WO2024057611A1 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
WO2024057611A1
WO2024057611A1 PCT/JP2023/017594 JP2023017594W WO2024057611A1 WO 2024057611 A1 WO2024057611 A1 WO 2024057611A1 JP 2023017594 W JP2023017594 W JP 2023017594W WO 2024057611 A1 WO2024057611 A1 WO 2024057611A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
layer
layers
diffusion
laminate
Prior art date
Application number
PCT/JP2023/017594
Other languages
French (fr)
Japanese (ja)
Inventor
光太郎 廣瀬
真寛 足立
泰孝 水野
智哉 佐伯
勝己 上坂
恒博 竹内
Original Assignee
住友電気工業株式会社
学校法人トヨタ学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 学校法人トヨタ学園 filed Critical 住友電気工業株式会社
Publication of WO2024057611A1 publication Critical patent/WO2024057611A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present disclosure relates to a laminate.
  • This application claims priority based on Japanese Application No. 2022-146482 filed on September 14, 2022, and incorporates all the contents described in the said Japanese application.
  • Non-Patent Document 1 A silver chalcogenide material whose thermal conductivity changes depending on temperature has been disclosed (for example, Non-Patent Document 1).
  • a laminate according to the present disclosure includes a plurality of material layers comprised of a solid phase change material including a first matrix element and a second matrix element different from the first matrix element.
  • the plurality of material layers include a first material layer having the highest content of the first base material element and a second material layer having the smallest content of the first base material element.
  • the difference in the content ratio obtained by subtracting the content ratio of the first base material element in the second material layer from the content ratio of the first base material element in the first material layer is 10 at % or more.
  • FIG. 1 is a schematic side view showing the structure of the laminate according to the first embodiment.
  • FIG. 2 is an enlarged view of a part of the laminate shown in FIG. 1.
  • FIG. 3 is a schematic perspective view of the laminate shown in FIG. 1.
  • FIG. 4 is a schematic side view showing the structure of the laminate according to the second embodiment.
  • FIG. 5 is a schematic side view showing the structure of the laminate according to the third embodiment.
  • FIG. 6 is a phase diagram of the solid phase change material in the silver chalcogenide-based material described above.
  • FIG. 7 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R 1 and region R 3 .
  • FIG. 8 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R2 .
  • FIG. 9 is a graph showing the relationship between temperature and thermal conductivity in Samples 1 to 6.
  • FIG. 10 is a graph showing the relationship between temperature and thermal conductivity in Samples 7 to 12.
  • Non-Patent Document 1 the thermal conductivity of a solid phase change material such as a silver chalcogenide material changes sharply after a certain temperature. Therefore, it is difficult to apply such solid phase change materials to devices that involve thermal control such as thermoelectric conversion.
  • one of the objects is to provide a laminate that can be easily applied to devices that require thermal control.
  • a laminate according to the present disclosure includes a plurality of material layers composed of a solid phase change material including a first base material element and a second base material element different from the first base material element.
  • the plurality of material layers include a first material layer having the highest content of the first base material element and a second material layer having the smallest content of the first base material element.
  • the difference in the content ratio obtained by subtracting the content ratio of the first base material element in the second material layer from the content ratio of the first base material element in the first material layer is 10 at % or more.
  • Some devices such as lasers require temperature control functions, such as keeping their own temperature constant.
  • heating and cooling are performed using heaters, cooling elements, etc., and heat insulation and heat dissipation are increased using heat insulating materials and heat sinks.
  • the present inventors focused on solid phase change materials whose thermal conductivity varies depending on temperature. By combining these materials with elements, heating and cooling can be performed efficiently.
  • the thermal conductivity changes sharply with respect to temperature, it is difficult to use for device temperature control. Therefore, the present inventors thought to improve this drawback and came up with the present invention.
  • the laminate according to the present disclosure includes: (1) A plurality of material layers constituted of a solid phase change material including a first matrix element and a second matrix element different from the first matrix element.
  • the plurality of material layers includes a first material layer having the largest content ratio of the first base material element and a second material layer having the smallest content ratio of the first base material element.
  • the laminate in the present disclosure refers to a laminate in which a plurality of layers having a characteristic that thermal conductivity changes depending on temperature, external voltage, etc. are laminated.
  • a diffusion suppression layer is provided between the first material layer and the second material layer and suppresses diffusion of atoms contained in each material layer to other material layers. Further provision may be made. By doing so, atoms contained in each material layer diffuse into other material layers during phase transformation, specifically, atoms contained in the first material layer diffuse into the second material layer. By suppressing diffusion and diffusion of atoms contained in the second material layer into the first material layer, it is possible to reduce the possibility that the composition of the first material layer and the composition of the second material layer will change. . That is, by arranging such a diffusion suppressing layer, reactions between the material layers and reactions with other materials can be suppressed, and deterioration due to phase transformation during repeated use can be prevented.
  • the solid phase change material may include a silver chalcogenide-based material. Such materials can be easily applied to devices involving thermal control.
  • the first base material element and the second base material element may each be an element selected from the group consisting of sulfur, selenium, and tellurium.
  • the solid phase change material may be represented by Ag 2 S x Se 1-x , Ag 2 S x Te 1-x or Ag 2 Se x Te 1-x .
  • x may have a relationship of 0 ⁇ x ⁇ 1.
  • a laminate including multiple material layers made of such solid phase change materials can smoothly change thermal conductivity even under conditions where the environmental temperature changes, and can efficiently control the temperature of the device. can.
  • each of the plurality of material layers may have a thickness of 10 ⁇ m or more and 5 mm or less.
  • the thickness of the material layer By setting the thickness of the material layer to 10 ⁇ m or more, the thickness of the material layer can be ensured to be greater than a region where phase transformation is unlikely to occur from the contacting diffusion suppressing layer when the diffusion suppressing layer comes into contact with the material layer. Further, by setting the thickness of the material layer to 5 mm or less, precipitation of elements within a single material layer due to ion conduction when a temperature difference is applied can be suppressed, and reliability can be improved.
  • the diffusion suppressing layer may be made of at least one of SiO 2 , SiN, SiON, and epoxy resin.
  • a diffusion suppressing layer made of such a material can more reliably suppress diffusion of atoms contained in each material layer to other material layers.
  • the thickness of the diffusion suppressing layer is 10 nm or more, and may be thinner than the thickest material layer among the plurality of material layers.
  • the thickness of the diffusion suppressing layer is 10 nm or more, it is possible to reliably suppress diffusion of atoms between each layer.
  • the thickness of the diffusion suppression layer thinner than the thickest material layer, the influence of the diffusion suppression layer on the thermal conductivity of the laminate can be reduced.
  • the plurality of material layers is a third material layer made of a solid phase change material containing a first base material element and a second base material element. It may further include. In the thickness direction of the plurality of material layers, the first material layer, the third material layer, and the second material layer may be arranged in this order. By doing so, the content ratio of the first base material element in the laminate can be gradually changed, and the change in thermal conductivity between each material layer can be made smoother. Therefore, the temperature of the device can be controlled more efficiently.
  • the atoms are arranged between the first material layer and the third material layer and between the third material layer and the second material layer, and are included in each material layer. It may further include a diffusion suppression layer that suppresses the diffusion of . By doing so, the diffusion of atoms between the first material layer and the third material layer and the diffusion of atoms between the third material layer and the second material layer are efficiently suppressed. be able to. That is, the atoms contained in the first material layer diffuse into the third material layer, the atoms contained in the third material layer diffuse into the first material layer, and the atoms contained in the third material layer diffuse into the third material layer. Diffusion into the second material layer and diffusion of atoms contained in the second material layer into the third material layer can be efficiently suppressed.
  • the plurality of material layers is a third material layer made of a solid phase change material containing a first base material element and a second base material element. It may further include. In the thickness direction of the plurality of material layers, the first material layer, the second material layer, and the third material layer may be arranged in this order. By doing this, even if the third material layer is arranged in a part other than between the first material layer and the second material layer, the first material layer and the second material layer In this case, it is possible to smooth the change in thermal conductivity when the environmental temperature changes. Therefore, the temperature of the device can be controlled more efficiently.
  • a diffusion suppression layer is provided between the second material layer and the third material layer and suppresses diffusion of atoms contained in each material layer to other material layers. Further provision may be made. By doing so, it is possible to efficiently suppress the diffusion of atoms between the second material layer and the third material layer. That is, it is possible to efficiently suppress the diffusion of atoms contained in the second material layer to the third material layer and the diffusion of atoms contained in the third material layer to the second material layer.
  • FIG. 1 is a schematic side view showing the structure of the laminate according to the first embodiment. In FIG. 1, the thickness of each layer is exaggerated for ease of understanding.
  • FIG. 2 is an enlarged view of a part of the laminate shown in FIG. 1.
  • FIG. 3 is a schematic perspective view of the laminate shown in FIG. 1.
  • the thickness direction of the laminate is shown in the Z direction.
  • the X direction and the Y direction are perpendicular to the Z direction.
  • the XY plane is a plane perpendicular to the Z direction.
  • a laminate 10a according to the first embodiment has a block shape and is composed of a plurality of material layers.
  • the number of material layers included in the laminate 10a is ten.
  • the laminate 10a includes a material layer 11a, a material layer 11b, a material layer 11c, a material layer 11d, a material layer 11e, a material layer 11f, a material layer 11g, a material layer 11h, a material layer 11i, and a material layer 11j.
  • Each of the material layers 11a to 11j is arranged in the thickness direction.
  • the material layers 11a to 11j are, in the Z direction, material layer 11a, material layer 11b, material layer 11c, material layer 11d, material layer 11e, material layer 11f, material layer 11g, material layer 11h, material layer 11i, and The material layers 11j are arranged in this order.
  • the first surface 12a located on one side in the thickness direction of the material layer 11a and the second surface 13j located on the other side in the thickness direction of the material layer 11j are exposed to the outside.
  • material layers 11b to 11i are arranged in order between material layer 11a and material layer 11j.
  • the material layer 11a and the material layer 11j are arranged at both ends of the laminate 10a in the thickness direction.
  • the first material layer 11a, the third material layer 11b, and the second material layer 11j are arranged in this order.
  • a laminate 10a attaches a first electrode to the material layer 11a, attaches a second electrode to the material layer 11j, and applies thermal energy (temperature difference) between the material layer 11a and the material layer 11j. By applying (applying), electric energy generated between the first electrode and the second electrode is obtained.
  • the material layer with the largest content ratio of the first base material element is the first material layer 11a
  • the material layer with the smallest content ratio of the first base material element is the second material layer. This is the material layer 11j.
  • the outer shapes of the material layers 11a to 11j are the same.
  • the outer shapes of the material layers 11a to 11j are all rectangular when viewed from the Z direction.
  • the external shape of the laminate 10a viewed from the Z direction is not limited to a rectangular shape, and may be, for example, a round shape, an elliptical shape, or a polygonal shape such as a triangular or hexagonal shape. You can.
  • the material layers 11a to 11j have the same thickness.
  • the thickness T 1 of the material layer 11a that is, the distance between the first surface 12a located on one side in the thickness direction of the material layer 11a and the second surface 13a located on the other side in the thickness direction is 10 ⁇ m. It is not less than 5 mm. In this embodiment, the thickness T1 of the material layer 11a is 100 ⁇ m.
  • the laminate 10a includes a plurality of diffusion suppressing layers 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, and 21a.
  • the laminate 10a includes nine diffusion suppressing layers 21a to 21i.
  • Each of the diffusion suppressing layers 21a to 21i is arranged between the material layer 11a to the material layer 11j, respectively, in the Z direction.
  • the diffusion suppressing layer 21a is arranged between the material layer 11a and the material layer 11b.
  • a diffusion suppressing layer 21b is arranged between the material layer 11b and the material layer 11c.
  • a diffusion suppressing layer 21c is arranged between the material layer 11c and the material layer 11d.
  • a diffusion suppressing layer 21d is arranged between the material layer 11d and the material layer 11e.
  • a diffusion suppressing layer 21e is arranged between the material layer 11e and the material layer 11f.
  • a diffusion suppressing layer 21f is arranged between the material layer 11f and the material layer 11g.
  • a diffusion suppressing layer 21g is arranged between the material layer 11g and the material layer 11h.
  • a diffusion suppressing layer 21h is arranged between the material layer 11h and the material layer 11i.
  • a diffusion suppressing layer 21i is arranged between the material layer 11i and the material layer 11j. That is, the diffusion suppressing layers 21a to 21i are sandwiched between the material layers 11a to 11j, respectively.
  • a diffusion suppressing layer is disposed between the material layer 11a and the material layer 11b, and a diffusion suppressing layer is also disposed between the material layer 11b and the material layer 11c.
  • Diffusion suppression layers 21a to 21i each suppress diffusion of atoms contained in each material layer 11a to 11j to other material layers 11a to 11j.
  • the diffusion suppression layer 21a suppresses the diffusion of atoms contained in the material layer 11a into the material layer 11b and the diffusion of atoms contained in the material layer 11b into the material layer 11a.
  • the diffusion suppression layer 21b suppresses the diffusion of atoms contained in the material layer 11b into the material layer 11c and the diffusion of atoms contained in the material layer 11c into the material layer 11b.
  • the diffusion suppression layer 21c suppresses the diffusion of atoms contained in the material layer 11c to the material layer 11d and the diffusion of atoms contained in the material layer 11d to the material layer 11c.
  • the diffusion suppression layer 21d suppresses the diffusion of atoms contained in the material layer 11d into the material layer 11e and the diffusion of atoms contained in the material layer 11e into the material layer 11d.
  • the diffusion suppression layer 21e suppresses the diffusion of atoms contained in the material layer 11e into the material layer 11f and the diffusion of atoms contained in the material layer 11f into the material layer 11e.
  • the diffusion suppression layer 21f suppresses the diffusion of atoms contained in the material layer 11f into the material layer 11g and the diffusion of atoms contained in the material layer 11g into the material layer 11f.
  • the diffusion suppression layer 21g suppresses the diffusion of atoms contained in the material layer 11g into the material layer 11h and the diffusion of atoms contained in the material layer 11h into the material layer 11g.
  • the diffusion suppression layer 21h suppresses the diffusion of atoms contained in the material layer 11h into the material layer 11i and the diffusion of atoms contained in the material layer 11i into the material layer 11h.
  • the diffusion suppression layer 21i suppresses the diffusion of atoms contained in the material layer 11i into the material layer 11j and the diffusion of atoms contained in the material layer 11j into the material layer 11i.
  • each of the diffusion suppressing layers 21a to 21i has the same thickness.
  • the thickness T 2 of the diffusion suppressing layer 21a that is, the distance between the first surface 22a located on one side in the thickness direction of the diffusion suppressing layer 21a and the second surface 23a located on the other side in the thickness direction is , 10 nm or more. Further, the thickness T 2 of the diffusion suppressing layer 21a is thinner than the thickest material layer among the material layers 11a to 11j. In this embodiment, the thickness T2 of the diffusion suppressing layer 21a is 10 ⁇ m.
  • the diffusion suppression layers 21a to 21i are each made of the same material.
  • each of the diffusion suppressing layers 21a to 21i is made of SiO 2 (silicon dioxide). Since the diffusion suppression layers 21a to 21i made of such materials have high insulating properties, they can more reliably suppress the diffusion of atoms contained in each material layer 11a to 11j to other material layers 11a to 11j. Can be done.
  • Each of the material layers 11a to 11j is composed of a solid phase change material containing a first base material element and a second base material element. That is, the laminate 10a according to the present disclosure has a multilayer structure.
  • the first base material element is S (sulfur).
  • the second base material element is Se (selenium).
  • the third base material element is Ag (silver).
  • Each of the solid phase change materials constituting the material layers 11a to 11j included in the laminate 10a of the first embodiment includes a silver chalcogenide-based material. Such materials can be easily applied to devices involving thermal control.
  • the solid phase change material is represented by Ag 2 S x Se 1-x . x has a relationship of 0 ⁇ x ⁇ 1.
  • the first base material element in the second material layer 11j is determined from the content ratio of S (sulfur), which is the first base material element in the first material layer 11a.
  • S sulfur
  • the difference in content after subtracting a certain S content is 10 at % or more.
  • the content ratios of the first base material element and the second base material element in each of the material layers 11a to 11j are as shown in Sample 1, which will be described later.
