して満たす領域Aの板幅は、全板幅に対して、100×(20-2+1)/23=83%となる。
本発明の鋼板では、上記の領域Aが板幅方向に、全板幅の80%以上の長さを有する。
すなわち、板幅方向におけるELの偏差が板幅中央位置の測定値に対して10%以下であり、かつ板幅方向におけるλの偏差が板幅中央位置の測定値に対して10%以下となる領域を、全板幅領域に対して80%以上とする。非定常部の範囲は、幅方向両端部合計で最大で20%まで許容される。
鋼板の最端部は鋼板の運搬や作業工程で他の構造体との接触が生じるため品質確保を目的に最端部は使用しない。このため使用可能な有効板幅は100%に達しない。よって、有効板幅は100%未満とすることが好ましい。
板幅方向におけるELの偏差が板幅中央位置の測定値の10%以下、かつλの偏差が10%以下となる領域を全板幅に対して80%以上とすることで、歩留まりを著しく改善できるため、本発明では板幅方向におけるELの偏差が板幅中央位置の測定値の10%以下、かつλの偏差が10%以下となる領域を全板幅領域に対して80%以上とする。好ましくは85%以上である。 In the steel plate of the present invention, regarding EL and λ at the measurement position That's all.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
In equations (1) and (2), the measurement position contact points for each width). That is, the positions in the board width direction are W/24, 2W/24, 3W/24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W. /24, 12W/24, 13W/24, 14W/24, 15W/24, 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W/24, 22W/24, 23W/24 A total of 23 locations are defined as measurement positions X.
Here, for example, if the measurement position X that continuously satisfies equations (1) and (2) is 2W/24 to 20W/24, then The plate width is 100×(20-2+1)/23=83% of the total plate width.
In the steel sheet of the present invention, the region A has a length in the sheet width direction of 80% or more of the total sheet width.
That is, the deviation of EL in the board width direction is 10% or less with respect to the measured value at the board width center position, and the deviation of λ in the board width direction is 10% or less with respect to the measured value at the board width center position. The area should be 80% or more of the entire board width area. The range of the unsteady portion is allowed to be up to 20% in total at both ends in the width direction.
Because the end of the steel plate comes into contact with other structures during transportation and work processes, the end is not used to ensure quality. Therefore, the usable effective plate width does not reach 100%. Therefore, the effective plate width is preferably less than 100%.
By setting the area where the deviation of EL in the sheet width direction is 10% or less of the measured value at the center of the sheet width and the deviation of λ is 10% or less to 80% or more of the entire sheet width, yields are significantly improved. Therefore, in the present invention, the area where the deviation of EL in the board width direction is 10% or less of the measured value at the center of the board width and the deviation of λ is 10% or less is set to be 80% or more of the entire board width region. . Preferably it is 85% or more.
<YR≦0.8、TS≧780MPa、EL≧16.0%>
<YR≦0.8、TS≧980MPa、EL≧14.0%>
<YR≦0.8、TS≧1180MPa、EL≧12.0%>
引張特性の評価はJIS5号引張試験片を板幅中央位置から採取し、引張試験(JIS Z2241(2011)に準拠)をN=3で実施する。各評価については、3点の平均値に基づいて行う。引張強度が780MPa以上である鋼板を高強度鋼板とする。降伏比YRが0.8以下である鋼板をプレス成形性に優れる鋼板とする。全伸びELはTS:780MPa以上では16.0%以上、TS:980MPa以上では14.0%以上、TS:1180MPa以上では12.0%以上を延性に優れる鋼板とする。 <YR≦0.8, TS≧780MPa, EL≧16.0%>
<YR≦0.8, TS≧980MPa, EL≧14.0%>
<YR≦0.8, TS≧1180MPa, EL≧12.0%>
For evaluation of tensile properties, a JIS No. 5 tensile test piece is taken from the center position of the plate width, and a tensile test (based on JIS Z2241 (2011)) is performed at N=3. Each evaluation is performed based on the average value of the three points. A steel plate having a tensile strength of 780 MPa or more is defined as a high-strength steel plate. A steel plate having a yield ratio YR of 0.8 or less is a steel plate having excellent press formability. A steel plate with excellent ductility has a total elongation EL of 16.0% or more when TS: 780 MPa or more, 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more.
<YR≦0.8、TS≧980MPa、EL≧14.0%>
<YR≦0.8、TS≧1180MPa、EL≧12.0%>
引張特性の評価はJIS5号引張試験片を板幅中央位置から採取し、引張試験(JIS Z2241(2011)に準拠)をN=3で実施する。各評価については、3点の平均値に基づいて行う。引張強度が780MPa以上である鋼板を高強度鋼板とする。降伏比YRが0.8以下である鋼板をプレス成形性に優れる鋼板とする。全伸びELはTS:780MPa以上では16.0%以上、TS:980MPa以上では14.0%以上、TS:1180MPa以上では12.0%以上を延性に優れる鋼板とする。 <YR≦0.8, TS≧780MPa, EL≧16.0%>
<YR≦0.8, TS≧980MPa, EL≧14.0%>
<YR≦0.8, TS≧1180MPa, EL≧12.0%>
For evaluation of tensile properties, a JIS No. 5 tensile test piece is taken from the center position of the plate width, and a tensile test (based on JIS Z2241 (2011)) is performed at N=3. Each evaluation is performed based on the average value of the three points. A steel plate having a tensile strength of 780 MPa or more is defined as a high-strength steel plate. A steel plate having a yield ratio YR of 0.8 or less is a steel plate having excellent press formability. A steel plate with excellent ductility has a total elongation EL of 16.0% or more when TS: 780 MPa or more, 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more.
<λ≧30%>
伸びフランジ成形性の評価は板幅中央位置から試験片を採取し、日本鉄鋼連盟規格JFST1001の規定に準拠した穴広げ試験をN=3で実施する。すなわち、100mm×100mm角サイズのサンプルにポンチ径10mm、クリアランス:13%の打ち抜き工具を用いて打ち抜き後、頂角60度の円錐ポンチを用いて、打ち抜き穴形成の際に発生したバリが外側になるようにして、板厚を貫通する割れが発生するまで穴広げを行う。この際のd0:初期穴径(mm)、d:割れ発生時の穴径(mm)として、穴広げ率λ(%)={(d-d0)/d0}×100として求め、実施して得られた3点の平均値をλとして評価する。30%以上のλを有する鋼を穴広げ性に優れ、伸びフランジ性に優れると判断する。好ましくは40%以上とする。 <λ≧30%>
For evaluation of stretch flange formability, a test piece is taken from the center of the plate width, and a hole expansion test is conducted at N=3 in accordance with the Japan Iron and Steel Federation standard JFST1001. That is, after punching a sample with a square size of 100 mm x 100 mm using a punching tool with a punch diameter of 10 mm and a clearance of 13%, a conical punch with a 60 degree apex angle was used to remove the burrs generated when forming the punched hole on the outside. The hole is enlarged until a crack that penetrates through the plate thickness occurs. In this case, d 0 is the initial hole diameter (mm), d is the hole diameter at the time of crack occurrence (mm), and the hole expansion rate λ (%) = {(d - d 0 )/d 0 }×100, The average value of the three points obtained during the test is evaluated as λ. Steel having a λ of 30% or more is judged to have excellent hole expandability and stretch flangeability. Preferably it is 40% or more.
伸びフランジ成形性の評価は板幅中央位置から試験片を採取し、日本鉄鋼連盟規格JFST1001の規定に準拠した穴広げ試験をN=3で実施する。すなわち、100mm×100mm角サイズのサンプルにポンチ径10mm、クリアランス:13%の打ち抜き工具を用いて打ち抜き後、頂角60度の円錐ポンチを用いて、打ち抜き穴形成の際に発生したバリが外側になるようにして、板厚を貫通する割れが発生するまで穴広げを行う。この際のd0:初期穴径(mm)、d:割れ発生時の穴径(mm)として、穴広げ率λ(%)={(d-d0)/d0}×100として求め、実施して得られた3点の平均値をλとして評価する。30%以上のλを有する鋼を穴広げ性に優れ、伸びフランジ性に優れると判断する。好ましくは40%以上とする。 <λ≧30%>
For evaluation of stretch flange formability, a test piece is taken from the center of the plate width, and a hole expansion test is conducted at N=3 in accordance with the Japan Iron and Steel Federation standard JFST1001. That is, after punching a sample with a square size of 100 mm x 100 mm using a punching tool with a punch diameter of 10 mm and a clearance of 13%, a conical punch with a 60 degree apex angle was used to remove the burrs generated when forming the punched hole on the outside. The hole is enlarged until a crack that penetrates through the plate thickness occurs. In this case, d 0 is the initial hole diameter (mm), d is the hole diameter at the time of crack occurrence (mm), and the hole expansion rate λ (%) = {(d - d 0 )/d 0 }×100, The average value of the three points obtained during the test is evaluated as λ. Steel having a λ of 30% or more is judged to have excellent hole expandability and stretch flangeability. Preferably it is 40% or more.
<板幅方向の材質安定性評価>
板幅方向の材質安定性評価として、板幅中央位置(前述した12W/24の位置)から100mm以内の間隔で両板幅方向から評価材を23点(23点には板幅中央位置を含む。)採取し、各位置(測定位置X)でのELおよびλを求める。そして、板幅中央位置の測定値に対する板幅中央位置と各位置の測定値の差の割合を求めることで、板幅方向の材質安定性を評価する。
板幅中央位置のELおよびλを基準として、ELおよびλの差が10%以下となる連続した測定群をELおよびλの差が10%以下の領域とし、全板幅に対してこの領域が80%以上の割合を有する鋼を材質安定性に優れると判断する。
なお、本発明における鋼板の板幅は、好ましくは600mm以上である。また、本発明における鋼板の板幅は、好ましくは1700mm以下である。 <Evaluation of material stability in the board width direction>
To evaluate the material stability in the board width direction, 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (the 12W/24 position mentioned above) (23 points include the board width center position). .) and determine EL and λ at each position (measurement position X). Then, the material stability in the board width direction is evaluated by determining the ratio of the difference between the measured value at the board width center position and each position to the measured value at the board width center position.
Using EL and λ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and λ is 10% or less are defined as areas where the difference in EL and λ is 10% or less, and this area is defined for the entire board width. Steel having a ratio of 80% or more is judged to have excellent material stability.
In addition, the plate width of the steel plate in the present invention is preferably 600 mm or more. Moreover, the plate width of the steel plate in the present invention is preferably 1700 mm or less.
板幅方向の材質安定性評価として、板幅中央位置(前述した12W/24の位置)から100mm以内の間隔で両板幅方向から評価材を23点(23点には板幅中央位置を含む。)採取し、各位置(測定位置X)でのELおよびλを求める。そして、板幅中央位置の測定値に対する板幅中央位置と各位置の測定値の差の割合を求めることで、板幅方向の材質安定性を評価する。
板幅中央位置のELおよびλを基準として、ELおよびλの差が10%以下となる連続した測定群をELおよびλの差が10%以下の領域とし、全板幅に対してこの領域が80%以上の割合を有する鋼を材質安定性に優れると判断する。
なお、本発明における鋼板の板幅は、好ましくは600mm以上である。また、本発明における鋼板の板幅は、好ましくは1700mm以下である。 <Evaluation of material stability in the board width direction>
To evaluate the material stability in the board width direction, 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (the 12W/24 position mentioned above) (23 points include the board width center position). .) and determine EL and λ at each position (measurement position X). Then, the material stability in the board width direction is evaluated by determining the ratio of the difference between the measured value at the board width center position and each position to the measured value at the board width center position.
Using EL and λ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and λ is 10% or less are defined as areas where the difference in EL and λ is 10% or less, and this area is defined for the entire board width. Steel having a ratio of 80% or more is judged to have excellent material stability.
In addition, the plate width of the steel plate in the present invention is preferably 600 mm or more. Moreover, the plate width of the steel plate in the present invention is preferably 1700 mm or less.
次に、本発明の鋼板の鋼組織について、説明する。
Next, the steel structure of the steel plate of the present invention will be explained.
<ポリゴナルフェライトの面積率:10%以上80%以下>
低YRで、かつ高い延性を確保する観点から、ポリゴナルフェライトは面積率で10%以上とし、より高い延性を得るためには好ましくは20%以上とする。
一方、ポリゴナルフェライトが80%を超えると所望の強度が得られなくなるため、ポリゴナルフェライトは面積率で80%以下とし、好ましくは75%以下とし、より好ましくは70%とする。 <Area ratio of polygonal ferrite: 10% or more and 80% or less>
From the viewpoint of ensuring low YR and high ductility, the area ratio of polygonal ferrite is 10% or more, and in order to obtain higher ductility, it is preferably 20% or more.
On the other hand, if the polygonal ferrite exceeds 80%, the desired strength cannot be obtained, so the area ratio of the polygonal ferrite should be 80% or less, preferably 75% or less, and more preferably 70%.
低YRで、かつ高い延性を確保する観点から、ポリゴナルフェライトは面積率で10%以上とし、より高い延性を得るためには好ましくは20%以上とする。
一方、ポリゴナルフェライトが80%を超えると所望の強度が得られなくなるため、ポリゴナルフェライトは面積率で80%以下とし、好ましくは75%以下とし、より好ましくは70%とする。 <Area ratio of polygonal ferrite: 10% or more and 80% or less>
From the viewpoint of ensuring low YR and high ductility, the area ratio of polygonal ferrite is 10% or more, and in order to obtain higher ductility, it is preferably 20% or more.
On the other hand, if the polygonal ferrite exceeds 80%, the desired strength cannot be obtained, so the area ratio of the polygonal ferrite should be 80% or less, preferably 75% or less, and more preferably 70%.
