WO2024057544A1 - Verification of rapp indication in smo - Google Patents

Verification of rapp indication in smo Download PDF

Info

Publication number
WO2024057544A1
WO2024057544A1 PCT/JP2022/034814 JP2022034814W WO2024057544A1 WO 2024057544 A1 WO2024057544 A1 WO 2024057544A1 JP 2022034814 W JP2022034814 W JP 2022034814W WO 2024057544 A1 WO2024057544 A1 WO 2024057544A1
Authority
WO
WIPO (PCT)
Prior art keywords
smo
instruction
access network
radio access
rapp
Prior art date
Application number
PCT/JP2022/034814
Other languages
French (fr)
Japanese (ja)
Inventor
パンケージ シェト
アウン ムハンマド
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to PCT/JP2022/034814 priority Critical patent/WO2024057544A1/en
Publication of WO2024057544A1 publication Critical patent/WO2024057544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • This disclosure relates to verification of rApp instructions in SMO of O-RAN.
  • the O-RAN control unit uses a Non-RT RIC (Non-Real Time RAN Intelligent Controller) that executes application software called rApp, which has a relatively long control cycle (for example, 1 second or more), and application software called xApp. Equipped with a Near-RT RIC (Near-Real Time RAN Intelligent Controller) that executes a relatively short control cycle (for example, less than 1 second).
  • O-RAN provides a virtualization platform also called O-Cloud (hereinafter also referred to as O-Cloud for convenience) that virtually manages a collection of multiple radio access network nodes (RAN nodes).
  • Non-RT RIC is installed in SMO (Service Management and Orchestration) and generates various instructions to RAN nodes outside SMO, O-Cloud, Near-RT RIC, etc. through the execution of rApp. These instructions are issued outside the SMO through various interfaces such as the O1 interface, O2 interface, and A1 interface.
  • instructions generated by rApp are issued outside SMO almost unchanged, regardless of the target (RAN node, O-Cloud, Near-RT RIC, etc.) or interface (O1 interface, O2 interface, A1 interface, etc.) be done.
  • rApps that execute different tasks or jobs may issue mutually contradictory instructions outside of SMO, and the resources of SMO itself and outside of SMO will be wasted for execution, resolution, coordination, etc. .
  • the present disclosure has been made in view of these circumstances, and aims to provide a radio access network control device, etc. that can efficiently issue instructions generated by an rApp outside of SMO.
  • a radio access network control device uses an instruction verification unit provided in an SMO (Service Management and Orchestration) of O-RAN to perform non-RT RIC (Non-RT Verifying the instructions to outside the SMO generated by the rApp executed by the Real Time RAN Intelligent Controller) and issuing the verified instructions to the outside of the SMO by the instruction issuing unit provided in the SMO.
  • SMO Service Management and Orchestration
  • non-RT RIC Non-RT Verifying the instructions to outside the SMO generated by the rApp executed by the Real Time RAN Intelligent Controller
  • the instruction issuing unit provided in the SMO.
  • at least one processor for executing at least one processor for executing.
  • the instruction verification unit provided in the SMO verifies the instruction. Therefore, among the instructions generated by the rApp, those verified by the instruction verification section are efficiently issued outside the SMO by the instruction issuing section.
  • Another aspect of the present disclosure is a radio access network control method.
  • This method verifies, in the O-RAN SMO (Service Management and Orchestration), the instructions generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO to outside the SMO. and issuing the verified instructions in the SMO to outside the SMO.
  • O-RAN SMO Service Management and Orchestration
  • Non-RT RIC Non-Real Time RAN Intelligent Controller
  • Yet another aspect of the present disclosure is a storage medium.
  • This storage medium verifies instructions outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO in the O-RAN SMO (Service Management and Orchestration).
  • the wireless access network control program stores a radio access network control program that causes the computer to perform the following steps: and in an SMO, issue a verified instruction outside the SMO.
  • instructions generated by an rApp can be efficiently issued outside of SMO.
  • FIG. 2 is a functional block diagram schematically showing a radio access network control device.
  • FIG. 1 schematically shows an overview of a radio access network control device according to this embodiment.
  • This radio access network control device is a RAN control device that controls a radio access network compliant with O-RAN.
  • SMO Service Management and Orchestration
  • SMO controls the entire RAN control device or O-RAN and causes each part to work together.
  • SMO is equipped with a Non-RT RIC (Non-Real Time RAN Intelligent Controller) that functions as an overall control processor responsible for overall control.
  • Non-RT RIC Non-Real Time RAN Intelligent Controller
  • Non-RT RIC which has a relatively long control cycle (for example, 1 second or more), provides guidelines, policies, and guidance regarding the operation of each RAN node (O-CU and/or O-DU, described later), and - Issue configuration change instructions regarding configuration changes outside of SMO, such as Cloud and Near-RT RIC (Near-Real Time RAN Intelligent Controller).
  • the Non-RT RIC runs an application software called rApp to issue operational guidelines for each RAN node to the Near-RT RIC through the A1 interface, and to issue configurations outside of SMO through the O1 interface, O2 interface, etc. Issue change orders.
  • Near-RT RIC which has a relatively short control cycle (for example, less than 1 second), runs application software called xApp and controls each RAN node (O-CU/O-DU) itself and each RAN node through the E2 interface. Controls general-purpose hardware, etc. in the wireless unit (O-RU) connected to the
  • the illustrated RAN nodes include O-CU, which is an O-RAN-compliant central unit (CU), and/or O-DU, which is an O-RAN-compliant distributed unit (DU). Be prepared. Both O-CU and O-DU are responsible for baseband processing in O-RAN, but O-CU is provided on the core network side (not shown), and O-DU is an O-RAN-compliant radio unit (RU : Radio Unit) is installed on the O-RU side.
  • the O-CU may be divided into O-CU-CP, which constitutes a control plane (CP), and O-CU-UP, which constitutes a user plane (UP). Note that the O-CU and O-DU may be integrally configured as one baseband processing unit.
  • an O-eNB as a base station compliant with O-RAN and a fourth generation mobile communication system (4G) may be provided.
  • One or more O-RUs are connected to each RAN node (O-CU/O-DU), and are controlled by the Near-RT RIC via each RAN node.
  • Communication equipment (UE: User Equipment) in the communication cell provided by each O-RU can be connected to each O-RU, and a core (not shown) can be connected via each RAN node (O-CU/O-DU). Can perform network and mobile communication.
  • Each RAN node (O-CU/O-DU) and Near-RT RIC transmits the operating data of each RAN node, each O-RU, and each UE through the O1 interface, so-called FCAPS (Fault, Configuration, Accounting, Performance, Security) provided to SMO.
  • FCAPS fault, Configuration, Accounting, Performance, Security
  • the SMO Based on the operation data obtained through the O1 interface, the SMO provides operational guidelines for each RAN node that the Non-RT RIC issues to the Near-RT RIC through the A1 interface, and the Non-RT RIC issues information on the O1 interface, O2 interface, etc. Update configuration change instructions outside of SMO issued through SMO as necessary.
  • the O-RU may be connected for SMO and FCAPS through the O1 interface or other interfaces (such as Open Fronthaul M-Plane).
  • O-Cloud which serves as a virtualization platform that virtually manages a collection of multiple RAN nodes (O-CU/O-DU), is connected to SMO via the O2 interface. Based on the operational status of multiple RAN nodes (O-CU/O-DU) obtained from O-Cloud through the O2 interface, SMO provides resource allocation guidelines and workload management for resource allocation of the multiple RAN nodes. ) and publish it to O-Cloud through the O2 interface.
  • FIG. 2 schematically shows various functions realized by SMO and/or Non-RT RIC and O-Cloud.
  • SMO mainly implements three functions: FOCOM (Federated O-Cloud Orchestration and Management), NFO (Network Function Orchestrator), and OAM Function.
  • O-Cloud mainly realizes two functions: IMS (Infrastructure Management Services) and DMS (Deployment Management Services).
  • FOCOM manages resources in O-Cloud while receiving services from O-Cloud's IMS through the O2 interface (O2ims).
  • NFO receives services from O-Cloud's DMS through the O2 interface (O2dms), and realizes the cooperative operation of a set of network functions (NFs) through multiple NF Deployments in O-Cloud.
  • NFOs may utilize OAM Functions to access deployed NFs through the O1 interface.
  • the OAM Function is responsible for FCAPS management of O-RAN managed entities such as RAN nodes.
  • the OAM Function in this embodiment monitors O2ims and/or O2dms procedures and provides callbacks to receive data regarding failures and operational status of multiple RAN nodes virtually managed by O-Cloud. It can be a provided functional block.
  • IMS is responsible for managing O-Cloud resources (hardware) and the software used to manage them, and primarily provides services to SMO's FOCOM.
  • DMSs are responsible for managing multiple NF Deployments in O-Cloud, specifically starting, monitoring, terminating, etc., and mainly provide services to NFOs in SMO.
  • FIG. 3 schematically shows the internal configuration and/or functions of SMO and/or Non-RT RIC.
  • SMO or SMO Framework includes Non-RT RIC.
  • Non-RT RIC is internally divided into the Non-RT Framework or Non-RT RIC Framework and rApp.
  • the solid lines in this diagram represent functional blocks and connections defined in O-RAN. Further, the broken lines in this figure represent functional blocks and connections that can be implemented in this embodiment.
  • the areas of the SMO framework excluding Non-RT RIC include O1 Termination, O1 Related Functions, O2 Termination, and O2 Related Functions. , Other SMO Framework Functions are provided.
  • the O1 termination is the termination of the O1 interface in the SMO framework.
  • Near-RT RIC and/or E2 nodes (RAN nodes such as O-CU/O-DU, O-RU, etc.) are connected to the O1 terminal via the O1 interface.
  • O1-related functions that are directly connected to the O1 termination provide various functions related to the O1 interface, Near-RT RIC, E2 node, etc.
  • the O2 termination is the termination of the O2 interface in the SMO framework.
  • O-Cloud is connected to the O2 terminal via the O2 interface.
  • O2-related functions that are directly connected to the O2 terminal provide various functions related to the O2 interface, O-Cloud, etc.
  • Other SMO framework functions provide other functions other than O1-related functions and O2-related functions.
  • Other SMO framework functions are connected via the A2 termination (not shown) and A2 interface (not shown) in the Non-RT RIC.
  • Various functions of the SMO framework such as O1-related functions, O2-related functions, and other SMO framework functions, are connected to the main bus MB, which also extends inside the Non-RT RIC. Each of these functional blocks can exchange data with other functional blocks inside and outside the SMO framework (or inside and outside the Non-RT RIC) via the main bus MB.
  • the Non-RT Framework which is the area of Non-RT RIC excluding rApp, includes A1 Termination, A1 Related Functions, and A2 Termination (not shown).
  • A1 termination is the termination of the A1 interface in the Non-RT framework.
  • Near-RT RIC is connected to the A1 terminal via the A1 interface.
  • A1-related functions that are directly connected to the A1 termination provide various functions related to the A1 interface, Near-RT RIC, etc.
  • the A2 terminal (not shown) is the terminal of the A2 interface (not shown) in the Non-RT framework.
  • the A2 terminal is connected to the SMO framework and other SMO framework functions via the A2 interface.
  • A2-related functions (not shown) that are directly connected to the A2 termination provide various functions related to the A2 interface and other SMO framework functions.
  • R1 termination is the termination of the R1 interface in the Non-RT framework.
  • An rApp running on the Non-RT RIC is connected to the R1 end via the R1 interface.
  • the R1 interface constitutes the rApp API (Application Programming Interface).
  • the R1 service disclosure function provided along with the R1 terminal is a function to disclose data related to services such as the R1 interface and rApp to the main bus MB, etc., and/or a function to disclose data from the main bus MB etc. to the R1 interface, Provides a function to disclose to R1 terminal etc. for services such as rApp.
  • the external terminal is the terminal of various external interfaces (not shown) in the Non-RT framework.
  • the data management/disclosure function provides a function of managing various data on the main bus MB and disclosing it in a manner according to the access authority of each functional block.
  • Artificial intelligence/machine learning workflow functionality is performed using artificial intelligence (AI) and/or machine learning (ML) capabilities implemented in Non-RT RIC and/or Near RT RIC.
  • AI artificial intelligence
  • ML machine learning
  • the policy/conflict management function constitutes an instruction verification unit that verifies instructions (operation guidelines and configuration change instructions) generated by the rApp to outside the SMO.
  • Non-RT RIC framework functions provide other functions in addition to the functions of the various Non-RT frameworks described above.
  • Various functions of the RT framework are connected to the main bus MB, which also extends outside the Non-RT RIC. Each of these functional blocks can exchange data with other functional blocks inside and outside the Non-RT RIC through the main bus MB.
  • FIG. 4 is a functional block diagram schematically showing the radio access network control device 1 according to the present embodiment.
  • the radio access network control device 1 is provided in the SMO framework and/or the Non-RT framework in FIG. 3.
  • This diagram shows some functional blocks in Figure 3 (specifically, R1 service disclosure function, external termination, data management/disclosure function, artificial intelligence/machine learning workflow function, and other Non-RT RIC framework functions). illustration is omitted.
  • the radio access network control device 1 includes an O1/O2 information acquisition section 11, an O1/O2 information provision section 12, an operation guideline generation section 13, a configuration change instruction generation section 14, an instruction verification section 15, and an instruction issuing section. 16.
  • These functional blocks are realized through the cooperation of hardware resources such as the computer's central processing unit (central processing unit), memory, input devices, output devices, and peripheral devices connected to the computer, and the software that is executed using them. Realized. Regardless of the type of computer or installation location, each of the above functional blocks may be realized using the hardware resources of a single computer, or may be realized by combining hardware resources distributed across multiple computers. .
  • part or all of the functional blocks of the radio access network control device 1 may be realized by a processor provided in the SMO and/or Non-RT RIC, or may be realized by a processor provided in the SMO and/or Non-RT RIC. It may also be implemented in a distributed or centralized manner using external computers and processors.
  • the O1 information acquisition unit included in the O1/O2 information acquisition unit 11 acquires O1 information regarding at least one of the Near-RT RIC and the E2 node (RAN node) from the O1 interface.
  • the O1 information acquisition unit is provided in the SMO and/or Non-RT RIC, and acquires O1 information from the Near-RT RIC and/or E2 node through the O1 interface.
  • Examples of the O1 information include various types of control information representing the control status of the Near-RT RIC and operational data measured individually for each E2 node.
  • the operation data of each E2 node is a variety of data that can be detected by a general mobile communication base station, such as communication volume per hour, communication speed, number and type of connected UEs (communication devices), The strength and mode of communication radio waves from the UE, the quality of the channel between the UE and the O-RU, the coverage area and available bandwidth of the communication cell provided by the O-RU, the performance of the E2 node and O-RU hardware, etc.
  • the state etc. are exemplified.
  • the O1 information acquisition section constitutes an operation data acquisition section that acquires operation data measured from RAN nodes.
  • the O1 information acquisition unit in FIG. 4 is schematically shown so as to straddle the inside and outside of the Non-RT framework on the main bus MB.
  • the O1 information acquisition unit may be provided in whole or in part within the SMO framework outside the Non-RT framework.
  • the O1 information acquisition unit is responsible for related functional blocks within SMO, specifically O1 termination, O1 related functions, O1/O2 information provision unit 12 (especially O1 information provision unit), policy/conflict management function (especially It is only necessary to be able to access the instruction verification unit 15), R1 termination, rApp (operation guideline generation unit 13 and/or configuration change instruction generation unit 14), etc., and it does not necessarily need to be directly connected to the main bus MB.
  • these related functional blocks it is preferable to realize some or all of the functions of the O1 information acquisition unit in the most relevant O1-related functions within the SMO framework (outside the Non-RT framework).
  • the O2 information acquisition unit included in the O1/O2 information acquisition unit 11 constitutes a virtualization infrastructure information acquisition unit that acquires O2 information as virtualization infrastructure information regarding O-Cloud from the O2 interface.
  • the O2 information acquisition unit is provided in SMO and/or Non-RT RIC, and acquires O2 information from O-Cloud through the O2 interface.
  • Examples of O2 information include information regarding the O-Cloud configuration and telemetry, and/or failures and operating status of each E2 node (each RAN node) virtually managed by O-Cloud.
  • Examples of the operating status of each E2 node include resource usage and communication load status at each E2 node.
  • FOCOM in SMO may obtain this O2 information from IMS in O-Cloud through the O2ims interface, or OAM Function in SMO may obtain it from O-Cloud through the O2 interface.
  • the O2 information acquisition unit constitutes an operation status acquisition unit that acquires the operation status of the RAN node from O-Cloud, which virtually manages the RAN node.
  • the O2 information acquisition unit in FIG. 4 is schematically shown on the main bus MB so as to straddle the inside and outside of the Non-RT framework.
  • the O2 information acquisition unit may be provided in whole or in part within the SMO framework outside the Non-RT framework.
  • the O2 information acquisition unit is responsible for related functional blocks within SMO, specifically O2 termination, O2 related functions, O1/O2 information provision unit 12 (especially O2 information provision unit), policy/conflict management function (especially It is only necessary to be able to access the instruction verification unit 15), R1 termination, rApp (operation guideline generation unit 13 and/or configuration change instruction generation unit 14), etc., and it does not necessarily need to be directly connected to the main bus MB.
  • these related functional blocks it is preferable to realize some or all of the functions of the O2 information acquisition unit in the most relevant O2-related functions within the SMO framework (outside the Non-RT framework).
  • the O1/O2 information providing unit 12 provides the rApp with O1 information and/or O2 information acquired by the O1/O2 information acquiring unit 11 through the R1 interface in the Non-RT RIC.
  • the O2 information providing unit included in the O1/O2 information providing unit 12 constitutes a virtualization infrastructure information providing unit that provides virtualization infrastructure information (O2 information) to the rApp through the R1 interface, which is an interface with the rApp.
  • the O1/O2 information providing unit 12 in FIG. 4 is schematically shown on the main bus MB within the Non-RT framework. However, the O1/O2 information providing unit 12 may be provided entirely or partially within the Non-RT framework.
  • the O1/O2 information providing unit 12 includes related functional blocks within the SMO, specifically, the O1/O2 information acquisition unit 11, the policy/conflict management function (in particular, the instruction verification unit 15), the R1 termination, and the R1 service. It is only necessary to be able to access the disclosure function (not shown), rApp (operation guideline generation unit 13 and/or configuration change instruction generation unit 14), etc., and it does not necessarily need to be directly connected to the main bus MB. Among these related functional blocks, the most relevant R1 service disclosure function (not shown) in the Non-RT framework realizes some or all of the functions of the O1/O2 information providing unit 12. preferable.
  • the operation guideline generation unit 13 realized by rApp generates information for each RAN node based on the operation status and operation data of each RAN node acquired by the O1/O2 information acquisition unit 11 and provided by the O1/O2 information provision unit 12. Generate operational guidelines for RAN node operation. Among the operation guidelines generated by the operation guideline generation unit 13, those issued to O-Cloud through the O2 interface by the instruction issuing unit 16 (described later) include resources related to resource allocation and/or load management of multiple RAN nodes. Distribution guidelines and/or load management guidelines are illustrated.