  • the thermal conductivity can be smoothly changed according to the environmental temperature, and the temperature of the device can be efficiently controlled. Therefore, such a laminate 10a can be easily applied to devices that require thermal control.
  • the present embodiment includes diffusion suppression layers 21a to 21i that are disposed between the first material layer 11a and the second material layer 11j and suppress diffusion of atoms between the respective material layers 11a to 11j. Therefore, it is possible to suppress the diffusion of atoms contained in each material layer 11a to 11j to other material layers during phase transformation, and reduce the possibility that the composition of each material layer 11a to 11j will change. . That is, by arranging the diffusion suppressing layers 21a to 21i in this manner, reactions between the material layers 11a to 11j and reactions with other materials can be suppressed, and deterioration due to phase transformation during repeated use can be prevented. can.
  • the first base material element and the second base material element are sulfur and selenium, respectively.
  • the solid phase change material is represented by Ag 2 S x Se 1-x , where x has the relationship 0 ⁇ x ⁇ 1.
  • the laminate 10a which includes a plurality of material layers 11a to 11j made of such solid phase change materials, smoothly changes thermal conductivity even in situations where the environmental temperature changes, and efficiently controls the temperature of the device. can be done.
  • each of the plurality of material layers 11a to 11j has a thickness of 10 ⁇ m or more and 5 mm or less.
  • the material layers 11a to 11j can ensure a thickness greater than a region where phase transformation is difficult to occur from the contacting diffusion suppressing layers 21a to 21i.
  • the thickness of the material layers 11a to 11j can be set to 5 mm or less, precipitation of elements within a single material layer due to ion conduction when a temperature difference is applied can be suppressed, and reliability can be improved.
  • the thickness of the diffusion suppressing layers 21a to 21i is 10 nm or more, and is thinner than the thickest material layer 11a to 11j among the plurality of material layers.
  • the thickness of the diffusion suppressing layers 21a to 21i is 10 nm or more, and is thinner than the thickest material layer 11a to 11j among the plurality of material layers.
  • the plurality of material layers 11a to 11j include a third material layer 11c made of a solid phase change material containing a first base material element and a second base material element.
  • the first material layer 11a, the third material layer 11b, and the second material layer 11j are arranged in this order. Therefore, by gradually changing the content ratio of the first base material element in the laminate 10a, it is possible to more smoothly change the thermal conductivity between the material layers 11a, 11b, and 11j. Therefore, the temperature of the device can be controlled more efficiently.
  • the content ratio of the first base material element (S) gradually decreases in the thickness direction of the laminate 10a from the material layer 11a, which is the lowest layer, and It was decided that the content ratio of the base material element (Se) was increased. Not limited to this, conversely, the content ratio of the first base material element (S) decreases from the material layer 11j which is the uppermost layer, and the content ratio of the second base material element (Se) increases. It may also be a thing. Furthermore, instead of the content ratio of the first base material element and the content ratio of the second base material element changing gradually for each adjacent material layer, the content ratio of the first base material element differs as in Sample 6, which will be described later.
  • the material layers may be randomly arranged. That is, the material layer having the highest or lowest content of the first base material element does not need to be disposed at one end in the thickness direction. The same applies to Embodiment 2 and Embodiment 3, which will be described later.
  • FIG. 4 is a schematic side view showing the structure of the laminate according to the second embodiment.
  • the laminate in Embodiment 2 basically has the same configuration as Embodiment 1, and produces the same effects. However, the number of layers in the laminate of the second embodiment is different from that of the first embodiment.
  • laminate 10b includes a first material layer 11a and a second material layer 11b made of a solid phase change material containing a first base material element and a second base material element. . That is, the laminate 10b has a two-layer structure.
  • a diffusion suppressing layer 21a is arranged between the first material layer 11a and the second material layer 11b.
  • the content ratio of the first base material element in the first material layer 11a is larger than the content ratio of the first base material element in the second material layer 11b.
  • the difference in the content ratio obtained by subtracting the content ratio of the first base material element in the second material layer 11b from the content ratio of the first base material element in the first material layer 11a is 10 at % or more.
  • the laminate 10b may be composed of two material layers having the above relationship and one diffusion suppressing layer. By doing so as well, the temperature of the device can be efficiently controlled.
  • FIG. 5 is a schematic side view showing the structure of the laminate according to the third embodiment.
  • the laminate in Embodiment 3 basically has the same configuration as Embodiment 1, and produces the same effects.
  • the laminate of the third embodiment is different from the first embodiment in the number of layers and the composition.
  • a laminate 10c according to the third embodiment has eleven material layers, unlike the first embodiment. That is, the laminate 10c in the third embodiment is composed of material layers 11a to 11k. In this embodiment, the second surface 13k of the material layer 11k is exposed. Then, a diffusion suppressing layer 21j is arranged between the material layer 11j and the material layer 11k. Further, unlike the case of Embodiment 1, the first base material element is S, the second base material element is Te, and the third base material element is Ag. Each of the solid phase change materials constituting the material layers 11a to 11k included in the laminate 10c of the third embodiment is represented by Ag 2 S x Te 1-x . x has a relationship of 0 ⁇ x ⁇ 1. Further, the material of each of the diffusion suppressing layers 21a to 21j is SiN (silicon nitride).
  • the thermal conductivity can be smoothly changed according to the environmental temperature, and the temperature of the device can be efficiently controlled.
  • the diffusion suppressing layer is made of SiO 2 or SiN, but the diffusion suppressing layer is not limited to this. It may be composed of at least one of the following.
  • a diffusion suppressing layer made of such a material can more reliably suppress diffusion of atoms contained in each material layer to other material layers.
  • the material layer may have at least two or more layers, and among the plurality of material layers, the material layer with the largest content of the first base material element is defined as the first material layer, and the material layer containing the first base material element is defined as the first material layer.
  • the material layer with the smallest ratio is taken as the second material layer, the content ratio of the first base material element in the second material layer is subtracted from the content ratio of the first base material element in the first material layer. It is sufficient if the difference in the content ratio is 10 at% or more.
  • the first base material element and the second base material element are each selected from the group consisting of S, Se, and Te.
  • FIG. 6 is a phase diagram of the solid phase change material in the silver chalcogenide-based material described above.
  • the horizontal axis indicates the content ratio of atoms represented by x
  • the vertical axis indicates temperature (° C.).
  • hatched regions indicate regions that can be both an ⁇ phase and a ⁇ phase, both of which will be described later.
  • the ⁇ phase becomes the ⁇ phase
  • the ⁇ phase becomes the hatched region. That is, it is a region of hysteresis in phase transformation. Referring to FIG.
  • a Te--Se based solid phase change material (Ag 2 Tex Se 1-x ) shown in region R 1 and a Se-S-based solid phase change material (Ag 2 Se x S shown in region R 2
  • the first base material element and the second base material element are S, Se
  • the phase transforms into an ⁇ phase, which is a high temperature phase, and a ⁇ phase, which is a low temperature phase, depending on the temperature.
  • the carrier concentration changes due to phase transformation, and as a result, the thermal conductivity changes.
  • the point defects (vacancies and surplus elements) differ depending on the composition, and the thermal conductivity ⁇ differs.
  • FIG. 7 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R 1 and region R 3 .
  • FIG. 8 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R2 .
  • the horizontal axis represents temperature
  • the vertical axis represents thermal conductivity. Referring to FIG. 7, in region R 1 and region R 3 , the thermal conductivity is high when the temperature is low and low when the temperature is high. Further, referring to FIG. 8, in region R2 , the thermal conductivity is low when the temperature is low and becomes high when the temperature is high.
  • the thermal conductivity is varied by changing the composition of this base material element, thereby avoiding a sudden change in the thermal conductivity.
  • the solid phase change material is represented by Ag 2 S x Se 1-x , where x has a relationship of 0 ⁇ x ⁇ 1, or Ag 2 S x Te 1-x . x , where x has a relationship of 0 ⁇ x ⁇ 1, but the solid phase change material is not limited to this, but the solid phase change material may be Ag 2 Se x S 1-x , Ag 2 Te x S 1-x Alternatively, it may be represented by Ag 2 Se x Te 1-x . x may have a relationship of 0 ⁇ x ⁇ 1. Note that it is understood from FIG. 6 that Ag 2 Se x Te 1-x has similar effects. A laminate containing multiple material layers composed of such solid phase change materials can smoothly change thermal conductivity depending on the environmental temperature even in situations where the environmental temperature changes, and it is possible to control the temperature of the device. can be done efficiently.
  • Samples 1 to 6 were prepared as shown in Table 1.
  • the first base material element is sulfur
  • the second base material element is selenium
  • one material layer is expressed as Ag 2 S x Se 1-x .
  • the upper layer corresponds to the upper layer and the lower layer corresponds to the lower layer.
  • the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11j (material layer L 1 shown in Table 1).
  • the third material layer 11b is, for example, material layer L9 shown in Table 1.
  • the difference in the content ratio obtained by subtracting the content ratio of S, which is the first base material element, in the second material layer 11j from the content ratio of S, which is the first base material element, in the first material layer 11a is 18 at%. It is.
  • the difference in content ratio is shown in the lower column of Table 1.
  • Such a laminate 10a is manufactured as follows. First, powders of Ag 2 S and Ag 2 Se as raw materials for the material layer and SiO 2 powder as raw materials for the diffusion suppressing layer are prepared. Then, each raw material powder is weighed and mixed to achieve the content ratio of each layer, that is, the element ratio specified in each layer. In this way, powders constituting each layer are prepared. Thereafter, the powders constituting each layer are sealed in a vacuum cylinder and heated at 150K to form an alloy. The alloy is then removed from the vacuum cylinder and hand milled into a fine powder.
  • the powder thus obtained is sintered. Specifically, a die with a diameter of 50 mm is prepared, a powder constituting the first material layer is put therein, and an SiO 2 powder constituting the first diffusion suppressing layer is put thereon. Thereafter, powder constituting the next material layer is placed, and SiO 2 powder constituting the diffusion suppressing layer is placed thereon again. In this way, the powder constituting each material layer and the SiO 2 powder constituting the diffusion suppressing layer are alternately introduced and packed into the die. In this embodiment, the material was placed into the die so that the thickness of the material layer was 1 mm or less, and the thickness of the diffusion suppressing layer was 0.1 mm or less.
  • Example 2 As Sample 2, ten material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate according to Sample 2 was obtained using the same manufacturing method as Sample 1. Among the 10 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11j (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L9 shown in Table 1.
  • Example 3 As Sample 3, ten material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate according to Sample 3 was obtained using the same manufacturing method as Sample 1. Among the 10 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11j (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L9 shown in Table 1.
  • sample 4 As Sample 4, two material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate according to Sample 4 was obtained using the same manufacturing method as Sample 1. The obtained laminate has the configuration shown in FIG. 4. Hereinafter, sample 10 has a similar configuration.
  • the first material layer 11a is the material layer L1 shown in Table 1
  • the second material layer 11b is the material layer L2 shown in Table 1.
  • Sample 5 A material consisting of only one material layer was prepared as Sample 5 according to Table 1 shown below. Then, a material related to Sample 5 was obtained using the same manufacturing method as Sample 1.
  • Sample 6 As Sample 6, 10 material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate 10c of Sample 6 was obtained using the same manufacturing method as Sample 1. Among the 10 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11f (material layer L 5 shown in Table 1). The third material layer 11b is, for example, material layer L9 shown in Table 1.
  • Samples 7 to 12 were prepared as shown in Table 2.
  • the first matrix element is sulfur
  • the second matrix element is tellurium
  • one material layer is designated as Ag 2 S x Te 1-x .
  • the upper layer corresponds to the upper layer and the lower layer corresponds to the lower layer.
  • Sample 7 As Sample 7, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 7 was obtained using the same manufacturing method as Sample 1. The obtained laminate has the configuration shown in FIG. 5. Hereinafter, Sample 8, Sample 9, and Sample 12 have the same configuration.
  • the layer with the largest first base material element (S) is the first material layer 11a (material layer L 11 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11k (material layer L 1 shown in Table 1).
  • the third material layer 11b is, for example, material layer L10 shown in Table 2.
  • Example 8 As Sample 8, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 8 was obtained using the same manufacturing method as Sample 1. Among the 11 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 11 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11k (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L10 shown in Table 2.
  • Example 9 As Sample 9, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 9 was obtained using the same manufacturing method as Sample 1. Among the 11 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 11 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11k (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L10 shown in Table 2.
  • Sample 10 As Sample 10, two material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 10 was obtained using the same manufacturing method as Sample 1.
  • the first material layer 11a is the material layer L2 shown in Table 2
  • the second material layer 11b is the material layer L1 shown in Table 2.
  • Sample 11 A material consisting of only one material layer was prepared as Sample 11 according to Table 2 shown below. Then, a laminate according to Sample 11 was obtained using the same manufacturing method as Sample 1.
  • Sample 12 As Sample 12, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 12 was obtained using the same manufacturing method as Sample 1.
  • the first material layer 11a is the material layer L11 shown in Table 2
  • the second material layer 11b is the material layer L6 shown in Table 2.
  • the third material layer 11b is, for example, material layer L10 shown in Table 2.
  • EDX Errgy Dispersive X-ray spectrometry
  • EDX manufactured by Thermo Fisher Scientific Co., Ltd.
  • the measurement conditions are as follows: spot size is 0.5 nm, CL aperture is 3, and analysis mode is mapping. The analysis time was 20 minutes. Then, quantitative analysis was performed on the EDX measurement spectrum using the fitting function of the device.
  • GH-1 manufactured by Advance Riko Co., Ltd. was used as a steady method thermal conductivity measuring device. Then, a high temperature side heater, a sample, a heat flux meter, and a low temperature side heater were prepared and the sample was set. The measurement was carried out at a temperature of 100°C or more and 150°C or less for the Ag-S-Se system, and a range of 60°C or more and 110°C or less for the Ag-S-Te system. The measurement was performed three times, and the average value was calculated. Further, the thickness of each material layer and the diffusion suppressing layer was determined using an optical microscope or a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • FIG. 9 is a graph showing the relationship between temperature and thermal conductivity in Samples 1 to 6.
  • the horizontal axis indicates temperature (° C.), and the vertical axis indicates thermal conductivity (W/mK).
  • Sample 1 has a difference in content ratio of 18 at%
  • Sample 2 has a difference in content ratio of 10.8 at%
  • Sample 4 has a difference in content ratio of 12 at%
  • Sample 4 has a difference in content ratio of 12 at%.
  • sample 6 which has a content of 10.8 at%
  • the difference in content ratio is 10 at% or more, and the change in thermal conductivity is smooth.
  • a smooth change in thermal conductivity means that when the thermal conductivity changes from the minimum value to the maximum value, the amount of change relative to the difference between the maximum value and the minimum value changes from 10% to 90%. This refers to a case where the temperature changes by 10°C or more.
  • the change in thermal conductivity is steep for Sample 3, where the difference in content ratio is 4 at %, and Sample 5, which is a bulk material where the difference in content ratio is 0. This is considered to be because in Sample 3 and Sample 5, the difference in the content ratio in each material layer is small or there is no difference in the content ratio, so that the phase transformation temperatures are close.
  • the material layers may be arranged in the order of the content ratio of the first base material element, and as shown in sample 6, the material layers may be arranged in the order of the content ratio of the first base material element. It can be seen that the content ratios of the elements may be in random order.
  • FIG. 10 is a graph showing the relationship between temperature and thermal conductivity in Samples 7 to 12.
  • the horizontal axis represents temperature (° C.)
  • the vertical axis represents thermal conductivity (W/mK).
  • sample 7 has a difference in content ratio of 20 at%
  • sample 8 has a difference in content ratio of 10 at%
  • sample 10 has a difference in content ratio of 10 at%
  • sample 10 has a difference in content ratio of 10 at%.
  • the difference in content ratio is 10 at % or more, and the change in thermal conductivity is smooth.
  • the change in thermal conductivity is steep for sample 9 where the difference in content ratio is 2 at % and sample 11 of bulk material where the difference in content ratio is 0. This is considered to be because in sample 9 and sample 11, the difference in the content ratio in each material layer is small or there is no difference in the content ratio, so that the phase transformation temperatures are close.
  • the material layers may be arranged in the order of the content ratio of the first base material element, and as shown in Sample 12, the material layers may be arranged in the order of the content ratio of the first base material element. It can be seen that the content ratios of the elements may be in random order.
  • the temperature of the device can be controlled more efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

