WO2024057414A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2024057414A1
WO2024057414A1 PCT/JP2022/034271 JP2022034271W WO2024057414A1 WO 2024057414 A1 WO2024057414 A1 WO 2024057414A1 JP 2022034271 W JP2022034271 W JP 2022034271W WO 2024057414 A1 WO2024057414 A1 WO 2024057414A1
Authority
WO
WIPO (PCT)
Prior art keywords
neural network
monotonically increasing
calculation unit
intensity function
unit
Prior art date
Application number
PCT/JP2022/034271
Other languages
French (fr)
Japanese (ja)
Inventor
祥章 瀧本
真耶 大川
具治 岩田
佑典 田中
秀明 金
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/034271 priority Critical patent/WO2024057414A1/en
Publication of WO2024057414A1 publication Critical patent/WO2024057414A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Definitions

  • Embodiments of the present invention relate to an information processing device, an information processing method, and a program.
  • a method using a point process is known as one of the methods for predicting the occurrence of various events such as equipment failure, human behavior, crime, earthquakes, and infectious diseases.
  • a point process is a probabilistic model that describes the timing of events.
  • Neural networks are known as a technology that can model point processes at high speed and with high accuracy.
  • MNN monotonic neural network
  • monotonically increasing neural networks may be inferior to ordinary neural networks in terms of expressiveness. Furthermore, monotonically increasing neural networks may lack stability in learning processing due to disappearance or divergence of the gradient of the activation function. The above-mentioned challenges of monotonically increasing neural networks become especially pronounced when predicting events over time. Furthermore, it is difficult for monotonically increasing neural networks to incorporate human knowledge, such as knowledge that the intensity function changes periodically, such as on the day of the week.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide a means that enables long-term prediction of events.
  • the information processing device generates a first cumulative function based on a first monotonically increasing neural network, a second monotonically increasing neural network, an output from the first monotonically increasing neural network, and a parameter. and a second calculation unit that calculates a second cumulative function based on the output from the second monotonically increasing neural network, a parameter, and a period.
  • An information processing method of one aspect is a method performed by an information processing device, wherein a first output unit of the information processing device outputs a scalar value according to a monotonically increasing function from a first monotonically increasing neural network.
  • a second output unit of the information processing device outputs a scalar value according to a monotonically increasing function from the second monotonically increasing neural network; and
  • a first calculation unit of the information processing device outputs a scalar value according to a monotonically increasing function; calculating a first cumulative function based on a scalar value output from the monotonically increasing neural network and a parameter; and outputting from the second monotonically increasing neural network by a second calculation unit of the information processing device. calculating a second cumulative function based on the calculated scalar value, the parameter, and the period.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of an event prediction device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a learning function of the event prediction device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the structure of a sequence in a learning data set of the event prediction device according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of the configuration of a prediction function of the event prediction device according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the configuration of prediction data of the event prediction device according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of a learning operation in the event prediction device according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of a prediction operation in the event prediction device according to the first embodiment.
  • FIG. 8 is a block diagram illustrating an example of the configuration of a learning function of the event prediction device according to the second embodiment.
  • FIG. 9 is a block diagram illustrating an example of a configuration of a prediction function of an event prediction device according to the second embodiment.
  • FIG. 10 is a flowchart illustrating an example of an overview of learning operations in the event prediction device according to the second embodiment.
  • FIG. 11 is a flowchart illustrating an example of the first update process in the event prediction device according to the second embodiment.
  • FIG. 12 is a flowchart illustrating an example of the second update process in the event prediction device according to the second embodiment.
  • FIG. 13 is a flowchart illustrating an example of a prediction operation in the event prediction device according to the second embodiment.
  • FIG. 14 is a block diagram illustrating an example of a configuration of a latent expression calculation unit of an event prediction device according to a first modification.
  • FIG. 15 is a block diagram illustrating an example of the configuration of the intensity function calculation unit of the event prediction device according to the second modification.
  • FIG. 16 is a block diagram illustrating an example of the configuration of the first intensity function calculation unit of the event prediction device according to the third modification.
  • FIG. 17 is a block diagram illustrating an example of the configuration of the second intensity function calculation unit of the event prediction device according to the third modification.
  • the event prediction device includes a learning function and a prediction function.
  • the learning function is a function for meta-learning a point process.
  • the prediction function is a function that predicts the occurrence of an event based on the point process learned by the learning function.
  • An event is a phenomenon that occurs discretely over continuous time. Specifically, for example, the event is a user's purchasing behavior on an EC (Electronic Commerce) site.
  • Meta-learning is a method using MAML (Model-Agnostic Meta-Learning), for example, and is described in the document “Chelsea Finn, et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70:1126-1135, 2017., ⁇ Disclosed at https://arxiv.org/abs/1703.03400>.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of the event prediction device according to the first embodiment.
  • the event prediction device 1 includes a control circuit 10, a memory 11, a communication module 12, a user interface 13, and a drive 14.
  • the control circuit 10 is a circuit that controls each component of the event prediction device 1 as a whole.
  • the control circuit 10 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the memory 11 is a storage device of the event prediction device 1.
  • the memory 11 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), a memory card, and the like.
  • the memory 11 stores information used for learning operations and prediction operations in the event prediction device 1.
  • the memory 11 also stores a learning program for causing the control circuit 10 to perform a learning operation and a prediction program for causing the control circuit 10 to perform a predictive operation.
  • the communication module 12 is a circuit used for transmitting and receiving data to and from the outside of the event prediction device 1 via a network.
  • the user interface 13 is a circuit for communicating information between the user and the control circuit 10.
  • User interface 13 includes input equipment and output equipment.
  • Input devices include, for example, a touch panel and operation buttons.
  • the output device includes, for example, an LCD (Liquid Crystal Display), an EL (Electroluminescence) display, and a printer.
  • the user interface 13 outputs, for example, the execution results of various programs received from the control circuit 10 to the user.
  • the drive 14 is a device for reading programs stored in the storage medium 15.
  • the drive 14 includes, for example, a CD (Compact Disk) drive, a DVD (Digital Versatile Disk) drive, and the like.
  • the storage medium 15 is a medium that stores information such as programs through electrical, magnetic, optical, mechanical, or chemical action.
  • the storage medium 15 may store a learning program and a prediction program.
  • FIG. 2 is a block diagram showing an example of the learning function configuration of the event prediction device according to the first embodiment.
  • the CPU of the control circuit 10 loads the learning program stored in the memory 11 or the storage medium 15 into the RAM.
  • the CPU of the control circuit 10 controls the memory 11, the communication module 12, the user interface 13, the drive 14, and the storage medium 15 by interpreting and executing the learning program developed in the RAM.
  • the event prediction device 1 includes a computer including a data extraction unit 21, an initialization unit 22, a latent expression calculation unit 23, an intensity function calculation unit 24, an update unit 25, and a determination unit 26. functions as
  • the memory 11 of the event prediction device 1 also stores a learning data set 20 and learned parameters 27 as information used for learning operations.
  • the learning dataset 20 is, for example, a collection of event sequences of multiple users at a certain EC site.
  • the learning dataset 20 is a collection of event sequences of a certain user at multiple EC sites.
  • the learning dataset 20 has multiple sequences Ev.
  • each sequence Ev corresponds to, for example, a user.
  • each sequence Ev corresponds to, for example, an EC site.
  • Each sequence Ev is information including occurrence times t i (1 ⁇ i ⁇ I) of I events that occurred during a period [0, t e ] (I is an integer equal to or greater than 1).
  • the number of events I in each sequence Ev may be different from each other.
  • the data length of each sequence Ev may be any length.
  • the data extraction unit 21 extracts the series Ev from the learning data set 20.
  • the data extraction unit 21 further extracts a support sequence Es and a query sequence Eq from the extracted sequence Ev.
  • the data extraction unit 21 transmits the support sequence Es and the query sequence Eq to the latent expression calculation unit 23 and the update unit 25, respectively.
  • FIG. 3 is a diagram illustrating an example of the configuration of a series of learning data sets of the event prediction device according to the first embodiment.
  • the support sequence Es and the query sequence Eq are partial sequences of the sequence Ev.
  • the time ts is arbitrarily determined within the range from time 0 to less than time te .
  • the time tq is arbitrarily determined within a range greater than the time ts and less than or equal to the time te .
  • the initialization unit 22 initializes multiple parameters p1, p2a, and p2b based on rule X.
  • the initialization unit 22 transmits the plurality of initialized parameters p1 to the latent expression calculation unit 23.
  • the initialization unit 22 transmits the plurality of initialized parameters p2a and p2b to the intensity function calculation unit 24.
  • the plurality of parameters p1, p2a, and p2b will be described later.
  • Rule X includes applying to the parameters random numbers generated according to a distribution whose average is less than or equal to 0.
  • examples of applying rule X to a neural network having multiple layers include initialization of Xavier and initialization of He.
  • initializing Xavier when the number of nodes in the previous layer is n, parameters are initialized according to a normal distribution with an average of 0 and a standard deviation of 1/ ⁇ n.
  • initializing He when the number of nodes in the previous layer is n, parameters are initialized according to a normal distribution with an average of 0 and a standard deviation of ⁇ (2/n).
  • the latent expression calculation unit 23 calculates the latent expression z based on the support series Es.
  • the latent expression z is data representing the characteristics of the event occurrence timing in the series Ev.
  • the latent expression calculation unit 23 transmits the calculated latent expression z to the strength function calculation unit 24.
  • the latent expression calculation unit 23 includes a neural network 23-1.
  • the neural network 23-1 is a mathematical model modeled to input a sequence and output a latent representation.
  • the neural network 23-1 is configured so that variable length data can be input.
  • a plurality of parameters p1 are applied to the neural network 23-1 as weights and bias terms.
  • the neural network 23-1 to which the plurality of parameters p1 are applied receives the support sequence Es as an input and outputs a latent expression z.
  • the neural network 23-1 transmits the output latent expression z to the strength function calculation unit 24.
  • the strength function calculation unit 24 calculates the strength function ⁇ (t) based on the latent expression z and time t.
  • the intensity function ⁇ (t) is a time function that indicates how likely (for example, the probability of occurrence) an event will occur in a future time period.
  • the intensity function calculation unit 24 transmits the calculated intensity function ⁇ (t) to the update unit 25.
  • the intensity function calculation unit 24 includes a first monotonically increasing neural network 24-1a, a second monotonically increasing neural network 24-1b, a cumulative intensity function calculation unit 24-2, and an automatic differentiation unit 24-3. .
  • the first monotonically increasing neural network 24-1a is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by a latent expression and time.
  • the second monotonically increasing neural network 24-1b is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by a latent representation, a period, and time.
  • a plurality of weights and bias terms based on a plurality of parameters p2a are applied to the first monotonically increasing neural network 24-1a.
  • a negative value is included in the weight of the plurality of parameters p2a, the negative value is converted into a non-negative value by an operation such as taking an absolute value.
  • the plurality of parameters p2a may be directly applied as weights and bias terms to the first monotonically increasing neural network 24-1a. That is, each weight applied to the first monotonically increasing neural network 24-1a is a non-negative value.
  • the first monotonically increasing neural network 24-1a to which the plurality of parameters p2a is applied calculates an output f(z, t), etc. as a scalar value according to a monotonically increasing function defined by the latent expression z and time t.
  • the first monotonically increasing neural network 24-1a transmits the output f(z, t) and the like to the cumulative intensity function calculation unit 24-2.
  • a plurality of weights and bias terms based on a plurality of parameters p2b are applied to the second monotonically increasing neural network 24-1b.
  • a negative value is included in the weight of the plurality of parameters p2b, the negative value is converted into a non-negative value by an operation such as taking an absolute value.
  • the plurality of parameters p2b may be directly applied as weights and bias terms to the second monotonically increasing neural network 24-1b. That is, each weight applied to the second monotonically increasing neural network 24-1b is a non-negative value.
  • the second monotonically increasing neural network 24-1b to which the plurality of parameters p2b is applied outputs g(z, t′) and g(z, ⁇ ), etc. t' is calculated according to the following equation (1).
  • is a cycle of, for example, one day or one week, and is set in advance.
  • the second monotonically increasing neural network 24-1b transmits outputs g(z, t'), g(z, ⁇ ), etc. to the cumulative intensity function calculation unit 24-2.
  • the cumulative intensity function calculating unit 24-2 calculates the period ⁇ , the outputs f(z, t), g(z, t'), and g( A cumulative intensity function ⁇ (t) is calculated based on z, ⁇ ), etc.
  • ⁇ 1 (u) in equation (3) etc. is a non-periodic part in the intensity function
  • ⁇ 2 (u) in equation (4) etc. is a periodic part in the intensity function.
  • f(z, t) and f(z, 0) on the right side of equation (3) regarding ⁇ 1 (u) are calculated by the first monotonically increasing neural network 24-1a.
  • Equation (4) makes it possible to define an arbitrarily shaped intensity function with a period ⁇ . Therefore, while human knowledge that there is a period is incorporated into the model, there is no need for assumptions that constrain the shape of the model, that is, that limit the expressive power required of each monotonically increasing neural network.
  • the cumulative intensity function ⁇ (t) is expressed as The output g(z, t') from the second monotonically increasing neural network 24-1b is taken into consideration.
  • the cumulative intensity function calculation section 24-2 transmits the calculated cumulative intensity function ⁇ (t) to the automatic differentiation section 24-3.
  • the automatic differentiation section 24-3 calculates the intensity function ⁇ (t) by automatically differentiating the cumulative intensity function ⁇ (t).
  • the automatic differentiator 24-3 transmits the calculated intensity function ⁇ (t) to the updater 25.
  • the updating unit 25 updates the plurality of parameters p1, p2a, and p2b based on the intensity function ⁇ (t) and the query sequence Eq.
  • the updated plurality of parameters p1, p2a, and p2b are applied one-to-one to the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b, respectively.
  • the updating unit 25 transmits the updated parameters p1, p2a, and p2b to the determining unit 26.
  • the update unit 25 includes an evaluation function calculation unit 25-1 and an optimization unit 25-2.
  • the evaluation function calculation unit 25-1 calculates the evaluation function L(Eq) based on the intensity function ⁇ (t) and the query sequence Eq.
  • the evaluation function L(Eq) is, for example, a negative log likelihood.
  • the evaluation function calculation unit 25-1 transmits the calculated evaluation function L(Eq) to the optimization unit 25-2.
  • the optimization unit 25-2 optimizes the plurality of parameters p1, p2a, and p2b based on the evaluation function L(Eq). For example, an error backpropagation method is used for the optimization.
  • the optimization unit 25-2 applies the optimized parameters p1, p2a, and p2b to the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b.
  • a plurality of parameters p1, p2a, and p2b that are applied on a one-to-one basis are updated.
  • the optimization unit 25-2 may optimize the above parameters based on a negative log likelihood in which events in the support sequence Es are taken into consideration.
  • the determination unit 26 determines whether or not a condition is satisfied based on the updated parameters p1, p2a, and p2b.
  • the condition may be, for example, that the number of times the parameters p1, p2a, and p2b are transmitted to the determination unit 26 (i.e., the number of parameter update loops) is equal to or greater than a threshold.
  • the condition may be, for example, that the amount of change in the values of the parameters p1, p2a, and p2b before and after the update is equal to or less than a threshold. If the condition is not satisfied, the determination unit 26 causes the data extraction unit 21, the latent expression calculation unit 23, the intensity function calculation unit 24, and the update unit 25 to repeatedly execute a parameter update loop.
  • the determination unit 26 ends the parameter update loop and stores the last updated parameters p1, p2a, and p2b in the memory 11 as the learned parameters 27.
  • the parameters in the learned parameters 27 are described as p1 * , p2a * , and p2b * to distinguish them from the parameters before learning.
  • the event prediction device 1 has a function of generating learned parameters 27 based on the learning data set 20.
  • FIG. 4 is a block diagram showing an example of a prediction function configuration of the event prediction device according to the first embodiment.