  • the Near-RT RIC that receives the operation guidelines and/or traffic control guidelines through the A1 interface controls each RAN node through the E2 interface ( Figure 1) based on the guidelines. For example, if the aforementioned traffic control guidelines are to reduce traffic at a particular RAN node, the Near-RT RIC may direct the UE connected to that RAN node to other available RAN nodes.
  • the RAN node itself and the O-RU connected to it provide traffic restriction processing, such as limiting the communication speed and amount of communication of UEs connected to the RAN node, and restricting new UE connections to the RAN node. Performed for the UE within the communication cell.
  • the operation guideline generation unit 13 generates operation guidelines including the resource allocation guideline, load management guideline, and traffic control guideline described above by using a machine learning model provided by an artificial intelligence/machine learning workflow function (not shown). good.
  • This machine learning model uses the faults, operating statuses, and operating data of multiple RAN nodes that the O2 information acquisition unit (O1/O2 information acquisition unit 11) that constitutes the operating status acquisition unit acquires from O-Cloud through the O2 interface.
  • the O1 information acquisition unit (O1/O2 information acquisition unit 11) constituting the acquisition unit can derive a set of operation guidelines from a set of individual operation data for each RAN node acquired through the O1 interface or the like.
  • a machine learning model that is input with a set of operating status from the O2 information acquisition unit (operation status acquisition unit) and operation data from the O1 information acquisition unit (operation data acquisition unit) associates input and output.
  • resource allocation guidelines and load management guidelines are issued to O-Cloud through the O2 interface, and each RAN node is issued through the A1 interface and O1 interface.
  • Outputs a set of operational guidelines such as traffic control guidelines issued to
  • the machine learning model of this embodiment uses a set of input (operation status) from O-Cloud and input (operation data) from each RAN node to output to O-Cloud (resource allocation guidelines, load management guidelines, etc.) and output to each RAN node (traffic control guidelines, etc.).
  • O-Cloud resource allocation guidelines, load management guidelines, etc.
  • traffic control guidelines, etc. Compared to the simple case where inputs from O-Cloud are individually matched to outputs to O-Cloud, and inputs from each RAN node are individually matched to outputs to each RAN node, the machine learning of this embodiment According to the model, the correlation between input and output of O-Cloud and each RAN node can be considered comprehensively or exhaustively, so operation guidelines for efficiently operating each RAN node can be set for O-Cloud and each RAN node. It can be operated effectively from both sides.
  • the configuration change instruction generation unit 14 realized by rApp generates various O1 information and/or O2 information (for each RAN node mentioned above) acquired by the O1/O2 information acquisition unit 11 and provided by the O1/O2 information provision unit 12. generation of configuration change instructions for configuration changes outside of SMO
  • the configuration change instruction generated by the configuration change instruction generation unit 14 changes the configuration outside of SMO in O-RAN, for example, at least one of the software and/or hardware in O-RU, RAN node, O-Cloud, and Near-RT RIC. This is an instruction to change the section.
  • a configuration change instruction regarding hardware such as an O-RU or a RAN node may include an instruction to execute (or stop) so-called hardware acceleration.
  • Hardware acceleration is specialized or customized for specific processing or applications such as FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), ASIC (Application Specific Integrated Circuit), DSP (Digital Signal Processor), etc.
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • This is a technology that supports general-purpose processors such as CPUs (Central Processing Units) using hardware equipped with circuits. Even complex processing that requires a lot of time and power to be processed by software using a general-purpose processor can be executed quickly and efficiently by a dedicated processor implemented in hardware.
  • the configuration change instruction generation unit 14 may generate the configuration change instruction using a machine learning model provided by an artificial intelligence/machine learning workflow function (not shown).
  • This machine learning model can derive a set of configuration change instructions from a set of various O1 information and/or O2 information that the O1/O2 information acquisition unit 11 has acquired through the O1 interface and/or the O2 interface.
  • a machine learning model into which various sets of O1 information and O2 information from the O1/O2 information acquisition unit 11 are input is trained in advance using exhaustive training data or teacher data that associates inputs and outputs. Based on the learned machine learning, it outputs a set of configuration change instructions that are issued outside the SMO through the O1 interface, O2 interface, A1 interface, etc.
  • This machine learning model associates a set of inputs from outside SMO (O1 information and O2 information) with a set of outputs from outside SMO (configuration change instructions).
  • the Non-RT RIC installed in SMO generates various instructions (especially operation guidelines and configuration change instructions) to RAN nodes outside SMO, O-Cloud, Near-RT RIC, etc. through the execution of rApp. do. These instructions are issued outside the SMO through various interfaces such as the O1 interface, O2 interface, and A1 interface. In traditional SMO, instructions generated by rApp are issued outside SMO almost unchanged, regardless of the target (RAN node, O-Cloud, Near-RT RIC, etc.) or interface (O1 interface, O2 interface, A1 interface, etc.) be done.
  • rApps that execute different tasks or jobs may issue mutually contradictory instructions outside of SMO, and the resources of SMO itself and outside of SMO will be wasted for execution, resolution, coordination, etc. .
  • the radio access network control device 1 particularly the instruction verification unit 15 and instruction issuing unit 16 according to the present embodiment described below, instructions generated by an rApp can be efficiently issued outside of SMO.
  • the instruction verification unit 15 provided in the SMO verifies the instruction to outside the SMO generated by the rApp executed by the Non-RT RIC in the SMO. Specifically, the instruction verification unit 15 uses the operation guidelines related to the operation of RAN nodes generated by the operation guideline generation unit 13 in rApp, and the configuration change instructions regarding configuration changes outside of SMO generated by the configuration change instruction generation unit 14 in rApp. We will also verify this. For example, the instruction verification unit 15 performs at least one of a prioritization process, an issuance scheduling process, a cancellation process, and a change process on each instruction (each operation guideline and each configuration change instruction) generated by the rApp.
  • the prioritization process is a process of assigning priorities to multiple instructions generated by the rApp.
  • the issuance scheduling process is a process of specifying the issuance timing by the instruction issuing unit 16 for each instruction generated by the rApp.
  • Cancellation processing is the process of canceling instructions generated by an rApp that contradict or conflict with other instructions, or instructions that may deteriorate O-RAN performance or efficiency.
  • the modification process is a process of making various changes to the instructions generated by the rApp, which would otherwise be subject to cancellation. Note that the rApp may perform change processing on behalf of the instruction verification section 15 with respect to an instruction that the instruction verification section 15 has identified as subject to cancellation processing.
  • the instruction verification unit 15 is provided at any location within the SMO so that it can access instructions (operation guidelines and configuration change instructions) generated by the rApp. However, in order to efficiently access substantially all instructions generated by the rApp, it is preferable that at least a part of the instruction verification unit 15 be provided in the Non-RT RIC, and the R1 interface that is the interface with the rApp. It is even more preferable that it be attached to the For example, it is preferable to provide at least a part of the instruction verification unit 15 at the R1 terminal, which is the terminal of the R1 interface that constitutes the API of the rApp, or at the R1 service disclosure function (not shown) provided in conjunction therewith.
  • the instruction issuing unit 16 provided in the SMO issues the rApp instruction verified by the instruction verification unit 15 to outside the SMO. Specifically, the instruction issuing unit 16 issues operational guidelines related to the operation of RAN nodes generated by the operational guidelines generating unit 13 in the rApp, and configuration change instructions regarding configuration changes outside of SMO generated by the configuration change instruction generating unit 14 in the rApp. Among them, those verified by the instruction verification unit 15 are issued outside the SMO.
  • the instruction issuing unit 16 issues the operation guidelines verified by the instruction verification unit 15 to at least one of the RAN node, O-Cloud, and Near-RT RIC that virtually manage the RAN node. Specifically, the instruction issuing unit 16 issues operational guidelines that have been verified by the instruction verification unit 15 through the A1 interface to Near-RT RIC, and issues the operation guidelines verified by the instruction verification unit 15 through the O2 interface to O-Cloud. The instruction verification unit 15 issues the operation guidelines verified by the instruction verification unit 15 through the O1 interface or Open Fronthaul M-Plane to the RAN nodes and O-RU.
  • the instruction issuing unit 16 issues a configuration change instruction verified by the instruction verification unit 15 to at least one of the RAN node, O-Cloud that virtually manages the RAN node, and Near-RT RIC. .
  • the instruction issuing unit 16 issues a configuration change instruction verified by the instruction verification unit 15 to the O-Cloud through the O2 interface, and sends the configuration change instruction to the RAN node, O-RU, Near-RT RIC, etc.
  • a configuration change instruction verified by the instruction verification unit 15 is issued through the O1 interface, Open Fronthaul M-Plane, A1 interface, etc.
  • the instruction issuing unit 16 issues the instructions to outside the SMO according to the assigned priority for the instructions that have been subjected to the prioritization process by the instruction verification unit 15. For this reason, important instructions with high priority, urgency, frequency of application, degree of impact, etc. are issued to outside SMO on a priority basis (note that instructions with high frequency of application and degree of impact require careful verification). (The priority may be lowered conversely.) Further, the instruction issuing unit 16 issues the instruction outside the SMO according to the specified schedule and/or issuance timing for the instruction that has been subjected to the issue scheduling process by the instruction verification unit 15. In this way, the performance and efficiency of O-RAN can be improved by appropriately determining the order and timing of issuing rApp instructions according to the O-RAN situation (especially outside of SMO).
  • the instruction issuing unit 16 does not issue the instruction that has been canceled by the instruction verification unit 15 to outside the SMO.
  • the instruction issuing unit 16 issues the changed instruction to outside the SMO according to the priority and schedule for the instruction that has undergone the modification process by the instruction verification unit 15 and/or rApp. For this reason, among the instructions generated by rApp, instructions that contradict or conflict with other instructions, or instructions that may deteriorate O-RAN performance or efficiency, are effectively prevented from being issued outside of SMO. can be prevented.
  • the instruction issuing unit 16 is installed at any location within the SMO so that it can access the instruction verification unit 15 from which the verification results of rApp instructions can be obtained, and the A1 interface, O1 interface, and O2 interface, which are the locations for issuing instructions outside of the SMO. established in However, in order to quickly issue instructions to outside of SMO, it is recommended that at least a part of the instruction issuing unit 16 be attached to at least one of the A1 interface, O1 interface, and O2 interface, which are interfaces with outside of SMO. preferable. For example, in the instruction issuing section 16, it is preferable to provide a function related to issuing operation guidelines etc.
  • the function related to issuing configuration change instructions etc. through the O1 interface is provided in the O1 terminal, which is the terminal of the O1 interface, or in the O1-related functions provided in conjunction therewith. It is preferable that a function related to issuing configuration change instructions, etc., be provided at the O2 terminal, which is the terminal of the O2 interface, or an O2-related function provided incidentally thereto.
  • the instruction issuing unit 16 provides various interfaces (A1 interface, O1 interface, O2 issue various instructions (operation guidelines, configuration change instructions, etc.) generated by rApp. Therefore, it is efficient to distribute and implement the related functions of the instruction issuing unit 16 in each interface that is a place for issuing instructions outside the SMO. Similarly, the related functions of the instruction verification unit 15 can be distributed and implemented in each interface (A1 interface, O1 interface, O2 interface, etc.), so that the policy / Conflict management functions can be optimized for each interface where instructions are issued outside of SMO.
  • the function of verifying operating guidelines for Near-RT RIC generated by the operating guideline generation unit 13 of the instruction verification unit 15 is applied to the A1 terminal or A1 interface.
  • a function is provided in the A1 terminal and A1 related functions to issue an operation guideline verified through the A1 interface to the Near-RT RIC of the instruction issuing unit 16.
  • the O1 interface which is mainly responsible for issuing configuration change instructions to RAN nodes
  • the function of verifying the configuration change instructions for RAN nodes generated by the configuration change instruction generation section 14 of the instruction verification section 15 is applied to the O1 terminal or O1 interface.
  • a function of issuing a configuration change instruction verified through the O1 interface to the RAN node of the instruction issuing unit 16 is provided in the O1 terminal and O1 related functions.
  • the O2 interface which is mainly responsible for issuing configuration change instructions to O-Cloud
  • the function of verifying the configuration change instruction to O-Cloud generated by the configuration change instruction generation unit 14 of the instruction verification unit 15 is added to the O2 terminal and A function of issuing a configuration change instruction verified through the O2 interface to O-Cloud in the instruction issuing unit 16 is provided in the O2 terminal and O2 related functions.
  • the above instruction verification unit 15 and/or instruction issuing unit 16 are provided by the artificial intelligence/machine learning workflow function (Fig. 3) in SMO, similar to the operation guideline generation unit 13 and/or configuration change instruction generation unit 14.
  • Machine learning models may be utilized to verify and/or publish instructions for the rApp.
  • Near-RT RIC is also provided with a function similar to the artificial intelligence/machine learning workflow function, some functions of the instruction verification unit 15 and/or instruction issuing unit 16 may be provided in Near-RT RIC.
  • rApp instructions can be verified and/or issued more efficiently based on the information available there (e.g., actions initiated by the Near-RT RIC for each RAN node) and machine learning models.
  • the various data generated by the machine learning model in Near-RT RIC can be provided or aggregated to the instruction verification unit 15 and/or instruction issuing unit 16 in the SMO through the O1 interface or A1 interface.
  • the rApp instructions may be verified and/or issued automatically.
  • the instruction verification unit 15 provided in the SMO centrally verifies the instruction. Therefore, among the instructions generated by the rApp, those verified by the instruction verification unit 15 are efficiently issued outside the SMO by the instruction issuing unit 16.
  • each device and each method described in the embodiments can be realized by hardware resources or software resources, or by cooperation of hardware resources and software resources.
  • hardware resources for example, a processor, ROM, RAM, and various integrated circuits can be used.
  • software resources for example, programs such as operating systems and applications can be used.
  • the present disclosure may be expressed as the following items.
  • Item 1 The instruction verification unit provided in the SMO (Service Management and Orchestration) of O-RAN verifies the instructions outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO. to verify and issuing the verified instruction outside the SMO by an instruction issuing unit provided in the SMO; A radio access network controller comprising at least one processor executing.
  • Item 2 The instruction verification unit verifies operation guidelines regarding the operation of a radio access network node generated by the rApp, The instruction issuing unit is verified against at least one of the radio access network node, a virtualization infrastructure that virtually manages the radio access network node, and a Near-RT RIC (Near-Real Time RAN Intelligent Controller).
  • the radio access network control device according to item 1.
  • Item 3 The instruction verification unit verifies a configuration change instruction regarding a configuration change outside of the SMO generated by the rApp, The instruction issuing unit has been verified against at least one of a radio access network node, a virtualization infrastructure that virtually manages the radio access network node, and a Near-RT RIC (Near-Real Time RAN Intelligent Controller). issuing the configuration change instruction; The radio access network control device according to item 1 or 2.
  • Item 4 The instruction verification unit verifies a configuration change instruction related to a configuration change outside of the SMO generated by the rApp together with the operation guideline, The instruction issuing unit issues the verified operation guideline and/or the configuration change instruction to at least one of the radio access network node, the virtualization infrastructure, and the Near-RT RIC.
  • the radio access network control device according to item 2.
  • Item 5 The wireless access according to any one of items 1 to 4, wherein the instruction verification unit performs at least one of a prioritization process, an issuance scheduling process, a cancellation process, and a change process on the instruction generated by the rApp. Network control equipment.
  • Item 6 6.
  • the radio access network control device according to any one of items 1 to 5, wherein at least a part of the instruction verification unit is provided in the Non-RT RIC.
  • the at least one processor includes: acquiring virtualization infrastructure information from a virtualization infrastructure that virtually manages radio access network nodes by a virtualization infrastructure information acquisition unit; providing the virtualization infrastructure information to the rApp by a virtualization infrastructure information providing unit through an R1 interface that is an interface with the rApp; Run The instruction verification unit verifies the instructions generated by the rApp based on the virtualization infrastructure information.
  • the radio access network control device according to any one of items 1 to 8.
  • the at least one processor includes: obtaining the operating status of the radio access network node from a virtualization platform that virtually manages the radio access network node by the operating status acquisition unit; acquiring operational data measured from the radio access network node by an operational data acquisition unit; Generating an operation guideline regarding the operation of the radio access network node based on the operation status and the operation data by the operation guideline generation unit by the rApp; Run The instruction verification unit verifies the operation guideline.
  • the radio access network control device according to any one of items 1 to 9.
  • Item 11 In the O-RAN SMO (Service Management and Orchestration), verifying instructions to outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO, In the SMO, issuing the verified instruction outside the SMO;
  • a wireless access network control method comprising: Item 12: In the O-RAN SMO (Service Management and Orchestration), verifying instructions to outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO, In the SMO, issuing the verified instruction outside the SMO;
  • a storage medium that stores a radio access network control program that causes a computer to execute.
  • This disclosure relates to verification of rApp instructions in SMO of O-RAN.
  • Radio access network control device 11 O1/O2 information acquisition unit, 12 O1/O2 information provision unit, 13 Operation guideline generation unit, 14 Configuration change instruction generation unit, 15 Instruction verification unit, 16 Instruction issuing unit.