<上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率:10%以上70%以下>
所望の強度を得るために、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率は10%以上とし、より高強度を得るため、好ましくは15%以上とする。
しかしながら、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率が70%を超えると、過度な高強度化により延性が低下するため、その面積率は70%以下とする。より好ましくは65%以下、さらに好ましくは60%以下とする。 <Total area ratio of upper bainite, tempered martensite, and lower bainite: 10% or more and 70% or less>
In order to obtain desired strength, the total area ratio of upper bainite, tempered martensite, and lower bainite is set to 10% or more, and in order to obtain higher strength, it is preferably set to 15% or more.
However, if the total area ratio of upper bainite, tempered martensite, and lower bainite exceeds 70%, ductility decreases due to excessively high strength, so the area ratio is set to 70% or less. More preferably it is 65% or less, still more preferably 60% or less.
所望の強度を得るために、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率は10%以上とし、より高強度を得るため、好ましくは15%以上とする。
しかしながら、上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計の面積率が70%を超えると、過度な高強度化により延性が低下するため、その面積率は70%以下とする。より好ましくは65%以下、さらに好ましくは60%以下とする。 <Total area ratio of upper bainite, tempered martensite, and lower bainite: 10% or more and 70% or less>
In order to obtain desired strength, the total area ratio of upper bainite, tempered martensite, and lower bainite is set to 10% or more, and in order to obtain higher strength, it is preferably set to 15% or more.
However, if the total area ratio of upper bainite, tempered martensite, and lower bainite exceeds 70%, ductility decreases due to excessively high strength, so the area ratio is set to 70% or less. More preferably it is 65% or less, still more preferably 60% or less.
<残留オーステナイト(残留γ)の体積率:3%以上15%以下>
残留オーステナイトの体積率が3%を下回ると所望の延性を確保できなくなる。
延性の観点から残留オーステナイトの体積率は3%以上とし、好ましくは5%以上である。一方、残留オーステナイトが15%を超えると、伸びフランジ成形性が低下するため、残留オーステナイトは15%以下とする。より好ましくは13%以下である。 <Volume fraction of retained austenite (retained γ): 3% or more and 15% or less>
When the volume fraction of retained austenite is less than 3%, desired ductility cannot be ensured.
From the viewpoint of ductility, the volume fraction of retained austenite is 3% or more, preferably 5% or more. On the other hand, if the retained austenite exceeds 15%, stretch flange formability deteriorates, so the retained austenite is set to 15% or less. More preferably it is 13% or less.
残留オーステナイトの体積率が3%を下回ると所望の延性を確保できなくなる。
延性の観点から残留オーステナイトの体積率は3%以上とし、好ましくは5%以上である。一方、残留オーステナイトが15%を超えると、伸びフランジ成形性が低下するため、残留オーステナイトは15%以下とする。より好ましくは13%以下である。 <Volume fraction of retained austenite (retained γ): 3% or more and 15% or less>
When the volume fraction of retained austenite is less than 3%, desired ductility cannot be ensured.
From the viewpoint of ductility, the volume fraction of retained austenite is 3% or more, preferably 5% or more. On the other hand, if the retained austenite exceeds 15%, stretch flange formability deteriorates, so the retained austenite is set to 15% or less. More preferably it is 13% or less.
<焼入れマルテンサイトの面積率:15%以下(0%を含む)>
硬質な焼入れマルテンサイト組織はλを低下させるため、その面積率を抑制する必要がある。所望のλを得るためには焼入れマルテンサイトの面積率を15%以下とする。より安定的にλを得るために、焼入れマルテンサイトの面積率は、好ましくは12%以下、より好ましくは10%以下である。 <Area ratio of quenched martensite: 15% or less (including 0%)>
Since the hard quenched martensitic structure lowers λ, it is necessary to suppress its area ratio. In order to obtain the desired λ, the area ratio of quenched martensite is set to 15% or less. In order to obtain λ more stably, the area ratio of hardened martensite is preferably 12% or less, more preferably 10% or less.
硬質な焼入れマルテンサイト組織はλを低下させるため、その面積率を抑制する必要がある。所望のλを得るためには焼入れマルテンサイトの面積率を15%以下とする。より安定的にλを得るために、焼入れマルテンサイトの面積率は、好ましくは12%以下、より好ましくは10%以下である。 <Area ratio of quenched martensite: 15% or less (including 0%)>
Since the hard quenched martensitic structure lowers λ, it is necessary to suppress its area ratio. In order to obtain the desired λ, the area ratio of quenched martensite is set to 15% or less. In order to obtain λ more stably, the area ratio of hardened martensite is preferably 12% or less, more preferably 10% or less.
<残部組織>
鋼組織については、上記以外については、残部組織からなる。残部組織の面積率は5%以下とすることが好ましい。残部組織は、炭化物、パーライトとしてよい。これらの組織は、後述のようにSEM観察で判定すればよい。 <Remaining organization>
Regarding the steel structure, other than the above, it consists of the remainder structure. The area ratio of the remaining tissue is preferably 5% or less. The remaining structure may be carbide or pearlite. These tissues may be determined by SEM observation as described later.
鋼組織については、上記以外については、残部組織からなる。残部組織の面積率は5%以下とすることが好ましい。残部組織は、炭化物、パーライトとしてよい。これらの組織は、後述のようにSEM観察で判定すればよい。 <Remaining organization>
Regarding the steel structure, other than the above, it consists of the remainder structure. The area ratio of the remaining tissue is preferably 5% or less. The remaining structure may be carbide or pearlite. These tissues may be determined by SEM observation as described later.
<焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対する、アスペクト比が3以下であり、かつ円相当径2.0μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率:20%以下>
残留オーステナイトは、プレス成形や引張加工などでTRIP効果により硬質なマルテンサイト組織となる。そのため、本発明では伸びフランジ性の観点で、焼入れマルテンサイトと残留オーステナイトを合わせて制御する。円相当径で2.0μm以上の焼入れマルテンサイトあるいは残留オーステナイトが形成されると、他組織との界面の応力集中部でボイドが形成され、伸びフランジ成形性を劣化させる場合がある。
また、焼入れマルテンサイトあるいは残留オーステナイトのアスペクト比が3以下になると他組織との界面に応力集中が生じやすくなるため、ボイド形成を助長し、伸びフランジ成形性を劣化させる場合がある。そのため、焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径2.0μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率は、20%以下とする。この合計面積率は、好ましくは18%以下とし、より好ましくは16%以下とする。
焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対する、アスペクト比が3以下であり、かつ円相当径2.0μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率は、特に下限は設けないが、操業性の観点から0%に制御することは困難であるため、好ましくは2%以上とし、より好ましくは4%以上とする。
上記の円相当径は、好ましくは20.0μm以下である。 <Total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more relative to the total area ratio of hardened martensite and retained austenite: 20% or less>
The retained austenite becomes a hard martensitic structure due to the TRIP effect during press molding, tensile processing, etc. Therefore, in the present invention, from the viewpoint of stretch flangeability, quenched martensite and retained austenite are controlled together. When hardened martensite or retained austenite with a circular equivalent diameter of 2.0 μm or more is formed, voids are formed at stress concentration areas at the interface with other structures, which may deteriorate stretch flange formability.
Furthermore, when the aspect ratio of hardened martensite or retained austenite is 3 or less, stress concentration tends to occur at the interface with other structures, which may promote void formation and deteriorate stretch flange formability. Therefore, the total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more shall be 20% or less of the total area ratio of hardened martensite and retained austenite. . This total area ratio is preferably 18% or less, more preferably 16% or less.
There is no lower limit for the total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more, but there is no lower limit for the total area ratio of hardened martensite and retained austenite, but operability Since it is difficult to control the content to 0% from the viewpoint of the above, it is preferably set to 2% or more, more preferably 4% or more.
The above-mentioned equivalent circle diameter is preferably 20.0 μm or less.
残留オーステナイトは、プレス成形や引張加工などでTRIP効果により硬質なマルテンサイト組織となる。そのため、本発明では伸びフランジ性の観点で、焼入れマルテンサイトと残留オーステナイトを合わせて制御する。円相当径で2.0μm以上の焼入れマルテンサイトあるいは残留オーステナイトが形成されると、他組織との界面の応力集中部でボイドが形成され、伸びフランジ成形性を劣化させる場合がある。
また、焼入れマルテンサイトあるいは残留オーステナイトのアスペクト比が3以下になると他組織との界面に応力集中が生じやすくなるため、ボイド形成を助長し、伸びフランジ成形性を劣化させる場合がある。そのため、焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径2.0μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率は、20%以下とする。この合計面積率は、好ましくは18%以下とし、より好ましくは16%以下とする。
焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対する、アスペクト比が3以下であり、かつ円相当径2.0μm以上の焼入れマルテンサイトおよび残留オーステナイトの合計面積率は、特に下限は設けないが、操業性の観点から0%に制御することは困難であるため、好ましくは2%以上とし、より好ましくは4%以上とする。
上記の円相当径は、好ましくは20.0μm以下である。 <Total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more relative to the total area ratio of hardened martensite and retained austenite: 20% or less>
The retained austenite becomes a hard martensitic structure due to the TRIP effect during press molding, tensile processing, etc. Therefore, in the present invention, from the viewpoint of stretch flangeability, quenched martensite and retained austenite are controlled together. When hardened martensite or retained austenite with a circular equivalent diameter of 2.0 μm or more is formed, voids are formed at stress concentration areas at the interface with other structures, which may deteriorate stretch flange formability.
Furthermore, when the aspect ratio of hardened martensite or retained austenite is 3 or less, stress concentration tends to occur at the interface with other structures, which may promote void formation and deteriorate stretch flange formability. Therefore, the total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more shall be 20% or less of the total area ratio of hardened martensite and retained austenite. . This total area ratio is preferably 18% or less, more preferably 16% or less.
There is no lower limit for the total area ratio of hardened martensite and retained austenite with an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more, but there is no lower limit for the total area ratio of hardened martensite and retained austenite, but operability Since it is difficult to control the content to 0% from the viewpoint of the above, it is preferably set to 2% or more, more preferably 4% or more.
The above-mentioned equivalent circle diameter is preferably 20.0 μm or less.
<全組織に対するC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率:20%以下>
焼入れマルテンサイトの硬度は、焼入れマルテンサイト中に固溶するC量で決定される。焼入れマルテンサイトと他組織との硬度差が増加すると、応力集中部の界面にボイドの形成が助長される。固溶Cが多く存在する組織は焼入れマルテンサイトと残留オーステナイトである。残留オーステナイトは高延性化に寄与する組織であり、C濃度は0.5mass%以上となるが、すべての構成組織に対して、C濃度が0.5mass%以上の組織の面積率が20%以下であれば、延性を向上しつつ伸びフランジ成形性を確保することができるとともに、板幅方向の材質のばらつきも低減でき、材質安定性に優れた鋼板の製造が可能となる。このため、C濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率(占積率)は20%以下とする。この面積率は、好ましくは15%以下であり、より好ましくは12%以下である。また、この面積率は、好ましくは3%以上であり、より好ましくは5%以上である。 <Area ratio of C-enriched regions (SC ≧0.5 ) where the C concentration is 0.5 mass% or more relative to the whole tissue: 20% or less>
The hardness of quenched martensite is determined by the amount of C dissolved in the quenched martensite. When the difference in hardness between the hardened martensite and other structures increases, the formation of voids at the interface of the stress concentration area is promoted. The structures in which a large amount of solid solute C exists are quenched martensite and retained austenite. Retained austenite is a structure that contributes to high ductility, and the C concentration is 0.5 mass% or more, but the area ratio of the structure with a C concentration of 0.5 mass% or more is 20% or less of all constituent structures. If so, stretch flange formability can be ensured while improving ductility, and variations in material quality in the sheet width direction can also be reduced, making it possible to manufacture a steel sheet with excellent material stability. Therefore, the area ratio (occupation ratio) of the C-enriched region (SC ≧0.5 ) where the C concentration is 0.5 mass% or more is 20% or less. This area ratio is preferably 15% or less, more preferably 12% or less. Moreover, this area ratio is preferably 3% or more, more preferably 5% or more.
焼入れマルテンサイトの硬度は、焼入れマルテンサイト中に固溶するC量で決定される。焼入れマルテンサイトと他組織との硬度差が増加すると、応力集中部の界面にボイドの形成が助長される。固溶Cが多く存在する組織は焼入れマルテンサイトと残留オーステナイトである。残留オーステナイトは高延性化に寄与する組織であり、C濃度は0.5mass%以上となるが、すべての構成組織に対して、C濃度が0.5mass%以上の組織の面積率が20%以下であれば、延性を向上しつつ伸びフランジ成形性を確保することができるとともに、板幅方向の材質のばらつきも低減でき、材質安定性に優れた鋼板の製造が可能となる。このため、C濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率(占積率)は20%以下とする。この面積率は、好ましくは15%以下であり、より好ましくは12%以下である。また、この面積率は、好ましくは3%以上であり、より好ましくは5%以上である。 <Area ratio of C-enriched regions (SC ≧0.5 ) where the C concentration is 0.5 mass% or more relative to the whole tissue: 20% or less>
The hardness of quenched martensite is determined by the amount of C dissolved in the quenched martensite. When the difference in hardness between the hardened martensite and other structures increases, the formation of voids at the interface of the stress concentration area is promoted. The structures in which a large amount of solid solute C exists are quenched martensite and retained austenite. Retained austenite is a structure that contributes to high ductility, and the C concentration is 0.5 mass% or more, but the area ratio of the structure with a C concentration of 0.5 mass% or more is 20% or less of all constituent structures. If so, stretch flange formability can be ensured while improving ductility, and variations in material quality in the sheet width direction can also be reduced, making it possible to manufacture a steel sheet with excellent material stability. Therefore, the area ratio (occupation ratio) of the C-enriched region (SC ≧0.5 ) where the C concentration is 0.5 mass% or more is 20% or less. This area ratio is preferably 15% or less, more preferably 12% or less. Moreover, this area ratio is preferably 3% or more, more preferably 5% or more.