  • the CPU of the control circuit 10 loads the prediction program stored in the memory 11 or the storage medium 15 into the RAM.
  • the CPU of the control circuit 10 controls the memory 11, the communication module 12, the user interface 13, the drive 14, and the storage medium 15 by interpreting and executing the prediction program developed in the RAM.
  • the event prediction device 1 further functions as a computer including a latent expression calculation section 23, an intensity function calculation section 24, and a prediction sequence generation section 29.
  • the memory 11 of the event prediction device 1 further stores prediction data 28 as information used for prediction operations.
  • the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b each have a plurality of parameters p1 * , p2a * , and A case is shown where p2b * is applied on a one-to-one basis.
  • the prediction data 28 corresponds to, for example, the new user's event series for the next one week.
  • the prediction data 28 corresponds to, for example, the user's event sequence for the next one week on another EC site.
  • FIG. 5 is a diagram illustrating an example of the configuration of prediction data of the event prediction device according to the first embodiment.
  • the prediction data 28 has a prediction sequence Es * .
  • the prediction sequence Es * is information including the occurrence time of an event that occurred before the period to be predicted.
  • the period Tq * (ts * , tq * ) following the period Ts * is the period in which event occurrence is predicted in the prediction operation.
  • information including the occurrence time of the event predicted in the period Tq * will be used. Let be the predicted series Eq * .
  • the latent expression calculation unit 23 inputs the prediction sequence Es * in the prediction data 28 to the neural network 23-1.
  • the neural network 23-1 to which a plurality of parameters p1 * are applied receives the prediction sequence Es * as an input and outputs a latent expression z * .
  • the neural network 23-1 transmits the output latent expression z * to the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b within the intensity function calculation unit 24.
  • the first monotonically increasing neural network 24-1a to which a plurality of parameters p2a * are applied outputs f* ( z * ,t) and f * (z * ,0) is calculated.
  • the first monotonically increasing neural network 24-1a transmits the outputs f * (z * , t) and f * (z * , 0) to the cumulative intensity function calculation unit 24-2.
  • the second monotonically increasing neural network 24-1b to which a plurality of parameters p2b * are applied outputs g* ( z * , t'), g * (z * , ⁇ ), and g * (z * , 0).
  • the second monotonically increasing neural network 24-1b transmits the calculated value to the cumulative intensity function calculation unit 24-2.
  • the cumulative intensity function calculation unit 24-2 calculates the above equations (2) to (4) (where z, f, g, ⁇ , and ⁇ are replaced by z * , f * , g * , ⁇ * , and ⁇ *) .
  • the cumulative intensity function ⁇ * (t) is calculated based on the period ⁇ and the outputs f * (z * , t), g * ( z * , t'), g * (z * , ⁇ ), etc. according to calculate.
  • the cumulative intensity function calculation unit 24-2 transmits the calculated cumulative intensity function ⁇ * (t) to the automatic differentiation unit 24-3.
  • the automatic differentiator 24-3 calculates the intensity function ⁇ * (t) by automatically differentiating the cumulative intensity function ⁇ * (t).
  • the automatic differentiator 24-3 transmits the calculated intensity function ⁇ * (t) to the predicted sequence generator 29.
  • the predicted sequence generation unit 29 generates the predicted sequence Eq * based on the intensity function ⁇ * (t).
  • the predicted sequence generation unit 29 outputs the generated predicted sequence Eq * to the user.
  • the predicted sequence generation unit 29 may output the intensity function ⁇ * (t) to the user. Note that to generate the predicted sequence Eq * , a simulation using the Lewis method or the like is performed, for example.
  • the event prediction device 1 has a function of predicting the prediction sequence Eq * following the prediction sequence Es * based on the learned parameters 27 .
  • FIG. 6 is a flowchart showing an example of the learning operation in the event prediction device according to the first embodiment. In the example of FIG. 6, it is assumed that the learning data set 20 is stored in the memory 11 in advance.
  • the initialization unit 22 in response to a user's instruction to start a learning operation (start), the initialization unit 22 initializes a plurality of parameters p1, p2a, and p2b based on rule X (S10). .
  • the initialization unit 22 initializes the plurality of parameters p1, p2a, and p2b based on Xavier initialization or He initialization.
  • the plurality of parameters p1, p2a, and p2b initialized by the process of S10 are applied to the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b, respectively. .
  • the data extraction unit 21 extracts the series Ev from the learning data set 20. Subsequently, the data extraction unit 21 further extracts the support sequence Es and the query sequence Eq from the extracted sequence Ev (S11).
  • the neural network 23-1 to which the plurality of parameters p1 initialized in the process of S10 is applied calculates a latent expression z by inputting the support series Es extracted in the process of S11 (S12).
  • the first monotonically increasing neural network 24-1a to which the plurality of parameters p2a initialized in the process of S10 is applied follows the monotonically increasing function defined by the latent expression z calculated in the process of S12 and the time t. Outputs f(z, t) and f(z, 0) are calculated (S13).
  • the second monotonically increasing neural network 24-1b to which the plurality of parameters p2b initialized in the process of S10 is applied is defined by the latent expression z, time t, time t', and period ⁇ calculated in the process of S12.
  • Outputs g(z, t'), g(z, ⁇ ), and g(z, 0) are calculated according to the monotonically increasing function (S14).
  • the cumulative intensity function calculation unit 24-2 calculates the cumulative intensity function ⁇ ( t) is calculated (S15).
  • the automatic differentiation unit 24-3 calculates the intensity function ⁇ (t) based on the cumulative intensity function ⁇ (t) calculated in the process of S15 (S16).
  • the updating unit 25 updates the plurality of parameters p1, p2a, and p2b based on the intensity function ⁇ (t) calculated in S16 and the query sequence Eq extracted in the process of S11 (S17). Specifically, the evaluation function calculation unit 25-1 calculates the evaluation function L(Eq) based on the intensity function ⁇ (t) and the query sequence Eq. The optimization unit 25-2 uses the error backpropagation method to calculate a plurality of optimized parameters p1, p2a, and p2b based on the evaluation function L(Eq).
  • the optimization unit 25-2 applies the optimized parameters p1, p2a, and p2b to a neural network 23-1, a first monotonically increasing neural network 24-1a, and a second monotonically increasing neural network 24-1b, respectively. applied on a one-to-one basis.
  • the determination unit 26 determines whether the condition is satisfied based on the plurality of parameters p1, p2a, and p2b (S18).
  • the data extraction unit 21 extracts a new support sequence Es and query sequence Eq from the learning dataset 20 (S11). Then, based on the extracted new support series Es and query series Eq, and the plurality of parameters p1, p2a, and p2b updated in the process of S17, the processes of S12 to S18 are executed. As a result, the process of updating the plurality of parameters p1, p2a, and p2b is repeated until it is determined in the process of S18 that the condition is satisfied.
  • the determination unit 26 sets the plurality of parameters p1, p2a, and p2b that were last updated in the process of S17 as learned parameters p1 * , p2a * , and p2b *. 27 (S19).
  • FIG. 7 is a flowchart showing an example of prediction operation in the event prediction device according to the first embodiment.
  • a plurality of parameters p1 * , p2a * , and p2b * in the learned parameters 27 are set to the neural network 23-1 and the first monotonically increasing neural network 24-1a, respectively, by the learning operation executed in advance. , and the second monotonically increasing neural network 24-1b on a one-to-one basis.
  • the prediction data 28 is stored in the memory 11.
  • the neural network 23-1 to which a plurality of parameters p1 * are applied inputs the prediction sequence Es * and generates a latent expression z. * is calculated (S20).
  • the first monotonically increasing neural network 24-1a to which a plurality of parameters p2a* are applied outputs an output f * (z * , t) and f * (z * , 0) are calculated (S21).
  • the second monotonically increasing neural network 24-1b to which a plurality of parameters p2b * are applied is a monotonically increasing function defined by the latent expression z * calculated in the process of S20, time t, time t', and period ⁇ . Accordingly, outputs g * (z * , t'), g * (z * , ⁇ ), and g * (z * , 0) are calculated (S22).
  • the cumulative intensity function calculation unit 24-2 calculates the outputs f * (z * , t) and f * (z * , 0) calculated in the process of S21 and the output g * (z * ) calculated in the process of S22. , t'), g * (z * , ⁇ ), and g * (z * , 0), the cumulative intensity function ⁇ * (t) is calculated (S23).
  • the automatic differentiator 24-3 calculates the intensity function ⁇ * (t) based on the cumulative intensity function ⁇ * (t) calculated in the process of S23 (S24).
  • the predicted sequence generation unit 29 generates the predicted sequence Eq * based on the intensity function ⁇ * (t) calculated in S24 (S25). Then, the predicted sequence generation unit 29 outputs the predicted sequence Eq * generated in the process of S25 to the user.
  • the first monotonically increasing neural network 24-1a outputs f according to the monotonically increasing function defined by the latent representation z of the support sequence Es and the time t. (z, t) and f(z, 0).
  • the second monotonically increasing neural network 24-1b outputs g(z, t'), g(z , ⁇ ), and g(z,0).
  • the cumulative intensity function calculation unit 24-2 calculates the Then, the cumulative intensity function ⁇ (t) is calculated. This eliminates the need for the first monotonically increasing neural network 24-1a to represent periodic changes. Therefore, the requirement for expressiveness required for the output of the first monotonically increasing neural network 24-1a can be relaxed.
  • the automatic differentiator 24-3 calculates the intensity function ⁇ (t) regarding the point process based on the cumulative intensity function ⁇ (t).
  • the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b can be used for modeling a point process. Therefore, long-term prediction of events can be performed using the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b.
  • modeling of the intensity function ⁇ (t) may be realized by combining with a meta-learning method such as MAML (Model-Agnostic Meta-Learning).
  • MAML Model-Agnostic Meta-Learning
  • FIG. 8 is a block diagram showing an example of the learning function configuration of the event prediction device according to the second embodiment.
  • the event prediction device 1 includes a data extraction section 31, an initialization section 32, a first intensity function calculation section 33A, a second intensity function calculation section 33B, a first update section 34A, and a second update section. 34B, a first determination section 35A, and a second determination section 35B.
  • the memory 11 of the event prediction device 1 also stores a learning data set 30 and learned parameters 36 as information used for learning operations.
  • the learning data set 30 and the data extraction unit 31 are equivalent to the learning data set 20 and the data extraction unit 21 in the first embodiment. That is, the data extraction unit 31 extracts the support sequence Es and the query sequence Eq from the learning data set 30.
  • the initialization unit 32 initializes multiple parameters p2a and p2b based on rule X.
  • the initialization unit 22 transmits the plurality of initialized parameters p2a and p2b to the first intensity function calculation unit 33A.
  • the set of the plurality of parameters p2a and p2b is also referred to as a parameter set ⁇ p2a, p2b ⁇ .
  • the plurality of parameters p2a and p2b in the parameter set ⁇ p2a, p2b ⁇ are also referred to as the plurality of parameters ⁇ p2a ⁇ and ⁇ p2b ⁇ , respectively.
  • the first intensity function calculation unit 33A calculates the intensity function ⁇ a (t) based on time t.
  • the first intensity function calculation unit 33A transmits the calculated intensity function ⁇ a (t) to the first update unit 34A.
  • the first intensity function calculating section 33A includes a first monotonically increasing neural network 33A-1a, a second monotonically increasing neural network 33A-1b, a cumulative intensity function calculating section 33A-2, and an automatic differentiation section 33A-3. including.
  • the first monotonically increasing neural network 33A-1a is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by time.
  • a plurality of weights and bias terms based on a plurality of parameters ⁇ p2a ⁇ are applied to the first monotonically increasing neural network 33A-1a.
  • Each weight applied to the first monotonically increasing neural network 33A-1a is a non-negative value.
  • the first monotonically increasing neural network 33A-1a to which a plurality of parameters ⁇ p2a ⁇ are applied calculates outputs f a (t) and f a (0) according to a monotonically increasing function defined by time t.
  • the first monotonically increasing neural network 33A-1a transmits the calculated outputs f a (t) and f a (0) to the cumulative intensity function calculation unit 33A-2.
  • the second monotonically increasing neural network 33A-1b is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by period and time.
  • a plurality of weights and bias terms based on a plurality of parameters ⁇ p2b ⁇ are applied to the second monotonically increasing neural network 33A-1b.
  • Each weight applied to the second monotonically increasing neural network 33A-1b is a non-negative value.
  • the second monotonically increasing neural network 33A-1b to which a plurality of parameters ⁇ p2b ⁇ are applied outputs g a (t'), g a ( ⁇ ) and g a (0) are calculated.
  • the second monotonically increasing neural network 33A-1b transmits the calculated outputs g a (t'), g a ( ⁇ ), and g a (0) to the cumulative intensity function calculation unit 33A-2.
  • the cumulative intensity function calculation unit 33A-2 calculates the period ⁇ , the outputs f a (t), f a (0), g a (t'), according to equations (5), (6), and (7) shown below.
  • a cumulative intensity function ⁇ a (t) is calculated based on g a ( ⁇ ) and g a (0).
  • the cumulative intensity function calculation unit 33A-2 transmits the calculated cumulative intensity function ⁇ a (t) to the automatic differentiation unit 33A-3.
  • the automatic differentiator 33A-3 calculates the intensity function ⁇ a (t) by automatically differentiating the cumulative intensity function ⁇ a (t).
  • the automatic differentiator 33A-3 transmits the calculated intensity function ⁇ a (t) to the first updater 34A.
  • the first updating unit 34A updates the parameter set ⁇ p2a, p2b ⁇ based on the intensity function ⁇ a (t) and the support sequence Es.
  • the updated plurality of parameters ⁇ p2a ⁇ and ⁇ p2a ⁇ are respectively applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Further, the first updating unit 34A transmits the updated parameter set ⁇ p2a, p2b ⁇ to the first determining unit 35A.
  • the first update section 34A includes an evaluation function calculation section 34A-1 and an optimization section 34A-2.
  • the evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es) based on the intensity function ⁇ a (t) and the support series Es.
  • the evaluation function L a (Es) is, for example, a negative log likelihood.
  • the evaluation function calculation unit 34A-1 transmits the calculated evaluation function L a (Es) to the optimization unit 34A-2.
  • the optimization unit 34A-2 optimizes the parameter set ⁇ p2a, p2b ⁇ based on the evaluation function L a (Es). For example, an error backpropagation method is used for the optimization.
  • the optimization unit 34A-2 is the optimized parameter set ⁇ p2a, p2b ⁇ , and the parameter set ⁇ applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. p2a, p2b ⁇ .
  • the first determination unit 35A determines whether the first condition is satisfied based on the updated parameter set ⁇ p2a, p2b ⁇ .
  • the first condition is, for example, the number of times the parameter set ⁇ p2a, p2b ⁇ is transmitted to the first determination unit 35A (that is, the number of update loops of the parameter set in the first intensity function calculation unit 33A and the first update unit 34A). may be greater than or equal to a threshold value.
  • the first condition may be, for example, that the amount of change in the value of the parameter set ⁇ p2a, p2b ⁇ before and after updating is equal to or less than a threshold value.
  • the parameter set update loop in the first intensity function calculation unit 33A and the first update unit 34A is also referred to as an inner loop.
  • the first determination unit 35A causes the update to be repeatedly executed using the inner loop. If the first condition is satisfied, the first determination unit 35A ends the update using the inner loop, and transmits the last updated parameter set ⁇ p2a, p2b ⁇ to the second intensity function calculation unit 33B.
  • the parameter set sent to the second intensity function calculation unit 33B in the learning function will be described as ⁇ ' ⁇ p2a, p2b ⁇ in order to distinguish it from the parameter set before learning.
  • the second intensity function calculation unit 33B calculates the intensity function ⁇ b (t) based on the time t, the time t′, and the period ⁇ .
  • the second intensity function calculation unit 33B transmits the calculated intensity function ⁇ b (t) to the second update unit 34B.