Abstract

This wireless access network control device comprises at least one processor that: verifies, by using an indication verification unit provided to the service management and orchestration (SMO) of an open radio access network (O-RAN), an indication to outside of the SMO, the indication being generated by a rApp that is executed by a non-real time RAN intelligent controller (Non-RT RIC) in the SMO; and issues the verified indication to outside of the SMO by using an indication issuance unit provided to the SMO. The indication verification unit verifies an operation guideline relating to operation of a wireless access network node generated by the rApp, and the indication issuance unit issues the verified operation guideline to at least one of the wireless access network node, a virtualization infrastructure that virtually manages the wireless access network node, and a near-real time RAN intelligent controller (Near-RT RIC) (fig. 4).

Description

SMOにおけるrApp指示の検証Verification of rApp instructions in SMO
 本開示は、O-RANのSMOにおけるrApp指示の検証に関する。 This disclosure relates to verification of rApp instructions in SMO of O-RAN.
 移動通信システムまたはモバイル通信システムにおける無線アクセスネットワーク(RAN: Radio Access Network)のいわゆるオープン化を目的として、「Open RAN」、「O-RAN」、「vRAN」等の検討が進められている。本明細書では、このような様々な「オープンな無線アクセスネットワーク」を包括的に表す用語として「O-RAN」を用いる。従って、本明細書における「O-RAN」は、O-RAN Allianceが策定する同名の規格や仕様に限定的に解釈されるものではない。 "Open RAN," "O-RAN," "vRAN," etc. are being considered with the aim of making the radio access network (RAN: Radio Access Network) open in mobile communication systems or mobile communication systems. In this specification, the term "O-RAN" is used to comprehensively represent various such "open radio access networks." Therefore, "O-RAN" in this specification is not interpreted to be limited to the standards and specifications of the same name developed by the O-RAN Alliance.
 O-RANの制御部は、rAppと呼ばれるアプリケーションソフトウェアを実行する制御周期が比較的長い(例えば1秒以上の)Non-RT RIC(Non-Real Time RAN Intelligent Controller)と、xAppと呼ばれるアプリケーションソフトウェアを実行する制御周期が比較的短い(例えば1秒未満の)Near-RT RIC(Near-Real Time RAN Intelligent Controller)を備える。また、O-RANでは、複数の無線アクセスネットワークノード(RANノード)の集合を仮想的に管理するO-Cloudとも呼ばれる仮想化基盤(以下では便宜的にO-Cloudともいう)が提供される。 The O-RAN control unit uses a Non-RT RIC (Non-Real Time RAN Intelligent Controller) that executes application software called rApp, which has a relatively long control cycle (for example, 1 second or more), and application software called xApp. Equipped with a Near-RT RIC (Near-Real Time RAN Intelligent Controller) that executes a relatively short control cycle (for example, less than 1 second). Additionally, O-RAN provides a virtualization platform also called O-Cloud (hereinafter also referred to as O-Cloud for convenience) that virtually manages a collection of multiple radio access network nodes (RAN nodes).
特開2021-83058号公報JP 2021-83058 Publication
 Non-RT RICはSMO(Service Management and Orchestration)に設けられ、rAppの実行を通じてSMO外のRANノード、O-Cloud、Near-RT RIC等への各種の指示を生成する。これらの指示は、O1インターフェース、O2インターフェース、A1インターフェース等の各種のインターフェースを通じてSMO外に発行される。従来のSMOでは、rAppが生成した指示が、対象(RANノード、O-Cloud、Near-RT RIC等)やインターフェース(O1インターフェース、O2インターフェース、A1インターフェース等)に関わらず、ほとんどそのままSMO外に発行される。このため、異なるタスクやジョブを実行するrAppが互いに矛盾する指示をSMO外に発行してしまう恐れがあり、その実行、解決、調整等のためにSMO自体やSMO外のリソースが浪費されてしまう。 Non-RT RIC is installed in SMO (Service Management and Orchestration) and generates various instructions to RAN nodes outside SMO, O-Cloud, Near-RT RIC, etc. through the execution of rApp. These instructions are issued outside the SMO through various interfaces such as the O1 interface, O2 interface, and A1 interface. In traditional SMO, instructions generated by rApp are issued outside SMO almost unchanged, regardless of the target (RAN node, O-Cloud, Near-RT RIC, etc.) or interface (O1 interface, O2 interface, A1 interface, etc.) be done. As a result, rApps that execute different tasks or jobs may issue mutually contradictory instructions outside of SMO, and the resources of SMO itself and outside of SMO will be wasted for execution, resolution, coordination, etc. .
 本開示はこうした状況に鑑みてなされたものであり、rAppが生成する指示を効率的にSMO外に発行できる無線アクセスネットワーク制御装置等を提供することを目的とする。 The present disclosure has been made in view of these circumstances, and aims to provide a radio access network control device, etc. that can efficiently issue instructions generated by an rApp outside of SMO.
 上記課題を解決するために、本開示のある態様の無線アクセスネットワーク制御装置は、O-RANのSMO(Service Management and Orchestration)に設けられる指示検証部によって、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、SMOに設けられる指示発行部によって、検証された指示を当該SMO外へ発行することと、を実行する少なくとも一つのプロセッサを備える。 In order to solve the above problems, a radio access network control device according to an embodiment of the present disclosure uses an instruction verification unit provided in an SMO (Service Management and Orchestration) of O-RAN to perform non-RT RIC (Non-RT Verifying the instructions to outside the SMO generated by the rApp executed by the Real Time RAN Intelligent Controller) and issuing the verified instructions to the outside of the SMO by the instruction issuing unit provided in the SMO. at least one processor for executing.
 この態様では、SMOに設けられる指示発行部がrAppの指示をSMO外に発行する前に、SMOに設けられる指示検証部が当該指示を検証する。このため、rAppが生成する指示のうち指示検証部によって検証されたものが、指示発行部によって効率的にSMO外に発行される。 In this aspect, before the instruction issuing unit provided in the SMO issues an rApp instruction outside of the SMO, the instruction verification unit provided in the SMO verifies the instruction. Therefore, among the instructions generated by the rApp, those verified by the instruction verification section are efficiently issued outside the SMO by the instruction issuing section.
 本開示の別の態様は、無線アクセスネットワーク制御方法である。この方法は、O-RANのSMO(Service Management and Orchestration)において、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、SMOにおいて、検証された指示を当該SMO外へ発行することと、を備える。 Another aspect of the present disclosure is a radio access network control method. This method verifies, in the O-RAN SMO (Service Management and Orchestration), the instructions generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO to outside the SMO. and issuing the verified instructions in the SMO to outside the SMO.
 本開示の更に別の態様は、記憶媒体である。この記憶媒体は、O-RANのSMO(Service Management and Orchestration)において、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、SMOにおいて、検証された指示を当該SMO外へ発行することと、をコンピュータに実行させる無線アクセスネットワーク制御プログラムを記憶している。 Yet another aspect of the present disclosure is a storage medium. This storage medium verifies instructions outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO in the O-RAN SMO (Service Management and Orchestration). The wireless access network control program stores a radio access network control program that causes the computer to perform the following steps: and in an SMO, issue a verified instruction outside the SMO.
 なお、以上の構成要素の任意の組合せや、これらの表現を方法、装置、システム、記録媒体、コンピュータプログラム等に変換したものも、本開示に包含される。 Note that the present disclosure also includes any combination of the above constituent elements and the conversion of these expressions into methods, devices, systems, recording media, computer programs, etc.
 本開示によれば、rAppが生成する指示を効率的にSMO外に発行できる。 According to the present disclosure, instructions generated by an rApp can be efficiently issued outside of SMO.
無線アクセスネットワーク制御装置の概要を模式的に示す。An overview of a radio access network control device is schematically shown. SMOおよび/またはNon-RT RICとO-Cloudで実現される各種の機能を模式的に示す。Schematically shows various functions realized by SMO and/or Non-RT RIC and O-Cloud. SMOおよび/またはNon-RT RICの内部の構成および/または機能を模式的に示す。Schematically shows the internal configuration and/or functions of SMO and/or Non-RT RIC. 無線アクセスネットワーク制御装置を模式的に示す機能ブロック図である。FIG. 2 is a functional block diagram schematically showing a radio access network control device.
 以下では、O-RAN Allianceが策定する規格や仕様である「O-RAN」に沿って本実施形態を説明する。このため、本実施形態では「O-RAN」で規定された公知の用語を便宜的に用いるが、本開示に係る技術は「Open RAN」や「vRAN」等の他の既存の無線アクセスネットワークや、将来に開発されうる同種の無線アクセスネットワークにも適用できる。 In the following, this embodiment will be described in accordance with "O-RAN", which is the standard and specification established by O-RAN Alliance. Therefore, in this embodiment, the well-known term defined by "O-RAN" is used for convenience, but the technology related to this disclosure is applicable to other existing radio access networks such as "Open RAN" and "vRAN". , it can also be applied to similar types of radio access networks that may be developed in the future.
 図1は、本実施形態に係る無線アクセスネットワーク制御装置の概要を模式的に示す。この無線アクセスネットワーク制御装置は、O-RANに準拠した無線アクセスネットワークを制御するRAN制御装置である。SMO(Service Management and Orchestration)は、RAN制御装置全体またはO-RAN全体を制御して各部を協調動作させる。SMOは、全体制御を担う全体制御プロセッサとして機能するNon-RT RIC(Non-Real Time RAN Intelligent Controller)を備える。制御周期が比較的長い(例えば1秒以上の)Non-RT RICは、各RANノード(後述するO-CUおよび/またはO-DU)の稼働に関する指針、ポリシー、ガイダンスや、各RANノード、O-Cloud、Near-RT RIC(Near-Real Time RAN Intelligent Controller)等のSMO外の構成変更に関する構成変更指示等を発行する。具体的には、Non-RT RICは、rAppと呼ばれるアプリケーションソフトウェアを実行して、A1インターフェースを通じてNear-RT RICに対する各RANノードの稼働指針を発行し、O1インターフェース、O2インターフェース等を通じてSMO外の構成変更指示を発行する。制御周期が比較的短い(例えば1秒未満の)Near-RT RICは、xAppと呼ばれるアプリケーションソフトウェアを実行して、E2インターフェースを通じて各RANノード(O-CU/O-DU)自体や当該各RANノードに接続されている無線ユニット(O-RU)における汎用ハードウェア等を制御する。 FIG. 1 schematically shows an overview of a radio access network control device according to this embodiment. This radio access network control device is a RAN control device that controls a radio access network compliant with O-RAN. SMO (Service Management and Orchestration) controls the entire RAN control device or O-RAN and causes each part to work together. SMO is equipped with a Non-RT RIC (Non-Real Time RAN Intelligent Controller) that functions as an overall control processor responsible for overall control. Non-RT RIC, which has a relatively long control cycle (for example, 1 second or more), provides guidelines, policies, and guidance regarding the operation of each RAN node (O-CU and/or O-DU, described later), and - Issue configuration change instructions regarding configuration changes outside of SMO, such as Cloud and Near-RT RIC (Near-Real Time RAN Intelligent Controller). Specifically, the Non-RT RIC runs an application software called rApp to issue operational guidelines for each RAN node to the Near-RT RIC through the A1 interface, and to issue configurations outside of SMO through the O1 interface, O2 interface, etc. Issue change orders. Near-RT RIC, which has a relatively short control cycle (for example, less than 1 second), runs application software called xApp and controls each RAN node (O-CU/O-DU) itself and each RAN node through the E2 interface. Controls general-purpose hardware, etc. in the wireless unit (O-RU) connected to the
 図示のRANノードは、O-RANに準拠した集約ユニット(CU: Central Unit)であるO-CU、および/または、O-RANに準拠した分散ユニット(DU: Distributed Unit)であるO-DUを備える。O-CUおよびO-DUは、いずれもO-RANにおけるベースバンド処理を担うが、O-CUは不図示のコアネットワーク側に設けられ、O-DUはO-RANに準拠した無線ユニット(RU: Radio Unit)であるO-RU側に設けられる。O-CUは、制御プレーン(CP: Control Plane)を構成するO-CU-CPと、ユーザプレーン(UP: User Plane)を構成するO-CU-UPに分かれていてもよい。なお、O-CUおよびO-DUは、一つのベースバンド処理ユニットとして一体的に構成されてもよい。また、RANノードとして、O-RANおよび第4世代移動通信システム(4G)に準拠する基地局としてのO-eNBが設けられてもよい。各RANノード(O-CU/O-DU)には一または複数のO-RUが接続されており、当該各RANノードを介してNear-RT RICによって制御される。各O-RUが提供する通信セル内の通信機(UE: User Equipment)は当該各O-RUに接続可能であり、各RANノード(O-CU/O-DU)を介して不図示のコアネットワークとモバイル通信を行える。 The illustrated RAN nodes include O-CU, which is an O-RAN-compliant central unit (CU), and/or O-DU, which is an O-RAN-compliant distributed unit (DU). Be prepared. Both O-CU and O-DU are responsible for baseband processing in O-RAN, but O-CU is provided on the core network side (not shown), and O-DU is an O-RAN-compliant radio unit (RU : Radio Unit) is installed on the O-RU side. The O-CU may be divided into O-CU-CP, which constitutes a control plane (CP), and O-CU-UP, which constitutes a user plane (UP). Note that the O-CU and O-DU may be integrally configured as one baseband processing unit. Further, as a RAN node, an O-eNB as a base station compliant with O-RAN and a fourth generation mobile communication system (4G) may be provided. One or more O-RUs are connected to each RAN node (O-CU/O-DU), and are controlled by the Near-RT RIC via each RAN node. Communication equipment (UE: User Equipment) in the communication cell provided by each O-RU can be connected to each O-RU, and a core (not shown) can be connected via each RAN node (O-CU/O-DU). Can perform network and mobile communication.
 各RANノード(O-CU/O-DU)およびNear-RT RICは、O1インターフェースを通じて各RANノード、各O-RU、各UEの稼働データ等を、いわゆるFCAPS(Fault, Configuration, Accounting, Performance, Security)のためにSMOに提供する。SMOは、O1インターフェースを通じて取得した稼働データに基づいて、Non-RT RICがA1インターフェースを通じてNear-RT RICに対して発行する各RANノードの稼働指針や、Non-RT RICがO1インターフェース、O2インターフェース等を通じて発行するSMO外の構成変更指示を必要に応じて更新する。なお、O1インターフェースや他のインターフェース(Open Fronthaul M-Plane等)によって、O-RUがSMOとFCAPSのために接続されていてもよい。 Each RAN node (O-CU/O-DU) and Near-RT RIC transmits the operating data of each RAN node, each O-RU, and each UE through the O1 interface, so-called FCAPS (Fault, Configuration, Accounting, Performance, Security) provided to SMO. Based on the operation data obtained through the O1 interface, the SMO provides operational guidelines for each RAN node that the Non-RT RIC issues to the Near-RT RIC through the A1 interface, and the Non-RT RIC issues information on the O1 interface, O2 interface, etc. Update configuration change instructions outside of SMO issued through SMO as necessary. Note that the O-RU may be connected for SMO and FCAPS through the O1 interface or other interfaces (such as Open Fronthaul M-Plane).
 複数のRANノード(O-CU/O-DU)の集合を仮想的に管理する仮想化基盤としてのO-Cloudは、O2インターフェースによってSMOと接続されている。SMOは、O2インターフェースを通じてO-Cloudから取得した複数のRANノード(O-CU/O-DU)の稼働状況に基づいて、当該複数のRANノードのリソース配分に関するリソース配分指針や負荷管理(workload management)に関する負荷管理指針を生成し、O2インターフェースを通じてO-Cloudに対して発行する。 O-Cloud, which serves as a virtualization platform that virtually manages a collection of multiple RAN nodes (O-CU/O-DU), is connected to SMO via the O2 interface. Based on the operational status of multiple RAN nodes (O-CU/O-DU) obtained from O-Cloud through the O2 interface, SMO provides resource allocation guidelines and workload management for resource allocation of the multiple RAN nodes. ) and publish it to O-Cloud through the O2 interface.
 図2は、SMOおよび/またはNon-RT RICとO-Cloudで実現される各種の機能を模式的に示す。SMOでは、FOCOM(Federated O-Cloud Orchestration and Management)、NFO(Network Function Orchestrator)、OAM Functionの主に三つの機能が実現される。O-Cloudでは、IMS(Infrastructure Management Services)、DMS(Deployment Management Services)の主に二つの機能が実現される。 Figure 2 schematically shows various functions realized by SMO and/or Non-RT RIC and O-Cloud. SMO mainly implements three functions: FOCOM (Federated O-Cloud Orchestration and Management), NFO (Network Function Orchestrator), and OAM Function. O-Cloud mainly realizes two functions: IMS (Infrastructure Management Services) and DMS (Deployment Management Services).
 FOCOMは、O2インターフェース(O2ims)を通じてO-CloudのIMSからサービスの提供を受けながら、O-Cloudにおけるリソースを管理する。NFOは、O2インターフェース(O2dms)を通じてO-CloudのDMSからサービスの提供を受けながら、ネットワーク機能(NF: Network Function)の集合の協調動作をO-Cloudにおける複数のNF Deploymentによって実現する。NFOは、展開済のNFにO1インターフェースを通じてアクセスするためにOAM Functionを利用してもよい。OAM Functionは、RANノード等のO-RAN管理エンティティ(O-RAN managed entity)のFCAPS管理を担う。本実施形態におけるOAM Functionは、O2imsおよび/またはO2dmsの手続または手順をモニタすることで、O-Cloudが仮想的に管理する複数のRANノードの障害や稼働状況に関するデータを受け取るためのコールバックが提供される機能ブロックとなりうる。IMSは、O-Cloudのリソース(ハードウェア)や、それらを管理するために使用されるソフトウェアの管理を担い、主にSMOのFOCOMに対してサービスを提供する。一または複数のDMSは、O-Cloudにおける複数のNF Deploymentの管理、具体的には開始、監視、終了等を担い、主にSMOのNFOに対してサービスを提供する。 FOCOM manages resources in O-Cloud while receiving services from O-Cloud's IMS through the O2 interface (O2ims). NFO receives services from O-Cloud's DMS through the O2 interface (O2dms), and realizes the cooperative operation of a set of network functions (NFs) through multiple NF Deployments in O-Cloud. NFOs may utilize OAM Functions to access deployed NFs through the O1 interface. The OAM Function is responsible for FCAPS management of O-RAN managed entities such as RAN nodes. The OAM Function in this embodiment monitors O2ims and/or O2dms procedures and provides callbacks to receive data regarding failures and operational status of multiple RAN nodes virtually managed by O-Cloud. It can be a provided functional block. IMS is responsible for managing O-Cloud resources (hardware) and the software used to manage them, and primarily provides services to SMO's FOCOM. One or more DMSs are responsible for managing multiple NF Deployments in O-Cloud, specifically starting, monitoring, terminating, etc., and mainly provide services to NFOs in SMO.
 図3は、SMOおよび/またはNon-RT RICの内部の構成および/または機能を模式的に示す。SMOまたはSMOフレームワーク(SMO Framework)は、Non-RT RICを含む。Non-RT RICの内部は、Non-RTフレームワーク(Non-RT Framework)またはNon-RT RICフレームワーク(Non-RT RIC Framework)とrAppに分かれている。本図における実線は、O-RANで定義された機能ブロックや結線を表す。また、本図における破線は、本実施形態で実装可能な機能ブロックや結線を表す。 FIG. 3 schematically shows the internal configuration and/or functions of SMO and/or Non-RT RIC. SMO or SMO Framework includes Non-RT RIC. Non-RT RIC is internally divided into the Non-RT Framework or Non-RT RIC Framework and rApp. The solid lines in this diagram represent functional blocks and connections defined in O-RAN. Further, the broken lines in this figure represent functional blocks and connections that can be implemented in this embodiment.