This laminate comprises a plurality of material layers configured from a solid phase changing material that includes: a first base material element; and a second base material element different from the first base material element. The plurality of material layers include: a first material layer in which the content ratio of the first base material element is the largest; and a second material layer in which the content ratio of the first base material element is the smallest. A difference in the content ratios obtained by subtracting the content ratio of the first base material element in the second material layer from the content ratio of the first base material element in the first material layer is 10 at% or more.

Description

積層体laminate
 本開示は、積層体に関するものである。本出願は、2022年9月14日出願の日本出願第2022-146482号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to a laminate. This application claims priority based on Japanese Application No. 2022-146482 filed on September 14, 2022, and incorporates all the contents described in the said Japanese application.
 温度により熱伝導率が変化する銀カルコゲナイド材料が開示されている(例えば、非特許文献1)。 A silver chalcogenide material whose thermal conductivity changes depending on temperature has been disclosed (for example, Non-Patent Document 1).
 本開示に従った積層体は、第1の母材元素および第1の母材元素と異なる第2の母材元素を含む固体相変化材料から構成される複数の材料層を含む。複数の材料層は、第1の母材元素の含有割合が最も大きい第1の材料層と、第1の母材元素の含有割合が最も小さい第2の材料層と、を含む。第1の材料層における第1の母材元素の含有割合から第2の材料層における第1の母材元素の含有割合を差し引いた含有割合の差は、10at%以上である。 A laminate according to the present disclosure includes a plurality of material layers comprised of a solid phase change material including a first matrix element and a second matrix element different from the first matrix element. The plurality of material layers include a first material layer having the highest content of the first base material element and a second material layer having the smallest content of the first base material element. The difference in the content ratio obtained by subtracting the content ratio of the first base material element in the second material layer from the content ratio of the first base material element in the first material layer is 10 at % or more.
図1は、実施の形態1に係る積層体の構造を示す概略側面図である。FIG. 1 is a schematic side view showing the structure of the laminate according to the first embodiment. 図2は、図1に示す積層体の一部を拡大して示す図である。FIG. 2 is an enlarged view of a part of the laminate shown in FIG. 1. 図3は、図1に示す積層体の概略斜視図である。FIG. 3 is a schematic perspective view of the laminate shown in FIG. 1. 図4は、実施の形態2に係る積層体の構造を示す概略側面図である。FIG. 4 is a schematic side view showing the structure of the laminate according to the second embodiment. 図5は、実施の形態3に係る積層体の構造を示す概略側面図である。FIG. 5 is a schematic side view showing the structure of the laminate according to the third embodiment. 図6は、上記した銀カルコゲナイド系材料における固体相変化材料の相図である。FIG. 6 is a phase diagram of the solid phase change material in the silver chalcogenide-based material described above. 図7は、組成の割合が領域Rおよび領域Rにある場合における温度と熱伝導率との関係を概略的に示すグラフである。FIG. 7 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R 1 and region R 3 . 図8は、組成の割合が領域Rにある場合における温度と熱伝導率との関係を概略的に示すグラフである。FIG. 8 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R2 . 図9は、サンプル1~サンプル6における温度と熱伝導率との関係を示すグラフである。FIG. 9 is a graph showing the relationship between temperature and thermal conductivity in Samples 1 to 6. 図10は、サンプル7~サンプル12における温度と熱伝導率との関係を示すグラフである。FIG. 10 is a graph showing the relationship between temperature and thermal conductivity in Samples 7 to 12.
 [本開示が解決しようとする課題]
 非特許文献1に開示されているように、銀カルコゲナイド材料のような固体相変化材料は、ある温度を境として熱伝導率が急峻に変化する。そのため、このような固体相変化材料を、熱電変換等の熱制御を伴うデバイスに適用することは困難である。
[Problems that this disclosure seeks to solve]
As disclosed in Non-Patent Document 1, the thermal conductivity of a solid phase change material such as a silver chalcogenide material changes sharply after a certain temperature. Therefore, it is difficult to apply such solid phase change materials to devices that involve thermal control such as thermoelectric conversion.
 そこで、熱制御を伴うデバイスへの適用が容易な積層体を提供することを目的の1つとする。 Therefore, one of the objects is to provide a laminate that can be easily applied to devices that require thermal control.
 [本開示の効果]
 上記積層体によれば、熱制御を伴うデバイスへの適用が容易となる。
[Effects of this disclosure]
The laminate described above can be easily applied to devices that require thermal control.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示に係る積層体は、第1の母材元素および第1の母材元素と異なる第2の母材元素を含む固体相変化材料から構成される複数の材料層を含む。複数の材料層は、第1の母材元素の含有割合が最も大きい第1の材料層と、第1の母材元素の含有割合が最も小さい第2の材料層と、を含む。第1の材料層における第1の母材元素の含有割合から第2の材料層における第1の母材元素の含有割合を差し引いた含有割合の差は、10at%以上である。
[Description of embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described. A laminate according to the present disclosure includes a plurality of material layers composed of a solid phase change material including a first base material element and a second base material element different from the first base material element. The plurality of material layers include a first material layer having the highest content of the first base material element and a second material layer having the smallest content of the first base material element. The difference in the content ratio obtained by subtracting the content ratio of the first base material element in the second material layer from the content ratio of the first base material element in the first material layer is 10 at % or more.
 レーザ等のデバイスには、自身の温度を一定に保つ等、温度調節機能が必要なものがある。温度の調節には、ヒータや冷却素子等による加熱および冷却や、断熱材やヒートシンクで断熱性や放熱性を高めることが行われている。ここで、本発明者らは、固体相変化材料において、温度により熱伝導率が異なる材料に着目した。これら材料を素子と組み合わせることで、加熱や冷却を効率よく行うことができる。しかし、温度に対する熱伝導率の変化が急峻であることからデバイスの温度制御では使用しにくい。そこで本発明者らは、この欠点を改善しようと考え、本願発明を構成するに至った。 Some devices such as lasers require temperature control functions, such as keeping their own temperature constant. To adjust the temperature, heating and cooling are performed using heaters, cooling elements, etc., and heat insulation and heat dissipation are increased using heat insulating materials and heat sinks. Here, the present inventors focused on solid phase change materials whose thermal conductivity varies depending on temperature. By combining these materials with elements, heating and cooling can be performed efficiently. However, because the thermal conductivity changes sharply with respect to temperature, it is difficult to use for device temperature control. Therefore, the present inventors thought to improve this drawback and came up with the present invention.
 本開示に係る積層体は、
 (1)第1の母材元素および第1の母材元素と異なる第2の母材元素を含む固体相変化材料から構成される複数の材料層を含む。そして、複数の材料層は、第1の母材元素の含有割合が最も大きい第1の材料層と、第1の母材元素の含有割合が最も小さい第2の材料層と、を含む。本発明者らは、固体相変化材料において相変態が生じると、相内におけるキャリア濃度が変化し、その結果、熱伝導率が変化することを見出した。そこで、均一な熱制御材料、すなわちバルク材料としての熱制御材料において、環境温度の変化時における熱制御材料の急激な熱伝導率の変化を回避すべく、複数の材料層から構成される多層構造とし、第1の材料層と第2の材料層との間において第1の母材元素の含有割合に差を設けることとした。このようにすることにより、第1の材料層と第2の材料層との間において、相変態の程度の差を設け、熱伝導率の差を生じさせて、ある温度における急激な熱伝導率の変化を回避することができると考えた。そして、本発明者らはさらに鋭意検討し、第1の材料層と第2の材料層との間において、第1の母材元素の含有割合を差し引いた含有割合の差を10at%以上とすることにより、熱制御材料としての積層体において環境温度の変化時における熱伝導率の変化を滑らかにすることができることを突き止めた。このような積層体によると、環境温度が変化する状況においても、環境温度に応じて熱伝導率を滑らかに変化させることができ、デバイスの温度制御を効率的に行うことができる。したがって、このような積層体によれば、熱制御を伴うデバイスへの適用が容易となる。なお、本開示における積層体は、温度や外部からの電圧等により熱伝導率が変化する特性を持つ層が、複数積層されたものをいう。
The laminate according to the present disclosure includes:
(1) A plurality of material layers constituted of a solid phase change material including a first matrix element and a second matrix element different from the first matrix element. The plurality of material layers includes a first material layer having the largest content ratio of the first base material element and a second material layer having the smallest content ratio of the first base material element. The present inventors have discovered that when a phase transformation occurs in a solid phase change material, the carrier concentration within the phase changes, and as a result, the thermal conductivity changes. Therefore, in order to avoid sudden changes in the thermal conductivity of the thermal control material when the environmental temperature changes, a uniform thermal control material, that is, a thermal control material as a bulk material, has a multilayer structure consisting of multiple material layers. Therefore, it was decided to provide a difference in the content ratio of the first base material element between the first material layer and the second material layer. By doing so, a difference in the degree of phase transformation is created between the first material layer and the second material layer, and a difference in thermal conductivity is created, resulting in a sudden increase in thermal conductivity at a certain temperature. We thought that it would be possible to avoid changes in Then, the present inventors have further studied and determined that the difference in the content ratio between the first material layer and the second material layer after subtracting the content ratio of the first base material element is 10 at% or more. We have found that by doing this, it is possible to smooth out changes in thermal conductivity when the environmental temperature changes in a laminate as a thermal control material. According to such a laminate, even in a situation where the environmental temperature changes, the thermal conductivity can be smoothly changed according to the environmental temperature, and the temperature of the device can be efficiently controlled. Therefore, such a laminate can be easily applied to devices that require thermal control. Note that the laminate in the present disclosure refers to a laminate in which a plurality of layers having a characteristic that thermal conductivity changes depending on temperature, external voltage, etc. are laminated.
 (2)上記(1)において、第1の材料層と第2の材料層との間に配置され、各材料層に含まれる原子の、他の材料層への拡散を抑制する拡散抑制層をさらに備えてもよい。このようにすることにより、相変態時において各材料層に含まれる原子の、他の材料層への拡散、具体的には、第1の材料層に含まれる原子の第2の材料層への拡散および第2の材料層に含まれる原子の第1の材料層への拡散を抑制して、第1の材料層の組成および第2の材料層の組成が変化するおそれを低減することができる。すなわち、このような拡散抑制層を配置することで、材料層同士の反応や他材料との反応を抑制することができ、繰り返しの使用時における相変態による劣化を防ぐことができる。 (2) In (1) above, a diffusion suppression layer is provided between the first material layer and the second material layer and suppresses diffusion of atoms contained in each material layer to other material layers. Further provision may be made. By doing so, atoms contained in each material layer diffuse into other material layers during phase transformation, specifically, atoms contained in the first material layer diffuse into the second material layer. By suppressing diffusion and diffusion of atoms contained in the second material layer into the first material layer, it is possible to reduce the possibility that the composition of the first material layer and the composition of the second material layer will change. . That is, by arranging such a diffusion suppressing layer, reactions between the material layers and reactions with other materials can be suppressed, and deterioration due to phase transformation during repeated use can be prevented.
 (3)上記(1)または(2)において、固体相変化材料は、銀カルコゲナイド系材料を含んでもよい。このような材料は、熱制御を伴うデバイスへの適用が容易となる。 (3) In (1) or (2) above, the solid phase change material may include a silver chalcogenide-based material. Such materials can be easily applied to devices involving thermal control.
 (4)上記(3)において、第1の母材元素および第2の母材元素はそれぞれ、硫黄、セレンおよびテルルからなる群から選択される元素であってもよい。固体相変化材料は、AgSe1-x、AgTe1-xまたはAgSeTe1-xによって表されてもよい。xは、0≦x≦1の関係を有してもよい。このような固体相変化材料から構成される複数の材料層を含む積層体は、環境温度が変化する状況においても熱伝導率を滑らかに変化させて、デバイスの温度制御を効率的に行うことができる。 (4) In (3) above, the first base material element and the second base material element may each be an element selected from the group consisting of sulfur, selenium, and tellurium. The solid phase change material may be represented by Ag 2 S x Se 1-x , Ag 2 S x Te 1-x or Ag 2 Se x Te 1-x . x may have a relationship of 0≦x≦1. A laminate including multiple material layers made of such solid phase change materials can smoothly change thermal conductivity even under conditions where the environmental temperature changes, and can efficiently control the temperature of the device. can.
 (5)上記(1)から(4)のいずれかにおいて、複数の材料層の厚さはそれぞれ、10μm以上5mm以下であってもよい。材料層の厚さを10μm以上とすることにより、拡散抑制層が接触した場合において、接触する拡散抑制層から相変態が起きにくい領域以上の厚さを材料層が確保することができる。また、材料層の厚さを5mm以下とすることにより、温度差を付与した際のイオン伝導による単一材料層内における元素の析出を抑制し、信頼性の向上を図ることができる。 (5) In any one of (1) to (4) above, each of the plurality of material layers may have a thickness of 10 μm or more and 5 mm or less. By setting the thickness of the material layer to 10 μm or more, the thickness of the material layer can be ensured to be greater than a region where phase transformation is unlikely to occur from the contacting diffusion suppressing layer when the diffusion suppressing layer comes into contact with the material layer. Further, by setting the thickness of the material layer to 5 mm or less, precipitation of elements within a single material layer due to ion conduction when a temperature difference is applied can be suppressed, and reliability can be improved.
 (6)上記(2)において、拡散抑制層は、SiO、SiN、SiONおよびエポキシ樹脂のうちの少なくともいずれか一つから構成されてもよい。このような材料から構成される拡散抑制層は、より確実に各材料層に含まれる原子の、他の材料層への拡散を抑制することができる。 (6) In (2) above, the diffusion suppressing layer may be made of at least one of SiO 2 , SiN, SiON, and epoxy resin. A diffusion suppressing layer made of such a material can more reliably suppress diffusion of atoms contained in each material layer to other material layers.