  • the second intensity function calculating section 33B includes a first monotonically increasing neural network 33B-1a, a second monotonically increasing neural network 33B-1b, a cumulative intensity function calculating section 33B-2, and an automatic differentiation section 33B-3. including.
  • the first monotonically increasing neural network 33B-1a is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by time.
  • a plurality of parameters ⁇ ' ⁇ p2a ⁇ are applied to the first monotonically increasing neural network 33B-1a as weights and bias terms.
  • the first monotonically increasing neural network 33B-1a to which a plurality of parameters ⁇ ' ⁇ p2a ⁇ are applied calculates outputs f b (t) and f b (0) according to a monotonically increasing function defined by time t.
  • the first monotonically increasing neural network 33B-1a transmits the calculated outputs f b (t) and f b (0) to the cumulative intensity function calculation unit 33B-2.
  • the second monotonically increasing neural network 33B-1b is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by time and period.
  • a plurality of parameters ⁇ ' ⁇ p2b ⁇ are applied as weights and bias terms to the second monotonically increasing neural network 33B-1b.
  • the second monotonically increasing neural network 33B-1b to which a plurality of parameters ⁇ ' ⁇ p2b ⁇ are applied outputs g b (t'), g according to a monotonically increasing function defined by time t, time t', and period ⁇ . Calculate b ( ⁇ ) and g b (0).
  • the second monotonically increasing neural network 33B-1b transmits the calculated outputs g b (t'), g b ( ⁇ ), and g b (0) to the cumulative intensity function calculation unit 33B-2.
  • the cumulative intensity function calculation unit 33B-2 calculates the period according to the above equations (5), (6), and (7) (where ⁇ a , f a , and g a are replaced with ⁇ b , f b , and g b ).
  • a cumulative intensity function ⁇ b (t) is calculated based on ⁇ and the outputs f b (t), f b (0), g b (t'), g b ( ⁇ ), and g b (0).
  • the cumulative intensity function calculation unit 33B-2 transmits the calculated cumulative intensity function ⁇ b (t) to the automatic differentiation unit 33B-3.
  • the automatic differentiation section 33B-3 calculates the intensity function ⁇ b (t) by automatically differentiating the cumulative intensity function ⁇ b (t).
  • the automatic differentiator 33B-3 transmits the calculated intensity function ⁇ b (t) to the second updater 34B.
  • the second updating unit 34B updates the parameter set ⁇ p2a, p2b ⁇ based on the intensity function ⁇ b (t) and the query sequence Eq.
  • the updated plurality of parameters ⁇ p2a ⁇ and ⁇ p2b ⁇ are respectively applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Further, the second updating section 34B transmits the updated parameter set ⁇ p2a, p2b ⁇ to the second determining section 35B.
  • the second update unit 34B includes an evaluation function calculation unit 34B-1 and an optimization unit 34B-2.
  • the evaluation function calculation unit 34B-1 calculates the evaluation function L b (Eq) based on the intensity function ⁇ b (t) and the query sequence Eq.
  • the evaluation function L b (Eq) is, for example, a negative log likelihood.
  • the evaluation function calculation unit 34B-1 transmits the calculated evaluation function L b (Eq) to the optimization unit 34B-2.
  • the optimization unit 34B-2 optimizes the parameter set ⁇ p2a, p2b ⁇ based on the evaluation function L b (Eq). For example, an error backpropagation method is used to optimize the parameter set ⁇ p2a, p2b ⁇ . More specifically, the optimization unit 34B-2 calculates the second derivative of the evaluation function L b (Eq) with respect to the parameter set ⁇ p2a, p2b ⁇ using the parameter set ⁇ ′ ⁇ p2a, p2b ⁇ , and Optimize the set ⁇ p2a, p2b ⁇ . The optimization unit 34B-2 then sets the parameter set ⁇ p2a, p2b ⁇ to be applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Update ⁇ p2a, p2b ⁇ .
  • the second determination unit 35B determines whether the second condition is satisfied based on the updated parameter set ⁇ p2a, p2b ⁇ .
  • the second condition is, for example, the number of times the parameter set ⁇ p2a, p2b ⁇ is transmitted to the second determination unit 35B (that is, the number of update loops of the parameter set in the second intensity function calculation unit 33B and the second update unit 34B). may be greater than or equal to a threshold value.
  • the second condition may be, for example, that the amount of change in the value of the parameter set ⁇ p2a, p2b ⁇ before and after updating is equal to or less than a threshold value.
  • the parameter set update loop in the second intensity function calculation unit 33B and the second update unit 34B will also be referred to as an outer loop.
  • the second determination unit 35B causes the parameter set to be updated repeatedly using the outer loop. If the second condition is satisfied, the second determination unit 35B ends the updating of the parameter set by the outer loop, and stores the last updated parameter set ⁇ p2a, p2b ⁇ in the memory 11 as the learned parameters 36. Make me remember.
  • the parameter set in the learned parameters 36 will be described as ⁇ p2a * , p2b * ⁇ in order to distinguish it from the parameter set before learning by the outer loop.
  • the event prediction device 1 has a function of generating learned parameters 36 based on the learning data set 30.
  • FIG. 9 is a block diagram showing an example of the configuration of the prediction function of the event prediction device according to the second embodiment.
  • the event prediction device 1 includes a first intensity function calculation section 33A, a first update section 34A, a first determination section 35A, a second intensity function calculation section 33B, and a prediction sequence generation section 38. It also functions as a computer. Furthermore, the memory 11 of the event prediction device 1 further stores prediction data 37 as information used for prediction operations. The configuration of the prediction data 37 is equivalent to the prediction data 28 in the first embodiment.
  • FIG. 9 shows a case where the parameter set ⁇ p2a * , p2b * ⁇ is applied from the learned parameters 36 to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. It will be done.
  • the first monotonically increasing neural network 33A-1a to which a plurality of parameters ⁇ p2a * ⁇ is applied calculates outputs f a * (t) and f a * (0) according to a monotonically increasing function defined by time t. do.
  • the first monotonically increasing neural network 33A-1a transmits the calculated outputs f a * (t) and f a * (0) to the cumulative intensity function calculation unit 33A-2.
  • the second monotonically increasing neural network 33A-1b to which a plurality of parameters ⁇ p2b * ⁇ is applied outputs g a * (t' ), g a * ( ⁇ ) and g a * (0) are calculated.
  • the second monotonically increasing neural network 33A-1b transmits the calculated outputs g a * (t'), g a * ( ⁇ ), and g a * (0) to the cumulative intensity function calculation unit 33 A-2.
  • the cumulative intensity function calculation unit 33A-2 calculates the above equations (5), (6), and (7) (where f a , g a , ⁇ a , and ⁇ a are replaced by f a * , g a * , ⁇ a * , and ⁇ a * ) and based on the outputs f a * (t), f a * (0), g a * (t'), g a * ( ⁇ ) and g a * (0) Then, the cumulative intensity function ⁇ a * (t) is calculated.
  • the cumulative intensity function calculation unit 33A-2 transmits the calculated cumulative intensity function ⁇ a * (t) to the automatic differentiation unit 33A-3.
  • the automatic differentiation section 33A-3 calculates the intensity function ⁇ a * (t) by automatically differentiating the cumulative intensity function ⁇ a * (t).
  • the automatic differentiation section 33A-3 transmits the calculated intensity function ⁇ a * (t) to the first determination section 35A.
  • the evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es * ) based on the intensity function ⁇ a * (t) and the prediction sequence Es * .
  • the evaluation function L a (Es * ) is, for example, a negative log likelihood.
  • the evaluation function calculation unit 34A-1 transmits the calculated evaluation function L a (Es * ) to the optimization unit 34A-2.
  • the optimization unit 34A-2 optimizes the parameter set ⁇ p2a * , p2b * ⁇ based on the evaluation function L a (Es * ). For example, an error backpropagation method is used for the optimization.
  • the optimization unit 34A-2 uses the optimized parameter set ⁇ p2a * , p2b * ⁇ as a parameter set to be applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Update ⁇ p2a * , p2b * ⁇ .
  • the first judgment unit 35A judges whether the third condition is satisfied based on the updated parameter set ⁇ p2a * , p2b * ⁇ .
  • the third condition may be, for example, that the number of inner loops for updating the parameter set ⁇ p2a * , p2b * ⁇ is equal to or greater than a threshold.
  • the third condition may be, for example, that the amount of change in the value of the parameter set ⁇ p2a * , p2b * ⁇ before and after the update is equal to or less than a threshold.
  • the first determination unit 35A causes the inner loop to repeatedly update the parameter set. If the third condition is satisfied, the first determination unit 35A ends the update of the parameter set by the inner loop, and sends the last updated parameter set ⁇ p2a * , p2b * ⁇ to the second intensity function calculation unit. 33B.
  • the parameter set sent to the second strength function calculation unit 33B in the prediction function will be described as ⁇ ' ⁇ p2a * , p2b * ⁇ .
  • the first monotonically increasing neural network 33B-1a to which the parameter ⁇ ' ⁇ p2a * ⁇ is applied calculates the outputs f b * (t) and f b * (0) according to the monotonically increasing function defined by the time t. .
  • the first monotonically increasing neural network 33B-1a transmits the calculated outputs f b * (t) and f b * (0) to the cumulative intensity function calculation unit 33B-2.
  • the second monotonically increasing neural network 33B-1b to which the parameter ⁇ ' ⁇ p2b * ⁇ is applied outputs g b * (t'), g according to a monotonically increasing function defined by time t, time t' and period ⁇ . Calculate b * ( ⁇ ) and g b * (0).
  • the second monotonically increasing neural network 33B-1b outputs the calculated outputs f b * (t), f b * (0), g b * (t'), g b * ( ⁇ ), and g b * (0). is transmitted to the cumulative intensity function calculation unit 33B-2.
  • the cumulative intensity function calculation unit 33B-2 calculates the above equations (5), (6), and (7) (where f a , g a , ⁇ a , and ⁇ a are replaced by f b * , g b * , ⁇ b * , and ⁇ b * ), the period ⁇ , the output f b * (t), f b * (0), g b * (t'), g b * ( ⁇ ), and g b * (0)
  • the cumulative intensity function ⁇ b * (t) is calculated based on .
  • the cumulative intensity function calculation unit 33B-2 transmits the calculated cumulative intensity function ⁇ b * (t) to the automatic differentiation unit 33B-3.
  • the automatic differentiation section 33B-3 calculates the intensity function ⁇ b * (t) by automatically differentiating the cumulative intensity function ⁇ b * (t).
  • the automatic differentiation section 33B-3 transmits the calculated intensity function ⁇ b * (t) to the prediction sequence generation section 38.
  • the predicted sequence generation unit 38 generates the predicted sequence Eq * based on the intensity function ⁇ b * (t).
  • the predicted sequence generation unit 38 outputs the generated predicted sequence Eq * to the user. Note that to generate the predicted sequence Eq * , a simulation using the Lewis method or the like is performed, for example.
  • the event prediction device 1 has a function of predicting the prediction sequence Eq * following the prediction sequence Es * based on the learned parameters 36 .
  • FIG. 10 is a flowchart showing an example of an overview of the learning operation in the event prediction device according to the second embodiment. In the example of FIG. 10, it is assumed that the learning data set 30 is stored in the memory 11 in advance.
  • the initialization unit 32 in response to the user's instruction to start the learning operation (start), the initialization unit 32 initializes the parameter set ⁇ p2a, p2b ⁇ based on rule X (S50).
  • the parameter set ⁇ p2a, p2b ⁇ initialized by the process of S50 is applied to the first intensity function calculation unit 33A.
  • the data extraction unit 31 extracts the series Ev from the learning data set 30. Subsequently, the data extraction unit 31 further extracts the support sequence Es and the query sequence Eq from the extracted sequence Ev (S51).
  • the first intensity function calculation unit 33A and the first update unit 34A to which the parameter set ⁇ p2a, p2b ⁇ initialized in the process of S50 is applied perform the first update process of the parameter set ⁇ p2a, p2b ⁇ . Execute (S52). Details of the first update process will be described later.
  • the first determination unit 35A determines whether the first condition is satisfied based on the parameter set ⁇ p2a, p2b ⁇ updated in the process of S52 (S53).
  • the first intensity function calculation unit 33A and the first update unit 34A to which the parameter set ⁇ p2a, p2b ⁇ updated in the process of S52 is applied The first update process is executed again (S52). In this way, the first update process is repeated (inner loop) until it is determined in the process of S53 that the first condition is satisfied.
  • the first determination unit 35A sets the parameter set ⁇ p2a, p2b ⁇ that was last updated in the process of S52 as the parameter set ⁇ ' ⁇ p2a, p2b ⁇ . It is applied to the second intensity function calculation unit 33B (S54).
  • the second intensity function calculation unit 33B and the second update unit 34B to which the parameter set ⁇ ' ⁇ p2a, p2b ⁇ is applied execute a second update process for the parameter set ⁇ p2a, p2b ⁇ (S55). Details of the second update process will be described later.
  • the second determination unit 35B determines whether the second condition is satisfied based on the parameter set ⁇ p2a, p2b ⁇ updated in the process of S55 (S56).
  • the data extraction unit 31 extracts a new support sequence Es and a query sequence Eq (S51). Then, the inner loop and the second update process are repeated (outer loop) until it is determined in the process of S56 that the second condition is satisfied.
  • the second determination unit 35B converts the parameter set ⁇ p2a, p2b ⁇ that was last updated in the process of S55 into the parameter set ⁇ p2a * , p2b * ⁇
  • the learned parameter 36 is stored as the learned parameter 36 (S57).
  • FIG. 11 is a flowchart illustrating an example of the first update process in the event prediction device according to the second embodiment.
  • the processing of S52-1a to S52-4 shown in FIG. 11 corresponds to the processing of S52 in FIG. 10.
  • the first monotonically increasing neural network 33A-1a to which the plurality of parameters ⁇ p2a ⁇ initialized in the process of S50 are applied follows the monotonically increasing function defined by the time t. Outputs f a (t) and f a (0) are calculated (S52-1a). Further, the second monotonically increasing neural network 33A-1b to which the plurality of parameters ⁇ p2b ⁇ initialized in the process of S50 is applied follows a monotonically increasing function defined by time t, time t', and period ⁇ . Outputs g a (t'), g a ( ⁇ ), and g a (0) are calculated (S52-1b).
  • the cumulative intensity function calculation unit 33A-2 outputs f a (t), f a (0) calculated in the process of S52-1a, and g a (t'), g a calculated in the process of S52-1b.
  • the cumulative intensity function ⁇ a (t) is calculated based on ( ⁇ ) and g a (0) (S52-2).
  • the automatic differentiator 33A-3 calculates the intensity function ⁇ a (t) based on the cumulative intensity function ⁇ a (t) calculated in the process of S52-2 (S52-3).
  • the first updating unit 34A updates the parameter set ⁇ p2a, p2b ⁇ based on the intensity function ⁇ a (t) calculated in S52-3 and the support sequence Es extracted in the process of S51 (S52- 4).
  • the evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es) based on the intensity function ⁇ a (t) and the support series Es.
  • the optimization unit 34A-2 uses the error backpropagation method to calculate an optimized parameter set ⁇ p2a, p2b ⁇ based on the evaluation function L a (Es).
  • the optimization unit 34A-2 applies the optimized parameter set ⁇ p2a, p2b ⁇ to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b.
  • FIG. 12 is a flowchart illustrating an example of the second update process in the event prediction device according to the second embodiment.
  • the processing of S55-1a to S55-4 shown in FIG. 12 corresponds to the processing of S55 in FIG.
  • the first monotonically increasing neural network 33B-1a to which the plurality of parameters ⁇ ' ⁇ p2a ⁇ is applied outputs f b (t) and f b (0) is calculated (S55-1a).
  • the second monotonically increasing neural network 33B-1b to which a plurality of parameters ⁇ ' ⁇ p2b ⁇ is applied outputs g b (t') according to a monotonically increasing function defined by time t, time t', and period ⁇ .