次に鋼組織の測定方法について説明する。
Next, the method for measuring the steel structure will be explained.
ポリゴナルフェライト、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、焼入れマルテンサイト(フレッシュマルテンサイト)の面積率の測定は、圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、撮影した組織写真を画像解析で定量化する。
ポリゴナルフェライトは内部に殆ど炭化物を伴わず、比較的等軸なフェライトを対象とする。SEMでは最も黒色に見える領域である。
上部ベイナイトは、内部にSEMでは白色に見える炭化物または残留オーステナイトの生成を伴うフェライト組織である。なお上部ベイナイトとポリゴナルフェライトの識別が難しい場合は、アスペクト比≦2.0の形態のフェライトの領域をポリゴナルフェライトとし、アスペクト比>2.0の領域を上部ベイナイトに分類し面積率を算出する。ここで、アスペクト比は、粒子長さが最も長くなる長軸長さaを求め、それに垂直な方向で最も粒子を長く横切るときの粒子長さを短軸長さbとし、a/bをアスペクト比とする。
焼戻しマルテンサイトおよび下部ベイナイトは、SEMでは内部にラス状の下部組織と炭化物の析出を伴う領域である。
焼入れマルテンサイト(フレッシュマルテンサイト)は、SEMでは内部に下部組織が見えずに白く見える塊状の領域である。
残部組織は、炭化物および/またはパーライト組織のことであり、SEMでは白いコントラストで確認することができる組織である。炭化物は粒子径が1μm以下の組織であり、また、パーライトはラメラー(層)状の組織であることから区別することが可能である。 To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
Polygonal ferrite is a relatively equiaxed ferrite with almost no carbide inside. This is the area that appears blackest in the SEM.
Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM. If it is difficult to distinguish between upper bainite and polygonal ferrite, the area of ferrite with an aspect ratio ≦2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated. do. Here, the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. Take the ratio.
The tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
The residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM. Carbide has a structure with a particle size of 1 μm or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
ポリゴナルフェライトは内部に殆ど炭化物を伴わず、比較的等軸なフェライトを対象とする。SEMでは最も黒色に見える領域である。
上部ベイナイトは、内部にSEMでは白色に見える炭化物または残留オーステナイトの生成を伴うフェライト組織である。なお上部ベイナイトとポリゴナルフェライトの識別が難しい場合は、アスペクト比≦2.0の形態のフェライトの領域をポリゴナルフェライトとし、アスペクト比>2.0の領域を上部ベイナイトに分類し面積率を算出する。ここで、アスペクト比は、粒子長さが最も長くなる長軸長さaを求め、それに垂直な方向で最も粒子を長く横切るときの粒子長さを短軸長さbとし、a/bをアスペクト比とする。
焼戻しマルテンサイトおよび下部ベイナイトは、SEMでは内部にラス状の下部組織と炭化物の析出を伴う領域である。
焼入れマルテンサイト(フレッシュマルテンサイト)は、SEMでは内部に下部組織が見えずに白く見える塊状の領域である。
残部組織は、炭化物および/またはパーライト組織のことであり、SEMでは白いコントラストで確認することができる組織である。炭化物は粒子径が1μm以下の組織であり、また、パーライトはラメラー(層)状の組織であることから区別することが可能である。 To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
Polygonal ferrite is a relatively equiaxed ferrite with almost no carbide inside. This is the area that appears blackest in the SEM.
Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM. If it is difficult to distinguish between upper bainite and polygonal ferrite, the area of ferrite with an aspect ratio ≦2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated. do. Here, the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. Take the ratio.
The tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
The residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM. Carbide has a structure with a particle size of 1 μm or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
上述した組織の定量評価、および焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径の測定は、画像解析ソフト、例えばImage J(Fiji)を用いて行うことができる。
圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、Image J(Fiji)の機械学習で領域識別可能なTrainable Weka segmentation法を用いて各組織を識別して定量評価できる。また、焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径は、同じくImage Jの機能である粒子解析プログラムにより測定可能であり、前記の通り識別した焼入れマルテンサイト、残留オーステナイトのみを抽出して測定する。 The quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be performed using image analysis software such as Image J (Fiji).
A cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed. Each tissue can be identified and quantitatively evaluated using the Trainable Weka segmentation method that allows area identification. In addition, the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. do.
圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、Image J(Fiji)の機械学習で領域識別可能なTrainable Weka segmentation法を用いて各組織を識別して定量評価できる。また、焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径は、同じくImage Jの機能である粒子解析プログラムにより測定可能であり、前記の通り識別した焼入れマルテンサイト、残留オーステナイトのみを抽出して測定する。 The quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be performed using image analysis software such as Image J (Fiji).
A cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed. Each tissue can be identified and quantitatively evaluated using the Trainable Weka segmentation method that allows area identification. In addition, the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. do.
残留オーステナイトの体積率は、表層から1/4厚み位置を化学研磨し、X線回折にて求める。入射X線にはCo-Kα線源を用い、フェライトの(200)、(211)、(220)面とオーステナイトの(200)、(220)、(311)面の強度比から残留オーステナイトの体積率を計算する。ここで、残留オーステナイトはランダムに分布しているので、X線回折で求めた残留オーステナイトの体積率は、残留オーステナイトの面積率とすることができる。
The volume fraction of retained austenite is determined by chemically polishing a 1/4 thickness position from the surface layer and using X-ray diffraction. A Co-Kα ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. Calculate the rate. Here, since the retained austenite is randomly distributed, the volume fraction of the retained austenite determined by X-ray diffraction can be taken as the area fraction of the retained austenite.
C濃度が0.5mass%以上であるC濃化領域の面積率SC≧0.5の測定は、圧延方向に平行な板厚断面の板厚1/4位置において日本電子製電界放出型電子線マイクロアナライザ(FE-EPMA)JXA-8500Fを用いる。そして、加速電圧6kV、照射電流7×10-8A、ビーム径を最小としてC濃度分布をマッピング分析することにより測定し、C濃度が0.5mass%以上となる面積率を算出する。
ただし、コンタミネーションの影響を排除するために、分析で得られたCの平均値が母材の炭素量に等しくなる様、バックグラウンド分を差し引く。つまり、測定された炭素量の平均値が母材の炭素量より多い場合、その増加分はコンタミネーションと考え、各位置での分析値からその増加分を一律差し引いた値を各位置での真のC量とする。 The area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F is used. Then, the C concentration distribution is measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7×10 −8 A, and a beam diameter of the minimum, and an area ratio at which the C concentration is 0.5 mass% or more is calculated.
However, in order to eliminate the influence of contamination, background components are subtracted so that the average value of C obtained in the analysis is equal to the carbon content of the base material. In other words, if the average value of the measured carbon content is greater than the carbon content of the base material, the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. Let the amount of C be .
ただし、コンタミネーションの影響を排除するために、分析で得られたCの平均値が母材の炭素量に等しくなる様、バックグラウンド分を差し引く。つまり、測定された炭素量の平均値が母材の炭素量より多い場合、その増加分はコンタミネーションと考え、各位置での分析値からその増加分を一律差し引いた値を各位置での真のC量とする。 The area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F is used. Then, the C concentration distribution is measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7×10 −8 A, and a beam diameter of the minimum, and an area ratio at which the C concentration is 0.5 mass% or more is calculated.
However, in order to eliminate the influence of contamination, background components are subtracted so that the average value of C obtained in the analysis is equal to the carbon content of the base material. In other words, if the average value of the measured carbon content is greater than the carbon content of the base material, the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. Let the amount of C be .
次に、本発明の鋼板の製造方法について説明する。
本発明の鋼板の製造方法は、前述した成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、上記焼鈍は、上記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、上記焼鈍温度で10~500秒保持する保持工程と、上記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして上記第一冷却停止温度まで冷却する第一冷却工程と、350~550℃の滞留温度で10s以上60s以下滞留させた後、150~360℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却を行う第二冷却工程と、上記第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程と、を含む。 Next, a method for manufacturing a steel plate according to the present invention will be explained.
The method for producing a steel plate of the present invention involves hot rolling, pickling and cold rolling a steel slab having the above-mentioned composition, and then annealing the obtained cold rolled steel plate. This is a manufacturing method, and the annealing includes a holding step of heating the cold rolled steel sheet to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds, and a holding step of heating the cold rolled steel plate to an annealing temperature of 350 to 550°C from the annealing temperature. A first cooling step in which the temperature range up to the first cooling stop temperature is set at a first average cooling rate of 2 to 50°C/s to the above first cooling stop temperature, and a residence temperature of 350 to 550°C for 10 seconds or more for 60 seconds. A second cooling step in which cooling is performed at a second average cooling rate of 3 to 50°C/s to a second cooling stop temperature of 150 to 360°C, and and a third cooling step in which the temperature range is cooled at a third average cooling rate: 0.05 to 1.0° C./s.
本発明の鋼板の製造方法は、前述した成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、上記焼鈍は、上記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、上記焼鈍温度で10~500秒保持する保持工程と、上記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして上記第一冷却停止温度まで冷却する第一冷却工程と、350~550℃の滞留温度で10s以上60s以下滞留させた後、150~360℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却を行う第二冷却工程と、上記第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程と、を含む。 Next, a method for manufacturing a steel plate according to the present invention will be explained.
The method for producing a steel plate of the present invention involves hot rolling, pickling and cold rolling a steel slab having the above-mentioned composition, and then annealing the obtained cold rolled steel plate. This is a manufacturing method, and the annealing includes a holding step of heating the cold rolled steel sheet to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds, and a holding step of heating the cold rolled steel plate to an annealing temperature of 350 to 550°C from the annealing temperature. A first cooling step in which the temperature range up to the first cooling stop temperature is set at a first average cooling rate of 2 to 50°C/s to the above first cooling stop temperature, and a residence temperature of 350 to 550°C for 10 seconds or more for 60 seconds. A second cooling step in which cooling is performed at a second average cooling rate of 3 to 50°C/s to a second cooling stop temperature of 150 to 360°C, and and a third cooling step in which the temperature range is cooled at a third average cooling rate: 0.05 to 1.0° C./s.
<熱間圧延>
鋼スラブを熱間圧延する方法には、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などがある。熱間圧延は、常法にしたがって実施すればよく、例えば、スラブ加熱温度は1100~1300℃、均熱温度は20~300min、仕上圧延温度はAr3変態点~Ar3変態点+200℃、巻取温度は400~720℃とすればよい。巻取温度は、板厚変動を抑制し高い強度を安定して確保する観点からは、430~530℃とするのが好ましい。
Ar3変態点は鋼板の成分と下記の経験式(A)から算出することができる。
Ar3=910-203×[C]+44.7×[Mn]-30×[Si]+700×[P]+400×[sol.Al]-20×[B]+31.5×[Mo]+104×[V]+400×[Ti] ・・・(A)
式(A)中、[元素]は各元素の含有量(質量%)を意味する。(含有しない元素は0(零)質量%とする。) <Hot rolling>
Methods for hot rolling steel slabs include rolling the slab after heating, directly rolling the slab after continuous casting without heating it, and rolling after subjecting the slab after continuous casting to a short heat treatment. and so on. Hot rolling may be carried out according to a conventional method, for example, the slab heating temperature is 1100 to 1300°C, the soaking temperature is 20 to 300 min, the finish rolling temperature is Ar 3 transformation point to Ar 3 transformation point + 200°C, and rolling The temperature may be 400 to 720°C. The winding temperature is preferably 430 to 530° C. from the viewpoint of suppressing plate thickness variations and stably ensuring high strength.
The Ar 3 transformation point can be calculated from the composition of the steel plate and the following empirical formula (A).
Ar 3 =910-203×[C]+44.7×[Mn]-30×[Si]+700×[P]+400×[sol. Al]-20×[B]+31.5×[Mo]+104×[V]+400×[Ti]...(A)
In formula (A), [element] means the content (mass%) of each element. (Elements not contained are considered to be 0 (zero) mass%.)
鋼スラブを熱間圧延する方法には、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などがある。熱間圧延は、常法にしたがって実施すればよく、例えば、スラブ加熱温度は1100~1300℃、均熱温度は20~300min、仕上圧延温度はAr3変態点~Ar3変態点+200℃、巻取温度は400~720℃とすればよい。巻取温度は、板厚変動を抑制し高い強度を安定して確保する観点からは、430~530℃とするのが好ましい。
Ar3変態点は鋼板の成分と下記の経験式(A)から算出することができる。
Ar3=910-203×[C]+44.7×[Mn]-30×[Si]+700×[P]+400×[sol.Al]-20×[B]+31.5×[Mo]+104×[V]+400×[Ti] ・・・(A)
式(A)中、[元素]は各元素の含有量(質量%)を意味する。(含有しない元素は0(零)質量%とする。) <Hot rolling>
Methods for hot rolling steel slabs include rolling the slab after heating, directly rolling the slab after continuous casting without heating it, and rolling after subjecting the slab after continuous casting to a short heat treatment. and so on. Hot rolling may be carried out according to a conventional method, for example, the slab heating temperature is 1100 to 1300°C, the soaking temperature is 20 to 300 min, the finish rolling temperature is Ar 3 transformation point to Ar 3 transformation point + 200°C, and rolling The temperature may be 400 to 720°C. The winding temperature is preferably 430 to 530° C. from the viewpoint of suppressing plate thickness variations and stably ensuring high strength.
The Ar 3 transformation point can be calculated from the composition of the steel plate and the following empirical formula (A).
Ar 3 =910-203×[C]+44.7×[Mn]-30×[Si]+700×[P]+400×[sol. Al]-20×[B]+31.5×[Mo]+104×[V]+400×[Ti]...(A)
In formula (A), [element] means the content (mass%) of each element. (Elements not contained are considered to be 0 (zero) mass%.)