 (7)上記(2)において、拡散抑制層の厚さは、10nm以上であり、複数の材料層のうちの最も厚い材料層よりも薄くてもよい。拡散抑制層の厚さを10nm以上とすることにより、各層間における原子の拡散を確実に抑制することができる。また、拡散抑制層の厚さを最も厚い材料層よりも薄くすることにより、積層体の熱伝導率に対する拡散抑制層の影響を低減することができる。 (7) In (2) above, the thickness of the diffusion suppressing layer is 10 nm or more, and may be thinner than the thickest material layer among the plurality of material layers. By setting the thickness of the diffusion suppressing layer to 10 nm or more, it is possible to reliably suppress diffusion of atoms between each layer. Moreover, by making the thickness of the diffusion suppression layer thinner than the thickest material layer, the influence of the diffusion suppression layer on the thermal conductivity of the laminate can be reduced.
 (8)上記(1)から(7)のいずれかにおいて、複数の材料層は、第1の母材元素および第2の母材元素を含む固体相変化材料から構成される第3の材料層をさらに含んでもよい。複数の材料層の厚さ方向において、第1の材料層、第3の材料層、第2の材料層の順に配置されてもよい。このようにすることにより、積層体における第1の母材元素の含有割合を徐々に変化させて、各材料層間における熱伝導率の変化をより滑らかにすることができる。したがって、デバイスの温度制御をより効率的に行うことができる。 (8) In any of (1) to (7) above, the plurality of material layers is a third material layer made of a solid phase change material containing a first base material element and a second base material element. It may further include. In the thickness direction of the plurality of material layers, the first material layer, the third material layer, and the second material layer may be arranged in this order. By doing so, the content ratio of the first base material element in the laminate can be gradually changed, and the change in thermal conductivity between each material layer can be made smoother. Therefore, the temperature of the device can be controlled more efficiently.
 (9)上記(8)において、第1の材料層と第3の材料層との間および第3の材料層と第2の材料層との間にそれぞれ配置され、各材料層に含まれる原子の、他の材料層への拡散を抑制する拡散抑制層をさらに備えてもよい。このようにすることにより、第1の材料層と第3の材料層との間の原子の拡散および第3の材料層と第2の材料層との間の原子の拡散を効率的に抑制することができる。すなわち、第1の材料層に含まれる原子の第3の材料層への拡散、第3の材料層に含まれる原子の第1の材料層への拡散、第3の材料層に含まれる原子の第2の材料層への拡散および第2の材料層に含まれる原子の第3の材料層への拡散を効率的に抑制することができる。 (9) In (8) above, the atoms are arranged between the first material layer and the third material layer and between the third material layer and the second material layer, and are included in each material layer. It may further include a diffusion suppression layer that suppresses the diffusion of . By doing so, the diffusion of atoms between the first material layer and the third material layer and the diffusion of atoms between the third material layer and the second material layer are efficiently suppressed. be able to. That is, the atoms contained in the first material layer diffuse into the third material layer, the atoms contained in the third material layer diffuse into the first material layer, and the atoms contained in the third material layer diffuse into the third material layer. Diffusion into the second material layer and diffusion of atoms contained in the second material layer into the third material layer can be efficiently suppressed.
 (10)上記(1)から(7)のいずれかにおいて、複数の材料層は、第1の母材元素および第2の母材元素を含む固体相変化材料から構成される第3の材料層をさらに含んでもよい。複数の材料層の厚さ方向において、第1の材料層、第2の材料層、第3の材料層の順に配置されてもよい。このようにすることにより、第1の材料層と第2の材料層との間以外の部分に第3の材料層が配置されていたとしても、第1の材料層と第2の材料層とにおいて、環境温度の変化時における熱伝導率の変化を滑らかにすることができる。したがって、デバイスの温度制御をより効率的に行うことができる。 (10) In any of (1) to (7) above, the plurality of material layers is a third material layer made of a solid phase change material containing a first base material element and a second base material element. It may further include. In the thickness direction of the plurality of material layers, the first material layer, the second material layer, and the third material layer may be arranged in this order. By doing this, even if the third material layer is arranged in a part other than between the first material layer and the second material layer, the first material layer and the second material layer In this case, it is possible to smooth the change in thermal conductivity when the environmental temperature changes. Therefore, the temperature of the device can be controlled more efficiently.
 (11)上記(10)において、第2の材料層と第3の材料層との間に配置され、各材料層に含まれる原子の、他の材料層への拡散を抑制する拡散抑制層をさらに備えてもよい。このようにすることにより、第2の材料層と第3の材料層との間の原子の拡散を効率的に抑制することができる。すなわち、第2の材料層に含まれる原子の第3の材料層への拡散および第3の材料層に含まれる原子の第2の材料層への拡散を効率的に抑制することができる。 (11) In (10) above, a diffusion suppression layer is provided between the second material layer and the third material layer and suppresses diffusion of atoms contained in each material layer to other material layers. Further provision may be made. By doing so, it is possible to efficiently suppress the diffusion of atoms between the second material layer and the third material layer. That is, it is possible to efficiently suppress the diffusion of atoms contained in the second material layer to the third material layer and the diffusion of atoms contained in the third material layer to the second material layer.
 [本開示の実施形態の詳細]
 次に、本開示の積層体の実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
[Details of embodiments of the present disclosure]
Next, embodiments of the laminate of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference numerals, and the description thereof will not be repeated.
 (実施の形態1)
 本開示に係る積層体の一実施の形態である実施の形態1を、図1を参照しつつ説明する。図1は、実施の形態1に係る積層体の構造を示す概略側面図である。図1においては、理解を容易にする観点から、各層の厚さを厚く誇張して図示している。図2は、図1に示す積層体の一部を拡大して示す図である。図3は、図1に示す積層体の概略斜視図である。図1および以下に示す図において、積層体の厚さ方向をZ方向で示す。X方向およびY方向は、Z方向に対して垂直である。X-Y平面は、Z方向に垂直な面である。
(Embodiment 1)
Embodiment 1, which is an embodiment of a laminate according to the present disclosure, will be described with reference to FIG. 1. FIG. 1 is a schematic side view showing the structure of the laminate according to the first embodiment. In FIG. 1, the thickness of each layer is exaggerated for ease of understanding. FIG. 2 is an enlarged view of a part of the laminate shown in FIG. 1. FIG. 3 is a schematic perspective view of the laminate shown in FIG. 1. In FIG. 1 and the figures shown below, the thickness direction of the laminate is shown in the Z direction. The X direction and the Y direction are perpendicular to the Z direction. The XY plane is a plane perpendicular to the Z direction.
 図1、図2および図3を参照して、実施の形態1に係る積層体10aは、ブロック状であり、複数の材料層から構成される。本実施形態においては、積層体10aに含まれる材料層の数は、10である。積層体10aは、材料層11aと、材料層11bと、材料層11cと、材料層11dと、材料層11eと、材料層11fと、材料層11gと、材料層11hと、材料層11iと、材料層11jと、を含む。材料層11a~材料層11jはそれぞれ、厚さ方向に配置される。材料層11a~材料層11jは、Z方向において、材料層11a、材料層11b、材料層11c、材料層11d、材料層11e、材料層11f、材料層11g、材料層11h、材料層11i、そして材料層11jの順に配置されている。本実施形態においては、材料層11aの厚さ方向の一方側に位置する第1の面12aおよび材料層11jの厚さ方向の他方側に位置する第2の面13jは、外部に露出している。すなわち、材料層11aと材料層11jとの間に材料層11b~材料層11iが順に配置されている。また、材料層11aと材料層11jとが、積層体10aの厚さ方向の両端に配置されている。なお、第1の材料層と第2の材料層と第3の材料層との配置関係においては、複数の材料層11a~11jの厚さ方向であるZ方向において、例えば、第1の材料層11a、第3の材料層11b、第2の材料層11jの順に配置されている。このような積層体10aは、例えば、材料層11aに第1の電極を取り付け、材料層11jに第2の電極を取り付け、材料層11aと材料層11jとの間に熱エネルギー(温度差)を付与(印加)することにより、第1の電極および第2の電極間に生ずる電気エネルギーを得る。なお、複数の材料層のうち、第1の母材元素の含有割合が最も大きい材料層が第1の材料層11aであり、第1の母材元素の含有割合が最も小さい材料層が第2の材料層11jである。 Referring to FIGS. 1, 2, and 3, a laminate 10a according to the first embodiment has a block shape and is composed of a plurality of material layers. In this embodiment, the number of material layers included in the laminate 10a is ten. The laminate 10a includes a material layer 11a, a material layer 11b, a material layer 11c, a material layer 11d, a material layer 11e, a material layer 11f, a material layer 11g, a material layer 11h, a material layer 11i, and a material layer 11j. Each of the material layers 11a to 11j is arranged in the thickness direction. The material layers 11a to 11j are, in the Z direction, material layer 11a, material layer 11b, material layer 11c, material layer 11d, material layer 11e, material layer 11f, material layer 11g, material layer 11h, material layer 11i, and The material layers 11j are arranged in this order. In this embodiment, the first surface 12a located on one side in the thickness direction of the material layer 11a and the second surface 13j located on the other side in the thickness direction of the material layer 11j are exposed to the outside. There is. That is, material layers 11b to 11i are arranged in order between material layer 11a and material layer 11j. Further, the material layer 11a and the material layer 11j are arranged at both ends of the laminate 10a in the thickness direction. In addition, in the arrangement relationship between the first material layer, the second material layer, and the third material layer, in the Z direction that is the thickness direction of the plurality of material layers 11a to 11j, for example, the first material layer 11a, the third material layer 11b, and the second material layer 11j are arranged in this order. Such a laminate 10a, for example, attaches a first electrode to the material layer 11a, attaches a second electrode to the material layer 11j, and applies thermal energy (temperature difference) between the material layer 11a and the material layer 11j. By applying (applying), electric energy generated between the first electrode and the second electrode is obtained. Note that among the plurality of material layers, the material layer with the largest content ratio of the first base material element is the first material layer 11a, and the material layer with the smallest content ratio of the first base material element is the second material layer. This is the material layer 11j.
 Z方向から見て、材料層11a~材料層11jの外形形状は同じである。本実施形態においては、Z方向から見て、材料層11a~材料層11jの外形形状は、全て矩形状である。なお、Z方向から見た積層体10aの外形形状は矩形状に限られず、例えば、丸形状であってもよいし、楕円形状であってもよいし、三角形や六角形等の多角形状であってもよい。 When viewed from the Z direction, the outer shapes of the material layers 11a to 11j are the same. In this embodiment, the outer shapes of the material layers 11a to 11j are all rectangular when viewed from the Z direction. Note that the external shape of the laminate 10a viewed from the Z direction is not limited to a rectangular shape, and may be, for example, a round shape, an elliptical shape, or a polygonal shape such as a triangular or hexagonal shape. You can.
 本実施形態においては、材料層11a~材料層11jの厚さは、それぞれ同じである。材料層11aの厚さT、すなわち、材料層11aの厚さ方向の一方側に位置する第1の面12aと厚さ方向の他方側に位置する第2の面13aとの間隔は、10μm以上5mm以下である。本実施形態においては、材料層11aの厚さTは、100μmである。 In this embodiment, the material layers 11a to 11j have the same thickness. The thickness T 1 of the material layer 11a, that is, the distance between the first surface 12a located on one side in the thickness direction of the material layer 11a and the second surface 13a located on the other side in the thickness direction is 10 μm. It is not less than 5 mm. In this embodiment, the thickness T1 of the material layer 11a is 100 μm.
 積層体10aは、複数の拡散抑制層21a,21b,21c,21d,21e,21f,21g,21h,21aを含む。本実施形態において積層体10aは、9つの拡散抑制層21a~21iを含む。各拡散抑制層21a~21iは、Z方向において、材料層11a~材料層11jの間にそれぞれ配置されている。具体的には、材料層11aと材料層11bとの間に拡散抑制層21aが配置される。材料層11bと材料層11cとの間に拡散抑制層21bが配置される。材料層11cと材料層11dとの間に拡散抑制層21cが配置される。材料層11dと材料層11eとの間に拡散抑制層21dが配置される。材料層11eと材料層11fとの間に拡散抑制層21eが配置される。材料層11fと材料層11gとの間に拡散抑制層21fが配置される。材料層11gと材料層11hとの間に拡散抑制層21gが配置される。材料層11hと材料層11iとの間に拡散抑制層21hが配置される。材料層11iと材料層11jとの間に拡散抑制層21iが配置される。すなわち、材料層11a~材料層11jの間にそれぞれ拡散抑制層21a~21iが挟まれている構成である。なお、材料層11aと材料層11bとの間に拡散抑制層が配置され、材料層11bと材料層11cとの間にも拡散抑制層が配置されることとなる。拡散抑制層21a~21iはそれぞれ、各材料層11a~11jに含まれる原子の、他の材料層11a~11jへの拡散を抑制する。具体的には、拡散抑制層21aは、材料層11aに含まれる原子の材料層11bへの拡散および材料層11bに含まれる原子の材料層11aへの拡散を抑制する。拡散抑制層21bは、材料層11bに含まれる原子の材料層11cへの拡散および材料層11cに含まれる原子の材料層11bへの拡散を抑制する。拡散抑制層21cは、材料層11c含まれる原子の材料層11dへの拡散および材料層11dに含まれる原子の材料層11cへの拡散を抑制する。拡散抑制層21dは、材料層11dに含まれる原子の材料層11eへの拡散および材料層11eに含まれる原子の材料層11dへの拡散を抑制する。拡散抑制層21eは、材料層11eに含まれる原子の材料層11fへの拡散および材料層11fに含まれる原子の材料層11eへの拡散を抑制する。拡散抑制層21fは、材料層11fに含まれる原子の材料層11gへの拡散および材料層11gに含まれる原子の材料層11fへの拡散を抑制する。拡散抑制層21gは、材料層11gに含まれる原子の材料層11hへの拡散および材料層11hに含まれる原子の材料層11gへの拡散を抑制する。拡散抑制層21hは、材料層11hに含まれる原子の材料層11iへの拡散および材料層11iに含まれる原子の材料層11hへの拡散を抑制する。拡散抑制層21iは、材料層11iに含まれる原子の材料層11jへの拡散および材料層11jに含まれる原子の材料層11iへの拡散を抑制する。 The laminate 10a includes a plurality of diffusion suppressing layers 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, and 21a. In this embodiment, the laminate 10a includes nine diffusion suppressing layers 21a to 21i. Each of the diffusion suppressing layers 21a to 21i is arranged between the material layer 11a to the material layer 11j, respectively, in the Z direction. Specifically, the diffusion suppressing layer 21a is arranged between the material layer 11a and the material layer 11b. A diffusion suppressing layer 21b is arranged between the material layer 11b and the material layer 11c. A diffusion suppressing layer 21c is arranged between the material layer 11c and the material layer 11d. A diffusion suppressing layer 21d is arranged between the material layer 11d and the material layer 11e. A diffusion suppressing layer 21e is arranged between the material layer 11e and the material layer 11f. A diffusion suppressing layer 21f is arranged between the material layer 11f and the material layer 11g. A diffusion suppressing layer 21g is arranged between the material layer 11g and the material layer 11h. A diffusion suppressing layer 21h is arranged between the material layer 11h and the material layer 11i. A diffusion suppressing layer 21i is arranged between the material layer 11i and the material layer 11j. That is, the diffusion suppressing layers 21a to 21i are sandwiched between the material layers 11a to 11j, respectively. Note that a diffusion suppressing layer is disposed between the material layer 11a and the material layer 11b, and a diffusion suppressing layer is also disposed between the material layer 11b and the material layer 11c. Diffusion suppression layers 21a to 21i each suppress diffusion of atoms contained in each material layer 11a to 11j to other material layers 11a to 11j. Specifically, the diffusion suppression layer 21a suppresses the diffusion of atoms contained in the material layer 11a into the material layer 11b and the diffusion of atoms contained in the material layer 11b into the material layer 11a. The diffusion suppression layer 21b suppresses the diffusion of atoms contained in the material layer 11b into the material layer 11c and the diffusion of atoms contained in the material layer 11c into the material layer 11b. The diffusion suppression layer 21c suppresses the diffusion of atoms contained in the material layer 11c to the material layer 11d and the diffusion of atoms contained in the material layer 11d to the material layer 11c. The diffusion suppression layer 21d suppresses the diffusion of atoms contained in the material layer 11d into the material layer 11e and the diffusion of atoms contained in the material layer 11e into the material layer 11d. The diffusion suppression layer 21e suppresses the diffusion of atoms contained in the material layer 11e into the material layer 11f and the diffusion of atoms contained in the material layer 11f into the material layer 11e. The diffusion suppression layer 21f suppresses the diffusion of atoms contained in the material layer 11f into the material layer 11g and the diffusion of atoms contained in the material layer 11g into the material layer 11f. The diffusion suppression layer 21g suppresses the diffusion of atoms contained in the material layer 11g into the material layer 11h and the diffusion of atoms contained in the material layer 11h into the material layer 11g. The diffusion suppression layer 21h suppresses the diffusion of atoms contained in the material layer 11h into the material layer 11i and the diffusion of atoms contained in the material layer 11i into the material layer 11h. The diffusion suppression layer 21i suppresses the diffusion of atoms contained in the material layer 11i into the material layer 11j and the diffusion of atoms contained in the material layer 11j into the material layer 11i.