  • g b ( ⁇ ) and g b (0) are calculated (S55-1b).
  • the cumulative intensity function calculation unit 33B-2 outputs f b (t) and f b (0) calculated in the process of S55-1a, and g b (t') and g b calculated in the process of S55-1b. ( ⁇ ) and g b (0), the cumulative intensity function ⁇ b (t) is calculated (S55-2).
  • the automatic differentiator 33B-3 calculates the intensity function ⁇ b (t) based on the cumulative intensity function ⁇ b (t) calculated in the process of S55-2 (S55-3).
  • the second updating unit 34B updates the parameter set ⁇ p2a, p2b ⁇ based on the intensity function ⁇ b (t) calculated in S55-3 and the query sequence Eq extracted in the process of S51 (S55- 4).
  • the evaluation function calculation unit 34B-1 calculates the evaluation function L b (Eq) based on the intensity function ⁇ b (t) and the query sequence Eq.
  • the optimization unit 34B-2 uses the error backpropagation method to calculate an optimized parameter set ⁇ p2a, p2b ⁇ based on the evaluation function L b (Eq).
  • the optimization unit 34B-2 applies the optimized parameter set ⁇ p2a, p2b ⁇ to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b.
  • FIG. 13 is a flowchart showing an example of prediction operation in the event prediction device according to the second embodiment.
  • the parameter set ⁇ p2a * , p2b * ⁇ in the learned parameters 36 has been applied to the first intensity function calculation unit 33A by a learning operation performed in advance.
  • the prediction data 37 is stored in the memory 11.
  • the first monotonically increasing neural network 33A-1a to which a plurality of parameters ⁇ p2a * ⁇ is applied is defined by time t.
  • the outputs f a * (t) and f a * (0) are calculated according to a monotonically increasing function (S60a).
  • the second monotonically increasing neural network 33A-1b to which a plurality of parameters ⁇ p2b * ⁇ is applied outputs g a * (t' ), g a * ( ⁇ ) and g a * (0) are calculated (S60b).
  • the cumulative intensity function calculation unit 33A-2 calculates the outputs f a * (t) and f a * (0) calculated in the process of S60a, and the outputs g a * (t'), g a calculated in the process of S60b.
  • a cumulative intensity function ⁇ a * (t) is calculated based on * ( ⁇ ) and g a * (0) (S61).
  • the automatic differentiation unit 33A-3 calculates the intensity function ⁇ a * (t) based on the cumulative intensity function ⁇ a * (t) calculated in the process of S61 (S62).
  • the first updating unit 34A updates the parameter set ⁇ p2a * , p2b * ⁇ based on the intensity function ⁇ a * (t) and the prediction sequence Es * calculated in S62 (S63). Specifically, the evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es * ) based on the intensity function ⁇ a * (t) and the prediction sequence Es * .
  • the optimization unit 34A-2 uses the error backpropagation method to calculate an optimized parameter set ⁇ p2a * , p2b * ⁇ based on the evaluation function L a (Es * ).
  • the optimization unit 34A-2 applies the optimized parameter set ⁇ p2a * , p2b * ⁇ to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b.
  • the first determination unit 35A determines whether the third condition is satisfied based on the parameter set ⁇ p2a * , p2b * ⁇ updated in the process of S63 (S64).
  • the first intensity function calculation unit 33A and the first update unit 34A to which the parameter set ⁇ p2a * , p2b * ⁇ updated in the process of S63 are applied. further executes the processes of S60a to S64. In this way, the process of updating the parameter set ⁇ p2a * , p2b * ⁇ is repeated (inner loop) until it is determined in the process of S64 that the third condition is satisfied.
  • the first determination unit 35A converts the parameter set ⁇ p2a * , p2b * ⁇ that was last updated in the process of S63 into ⁇ ' ⁇ p2a * , p2b * ⁇ is applied to the second intensity function calculation unit 33B (S65).
  • the first monotonically increasing neural network 33B-1a to which a plurality of parameters ⁇ ' ⁇ p2a * ⁇ are applied outputs f b * (t) and f b * (0) according to a monotonically increasing function defined by time t.
  • the second monotonically increasing neural network 33B-1b to which a plurality of parameters ⁇ ' ⁇ p2b * ⁇ is applied outputs g b * (t '), g b * ( ⁇ ) and g b * (0) are calculated (S66b).
  • the cumulative intensity function calculation unit 33B-2 calculates the outputs f b * (t) and f b * (0) calculated in the process of S66a, and the outputs g b * (t'), g b calculated in the process of S66b.
  • a cumulative intensity function ⁇ b * (t) is calculated based on * ( ⁇ ) and g b * (0) (S67).
  • the automatic differentiator 33B-3 calculates the intensity function ⁇ b * (t) based on the cumulative intensity function ⁇ b * (t) calculated in the process of S67 (S68).
  • the predicted sequence generation unit 38 generates the predicted sequence Eq * based on the intensity function ⁇ b * (t) calculated in S68 (S69). Then, the predicted sequence generation unit 38 outputs the predicted sequence Eq * generated in the process of S69 to the user.
  • the first intensity function calculation unit 33A to which the parameter set ⁇ p2a, p2b ⁇ is applied inputs the time t, the time t', and the period ⁇ .
  • the intensity function ⁇ a (t) is calculated as follows.
  • the first updating unit 34A updates the parameter set ⁇ p2a, p2b ⁇ to the parameter set ⁇ ' ⁇ p2a, p2b ⁇ based on the intensity function ⁇ a (t) and the support sequence Es.
  • the second intensity function calculation unit 33B to which the parameter set ⁇ ' ⁇ p2a, p2b ⁇ is applied calculates the intensity function ⁇ b (t) by inputting the time t, the time t', and the period ⁇ .
  • the second updating unit 34B updates the parameter set ⁇ p2a, p2b ⁇ based on ⁇ b (t) and the query sequence Eq. This allows point processes to be modeled even when a meta-learning method such as MAML is used.
  • the cumulative intensity function calculation unit 33A-2 calculates the cumulative intensity function based on the outputs f a (t), f a (0), g a (t'), g a ( ⁇ ), and g a (0). Calculate ⁇ a (t).
  • the cumulative intensity function calculation unit 33B-2 calculates the cumulative intensity function ⁇ b ( t) based on the outputs f b (t) f b (0), g b (t'), g b ( ⁇ ), and g b ) is calculated.
  • the configuration of the event prediction device is the same as that of the first embodiment.
  • the cumulative intensity function calculation unit 24-2 calculates the period ⁇ i and the output f i (z, t), g i (z, t ' i ), g i (z, ⁇ i ), etc., the cumulative intensity function ⁇ (t) is calculated.
  • f(z, t) and f(z, 0) on the right side of equation (3) regarding ⁇ 1 (u) are calculated by the first monotonically increasing neural network 24-1a.
  • g i (z, t' i ), g i (z, ⁇ i ), and g i (z, 0) on the right side of equation (8) regarding ⁇ 2 (u) are the i-th second monotonically increasing Calculated by the neural network 24-1b.
  • the cumulative intensity function ⁇ (t) is the output f(z, t) and f(z , 0), the output g i (z, t' i ) from the i-th second monotonically increasing neural network 24-1b, etc. are taken into consideration.
  • the cumulative intensity function calculation unit 24-2 transmits the calculated cumulative intensity function ⁇ (t) to the automatic differentiation unit 24-3.
  • a plurality of types of periods ⁇ for example, ⁇ 1 , ⁇ 2 , . . . ⁇ n , are prepared in the second embodiment.
  • the cumulative intensity function calculation unit 33A-2 of the first intensity function calculation unit 33A calculates the period ⁇ according to the above equations (5) and (6) and the following equation (9).
  • a cumulative intensity function ⁇ a (t) is calculated based on i , outputs f a (t), g a (t'), g a ( ⁇ i ), and the like.
  • f a (t) and f a (0) on the right side of equation (6) regarding ⁇ a1 (u) are calculated by the first monotonically increasing neural network 33A-1a.
  • the right side of equation (9) regarding ⁇ a2 (u) is calculated by the second monotonically increasing neural network 33A-1b.
  • the cumulative intensity function ⁇ a (t) is the output f a (t) from the first monotonically increasing neural network 33A-1a. t) and f a (0), the output from the second monotonically increasing neural network 33A-1b will be taken into consideration.
  • the cumulative intensity function calculation unit 33A-2 transmits the calculated cumulative intensity function ⁇ a (t) to the automatic differentiation unit 33A-3.
  • the cumulative intensity function calculation unit 33B-2 of the second intensity function calculation unit 33B calculates the above equations (5), (6), and equation (9) (where ⁇ a , f a , and g a b , f b , and g b ), the cumulative intensity function ⁇ b (t) is calculated based on the period ⁇ i , the outputs f b (t), g b (t'), g b ( ⁇ i ), etc. Calculate. f b (t) and f b (0) are calculated by the first monotonically increasing neural network 33B-1a. is calculated by the second monotonically increasing neural network 33B-1b.
  • the cumulative intensity function ⁇ b (t) is applied to the outputs f b (t) and f b (0) from the first monotonically increasing neural network 33B-1a and the outputs f b (t) and f b (0) from the first monotonically increasing neural network 33B-1b. output from will be taken into consideration.
  • the cumulative intensity function calculation unit 33B-2 transmits the calculated cumulative intensity function ⁇ b (t) to the automatic differentiation unit 33B-3.
  • the period ⁇ is a learnable parameter. During learning, if a learnable parameter is included in the floor function, the gradient becomes 0.
  • a plurality of types of period ⁇ may be prepared as in the third embodiment, and the plurality of types of period ⁇ may include both a learned period and an arbitrarily given period ⁇ .
  • the period ⁇ is a learnable parameter. During learning, if a learnable parameter is included in the floor function, the gradient becomes 0. Similar to the fifth embodiment, the sixth embodiment includes “Edward Wilson, “Backpropagation Learning for Systems with Discrete-Valued Functions”,” Proceedings of the World Congress on Neural Networks, San Diego, California, June 1994.” Learning is performed using a known method disclosed in .
  • a plurality of types of period ⁇ may be prepared as in the fourth embodiment, and the plurality of types of ⁇ may include both a learned period and an arbitrarily given period ⁇ .
  • each event is described as having no mark or additional information attached thereto, but the present invention is not limited to this.
  • each event may be marked or provided with additional information.
  • the marks or additional information attached to each event include, for example, what the user has purchased and the payment method.
  • the mark or additional information will be simply referred to as a "mark.”
  • FIG. 14 is a block diagram illustrating an example of a configuration of a latent expression calculation unit of an event prediction device according to a first modification.
  • the latent expression calculation unit 23 further includes a neural network 23-2.
  • the neural network 23-1 receives the sequence Es' as input and outputs the latent expression z.
  • the neural network 23-1 transmits the output latent expression z to the strength function calculation unit 24.
  • a plurality of parameters are applied to the neural network 23-2.
  • the plurality of parameters applied to the neural network 23-2 are initialized by the initialization unit 22 and updated by the update unit 25, similarly to the plurality of parameters p1, p2a, and p2b.
  • the latent expression calculation unit 23 can calculate the latent expression z while taking the mark m i into consideration. This makes it possible to improve event prediction accuracy.
  • additional information may be attached to the series.
  • the additional information attached to the series is, for example, user attribute information such as the user's gender and age.
  • FIG. 15 is a block diagram illustrating an example of the configuration of the intensity function calculation unit of the event prediction device according to the second modification.
  • the intensity function calculation unit 24 further includes neural networks 24-5 and 24-6.
  • the neural network 24-5 is a mathematical model modeled to input the additional information a and output a parameter NN3(a) that takes the additional information a into consideration. Neural network 24-5 transmits the output parameter NN3(a) to neural network 24-6.
  • the neural network 24-6 transmits the output latent representation z' to the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b.
  • the first monotonically increasing neural network 24-1a calculates outputs f(z', t) and f(z', 0) according to a monotonically increasing function defined by the latent expression z' and time t.
  • the first monotonically increasing neural network 24-1a transmits the calculated outputs f(z', t) and f(z', 0) to the cumulative intensity function calculation unit 24-2.
  • the second monotonically increasing neural network 24-1b outputs g(z', t'), g(z', ⁇ ) and g(z', 0).
  • the second monotonically increasing neural network 24-1b sends the calculated outputs g(z', t'), g(z', ⁇ ), and g(z', 0) to the cumulative intensity function calculation unit 24-2. Send.
  • the configurations of the cumulative intensity function calculation unit 24-2 and the automatic differentiation unit 24-3 are the same as those in the first embodiment, so their description will be omitted. Note that the above equations (2) to (4) (where z is read as z') can be used to calculate the cumulative intensity function by the cumulative intensity function calculation unit 24-2.
  • a plurality of parameters are applied to each of the neural networks 24-5 and 24-6.
  • the plurality of parameters applied to the neural networks 24-5 and 24-6 are initialized by the initialization unit 22 and updated by the updater 25, similarly to the plurality of parameters p1, p2a, and p2b.
  • the intensity function calculation unit 24 can calculate the output f(z', t) while taking the additional information a into consideration. This makes it possible to improve event prediction accuracy.
  • FIG. 16 is a block diagram illustrating an example of the configuration of the first intensity function calculation unit of the event prediction device according to the third modification.
  • FIG. 17 is a block diagram illustrating an example of the configuration of the second intensity function calculation unit of the event prediction device according to the third modification.
  • the first intensity function calculation section 33A and the second intensity function calculation section 33B further include neural networks 33A-4 and 33B-4, respectively.
  • the neural networks 33A-4 and 33B-4 are mathematical models modeled to input additional information a and output a parameter NN5(a) that takes additional information a into consideration.
  • Neural networks 33A-4 and 33B-4 transmit the output parameter NN5(a) to first monotonically increasing neural networks 33A-1a and 33B-1a and second monotonically increasing neural networks 33A-1b and 33B-1b, respectively. do.
  • the first monotonically increasing neural network 33A-1a calculates outputs f a (t) and f a (0) according to a monotonically increasing function defined by parameter NN5(a) and time t.
  • the first monotonically increasing neural network 33B-1a calculates outputs f b (t) and f b (0) according to a monotonically increasing function defined by parameter NN5(a) and time t.
  • both the outputs f a (t) and f b (t) are expressed as MNN1 ([t, NN5(a)]).
  • the first monotonically increasing neural network 33A-1a transmits the calculated outputs f a (t) and f a (0) to the cumulative intensity function calculation unit 33A-2.
  • the first monotonically increasing neural network 33B-1a transmits the calculated outputs f b (t) and f b (0) to the cumulative intensity function calculation unit 33B-2.
  • the second monotonically increasing neural network 33A-1b outputs g a (t'), g a ( ⁇ ), and Calculate g a (0).
  • the second monotonically increasing neural network 33B-1b outputs g b (t'), g b ( ⁇ ), and Calculate g b (0).
  • both the outputs g a (t') and g b (t') are expressed as MNN2 ([t', NN5(a)]).
  • the second monotonically increasing neural network 33A-1b transmits the calculated outputs g a (t'), g a (0), and g a (0) to the cumulative intensity function calculation unit 33A-2.
  • the second monotonically increasing neural network 33B-1b transmits the calculated outputs g b (t'), g b ( ⁇ ), and g b (0) to the cumulative intensity function calculation unit 33B-2.
  • the configurations of the cumulative intensity function calculation units 33A-2 and 33B-2 and the automatic differentiation units 33A-3 and 33B-3 are the same as those in the second modification, and therefore their description will be omitted.
  • a plurality of parameters are applied to each of the neural networks 33A-4 and 33B-4.
  • the plurality of parameters applied to the neural network 33A-4 are initialized by the initialization unit 32 and updated by the first update unit 34A, similarly to the parameter set ⁇ p2a, p2b ⁇ .