<酸洗>
酸洗は常法に従って行えばよい。 <Acid washing>
Pickling may be carried out according to a conventional method.
酸洗は常法に従って行えばよい。 <Acid washing>
Pickling may be carried out according to a conventional method.
<冷間圧延>
冷間圧延は常法に従って行えばよく、累積圧延率を30~85%とすればよい。高い強度を安定して確保し、異方性を小さくする観点からは、圧延率は35~85%にすることが好ましい。なお、圧延荷重が高い場合は、450~730℃でCAL(連続焼鈍ライン)またはBAF(箱焼鈍炉)にて軟質化の焼鈍処理をすることが可能である。 <Cold rolling>
Cold rolling may be carried out according to a conventional method, and the cumulative rolling ratio may be 30 to 85%. From the viewpoint of stably securing high strength and reducing anisotropy, the rolling ratio is preferably 35 to 85%. Note that when the rolling load is high, it is possible to perform softening annealing treatment at 450 to 730° C. in a CAL (continuous annealing line) or BAF (box annealing furnace).
冷間圧延は常法に従って行えばよく、累積圧延率を30~85%とすればよい。高い強度を安定して確保し、異方性を小さくする観点からは、圧延率は35~85%にすることが好ましい。なお、圧延荷重が高い場合は、450~730℃でCAL(連続焼鈍ライン)またはBAF(箱焼鈍炉)にて軟質化の焼鈍処理をすることが可能である。 <Cold rolling>
Cold rolling may be carried out according to a conventional method, and the cumulative rolling ratio may be 30 to 85%. From the viewpoint of stably securing high strength and reducing anisotropy, the rolling ratio is preferably 35 to 85%. Note that when the rolling load is high, it is possible to perform softening annealing treatment at 450 to 730° C. in a CAL (continuous annealing line) or BAF (box annealing furnace).
<焼鈍>
常法に従って製造した冷延鋼板(冷間圧延鋼板)について、以下の条件で焼鈍を行う。焼鈍設備は特に限定されないが、生産性、および所望の加熱速度および冷却速度を確保するという観点から、連続焼鈍ライン(CAL)または連続溶融亜鉛めっきライン(CGL)で実施することが好ましい。 <Annealing>
A cold rolled steel plate (cold rolled steel plate) manufactured according to a conventional method is annealed under the following conditions. Although the annealing equipment is not particularly limited, it is preferable to use a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL) from the viewpoint of productivity and ensuring desired heating and cooling rates.
常法に従って製造した冷延鋼板(冷間圧延鋼板)について、以下の条件で焼鈍を行う。焼鈍設備は特に限定されないが、生産性、および所望の加熱速度および冷却速度を確保するという観点から、連続焼鈍ライン(CAL)または連続溶融亜鉛めっきライン(CGL)で実施することが好ましい。 <Annealing>
A cold rolled steel plate (cold rolled steel plate) manufactured according to a conventional method is annealed under the following conditions. Although the annealing equipment is not particularly limited, it is preferable to use a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL) from the viewpoint of productivity and ensuring desired heating and cooling rates.
[保持工程:750~880℃の焼鈍温度域の焼鈍温度に加熱し、焼鈍温度で10~500秒保持]
焼鈍温度(均熱温度)が750℃を下回ると、再結晶が十分に起こらず、冷間圧延時の加工組織が残存することで成形性を低下させる。さらに、焼鈍温度(均熱温度)が750℃を下回ると、ポリゴナルフェライトが過多となることで逆変態オーステナイト中に濃化するCおよびMnが増加することから、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、残留オーステナイトを十分に得られず、所望の強度と延性とを確保できない。このため、焼鈍温度(均熱温度)は750℃以上とする。
一方、焼鈍温度(均熱温度)が880℃を超えると、オーステナイト単相温度となり、所定のポリゴナルフェライトが得られず、YRが増加するとともに延性が低下する。このため、焼鈍温度(均熱温度)は880℃以下とする。焼鈍温度(均熱温度)は、好ましくは850℃以下であり、より好ましくは830℃以下である。 [Holding step: heated to an annealing temperature in the annealing temperature range of 750 to 880°C and held at the annealing temperature for 10 to 500 seconds]
When the annealing temperature (soaking temperature) is lower than 750°C, recrystallization does not occur sufficiently, and the processed structure during cold rolling remains, reducing formability. Furthermore, when the annealing temperature (soaking temperature) is lower than 750°C, polygonal ferrite becomes excessive and C and Mn concentrate in the reverse transformed austenite. It is not possible to obtain sufficient bainite and retained austenite, and the desired strength and ductility cannot be secured. For this reason, the annealing temperature (soaking temperature) is set to 750°C or higher.
On the other hand, when the annealing temperature (soaking temperature) exceeds 880°C, the temperature becomes an austenite single phase temperature, the desired polygonal ferrite cannot be obtained, and the YR increases and the ductility decreases. Therefore, the annealing temperature (soaking temperature) is set to 880° C. or lower. The annealing temperature (soaking temperature) is preferably 850°C or lower, more preferably 830°C or lower.
焼鈍温度(均熱温度)が750℃を下回ると、再結晶が十分に起こらず、冷間圧延時の加工組織が残存することで成形性を低下させる。さらに、焼鈍温度(均熱温度)が750℃を下回ると、ポリゴナルフェライトが過多となることで逆変態オーステナイト中に濃化するCおよびMnが増加することから、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、残留オーステナイトを十分に得られず、所望の強度と延性とを確保できない。このため、焼鈍温度(均熱温度)は750℃以上とする。
一方、焼鈍温度(均熱温度)が880℃を超えると、オーステナイト単相温度となり、所定のポリゴナルフェライトが得られず、YRが増加するとともに延性が低下する。このため、焼鈍温度(均熱温度)は880℃以下とする。焼鈍温度(均熱温度)は、好ましくは850℃以下であり、より好ましくは830℃以下である。 [Holding step: heated to an annealing temperature in the annealing temperature range of 750 to 880°C and held at the annealing temperature for 10 to 500 seconds]
When the annealing temperature (soaking temperature) is lower than 750°C, recrystallization does not occur sufficiently, and the processed structure during cold rolling remains, reducing formability. Furthermore, when the annealing temperature (soaking temperature) is lower than 750°C, polygonal ferrite becomes excessive and C and Mn concentrate in the reverse transformed austenite. It is not possible to obtain sufficient bainite and retained austenite, and the desired strength and ductility cannot be secured. For this reason, the annealing temperature (soaking temperature) is set to 750°C or higher.
On the other hand, when the annealing temperature (soaking temperature) exceeds 880°C, the temperature becomes an austenite single phase temperature, the desired polygonal ferrite cannot be obtained, and the YR increases and the ductility decreases. Therefore, the annealing temperature (soaking temperature) is set to 880° C. or lower. The annealing temperature (soaking temperature) is preferably 850°C or lower, more preferably 830°C or lower.
また、上記焼鈍温度で保持する時間(均熱時間)が10秒未満であると、上記焼鈍温度(均熱温度)におけるオーステナイトの形成が十分に行われず、ポリゴナルフェライトが多くなり、規定量の上部ベイナイト、焼戻しマルテンサイト、下部ベイナイトが得られずに、所望の強度が得られないのみならず、残留オーステナイトを十分に得ることができず、所望の延性が確保されない。
一方、上記焼鈍温度で保持する時間(均熱時間)が500秒超えであると、組織の粗大化が顕著に生じるため、所望の強度を確保できない。
よって、上記焼鈍温度で保持する時間(均熱時間)は、10~500秒とする。焼鈍温度で保持する時間(均熱時間)は、好ましくは、80秒以上であり、より好ましくは100秒以上である。また、焼鈍温度で保持する時間(均熱時間)は、好ましくは、400秒以下であり、より好ましくは300秒以下である。 In addition, if the time for holding at the above annealing temperature (soaking time) is less than 10 seconds, austenite will not be formed sufficiently at the above annealing temperature (soaking temperature), and polygonal ferrite will increase, resulting in less than the specified amount. Upper bainite, tempered martensite, and lower bainite cannot be obtained, and not only the desired strength cannot be obtained, but also sufficient residual austenite cannot be obtained, and desired ductility cannot be secured.
On the other hand, if the time for holding at the above annealing temperature (soaking time) exceeds 500 seconds, the structure will significantly coarsen, making it impossible to secure the desired strength.
Therefore, the time for holding at the above annealing temperature (soaking time) is set to 10 to 500 seconds. The time for holding at the annealing temperature (soaking time) is preferably 80 seconds or more, more preferably 100 seconds or more. Further, the time for holding at the annealing temperature (soaking time) is preferably 400 seconds or less, more preferably 300 seconds or less.
一方、上記焼鈍温度で保持する時間(均熱時間)が500秒超えであると、組織の粗大化が顕著に生じるため、所望の強度を確保できない。
よって、上記焼鈍温度で保持する時間(均熱時間)は、10~500秒とする。焼鈍温度で保持する時間(均熱時間)は、好ましくは、80秒以上であり、より好ましくは100秒以上である。また、焼鈍温度で保持する時間(均熱時間)は、好ましくは、400秒以下であり、より好ましくは300秒以下である。 In addition, if the time for holding at the above annealing temperature (soaking time) is less than 10 seconds, austenite will not be formed sufficiently at the above annealing temperature (soaking temperature), and polygonal ferrite will increase, resulting in less than the specified amount. Upper bainite, tempered martensite, and lower bainite cannot be obtained, and not only the desired strength cannot be obtained, but also sufficient residual austenite cannot be obtained, and desired ductility cannot be secured.
On the other hand, if the time for holding at the above annealing temperature (soaking time) exceeds 500 seconds, the structure will significantly coarsen, making it impossible to secure the desired strength.
Therefore, the time for holding at the above annealing temperature (soaking time) is set to 10 to 500 seconds. The time for holding at the annealing temperature (soaking time) is preferably 80 seconds or more, more preferably 100 seconds or more. Further, the time for holding at the annealing temperature (soaking time) is preferably 400 seconds or less, more preferably 300 seconds or less.
[第一冷却工程:焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして第一冷却停止温度まで冷却]
750℃から880℃の均熱温度での保持後(上記保持工程後)、上記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度2~50℃/sで冷却する。2℃/sを下回ると操業性が低下するため、第一平均冷却速度は2℃/s以上とする。第一平均冷却速度は、好ましくは5℃/s以上である。
一方、第一平均冷却速度が大きくなりすぎると、板形状が悪化するので、50℃/s以下とする。第一平均冷却速度は、好ましくは40℃/s以下であり、より好ましくは30℃/s未満である。
ここで、第一平均冷却速度とは、「(焼鈍温度(℃)-第一冷却停止温度(℃))/焼鈍温度から第一冷却停止温度までの冷却時間(秒)」である。 [First cooling step: cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550°C to the first cooling stop temperature at a first average cooling rate of 2 to 50°C/s]
After holding at a soaking temperature of 750°C to 880°C (after the above holding step), the temperature range from the above annealing temperature to the first cooling stop temperature of 350 to 550°C is set at a first average cooling rate of 2 to 50°C/s. Cool it down. If the cooling rate is less than 2°C/s, operability will deteriorate, so the first average cooling rate is set to 2°C/s or more. The first average cooling rate is preferably 5°C/s or more.
On the other hand, if the first average cooling rate becomes too high, the plate shape will deteriorate, so it is set to 50° C./s or less. The first average cooling rate is preferably 40°C/s or less, more preferably less than 30°C/s.
Here, the first average cooling rate is "(annealing temperature (°C) - first cooling stop temperature (°C))/cooling time (seconds) from the annealing temperature to the first cooling stop temperature."
750℃から880℃の均熱温度での保持後(上記保持工程後)、上記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度2~50℃/sで冷却する。2℃/sを下回ると操業性が低下するため、第一平均冷却速度は2℃/s以上とする。第一平均冷却速度は、好ましくは5℃/s以上である。
一方、第一平均冷却速度が大きくなりすぎると、板形状が悪化するので、50℃/s以下とする。第一平均冷却速度は、好ましくは40℃/s以下であり、より好ましくは30℃/s未満である。
ここで、第一平均冷却速度とは、「(焼鈍温度(℃)-第一冷却停止温度(℃))/焼鈍温度から第一冷却停止温度までの冷却時間(秒)」である。 [First cooling step: cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550°C to the first cooling stop temperature at a first average cooling rate of 2 to 50°C/s]
After holding at a soaking temperature of 750°C to 880°C (after the above holding step), the temperature range from the above annealing temperature to the first cooling stop temperature of 350 to 550°C is set at a first average cooling rate of 2 to 50°C/s. Cool it down. If the cooling rate is less than 2°C/s, operability will deteriorate, so the first average cooling rate is set to 2°C/s or more. The first average cooling rate is preferably 5°C/s or more.
On the other hand, if the first average cooling rate becomes too high, the plate shape will deteriorate, so it is set to 50° C./s or less. The first average cooling rate is preferably 40°C/s or less, more preferably less than 30°C/s.
Here, the first average cooling rate is "(annealing temperature (°C) - first cooling stop temperature (°C))/cooling time (seconds) from the annealing temperature to the first cooling stop temperature."