 本実施形態においては、各拡散抑制層21a~21iの厚さは、それぞれ同じである。拡散抑制層21aの厚さT、すなわち、拡散抑制層21aの厚さ方向の一方側に位置する第1の面22aと厚さ方向の他方側に位置する第2の面23aとの間隔は、10nm以上である。また、拡散抑制層21aの厚さTは、材料層11a~材料層11jのうちの最も厚い材料層よりも薄い。本実施形態においては、拡散抑制層21aの厚さTは、10μmである。 In this embodiment, each of the diffusion suppressing layers 21a to 21i has the same thickness. The thickness T 2 of the diffusion suppressing layer 21a, that is, the distance between the first surface 22a located on one side in the thickness direction of the diffusion suppressing layer 21a and the second surface 23a located on the other side in the thickness direction is , 10 nm or more. Further, the thickness T 2 of the diffusion suppressing layer 21a is thinner than the thickest material layer among the material layers 11a to 11j. In this embodiment, the thickness T2 of the diffusion suppressing layer 21a is 10 μm.
 拡散抑制層21a~21iはそれぞれ、同じ材料で形成されている。本実施形態においては、拡散抑制層21a~21iはそれぞれ、SiO(二酸化ケイ素)で構成されている。このような材料から構成される拡散抑制層21a~21iは絶縁性が高いため、より確実に各材料層11a~11jに含まれる原子の、他の材料層11a~11jへの拡散を抑制することができる。 The diffusion suppression layers 21a to 21i are each made of the same material. In this embodiment, each of the diffusion suppressing layers 21a to 21i is made of SiO 2 (silicon dioxide). Since the diffusion suppression layers 21a to 21i made of such materials have high insulating properties, they can more reliably suppress the diffusion of atoms contained in each material layer 11a to 11j to other material layers 11a to 11j. Can be done.
 各材料層11a~11jはそれぞれ、第1の母材元素および第2の母材元素を含む固体相変化材料から構成される。すなわち、本開示に係る積層体10aは、多層構造を有する。本実施形態においては、第1の母材元素は、S(硫黄)である。第2の母材元素は、Se(セレン)である。第3の母材元素は、Ag(銀)である。実施の形態1の積層体10aに含まれる材料層11a~材料層11jを構成する各固体相変化材料は、銀カルコゲナイド系材料を含む。このような材料は、熱制御を伴うデバイスへの適用が容易となる。本実施形態においては、固体相変化材料は、AgSe1-xによって表される。xは、0≦x≦1の関係を有する。 Each of the material layers 11a to 11j is composed of a solid phase change material containing a first base material element and a second base material element. That is, the laminate 10a according to the present disclosure has a multilayer structure. In this embodiment, the first base material element is S (sulfur). The second base material element is Se (selenium). The third base material element is Ag (silver). Each of the solid phase change materials constituting the material layers 11a to 11j included in the laminate 10a of the first embodiment includes a silver chalcogenide-based material. Such materials can be easily applied to devices involving thermal control. In this embodiment, the solid phase change material is represented by Ag 2 S x Se 1-x . x has a relationship of 0≦x≦1.
 ここで、実施の形態1の積層体10aにおいて、第1の材料層11aにおける第1の母材元素であるS(硫黄)の含有割合から第2の材料層11jにおける第1の母材元素であるSの含有割合を差し引いた含有割合の差は、10at%以上である。具体的には、各材料層11a~11jにおける第1の母材元素および第2の母材元素の含有割合は、後述するサンプル1に示す通りである。 Here, in the laminate 10a of the first embodiment, the first base material element in the second material layer 11j is determined from the content ratio of S (sulfur), which is the first base material element in the first material layer 11a. The difference in content after subtracting a certain S content is 10 at % or more. Specifically, the content ratios of the first base material element and the second base material element in each of the material layers 11a to 11j are as shown in Sample 1, which will be described later.
 このような構成の積層体10aによると、環境温度が変化する状況においても、環境温度に応じて熱伝導率を滑らかに変化させることができ、デバイスの温度制御を効率的に行うことができる。したがって、このような積層体10aによれば、熱制御を伴うデバイスへの適用が容易となる。 According to the laminate 10a having such a configuration, even in a situation where the environmental temperature changes, the thermal conductivity can be smoothly changed according to the environmental temperature, and the temperature of the device can be efficiently controlled. Therefore, such a laminate 10a can be easily applied to devices that require thermal control.
 本実施形態においては、第1の材料層11aと第2の材料層11jとの間に配置され、各材料層11a~11j間の原子の拡散を抑制する拡散抑制層21a~21iを含む。よって、相変態時において各材料層11a~11jに含まれる原子の、他の材料層への拡散を抑制して、各材料層11a~材料層11jの組成が変化するおそれを低減することができる。すなわち、このよう拡散抑制層21a~21iを配置することで、材料層11a~11j同士の反応や他材料との反応を抑制することができ、繰り返しの使用時における相変態による劣化を防ぐことができる。 The present embodiment includes diffusion suppression layers 21a to 21i that are disposed between the first material layer 11a and the second material layer 11j and suppress diffusion of atoms between the respective material layers 11a to 11j. Therefore, it is possible to suppress the diffusion of atoms contained in each material layer 11a to 11j to other material layers during phase transformation, and reduce the possibility that the composition of each material layer 11a to 11j will change. . That is, by arranging the diffusion suppressing layers 21a to 21i in this manner, reactions between the material layers 11a to 11j and reactions with other materials can be suppressed, and deterioration due to phase transformation during repeated use can be prevented. can.
 本実施形態においては、第1の母材元素および第2の母材元素はそれぞれ、硫黄およびセレンである。固体相変化材料は、AgSe1-xによって表され、xは、0≦x≦1の関係を有する。このような固体相変化材料から構成される複数の材料層11a~11jを含む積層体10aは、環境温度が変化する状況においても熱伝導率を滑らかに変化させて、デバイスの温度制御を効率的に行うことができる。 In this embodiment, the first base material element and the second base material element are sulfur and selenium, respectively. The solid phase change material is represented by Ag 2 S x Se 1-x , where x has the relationship 0≦x≦1. The laminate 10a, which includes a plurality of material layers 11a to 11j made of such solid phase change materials, smoothly changes thermal conductivity even in situations where the environmental temperature changes, and efficiently controls the temperature of the device. can be done.
 本実施形態においては、複数の材料層11a~11jの厚さはそれぞれ、10μm以上5mm以下である。材料層11a~11jの厚さを10μm以上とすることにより、接触する拡散抑制層21a~21iから相変態が起きにくい領域以上の厚さを材料層11a~11jが確保することができる。また、材料層11a~11jの厚さを5mm以下とすることにより、温度差を付与した際のイオン伝導による単一材料層内における元素の析出を抑制し、信頼性の向上を図ることができる。 In the present embodiment, each of the plurality of material layers 11a to 11j has a thickness of 10 μm or more and 5 mm or less. By setting the thickness of the material layers 11a to 11j to 10 μm or more, the material layers 11a to 11j can ensure a thickness greater than a region where phase transformation is difficult to occur from the contacting diffusion suppressing layers 21a to 21i. Furthermore, by setting the thickness of the material layers 11a to 11j to 5 mm or less, precipitation of elements within a single material layer due to ion conduction when a temperature difference is applied can be suppressed, and reliability can be improved. .
 本実施形態においては、拡散抑制層21a~21iの厚さは、10nm以上であり、複数の材料層のうちの最も厚い材料層11a~11jよりも薄い。拡散抑制層21a~21iの厚さを10nm以上とすることにより、各材料層11a~11jに含まれる原子の、他の材料層11a~11jへの拡散を確実に抑制することができる。また、拡散抑制層21a~21iの厚さを最も厚い材料層11a~11jよりも薄くすることにより、積層体10aの熱伝導率に対する拡散抑制層21a~21iの影響を低減することができる。 In this embodiment, the thickness of the diffusion suppressing layers 21a to 21i is 10 nm or more, and is thinner than the thickest material layer 11a to 11j among the plurality of material layers. By setting the thickness of the diffusion suppressing layers 21a to 21i to 10 nm or more, it is possible to reliably suppress diffusion of atoms contained in each material layer 11a to 11j to other material layers 11a to 11j. Further, by making the thickness of the diffusion suppressing layers 21a to 21i thinner than the thickest material layers 11a to 11j, the influence of the diffusion suppressing layers 21a to 21i on the thermal conductivity of the laminate 10a can be reduced.
 本実施形態においては、複数の材料層11a~11jは、第1の母材元素および第2の母材元素を含む固体相変化材料から構成される第3の材料層11cを含む。そして、複数の材料層の厚さ方向において、第1の材料層11a、第3の材料層11b、第2の材料層11jの順に配置されている。よって、積層体10aにおける第1の母材元素の含有割合を徐々に変化させて、各材料層11a,11b,11j間における熱伝導率の変化をより滑らかにすることができる。したがって、デバイスの温度制御をより効率的に行うことができる。 In this embodiment, the plurality of material layers 11a to 11j include a third material layer 11c made of a solid phase change material containing a first base material element and a second base material element. In the thickness direction of the plurality of material layers, the first material layer 11a, the third material layer 11b, and the second material layer 11j are arranged in this order. Therefore, by gradually changing the content ratio of the first base material element in the laminate 10a, it is possible to more smoothly change the thermal conductivity between the material layers 11a, 11b, and 11j. Therefore, the temperature of the device can be controlled more efficiently.
 なお、上記の実施の形態においては、積層体10aの厚さ方向に、最下層である材料層11aから徐々に第1の母材元素(S)の含有割合が低くなっていき、第2の母材元素(Se)の含有割合が高くなっていくこととした。これに限らず、逆に最上層である材料層11jから第1の母材元素(S)の含有割合が低くなっていき、第2の母材元素(Se)の含有割合が高くなっていくこととしてもよい。さらには、隣り合う材料層毎に第1の母材元素の含有割合と第2の母材元素の含有割合が徐々に変化していくのではなく、後述するサンプル6のように含有割合の異なる材料層がランダムに配置されていてもよい。すなわち、最も第1の母材元素の含有割合が高い、または低い材料層が、厚さ方向の一方側の端部に配置されていなくてもよい。後述する実施の形態2、実施の形態3についても同様である。 In the above embodiment, the content ratio of the first base material element (S) gradually decreases in the thickness direction of the laminate 10a from the material layer 11a, which is the lowest layer, and It was decided that the content ratio of the base material element (Se) was increased. Not limited to this, conversely, the content ratio of the first base material element (S) decreases from the material layer 11j which is the uppermost layer, and the content ratio of the second base material element (Se) increases. It may also be a thing. Furthermore, instead of the content ratio of the first base material element and the content ratio of the second base material element changing gradually for each adjacent material layer, the content ratio of the first base material element differs as in Sample 6, which will be described later. The material layers may be randomly arranged. That is, the material layer having the highest or lowest content of the first base material element does not need to be disposed at one end in the thickness direction. The same applies to Embodiment 2 and Embodiment 3, which will be described later.
 (実施の形態2)
 他の実施の形態である実施の形態2について説明する。図4は、実施の形態2に係る積層体の構造を示す概略側面図である。実施の形態2における積層体は、基本的には実施の形態1の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態2の積層体は、層の数が実施の形態1の場合と異なっている。
(Embodiment 2)
Embodiment 2, which is another embodiment, will be described. FIG. 4 is a schematic side view showing the structure of the laminate according to the second embodiment. The laminate in Embodiment 2 basically has the same configuration as Embodiment 1, and produces the same effects. However, the number of layers in the laminate of the second embodiment is different from that of the first embodiment.
 図4を参照して、積層体10bは、第1の母材元素および第2の母材元素を含む固体相変化材料から構成される第1の材料層11aおよび第2の材料層11bを含む。すなわち、積層体10bは、材料層が2層の構造である。第1の材料層11aと第2の材料層11bとの間には、拡散抑制層21aが配置されている。第1の材料層11aにおける第1の母材元素の含有割合は、第2の材料層11bにおける第1の母材元素の含有割合よりも大きい。第1の材料層11aにおける第1の母材元素の含有割合から第2の材料層11bにおける第1の母材元素の含有割合を差し引いた含有割合の差は、10at%以上である。 Referring to FIG. 4, laminate 10b includes a first material layer 11a and a second material layer 11b made of a solid phase change material containing a first base material element and a second base material element. . That is, the laminate 10b has a two-layer structure. A diffusion suppressing layer 21a is arranged between the first material layer 11a and the second material layer 11b. The content ratio of the first base material element in the first material layer 11a is larger than the content ratio of the first base material element in the second material layer 11b. The difference in the content ratio obtained by subtracting the content ratio of the first base material element in the second material layer 11b from the content ratio of the first base material element in the first material layer 11a is 10 at % or more.