  • the plurality of parameters applied to the neural network 33B-4 are used for updating by the second updating unit 34B, similar to the parameter set ⁇ ' ⁇ p2a, p2b ⁇ .
  • the first intensity function calculation unit 33A can calculate the outputs f a (t) and g a (t') while taking the additional information a into consideration
  • the second intensity function calculation The unit 33B can calculate the outputs f b (t) and g b (t') while considering the additional information a. This makes it possible to improve event prediction accuracy.
  • the dimension of the event is described as one dimension of time, but it is not limited to this.
  • the dimensionality of an event may be extended to any number of dimensions greater than or equal to two (eg, three dimensions in space and time).
  • the learning operation and the prediction operation are executed by a program stored in the event prediction device 1. , but not limited to this.
  • learning operations and prediction operations may be performed on computational resources on the cloud.
  • the information processing apparatus is not limited to a configuration that meta-learns a point process, but can also be applied to a configuration that learns a point process without using meta-learning. Further, the information processing apparatus according to each embodiment can be applied to, for example, a configuration for solving a regression problem in which monotonically increasing property is desired to be guaranteed. An example of a regression problem for which monotonically increasing property is desired is the problem of estimating credit risk from loan usage amount. Furthermore, the information processing apparatus according to each embodiment can also be applied to a configuration that solves a problem using a neural network that guarantees reversible transformation.
  • Examples of problems that use neural networks that guarantee reversible transformations include density estimation of empirical distributions, VAE (Variational Auto-Encoders), speech synthesis, likelihood-free inference, and probabilistic programming. ), image generation, etc.
  • VAE Very Auto-Encoders
  • speech synthesis likelihood-free inference
  • probabilistic programming e.g., image generation
  • image generation etc.
  • the information processing apparatus according to each embodiment can also be applied to a configuration that solves a problem in which a survival analysis hazard function is used.
  • each embodiment can be applied to a magnetic disk (floppy (registered trademark) disk, hard disk) as a program (software means) that can be executed by a computer (computer). etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memories (ROM, RAM, Flash memory, etc.), and are stored in recording media, or transmitted and distributed via communication media. can be done.
  • the programs stored on the medium side also include a setting program for configuring software means (including not only execution programs but also tables and data structures) in the computer to be executed by the computer.
  • a computer that realizes this device reads a program recorded on a recording medium, and if necessary, constructs software means using a setting program, and executes the above-described processing by controlling the operation of the software means.
  • the recording medium referred to in this specification is not limited to one for distribution, and includes storage media such as a magnetic disk and a semiconductor memory provided inside a computer or in a device connected via a network.
  • the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained.
  • the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

An information processing device according to one embodiment of the present invention comprises: a first monotonically-increasing neural network; a second monotonically-increasing neural network; a first calculation unit that calculates a first cumulative function on the basis of a parameter and an output from the first monotonically-increasing neural network; and a second calculation unit that calculates a second cumulative function on the basis of a cycle, a parameter, and an output from the second monotonically-increasing neural network.

Description

情報処理装置、情報処理方法、及びプログラムInformation processing device, information processing method, and program
 本発明の実施形態は、情報処理装置、情報処理方法、及びプログラムに関する。 Embodiments of the present invention relate to an information processing device, an information processing method, and a program.
 機器の故障、人の行動、犯罪、地震、感染症等の種々のイベントの発生を予測するための手法の一つとして、点過程を用いた手法が知られている。点過程は、イベントの発生タイミングを記述する確率モデルである。 A method using a point process is known as one of the methods for predicting the occurrence of various events such as equipment failure, human behavior, crime, earthquakes, and infectious diseases. A point process is a probabilistic model that describes the timing of events.
 点過程を高速かつ高精度にモデル化し得る技術として、ニューラルネットワーク(NN:Neural Network)が知られている。ニューラルネットワークの1つとして、単調増加ニューラルネットワーク(MNN:Monotonic Neural Network)が提案されている。 Neural networks (NN) are known as a technology that can model point processes at high speed and with high accuracy. As one type of neural network, a monotonic neural network (MNN) has been proposed.
 しかしながら、単調増加ニューラルネットワークは、通常のニューラルネットワークに対して、表現力の面で劣る場合がある。また、単調増加ニューラルネットワークは、活性化関数の勾配の消失又は発散によって、学習処理の安定性に欠ける場合がある。単調増加ニューラルネットワークの上述の課題は、イベントを長期的に予測する場合に特に顕著になる。
 また、単調増加ニューラルネットワークは、人間の知識、例えば曜日など周期的に強度関数が変化するなどの知見を組み込むことが困難である。
However, monotonically increasing neural networks may be inferior to ordinary neural networks in terms of expressiveness. Furthermore, monotonically increasing neural networks may lack stability in learning processing due to disappearance or divergence of the gradient of the activation function. The above-mentioned challenges of monotonically increasing neural networks become especially pronounced when predicting events over time.
Furthermore, it is difficult for monotonically increasing neural networks to incorporate human knowledge, such as knowledge that the intensity function changes periodically, such as on the day of the week.
 本発明は、上記事情に着目してなされたもので、その目的とするところは、イベントの長期的な予測を可能にする手段を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a means that enables long-term prediction of events.
 一態様の情報処理装置は、第1の単調増加ニューラルネットワークと、第2の単調増加ニューラルネットワークと、前記第1の単調増加ニューラルネットワークからの出力と、パラメタと、に基づいて第1の累積関数を算出する第1算出部と、前記第2の単調増加ニューラルネットワークからの出力と、パラメタと、周期と、に基づいて第2の累積関数を算出する第2算出部と、を備える。 In one embodiment, the information processing device generates a first cumulative function based on a first monotonically increasing neural network, a second monotonically increasing neural network, an output from the first monotonically increasing neural network, and a parameter. and a second calculation unit that calculates a second cumulative function based on the output from the second monotonically increasing neural network, a parameter, and a period.
 一態様の情報処理方法は、情報処理装置により行なわれる方法であって、前記情報処理装置の第1出力部により、第1の単調増加ニューラルネットワークから単調増加関数に従ったスカラ値を出力することと、前記情報処理装置の第2出力部により、第2の単調増加ニューラルネットワークから単調増加関数に従ったスカラ値を出力することと、前記情報処理装置の第1算出部により、前記第1の単調増加ニューラルネットワークから出力されたスカラ値と、パラメタと、に基づいて第1の累積関数を算出することと、前記情報処理装置の第2算出部により、前記第2の単調増加ニューラルネットワークから出力されたスカラ値と、パラメタと、周期と、に基づいて第2の累積関数を算出することと、を備える。 An information processing method of one aspect is a method performed by an information processing device, wherein a first output unit of the information processing device outputs a scalar value according to a monotonically increasing function from a first monotonically increasing neural network. a second output unit of the information processing device outputs a scalar value according to a monotonically increasing function from the second monotonically increasing neural network; and a first calculation unit of the information processing device outputs a scalar value according to a monotonically increasing function; calculating a first cumulative function based on a scalar value output from the monotonically increasing neural network and a parameter; and outputting from the second monotonically increasing neural network by a second calculation unit of the information processing device. calculating a second cumulative function based on the calculated scalar value, the parameter, and the period.
 実施形態によれば、イベントの長期的な予測を可能にする手段を提供することができる。 According to the embodiment, it is possible to provide a means that enables long-term prediction of events.
図1は、第1実施形態に係るイベント予測装置のハードウェア構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the hardware configuration of an event prediction device according to the first embodiment. 図2は、第1実施形態に係るイベント予測装置の学習機能の構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of the configuration of a learning function of the event prediction device according to the first embodiment. 図3は、第1実施形態に係るイベント予測装置の学習用データセット内の系列の構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of the structure of a sequence in a learning data set of the event prediction device according to the first embodiment. 図4は、第1実施形態に係るイベント予測装置の予測機能の構成の一例を示すブロック図である。FIG. 4 is a block diagram illustrating an example of the configuration of a prediction function of the event prediction device according to the first embodiment. 図5は、第1実施形態に係るイベント予測装置の予測用データの構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of the configuration of prediction data of the event prediction device according to the first embodiment. 図6は、第1実施形態に係るイベント予測装置における学習動作の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a learning operation in the event prediction device according to the first embodiment. 図7は、第1実施形態に係るイベント予測装置における予測動作の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of a prediction operation in the event prediction device according to the first embodiment. 図8は、第2実施形態に係るイベント予測装置の学習機能の構成の一例を示すブロック図である。FIG. 8 is a block diagram illustrating an example of the configuration of a learning function of the event prediction device according to the second embodiment. 図9は、第2実施形態に係るイベント予測装置の予測機能の構成の一例を示すブロック図である。FIG. 9 is a block diagram illustrating an example of a configuration of a prediction function of an event prediction device according to the second embodiment. 図10は、第2実施形態に係るイベント予測装置における学習動作の概要の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of an overview of learning operations in the event prediction device according to the second embodiment. 図11は、第2実施形態に係るイベント予測装置における第1更新処理の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of the first update process in the event prediction device according to the second embodiment. 図12は、第2実施形態に係るイベント予測装置における第2更新処理の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of the second update process in the event prediction device according to the second embodiment. 図13は、第2実施形態に係るイベント予測装置における予測動作の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of a prediction operation in the event prediction device according to the second embodiment. 図14は、第1変形例に係るイベント予測装置の潜在表現算出部の構成の一例を示すブロック図である。FIG. 14 is a block diagram illustrating an example of a configuration of a latent expression calculation unit of an event prediction device according to a first modification. 図15は、第2変形例に係るイベント予測装置の強度関数算出部の構成の一例を示すブロック図である。FIG. 15 is a block diagram illustrating an example of the configuration of the intensity function calculation unit of the event prediction device according to the second modification. 図16は、第3変形例に係るイベント予測装置の第1強度関数算出部の構成の一例を示すブロック図である。FIG. 16 is a block diagram illustrating an example of the configuration of the first intensity function calculation unit of the event prediction device according to the third modification. 図17は、第3変形例に係るイベント予測装置の第2強度関数算出部の構成の一例を示すブロック図である。FIG. 17 is a block diagram illustrating an example of the configuration of the second intensity function calculation unit of the event prediction device according to the third modification.
 以下、図面を参照していくつかの実施形態について説明する。なお、以下の説明において、同一の機能及び構成を有する構成要素については、共通する参照符号を付す。また、共通する参照符号を有する複数の構成要素を区別する場合、当該共通する参照符号に後続して付される更なる参照符号(例えば、“-1”等のハイフン及び数字)によって区別する。 Hereinafter, some embodiments will be described with reference to the drawings. In the following description, common reference numerals are given to components having the same function and configuration. Furthermore, when distinguishing a plurality of components having a common reference numeral, they are distinguished by a further reference numeral (for example, a hyphen and a number such as "-1") appended to the common reference numeral.
 1. 第1実施形態
 第1実施形態に係る情報処理装置について説明する。以下では、第1実施形態に係る情報処理装置の一例として、イベント予測装置について説明する。
1. First Embodiment An information processing apparatus according to a first embodiment will be described. Below, an event prediction device will be described as an example of the information processing device according to the first embodiment.
 イベント予測装置は、学習機能及び予測機能を備える。学習機能は、点過程をメタ学習する機能である。予測機能は、学習機能によって学習した点過程に基づいてイベントの発生を予測する機能である。イベントは、連続時間上で離散的に発生する事象である。具体的には、例えば、イベントは、EC(Electronic Commerce)サイトにおけるユーザの購買行動である。メタ学習は、例えば、MAML(Model-Agnostic Meta-Learning)等による手法であり、例えば文献「Chelsea Finn, et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70:1126-1135, 2017.,<
https://arxiv.org/abs/1703.03400>」に開示される。
The event prediction device includes a learning function and a prediction function. The learning function is a function for meta-learning a point process. The prediction function is a function that predicts the occurrence of an event based on the point process learned by the learning function. An event is a phenomenon that occurs discretely over continuous time. Specifically, for example, the event is a user's purchasing behavior on an EC (Electronic Commerce) site. Meta-learning is a method using MAML (Model-Agnostic Meta-Learning), for example, and is described in the document “Chelsea Finn, et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70:1126-1135, 2017.,<
Disclosed at https://arxiv.org/abs/1703.03400>.
 1.1 構成
 第1実施形態に係るイベント予測装置の構成について説明する。
1.1 Configuration The configuration of the event prediction device according to the first embodiment will be described.
 1.1.1 ハードウェア構成
 図1は、第1実施形態に係るイベント予測装置のハードウェア構成の一例を示すブロック図である。図1に示すように、イベント予測装置1は、制御回路10、メモリ11、通信モジュール12、ユーザインタフェース13、及びドライブ14を含む。
1.1.1 Hardware Configuration FIG. 1 is a block diagram showing an example of the hardware configuration of the event prediction device according to the first embodiment. As shown in FIG. 1, the event prediction device 1 includes a control circuit 10, a memory 11, a communication module 12, a user interface 13, and a drive 14.
 制御回路10は、イベント予測装置1の各構成要素を全体的に制御する回路である。制御回路10は、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びROM(Read Only Memory)等を含む。 The control circuit 10 is a circuit that controls each component of the event prediction device 1 as a whole. The control circuit 10 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
 メモリ11は、イベント予測装置1の記憶装置である。メモリ11は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、及びメモリカード等を含む。メモリ11には、イベント予測装置1における学習動作及び予測動作に使用される情報が記憶される。また、メモリ11には、制御回路10に学習動作を実行させるための学習プログラム、及び予測動作を実行させるための予測プログラムが記憶される。 The memory 11 is a storage device of the event prediction device 1. The memory 11 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), a memory card, and the like. The memory 11 stores information used for learning operations and prediction operations in the event prediction device 1. The memory 11 also stores a learning program for causing the control circuit 10 to perform a learning operation and a prediction program for causing the control circuit 10 to perform a predictive operation.
 通信モジュール12は、ネットワークを介してイベント予測装置1の外部とのデータの送受信に使用される回路である。 The communication module 12 is a circuit used for transmitting and receiving data to and from the outside of the event prediction device 1 via a network.
 ユーザインタフェース13は、ユーザと制御回路10との間で情報を通信するための回路である。ユーザインタフェース13は、入力機器及び出力機器を含む。入力機器は、例えば、タッチパネル及び操作ボタン等を含む。出力機器は、例えば、LCD(Liquid Crystal Display)及びEL(Electroluminescence)ディスプレイ、並びにプリンタを含む。ユーザインタフェース13は、例えば、制御回路10から受信した各種プログラムの実行結果を、ユーザに出力する。 The user interface 13 is a circuit for communicating information between the user and the control circuit 10. User interface 13 includes input equipment and output equipment. Input devices include, for example, a touch panel and operation buttons. The output device includes, for example, an LCD (Liquid Crystal Display), an EL (Electroluminescence) display, and a printer. The user interface 13 outputs, for example, the execution results of various programs received from the control circuit 10 to the user.
 ドライブ14は、記憶媒体15に記憶されたプログラムを読込むための装置である。ドライブ14は、例えば、CD(Compact Disk)ドライブ、及びDVD(Digital Versatile Disk)ドライブ等を含む。 The drive 14 is a device for reading programs stored in the storage medium 15. The drive 14 includes, for example, a CD (Compact Disk) drive, a DVD (Digital Versatile Disk) drive, and the like.
 記憶媒体15は、プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。記憶媒体15は、学習プログラム及び予測プログラムを記憶してもよい。 The storage medium 15 is a medium that stores information such as programs through electrical, magnetic, optical, mechanical, or chemical action. The storage medium 15 may store a learning program and a prediction program.
 1.1.2 学習機能構成
 図2は、第1実施形態に係るイベント予測装置の学習機能の構成の一例を示すブロック図である。
1.1.2 Learning Function Configuration FIG. 2 is a block diagram showing an example of the learning function configuration of the event prediction device according to the first embodiment.