[第二冷却工程(1):350~550℃の滞留温度で10s以上60s以下滞留]
上記の第一冷却停止温度以下、かつ350℃から550℃までの温度範囲(滞留温度)において、上部ベイナイトを形成させ、所定の残留オーステナイトを得ることができ、所望の延性が得られる。ベイナイト変態は潜伏期間があり、当該温度に一定時間滞留させなければならない。滞留開始温度(=第一冷却停止温度)と滞留終了温度を含む滞留温度域が350~550℃の範囲から外れる場合、および/または滞留させる時間(以下、滞留時間とも記す)が10s未満であると所望の量のベイナイトが得られず、残留オーステナイトの形成が抑制され、所望の延性が得られない。
一方、滞留時間が60sを超えるとベイナイトから塊状の未変態γへのCの濃化が進行し、塊状組織の残存量の増加を招き、所望のλが得られない。したがって、滞留時間は10s以上60s以下とする。 [Second cooling step (1): Retention for 10 seconds or more and 60 seconds or less at a residence temperature of 350 to 550°C]
In a temperature range (retention temperature) below the first cooling stop temperature and from 350° C. to 550° C., upper bainite is formed, a predetermined residual austenite can be obtained, and desired ductility can be obtained. Bainite transformation has an incubation period and must be kept at the relevant temperature for a certain period of time. If the residence temperature range including the residence start temperature (=first cooling stop temperature) and residence end temperature is outside the range of 350 to 550°C, and/or the residence time (hereinafter also referred to as residence time) is less than 10 seconds. Therefore, the desired amount of bainite cannot be obtained, the formation of retained austenite is suppressed, and the desired ductility cannot be obtained.
On the other hand, if the residence time exceeds 60 seconds, the concentration of C from bainite to lumpy untransformed γ progresses, leading to an increase in the amount of remaining lumpy structure, making it impossible to obtain the desired λ. Therefore, the residence time is set to 10 seconds or more and 60 seconds or less.
上記の第一冷却停止温度以下、かつ350℃から550℃までの温度範囲(滞留温度)において、上部ベイナイトを形成させ、所定の残留オーステナイトを得ることができ、所望の延性が得られる。ベイナイト変態は潜伏期間があり、当該温度に一定時間滞留させなければならない。滞留開始温度(=第一冷却停止温度)と滞留終了温度を含む滞留温度域が350~550℃の範囲から外れる場合、および/または滞留させる時間(以下、滞留時間とも記す)が10s未満であると所望の量のベイナイトが得られず、残留オーステナイトの形成が抑制され、所望の延性が得られない。
一方、滞留時間が60sを超えるとベイナイトから塊状の未変態γへのCの濃化が進行し、塊状組織の残存量の増加を招き、所望のλが得られない。したがって、滞留時間は10s以上60s以下とする。 [Second cooling step (1): Retention for 10 seconds or more and 60 seconds or less at a residence temperature of 350 to 550°C]
In a temperature range (retention temperature) below the first cooling stop temperature and from 350° C. to 550° C., upper bainite is formed, a predetermined residual austenite can be obtained, and desired ductility can be obtained. Bainite transformation has an incubation period and must be kept at the relevant temperature for a certain period of time. If the residence temperature range including the residence start temperature (=first cooling stop temperature) and residence end temperature is outside the range of 350 to 550°C, and/or the residence time (hereinafter also referred to as residence time) is less than 10 seconds. Therefore, the desired amount of bainite cannot be obtained, the formation of retained austenite is suppressed, and the desired ductility cannot be obtained.
On the other hand, if the residence time exceeds 60 seconds, the concentration of C from bainite to lumpy untransformed γ progresses, leading to an increase in the amount of remaining lumpy structure, making it impossible to obtain the desired λ. Therefore, the residence time is set to 10 seconds or more and 60 seconds or less.
[第二冷却工程(2):150~360℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却]
上記滞留後、未変態オーステナイトへの炭素濃化が進行しすぎないように速やかに冷却する必要がある。上記滞留終了温度から150℃以上360℃以下の冷却停止温度までの温度範囲の平均冷却速度が3℃/s未満の場合、炭素が塊状の未変態γへ濃化して、最終冷却時の焼入れマルテンサイトの量が増加し、λが低下する。よって、λを向上させる観点から滞留終了温度から150℃以上360℃以下の第二冷却停止温度までの温度範囲の第二平均冷却速度を3℃/s以上とする。第二平均冷却速度は、好ましくは5℃/s以上であり、より好ましくは8℃/s以上とする。この温度範囲の冷却速度が大きくなりすぎると、板形状が劣化するので、この温度範囲の冷却速度(第二平均冷却速度)は50℃/s以下とする。好ましくは40℃/s以下である。第二冷却停止温度が360℃を超えると焼戻しマルテンサイトあるいは下部ベイナイトが所定の面積率にならず、焼鈍後の焼入れマルテンサイトの面積率が増加し、伸びフランジ成形性が劣化する。このため、第二冷却停止温度は360℃以下とする。
一方、第二冷却停止温度が150℃未満となると、次工程の50℃までの冷却中にマルテンサイトの焼戻し効果が十分に得られず、焼入れマルテンサイトが増加するのみならず、C濃化の領域(SC≧0.5)が過多となり、伸びフランジ成形性を劣化させる。また、残留オーステナイトの体積率が所望の範囲にならず、十分な延性が得られない。
このため、第二冷却停止温度は150℃以上とする。
ここで、第二平均冷却速度とは、「滞留終了温度(℃)-第二冷却停止温度(℃)/滞留終了温度から第二冷却停止温度までの冷却時間(秒)」である。 [Second cooling step (2): Cooling to second cooling stop temperature of 150 to 360°C at second average cooling rate: 3 to 50°C/s]
After the above-mentioned residence, it is necessary to cool quickly so that carbon concentration in untransformed austenite does not progress too much. If the average cooling rate in the temperature range from the above residence end temperature to the cooling stop temperature of 150°C or more and 360°C or less is less than 3°C/s, carbon will concentrate into lumpy untransformed γ, and the quenched marten during final cooling will The amount of sites increases and λ decreases. Therefore, from the viewpoint of improving λ, the second average cooling rate in the temperature range from the residence end temperature to the second cooling stop temperature of 150° C. or more and 360° C. or less is set to 3° C./s or more. The second average cooling rate is preferably 5°C/s or more, more preferably 8°C/s or more. If the cooling rate in this temperature range becomes too high, the plate shape will deteriorate, so the cooling rate in this temperature range (second average cooling rate) is set to 50° C./s or less. Preferably it is 40°C/s or less. When the second cooling stop temperature exceeds 360° C., the area ratio of tempered martensite or lower bainite does not reach the predetermined area ratio, the area ratio of hardened martensite after annealing increases, and stretch flange formability deteriorates. Therefore, the second cooling stop temperature is set to 360° C. or lower.
On the other hand, if the second cooling stop temperature is less than 150°C, the effect of tempering martensite will not be sufficiently obtained during cooling to 50°C in the next step, and not only will the amount of hardened martensite increase, but also the C concentration will increase. The area (S C ≧0.5 ) becomes excessive and deteriorates stretch flange formability. Further, the volume fraction of retained austenite does not fall within the desired range, and sufficient ductility cannot be obtained.
Therefore, the second cooling stop temperature is set to 150°C or higher.
Here, the second average cooling rate is "retention end temperature (°C) - second cooling stop temperature (°C)/cooling time (seconds) from the residence end temperature to the second cooling stop temperature".
上記滞留後、未変態オーステナイトへの炭素濃化が進行しすぎないように速やかに冷却する必要がある。上記滞留終了温度から150℃以上360℃以下の冷却停止温度までの温度範囲の平均冷却速度が3℃/s未満の場合、炭素が塊状の未変態γへ濃化して、最終冷却時の焼入れマルテンサイトの量が増加し、λが低下する。よって、λを向上させる観点から滞留終了温度から150℃以上360℃以下の第二冷却停止温度までの温度範囲の第二平均冷却速度を3℃/s以上とする。第二平均冷却速度は、好ましくは5℃/s以上であり、より好ましくは8℃/s以上とする。この温度範囲の冷却速度が大きくなりすぎると、板形状が劣化するので、この温度範囲の冷却速度(第二平均冷却速度)は50℃/s以下とする。好ましくは40℃/s以下である。第二冷却停止温度が360℃を超えると焼戻しマルテンサイトあるいは下部ベイナイトが所定の面積率にならず、焼鈍後の焼入れマルテンサイトの面積率が増加し、伸びフランジ成形性が劣化する。このため、第二冷却停止温度は360℃以下とする。
一方、第二冷却停止温度が150℃未満となると、次工程の50℃までの冷却中にマルテンサイトの焼戻し効果が十分に得られず、焼入れマルテンサイトが増加するのみならず、C濃化の領域(SC≧0.5)が過多となり、伸びフランジ成形性を劣化させる。また、残留オーステナイトの体積率が所望の範囲にならず、十分な延性が得られない。
このため、第二冷却停止温度は150℃以上とする。
ここで、第二平均冷却速度とは、「滞留終了温度(℃)-第二冷却停止温度(℃)/滞留終了温度から第二冷却停止温度までの冷却時間(秒)」である。 [Second cooling step (2): Cooling to second cooling stop temperature of 150 to 360°C at second average cooling rate: 3 to 50°C/s]
After the above-mentioned residence, it is necessary to cool quickly so that carbon concentration in untransformed austenite does not progress too much. If the average cooling rate in the temperature range from the above residence end temperature to the cooling stop temperature of 150°C or more and 360°C or less is less than 3°C/s, carbon will concentrate into lumpy untransformed γ, and the quenched marten during final cooling will The amount of sites increases and λ decreases. Therefore, from the viewpoint of improving λ, the second average cooling rate in the temperature range from the residence end temperature to the second cooling stop temperature of 150° C. or more and 360° C. or less is set to 3° C./s or more. The second average cooling rate is preferably 5°C/s or more, more preferably 8°C/s or more. If the cooling rate in this temperature range becomes too high, the plate shape will deteriorate, so the cooling rate in this temperature range (second average cooling rate) is set to 50° C./s or less. Preferably it is 40°C/s or less. When the second cooling stop temperature exceeds 360° C., the area ratio of tempered martensite or lower bainite does not reach the predetermined area ratio, the area ratio of hardened martensite after annealing increases, and stretch flange formability deteriorates. Therefore, the second cooling stop temperature is set to 360° C. or lower.
On the other hand, if the second cooling stop temperature is less than 150°C, the effect of tempering martensite will not be sufficiently obtained during cooling to 50°C in the next step, and not only will the amount of hardened martensite increase, but also the C concentration will increase. The area (S C ≧0.5 ) becomes excessive and deteriorates stretch flange formability. Further, the volume fraction of retained austenite does not fall within the desired range, and sufficient ductility cannot be obtained.
Therefore, the second cooling stop temperature is set to 150°C or higher.
Here, the second average cooling rate is "retention end temperature (°C) - second cooling stop temperature (°C)/cooling time (seconds) from the residence end temperature to the second cooling stop temperature".
[第三冷却工程:第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却]
第二冷却停止温度から50℃までの温度範囲の冷却速度が1.0℃/sを超えるとマルテンサイトの焼き戻し効果が十分に得られず、所望の残留オーステナイト量が得られない。
また、0.05mass%以上のC濃化領域(SC≧0.5)が増加することで、伸びフランジ成形性と板幅方向の材質安定性を劣化させる。
このため、第二冷却停止温度から50℃までの温度範囲の冷却速度(第三平均冷却速度)は1.0℃/s以下とする。第二冷却停止温度から50℃までの温度範囲の冷却速度(第三平均冷却速度)を1.0℃/s以下とすることで、板幅方向の温度ばらつきも低減して、板幅方向の材質安定性をさらに向上させることもできる。
一方、冷却停止温度から50℃までの温度範囲の冷却速度が遅くなると、処理時間が長時間となり、操業性を劣化させる。このため、冷却停止温度から50℃までの温度範囲の冷却速度(第三平均冷却速度)は0.05℃/s以上とする。
第三平均冷却速度は、好ましくは0.08℃/s以上であり、より好ましくは0.10℃/s以上である。また、第三平均冷却速度は、好ましくは0.80℃/s以下であり、より好ましくは0.60℃/s以下である。
ここで、第三平均冷却速度とは、「第二冷却停止温度(℃)-50℃/第二冷却停止温度(℃)から50℃までの冷却時間(秒)」である。 [Third cooling step: Cooling in the temperature range from the second cooling stop temperature to 50°C at a third average cooling rate: 0.05 to 1.0°C/s]
If the cooling rate in the temperature range from the second cooling stop temperature to 50°C exceeds 1.0°C/s, a sufficient martensite tempering effect will not be obtained, and the desired amount of retained austenite will not be obtained.
Furthermore, an increase in the C enriched region of 0.05 mass% or more (SC ≧0.5 ) deteriorates stretch flange formability and material stability in the plate width direction.
Therefore, the cooling rate in the temperature range from the second cooling stop temperature to 50°C (third average cooling rate) is set to 1.0°C/s or less. By setting the cooling rate (third average cooling rate) in the temperature range from the second cooling stop temperature to 50°C to 1.0°C/s or less, the temperature variation in the sheet width direction is also reduced, and the temperature variation in the sheet width direction is reduced. It is also possible to further improve material stability.
On the other hand, if the cooling rate in the temperature range from the cooling stop temperature to 50° C. becomes slow, the processing time becomes long and the operability deteriorates. Therefore, the cooling rate (third average cooling rate) in the temperature range from the cooling stop temperature to 50°C is set to 0.05°C/s or more.
The third average cooling rate is preferably 0.08°C/s or more, more preferably 0.10°C/s or more. Further, the third average cooling rate is preferably 0.80°C/s or less, more preferably 0.60°C/s or less.
Here, the third average cooling rate is "second cooling stop temperature (°C) - 50°C/cooling time (seconds) from the second cooling stop temperature (°C) to 50°C".