 SMOフレームワークのうちNon-RT RICを除く領域には、O1終端(O1 Termination)と、O1関連機能(O1 Related Functions)と、O2終端(O2 Termination)と、O2関連機能(O2 Related Functions)と、他SMOフレームワーク機能(Other SMO Framework Functions)が設けられる。O1終端は、SMOフレームワークにおけるO1インターフェースの終端である。図1にも示されるように、O1終端にはO1インターフェースを介して、Near-RT RICおよび/またはE2ノード(O-CU/O-DU等のRANノードやO-RU等)が接続される。O1終端と直接的に接続されるO1関連機能は、O1インターフェース、Near-RT RIC、E2ノード等に関連する各種の機能を提供する。O2終端は、SMOフレームワークにおけるO2インターフェースの終端である。図1にも示されるように、O2終端にはO2インターフェースを介してO-Cloudが接続される。O2終端と直接的に接続されるO2関連機能は、O2インターフェース、O-Cloud等に関連する各種の機能を提供する。他SMOフレームワーク機能は、O1関連機能およびO2関連機能以外の他の機能を提供する。他SMOフレームワーク機能は、Non-RT RICにおけるA2終端(不図示)とA2インターフェース(不図示)を介して接続される。O1関連機能、O2関連機能、他SMOフレームワーク機能等のSMOフレームワークの各種の機能は、Non-RT RICの内部にも延びるメインバスMBに接続される。これらの各機能ブロックは、メインバスMBを通じてSMOフレームワーク内外(あるいはNon-RT RIC内外)の他の機能ブロックとデータを交換できる。 The areas of the SMO framework excluding Non-RT RIC include O1 Termination, O1 Related Functions, O2 Termination, and O2 Related Functions. , Other SMO Framework Functions are provided. The O1 termination is the termination of the O1 interface in the SMO framework. As shown in Figure 1, Near-RT RIC and/or E2 nodes (RAN nodes such as O-CU/O-DU, O-RU, etc.) are connected to the O1 terminal via the O1 interface. . O1-related functions that are directly connected to the O1 termination provide various functions related to the O1 interface, Near-RT RIC, E2 node, etc. The O2 termination is the termination of the O2 interface in the SMO framework. As shown in Figure 1, O-Cloud is connected to the O2 terminal via the O2 interface. O2-related functions that are directly connected to the O2 terminal provide various functions related to the O2 interface, O-Cloud, etc. Other SMO framework functions provide other functions other than O1-related functions and O2-related functions. Other SMO framework functions are connected via the A2 termination (not shown) and A2 interface (not shown) in the Non-RT RIC. Various functions of the SMO framework, such as O1-related functions, O2-related functions, and other SMO framework functions, are connected to the main bus MB, which also extends inside the Non-RT RIC. Each of these functional blocks can exchange data with other functional blocks inside and outside the SMO framework (or inside and outside the Non-RT RIC) via the main bus MB.
 Non-RT RICのうちrAppを除く領域であるNon-RTフレームワーク(Non-RT Framework)には、A1終端(A1 Termination)と、A1関連機能(A1 Related Functions)と、不図示のA2終端(A2 Termination)と、不図示のA2関連機能(A2 Related Functions)と、R1終端(R1 Termination)と、R1サービス開示機能(R1 Service Exposure Functions)と、外部終端(External Terminations)と、データ管理/開示機能(Data Management & Exposure Functions)と、人工知能/機械学習ワークフロー機能(AI/ML Workflow Functions)と、ポリシー/コンフリクト管理機能(Policy & Conflict Manager)と、他Non-RT RICフレームワーク機能(Other Non-RT RIC Framework Functions)が設けられる。 The Non-RT Framework, which is the area of Non-RT RIC excluding rApp, includes A1 Termination, A1 Related Functions, and A2 Termination (not shown). A2 Termination), A2 Related Functions (not shown), R1 Termination, R1 Service Exposure Functions, External Terminations, and data management/disclosure functions (Data Management & Exposure Functions), artificial intelligence/machine learning workflow functions (AI/ML Workflow Functions), policy/conflict management functions (Policy & Conflict Manager), and other Non-RT RIC framework functions (Other Non -RT RIC Framework Functions).
 A1終端は、Non-RTフレームワークにおけるA1インターフェースの終端である。図1にも示されるように、A1終端にはA1インターフェースを介してNear-RT RICが接続される。A1終端と直接的に接続されるA1関連機能は、A1インターフェース、Near-RT RIC等に関連する各種の機能を提供する。不図示のA2終端は、Non-RTフレームワークにおける不図示のA2インターフェースの終端である。A2終端にはA2インターフェースを介してSMOフレームワークの他SMOフレームワーク機能が接続される。A2終端と直接的に接続される不図示のA2関連機能は、A2インターフェース、他SMOフレームワーク機能等に関連する各種の機能を提供する。 A1 termination is the termination of the A1 interface in the Non-RT framework. As shown in Figure 1, Near-RT RIC is connected to the A1 terminal via the A1 interface. A1-related functions that are directly connected to the A1 termination provide various functions related to the A1 interface, Near-RT RIC, etc. The A2 terminal (not shown) is the terminal of the A2 interface (not shown) in the Non-RT framework. The A2 terminal is connected to the SMO framework and other SMO framework functions via the A2 interface. A2-related functions (not shown) that are directly connected to the A2 termination provide various functions related to the A2 interface and other SMO framework functions.
 R1終端は、Non-RTフレームワークにおけるR1インターフェースの終端である。R1終端にはR1インターフェースを介してNon-RT RIC上で実行されるrAppが接続される。つまりR1インターフェースは、rAppのAPI(Application Programming Interface)を構成する。R1終端に付随して設けられるR1サービス開示機能は、R1インターフェース、rApp等のサービスに関連するデータをメインバスMB等に開示する機能、および/または、メインバスMB等からのデータをR1インターフェース、rApp等のサービスのためにR1終端等に開示する機能を提供する。外部終端は、Non-RTフレームワークにおける不図示の各種の外部インターフェースの終端である。 R1 termination is the termination of the R1 interface in the Non-RT framework. An rApp running on the Non-RT RIC is connected to the R1 end via the R1 interface. In other words, the R1 interface constitutes the rApp API (Application Programming Interface). The R1 service disclosure function provided along with the R1 terminal is a function to disclose data related to services such as the R1 interface and rApp to the main bus MB, etc., and/or a function to disclose data from the main bus MB etc. to the R1 interface, Provides a function to disclose to R1 terminal etc. for services such as rApp. The external terminal is the terminal of various external interfaces (not shown) in the Non-RT framework.
 データ管理/開示機能は、メインバスMB上の各種のデータを管理し、各機能ブロックのアクセス権限に応じた態様で開示する機能を提供する。人工知能/機械学習ワークフロー機能は、Non-RT RICおよび/またはNear RT RICに実装されている人工知能(AI: Artificial Intelligence)および/または機械学習(ML: Machine Learning)能力を利用して実行されるワークフローを管理する機能を提供する。ポリシー/コンフリクト管理機能は、後述するように、rAppが生成するSMO外への指示(稼働指針や構成変更指示)を検証する指示検証部を構成する。 The data management/disclosure function provides a function of managing various data on the main bus MB and disclosing it in a manner according to the access authority of each functional block. Artificial intelligence/machine learning workflow functionality is performed using artificial intelligence (AI) and/or machine learning (ML) capabilities implemented in Non-RT RIC and/or Near RT RIC. Provides functionality to manage workflows. As described later, the policy/conflict management function constitutes an instruction verification unit that verifies instructions (operation guidelines and configuration change instructions) generated by the rApp to outside the SMO.
 他Non-RT RICフレームワーク機能は、以上の各種のNon-RTフレームワークの機能以外の他の機能を提供する。A1関連機能、A2関連機能、R1終端、R1サービス開示機能、外部終端、データ管理/開示機能、人工知能/機械学習ワークフロー機能、ポリシー/コンフリクト管理機能、他Non-RT RICフレームワーク機能等のNon-RTフレームワークの各種の機能は、Non-RT RICの外部にも延びるメインバスMBに接続される。これらの各機能ブロックは、メインバスMBを通じてNon-RT RIC内外の他の機能ブロックとデータを交換できる。 Other Non-RT RIC framework functions provide other functions in addition to the functions of the various Non-RT frameworks described above. A1 related functions, A2 related functions, R1 termination, R1 service disclosure function, external termination, data management/disclosure function, artificial intelligence/machine learning workflow function, policy/conflict management function, and other Non-RT RIC framework functions, etc. - Various functions of the RT framework are connected to the main bus MB, which also extends outside the Non-RT RIC. Each of these functional blocks can exchange data with other functional blocks inside and outside the Non-RT RIC through the main bus MB.
 図4は、本実施形態に係る無線アクセスネットワーク制御装置1を模式的に示す機能ブロック図である。無線アクセスネットワーク制御装置1は、図3におけるSMOフレームワークおよび/またはNon-RTフレームワークに設けられる。なお、本図では図3におけるいくつかの機能ブロック(具体的には、R1サービス開示機能、外部終端、データ管理/開示機能、人工知能/機械学習ワークフロー機能、他Non-RT RICフレームワーク機能)の図示を省略した。 FIG. 4 is a functional block diagram schematically showing the radio access network control device 1 according to the present embodiment. The radio access network control device 1 is provided in the SMO framework and/or the Non-RT framework in FIG. 3. This diagram shows some functional blocks in Figure 3 (specifically, R1 service disclosure function, external termination, data management/disclosure function, artificial intelligence/machine learning workflow function, and other Non-RT RIC framework functions). illustration is omitted.
 無線アクセスネットワーク制御装置1は、O1/O2情報取得部11と、O1/O2情報提供部12と、稼働指針生成部13と、構成変更指示生成部14と、指示検証部15と、指示発行部16を備える。これらの機能ブロックは、コンピュータの中央演算処理装置等のプロセッサ、メモリ、入力装置、出力装置、コンピュータに接続される周辺機器等のハードウェア資源と、それらを用いて実行されるソフトウェアの協働により実現される。コンピュータの種類や設置場所は問わず、上記の各機能ブロックは、単一のコンピュータのハードウェア資源で実現してもよいし、複数のコンピュータに分散したハードウェア資源を組み合わせて実現してもよい。特に本実施形態では、無線アクセスネットワーク制御装置1の機能ブロックの一部または全部を、SMOおよび/またはNon-RT RICに設けられるプロセッサで実現してもよいし、SMOおよび/またはNon-RT RIC外に設けられるコンピュータやプロセッサで分散的または集中的に実現してもよい。 The radio access network control device 1 includes an O1/O2 information acquisition section 11, an O1/O2 information provision section 12, an operation guideline generation section 13, a configuration change instruction generation section 14, an instruction verification section 15, and an instruction issuing section. 16. These functional blocks are realized through the cooperation of hardware resources such as the computer's central processing unit (central processing unit), memory, input devices, output devices, and peripheral devices connected to the computer, and the software that is executed using them. Realized. Regardless of the type of computer or installation location, each of the above functional blocks may be realized using the hardware resources of a single computer, or may be realized by combining hardware resources distributed across multiple computers. . In particular, in this embodiment, part or all of the functional blocks of the radio access network control device 1 may be realized by a processor provided in the SMO and/or Non-RT RIC, or may be realized by a processor provided in the SMO and/or Non-RT RIC. It may also be implemented in a distributed or centralized manner using external computers and processors.
 O1/O2情報取得部11に含まれるO1情報取得部は、Near-RT RICおよびE2ノード(RANノード)の少なくともいずれかに関するO1情報をO1インターフェースから取得する。具体的には、O1情報取得部はSMOおよび/またはNon-RT RICに設けられ、O1インターフェースを通じてNear-RT RICおよび/またはE2ノードからO1情報を取得する。O1情報としては、Near-RT RICの制御状態を表す各種の制御情報や、各E2ノードについて個別に測定された稼働データが例示される。各E2ノードの稼働データは一般的なモバイル通信の基地局で検知可能な各種のデータであり、例えば、時間当たりの通信量や通信速度、接続されているUE(通信機)の数や種別、UEからの通信電波の強度や態様、UEとO-RUの間のチャネルの品質、O-RUが提供する通信セルのカバー範囲や利用可能帯域、E2ノードやO-RUのハードウェアの性能や状態等が例示される。このようにO1情報取得部は、RANノードから測定された稼働データを取得する稼働データ取得部を構成する。 The O1 information acquisition unit included in the O1/O2 information acquisition unit 11 acquires O1 information regarding at least one of the Near-RT RIC and the E2 node (RAN node) from the O1 interface. Specifically, the O1 information acquisition unit is provided in the SMO and/or Non-RT RIC, and acquires O1 information from the Near-RT RIC and/or E2 node through the O1 interface. Examples of the O1 information include various types of control information representing the control status of the Near-RT RIC and operational data measured individually for each E2 node. The operation data of each E2 node is a variety of data that can be detected by a general mobile communication base station, such as communication volume per hour, communication speed, number and type of connected UEs (communication devices), The strength and mode of communication radio waves from the UE, the quality of the channel between the UE and the O-RU, the coverage area and available bandwidth of the communication cell provided by the O-RU, the performance of the E2 node and O-RU hardware, etc. The state etc. are exemplified. In this way, the O1 information acquisition section constitutes an operation data acquisition section that acquires operation data measured from RAN nodes.
 図4におけるO1情報取得部は、メインバスMB上においてNon-RTフレームワーク内外に跨がるように模式的に示されている。しかし、O1情報取得部は、全体または一部がNon-RTフレームワーク外のSMOフレームワーク内に設けられればよい。また、O1情報取得部は、SMO内の関連する機能ブロック、具体的には、O1終端、O1関連機能、O1/O2情報提供部12(特にO1情報提供部)、ポリシー/コンフリクト管理機能(特に指示検証部15)、R1終端、rApp(稼働指針生成部13および/または構成変更指示生成部14)等にアクセスできればよく、必ずしもメインバスMBに直接的に接続されなくてもよい。これらの関連する機能ブロックのうち、最も関連性が高いSMOフレームワーク内(Non-RTフレームワーク外)のO1関連機能において、O1情報取得部の一部または全部の機能を実現するのが好ましい。 The O1 information acquisition unit in FIG. 4 is schematically shown so as to straddle the inside and outside of the Non-RT framework on the main bus MB. However, the O1 information acquisition unit may be provided in whole or in part within the SMO framework outside the Non-RT framework. In addition, the O1 information acquisition unit is responsible for related functional blocks within SMO, specifically O1 termination, O1 related functions, O1/O2 information provision unit 12 (especially O1 information provision unit), policy/conflict management function (especially It is only necessary to be able to access the instruction verification unit 15), R1 termination, rApp (operation guideline generation unit 13 and/or configuration change instruction generation unit 14), etc., and it does not necessarily need to be directly connected to the main bus MB. Among these related functional blocks, it is preferable to realize some or all of the functions of the O1 information acquisition unit in the most relevant O1-related functions within the SMO framework (outside the Non-RT framework).
 O1/O2情報取得部11に含まれるO2情報取得部は、O-Cloudに関する仮想化基盤情報としてのO2情報をO2インターフェースから取得する仮想化基盤情報取得部を構成する。具体的には、O2情報取得部はSMOおよび/またはNon-RT RICに設けられ、O2インターフェースを通じてO-CloudからO2情報を取得する。O2情報としては、O-Cloudの構成やテレメトリに関する情報および/またはO-Cloudが仮想的に管理する各E2ノード(各RANノード)の障害や稼働状況が例示される。各E2ノードの稼働状況としては、各E2ノードにおけるリソース使用や通信負荷の状況が例示される。これらのO2情報は、例えば、SMOにおけるFOCOMがO2imsインターフェースを通じてO-CloudにおけるIMSから取得してもよいし、SMOにおけるOAM FunctionがO2インターフェースを通じてO-Cloudから取得してもよい。このようにO2情報取得部は、RANノードを仮想的に管理するO-Cloudから当該RANノードの稼働状況を取得する稼働状況取得部を構成する。 The O2 information acquisition unit included in the O1/O2 information acquisition unit 11 constitutes a virtualization infrastructure information acquisition unit that acquires O2 information as virtualization infrastructure information regarding O-Cloud from the O2 interface. Specifically, the O2 information acquisition unit is provided in SMO and/or Non-RT RIC, and acquires O2 information from O-Cloud through the O2 interface. Examples of O2 information include information regarding the O-Cloud configuration and telemetry, and/or failures and operating status of each E2 node (each RAN node) virtually managed by O-Cloud. Examples of the operating status of each E2 node include resource usage and communication load status at each E2 node. For example, FOCOM in SMO may obtain this O2 information from IMS in O-Cloud through the O2ims interface, or OAM Function in SMO may obtain it from O-Cloud through the O2 interface. In this way, the O2 information acquisition unit constitutes an operation status acquisition unit that acquires the operation status of the RAN node from O-Cloud, which virtually manages the RAN node.
 図4におけるO2情報取得部は、メインバスMB上においてNon-RTフレームワーク内外に跨がるように模式的に示されている。しかし、O2情報取得部は、全体または一部がNon-RTフレームワーク外のSMOフレームワーク内に設けられればよい。また、O2情報取得部は、SMO内の関連する機能ブロック、具体的には、O2終端、O2関連機能、O1/O2情報提供部12(特にO2情報提供部)、ポリシー/コンフリクト管理機能(特に指示検証部15)、R1終端、rApp(稼働指針生成部13および/または構成変更指示生成部14)等にアクセスできればよく、必ずしもメインバスMBに直接的に接続されなくてもよい。これらの関連する機能ブロックのうち、最も関連性が高いSMOフレームワーク内(Non-RTフレームワーク外)のO2関連機能において、O2情報取得部の一部または全部の機能を実現するのが好ましい。 The O2 information acquisition unit in FIG. 4 is schematically shown on the main bus MB so as to straddle the inside and outside of the Non-RT framework. However, the O2 information acquisition unit may be provided in whole or in part within the SMO framework outside the Non-RT framework. In addition, the O2 information acquisition unit is responsible for related functional blocks within SMO, specifically O2 termination, O2 related functions, O1/O2 information provision unit 12 (especially O2 information provision unit), policy/conflict management function (especially It is only necessary to be able to access the instruction verification unit 15), R1 termination, rApp (operation guideline generation unit 13 and/or configuration change instruction generation unit 14), etc., and it does not necessarily need to be directly connected to the main bus MB. Among these related functional blocks, it is preferable to realize some or all of the functions of the O2 information acquisition unit in the most relevant O2-related functions within the SMO framework (outside the Non-RT framework).
 O1/O2情報提供部12は、Non-RT RICにおけるR1インターフェースを通じて、O1/O2情報取得部11が取得したO1情報および/またはO2情報をrAppに提供する。O1/O2情報提供部12に含まれるO2情報提供部は、rAppとのインターフェースであるR1インターフェースを通じて、仮想化基盤情報(O2情報)を当該rAppに提供する仮想化基盤情報提供部を構成する。図4におけるO1/O2情報提供部12は、Non-RTフレームワーク内のメインバスMB上に模式的に示されている。しかし、O1/O2情報提供部12は、全体または一部がNon-RTフレームワーク内に設けられればよい。また、O1/O2情報提供部12は、SMO内の関連する機能ブロック、具体的には、O1/O2情報取得部11、ポリシー/コンフリクト管理機能(特に指示検証部15)、R1終端、R1サービス開示機能(不図示)、rApp(稼働指針生成部13および/または構成変更指示生成部14)等にアクセスできればよく、必ずしもメインバスMBに直接的に接続されなくてもよい。これらの関連する機能ブロックのうち、最も関連性が高いNon-RTフレームワーク内のR1サービス開示機能(不図示)において、O1/O2情報提供部12の一部または全部の機能を実現するのが好ましい。 The O1/O2 information providing unit 12 provides the rApp with O1 information and/or O2 information acquired by the O1/O2 information acquiring unit 11 through the R1 interface in the Non-RT RIC. The O2 information providing unit included in the O1/O2 information providing unit 12 constitutes a virtualization infrastructure information providing unit that provides virtualization infrastructure information (O2 information) to the rApp through the R1 interface, which is an interface with the rApp. The O1/O2 information providing unit 12 in FIG. 4 is schematically shown on the main bus MB within the Non-RT framework. However, the O1/O2 information providing unit 12 may be provided entirely or partially within the Non-RT framework. In addition, the O1/O2 information providing unit 12 includes related functional blocks within the SMO, specifically, the O1/O2 information acquisition unit 11, the policy/conflict management function (in particular, the instruction verification unit 15), the R1 termination, and the R1 service. It is only necessary to be able to access the disclosure function (not shown), rApp (operation guideline generation unit 13 and/or configuration change instruction generation unit 14), etc., and it does not necessarily need to be directly connected to the main bus MB. Among these related functional blocks, the most relevant R1 service disclosure function (not shown) in the Non-RT framework realizes some or all of the functions of the O1/O2 information providing unit 12. preferable.