 制御回路10のCPUは、メモリ11又は記憶媒体15に記憶された学習プログラムをRAMに展開する。そして、制御回路10のCPUは、RAMに展開された学習プログラムを解釈及び実行することによりメモリ11、通信モジュール12、ユーザインタフェース13、ドライブ14、及び記憶媒体15を制御する。これによって、図2に示されるように、イベント予測装置1は、データ抽出部21、初期化部22、潜在表現算出部23、強度関数算出部24、更新部25、及び判定部26を備えるコンピュータとして機能する。また、イベント予測装置1のメモリ11は、学習動作に使用される情報として、学習用データセット20及び学習済みパラメタ27を記憶する。 The CPU of the control circuit 10 loads the learning program stored in the memory 11 or the storage medium 15 into the RAM. The CPU of the control circuit 10 controls the memory 11, the communication module 12, the user interface 13, the drive 14, and the storage medium 15 by interpreting and executing the learning program developed in the RAM. As a result, as shown in FIG. 2, the event prediction device 1 includes a computer including a data extraction unit 21, an initialization unit 22, a latent expression calculation unit 23, an intensity function calculation unit 24, an update unit 25, and a determination unit 26. functions as The memory 11 of the event prediction device 1 also stores a learning data set 20 and learned parameters 27 as information used for learning operations.
 学習用データセット20は、例えば、或るECサイトにおける複数のユーザのイベント系列の集合である。或いは、学習用データセット20は、複数のECサイトにおける或るユーザのイベント系列の集合である。学習用データセット20は、複数の系列Evを有する。学習用データセット20が或るECサイトにおける複数のユーザのイベント系列の集合である場合、各系列Evは、例えば、ユーザに対応する。 
 学習用データセット20が複数のECサイトにおける或るユーザのイベント系列の集合である場合、各系列Evは、例えば、ECサイトに対応する。各系列Evは、期間[0,t]の間に発生したI個のイベントの発生時間t(1≦i≦I)を含む情報である(Iは、1以上の整数)。各系列Evのイベント数Iは、互いに異なっていてもよい。すなわち、各系列Evのデータ長は、任意の長さを取り得る。
The learning dataset 20 is, for example, a collection of event sequences of multiple users at a certain EC site. Alternatively, the learning dataset 20 is a collection of event sequences of a certain user at multiple EC sites. The learning dataset 20 has multiple sequences Ev. When the learning dataset 20 is a collection of event sequences of multiple users at a certain EC site, each sequence Ev corresponds to, for example, a user.
When the learning dataset 20 is a collection of event sequences of a certain user at multiple EC sites, each sequence Ev corresponds to, for example, an EC site. Each sequence Ev is information including occurrence times t i (1≦i≦I) of I events that occurred during a period [0, t e ] (I is an integer equal to or greater than 1). The number of events I in each sequence Ev may be different from each other. In other words, the data length of each sequence Ev may be any length.
 データ抽出部21は、学習用データセット20から系列Evを抽出する。データ抽出部21は、抽出された系列Evから、サポート系列Es及びクエリ系列Eqを更に抽出する。データ抽出部21は、サポート系列Es及びクエリ系列Eqを、それぞれ潜在表現算出部23及び更新部25に送信する。 The data extraction unit 21 extracts the series Ev from the learning data set 20. The data extraction unit 21 further extracts a support sequence Es and a query sequence Eq from the extracted sequence Ev. The data extraction unit 21 transmits the support sequence Es and the query sequence Eq to the latent expression calculation unit 23 and the update unit 25, respectively.
 図3は、第1実施形態に係るイベント予測装置の学習用データセットの系列の構成の一例を示す図である。図3に示すように、サポート系列Es及びクエリ系列Eqは、系列Evの部分系列である。 FIG. 3 is a diagram illustrating an example of the configuration of a series of learning data sets of the event prediction device according to the first embodiment. As shown in FIG. 3, the support sequence Es and the query sequence Eq are partial sequences of the sequence Ev.
 サポート系列Esは、系列Evの期間[0,t]に対応する部分系列である(Es={t|0≦t≦t})。時間tは、時刻0以上時間t未満の範囲で任意に決定される。 The support sequence Es is a partial sequence corresponding to the period [0, t s ] of the sequence Ev (Es={t i |0≦t i ≦t s }). The time ts is arbitrarily determined within the range from time 0 to less than time te .
 クエリ系列Eqは、系列Evの期間[t,t]に対応する部分系列である(Eq={t|t<t≦t})。時間tは、時間tより大きく時間t以下の範囲で任意に決定される。 The query sequence Eq is a partial sequence corresponding to the period [t s , t q ] of the sequence Ev (Eq={t i |t s <t i ≦t q }). The time tq is arbitrarily determined within a range greater than the time ts and less than or equal to the time te .
 再び図2を参照して、イベント予測装置1の学習機能の構成について説明する。 Referring again to FIG. 2, the configuration of the learning function of the event prediction device 1 will be described.
 初期化部22は、規則Xに基づいて複数のパラメタp1、p2a、及びp2bを初期化する。初期化部22は、初期化された複数のパラメタp1を潜在表現算出部23に送信する。初期化部22は、初期化された複数のパラメタp2a及びp2bを強度関数算出部24に送信する。複数のパラメタp1、p2a、及びp2bについては後述する。 The initialization unit 22 initializes multiple parameters p1, p2a, and p2b based on rule X. The initialization unit 22 transmits the plurality of initialized parameters p1 to the latent expression calculation unit 23. The initialization unit 22 transmits the plurality of initialized parameters p2a and p2b to the intensity function calculation unit 24. The plurality of parameters p1, p2a, and p2b will be described later.
 規則Xは、平均が0以下となる分布に従って生成される乱数をパラメタに適用することを含む。例えば、複数の層を有するニューラルネットワークに対する規則Xの適用の例として、Xavierの初期化、及びHeの初期化が挙げられる。Xavierの初期化は、前層のノード数がn個の場合に、平均0かつ標準偏差1/√nの正規分布に従って、パラメタを初期化する。Heの初期化は、前層のノード数がn個の場合に、平均0かつ標準偏差√(2/n)の正規分布に従って、パラメタを初期化する。 Rule X includes applying to the parameters random numbers generated according to a distribution whose average is less than or equal to 0. For example, examples of applying rule X to a neural network having multiple layers include initialization of Xavier and initialization of He. When initializing Xavier, when the number of nodes in the previous layer is n, parameters are initialized according to a normal distribution with an average of 0 and a standard deviation of 1/√n. In initializing He, when the number of nodes in the previous layer is n, parameters are initialized according to a normal distribution with an average of 0 and a standard deviation of √(2/n).
 潜在表現算出部23は、サポート系列Esに基づいて、潜在表現zを算出する。潜在表現zは、系列Evにおけるイベント発生タイミングの特徴を表すデータである。潜在表現算出部23は、算出された潜在表現zを強度関数算出部24に送信する。 The latent expression calculation unit 23 calculates the latent expression z based on the support series Es. The latent expression z is data representing the characteristics of the event occurrence timing in the series Ev. The latent expression calculation unit 23 transmits the calculated latent expression z to the strength function calculation unit 24.
 具体的には、潜在表現算出部23は、ニューラルネットワーク23-1を含む。ニューラルネットワーク23-1は、系列を入力として、潜在表現を出力するようにモデル化された数理モデルである。ニューラルネットワーク23-1は、可変長のデータが入力できるように構成される。ニューラルネットワーク23-1には、複数のパラメタp1が重み及びバイアス項として適用される。複数のパラメタp1が適用されたニューラルネットワーク23-1は、サポート系列Esを入力として、潜在表現zを出力する。ニューラルネットワーク23-1は、出力された潜在表現zを強度関数算出部24に送信する。 Specifically, the latent expression calculation unit 23 includes a neural network 23-1. The neural network 23-1 is a mathematical model modeled to input a sequence and output a latent representation. The neural network 23-1 is configured so that variable length data can be input. A plurality of parameters p1 are applied to the neural network 23-1 as weights and bias terms. The neural network 23-1 to which the plurality of parameters p1 are applied receives the support sequence Es as an input and outputs a latent expression z. The neural network 23-1 transmits the output latent expression z to the strength function calculation unit 24.
 強度関数算出部24は、潜在表現z及び時間tに基づき、強度関数λ(t)を算出する。強度関数λ(t)は、未来の時間帯におけるイベントの発生のしやすさ(例えば、発生確率)を示す時間の関数である。強度関数算出部24は、算出された強度関数λ(t)を更新部25に送信する。 The strength function calculation unit 24 calculates the strength function λ(t) based on the latent expression z and time t. The intensity function λ(t) is a time function that indicates how likely (for example, the probability of occurrence) an event will occur in a future time period. The intensity function calculation unit 24 transmits the calculated intensity function λ(t) to the update unit 25.
 具体的には、強度関数算出部24は、第1単調増加ニューラルネットワーク24-1a、第2単調増加ニューラルネットワーク24-1b、累積強度関数算出部24-2、及び自動微分部24-3を含む。 Specifically, the intensity function calculation unit 24 includes a first monotonically increasing neural network 24-1a, a second monotonically increasing neural network 24-1b, a cumulative intensity function calculation unit 24-2, and an automatic differentiation unit 24-3. .
 第1単調増加ニューラルネットワーク24-1aは、潜在表現及び時間によって規定される単調増加関数に従ったスカラ値を出力として算出するようにモデル化された数理モデルである。第2単調増加ニューラルネットワーク24-1bは、潜在表現、周期、及び時間によって規定される単調増加関数に従ったスカラ値を出力として算出するようにモデル化された数理モデルである。 
 第1単調増加ニューラルネットワーク24-1aには、複数のパラメタp2aに基づく複数の重み及びバイアス項が適用される。複数のパラメタp2aのうちの重みに負値が含まれる場合、当該負の値は、絶対値をとるなどの操作によって非負値に変換される。 
 複数のパラメタp2aのうちの重みが非負値の場合、第1単調増加ニューラルネットワーク24-1aには、複数のパラメタp2aが重み及びバイアス項としてそのまま適用されてもよい。すなわち、第1単調増加ニューラルネットワーク24-1aに適用される各重みは、非負値である。 
 複数のパラメタp2aが適用された第1単調増加ニューラルネットワーク24-1aは、潜在表現z及び時間tによって規定される単調増加関数に従って、スカラ値として出力f(z,t)などを算出する。第1単調増加ニューラルネットワーク24-1aは、出力f(z,t)などを累積強度関数算出部24-2に送信する。
The first monotonically increasing neural network 24-1a is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by a latent expression and time. The second monotonically increasing neural network 24-1b is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by a latent representation, a period, and time.
A plurality of weights and bias terms based on a plurality of parameters p2a are applied to the first monotonically increasing neural network 24-1a. When a negative value is included in the weight of the plurality of parameters p2a, the negative value is converted into a non-negative value by an operation such as taking an absolute value.
When the weights among the plurality of parameters p2a are non-negative values, the plurality of parameters p2a may be directly applied as weights and bias terms to the first monotonically increasing neural network 24-1a. That is, each weight applied to the first monotonically increasing neural network 24-1a is a non-negative value.
The first monotonically increasing neural network 24-1a to which the plurality of parameters p2a is applied calculates an output f(z, t), etc. as a scalar value according to a monotonically increasing function defined by the latent expression z and time t. The first monotonically increasing neural network 24-1a transmits the output f(z, t) and the like to the cumulative intensity function calculation unit 24-2.
 第2単調増加ニューラルネットワーク24-1bには、複数のパラメタp2bに基づく複数の重み及びバイアス項が適用される。複数のパラメタp2bのうちの重みに負値が含まれる場合、当該負の値は、絶対値をとるなどの操作によって非負値に変換される。 
 複数のパラメタp2bのうちの重みが非負値の場合、第2単調増加ニューラルネットワーク24-1bには、複数のパラメタp2bが重み及びバイアス項としてそのまま適用されてもよい。すなわち、第2単調増加ニューラルネットワーク24-1bに適用される各重みは、非負値である。 
 複数のパラメタp2bが適用された第2単調増加ニューラルネットワーク24-1bは、潜在表現z、時間t、時間t´、及び周期τによって規定される単調増加関数に従って、スカラ値として出力g(z,t´)及びg(z,τ)などを算出する。 
 t´は以下の式(1)に従って算出される。τは、例えば1日または1週間などの周期であり、予め設定される。
A plurality of weights and bias terms based on a plurality of parameters p2b are applied to the second monotonically increasing neural network 24-1b. When a negative value is included in the weight of the plurality of parameters p2b, the negative value is converted into a non-negative value by an operation such as taking an absolute value.
When the weights among the plurality of parameters p2b are non-negative values, the plurality of parameters p2b may be directly applied as weights and bias terms to the second monotonically increasing neural network 24-1b. That is, each weight applied to the second monotonically increasing neural network 24-1b is a non-negative value.
The second monotonically increasing neural network 24-1b to which the plurality of parameters p2b is applied outputs g(z, t′) and g(z, τ), etc.
t' is calculated according to the following equation (1). τ is a cycle of, for example, one day or one week, and is set in advance.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第2単調増加ニューラルネットワーク24-1bは、出力g(z,t´)及びg(z,τ)などを累積強度関数算出部24-2に送信する。 The second monotonically increasing neural network 24-1b transmits outputs g(z, t'), g(z, τ), etc. to the cumulative intensity function calculation unit 24-2.
 累積強度関数算出部24-2は、以下に示す式(2)、(3)、及び(4)に従って、周期τ、出力f(z,t)、g(z,t´)、及びg(z,τ)などに基づいて、累積強度関数Λ(t)を算出する。 
 式(3)などのλ(u)は強度関数中の周期的でない部分であり、式(4)などのλ(u)は強度関数中の周期的な部分である。λ(u)に係る式(3)の右辺のf(z,t)及びf(z,0)は第1単調増加ニューラルネットワーク24-1aにより算出される。λ(u)に係る式(4)の右辺のg(z,t´)、g(z,τ)、及びg(z,0)は第2単調増加ニューラルネットワーク24-1bにより算出される。
 式(4)により、周期τの任意形状の強度関数が定義可能である。よって、ヒトによる、周期があるという知見がモデルに組み込まれつつ、その形状を制約する、すなわち各単調増加ニューラルネットワークに求められる表現力が制限される仮定を必要としない。
The cumulative intensity function calculating unit 24-2 calculates the period τ, the outputs f(z, t), g(z, t'), and g( A cumulative intensity function Λ(t) is calculated based on z, τ), etc.
λ 1 (u) in equation (3) etc. is a non-periodic part in the intensity function, and λ 2 (u) in equation (4) etc. is a periodic part in the intensity function. f(z, t) and f(z, 0) on the right side of equation (3) regarding λ 1 (u) are calculated by the first monotonically increasing neural network 24-1a. g(z, t'), g(z, τ), and g(z, 0) on the right side of equation (4) regarding λ 2 ( u) are calculated by the second monotonically increasing neural network 24-1b. .
Equation (4) makes it possible to define an arbitrarily shaped intensity function with a period τ. Therefore, while human knowledge that there is a period is incorporated into the model, there is no need for assumptions that constrain the shape of the model, that is, that limit the expressive power required of each monotonically increasing neural network.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)~(4)に示されるように、累積強度関数Λ(t)は、第1単調増加ニューラルネットワーク24-1aからの出力f(z,t)及びf(z,0)に、第2単調増加ニューラルネットワーク24-1bからの出力g(z,t´)などが考慮されてなる。累積強度関数算出部24-2は、算出された累積強度関数Λ(t)を自動微分部24-3に送信する。 As shown in equations (2) to (4), the cumulative intensity function Λ(t) is expressed as The output g(z, t') from the second monotonically increasing neural network 24-1b is taken into consideration. The cumulative intensity function calculation section 24-2 transmits the calculated cumulative intensity function Λ(t) to the automatic differentiation section 24-3.