第二冷却停止温度から50℃までの温度範囲の冷却速度が1.0℃/sを超えるとマルテンサイトの焼き戻し効果が十分に得られず、所望の残留オーステナイト量が得られない。
また、0.05mass%以上のC濃化領域(SC≧0.5)が増加することで、伸びフランジ成形性と板幅方向の材質安定性を劣化させる。
このため、第二冷却停止温度から50℃までの温度範囲の冷却速度(第三平均冷却速度)は1.0℃/s以下とする。第二冷却停止温度から50℃までの温度範囲の冷却速度(第三平均冷却速度)を1.0℃/s以下とすることで、板幅方向の温度ばらつきも低減して、板幅方向の材質安定性をさらに向上させることもできる。
一方、冷却停止温度から50℃までの温度範囲の冷却速度が遅くなると、処理時間が長時間となり、操業性を劣化させる。このため、冷却停止温度から50℃までの温度範囲の冷却速度(第三平均冷却速度)は0.05℃/s以上とする。
第三平均冷却速度は、好ましくは0.08℃/s以上であり、より好ましくは0.10℃/s以上である。また、第三平均冷却速度は、好ましくは0.80℃/s以下であり、より好ましくは0.60℃/s以下である。
ここで、第三平均冷却速度とは、「第二冷却停止温度(℃)-50℃/第二冷却停止温度(℃)から50℃までの冷却時間(秒)」である。 [Third cooling step: Cooling in the temperature range from the second cooling stop temperature to 50°C at a third average cooling rate: 0.05 to 1.0°C/s]
If the cooling rate in the temperature range from the second cooling stop temperature to 50°C exceeds 1.0°C/s, a sufficient martensite tempering effect will not be obtained, and the desired amount of retained austenite will not be obtained.
Furthermore, an increase in the C enriched region of 0.05 mass% or more (SC ≧0.5 ) deteriorates stretch flange formability and material stability in the plate width direction.
Therefore, the cooling rate in the temperature range from the second cooling stop temperature to 50°C (third average cooling rate) is set to 1.0°C/s or less. By setting the cooling rate (third average cooling rate) in the temperature range from the second cooling stop temperature to 50°C to 1.0°C/s or less, the temperature variation in the sheet width direction is also reduced, and the temperature variation in the sheet width direction is reduced. It is also possible to further improve material stability.
On the other hand, if the cooling rate in the temperature range from the cooling stop temperature to 50° C. becomes slow, the processing time becomes long and the operability deteriorates. Therefore, the cooling rate (third average cooling rate) in the temperature range from the cooling stop temperature to 50°C is set to 0.05°C/s or more.
The third average cooling rate is preferably 0.08°C/s or more, more preferably 0.10°C/s or more. Further, the third average cooling rate is preferably 0.80°C/s or less, more preferably 0.60°C/s or less.
Here, the third average cooling rate is "second cooling stop temperature (°C) - 50°C/cooling time (seconds) from the second cooling stop temperature (°C) to 50°C".
また、鋼板の表面に、亜鉛めっき処理を施して、表面に亜鉛めっき層を有する鋼板を得てもよい。めっき処理の種類は特に限定されず、溶融亜鉛めっき、電気亜鉛めっきのいずれでもよい。また、合金化溶融亜鉛めっき処理として、溶融亜鉛めっき後に合金化を施すめっき処理を行ってもよい。
溶融亜鉛めっきは、自動車用鋼板等に用いられる。溶融亜鉛めっきを施す場合には、連続溶融亜鉛めっきライン前段の連続焼鈍炉で、上記の焼鈍における保持工程、第一冷却工程後、溶融亜鉛めっき浴に浸漬して、鋼板表面に溶融亜鉛めっき層を形成すればよく、さらに、その後、合金化処理を施すことで合金化溶融亜鉛めっき鋼板としてもよい。
具体的には、前述した第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行うことができる。また、上記の均熱、冷却の工程とめっき工程はそれぞれ別のラインで行ってもよい。
また、電気亜鉛めっきは、焼鈍後、すなわち、第三冷却工程後に行うことができる。 Alternatively, the surface of the steel sheet may be galvanized to obtain a steel sheet having a galvanized layer on the surface. The type of plating treatment is not particularly limited, and may be either hot-dip galvanizing or electrogalvanizing. Further, as the alloying hot-dip galvanizing treatment, a plating treatment in which alloying is performed after hot-dip galvanizing may be performed.
Hot-dip galvanizing is used for automobile steel sheets and the like. When applying hot-dip galvanizing, the steel sheet is immersed in a hot-dip galvanizing bath in a continuous annealing furnace at the front stage of the continuous hot-dip galvanizing line after the above-mentioned annealing holding step and first cooling step to form a hot-dip galvanized layer on the surface of the steel sheet. It is sufficient to form an alloyed galvanized steel sheet by subsequently performing an alloying treatment.
Specifically, in the second cooling step described above, when the steel sheet is retained at a residence temperature of 350 to 550° C. for 10 seconds or more and 60 seconds or less, hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment can be performed on the surface of the steel sheet. Further, the soaking and cooling steps and the plating step described above may be performed in separate lines.
Further, electrogalvanizing can be performed after annealing, that is, after the third cooling step.
溶融亜鉛めっきは、自動車用鋼板等に用いられる。溶融亜鉛めっきを施す場合には、連続溶融亜鉛めっきライン前段の連続焼鈍炉で、上記の焼鈍における保持工程、第一冷却工程後、溶融亜鉛めっき浴に浸漬して、鋼板表面に溶融亜鉛めっき層を形成すればよく、さらに、その後、合金化処理を施すことで合金化溶融亜鉛めっき鋼板としてもよい。
具体的には、前述した第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行うことができる。また、上記の均熱、冷却の工程とめっき工程はそれぞれ別のラインで行ってもよい。
また、電気亜鉛めっきは、焼鈍後、すなわち、第三冷却工程後に行うことができる。 Alternatively, the surface of the steel sheet may be galvanized to obtain a steel sheet having a galvanized layer on the surface. The type of plating treatment is not particularly limited, and may be either hot-dip galvanizing or electrogalvanizing. Further, as the alloying hot-dip galvanizing treatment, a plating treatment in which alloying is performed after hot-dip galvanizing may be performed.
Hot-dip galvanizing is used for automobile steel sheets and the like. When applying hot-dip galvanizing, the steel sheet is immersed in a hot-dip galvanizing bath in a continuous annealing furnace at the front stage of the continuous hot-dip galvanizing line after the above-mentioned annealing holding step and first cooling step to form a hot-dip galvanized layer on the surface of the steel sheet. It is sufficient to form an alloyed galvanized steel sheet by subsequently performing an alloying treatment.
Specifically, in the second cooling step described above, when the steel sheet is retained at a residence temperature of 350 to 550° C. for 10 seconds or more and 60 seconds or less, hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment can be performed on the surface of the steel sheet. Further, the soaking and cooling steps and the plating step described above may be performed in separate lines.
Further, electrogalvanizing can be performed after annealing, that is, after the third cooling step.
以上のように得られた本発明の鋼板の板厚は、0.5mm以上とすることが好ましい。また、本発明の鋼板の板厚は、2.0mm以下とすることが好ましい。
また、板幅は、600mm以上とすることが好ましい。また、本発明の鋼板の板幅は、1700mm以下とすることが好ましい。 The thickness of the steel plate of the present invention obtained as described above is preferably 0.5 mm or more. Further, the thickness of the steel plate of the present invention is preferably 2.0 mm or less.
Further, the plate width is preferably 600 mm or more. Moreover, it is preferable that the plate width of the steel plate of the present invention is 1700 mm or less.
また、板幅は、600mm以上とすることが好ましい。また、本発明の鋼板の板幅は、1700mm以下とすることが好ましい。 The thickness of the steel plate of the present invention obtained as described above is preferably 0.5 mm or more. Further, the thickness of the steel plate of the present invention is preferably 2.0 mm or less.
Further, the plate width is preferably 600 mm or more. Moreover, it is preferable that the plate width of the steel plate of the present invention is 1700 mm or less.
次に、本発明の部材およびその製造方法について説明する。
Next, the member of the present invention and its manufacturing method will be explained.
本発明の部材は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施してなるものである。また、本発明の部材の製造方法は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む。
The member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and bonding. Further, the method for manufacturing the member of the present invention includes the step of subjecting the steel plate of the present invention to at least one of forming and bonding to produce a member.
本発明の鋼板は、引張強さが780MPa以上であり、プレス成形性、延性および伸びフランジ成形性に優れ、かつ板幅方向の材質安定性に優れている。そのため、本発明の鋼板を用いて得た部材も高強度であり、プレス成形性、延性および伸びフランジ成形性に優れ、かつ板幅方向の材質安定性に優れている。また、本発明の部材を用いれば、軽量化が可能である。したがって、本発明の部材は、例えば、車体骨格部品に好適に用いることができる。本発明の部材は、溶接継手も含む。
The steel sheet of the present invention has a tensile strength of 780 MPa or more, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Therefore, members obtained using the steel sheet of the present invention also have high strength, excellent press formability, ductility, and stretch flange formability, and excellent material stability in the sheet width direction. Furthermore, by using the member of the present invention, it is possible to reduce the weight. Therefore, the member of the present invention can be suitably used for, for example, vehicle body frame parts. The members of the invention also include welded joints.
成形加工は、プレス加工等の一般的な加工方法を制限なく用いることができる。また、接合加工は、スポット溶接、アーク溶接等の一般的な溶接や、リベット接合、かしめ接合等を制限なく用いることができる。
For the molding process, general processing methods such as press working can be used without restriction. In addition, as the joining process, general welding such as spot welding and arc welding, rivet joining, caulking joining, etc. can be used without limitation.
表1に示す成分組成を有する連続鋳造により製造したスラブを1200℃に加熱し、均熱時間は200min.とし、仕上げ圧延温度は900℃とし、巻取り温度を550℃とする熱間圧延工程後、50%の圧延率で冷間圧延して製造した板厚1.4mmの冷延鋼板を、表2に示す焼鈍条件で処理し、本発明の鋼板と比較例の鋼板とを製造した。
得られた鋼板の板幅は全て1500mmであった。 A slab manufactured by continuous casting having the composition shown in Table 1 was heated to 1200°C, and the soaking time was 200 min. Table 2 shows a cold-rolled steel sheet with a thickness of 1.4 mm manufactured by cold rolling at a rolling ratio of 50% after a hot rolling process with a finish rolling temperature of 900°C and a coiling temperature of 550°C. A steel plate of the present invention and a steel plate of a comparative example were manufactured by processing under the annealing conditions shown in .
The width of all the obtained steel plates was 1500 mm.
得られた鋼板の板幅は全て1500mmであった。 A slab manufactured by continuous casting having the composition shown in Table 1 was heated to 1200°C, and the soaking time was 200 min. Table 2 shows a cold-rolled steel sheet with a thickness of 1.4 mm manufactured by cold rolling at a rolling ratio of 50% after a hot rolling process with a finish rolling temperature of 900°C and a coiling temperature of 550°C. A steel plate of the present invention and a steel plate of a comparative example were manufactured by processing under the annealing conditions shown in .
The width of all the obtained steel plates was 1500 mm.
なお、一部の鋼板(冷延鋼板:CR)は、350~550℃の滞留温度で10s以上60s以下滞留させる際、溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)とした。ここでは、440℃以上500℃以下の亜鉛めっき浴中に鋼板を浸漬して溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整した。溶融亜鉛めっきはAl量が0.10%以上0.22%以下である亜鉛めっき浴を用いた。さらに、一部の溶融亜鉛めっき鋼板には、上記溶融亜鉛めっき処理後に合金化処理を施し、合金化溶融亜鉛めっき鋼板(GA)とした。ここでは、460℃以上550℃以下の温度域で合金化処理を施した。また、一部の鋼板(冷延鋼板:CR)は、電気めっきを施し、電気亜鉛めっき鋼板(EG)とした。
Note that some steel sheets (cold-rolled steel sheets: CR) are subjected to hot-dip galvanizing treatment when retained at a residence temperature of 350 to 550° C. for 10 seconds or more and 60 seconds or less, resulting in hot-dip galvanized steel sheets (GI). Here, a steel plate was immersed in a galvanizing bath at a temperature of 440° C. or higher and 500° C. or lower to perform hot-dip galvanizing treatment, and then the amount of plating deposited was adjusted by gas wiping or the like. For the hot-dip galvanizing, a galvanizing bath having an Al content of 0.10% or more and 0.22% or less was used. Further, some of the hot-dip galvanized steel sheets were subjected to alloying treatment after the hot-dip galvanizing treatment to obtain alloyed hot-dip galvanized steel sheets (GA). Here, alloying treatment was performed in a temperature range of 460° C. or higher and 550° C. or lower. Further, some of the steel plates (cold rolled steel plates: CR) were electroplated to form electrogalvanized steel plates (EG).
鋼組織の測定は、以下の方法で行った。測定結果は表3に示す。
ポリゴナルフェライト、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、焼入れマルテンサイト(フレッシュマルテンサイト)の面積率の測定は、圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、撮影した組織写真を画像解析で定量化した。
ポリゴナルフェライトは内部に殆ど炭化物を伴わず、比較的等軸なフェライトを対象とする。SEMでは最も黒色に見える領域である。
上部ベイナイトは、内部にSEMでは白色に見える炭化物または残留オーステナイトの生成を伴うフェライト組織である。なお上部ベイナイトとポリゴナルフェライトの識別が難しい場合は、アスペクト比≦2.0の形態のフェライトの領域をポリゴナルフェライトとし、アスペクト比>2.0の領域を上部ベイナイトに分類し面積率を算出した。ここで、アスペクト比は、粒子長さが最も長くなる長軸長さaを求め、それに垂直な方向で最も粒子を長く横切るときの粒子長さを短軸長さbとし、a/bをアスペクト比とした。
焼戻しマルテンサイトおよび下部ベイナイトは、SEMでは内部にラス状の下部組織と炭化物の析出を伴う領域である。
焼入れマルテンサイト(フレッシュマルテンサイト)は、SEMでは内部に下部組織が見えずに白く見える塊状の領域である。
残部組織は、炭化物および/またはパーライト組織のことであり、SEMでは白いコントラストで確認することができる組織である。炭化物は粒子径が1μm以下の組織であり、また、パーライトはラメラー(層)状の組織であることから区別することが可能である。 The steel structure was measured using the following method. The measurement results are shown in Table 3.