 rAppによって実現される稼働指針生成部13は、O1/O2情報取得部11によって取得されてO1/O2情報提供部12によって提供された各RANノードの稼働状況および稼働データ等に基づいて、当該各RANノードの稼働に関する稼働指針を生成する。稼働指針生成部13が生成する稼働指針のうち、後述する指示発行部16によってO2インターフェースを通じてO-Cloudに対して発行されるものとしては、複数のRANノードのリソース配分および/または負荷管理に関するリソース配分指針および/または負荷管理指針が例示される。また、稼働指針生成部13が生成する稼働指針のうち、後述する指示発行部16によってA1インターフェースやO1インターフェースを通じてNear-RT RICや各RANノードに対して発行されるものとしては、当該各RANノードのトラフィック制御に関するトラフィック制御指針が例示される。 The operation guideline generation unit 13 realized by rApp generates information for each RAN node based on the operation status and operation data of each RAN node acquired by the O1/O2 information acquisition unit 11 and provided by the O1/O2 information provision unit 12. Generate operational guidelines for RAN node operation. Among the operation guidelines generated by the operation guideline generation unit 13, those issued to O-Cloud through the O2 interface by the instruction issuing unit 16 (described later) include resources related to resource allocation and/or load management of multiple RAN nodes. Distribution guidelines and/or load management guidelines are illustrated. In addition, among the operation guidelines generated by the operation guideline generation unit 13, those issued to the Near-RT RIC and each RAN node through the A1 interface and O1 interface by the instruction issuing unit 16, which will be described later, are as follows: Traffic control guidelines regarding traffic control are illustrated.
 A1インターフェースを通じて稼働指針および/またはトラフィック制御指針を受け取ったNear-RT RICは、当該各指針に基づいてE2インターフェース(図1)を通じて各RANノードを制御する。例えば、前述のトラフィック制御指針が特定のRANノードにおけるトラフィックを減らすものである場合、Near-RT RICは、当該RANノードに接続中のUEを他の利用可能なRANノードに誘導する、当該RANノードに接続中のUEの通信速度や通信量を制限する、当該RANノードに対する新たなUEの接続を制限する等のトラフィック制限処理を、当該RANノード自体やそれに接続されているO-RUが提供する通信セル内のUEに対して行う。 The Near-RT RIC that receives the operation guidelines and/or traffic control guidelines through the A1 interface controls each RAN node through the E2 interface (Figure 1) based on the guidelines. For example, if the aforementioned traffic control guidelines are to reduce traffic at a particular RAN node, the Near-RT RIC may direct the UE connected to that RAN node to other available RAN nodes. The RAN node itself and the O-RU connected to it provide traffic restriction processing, such as limiting the communication speed and amount of communication of UEs connected to the RAN node, and restricting new UE connections to the RAN node. Performed for the UE within the communication cell.
 稼働指針生成部13は、不図示の人工知能/機械学習ワークフロー機能が提供する機械学習モデルを利用して、前述のリソース配分指針、負荷管理指針、トラフィック制御指針を含む稼働指針を生成してもよい。この機械学習モデルは、稼働状況取得部を構成するO2情報取得部(O1/O2情報取得部11)がO2インターフェースを通じてO-Cloudから取得した複数のRANノードの障害や稼働状況、および、稼働データ取得部を構成するO1情報取得部(O1/O2情報取得部11)がO1インターフェース等を通じて取得した各RANノードについての個別の稼働データの組から稼働指針の組を導出可能である。具体的には、O2情報取得部(稼働状況取得部)からの稼働状況とO1情報取得部(稼働データ取得部)からの稼働データの組が入力された機械学習モデルは、入力と出力を関連付ける網羅的な訓練データまたは教師データを用いて予め行われた機械学習に基づいて、O2インターフェースを通じてO-Cloudに対して発行されるリソース配分指針や負荷管理指針、A1インターフェースやO1インターフェースを通じて各RANノードに対して発行されるトラフィック制御指針等の稼働指針の組を出力する。 The operation guideline generation unit 13 generates operation guidelines including the resource allocation guideline, load management guideline, and traffic control guideline described above by using a machine learning model provided by an artificial intelligence/machine learning workflow function (not shown). good. This machine learning model uses the faults, operating statuses, and operating data of multiple RAN nodes that the O2 information acquisition unit (O1/O2 information acquisition unit 11) that constitutes the operating status acquisition unit acquires from O-Cloud through the O2 interface. The O1 information acquisition unit (O1/O2 information acquisition unit 11) constituting the acquisition unit can derive a set of operation guidelines from a set of individual operation data for each RAN node acquired through the O1 interface or the like. Specifically, a machine learning model that is input with a set of operating status from the O2 information acquisition unit (operation status acquisition unit) and operation data from the O1 information acquisition unit (operation data acquisition unit) associates input and output. Based on machine learning performed in advance using comprehensive training data or teacher data, resource allocation guidelines and load management guidelines are issued to O-Cloud through the O2 interface, and each RAN node is issued through the A1 interface and O1 interface. Outputs a set of operational guidelines such as traffic control guidelines issued to
 このように、本実施形態の機械学習モデルは、O-Cloudからの入力(稼働状況)と各RANノードからの入力(稼働データ)の組を、O-Cloudへの出力(リソース配分指針、負荷管理指針等)と各RANノードへの出力(トラフィック制御指針等)の組に対応付けるものである。O-Cloudからの入力をO-Cloudへの出力に個別に対応付け、各RANノードからの入力を各RANノードへの出力に個別に対応付ける単純な場合と比較して、本実施形態の機械学習モデルによればO-Cloudおよび各RANノードの入出力の相関等を総合的または網羅的に考慮できるため、各RANノードを効率的に稼働するための稼働指針をO-Cloudおよび各RANノードの両面から効果的に運用できる。 In this way, the machine learning model of this embodiment uses a set of input (operation status) from O-Cloud and input (operation data) from each RAN node to output to O-Cloud (resource allocation guidelines, load management guidelines, etc.) and output to each RAN node (traffic control guidelines, etc.). Compared to the simple case where inputs from O-Cloud are individually matched to outputs to O-Cloud, and inputs from each RAN node are individually matched to outputs to each RAN node, the machine learning of this embodiment According to the model, the correlation between input and output of O-Cloud and each RAN node can be considered comprehensively or exhaustively, so operation guidelines for efficiently operating each RAN node can be set for O-Cloud and each RAN node. It can be operated effectively from both sides.
 rAppによって実現される構成変更指示生成部14は、O1/O2情報取得部11によって取得されてO1/O2情報提供部12によって提供された各種のO1情報および/またはO2情報(前述の各RANノードの稼働状況や稼働データを含む)に基づいて、SMO外の構成変更に関する構成変更指示を生成する。構成変更指示生成部14が生成する構成変更指示は、O-RANにおけるSMO外の構成、例えば、O-RU、RANノード、O-Cloud、Near-RT RICにおけるソフトウェアおよび/またはハードウェアの少なくとも一部の変更を指示するものである。 The configuration change instruction generation unit 14 realized by rApp generates various O1 information and/or O2 information (for each RAN node mentioned above) acquired by the O1/O2 information acquisition unit 11 and provided by the O1/O2 information provision unit 12. generation of configuration change instructions for configuration changes outside of SMO The configuration change instruction generated by the configuration change instruction generation unit 14 changes the configuration outside of SMO in O-RAN, for example, at least one of the software and/or hardware in O-RU, RAN node, O-Cloud, and Near-RT RIC. This is an instruction to change the section.
 O-RUやRANノード等のハードウェアに関する構成変更指示は、いわゆるハードウェアアクセラレーションの実行指示(あるいは停止指示)を含んでもよい。ハードウェアアクセラレーションは、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)等の特定の処理や用途に特化またはカスタマイズされた構成の回路を備えるハードウェアによって、CPU(Central Processing Unit)等の汎用プロセッサを支援する技術である。汎用プロセッサによるソフトウェア処理では多くの時間や電力を要する複雑な処理であっても、ハードウェア実装された専用プロセッサであれば高速かつ効率的に実行できる。 A configuration change instruction regarding hardware such as an O-RU or a RAN node may include an instruction to execute (or stop) so-called hardware acceleration. Hardware acceleration is specialized or customized for specific processing or applications such as FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), ASIC (Application Specific Integrated Circuit), DSP (Digital Signal Processor), etc. This is a technology that supports general-purpose processors such as CPUs (Central Processing Units) using hardware equipped with circuits. Even complex processing that requires a lot of time and power to be processed by software using a general-purpose processor can be executed quickly and efficiently by a dedicated processor implemented in hardware.
 構成変更指示生成部14は、不図示の人工知能/機械学習ワークフロー機能が提供する機械学習モデルを利用して構成変更指示を生成してもよい。この機械学習モデルは、O1/O2情報取得部11がO1インターフェースおよび/またはO2インターフェースを通じて取得した各種のO1情報および/またはO2情報の組から構成変更指示の組を導出可能である。具体的には、O1/O2情報取得部11からの各種のO1情報およびO2情報の組が入力された機械学習モデルは、入力と出力を関連付ける網羅的な訓練データまたは教師データを用いて予め行われた機械学習に基づいて、O1インターフェース、O2インターフェース、A1インターフェース等を通じてSMO外に発行される構成変更指示の組を出力する。この機械学習モデルは、SMO外からの入力(O1情報およびO2情報)の組を、SMO外への出力(構成変更指示)の組に対応付けるものである。 The configuration change instruction generation unit 14 may generate the configuration change instruction using a machine learning model provided by an artificial intelligence/machine learning workflow function (not shown). This machine learning model can derive a set of configuration change instructions from a set of various O1 information and/or O2 information that the O1/O2 information acquisition unit 11 has acquired through the O1 interface and/or the O2 interface. Specifically, a machine learning model into which various sets of O1 information and O2 information from the O1/O2 information acquisition unit 11 are input is trained in advance using exhaustive training data or teacher data that associates inputs and outputs. Based on the learned machine learning, it outputs a set of configuration change instructions that are issued outside the SMO through the O1 interface, O2 interface, A1 interface, etc. This machine learning model associates a set of inputs from outside SMO (O1 information and O2 information) with a set of outputs from outside SMO (configuration change instructions).
 以上のように、SMOに設けられるNon-RT RICはrAppの実行を通じて、SMO外のRANノード、O-Cloud、Near-RT RIC等への各種の指示(特に稼働指針および構成変更指示)を生成する。これらの指示は、O1インターフェース、O2インターフェース、A1インターフェース等の各種のインターフェースを通じてSMO外に発行される。従来のSMOでは、rAppが生成した指示が、対象(RANノード、O-Cloud、Near-RT RIC等)やインターフェース(O1インターフェース、O2インターフェース、A1インターフェース等)に関わらず、ほとんどそのままSMO外に発行される。このため、異なるタスクやジョブを実行するrAppが互いに矛盾する指示をSMO外に発行してしまう恐れがあり、その実行、解決、調整等のためにSMO自体やSMO外のリソースが浪費されてしまう。以下で説明する本実施形態に係る無線アクセスネットワーク制御装置1(特に指示検証部15および指示発行部16)によれば、rAppが生成する指示を効率的にSMO外に発行できる。 As mentioned above, the Non-RT RIC installed in SMO generates various instructions (especially operation guidelines and configuration change instructions) to RAN nodes outside SMO, O-Cloud, Near-RT RIC, etc. through the execution of rApp. do. These instructions are issued outside the SMO through various interfaces such as the O1 interface, O2 interface, and A1 interface. In traditional SMO, instructions generated by rApp are issued outside SMO almost unchanged, regardless of the target (RAN node, O-Cloud, Near-RT RIC, etc.) or interface (O1 interface, O2 interface, A1 interface, etc.) be done. As a result, rApps that execute different tasks or jobs may issue mutually contradictory instructions outside of SMO, and the resources of SMO itself and outside of SMO will be wasted for execution, resolution, coordination, etc. . According to the radio access network control device 1 (particularly the instruction verification unit 15 and instruction issuing unit 16) according to the present embodiment described below, instructions generated by an rApp can be efficiently issued outside of SMO.
 SMOに設けられる指示検証部15は、当該SMOにおけるNon-RT RICによって実行されるrAppが生成する当該SMO外への指示を検証する。具体的には、指示検証部15は、rAppにおける稼働指針生成部13が生成するRANノードの稼働に関する稼働指針と、rAppにおける構成変更指示生成部14が生成するSMO外の構成変更に関する構成変更指示を併せて検証する。例えば、指示検証部15は、rAppが生成する各指示(各稼働指針および各構成変更指示)に対して、優先度付け処理、発行スケジューリング処理、取消し処理、変更処理の少なくともいずれかを施す。優先度付け処理は、rAppが生成する複数の指示に対して優先度を付与する処理である。発行スケジューリング処理は、rAppが生成する各指示に対して指示発行部16による発行タイミングを指定する処理である。取消し処理は、rAppが生成する指示のうち、他の指示と矛盾やコンフリクトがある指示や、O-RANのパフォーマンスや効率を悪化させる恐れがある指示を取り消す処理である。変更処理は、rAppが生成する指示のうち、そのままでは取消し処理の対象となる指示に対して各種の変更を加える処理である。なお、指示検証部15が取消し処理の対象と認定した指示に対して、rAppが指示検証部15の代わりに変更処理を施してもよい。 The instruction verification unit 15 provided in the SMO verifies the instruction to outside the SMO generated by the rApp executed by the Non-RT RIC in the SMO. Specifically, the instruction verification unit 15 uses the operation guidelines related to the operation of RAN nodes generated by the operation guideline generation unit 13 in rApp, and the configuration change instructions regarding configuration changes outside of SMO generated by the configuration change instruction generation unit 14 in rApp. We will also verify this. For example, the instruction verification unit 15 performs at least one of a prioritization process, an issuance scheduling process, a cancellation process, and a change process on each instruction (each operation guideline and each configuration change instruction) generated by the rApp. The prioritization process is a process of assigning priorities to multiple instructions generated by the rApp. The issuance scheduling process is a process of specifying the issuance timing by the instruction issuing unit 16 for each instruction generated by the rApp. Cancellation processing is the process of canceling instructions generated by an rApp that contradict or conflict with other instructions, or instructions that may deteriorate O-RAN performance or efficiency. The modification process is a process of making various changes to the instructions generated by the rApp, which would otherwise be subject to cancellation. Note that the rApp may perform change processing on behalf of the instruction verification section 15 with respect to an instruction that the instruction verification section 15 has identified as subject to cancellation processing.
 指示検証部15は、rAppが生成する指示(稼働指針および構成変更指示)にアクセスできるように、SMO内の任意の場所に設けられる。但し、rAppが生成する実質的に全ての指示への効率的なアクセスのために、指示検証部15の少なくとも一部はNon-RT RICに設けられるのが好ましく、rAppとのインターフェースであるR1インターフェースに併設されるのが更に好ましい。例えば、指示検証部15の少なくとも一部を、rAppのAPIを構成するR1インターフェースの終端であるR1終端や、それに付随して設けられるR1サービス開示機能(不図示)に設けるのが好ましい。 The instruction verification unit 15 is provided at any location within the SMO so that it can access instructions (operation guidelines and configuration change instructions) generated by the rApp. However, in order to efficiently access substantially all instructions generated by the rApp, it is preferable that at least a part of the instruction verification unit 15 be provided in the Non-RT RIC, and the R1 interface that is the interface with the rApp. It is even more preferable that it be attached to the For example, it is preferable to provide at least a part of the instruction verification unit 15 at the R1 terminal, which is the terminal of the R1 interface that constitutes the API of the rApp, or at the R1 service disclosure function (not shown) provided in conjunction therewith.
 SMOに設けられる指示発行部16は、指示検証部15によって検証されたrAppの指示をSMO外へ発行する。具体的には、指示発行部16は、rAppにおける稼働指針生成部13が生成するRANノードの稼働に関する稼働指針と、rAppにおける構成変更指示生成部14が生成するSMO外の構成変更に関する構成変更指示のうち、指示検証部15によって検証されたものをSMO外へ発行する。 The instruction issuing unit 16 provided in the SMO issues the rApp instruction verified by the instruction verification unit 15 to outside the SMO. Specifically, the instruction issuing unit 16 issues operational guidelines related to the operation of RAN nodes generated by the operational guidelines generating unit 13 in the rApp, and configuration change instructions regarding configuration changes outside of SMO generated by the configuration change instruction generating unit 14 in the rApp. Among them, those verified by the instruction verification unit 15 are issued outside the SMO.
 指示発行部16は、RANノード、当該RANノードを仮想的に管理するO-Cloud、Near-RT RICの少なくともいずれかに対して、指示検証部15によって検証された稼働指針を発行する。具体的には、指示発行部16は、Near-RT RICに対してA1インターフェースを通じて指示検証部15によって検証された稼働指針を発行し、O-Cloudに対してO2インターフェースを通じて指示検証部15によって検証された稼働指針を発行し、RANノードやO-RUに対してO1インターフェースやOpen Fronthaul M-Planeを通じて指示検証部15によって検証された稼働指針を発行する。また、指示発行部16は、RANノード、当該RANノードを仮想的に管理するO-Cloud、Near-RT RICの少なくともいずれかに対して、指示検証部15によって検証された構成変更指示を発行する。具体的には、指示発行部16は、O-Cloudに対してO2インターフェースを通じて指示検証部15によって検証された構成変更指示を発行し、RANノード、O-RU、Near-RT RIC等に対してO1インターフェース、Open Fronthaul M-Plane、A1インターフェース等を通じて指示検証部15によって検証された構成変更指示を発行する。 The instruction issuing unit 16 issues the operation guidelines verified by the instruction verification unit 15 to at least one of the RAN node, O-Cloud, and Near-RT RIC that virtually manage the RAN node. Specifically, the instruction issuing unit 16 issues operational guidelines that have been verified by the instruction verification unit 15 through the A1 interface to Near-RT RIC, and issues the operation guidelines verified by the instruction verification unit 15 through the O2 interface to O-Cloud. The instruction verification unit 15 issues the operation guidelines verified by the instruction verification unit 15 through the O1 interface or Open Fronthaul M-Plane to the RAN nodes and O-RU. In addition, the instruction issuing unit 16 issues a configuration change instruction verified by the instruction verification unit 15 to at least one of the RAN node, O-Cloud that virtually manages the RAN node, and Near-RT RIC. . Specifically, the instruction issuing unit 16 issues a configuration change instruction verified by the instruction verification unit 15 to the O-Cloud through the O2 interface, and sends the configuration change instruction to the RAN node, O-RU, Near-RT RIC, etc. A configuration change instruction verified by the instruction verification unit 15 is issued through the O1 interface, Open Fronthaul M-Plane, A1 interface, etc.