 このように、積層体10bは、上記の関係を有する2層の材料層と1層の拡散抑制層から構成されていてもよい。このようにすることによっても、デバイスの温度制御を効率的に行うことができる。 In this way, the laminate 10b may be composed of two material layers having the above relationship and one diffusion suppressing layer. By doing so as well, the temperature of the device can be efficiently controlled.
 (実施の形態3)
 他の実施の形態である実施の形態3について説明する。図5は、実施の形態3に係る積層体の構造を示す概略側面図である。実施の形態3における積層体は、基本的には実施の形態1の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態3の積層体は、層の数および組成が実施の形態1の場合と異なっている。
(Embodiment 3)
Embodiment 3, which is another embodiment, will be described. FIG. 5 is a schematic side view showing the structure of the laminate according to the third embodiment. The laminate in Embodiment 3 basically has the same configuration as Embodiment 1, and produces the same effects. However, the laminate of the third embodiment is different from the first embodiment in the number of layers and the composition.
 図5を参照して、実施の形態3における積層体10cは、材料層の数が実施の形態1の場合と異なり、11層である。すなわち、実施の形態3における積層体10cは、材料層11a~材料層11kから構成される。本実施形態においては、材料層11kの第2の面13kが露出する。そして、材料層11jと材料層11kとの間に、拡散抑制層21jが配置される。また、実施の形態1の場合と異なり、第1の母材元素をSとし、第2の母材元素をTeとし、第3の母材元素をAgとする。実施の形態3の積層体10cに含まれる材料層11a~材料層11kを構成する各固体相変化材料は、AgTe1-xによって表される。xは、0≦x≦1の関係を有する。また、各拡散抑制層21a~21jの材質は、SiN(シリコンナイトライド)である。 Referring to FIG. 5, a laminate 10c according to the third embodiment has eleven material layers, unlike the first embodiment. That is, the laminate 10c in the third embodiment is composed of material layers 11a to 11k. In this embodiment, the second surface 13k of the material layer 11k is exposed. Then, a diffusion suppressing layer 21j is arranged between the material layer 11j and the material layer 11k. Further, unlike the case of Embodiment 1, the first base material element is S, the second base material element is Te, and the third base material element is Ag. Each of the solid phase change materials constituting the material layers 11a to 11k included in the laminate 10c of the third embodiment is represented by Ag 2 S x Te 1-x . x has a relationship of 0≦x≦1. Further, the material of each of the diffusion suppressing layers 21a to 21j is SiN (silicon nitride).
 このような構成の積層体10cによっても、環境温度が変化する状況においても、環境温度に応じて熱伝導率を滑らかに変化させることができ、デバイスの温度制御を効率的に行うことができる。 With the laminate 10c having such a configuration, even in situations where the environmental temperature changes, the thermal conductivity can be smoothly changed according to the environmental temperature, and the temperature of the device can be efficiently controlled.
 (他の実施の形態)
 なお、上記の実施の形態においては、拡散抑制層は、SiOまたはSiNとしたが、これに限らず、拡散抑制層は、SiO、SiN、SiON(酸窒化ケイ素)、エポキシ樹脂およびシリコーン樹脂のうちの少なくともいずれか一つから構成されてもよい。このような材料から構成される拡散抑制層は、より確実に各材料層に含まれる原子の、他の材料層への拡散を抑制することができる。
(Other embodiments)
In addition, in the above embodiment, the diffusion suppressing layer is made of SiO 2 or SiN, but the diffusion suppressing layer is not limited to this. It may be composed of at least one of the following. A diffusion suppressing layer made of such a material can more reliably suppress diffusion of atoms contained in each material layer to other material layers.
 なお、上記の実施の形態においては、材料層が2層、10層または11層の例を示したが、これに限らない。材料層は、少なくとも2層以上あればよく、それら複数の材料層のうち、第1の母材元素の含有割合が最も大きい材料層を第1の材料層とし、第1の母材元素の含有割合が最も小さい材料層を第2の材料層としたときに、第1の材料層における第1の母材元素の含有割合から第2の材料層における第1の母材元素の含有割合を差し引いた含有割合の差が、10at%以上であればよい。第1の母材元素および第2の母材元素は、S、SeおよびTeからなる群からそれぞれ選択される。 Note that in the above embodiments, examples are shown in which the number of material layers is 2, 10, or 11, but the invention is not limited to this. The material layer may have at least two or more layers, and among the plurality of material layers, the material layer with the largest content of the first base material element is defined as the first material layer, and the material layer containing the first base material element is defined as the first material layer. When the material layer with the smallest ratio is taken as the second material layer, the content ratio of the first base material element in the second material layer is subtracted from the content ratio of the first base material element in the first material layer. It is sufficient if the difference in the content ratio is 10 at% or more. The first base material element and the second base material element are each selected from the group consisting of S, Se, and Te.
 図6は、上記した銀カルコゲナイド系材料における固体相変化材料の相図である。図6において、横軸は上記したxに表された原子の含有割合を示し、縦軸は温度(℃)を示す。なお、図6において、ハッチングされた領域は、共に後述するα相およびβ相の両方になり得る領域を示し、昇温の場合はα相となり、降温の場合はβ相となる。すなわち、相変態におけるヒステリシスの領域である。図6を参照して、領域Rで示すTe-Se系固体相変化材料(AgTeSe1-x)、領域Rで示すSe-S系固体相変化材料(AgSe1-x)および領域Rで示すS-Te系固体相変化材料(AgTe1-x)においては、第1の母材元素および第2の母材元素をそれぞれS、Se、Teから異なる元素を2種類選択して含有割合を変化させた場合において、温度に応じて高温相であるα相および低温相であるβ相に相変態する。相変態によりキャリア濃度が変化し、その結果、熱伝導率が変化する。組成ごとに点欠陥(空孔や余剰元素)が異なり、熱伝導率κが異なる。 FIG. 6 is a phase diagram of the solid phase change material in the silver chalcogenide-based material described above. In FIG. 6, the horizontal axis indicates the content ratio of atoms represented by x, and the vertical axis indicates temperature (° C.). Note that in FIG. 6, hatched regions indicate regions that can be both an α phase and a β phase, both of which will be described later.When the temperature is raised, the α phase becomes the α phase, and when the temperature is lowered, the β phase becomes the hatched region. That is, it is a region of hysteresis in phase transformation. Referring to FIG. 6, a Te--Se based solid phase change material (Ag 2 Tex Se 1-x ) shown in region R 1 and a Se-S-based solid phase change material (Ag 2 Se x S shown in region R 2 In the S - Te-based solid phase change material (Ag 2 S x Te 1-x ) shown in region R 3 and region R 3, the first base material element and the second base material element are S, Se, When two different elements are selected from Te and the content ratio is changed, the phase transforms into an α phase, which is a high temperature phase, and a β phase, which is a low temperature phase, depending on the temperature. The carrier concentration changes due to phase transformation, and as a result, the thermal conductivity changes. The point defects (vacancies and surplus elements) differ depending on the composition, and the thermal conductivity κ differs.
 図7は、組成の割合が領域Rおよび領域Rにある場合における温度と熱伝導率との関係を概略的に示すグラフである。図8は、組成の割合が領域Rにある場合における温度と熱伝導率との関係を概略的に示すグラフである。図7および図8において、横軸は温度を示し、縦軸は熱伝導率を示す。図7を参照して、領域Rおよび領域Rにおいては、熱伝導率は、温度が低い状態において高く、温度が高い状態において低くなる。また、図8を参照して、領域Rにおいては、熱伝導率は、温度が低い状態において低く、温度が高い状態において高くなる。各組成、すなわち、第1の母材元素の含有割合に応じて、高温相であるα相および低温相であるβ相の占める割合が変化し、これに応じて熱伝導率が変化する。そして、本開示に係る積層体においては、この母材元素の組成を変化させて熱伝導率を異ならせ、急激に熱伝導率が変化することを回避するものである。 FIG. 7 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R 1 and region R 3 . FIG. 8 is a graph schematically showing the relationship between temperature and thermal conductivity when the composition ratio is in region R2 . In FIGS. 7 and 8, the horizontal axis represents temperature, and the vertical axis represents thermal conductivity. Referring to FIG. 7, in region R 1 and region R 3 , the thermal conductivity is high when the temperature is low and low when the temperature is high. Further, referring to FIG. 8, in region R2 , the thermal conductivity is low when the temperature is low and becomes high when the temperature is high. Depending on each composition, that is, the content ratio of the first base material element, the ratio occupied by the α phase, which is a high temperature phase, and the β phase, which is a low temperature phase, changes, and the thermal conductivity changes accordingly. In the laminate according to the present disclosure, the thermal conductivity is varied by changing the composition of this base material element, thereby avoiding a sudden change in the thermal conductivity.
 また、上記の実施の形態においては、固体相変化材料は、AgSe1-xによって表され、xは、0≦x≦1の関係を有するか、またはAgTe1-xによって表され、xは、0≦x≦1の関係を有することとしたが、これに限らず、固体相変化材料は、AgSe1-x、AgTe1-xまたはAgSeTe1-xによって表されてもよい。xは、0≦x≦1の関係を有してもよい。なお、AgSeTe1-xについては、図6から同じような効果を奏すると理解される。このような固体相変化材料から構成される複数の材料層を含む積層体は、環境温度が変化する状況においても環境温度に応じて熱伝導率を滑らかに変化させることができ、デバイスの温度制御を効率的に行うことができる。 Further, in the above embodiments, the solid phase change material is represented by Ag 2 S x Se 1-x , where x has a relationship of 0≦x≦1, or Ag 2 S x Te 1-x . x , where x has a relationship of 0≦x≦1, but the solid phase change material is not limited to this, but the solid phase change material may be Ag 2 Se x S 1-x , Ag 2 Te x S 1-x Alternatively, it may be represented by Ag 2 Se x Te 1-x . x may have a relationship of 0≦x≦1. Note that it is understood from FIG. 6 that Ag 2 Se x Te 1-x has similar effects. A laminate containing multiple material layers composed of such solid phase change materials can smoothly change thermal conductivity depending on the environmental temperature even in situations where the environmental temperature changes, and it is possible to control the temperature of the device. can be done efficiently.
 サンプル1~サンプル6を表1のように用意した。第1の母材元素が硫黄であり、第2の母材元素がセレンであり、一つの材料層をAgSe1-xのように表す。表1の材料層の並びは、上が上層、下が下層に対応する。 Samples 1 to 6 were prepared as shown in Table 1. The first base material element is sulfur, the second base material element is selenium, and one material layer is expressed as Ag 2 S x Se 1-x . In the arrangement of material layers in Table 1, the upper layer corresponds to the upper layer and the lower layer corresponds to the lower layer.
 (サンプル1)
 サンプル1として、表1に示すように、10層の材料層を用意した。材料層における第1の母材元素の含有割合(x)は下から、x=0.950、x=0.930、x=0.910、x=0.890、x=0.870、x=0.850、x=0.830、x=0.810、x=0.790、x=0.770である。10層の材料層のうち、第1の母材元素(S)の最も大きい層が第1の材料層11a(表1に示す材料層L10)であり、第1の母材元素(S)の最も小さい層が第2の材料層11j(表1に示す材料層L)である。第3の材料層11bは、例えば表1に示す材料層Lである。第1の材料層11aにおける第1の母材元素であるSの含有割合から第2の材料層11jにおける第1の母材元素であるSの含有割合を差し引いた含有割合の差は、18at%である。この含有割合の差を表1の下欄に示す。
(Sample 1)
As Sample 1, 10 material layers were prepared as shown in Table 1. The content ratio (x) of the first base material element in the material layer is, from the bottom, x=0.950, x=0.930, x=0.910, x=0.890, x=0.870, x =0.850, x=0.830, x=0.810, x=0.790, x=0.770. Among the 10 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11j (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L9 shown in Table 1. The difference in the content ratio obtained by subtracting the content ratio of S, which is the first base material element, in the second material layer 11j from the content ratio of S, which is the first base material element, in the first material layer 11a is 18 at%. It is. The difference in content ratio is shown in the lower column of Table 1.
 なお、このような積層体10aは、以下のようにして製造される。まず、材料層の原料としてのAgS、AgSeの粉末および拡散抑制層の原料としてのSiOの粉末を準備する。そして、各原料粉末を用いて、各層の含有割合、すなわち、各層において規定した元素比となるよう秤量して混合する。このようにして各層を構成する粉末を調製する。その後、各層を構成する粉末を真空シリンダーに封入し、150Kで加熱して合金化する。その後、合金を真空シリンダーから取り出し、ハンドミリングで微粉末にする。 Note that such a laminate 10a is manufactured as follows. First, powders of Ag 2 S and Ag 2 Se as raw materials for the material layer and SiO 2 powder as raw materials for the diffusion suppressing layer are prepared. Then, each raw material powder is weighed and mixed to achieve the content ratio of each layer, that is, the element ratio specified in each layer. In this way, powders constituting each layer are prepared. Thereafter, the powders constituting each layer are sealed in a vacuum cylinder and heated at 150K to form an alloy. The alloy is then removed from the vacuum cylinder and hand milled into a fine powder.
 次に、このようにして得られた粉末を焼結する。具体的には、φ50mmのダイスを準備し、第1の材料層を構成する粉末を入れ、その上に第1の拡散抑制層を構成するSiOの粉末を入れる。その後、次の材料層を構成する粉末を入れ、その上に再び拡散抑制層を構成するSiOの粉末を入れる。このようにして、各材料層を構成する粉末と拡散抑制層を構成するSiOの粉末を交互に投入してダイスに詰める。本実施形態においては、材料層の厚さを1mm以下、拡散抑制層の厚さを0.1mm以下となるようにダイス内に投入した。 Next, the powder thus obtained is sintered. Specifically, a die with a diameter of 50 mm is prepared, a powder constituting the first material layer is put therein, and an SiO 2 powder constituting the first diffusion suppressing layer is put thereon. Thereafter, powder constituting the next material layer is placed, and SiO 2 powder constituting the diffusion suppressing layer is placed thereon again. In this way, the powder constituting each material layer and the SiO 2 powder constituting the diffusion suppressing layer are alternately introduced and packed into the die. In this embodiment, the material was placed into the die so that the thickness of the material layer was 1 mm or less, and the thickness of the diffusion suppressing layer was 0.1 mm or less.
 その後焼結を行った。焼結については、温度を600K以上1500K以下の範囲とし、10MPa以上100MPa以下の1軸の圧力下でホットプレスを行った。保持時間は2時間とし、Ar(アルゴン)ガス雰囲気下で行った。焼結行程を経て自然冷却後、ダイスから取り出し、サンプル1に係る積層体を得た。得られた積層体は、図1に示す構成である。以下、サンプル2、サンプル3、サンプル6について同様の構成である。 After that, sintering was performed. Regarding sintering, hot pressing was performed at a temperature in a range of 600 K or more and 1500 K or less, and under a uniaxial pressure of 10 MPa or more and 100 MPa or less. The holding time was 2 hours, and the test was carried out under an Ar (argon) gas atmosphere. After undergoing a sintering process and being naturally cooled, it was taken out from the die to obtain a laminate according to Sample 1. The obtained laminate has the configuration shown in FIG. 1. Hereinafter, Sample 2, Sample 3, and Sample 6 have the same configuration.
 (サンプル2)
 サンプル2として10層の材料層の組成をそれぞれ以下に示す表1にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル2に係る積層体を得た。10層の材料層のうち、第1の母材元素(S)の最も大きい層が第1の材料層11a(表1に示す材料層L10)であり、第1の母材元素(S)の最も小さい層が第2の材料層11j(表1に示す材料層L)である。第3の材料層11bは、例えば表1に示す材料層Lである。
(Sample 2)
As Sample 2, ten material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate according to Sample 2 was obtained using the same manufacturing method as Sample 1. Among the 10 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11j (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L9 shown in Table 1.