To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
Polygonal ferrite is a relatively equiaxed ferrite with almost no carbide inside. This is the area that appears blackest in the SEM.
Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM. If it is difficult to distinguish between upper bainite and polygonal ferrite, the area of ferrite with an aspect ratio ≦2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated. did. Here, the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. It was compared.
The tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
The residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM. Carbide has a structure with a particle size of 1 μm or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
ポリゴナルフェライト、上部ベイナイト、焼戻しマルテンサイト、下部ベイナイト、焼入れマルテンサイト(フレッシュマルテンサイト)の面積率の測定は、圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、撮影した組織写真を画像解析で定量化した。
ポリゴナルフェライトは内部に殆ど炭化物を伴わず、比較的等軸なフェライトを対象とする。SEMでは最も黒色に見える領域である。
上部ベイナイトは、内部にSEMでは白色に見える炭化物または残留オーステナイトの生成を伴うフェライト組織である。なお上部ベイナイトとポリゴナルフェライトの識別が難しい場合は、アスペクト比≦2.0の形態のフェライトの領域をポリゴナルフェライトとし、アスペクト比>2.0の領域を上部ベイナイトに分類し面積率を算出した。ここで、アスペクト比は、粒子長さが最も長くなる長軸長さaを求め、それに垂直な方向で最も粒子を長く横切るときの粒子長さを短軸長さbとし、a/bをアスペクト比とした。
焼戻しマルテンサイトおよび下部ベイナイトは、SEMでは内部にラス状の下部組織と炭化物の析出を伴う領域である。
焼入れマルテンサイト(フレッシュマルテンサイト)は、SEMでは内部に下部組織が見えずに白く見える塊状の領域である。
残部組織は、炭化物および/またはパーライト組織のことであり、SEMでは白いコントラストで確認することができる組織である。炭化物は粒子径が1μm以下の組織であり、また、パーライトはラメラー(層)状の組織であることから区別することが可能である。 The steel structure was measured using the following method. The measurement results are shown in Table 3.
To measure the area ratio of polygonal ferrite, upper bainite, tempered martensite, lower bainite, and hardened martensite (fresh martensite), cut out a cross section parallel to the rolling direction, mirror polish it, and then use 1 vol% nital. Corroded, 10 fields of view were observed at 1/4 thickness using SEM at 5000x magnification, and the photographed tissue photographs were quantified by image analysis.
Polygonal ferrite is a relatively equiaxed ferrite with almost no carbide inside. This is the area that appears blackest in the SEM.
Upper bainite is a ferritic structure with the formation of carbides or retained austenite that appear white under SEM. If it is difficult to distinguish between upper bainite and polygonal ferrite, the area of ferrite with an aspect ratio ≦2.0 is classified as polygonal ferrite, and the area with an aspect ratio >2.0 is classified as upper bainite, and the area ratio is calculated. did. Here, the aspect ratio is determined by determining the major axis length a where the particle length is the longest, and setting the particle length that crosses the particle longest in the direction perpendicular to it to be the minor axis length b, and a/b is the aspect ratio. It was compared.
The tempered martensite and lower bainite are regions with a lath-like substructure and carbide precipitation in the SEM.
Quenched martensite (fresh martensite) is a massive region that appears white with no underlying structure visible in the SEM.
The residual structure is a carbide and/or pearlite structure, and is a structure that can be confirmed by white contrast in SEM. Carbide has a structure with a particle size of 1 μm or less, and pearlite has a lamellar structure, so they can be distinguished from each other.
上述した組織の定量評価、および焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径の測定は、画像解析ソフトとしてImage J(Fiji)を用いて行った。
圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、Image J(Fiji)の機械学習で領域識別可能なTrainable Weka segmentation法を用いて各組織を識別して定量評価した。また、焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径は、同じくImage Jの機能である粒子解析プログラムにより測定可能であり、前記の通り識別した焼入れマルテンサイト、残留オーステナイトのみを抽出して測定した。 The quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite were performed using Image J (Fiji) as image analysis software.
A cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed. Each tissue was identified and quantitatively evaluated using the Trainable Weka segmentation method that allows region identification. In addition, the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. did.
圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、1/4厚み位置で、SEMで5000倍にて10視野観察し、Image J(Fiji)の機械学習で領域識別可能なTrainable Weka segmentation法を用いて各組織を識別して定量評価した。また、焼入れマルテンサイト、残留オーステナイトのアスペクト比および円相当径は、同じくImage Jの機能である粒子解析プログラムにより測定可能であり、前記の通り識別した焼入れマルテンサイト、残留オーステナイトのみを抽出して測定した。 The quantitative evaluation of the structure described above and the measurement of the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite were performed using Image J (Fiji) as image analysis software.
A cross-section of the plate parallel to the rolling direction was cut out, polished to a mirror surface, corroded with 1 vol% nital, and observed at 1/4 thickness position with an SEM at 5000x magnification for 10 fields of view, and machine learning using Image J (Fiji) was performed. Each tissue was identified and quantitatively evaluated using the Trainable Weka segmentation method that allows region identification. In addition, the aspect ratio and equivalent circle diameter of quenched martensite and retained austenite can be measured using a particle analysis program that is also a function of Image J, and only the quenched martensite and retained austenite identified as above can be extracted and measured. did.
残留オーステナイトの体積率は、表層から1/4厚み位置を化学研磨し、X線回折にて求めた。入射X線にはCo-Kα線源を用い、フェライトの(200)、(211)、(220)面とオーステナイトの(200)、(220)、(311)面の強度比から残留オーステナイトの体積率を計算した。
The volume fraction of retained austenite was determined by X-ray diffraction after chemically polishing a 1/4 thickness position from the surface layer. A Co-Kα ray source is used for incident X-rays, and the volume of retained austenite is determined from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. calculated the rate.
C濃度が0.5mass%以上であるC濃化領域の面積率SC≧0.5の測定は、圧延方向に平行な板厚断面の板厚1/4位置において日本電子製電界放出型電子線マイクロアナライザ(FE-EPMA)JXA-8500Fを用いた。そして、加速電圧6kV、照射電流7×10-8A、ビーム径を最小としてC濃度分布をマッピング分析することにより測定し、C濃度が0.5mass%以上となる面積率を算出した。
ただし、コンタミネーションの影響を排除するために、分析で得られたCの平均値が母材の炭素量に等しくなる様、バックグラウンド分を差し引いた。つまり、測定された炭素量の平均値が母材の炭素量より多い場合、その増加分はコンタミネーションと考え、各位置での分析値からその増加分を一律差し引いた値を各位置での真のC量とした。 The area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F was used. Then, the C concentration distribution was measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7×10 −8 A, and a minimum beam diameter, and an area ratio at which the C concentration was 0.5 mass% or more was calculated.
However, in order to eliminate the influence of contamination, background components were subtracted so that the average value of C obtained in the analysis was equal to the carbon content of the base material. In other words, if the average value of the measured carbon content is greater than the carbon content of the base material, the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. The amount of C was set to .
ただし、コンタミネーションの影響を排除するために、分析で得られたCの平均値が母材の炭素量に等しくなる様、バックグラウンド分を差し引いた。つまり、測定された炭素量の平均値が母材の炭素量より多い場合、その増加分はコンタミネーションと考え、各位置での分析値からその増加分を一律差し引いた値を各位置での真のC量とした。 The area ratio of the C-enriched region where the C concentration is 0.5 mass% or more is measured using a JEOL field emission electron A line microanalyzer (FE-EPMA) JXA-8500F was used. Then, the C concentration distribution was measured by mapping analysis using an accelerating voltage of 6 kV, an irradiation current of 7×10 −8 A, and a minimum beam diameter, and an area ratio at which the C concentration was 0.5 mass% or more was calculated.
However, in order to eliminate the influence of contamination, background components were subtracted so that the average value of C obtained in the analysis was equal to the carbon content of the base material. In other words, if the average value of the measured carbon content is greater than the carbon content of the base material, the increased amount is considered to be contamination, and the true value at each location is calculated by uniformly subtracting that increased amount from the analysis value at each location. The amount of C was set to .
得られた鋼板より、JIS5号引張試験片および穴広げ試験片を採取し、引張試験(JIS Z2241(2011)に準拠)をN=3で実施した。各評価については、3点の平均値に基づいて行った。引張強度が780MPa以上である鋼板を強度に優れると判断した。降伏比YRが0.8以下である鋼板をプレス成形性に優れると判断した。全伸びELはTS:780MPa以上では16.0%以上、TS:980MPa以上では14.0%以上、TS:1180MPa以上では12.0%以上を延性に優れると判断した。
A JIS No. 5 tensile test piece and a hole expansion test piece were taken from the obtained steel plate, and a tensile test (based on JIS Z2241 (2011)) was conducted at N=3. Each evaluation was performed based on the average value of three points. Steel plates with a tensile strength of 780 MPa or more were judged to have excellent strength. Steel plates with a yield ratio YR of 0.8 or less were judged to have excellent press formability. A total elongation EL of 16.0% or more when TS: 780 MPa or more, 14.0% or more when TS: 980 MPa or more, and 12.0% or more when TS: 1180 MPa or more was judged to be excellent in ductility.
また、伸びフランジ成形性の評価は板幅中央位置から試験片を採取し、日本鉄鋼連盟規格JFST1001の規定に準拠した穴広げ試験をN=3で実施した。すなわち、100mm×100mm角サイズのサンプルにポンチ径10mm、クリアランス:13%の打ち抜き工具を用いて打ち抜き後、頂角60度の円錐ポンチを用いて、打ち抜き穴形成の際に発生したバリが外側になるようにして、板厚を貫通する割れが発生するまで穴広げを行った。この際のd0:初期穴径(mm)、d:割れ発生時の穴径(mm)として、穴広げ率λ(%)={(d-d0)/d0}×100として求め、実施した3点の平均値をλとして評価した。30%以上のλを有する鋼を穴広げ性に優れ、伸びフランジ性に優れると判断した。
In addition, for evaluation of stretch flange formability, a test piece was taken from the center position of the plate width, and a hole expansion test was conducted at N=3 in accordance with the Japan Iron and Steel Federation standard JFST1001. That is, after punching a sample with a square size of 100 mm x 100 mm using a punching tool with a punch diameter of 10 mm and a clearance of 13%, a conical punch with a 60 degree apex angle was used to remove the burrs generated when forming the punched hole on the outside. The hole was enlarged until a crack that penetrated through the plate thickness occurred. In this case, d 0 is the initial hole diameter (mm), d is the hole diameter at the time of crack occurrence (mm), and the hole expansion rate λ (%) = {(d - d 0 )/d 0 }×100, The average value of the three points was evaluated as λ. Steels having a λ of 30% or more were judged to have excellent hole expandability and stretch flangeability.
板幅方向の材質安定性評価については、板幅中央位置(12W/24の位置(W:板幅))から100mm以内の間隔で両板幅方向から評価材を23点(23点には板幅中央位置を含む。)採取し、各位置(測定位置X)でのELおよびλを求めた。そして、中央位置の測定値に対する板幅中央位置と各位置の測定値の差の割合を求めることで、板幅方向の材質安定性を評価した。
板幅中央位置のELおよびλを基準として、ELおよびλの差が10%以下となる連続した測定群をELおよびλの差が10%以下の領域とし、全板幅に対してこの領域が80%以上の割合を有する鋼を材質安定性に優れると判断した。
以下の式(1)及び式(2)を満たす領域Aの板幅が、全板幅に対して80%以上である場合を板幅方向の材質安定性に優れると判断した。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
(式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。) Regarding the material stability evaluation in the board width direction, 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (12W/24 position (W: board width)). (including the width center position), and the EL and λ at each position (measurement position X) were determined. Then, the material stability in the board width direction was evaluated by determining the ratio of the difference between the measured value at the board width center position and each position to the measured value at the center position.
Using EL and λ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and λ is 10% or less are defined as areas where the difference in EL and λ is 10% or less, and this area is defined for the entire board width. Steel having a ratio of 80% or more was judged to have excellent material stability.
A case where the plate width of region A satisfying the following formulas (1) and (2) is 80% or more of the total plate width was judged to have excellent material stability in the plate width direction.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
(In formulas (1) and (2), the measurement positions /24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W/24, 12W/24, 13W/24, 14W/24, 15W/24 , 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W/24, 22W/24, 23W/24, a total of 23 locations as measurement position X.)
板幅中央位置のELおよびλを基準として、ELおよびλの差が10%以下となる連続した測定群をELおよびλの差が10%以下の領域とし、全板幅に対してこの領域が80%以上の割合を有する鋼を材質安定性に優れると判断した。
以下の式(1)及び式(2)を満たす領域Aの板幅が、全板幅に対して80%以上である場合を板幅方向の材質安定性に優れると判断した。
-10≦100×[(領域A内の測定位置XのEL(%)-板幅中央位置のEL(%))/板幅中央位置のEL(%)]≦10 ・・・(1)
-10≦100×[(領域A内の測定位置Xのλ(%)-板幅中央位置のλ(%))/板幅中央位置のλ(%)]≦10 ・・・(2)
(式(1)、(2)において、測定位置Xは、鋼板の板幅Wの24分割位置の計23箇所とする。すなわち、板幅方向の位置として、W/24、2W/24、3W/24、4W/24、5W/24、6W/24、7W/24、8W/24、9W/24、10W/24、11W/24、12W/24、13W/24、14W/24、15W/24、16W/24、17W/24、18W/24、19W/24、20W/24、21W/24、22W/24、23W/24の計23箇所を測定位置Xとする。) Regarding the material stability evaluation in the board width direction, 23 points were evaluated from both board width directions at intervals of 100 mm or less from the board width center position (12W/24 position (W: board width)). (including the width center position), and the EL and λ at each position (measurement position X) were determined. Then, the material stability in the board width direction was evaluated by determining the ratio of the difference between the measured value at the board width center position and each position to the measured value at the center position.