 指示発行部16は、指示検証部15によって優先度付け処理が施された指示について、付与された優先度に従って当該指示をSMO外へ発行する。このため、優先度、緊急性、適用頻度、影響度等の高い重要な指示が優先的にSMO外へ発行される(なお、適用頻度や影響度の高い指示については、慎重な検証を要することから逆に優先度が下げられてもよい)。また、指示発行部16は、指示検証部15によって発行スケジューリング処理が施された指示について、指定されたスケジュールおよび/または発行タイミングに従って当該指示をSMO外へ発行する。このように、rAppの指示の発行順序や発行タイミングをO-RAN(特にSMO外)の状況に応じて適切に決定することで、O-RANのパフォーマンスや効率を向上させられる。 The instruction issuing unit 16 issues the instructions to outside the SMO according to the assigned priority for the instructions that have been subjected to the prioritization process by the instruction verification unit 15. For this reason, important instructions with high priority, urgency, frequency of application, degree of impact, etc. are issued to outside SMO on a priority basis (note that instructions with high frequency of application and degree of impact require careful verification). (The priority may be lowered conversely.) Further, the instruction issuing unit 16 issues the instruction outside the SMO according to the specified schedule and/or issuance timing for the instruction that has been subjected to the issue scheduling process by the instruction verification unit 15. In this way, the performance and efficiency of O-RAN can be improved by appropriately determining the order and timing of issuing rApp instructions according to the O-RAN situation (especially outside of SMO).
 なお、指示発行部16は、指示検証部15によって取消し処理が施された指示をSMO外へ発行しない。また、指示発行部16は、指示検証部15および/またはrAppによって変更処理が施された指示について、変更が加えられた当該指示を優先度やスケジュールに従ってSMO外へ発行する。このため、rAppが生成する指示のうち、他の指示と矛盾やコンフリクトがある指示や、O-RANのパフォーマンスや効率を悪化させる恐れがある指示が、そのままSMO外に発行されることを効果的に防止できる。 Note that the instruction issuing unit 16 does not issue the instruction that has been canceled by the instruction verification unit 15 to outside the SMO. In addition, the instruction issuing unit 16 issues the changed instruction to outside the SMO according to the priority and schedule for the instruction that has undergone the modification process by the instruction verification unit 15 and/or rApp. For this reason, among the instructions generated by rApp, instructions that contradict or conflict with other instructions, or instructions that may deteriorate O-RAN performance or efficiency, are effectively prevented from being issued outside of SMO. can be prevented.
 指示発行部16は、rAppの指示の検証結果が得られる指示検証部15と、SMO外への指示発行場所であるA1インターフェース、O1インターフェース、O2インターフェースにアクセスできるように、SMO内の任意の場所に設けられる。但し、SMO外への迅速な指示の発行のために、指示発行部16の少なくとも一部は、SMO外とのインターフェースであるA1インターフェース、O1インターフェース、O2インターフェースの少なくともいずれかに併設されるのが好ましい。例えば、指示発行部16のうちA1インターフェースを通じた稼働指針等の発行に関する機能は当該A1インターフェースの終端であるA1終端や、それに付随して設けられるA1関連機能に設けるのが好ましく、指示発行部16のうちO1インターフェースを通じた構成変更指示等の発行に関する機能は当該O1インターフェースの終端であるO1終端や、それに付随して設けられるO1関連機能に設けるのが好ましく、指示発行部16のうちO2インターフェースを通じた構成変更指示等の発行に関する機能は当該O2インターフェースの終端であるO2終端や、それに付随して設けられるO2関連機能に設けるのが好ましい。 The instruction issuing unit 16 is installed at any location within the SMO so that it can access the instruction verification unit 15 from which the verification results of rApp instructions can be obtained, and the A1 interface, O1 interface, and O2 interface, which are the locations for issuing instructions outside of the SMO. established in However, in order to quickly issue instructions to outside of SMO, it is recommended that at least a part of the instruction issuing unit 16 be attached to at least one of the A1 interface, O1 interface, and O2 interface, which are interfaces with outside of SMO. preferable. For example, in the instruction issuing section 16, it is preferable to provide a function related to issuing operation guidelines etc. through the A1 interface at the A1 terminal, which is the terminal of the A1 interface, or at an A1-related function provided therein. It is preferable that the function related to issuing configuration change instructions etc. through the O1 interface is provided in the O1 terminal, which is the terminal of the O1 interface, or in the O1-related functions provided in conjunction therewith. It is preferable that a function related to issuing configuration change instructions, etc., be provided at the O2 terminal, which is the terminal of the O2 interface, or an O2-related function provided incidentally thereto.
 以上のように、指示発行部16は、SMO外の各種の構成(O-RU、RANノード、O-Cloud、Near-RT RIC等)に対して、各種のインターフェース(A1インターフェース、O1インターフェース、O2インターフェース等)を通じて、rAppが生成した各種の指示(稼働指針、構成変更指示等)を発行する。そこで、SMO外への指示発行場所である各インターフェースに、指示発行部16の関連する機能を分散して実装するのが効率的である。同様に、指示検証部15の関連する機能も、各インターフェース(A1インターフェース、O1インターフェース、O2インターフェース等)に分散して実装することで、指示検証部15および指示発行部16によって構成されるポリシー/コンフリクト管理機能を、SMO外への指示発行場所であるインターフェース毎に最適化しうる。 As described above, the instruction issuing unit 16 provides various interfaces (A1 interface, O1 interface, O2 issue various instructions (operation guidelines, configuration change instructions, etc.) generated by rApp. Therefore, it is efficient to distribute and implement the related functions of the instruction issuing unit 16 in each interface that is a place for issuing instructions outside the SMO. Similarly, the related functions of the instruction verification unit 15 can be distributed and implemented in each interface (A1 interface, O1 interface, O2 interface, etc.), so that the policy / Conflict management functions can be optimized for each interface where instructions are issued outside of SMO.
 例えば、主にNear-RT RICに対する稼働指針の発行を担うA1インターフェースについては、指示検証部15のうち稼働指針生成部13が生成するNear-RT RICに対する稼働指針を検証する機能をA1終端やA1関連機能に設け、指示発行部16のうちNear-RT RICに対してA1インターフェースを通じて検証された稼働指針を発行する機能をA1終端やA1関連機能に設ける。同様に、主にRANノードに対する構成変更指示の発行を担うO1インターフェースについては、指示検証部15のうち構成変更指示生成部14が生成するRANノードに対する構成変更指示を検証する機能をO1終端やO1関連機能に設け、指示発行部16のうちRANノードに対してO1インターフェースを通じて検証された構成変更指示を発行する機能をO1終端やO1関連機能に設ける。また、主にO-Cloudに対する構成変更指示の発行を担うO2インターフェースについては、指示検証部15のうち構成変更指示生成部14が生成するO-Cloudに対する構成変更指示を検証する機能をO2終端やO2関連機能に設け、指示発行部16のうちO-Cloudに対してO2インターフェースを通じて検証された構成変更指示を発行する機能をO2終端やO2関連機能に設ける。 For example, for the A1 interface, which is mainly responsible for issuing operating guidelines for Near-RT RIC, the function of verifying operating guidelines for Near-RT RIC generated by the operating guideline generation unit 13 of the instruction verification unit 15 is applied to the A1 terminal or A1 interface. A function is provided in the A1 terminal and A1 related functions to issue an operation guideline verified through the A1 interface to the Near-RT RIC of the instruction issuing unit 16. Similarly, regarding the O1 interface, which is mainly responsible for issuing configuration change instructions to RAN nodes, the function of verifying the configuration change instructions for RAN nodes generated by the configuration change instruction generation section 14 of the instruction verification section 15 is applied to the O1 terminal or O1 interface. A function of issuing a configuration change instruction verified through the O1 interface to the RAN node of the instruction issuing unit 16 is provided in the O1 terminal and O1 related functions. Regarding the O2 interface, which is mainly responsible for issuing configuration change instructions to O-Cloud, the function of verifying the configuration change instruction to O-Cloud generated by the configuration change instruction generation unit 14 of the instruction verification unit 15 is added to the O2 terminal and A function of issuing a configuration change instruction verified through the O2 interface to O-Cloud in the instruction issuing unit 16 is provided in the O2 terminal and O2 related functions.
 なお、以上の指示検証部15および/または指示発行部16は、稼働指針生成部13および/または構成変更指示生成部14と同様に、SMOにおける人工知能/機械学習ワークフロー機能(図3)が提供する機械学習モデルを利用して、rAppの指示の検証および/または発行を行ってもよい。また、Near-RT RICにも人工知能/機械学習ワークフロー機能と同様の機能が設けられる場合には、指示検証部15および/または指示発行部16の一部の機能をNear-RT RICに設けることで、そこで入手可能な情報(例えば、Near-RT RICが各RANノードに対して開始したアクション)と機械学習モデルに基づいて更に効率的にrAppの指示の検証および/または発行を行える。あるいは、Near-RT RICにおける機械学習モデルが生成する各種のデータを、O1インターフェースやA1インターフェースを通じて、SMOにおける指示検証部15および/または指示発行部16に提供または集約することで、当該SMOにおいて一元的にrAppの指示の検証および/または発行が行われるようにしてもよい。 Note that the above instruction verification unit 15 and/or instruction issuing unit 16 are provided by the artificial intelligence/machine learning workflow function (Fig. 3) in SMO, similar to the operation guideline generation unit 13 and/or configuration change instruction generation unit 14. Machine learning models may be utilized to verify and/or publish instructions for the rApp. In addition, if Near-RT RIC is also provided with a function similar to the artificial intelligence/machine learning workflow function, some functions of the instruction verification unit 15 and/or instruction issuing unit 16 may be provided in Near-RT RIC. rApp instructions can be verified and/or issued more efficiently based on the information available there (e.g., actions initiated by the Near-RT RIC for each RAN node) and machine learning models. Alternatively, the various data generated by the machine learning model in Near-RT RIC can be provided or aggregated to the instruction verification unit 15 and/or instruction issuing unit 16 in the SMO through the O1 interface or A1 interface. The rApp instructions may be verified and/or issued automatically.
 以上の本実施形態によれば、SMOに設けられる指示発行部16がrAppの指示をSMO外に発行する前に、SMOに設けられる指示検証部15が当該指示を一元的に検証する。このため、rAppが生成する指示のうち指示検証部15によって検証されたものが、指示発行部16によって効率的にSMO外に発行される。 According to the present embodiment described above, before the instruction issuing unit 16 provided in the SMO issues an rApp instruction outside the SMO, the instruction verification unit 15 provided in the SMO centrally verifies the instruction. Therefore, among the instructions generated by the rApp, those verified by the instruction verification unit 15 are efficiently issued outside the SMO by the instruction issuing unit 16.
 以上、本開示を実施形態に基づいて説明した。例示としての実施形態における各構成要素や各処理の組合せには様々な変形例が可能であり、そのような変形例が本開示の範囲に含まれることは当業者にとって自明である。 The present disclosure has been described above based on the embodiments. It will be obvious to those skilled in the art that various modifications can be made to the combinations of components and processes in the exemplary embodiments, and such modifications are within the scope of the present disclosure.
 なお、実施形態で説明した各装置や各方法の構成、作用、機能は、ハードウェア資源またはソフトウェア資源によって、あるいは、ハードウェア資源とソフトウェア資源の協働によって実現できる。ハードウェア資源としては、例えば、プロセッサ、ROM、RAM、各種の集積回路を利用できる。ソフトウェア資源としては、例えば、オペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the configuration, operation, and function of each device and each method described in the embodiments can be realized by hardware resources or software resources, or by cooperation of hardware resources and software resources. As hardware resources, for example, a processor, ROM, RAM, and various integrated circuits can be used. As software resources, for example, programs such as operating systems and applications can be used.
 本開示は以下の項目のように表現してもよい。 The present disclosure may be expressed as the following items.
 項目1:
 O-RANのSMO(Service Management and Orchestration)に設けられる指示検証部によって、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、
 前記SMOに設けられる指示発行部によって、検証された前記指示を当該SMO外へ発行することと、
 を実行する少なくとも一つのプロセッサを備える無線アクセスネットワーク制御装置。
 項目2:
 前記指示検証部は、前記rAppが生成する無線アクセスネットワークノードの稼働に関する稼働指針を検証し、
 前記指示発行部は、前記無線アクセスネットワークノード、当該無線アクセスネットワークノードを仮想的に管理する仮想化基盤、Near-RT RIC(Near-Real Time RAN Intelligent Controller)の少なくともいずれかに対して、検証された前記稼働指針を発行する、
 項目1に記載の無線アクセスネットワーク制御装置。
 項目3:
 前記指示検証部は、前記rAppが生成する前記SMO外の構成変更に関する構成変更指示を検証し、
 前記指示発行部は、無線アクセスネットワークノード、当該無線アクセスネットワークノードを仮想的に管理する仮想化基盤、Near-RT RIC(Near-Real Time RAN Intelligent Controller)の少なくともいずれかに対して、検証された前記構成変更指示を発行する、
 項目1または2に記載の無線アクセスネットワーク制御装置。
 項目4:
 前記指示検証部は、前記rAppが生成する前記SMO外の構成変更に関する構成変更指示を前記稼働指針と共に検証し、
 前記指示発行部は、前記無線アクセスネットワークノード、前記仮想化基盤、前記Near-RT RICの少なくともいずれかに対して、検証された前記稼働指針および/または前記構成変更指示を発行する、
 項目2に記載の無線アクセスネットワーク制御装置。
 項目5:
 前記指示検証部は、前記rAppが生成する前記指示に対して、優先度付け処理、発行スケジューリング処理、取消し処理、変更処理の少なくともいずれかを施す、項目1から4のいずれかに記載の無線アクセスネットワーク制御装置。
 項目6:
 前記指示検証部の少なくとも一部は、前記Non-RT RICに設けられる、項目1から5のいずれかに記載の無線アクセスネットワーク制御装置。
 項目7:
 前記指示検証部の少なくとも一部は、前記rAppとのインターフェースであるR1インターフェースに併設される、項目6に記載の無線アクセスネットワーク制御装置。
 項目8:
 前記指示発行部の少なくとも一部は、前記SMO外とのインターフェースであるA1インターフェース、O1インターフェース、O2インターフェースの少なくともいずれかに併設される、項目1から7のいずれかに記載の無線アクセスネットワーク制御装置。
 項目9:
 前記少なくとも一つのプロセッサは、
 仮想化基盤情報取得部によって、無線アクセスネットワークノードを仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
 仮想化基盤情報提供部によって、前記rAppとのインターフェースであるR1インターフェースを通じて、前記仮想化基盤情報を当該rAppに提供することと、
 を実行し、
 前記指示検証部は、前記仮想化基盤情報に基づいて前記rAppが生成する前記指示を検証する、
 項目1から8のいずれかに記載の無線アクセスネットワーク制御装置。
 項目10:
 前記少なくとも一つのプロセッサは、
 稼働状況取得部によって、無線アクセスネットワークノードを仮想的に管理する仮想化基盤から当該無線アクセスネットワークノードの稼働状況を取得することと、
 稼働データ取得部によって、前記無線アクセスネットワークノードから測定された稼働データを取得することと、
 前記rAppによる稼働指針生成部によって、前記稼働状況および前記稼働データに基づいて、前記無線アクセスネットワークノードの稼働に関する稼働指針を生成することと、
 を実行し、
 前記指示検証部は、前記稼働指針を検証する、
 項目1から9のいずれかに記載の無線アクセスネットワーク制御装置。
 項目11:
 O-RANのSMO(Service Management and Orchestration)において、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、
 前記SMOにおいて、検証された前記指示を当該SMO外へ発行することと、
 を備える無線アクセスネットワーク制御方法。
 項目12:
 O-RANのSMO(Service Management and Orchestration)において、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、
 前記SMOにおいて、検証された前記指示を当該SMO外へ発行することと、
 をコンピュータに実行させる無線アクセスネットワーク制御プログラムを記憶している記憶媒体。
Item 1:
The instruction verification unit provided in the SMO (Service Management and Orchestration) of O-RAN verifies the instructions outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO. to verify and
issuing the verified instruction outside the SMO by an instruction issuing unit provided in the SMO;
A radio access network controller comprising at least one processor executing.
Item 2:
The instruction verification unit verifies operation guidelines regarding the operation of a radio access network node generated by the rApp,
The instruction issuing unit is verified against at least one of the radio access network node, a virtualization infrastructure that virtually manages the radio access network node, and a Near-RT RIC (Near-Real Time RAN Intelligent Controller). issue the said operating guidelines;
The radio access network control device according to item 1.
Item 3:
The instruction verification unit verifies a configuration change instruction regarding a configuration change outside of the SMO generated by the rApp,
The instruction issuing unit has been verified against at least one of a radio access network node, a virtualization infrastructure that virtually manages the radio access network node, and a Near-RT RIC (Near-Real Time RAN Intelligent Controller). issuing the configuration change instruction;
The radio access network control device according to item 1 or 2.
Item 4:
The instruction verification unit verifies a configuration change instruction related to a configuration change outside of the SMO generated by the rApp together with the operation guideline,
The instruction issuing unit issues the verified operation guideline and/or the configuration change instruction to at least one of the radio access network node, the virtualization infrastructure, and the Near-RT RIC.
The radio access network control device according to item 2.
Item 5:
The wireless access according to any one of items 1 to 4, wherein the instruction verification unit performs at least one of a prioritization process, an issuance scheduling process, a cancellation process, and a change process on the instruction generated by the rApp. Network control equipment.
Item 6:
6. The radio access network control device according to any one of items 1 to 5, wherein at least a part of the instruction verification unit is provided in the Non-RT RIC.
Item 7:
7. The radio access network control device according to item 6, wherein at least a part of the instruction verification unit is attached to an R1 interface that is an interface with the rApp.
Item 8:
The radio access network control device according to any one of items 1 to 7, wherein at least a part of the instruction issuing unit is attached to at least one of an A1 interface, an O1 interface, and an O2 interface, which are interfaces with the outside of the SMO. .
Item 9:
The at least one processor includes:
acquiring virtualization infrastructure information from a virtualization infrastructure that virtually manages radio access network nodes by a virtualization infrastructure information acquisition unit;
providing the virtualization infrastructure information to the rApp by a virtualization infrastructure information providing unit through an R1 interface that is an interface with the rApp;
Run
The instruction verification unit verifies the instructions generated by the rApp based on the virtualization infrastructure information.
The radio access network control device according to any one of items 1 to 8.
Item 10:
The at least one processor includes:
obtaining the operating status of the radio access network node from a virtualization platform that virtually manages the radio access network node by the operating status acquisition unit;
acquiring operational data measured from the radio access network node by an operational data acquisition unit;
Generating an operation guideline regarding the operation of the radio access network node based on the operation status and the operation data by the operation guideline generation unit by the rApp;
Run
The instruction verification unit verifies the operation guideline.
The radio access network control device according to any one of items 1 to 9.
Item 11:
In the O-RAN SMO (Service Management and Orchestration), verifying instructions to outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO,
In the SMO, issuing the verified instruction outside the SMO;
A wireless access network control method comprising:
Item 12:
In the O-RAN SMO (Service Management and Orchestration), verifying instructions to outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO,
In the SMO, issuing the verified instruction outside the SMO;
A storage medium that stores a radio access network control program that causes a computer to execute.
 本開示は、O-RANのSMOにおけるrApp指示の検証に関する。 This disclosure relates to verification of rApp instructions in SMO of O-RAN.
 1 無線アクセスネットワーク制御装置、11 O1/O2情報取得部、12 O1/O2情報提供部、13 稼働指針生成部、14 構成変更指示生成部、15 指示検証部、16 指示発行部。 1 Radio access network control device, 11 O1/O2 information acquisition unit, 12 O1/O2 information provision unit, 13 Operation guideline generation unit, 14 Configuration change instruction generation unit, 15 Instruction verification unit, 16 Instruction issuing unit.