 (サンプル3)
 サンプル3として10層の材料層の組成をそれぞれ以下に示す表1にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル3に係る積層体を得た。10層の材料層のうち、第1の母材元素(S)の最も大きい層が第1の材料層11a(表1に示す材料層L10)であり、第1の母材元素(S)の最も小さい層が第2の材料層11j(表1に示す材料層L)である。第3の材料層11bは、例えば表1に示す材料層Lである。
(Sample 3)
As Sample 3, ten material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate according to Sample 3 was obtained using the same manufacturing method as Sample 1. Among the 10 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11j (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L9 shown in Table 1.
 (サンプル4)
 サンプル4として2層の材料層の組成をそれぞれ以下に示す表1にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル4に係る積層体を得た。得られた積層体は、図4に示す構成である。以下、サンプル10について同様の構成である。第1の材料層11aは、表1に示す材料層Lであり、第2の材料層11bは、表1に示す材料層Lである。
(Sample 4)
As Sample 4, two material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate according to Sample 4 was obtained using the same manufacturing method as Sample 1. The obtained laminate has the configuration shown in FIG. 4. Hereinafter, sample 10 has a similar configuration. The first material layer 11a is the material layer L1 shown in Table 1, and the second material layer 11b is the material layer L2 shown in Table 1.
 (サンプル5)
 サンプル5として1層の材料層のみからなる材料を以下に示す表1にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル5に係る材料を得た。
(Sample 5)
A material consisting of only one material layer was prepared as Sample 5 according to Table 1 shown below. Then, a material related to Sample 5 was obtained using the same manufacturing method as Sample 1.
 (サンプル6)
 サンプル6として10層の材料層の組成をそれぞれ以下に示す表1にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル6に係る積層体10cを得た。10層の材料層のうち、第1の母材元素(S)の最も大きい層が第1の材料層11a(表1に示す材料層L10)であり、第1の母材元素(S)の最も小さい層が第2の材料層11f(表1に示す材料層L)である。第3の材料層11bは、例えば表1に示す材料層Lである。
(Sample 6)
As Sample 6, 10 material layers were prepared according to the compositions shown in Table 1 below. Then, a laminate 10c of Sample 6 was obtained using the same manufacturing method as Sample 1. Among the 10 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 10 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11f (material layer L 5 shown in Table 1). The third material layer 11b is, for example, material layer L9 shown in Table 1.
 サンプル7~サンプル12を表2のように用意した。第1の母材元素が硫黄であり、第2の母材元素がテルルであり、一つの材料層をAgTe1-xのように示す。表2の材料層の並びは、上が上層、下が下層に対応する。 Samples 7 to 12 were prepared as shown in Table 2. The first matrix element is sulfur, the second matrix element is tellurium, and one material layer is designated as Ag 2 S x Te 1-x . In the arrangement of the material layers in Table 2, the upper layer corresponds to the upper layer and the lower layer corresponds to the lower layer.
 (サンプル7)
 サンプル7として11層の材料層の組成をそれぞれ以下に示す表2にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル7に係る積層体を得た。得られた積層体は、図5に示す構成である。以下、サンプル8、サンプル9、サンプル12について同様の構成である。11層の材料層のうち、第1の母材元素(S)の最も大きい層が第1の材料層11a(表1に示す材料層L11)であり、第1の母材元素(S)の最も小さい層が第2の材料層11k(表1に示す材料層L)である。第3の材料層11bは、例えば表2に示す材料層L10である。
(Sample 7)
As Sample 7, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 7 was obtained using the same manufacturing method as Sample 1. The obtained laminate has the configuration shown in FIG. 5. Hereinafter, Sample 8, Sample 9, and Sample 12 have the same configuration. Among the 11 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 11 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11k (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L10 shown in Table 2.
 (サンプル8)
 サンプル8として11層の材料層の組成をそれぞれ以下に示す表2にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル8に係る積層体を得た。11層の材料層のうち、第1の母材元素(S)の最も大きい層が第1の材料層11a(表1に示す材料層L11)であり、第1の母材元素(S)の最も小さい層が第2の材料層11k(表1に示す材料層L)である。第3の材料層11bは、例えば表2に示す材料層L10である。
(Sample 8)
As Sample 8, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 8 was obtained using the same manufacturing method as Sample 1. Among the 11 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 11 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11k (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L10 shown in Table 2.
 (サンプル9)
 サンプル9として11層の材料層の組成をそれぞれ以下に示す表2にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル9に係る積層体を得た。11層の材料層のうち、第1の母材元素(S)の最も大きい層が第1の材料層11a(表1に示す材料層L11)であり、第1の母材元素(S)の最も小さい層が第2の材料層11k(表1に示す材料層L)である。第3の材料層11bは、例えば表2に示す材料層L10である。
(Sample 9)
As Sample 9, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 9 was obtained using the same manufacturing method as Sample 1. Among the 11 material layers, the layer with the largest first base material element (S) is the first material layer 11a (material layer L 11 shown in Table 1), and the first base material element (S) The smallest layer is the second material layer 11k (material layer L 1 shown in Table 1). The third material layer 11b is, for example, material layer L10 shown in Table 2.
 (サンプル10)
 サンプル10として2層の材料層の組成をそれぞれ以下に示す表2にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル10に係る積層体を得た。第1の材料層11aは、表2に示す材料層Lであり、第2の材料層11bは、表2に示す材料層Lである。
(Sample 10)
As Sample 10, two material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 10 was obtained using the same manufacturing method as Sample 1. The first material layer 11a is the material layer L2 shown in Table 2, and the second material layer 11b is the material layer L1 shown in Table 2.
 (サンプル11)
 サンプル11として1層の材料層のみからなる材料を以下に示す表2にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル11に係る積層体を得た。
(Sample 11)
A material consisting of only one material layer was prepared as Sample 11 according to Table 2 shown below. Then, a laminate according to Sample 11 was obtained using the same manufacturing method as Sample 1.
 (サンプル12)
 サンプル12として11層の材料層の組成をそれぞれ以下に示す表2にしたがって調製した。そして、サンプル1と同様の製造方法でサンプル12に係る積層体を得た。第1の材料層11aは、表2に示す材料層L11であり、第2の材料層11bは、表2に示す材料層Lである。第3の材料層11bは、例えば表2に示す材料層L10である。
(Sample 12)
As Sample 12, 11 material layers were prepared according to the compositions shown in Table 2 below. Then, a laminate according to Sample 12 was obtained using the same manufacturing method as Sample 1. The first material layer 11a is the material layer L11 shown in Table 2, and the second material layer 11b is the material layer L6 shown in Table 2. The third material layer 11b is, for example, material layer L10 shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 組成の測定、すなわち、材料層内における各元素の含有割合については、EDX(Energy Dispersive X-ray spectrometry)の結果を示す概略図である。EDXについては、積層体の一部のTEM(Transmission Electron Microscope)像を撮影して測定した。TEM像の撮影については、JEM-2800(日本電子株式会社製)を用い、測定条件については、加速電圧を200kV、プローブのサイズを0.5nm、CL絞りを3とした。また、EDXによる原子の検出の条件としては、EDX(サーモフィッシャーサイエンティフィック株式会社製)を用い、測定条件については、スポットサイズを0.5nmとし、CL絞りを3とし、分析モードをマッピングとし、分析時間を20分間とした。そして、EDXの測定スペクトルに対し、装置のフィッティング機能を用いて、定量分析を行った。 Regarding the measurement of the composition, that is, the content ratio of each element in the material layer, it is a schematic diagram showing the results of EDX (Energy Dispersive X-ray spectrometry). EDX was measured by taking a TEM (Transmission Electron Microscope) image of a part of the laminate. For taking the TEM image, JEM-2800 (manufactured by JEOL Ltd.) was used, and the measurement conditions were an accelerating voltage of 200 kV, a probe size of 0.5 nm, and a CL aperture of 3. In addition, the conditions for detecting atoms by EDX are as follows: EDX (manufactured by Thermo Fisher Scientific Co., Ltd.) is used, and the measurement conditions are as follows: spot size is 0.5 nm, CL aperture is 3, and analysis mode is mapping. The analysis time was 20 minutes. Then, quantitative analysis was performed on the EDX measurement spectrum using the fitting function of the device.
 熱伝導率の測定については、定常法熱伝導率測定装置としてアドバンス理工株式会社製GH-1を用いた。そして、高温側ヒータと、試料と、熱流束計と、低温側ヒータと、を準備して試料をセットした。測定に際し、Ag-S-Se系では100℃以上150℃以下とし、Ag-S-Te系では60℃以上110℃以下の範囲で行った。測定は3回行い、その平均値を算出した。また、各材料層および拡散抑制層の厚さについては、光学顕微鏡またはSEM(Scanning Electron Microscope)を用いて行った。 Regarding the measurement of thermal conductivity, GH-1 manufactured by Advance Riko Co., Ltd. was used as a steady method thermal conductivity measuring device. Then, a high temperature side heater, a sample, a heat flux meter, and a low temperature side heater were prepared and the sample was set. The measurement was carried out at a temperature of 100°C or more and 150°C or less for the Ag-S-Se system, and a range of 60°C or more and 110°C or less for the Ag-S-Te system. The measurement was performed three times, and the average value was calculated. Further, the thickness of each material layer and the diffusion suppressing layer was determined using an optical microscope or a scanning electron microscope (SEM).
 サンプル1~サンプル6の評価結果を、図9に示す。図9は、サンプル1~サンプル6における温度と熱伝導率との関係を示すグラフである。図9において、横軸は温度(℃)を示し、縦軸は熱伝導率(W/mK)を示す。図9を参照して、含有割合の差が18at%であるサンプル1、含有割合の差が10.8at%であるサンプル2、含有割合の差が12at%であるサンプル4、含有割合の差が10.8at%であるサンプル6については、含有割合の差が10at%以上であり、熱伝導率の変化が滑らかである。ここで、熱伝導率の変化が滑らかとは、熱伝導率が最小値から最大値に変化する際に、最大値と最小値との差に対する変化量が10%から90%に変化する間に温度が10℃以上変化する場合をいう。一方、含有割合の差が4at%であるサンプル3、含有割合の差が0であるバルク材料のサンプル5については、熱伝導率の変化が急峻である。これは、サンプル3およびサンプル5において、各材料層における含有割合の差が小さいか、または含有割合の差がないため、相変態の温度が近いためと考えられる。また、サンプル1~サンプル3に示すように、材料層の並びは、第1の母材元素の含有割合の順でもよく、サンプル6に示すように、材料層の並びは、第1の母材元素の含有割合が順不同であってもよいことがわかる。 The evaluation results for samples 1 to 6 are shown in FIG. FIG. 9 is a graph showing the relationship between temperature and thermal conductivity in Samples 1 to 6. In FIG. 9, the horizontal axis indicates temperature (° C.), and the vertical axis indicates thermal conductivity (W/mK). Referring to FIG. 9, Sample 1 has a difference in content ratio of 18 at%, Sample 2 has a difference in content ratio of 10.8 at%, Sample 4 has a difference in content ratio of 12 at%, and Sample 4 has a difference in content ratio of 12 at%. Regarding sample 6, which has a content of 10.8 at%, the difference in content ratio is 10 at% or more, and the change in thermal conductivity is smooth. Here, a smooth change in thermal conductivity means that when the thermal conductivity changes from the minimum value to the maximum value, the amount of change relative to the difference between the maximum value and the minimum value changes from 10% to 90%. This refers to a case where the temperature changes by 10°C or more. On the other hand, the change in thermal conductivity is steep for Sample 3, where the difference in content ratio is 4 at %, and Sample 5, which is a bulk material where the difference in content ratio is 0. This is considered to be because in Sample 3 and Sample 5, the difference in the content ratio in each material layer is small or there is no difference in the content ratio, so that the phase transformation temperatures are close. Furthermore, as shown in samples 1 to 3, the material layers may be arranged in the order of the content ratio of the first base material element, and as shown in sample 6, the material layers may be arranged in the order of the content ratio of the first base material element. It can be seen that the content ratios of the elements may be in random order.
 サンプル7~サンプル12の評価結果を、図10に示す。図10は、サンプル7~サンプル12における温度と熱伝導率との関係を示すグラフである。図10において、横軸は温度(℃)を示し、縦軸は熱伝導率(W/mK)を示す。図10を参照して、含有割合の差が20at%であるサンプル7、含有割合の差が10at%であるサンプル8、含有割合の差が10at%であるサンプル10、含有割合の差が10at%であるサンプル12については、含有割合の差が10at%以上であり、熱伝導率の変化が滑らかである。一方、含有割合の差が2at%であるサンプル9、含有割合の差が0であるバルク材料のサンプル11については、熱伝導率の変化が急峻である。これは、サンプル9およびサンプル11において、各材料層における含有割合の差が小さいか、または含有割合の差がないため、相変態の温度が近いためと考えられる。また、サンプル7~サンプル9に示すように、材料層の並びは、第1の母材元素の含有割合の順でもよく、サンプル12に示すように、材料層の並びは、第1の母材元素の含有割合が順不同であってもよいことがわかる。 The evaluation results for samples 7 to 12 are shown in FIG. FIG. 10 is a graph showing the relationship between temperature and thermal conductivity in Samples 7 to 12. In FIG. 10, the horizontal axis represents temperature (° C.), and the vertical axis represents thermal conductivity (W/mK). Referring to FIG. 10, sample 7 has a difference in content ratio of 20 at%, sample 8 has a difference in content ratio of 10 at%, sample 10 has a difference in content ratio of 10 at%, and sample 10 has a difference in content ratio of 10 at%. For sample 12, the difference in content ratio is 10 at % or more, and the change in thermal conductivity is smooth. On the other hand, the change in thermal conductivity is steep for sample 9 where the difference in content ratio is 2 at % and sample 11 of bulk material where the difference in content ratio is 0. This is considered to be because in sample 9 and sample 11, the difference in the content ratio in each material layer is small or there is no difference in the content ratio, so that the phase transformation temperatures are close. Further, as shown in Samples 7 to 9, the material layers may be arranged in the order of the content ratio of the first base material element, and as shown in Sample 12, the material layers may be arranged in the order of the content ratio of the first base material element. It can be seen that the content ratios of the elements may be in random order.
 以上より、本開示に係る積層体によると、デバイスの温度制御をより効率的に行うことができる。 As described above, according to the laminate according to the present disclosure, the temperature of the device can be controlled more efficiently.
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative in all respects and are not restrictive in any respect. The scope of the present invention is defined not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all changes within the scope.
10a,10b,10c 積層体、11a 材料層、11b 材料層、11c 材料層、11d 材料層、11e 材料層、11f 材料層、11g 材料層、11h 材料層、11i 材料層、11j 材料層、11k 材料層、12a,22a 第1の面、13a,13j,13k,23a 第2の面、21a 拡散抑制層、21b 拡散抑制層、21c 拡散抑制層、21d 拡散抑制層、21e 拡散抑制層、21f 拡散抑制層、21g 拡散抑制層、21h 拡散抑制層、21i 拡散抑制層、21j 拡散抑制層、T,T 厚さ、R,R,R 領域
 