 自動微分部24-3は、累積強度関数Λ(t)を自動微分することにより、強度関数λ(t)を算出する。自動微分部24-3は、算出された強度関数λ(t)を更新部25に送信する。 The automatic differentiation section 24-3 calculates the intensity function λ(t) by automatically differentiating the cumulative intensity function Λ(t). The automatic differentiator 24-3 transmits the calculated intensity function λ(t) to the updater 25.
 更新部25は、強度関数λ(t)及びクエリ系列Eqに基づいて、複数のパラメタp1、p2a、及びp2bを更新する。更新された複数のパラメタp1、p2a、及びp2bは、それぞれ、ニューラルネットワーク23-1、第1単調増加ニューラルネットワーク24-1a、及び第2単調増加ニューラルネットワーク24-1bに1対1で適用される。また、更新部25は、更新された複数のパラメタp1、p2a、及びp2bを判定部26に送信する。 The updating unit 25 updates the plurality of parameters p1, p2a, and p2b based on the intensity function λ(t) and the query sequence Eq. The updated plurality of parameters p1, p2a, and p2b are applied one-to-one to the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b, respectively. . Furthermore, the updating unit 25 transmits the updated parameters p1, p2a, and p2b to the determining unit 26.
 具体的には、更新部25は、評価関数算出部25-1、及び最適化部25-2を含む。 Specifically, the update unit 25 includes an evaluation function calculation unit 25-1 and an optimization unit 25-2.
 評価関数算出部25-1は、強度関数λ(t)及びクエリ系列Eqに基づいて、評価関数L(Eq)を算出する。評価関数L(Eq)は、例えば、負の対数尤度である。評価関数算出部25-1は、算出された評価関数L(Eq)を最適化部25-2に送信する。 The evaluation function calculation unit 25-1 calculates the evaluation function L(Eq) based on the intensity function λ(t) and the query sequence Eq. The evaluation function L(Eq) is, for example, a negative log likelihood. The evaluation function calculation unit 25-1 transmits the calculated evaluation function L(Eq) to the optimization unit 25-2.
 最適化部25-2は、評価関数L(Eq)に基づいて、複数のパラメタp1、p2a、及びp2bを最適化する。最適化には、例えば、誤差逆伝播法が用いられる。最適化部25-2は、最適化された複数のパラメタp1、p2a、及びp2bで、ニューラルネットワーク23-1、第1単調増加ニューラルネットワーク24-1a、及び第2単調増加ニューラルネットワーク24-1bに1対1で適用される複数のパラメタp1、p2a、及びp2bを更新する。また、最適化部25-2は、サポート系列Es中のイベントが考慮された負の対数尤度に基づいて上記パラメタを最適化してもよい。 The optimization unit 25-2 optimizes the plurality of parameters p1, p2a, and p2b based on the evaluation function L(Eq). For example, an error backpropagation method is used for the optimization. The optimization unit 25-2 applies the optimized parameters p1, p2a, and p2b to the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b. A plurality of parameters p1, p2a, and p2b that are applied on a one-to-one basis are updated. Furthermore, the optimization unit 25-2 may optimize the above parameters based on a negative log likelihood in which events in the support sequence Es are taken into consideration.
 判定部26は、更新された複数のパラメタp1、p2a、及びp2bに基づいて、条件が満たされたか否かを判定する。条件は、例えば、複数のパラメタp1、p2a、及びp2bが判定部26に送信された回数(すなわち、パラメタの更新ループ数)が閾値以上となることであってもよい。条件は、例えば、複数のパラメタp1、p2a、及びp2bの更新前後の値の変化量が閾値以下となることであってもよい。条件が満たされない場合、判定部26は、データ抽出部21、潜在表現算出部23、強度関数算出部24、及び更新部25によるパラメタの更新ループを繰り返し実行させる。条件が満たされた場合、判定部26は、パラメタの更新ループを終了させると共に、最後に更新された複数のパラメタp1、p2a、及びp2bを学習済みパラメタ27としてメモリ11に記憶させる。以下の説明では、学習前のパラメタと区別するために、学習済みパラメタ27内の複数のパラメタをp1、p2a、及びp2bと記載する。 The determination unit 26 determines whether or not a condition is satisfied based on the updated parameters p1, p2a, and p2b. The condition may be, for example, that the number of times the parameters p1, p2a, and p2b are transmitted to the determination unit 26 (i.e., the number of parameter update loops) is equal to or greater than a threshold. The condition may be, for example, that the amount of change in the values of the parameters p1, p2a, and p2b before and after the update is equal to or less than a threshold. If the condition is not satisfied, the determination unit 26 causes the data extraction unit 21, the latent expression calculation unit 23, the intensity function calculation unit 24, and the update unit 25 to repeatedly execute a parameter update loop. If the condition is satisfied, the determination unit 26 ends the parameter update loop and stores the last updated parameters p1, p2a, and p2b in the memory 11 as the learned parameters 27. In the following description, the parameters in the learned parameters 27 are described as p1 * , p2a * , and p2b * to distinguish them from the parameters before learning.
 以上のような構成により、イベント予測装置1は、学習用データセット20に基づいて、学習済みパラメタ27を生成する機能を有する。 With the above configuration, the event prediction device 1 has a function of generating learned parameters 27 based on the learning data set 20.
 1.1.3 予測機能構成
 図4は、第1実施形態に係るイベント予測装置の予測機能の構成の一例を示すブロック図である。
1.1.3 Prediction Function Configuration FIG. 4 is a block diagram showing an example of a prediction function configuration of the event prediction device according to the first embodiment.
 制御回路10のCPUは、メモリ11又は記憶媒体15に記憶された予測プログラムをRAMに展開する。そして、制御回路10のCPUは、RAMに展開された予測プログラムを解釈及び実行することによりメモリ11、通信モジュール12、ユーザインタフェース13、ドライブ14、及び記憶媒体15を制御する。これによって、図4に示されるように、イベント予測装置1は、潜在表現算出部23、強度関数算出部24、及び予測系列生成部29を備えるコンピュータとして更に機能する。また、イベント予測装置1のメモリ11は、予測動作に使用される情報として、予測用データ28を更に記憶する。なお、図4では、ニューラルネットワーク23-1、第1単調増加ニューラルネットワーク24-1a、及び第2単調増加ニューラルネットワーク24-1bに、それぞれ学習済みパラメタ27から複数のパラメタp1、p2a、及びp2bが1対1で適用されている場合が示される。 The CPU of the control circuit 10 loads the prediction program stored in the memory 11 or the storage medium 15 into the RAM. The CPU of the control circuit 10 controls the memory 11, the communication module 12, the user interface 13, the drive 14, and the storage medium 15 by interpreting and executing the prediction program developed in the RAM. Thereby, as shown in FIG. 4, the event prediction device 1 further functions as a computer including a latent expression calculation section 23, an intensity function calculation section 24, and a prediction sequence generation section 29. Furthermore, the memory 11 of the event prediction device 1 further stores prediction data 28 as information used for prediction operations. In FIG. 4, the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b each have a plurality of parameters p1 * , p2a * , and A case is shown where p2b * is applied on a one-to-one basis.
 学習用データセット20が或るECサイトにおける複数のユーザのイベント系列の集合である場合、予測用データ28は、例えば、新規ユーザの今後一週間分のイベント系列に対応する。学習用データセット20が複数のECサイトにおける或るユーザのイベント系列の集合である場合、予測用データ28は、例えば、別のECサイトにおけるユーザの今後一週間分のイベント系列に対応する。 If the learning data set 20 is a collection of event series of multiple users on a certain EC site, the prediction data 28 corresponds to, for example, the new user's event series for the next one week. When the learning data set 20 is a collection of event sequences of a certain user on a plurality of EC sites, the prediction data 28 corresponds to, for example, the user's event sequence for the next one week on another EC site.
 図5は、第1実施形態に係るイベント予測装置の予測用データの構成の一例を示す図である。図5に示すように、予測用データ28は、予測用系列Esを有する。予測用系列Esは、予測したい期間の前に発生したイベントの発生時刻を含む情報である。具体的には、予測用系列Esは、期間Ts=[0,ts]の間に発生したI個のイベントの発生時間t(1≦i≦I)を含む(Iは、1以上の整数)。 FIG. 5 is a diagram illustrating an example of the configuration of prediction data of the event prediction device according to the first embodiment. As shown in FIG. 5, the prediction data 28 has a prediction sequence Es * . The prediction sequence Es * is information including the occurrence time of an event that occurred before the period to be predicted. Specifically, the prediction sequence Es * includes the occurrence times ti (1≦i≦I * ) of I * events occurring during the period Ts * =[0, ts * ] (I * is an integer greater than or equal to 1).
 つまり、期間Tsに後続する期間Tq=(ts,tq]が、予測動作においてイベント発生を予測する期間となる。以下では、期間Tqに予測されるイベントの発生時刻を含む情報を予測系列Eqとする。 In other words, the period Tq * = (ts * , tq * ) following the period Ts * is the period in which event occurrence is predicted in the prediction operation. Below, information including the occurrence time of the event predicted in the period Tq * will be used. Let be the predicted series Eq * .
 再び図4を参照して、イベント予測装置1の予測機能の構成について説明する。 Referring again to FIG. 4, the configuration of the prediction function of the event prediction device 1 will be described.
 潜在表現算出部23は、ニューラルネットワーク23-1に予測用データ28内の予測用系列Esを入力する。複数のパラメタp1が適用されたニューラルネットワーク23-1は、予測用系列Esを入力として、潜在表現zを出力する。ニューラルネットワーク23-1は、出力された潜在表現zを強度関数算出部24内の第1単調増加ニューラルネットワーク24-1a及び第2単調増加ニューラルネットワーク24-1bに送信する。 The latent expression calculation unit 23 inputs the prediction sequence Es * in the prediction data 28 to the neural network 23-1. The neural network 23-1 to which a plurality of parameters p1 * are applied receives the prediction sequence Es * as an input and outputs a latent expression z * . The neural network 23-1 transmits the output latent expression z * to the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b within the intensity function calculation unit 24.
 複数のパラメタp2aが適用された第1単調増加ニューラルネットワーク24-1aは、潜在表現z及び時間tによって規定される単調増加関数に従って、出力f(z,t)及びf(z,0)を算出する。第1単調増加ニューラルネットワーク24-1aは、出力f(z,t)及びf(z,0)を累積強度関数算出部24-2に送信する。 The first monotonically increasing neural network 24-1a to which a plurality of parameters p2a * are applied outputs f* ( z * ,t) and f * (z * ,0) is calculated. The first monotonically increasing neural network 24-1a transmits the outputs f * (z * , t) and f * (z * , 0) to the cumulative intensity function calculation unit 24-2.
 複数のパラメタp2bが適用された第2単調増加ニューラルネットワーク24-1bは、潜在表現z、時間t、時間t´、及び周期τによって規定される単調増加関数に従って、出力g(z,t´)、g(z,τ)、及びg(z,0)を算出する。第2単調増加ニューラルネットワーク24-1bは、算出された値を累積強度関数算出部24-2に送信する。 The second monotonically increasing neural network 24-1b to which a plurality of parameters p2b * are applied outputs g* ( z * , t'), g * (z * , τ), and g * (z * , 0). The second monotonically increasing neural network 24-1b transmits the calculated value to the cumulative intensity function calculation unit 24-2.
 累積強度関数算出部24-2は、上述の式(2)~(4)(ただし、z、f、g、λ、及びΛをz、f、g、λ、及びΛと読み替える)に従って、周期τ並びに出力f(z,t)、g(z,t´)、及びg(z,τ)などに基づいて、累積強度関数Λ(t)を算出する。累積強度関数算出部24-2は、算出された累積強度関数Λ(t)を自動微分部24-3に送信する。 The cumulative intensity function calculation unit 24-2 calculates the above equations (2) to (4) (where z, f, g, λ, and Λ are replaced by z * , f * , g * , λ * , and Λ *) . The cumulative intensity function Λ * (t) is calculated based on the period τ and the outputs f * (z * , t), g * ( z * , t'), g * (z * , τ), etc. according to calculate. The cumulative intensity function calculation unit 24-2 transmits the calculated cumulative intensity function Λ * (t) to the automatic differentiation unit 24-3.
 自動微分部24-3は、累積強度関数Λ(t)を自動微分することにより、強度関数λ(t)を算出する。自動微分部24-3は、算出された強度関数λ(t)を予測系列生成部29に送信する。 The automatic differentiator 24-3 calculates the intensity function λ * (t) by automatically differentiating the cumulative intensity function Λ * (t). The automatic differentiator 24-3 transmits the calculated intensity function λ * (t) to the predicted sequence generator 29.
 予測系列生成部29は、強度関数λ(t)に基づいて、予測系列Eqを生成する。予測系列生成部29は、生成された予測系列Eqをユーザに出力する。予測系列生成部29は、強度関数λ(t)をユーザに出力してもよい。なお、予測系列Eqの生成には、例えば、Lewis方式等を用いたシミュレーションが実行される。Lewis方式に関する情報は、例えば文献「Yosihiko Ogata, “On Lewis’ Simulation Method for Point Processes,” IEEE Transactions on Information Theory, Vol.27, Issue.1, January 1981,<https://ieeexplore.ieee.org/abstract/document/1056305>」に開示される。
 以上のような構成により、イベント予測装置1は、学習済みパラメタ27に基づいて、予測用系列Esに後続する予測系列Eqを予測する機能を有する。
The predicted sequence generation unit 29 generates the predicted sequence Eq * based on the intensity function λ * (t). The predicted sequence generation unit 29 outputs the generated predicted sequence Eq * to the user. The predicted sequence generation unit 29 may output the intensity function λ * (t) to the user. Note that to generate the predicted sequence Eq * , a simulation using the Lewis method or the like is performed, for example. Information on the Lewis method can be found, for example, in the document “Yoshihiko Ogata, “On Lewis' Simulation Method for Point Processes,” IEEE Transactions on Information Theory, Vol.27, Issue.1, January 1981, <https://ieeexplore.ieee.org /abstract/document/1056305>”
With the above configuration, the event prediction device 1 has a function of predicting the prediction sequence Eq * following the prediction sequence Es * based on the learned parameters 27 .
 1.2. 動作
 次に、第1実施形態に係るイベント予測装置の動作について説明する。
1.2. Operation Next, the operation of the event prediction device according to the first embodiment will be described.
 1.2.1 学習動作
 図6は、第1実施形態に係るイベント予測装置における学習動作の一例を示すフローチャートである。図6の例では、予め学習用データセット20がメモリ11内に記憶されているものとする。
1.2.1 Learning Operation FIG. 6 is a flowchart showing an example of the learning operation in the event prediction device according to the first embodiment. In the example of FIG. 6, it is assumed that the learning data set 20 is stored in the memory 11 in advance.
 図6に示すように、ユーザからの学習動作の開始指示に応じて(開始)、初期化部22は、規則Xに基づいて、複数のパラメタp1、p2a、及びp2bを初期化する(S10)。例えば、初期化部22は、複数のパラメタp1、p2a、及びp2bをXavierの初期化又はHeの初期化に基づいて初期化する。S10の処理によって初期化された複数のパラメタp1、p2a、及びp2bはそれぞれ、ニューラルネットワーク23-1、第1単調増加ニューラルネットワーク24-1a、及び第2単調増加ニューラルネットワーク24-1bに適用される。 As shown in FIG. 6, in response to a user's instruction to start a learning operation (start), the initialization unit 22 initializes a plurality of parameters p1, p2a, and p2b based on rule X (S10). . For example, the initialization unit 22 initializes the plurality of parameters p1, p2a, and p2b based on Xavier initialization or He initialization. The plurality of parameters p1, p2a, and p2b initialized by the process of S10 are applied to the neural network 23-1, the first monotonically increasing neural network 24-1a, and the second monotonically increasing neural network 24-1b, respectively. .
 データ抽出部21は、学習用データセット20から系列Evを抽出する。続いて、データ抽出部21は、抽出された系列Evからサポート系列Es及びクエリ系列Eqを更に抽出する(S11)。 The data extraction unit 21 extracts the series Ev from the learning data set 20. Subsequently, the data extraction unit 21 further extracts the support sequence Es and the query sequence Eq from the extracted sequence Ev (S11).