Claims (12)

  1.  O-RANのSMO(Service Management and Orchestration)に設けられる指示検証部によって、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、
     前記SMOに設けられる指示発行部によって、検証された前記指示を当該SMO外へ発行することと、
     を実行する少なくとも一つのプロセッサを備える無線アクセスネットワーク制御装置。
    The instruction verification unit provided in the SMO (Service Management and Orchestration) of O-RAN verifies the instructions outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO. to verify and
    issuing the verified instruction outside the SMO by an instruction issuing unit provided in the SMO;
    A radio access network controller comprising at least one processor executing.
  2.  前記指示検証部は、前記rAppが生成する無線アクセスネットワークノードの稼働に関する稼働指針を検証し、
     前記指示発行部は、前記無線アクセスネットワークノード、当該無線アクセスネットワークノードを仮想的に管理する仮想化基盤、Near-RT RIC(Near-Real Time RAN Intelligent Controller)の少なくともいずれかに対して、検証された前記稼働指針を発行する、
     請求項1に記載の無線アクセスネットワーク制御装置。
    The instruction verification unit verifies operation guidelines regarding the operation of a radio access network node generated by the rApp,
    The instruction issuing unit is verified against at least one of the radio access network node, a virtualization infrastructure that virtually manages the radio access network node, and a Near-RT RIC (Near-Real Time RAN Intelligent Controller). issue the said operating guidelines;
    The radio access network control device according to claim 1.
  3.  前記指示検証部は、前記rAppが生成する前記SMO外の構成変更に関する構成変更指示を検証し、
     前記指示発行部は、無線アクセスネットワークノード、当該無線アクセスネットワークノードを仮想的に管理する仮想化基盤、Near-RT RIC(Near-Real Time RAN Intelligent Controller)の少なくともいずれかに対して、検証された前記構成変更指示を発行する、
     請求項1に記載の無線アクセスネットワーク制御装置。
    The instruction verification unit verifies a configuration change instruction regarding a configuration change outside of the SMO generated by the rApp,
    The instruction issuing unit has been verified against at least one of a radio access network node, a virtualization infrastructure that virtually manages the radio access network node, and a Near-RT RIC (Near-Real Time RAN Intelligent Controller). issuing the configuration change instruction;
    The radio access network control device according to claim 1.
  4.  前記指示検証部は、前記rAppが生成する前記SMO外の構成変更に関する構成変更指示を前記稼働指針と共に検証し、
     前記指示発行部は、前記無線アクセスネットワークノード、前記仮想化基盤、前記Near-RT RICの少なくともいずれかに対して、検証された前記稼働指針および/または前記構成変更指示を発行する、
     請求項2に記載の無線アクセスネットワーク制御装置。
    The instruction verification unit verifies a configuration change instruction related to a configuration change outside of the SMO generated by the rApp together with the operation guideline,
    The instruction issuing unit issues the verified operation guideline and/or the configuration change instruction to at least one of the radio access network node, the virtualization infrastructure, and the Near-RT RIC.
    The radio access network control device according to claim 2.
  5.  前記指示検証部は、前記rAppが生成する前記指示に対して、優先度付け処理、発行スケジューリング処理、取消し処理、変更処理の少なくともいずれかを施す、請求項1に記載の無線アクセスネットワーク制御装置。 The radio access network control device according to claim 1, wherein the instruction verification unit performs at least one of a prioritization process, an issue scheduling process, a cancellation process, and a change process on the instruction generated by the rApp.
  6.  前記指示検証部の少なくとも一部は、前記Non-RT RICに設けられる、請求項1に記載の無線アクセスネットワーク制御装置。 The radio access network control device according to claim 1, wherein at least a part of the instruction verification unit is provided in the Non-RT RIC.
  7.  前記指示検証部の少なくとも一部は、前記rAppとのインターフェースであるR1インターフェースに併設される、請求項6に記載の無線アクセスネットワーク制御装置。 The radio access network control device according to claim 6, wherein at least a part of the instruction verification unit is installed in an R1 interface that is an interface with the rApp.
  8.  前記指示発行部の少なくとも一部は、前記SMO外とのインターフェースであるA1インターフェース、O1インターフェース、O2インターフェースの少なくともいずれかに併設される、請求項1に記載の無線アクセスネットワーク制御装置。 The radio access network control device according to claim 1, wherein at least a part of the instruction issuing unit is installed in at least one of an A1 interface, an O1 interface, and an O2 interface, which are interfaces with the outside of the SMO.
  9.  前記少なくとも一つのプロセッサは、
     仮想化基盤情報取得部によって、無線アクセスネットワークノードを仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
     仮想化基盤情報提供部によって、前記rAppとのインターフェースであるR1インターフェースを通じて、前記仮想化基盤情報を当該rAppに提供することと、
     を実行し、
     前記指示検証部は、前記仮想化基盤情報に基づいて前記rAppが生成する前記指示を検証する、
     請求項1に記載の無線アクセスネットワーク制御装置。
    The at least one processor includes:
    acquiring virtualization infrastructure information from a virtualization infrastructure that virtually manages radio access network nodes by a virtualization infrastructure information acquisition unit;
    providing the virtualization infrastructure information to the rApp by a virtualization infrastructure information providing unit through an R1 interface that is an interface with the rApp;
    Run
    The instruction verification unit verifies the instructions generated by the rApp based on the virtualization infrastructure information.
    The radio access network control device according to claim 1.
  10.  前記少なくとも一つのプロセッサは、
     稼働状況取得部によって、無線アクセスネットワークノードを仮想的に管理する仮想化基盤から当該無線アクセスネットワークノードの稼働状況を取得することと、
     稼働データ取得部によって、前記無線アクセスネットワークノードから測定された稼働データを取得することと、
     前記rAppによる稼働指針生成部によって、前記稼働状況および前記稼働データに基づいて、前記無線アクセスネットワークノードの稼働に関する稼働指針を生成することと、
     を実行し、
     前記指示検証部は、前記稼働指針を検証する、
     請求項1に記載の無線アクセスネットワーク制御装置。
    The at least one processor includes:
    obtaining the operating status of the radio access network node from a virtualization platform that virtually manages the radio access network node by the operating status acquisition unit;
    acquiring operational data measured from the radio access network node by an operational data acquisition unit;
    Generating an operation guideline regarding the operation of the radio access network node based on the operation status and the operation data by the operation guideline generation unit by the rApp;
    Run
    The instruction verification unit verifies the operation guideline.
    The radio access network control device according to claim 1.
  11.  O-RANのSMO(Service Management and Orchestration)において、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、
     前記SMOにおいて、検証された前記指示を当該SMO外へ発行することと、
     を備える無線アクセスネットワーク制御方法。
    In the O-RAN SMO (Service Management and Orchestration), verifying instructions to outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO,
    In the SMO, issuing the verified instruction outside the SMO;
    A wireless access network control method comprising:
  12.  O-RANのSMO(Service Management and Orchestration)において、当該SMOにおけるNon-RT RIC(Non-Real Time RAN Intelligent Controller)によって実行されるrAppが生成する当該SMO外への指示を検証することと、
     前記SMOにおいて、検証された前記指示を当該SMO外へ発行することと、
     をコンピュータに実行させる無線アクセスネットワーク制御プログラムを記憶している記憶媒体。
    In the O-RAN SMO (Service Management and Orchestration), verifying instructions to outside the SMO generated by the rApp executed by the Non-RT RIC (Non-Real Time RAN Intelligent Controller) in the SMO,
    In the SMO, issuing the verified instruction outside the SMO;
    A storage medium that stores a radio access network control program that causes a computer to execute.
PCT/JP2022/034814 2022-09-16 2022-09-16 Verification of rapp indication in smo WO2024057544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034814 WO2024057544A1 (en) 2022-09-16 2022-09-16 Verification of rapp indication in smo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034814 WO2024057544A1 (en) 2022-09-16 2022-09-16 Verification of rapp indication in smo