10a, 10b, 10c laminate, 11a material layer, 11b material layer, 11c material layer, 11d material layer, 11e material layer, 11f material layer, 11g material layer, 11h material layer, 11i material layer, 11j material layer, 11k material Layer, 12a, 22a First surface, 13a, 13j, 13k, 23a Second surface, 21a Diffusion suppression layer, 21b Diffusion suppression layer, 21c Diffusion suppression layer, 21d Diffusion suppression layer, 21e Diffusion suppression layer, 21f Diffusion suppression layer, 21g diffusion suppression layer, 21h diffusion suppression layer, 21i diffusion suppression layer, 21j diffusion suppression layer, T 1 , T 2 thickness, R 1 , R 2 , R 3 region

Claims (11)

  1.  第1の母材元素および前記第1の母材元素と異なる第2の母材元素を含む固体相変化材料から構成される複数の材料層を含み、
     前記複数の材料層は、
     前記第1の母材元素の含有割合が最も大きい第1の材料層と、
     前記第1の母材元素の含有割合が最も小さい第2の材料層と、を含み、
     前記第1の材料層における前記第1の母材元素の含有割合から前記第2の材料層における前記第1の母材元素の含有割合を差し引いた含有割合の差は、10at%以上である、積層体。
    a plurality of material layers composed of a solid phase change material including a first matrix element and a second matrix element different from the first matrix element;
    The plurality of material layers are
    a first material layer having the highest content ratio of the first base material element;
    a second material layer having the smallest content of the first base material element,
    The difference in the content ratio obtained by subtracting the content ratio of the first base material element in the second material layer from the content ratio of the first base material element in the first material layer is 10 at% or more, laminate.
  2.  前記第1の材料層と前記第2の材料層との間に配置され、各材料層に含まれる原子の、他の材料層への拡散を抑制する拡散抑制層をさらに備える、請求項1に記載の積層体。 2. The method according to claim 1, further comprising a diffusion suppressing layer disposed between the first material layer and the second material layer and suppressing diffusion of atoms contained in each material layer to other material layers. The described laminate.
  3.  前記固体相変化材料は、銀カルコゲナイド系材料を含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the solid phase change material includes a silver chalcogenide-based material.
  4.  前記第1の母材元素および前記第2の母材元素はそれぞれ、硫黄、セレンおよびテルルからなる群から選択される元素であり、
     前記固体相変化材料は、AgSe1-x、AgTe1-xまたはAgSeTe1-xによって表され、
     xは、0≦x≦1の関係を有する、請求項3に記載の積層体。
    The first base material element and the second base material element are each an element selected from the group consisting of sulfur, selenium, and tellurium,
    The solid phase change material is represented by Ag 2 S x Se 1-x , Ag 2 S x Te 1-x or Ag 2 Se x Te 1-x ,
    The laminate according to claim 3, wherein x has a relationship of 0≦x≦1.
  5.  前記複数の材料層の厚さはそれぞれ、10μm以上5mm以下である、請求項1または請求項2に記載の積層体。 The laminate according to claim 1 or 2, wherein each of the plurality of material layers has a thickness of 10 μm or more and 5 mm or less.
  6.  前記拡散抑制層は、SiO、SiN、SiON、エポキシ樹脂およびシリコーン樹脂のうちの少なくともいずれか一つから構成される、請求項2に記載の積層体。 The laminate according to claim 2 , wherein the diffusion suppressing layer is made of at least one of SiO2, SiN, SiON, epoxy resin, and silicone resin.
  7.  前記拡散抑制層の厚さは、10nm以上であり、前記複数の材料層のうちの最も厚い材料層よりも薄い、請求項2に記載の積層体。 The laminate according to claim 2, wherein the diffusion suppressing layer has a thickness of 10 nm or more and is thinner than the thickest material layer among the plurality of material layers.
  8.  前記複数の材料層は、前記第1の母材元素および前記第2の母材元素を含む固体相変化材料から構成される第3の材料層をさらに含み、
     前記複数の材料層の厚さ方向において、前記第1の材料層、前記第3の材料層、前記第2の材料層の順に配置される、請求項1または請求項3に記載の積層体。
    The plurality of material layers further includes a third material layer made of a solid phase change material including the first base material element and the second base material element,
    The laminate according to claim 1 or 3, wherein the first material layer, the third material layer, and the second material layer are arranged in this order in the thickness direction of the plurality of material layers.
  9.  前記第1の材料層と前記第3の材料層との間および前記第3の材料層と前記第2の材料層との間にそれぞれ配置され、各材料層に含まれる原子の、他の材料層への拡散を抑制する拡散抑制層をさらに備える、請求項8に記載の積層体。 Other materials of the atoms contained in each material layer, which are arranged between the first material layer and the third material layer and between the third material layer and the second material layer, respectively. The laminate according to claim 8, further comprising a diffusion suppression layer that suppresses diffusion into the layer.
  10.  前記複数の材料層は、前記第1の母材元素および前記第2の母材元素を含む固体相変化材料から構成される第3の材料層をさらに含み、
     前記複数の材料層の厚さ方向において、前記第1の材料層、前記第2の材料層、前記第3の材料層の順に配置される、請求項1または請求項3に記載の積層体。
    The plurality of material layers further includes a third material layer made of a solid phase change material including the first base material element and the second base material element,
    The laminate according to claim 1 or 3, wherein the first material layer, the second material layer, and the third material layer are arranged in this order in the thickness direction of the plurality of material layers.
  11.  前記第2の材料層と前記第3の材料層との間に配置され、各材料層に含まれる原子の、他の材料層への拡散を抑制する拡散抑制層をさらに備える、請求項10に記載の積層体。
     
    11. The method according to claim 10, further comprising a diffusion suppressing layer disposed between the second material layer and the third material layer and suppressing diffusion of atoms contained in each material layer to other material layers. The described laminate.
PCT/JP2023/017594 2022-09-14 2023-05-10 Laminate WO2024057611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-146482 2022-09-14
JP2022146482 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024057611A1 true WO2024057611A1 (en) 2024-03-21

Family

ID=90274446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017594 WO2024057611A1 (en) 2022-09-14 2023-05-10 Laminate

Country Status (1)

Country Link
WO (1) WO2024057611A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037332A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Phase change substance and thermal control device
WO2016063479A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Laminated heat storage material
JP2018521943A (en) * 2015-06-01 2018-08-09 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. Method for preparing metal chalcogenide nanomaterials
JP2018167557A (en) * 2017-03-30 2018-11-01 Tdk株式会社 Laminate and thermoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037332A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Phase change substance and thermal control device
WO2016063479A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Laminated heat storage material
JP2018521943A (en) * 2015-06-01 2018-08-09 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. Method for preparing metal chalcogenide nanomaterials
JP2018167557A (en) * 2017-03-30 2018-11-01 Tdk株式会社 Laminate and thermoelectric conversion element

Similar Documents

Publication Publication Date Title
Fukui et al. Characteristic fast H− ion conduction in oxygen-substituted lanthanum hydride
Takashiri et al. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation
JP5101061B2 (en) Phase change material, phase change RAM including the same, and method of manufacturing and operating the same
Acharya et al. Enhancement of power factor for inherently poor thermal conductor Ag8GeSe6 by replacing Ge with Sn
Zhu et al. Half-Heusler alloys as emerging high power density thermoelectric cooling materials
Guan et al. Effect of CaO-doped in NiMn 2 O 4–LaMnO 3 composite ceramics on microstructure and electrical properties
Willis et al. Prediction and realisation of high mobility and degenerate p-type conductivity in CaCuP thin films
Yin et al. Understanding the effect of thickness on the thermoelectric properties of Ca3Co4O9 thin films
Iwanaga et al. Thermopower and electrical conductivity of sodium-doped V2O5 thin films
Peng et al. Effect of Mg substitution on microstructure and electrical properties of Mn 1.25 Ni 0.75 Co 1.0− x Mg x O 4 (0≤ x≤ 1) NTC ceramics
Zhao et al. Aging characteristic of Cu-doped nickel manganite NTC ceramics
WO2024057611A1 (en) Laminate
Wang et al. Realizing high thermoelectric performance in N‐Type Mg3 (Sb, Bi) 2‐based materials via synergetic Mo addition and Sb–Bi ratio refining
Wang et al. Phase modulation enabled high thermoelectric performance in polycrystalline GeSe0. 75Te0. 25
KR101837828B1 (en) Thermoelectric material, method of fabricating the same, and thermoelectric device
Boonlakhorn et al. Computational and experimental investigations of the giant dielectric property of Na1/2Y1/2Cu3Ti4O12 ceramics
US10396263B2 (en) Thermoelectric powder and thermoelectric material prepared using the same
Bresch et al. Glass‐ceramic composites as insulation material for thermoelectric oxide multilayer generators
Menou et al. Seed Layer and Multistack Approaches to Reduce Leakage in SrTiO3-Based Metal–Insulator–Metal Capacitors Using TiN Bottom Electrode
Nishimura et al. Atomic scale characterization of HfO2∕ Al2O3 thin films grown on nitrided and oxidized Si substrates
Huo et al. Thermoelectric Properties of Low Te Concentration‐Doped Cu2ZnSnSe4‐Based Quaternary Alloys
Kong et al. Improvement of electrical properties of single-phase film thermistors by a Ni 0.75 Mn 2.25 O 4/LaMnO 3 bilayer structure
Liu et al. p-Type electrical conduction and wide optical band gap in Mg-doped CuAlS2
Wang et al. Effects of plasma immersion ion nitridation on dielectric properties of HfO2
JP2009155126A (en) Silicon nitride sintered compact, its manufacturing method and circuit board, power semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864977

Country of ref document: EP

Kind code of ref document: A1