Using EL and λ at the center of the board width as a reference, consecutive measurement groups where the difference in EL and λ is 10% or less are defined as areas where the difference in EL and λ is 10% or less, and this area is defined for the entire board width. Steel having a ratio of 80% or more was judged to have excellent material stability.
A case where the plate width of region A satisfying the following formulas (1) and (2) is 80% or more of the total plate width was judged to have excellent material stability in the plate width direction.
-10≦100×[(EL(%) at measurement position
-10≦100×[(λ(%) of measurement position
(In formulas (1) and (2), the measurement positions /24, 4W/24, 5W/24, 6W/24, 7W/24, 8W/24, 9W/24, 10W/24, 11W/24, 12W/24, 13W/24, 14W/24, 15W/24 , 16W/24, 17W/24, 18W/24, 19W/24, 20W/24, 21W/24, 22W/24, 23W/24, a total of 23 locations as measurement position X.)
測定結果を表3に示す。
The measurement results are shown in Table 3.
表2、3に示す本発明例は、強度、プレス成形性、延性、伸びフランジ成形性、および板幅方向の材質安定性に優れているのに対して、比較例はいずれかが劣っていた。
The inventive examples shown in Tables 2 and 3 were excellent in strength, press formability, ductility, stretch flange formability, and material stability in the sheet width direction, whereas the comparative examples were inferior in any of the following. .
また、本発明例の鋼板を用いて、成形加工を施して得た部材、接合加工を施して得た部材、さらに成形加工および接合加工を施して得た部材は、本発明例の鋼板が高強度であり、プレス成形性、延性、伸びフランジ成形性、および板幅方向の材質安定性に優れていることから、本発明例の鋼板と同様に、高強度であり、プレス成形性、延性、伸びフランジ成形性、および板幅方向の材質安定性に優れていることがわかった。
In addition, members obtained by forming, joining, and forming and joining the steel sheets of the invention examples have a high quality. It has high strength, excellent press formability, ductility, stretch flange formability, and material stability in the sheet width direction. It was found that it has excellent stretch flange formability and material stability in the width direction of the plate.
In addition, members obtained by forming, joining, and forming and joining the steel sheets of the invention examples have a high quality. It has high strength, excellent press formability, ductility, stretch flange formability, and material stability in the sheet width direction. It was found that it has excellent stretch flange formability and material stability in the width direction of the plate.
Claims (10)
- 質量%で、
C:0.05~0.20%、
Si:0.40~1.50%、
Mn:1.9~3.5%、
P:0.02%以下、
S:0.01%以下、
sol.Al:1.00%以下、
N:0.015%未満を含有し、
残部が鉄および不可避的不純物からなる成分組成と、
ポリゴナルフェライトの面積率:10%以上80%以下であり、
上部ベイナイトと焼戻しマルテンサイトと下部ベイナイトの合計面積率:10%以上70%以下であり、
残留オーステナイトの体積率:3%以上15%以下であり、
焼入れマルテンサイトの面積率:15%以下(0%を含む)であり、
さらに残部組織からなる鋼組織と、
を有し、
焼入れマルテンサイトおよび残留オーステナイトの合計面積率に対して、アスペクト比が3以下であり、かつ円相当径が2.0μm以上である焼入れマルテンサイトおよび残留オーステナイトの合計面積率が20%以下であり、
全組織に対してC濃度が0.5mass%以上であるC濃化領域(SC≧0.5)の面積率が20%以下である、鋼板。 In mass%,
C: 0.05-0.20%,
Si: 0.40 to 1.50%,
Mn: 1.9 to 3.5%,
P: 0.02% or less,
S: 0.01% or less,
sol. Al: 1.00% or less,
N: Contains less than 0.015%,
A component composition in which the remainder consists of iron and unavoidable impurities,
Area ratio of polygonal ferrite: 10% or more and 80% or less,
Total area ratio of upper bainite, tempered martensite, and lower bainite: 10% or more and 70% or less,
Volume fraction of retained austenite: 3% or more and 15% or less,
Area ratio of quenched martensite: 15% or less (including 0%),
Furthermore, a steel structure consisting of a residual structure,
has
The total area ratio of hardened martensite and retained austenite having an aspect ratio of 3 or less and an equivalent circle diameter of 2.0 μm or more is 20% or less with respect to the total area ratio of hardened martensite and retained austenite,
A steel plate in which the area ratio of C-enriched regions (SC ≧0.5 ) in which the C concentration is 0.5 mass% or more relative to the entire structure is 20% or less. - 前記成分組成として、さらに、質量%で、
Ti:0.1%以下、
B:0.01%以下、
のうちから選ばれる1種または2種を含有する、請求項1に記載の鋼板。 The component composition further includes, in mass%,
Ti: 0.1% or less,
B: 0.01% or less,
The steel plate according to claim 1, containing one or two selected from among the above. - 前記成分組成として、さらに、質量%で、
Cu:1%以下、
Ni:1%以下、
Cr:1%以下、
Mo:0.5%以下、
V:0.5%以下、
Nb:0.1%以下、
のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の鋼板。 The component composition further includes, in mass%,
Cu: 1% or less,
Ni: 1% or less,
Cr: 1% or less,
Mo: 0.5% or less,
V: 0.5% or less,
Nb: 0.1% or less,
The steel plate according to claim 1 or 2, containing one or more selected from the following. - 前記成分組成として、さらに、質量%で、
Mg:0.0050%以下、
Ca:0.0050%以下、
Sn:0.1%以下、
Sb:0.1%以下、
REM:0.0050%以下、
のうちから選んだ1種または2種以上を含有する、請求項1~3のいずれかに記載の鋼板。 The component composition further includes, in mass%,
Mg: 0.0050% or less,
Ca: 0.0050% or less,
Sn: 0.1% or less,
Sb: 0.1% or less,
REM: 0.0050% or less,
The steel plate according to any one of claims 1 to 3, containing one or more selected from the following. - 表面に亜鉛めっき層を有する、請求項1~4のいずれかに記載の鋼板。 The steel sheet according to any one of claims 1 to 4, having a galvanized layer on the surface.
- 請求項1~5のいずれかに記載の鋼板を用いてなる部材。 A member using the steel plate according to any one of claims 1 to 5.
- 請求項1~4のいずれかに記載の成分組成を有する鋼スラブに対して熱間圧延、酸洗および冷間圧延を施した後、得られた冷延鋼板に対して、焼鈍を行う鋼板の製造方法であり、
前記焼鈍は、
前記冷延鋼板に対して、750~880℃の焼鈍温度に加熱し、前記焼鈍温度で10~500秒保持する保持工程と、
前記焼鈍温度から350~550℃の第一冷却停止温度までの温度範囲を第一平均冷却速度:2~50℃/sとして前記第一冷却停止温度まで冷却する第一冷却工程と、
350~550℃の滞留温度で10s以上60s以下滞留させた後、150~360℃の第二冷却停止温度まで第二平均冷却速度:3~50℃/sで冷却を行う第二冷却工程と、
前記第二冷却停止温度から50℃までの温度範囲を第三平均冷却速度:0.05~1.0℃/sで冷却を行う第三冷却工程と、を含む、鋼板の製造方法。 After subjecting a steel slab having the composition according to any one of claims 1 to 4 to hot rolling, pickling and cold rolling, the obtained cold rolled steel plate is subjected to annealing. It is a manufacturing method,
The annealing is
A holding step of heating the cold rolled steel plate to an annealing temperature of 750 to 880°C and holding at the annealing temperature for 10 to 500 seconds;
A first cooling step of cooling the temperature range from the annealing temperature to the first cooling stop temperature of 350 to 550 ° C. to the first cooling stop temperature at a first average cooling rate of 2 to 50 ° C./s;
A second cooling step of cooling at a second average cooling rate: 3 to 50 °C/s to a second cooling stop temperature of 150 to 360 °C, after retaining at a retention temperature of 350 to 550 °C for 10 seconds to 60 seconds;
A method for manufacturing a steel sheet, comprising a third cooling step of cooling in a temperature range from the second cooling stop temperature to 50° C. at a third average cooling rate: 0.05 to 1.0° C./s. - 前記第二冷却工程において、350~550℃の滞留温度で10s以上60s以下滞留させる際、鋼板表面に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行う、請求項7に記載の鋼板の製造方法。 The method for manufacturing a steel sheet according to claim 7, wherein in the second cooling step, when the steel sheet is held at a holding temperature of 350 to 550°C for 10 to 60 seconds, the surface of the steel sheet is subjected to a hot-dip galvanizing treatment or a hot-dip galvannealing treatment.
- 前記焼鈍の後、鋼板表面に電気亜鉛めっき処理を行う、請求項7に記載の鋼板の製造方法。 The method for manufacturing a steel sheet according to claim 7, wherein the surface of the steel sheet is subjected to electrogalvanizing treatment after the annealing.
- 請求項1~5のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
A method for producing a member, the method comprising the step of subjecting the steel plate according to any one of claims 1 to 5 to at least one of forming and joining to produce a member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023567952A JP7559978B2 (en) | 2022-09-15 | 2023-06-29 | Steel plates, components and their manufacturing methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-146742 | 2022-09-15 | ||
JP2022146742 | 2022-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024057669A1 true WO2024057669A1 (en) | 2024-03-21 |
Family
ID=90274546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024254 WO2024057669A1 (en) | 2022-09-15 | 2023-06-29 | Steel sheet, member, and method for manufacturing the foregoing |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7559978B2 (en) |
WO (1) | WO2024057669A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009096596A1 (en) * | 2008-01-31 | 2009-08-06 | Jfe Steel Corporation | High-strength steel sheet and process for production thereof |
WO2017002883A1 (en) * | 2015-06-30 | 2017-01-05 | 新日鐵住金株式会社 | High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength galvannealed steel sheet |
WO2017150117A1 (en) * | 2016-02-29 | 2017-09-08 | 株式会社神戸製鋼所 | High strength steel sheet and manufacturing method therefor |
JP2020100894A (en) * | 2018-12-21 | 2020-07-02 | Jfeスチール株式会社 | Thin steel sheet and method for manufacturing the same |
WO2022019209A1 (en) * | 2020-07-20 | 2022-01-27 | 日本製鉄株式会社 | Steel sheet and method for producing same |
-
2023
- 2023-06-29 WO PCT/JP2023/024254 patent/WO2024057669A1/en unknown
- 2023-06-29 JP JP2023567952A patent/JP7559978B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009096596A1 (en) * | 2008-01-31 | 2009-08-06 | Jfe Steel Corporation | High-strength steel sheet and process for production thereof |
WO2017002883A1 (en) * | 2015-06-30 | 2017-01-05 | 新日鐵住金株式会社 | High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength galvannealed steel sheet |
WO2017150117A1 (en) * | 2016-02-29 | 2017-09-08 | 株式会社神戸製鋼所 | High strength steel sheet and manufacturing method therefor |
JP2020100894A (en) * | 2018-12-21 | 2020-07-02 | Jfeスチール株式会社 | Thin steel sheet and method for manufacturing the same |
WO2022019209A1 (en) * | 2020-07-20 | 2022-01-27 | 日本製鉄株式会社 | Steel sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024057669A1 (en) | 2024-03-21 |
JP7559978B2 (en) | 2024-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3309273B1 (en) | Galvannealed steel sheet and method for manufacturing same | |
JP6791371B2 (en) | High-strength cold-rolled steel sheet and its manufacturing method | |
CN109563586B (en) | Steel sheet and plated steel sheet | |
JP6536294B2 (en) | Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them | |
WO2018011978A1 (en) | Hot-dip galvanized steel sheet | |
US12077831B2 (en) | Steel sheet, member, and methods for producing them | |
JPWO2019208556A1 (en) | Steel member and manufacturing method thereof | |
KR101574400B1 (en) | High-strength steel sheet with excellent workability and manufacturing method therefor | |
EP2447390A1 (en) | High-strength molten zinc-plated steel sheet and process for production thereof | |
JP7226672B1 (en) | Steel plate, member and manufacturing method thereof | |
KR20180031751A (en) | High strength thin steel sheet and method for manufacturing same | |
JP7372560B2 (en) | Hot rolled steel sheet and its manufacturing method | |
CN111527223A (en) | High-strength cold-rolled steel sheet and method for producing same | |
US12071682B2 (en) | Steel sheet, member, and methods for producing them | |
EP3889283A1 (en) | High-strength steel sheet and method for manufacturing same | |
WO2022185804A1 (en) | Steel sheet, member, method for producing said steel sheet, and method for producing said member | |
WO2020203943A1 (en) | Galvanized steel sheet and method for producing same | |
JPWO2020203979A1 (en) | Covered steel members, coated steel sheets and their manufacturing methods | |
JP2005029867A (en) | High strength and high ductility galvanized steel sheet having excellent aging resistance, and its production method | |
JP7111280B1 (en) | Steel plate, member and manufacturing method thereof | |
WO2022185805A1 (en) | Steel sheet, member, method for producing said steel sheet, and method for producing said member | |
KR20230059816A (en) | High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, and manufacturing method thereof | |
EP4130305A1 (en) | Steel sheet and method for producing same | |
JP7559978B2 (en) | Steel plates, components and their manufacturing methods | |
JP7485240B1 (en) | Steel plates, components and their manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023567952 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23865031 Country of ref document: EP Kind code of ref document: A1 |