Publications (1)

Publication Number Publication Date
WO2024057544A1 true WO2024057544A1 (en) 2024-03-21

Family

ID=90274684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034814 WO2024057544A1 (en) 2022-09-16 2022-09-16 Verification of rapp indication in smo

Country Status (1)

Country Link
WO (1) WO2024057544A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022079A (en) * 2019-07-25 2021-02-18 オムロン株式会社 Inference device, inference method, and inference program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022079A (en) * 2019-07-25 2021-02-18 オムロン株式会社 Inference device, inference method, and inference program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSURAGAWA TAICHII: "Efforts towards RAN intelligentization,", NTT DOCOMO TECHNICAL JOURNAL, vol. 30, no. 1, 1 April 2022 (2022-04-01), pages 27 - 36, XP093139525 *

Similar Documents

Publication Publication Date Title
US9519469B2 (en) Cloud infrastructure-based management system and method for maintenance and deployment of application system
WO2021190482A1 (en) Computing power processing network system and computing power processing method
US10827366B2 (en) System and methods for monitoring performance of slices
CN110138575B (en) Network slice creating method, system, network device and storage medium
WO2019001092A1 (en) Load balancing engine, client, distributed computing system, and load balancing method
US11751067B2 (en) Performance assurance and optimization for GAA and PAL devices in a CBRS network for private enterprise environment
KR101157041B1 (en) System and method for dds monitoring and qos control
EP3113429B1 (en) Network resource processing device, method and system
WO2022252717A1 (en) Homogeneous-heterogeneous hybrid multi-core chip architecture for implementing electric power data processing
Raeisi-Varzaneh et al. Resource scheduling in edge computing: Architecture, taxonomy, open issues and future research directions
US20230137879A1 (en) In-flight incremental processing
Bumgardner et al. Cresco: A distributed agent-based edge computing framework
Rath et al. MAQ system development in mobile ad-hoc networks using mobile agents
Chen et al. Distributed orchestration of service function chains for edge intelligence in the industrial internet of things
Li et al. Federated orchestration for network slicing of bandwidth and computational resource
US20220182851A1 (en) Communication Method and Apparatus for Plurality of Administrative Domains
CN113220459B (en) Task processing method and device
CN114205866A (en) Deterministic information reporting and issuing method and device, storage medium and electronic equipment
WO2017133020A1 (en) Method and device for policy transmission in nfv system
Wang et al. Performance modeling and suitability assessment of data center based on fog computing in smart systems
WO2024057544A1 (en) Verification of rapp indication in smo
JP2004062686A (en) Parallel processing system, server, parallel processing method, program and recording medium
CN115499432A (en) Family terminal computing resource management system and computing resource scheduling method
WO2023214442A1 (en) Issuance of hardware acceleration guide in o-ran
Hu et al. SDN-SPS: Semi-physical simulation for software-defined networks