 S10の処理で初期化された複数のパラメタp1が適用されたニューラルネットワーク23-1は、S11の処理で抽出されたサポート系列Esを入力として、潜在表現zを算出する(S12)。 The neural network 23-1 to which the plurality of parameters p1 initialized in the process of S10 is applied calculates a latent expression z by inputting the support series Es extracted in the process of S11 (S12).
 S10の処理で初期化された複数のパラメタp2aが適用された第1単調増加ニューラルネットワーク24-1aは、S12の処理で算出された潜在表現z、及び時間tによって規定される単調増加関数に従って、出力f(z,t)及びf(z,0)を算出する(S13)。 The first monotonically increasing neural network 24-1a to which the plurality of parameters p2a initialized in the process of S10 is applied follows the monotonically increasing function defined by the latent expression z calculated in the process of S12 and the time t. Outputs f(z, t) and f(z, 0) are calculated (S13).
 S10の処理で初期化された複数のパラメタp2bが適用された第2単調増加ニューラルネットワーク24-1bは、S12の処理で算出された潜在表現z、時間t、時間t´、及び周期τによって規定される単調増加関数に従って、出力g(z,t´)、g(z,τ)、及びg(z,0)を算出する(S14)。 The second monotonically increasing neural network 24-1b to which the plurality of parameters p2b initialized in the process of S10 is applied is defined by the latent expression z, time t, time t', and period τ calculated in the process of S12. Outputs g(z, t'), g(z, τ), and g(z, 0) are calculated according to the monotonically increasing function (S14).
 累積強度関数算出部24-2は、S13の処理で算出された出力f(z,t)及びf(z,0)と、S14の処理で算出された出力に基づいて、累積強度関数Λ(t)を算出する(S15)。 The cumulative intensity function calculation unit 24-2 calculates the cumulative intensity function Λ( t) is calculated (S15).
 自動微分部24-3は、S15の処理で算出された累積強度関数Λ(t)に基づいて、強度関数λ(t)を算出する(S16)。 The automatic differentiation unit 24-3 calculates the intensity function λ(t) based on the cumulative intensity function Λ(t) calculated in the process of S15 (S16).
 更新部25は、S16で算出された強度関数λ(t)及びS11の処理で抽出されたクエリ系列Eqに基づいて、複数のパラメタp1、p2a、及びp2bを更新する(S17)。具体的には、評価関数算出部25-1は、強度関数λ(t)及びクエリ系列Eqに基づいて、評価関数L(Eq)を算出する。最適化部25-2は、誤差逆伝播法を用いて、評価関数L(Eq)に基づく最適化された複数のパラメタp1、p2a、及びp2bを算出する。最適化部25-2は、最適化された複数のパラメタp1、p2a、及びp2bを、それぞれニューラルネットワーク23-1、第1単調増加ニューラルネットワーク24-1a、及び第2単調増加ニューラルネットワーク24-1bに1対1で適用する。 The updating unit 25 updates the plurality of parameters p1, p2a, and p2b based on the intensity function λ(t) calculated in S16 and the query sequence Eq extracted in the process of S11 (S17). Specifically, the evaluation function calculation unit 25-1 calculates the evaluation function L(Eq) based on the intensity function λ(t) and the query sequence Eq. The optimization unit 25-2 uses the error backpropagation method to calculate a plurality of optimized parameters p1, p2a, and p2b based on the evaluation function L(Eq). The optimization unit 25-2 applies the optimized parameters p1, p2a, and p2b to a neural network 23-1, a first monotonically increasing neural network 24-1a, and a second monotonically increasing neural network 24-1b, respectively. applied on a one-to-one basis.
 判定部26は、複数のパラメタp1、p2a、及びp2bに基づいて、条件が満たされたか否かを判定する(S18)。 The determination unit 26 determines whether the condition is satisfied based on the plurality of parameters p1, p2a, and p2b (S18).
 条件が満たされていない場合(S18;no)、データ抽出部21は、学習用データセット20から新たなサポート系列Es及びクエリ系列Eqを抽出する(S11)。そして、当該抽出された新たなサポート系列Es及びクエリ系列Eq、並びにS17の処理で更新された複数のパラメタp1、p2a、及びp2bに基づいて、S12~S18の処理が実行される。これにより、S18の処理で条件が満たされると判定されるまで、複数のパラメタp1、p2a、及びp2bの更新処理が繰り返される。 If the conditions are not met (S18; no), the data extraction unit 21 extracts a new support sequence Es and query sequence Eq from the learning dataset 20 (S11). Then, based on the extracted new support series Es and query series Eq, and the plurality of parameters p1, p2a, and p2b updated in the process of S17, the processes of S12 to S18 are executed. As a result, the process of updating the plurality of parameters p1, p2a, and p2b is repeated until it is determined in the process of S18 that the condition is satisfied.
 条件が満たされた場合(S18;yes)、判定部26は、S17の処理で最後に更新された複数のパラメタp1、p2a、及びp2bを、p1、p2a、及びp2bとして学習済みパラメタ27に記憶させる(S19)。 If the condition is satisfied (S18; yes), the determination unit 26 sets the plurality of parameters p1, p2a, and p2b that were last updated in the process of S17 as learned parameters p1 * , p2a * , and p2b *. 27 (S19).
 S19の処理が終わると、イベント予測装置1における学習動作は、終了となる(終了)。 When the process of S19 ends, the learning operation in the event prediction device 1 ends (end).
 1.2.2 予測動作
 図7は、第1実施形態に係るイベント予測装置における予測動作の一例を示すフローチャートである。図7の例では、予め実行された学習動作によって、学習済みパラメタ27内の複数のパラメタp1、p2a、及びp2bが、それぞれニューラルネットワーク23-1、第1単調増加ニューラルネットワーク24-1a、及び第2単調増加ニューラルネットワーク24-1bに1対1で適用されているものとする。また、図7の例では、予測用データ28が、メモリ11内に記憶されているものとする。
1.2.2 Prediction Operation FIG. 7 is a flowchart showing an example of prediction operation in the event prediction device according to the first embodiment. In the example of FIG. 7, a plurality of parameters p1 * , p2a * , and p2b * in the learned parameters 27 are set to the neural network 23-1 and the first monotonically increasing neural network 24-1a, respectively, by the learning operation executed in advance. , and the second monotonically increasing neural network 24-1b on a one-to-one basis. Further, in the example of FIG. 7, it is assumed that the prediction data 28 is stored in the memory 11.
 図7に示すように、ユーザからの予測動作の開始指示に応じて(開始)、複数のパラメタp1が適用されたニューラルネットワーク23-1は、予測用系列Esを入力として、潜在表現zを算出する(S20)。 As shown in FIG. 7, in response to a user's instruction to start a prediction operation (start), the neural network 23-1 to which a plurality of parameters p1 * are applied inputs the prediction sequence Es * and generates a latent expression z. * is calculated (S20).
 複数のパラメタp2aが適用された第1単調増加ニューラルネットワーク24-1aは、S20の処理で算出された潜在表現z、及び時間tによって規定される単調増加関数に従って、出力f(z,t)及びf(z,0)を算出する(S21)。 The first monotonically increasing neural network 24-1a to which a plurality of parameters p2a* are applied outputs an output f * (z * , t) and f * (z * , 0) are calculated (S21).
 複数のパラメタp2bが適用された第2単調増加ニューラルネットワーク24-1bは、S20の処理で算出された潜在表現z、並びに時間t、時間t´、及び周期τによって規定される単調増加関数に従って、出力g(z,t´)、g(z,τ)及びg(z,0)を算出する(S22)。 The second monotonically increasing neural network 24-1b to which a plurality of parameters p2b * are applied is a monotonically increasing function defined by the latent expression z * calculated in the process of S20, time t, time t', and period τ. Accordingly, outputs g * (z * , t'), g * (z * , τ), and g * (z * , 0) are calculated (S22).
 累積強度関数算出部24-2は、S21の処理で算出された出力f(z,t)及びf(z,0)と、S22の処理で算出された出力g(z,t´)、g(z,τ)、及びg(z,0)に基づいて、累積強度関数Λ(t)を算出する(S23)。 The cumulative intensity function calculation unit 24-2 calculates the outputs f * (z * , t) and f * (z * , 0) calculated in the process of S21 and the output g * (z * ) calculated in the process of S22. , t'), g * (z * , τ), and g * (z * , 0), the cumulative intensity function Λ * (t) is calculated (S23).
 自動微分部24-3は、S23の処理で算出された累積強度関数Λ(t)に基づいて、強度関数λ(t)を算出する(S24)。 The automatic differentiator 24-3 calculates the intensity function λ * (t) based on the cumulative intensity function Λ * (t) calculated in the process of S23 (S24).
 予測系列生成部29は、S24で算出された強度関数λ(t)に基づいて、予測系列Eqを生成する(S25)。そして、予測系列生成部29は、S25の処理で生成された予測系列Eqを、ユーザに出力する。 The predicted sequence generation unit 29 generates the predicted sequence Eq * based on the intensity function λ * (t) calculated in S24 (S25). Then, the predicted sequence generation unit 29 outputs the predicted sequence Eq * generated in the process of S25 to the user.
 S25の処理が終わると、イベント予測装置1における予測動作は、終了となる(終了)。 When the process of S25 ends, the prediction operation in the event prediction device 1 ends (end).
 1.3 第1実施形態に係る効果
 第1実施形態によれば、第1単調増加ニューラルネットワーク24-1aは、サポート系列Esの潜在表現z及び時間tによって規定される単調増加関数に従って、出力f(z,t)及びf(z,0)を算出するように構成される。 
 第2単調増加ニューラルネットワーク24-1bは、サポート系列Esの潜在表現z、時間t、時間t´、及び周期τによって規定される単調増加関数に従って、出力g(z,t´)、g(z,τ)、及びg(z,0)を算出するように構成される。 
 累積強度関数算出部24-2は、出力f(z,t)及びf(z,0)、並びにg(z,t´)、g(z,τ)、及びg(z,0)に基づいて累積強度関数Λ(t)を算出する。
 これにより、第1単調増加ニューラルネットワーク24-1aでは、周期的な変化を表現しなくてよくなる。このため、第1単調増加ニューラルネットワーク24-1aの出力に求められる表現力の要求を緩和することができる。
1.3 Effects of First Embodiment According to the first embodiment, the first monotonically increasing neural network 24-1a outputs f according to the monotonically increasing function defined by the latent representation z of the support sequence Es and the time t. (z, t) and f(z, 0).
The second monotonically increasing neural network 24-1b outputs g(z, t'), g(z , τ), and g(z,0).
The cumulative intensity function calculation unit 24-2 calculates the Then, the cumulative intensity function Λ(t) is calculated.
This eliminates the need for the first monotonically increasing neural network 24-1a to represent periodic changes. Therefore, the requirement for expressiveness required for the output of the first monotonically increasing neural network 24-1a can be relaxed.
 また、自動微分部24-3は、累積強度関数Λ(t)に基づき、点過程に関する強度関数λ(t)を算出する。これにより、第1単調増加ニューラルネットワーク24-1a及び第2単調増加ニューラルネットワーク24-1bを、点過程のモデリングに用いることができる。このため、第1単調増加ニューラルネットワーク24-1a及び第2単調増加ニューラルネットワーク24-1bを用いて、イベントの長期的な予測を行うことができる。 Furthermore, the automatic differentiator 24-3 calculates the intensity function λ(t) regarding the point process based on the cumulative intensity function Λ(t). Thereby, the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b can be used for modeling a point process. Therefore, long-term prediction of events can be performed using the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b.
 2. 第2実施形態
 次に、第2実施形態に係る情報処理装置について説明する。
2. Second Embodiment Next, an information processing apparatus according to a second embodiment will be described.
 上述した第1実施形態では、強度関数λ(t)のモデリングに際して、サポート系列Esを入力として潜在表現zを出力するニューラルネットワークを用いる場合について説明したが、これに限られない。例えば、強度関数λ(t)のモデリングは、MAML(Model-Agnostic Meta-Learning)等のメタ学習手法と組み合わされることによって実現されてもよい。以下では、第1実施形態と異なる構成及び動作について主に説明する。そして、第1実施形態と同等の構成及び動作については説明を適宜省略する。 In the first embodiment described above, when modeling the intensity function λ(t), a case has been described in which a neural network that inputs the support sequence Es and outputs the latent expression z is used, but the present invention is not limited to this. For example, modeling of the intensity function λ(t) may be realized by combining with a meta-learning method such as MAML (Model-Agnostic Meta-Learning). Below, the configuration and operation that are different from the first embodiment will be mainly explained. Further, descriptions of configurations and operations equivalent to those of the first embodiment will be omitted as appropriate.
 2.1 学習機能構成
 図8は、第2実施形態に係るイベント予測装置の学習機能の構成の一例を示すブロック図である。
2.1 Learning Function Configuration FIG. 8 is a block diagram showing an example of the learning function configuration of the event prediction device according to the second embodiment.
 図8に示されるように、イベント予測装置1は、データ抽出部31、初期化部32、第1強度関数算出部33A、第2強度関数算出部33B、第1更新部34A、第2更新部34B、第1判定部35A、及び第2判定部35Bを備えるコンピュータとして機能する。また、イベント予測装置1のメモリ11は、学習動作に使用される情報として、学習用データセット30及び学習済みパラメタ36を記憶する。 As shown in FIG. 8, the event prediction device 1 includes a data extraction section 31, an initialization section 32, a first intensity function calculation section 33A, a second intensity function calculation section 33B, a first update section 34A, and a second update section. 34B, a first determination section 35A, and a second determination section 35B. The memory 11 of the event prediction device 1 also stores a learning data set 30 and learned parameters 36 as information used for learning operations.
 学習用データセット30及びデータ抽出部31は、第1実施形態における学習用データセット20及びデータ抽出部21と同等である。すなわち、データ抽出部31は、学習用データセット30からサポート系列Es及びクエリ系列Eqを抽出する。 The learning data set 30 and the data extraction unit 31 are equivalent to the learning data set 20 and the data extraction unit 21 in the first embodiment. That is, the data extraction unit 31 extracts the support sequence Es and the query sequence Eq from the learning data set 30.
 初期化部32は、規則Xに基づいて複数のパラメタp2a及びp2bを初期化する。初期化部22は、初期化された複数のパラメタp2a及びp2bを第1強度関数算出部33Aに送信する。なお、以下では、複数のパラメタp2a及びp2bの集合は、パラメタセットθ{p2a,p2b}とも呼ぶ。また、パラメタセットθ{p2a,p2b}内の複数のパラメタp2a及びp2bはそれぞれ、複数のパラメタθ{p2a}及びθ{p2b}とも呼ぶ。 The initialization unit 32 initializes multiple parameters p2a and p2b based on rule X. The initialization unit 22 transmits the plurality of initialized parameters p2a and p2b to the first intensity function calculation unit 33A. Note that hereinafter, the set of the plurality of parameters p2a and p2b is also referred to as a parameter set θ{p2a, p2b}. Further, the plurality of parameters p2a and p2b in the parameter set θ{p2a, p2b} are also referred to as the plurality of parameters θ{p2a} and θ{p2b}, respectively.
 第1強度関数算出部33Aは、時間tに基づき、強度関数λ(t)を算出する。第1強度関数算出部33Aは、算出された強度関数λ(t)を第1更新部34Aに送信する。 The first intensity function calculation unit 33A calculates the intensity function λ a (t) based on time t. The first intensity function calculation unit 33A transmits the calculated intensity function λ a (t) to the first update unit 34A.
 具体的には、第1強度関数算出部33Aは、第1単調増加ニューラルネットワーク33A-1a、第2単調増加ニューラルネットワーク33A-1b、累積強度関数算出部33A-2、及び自動微分部33A-3を含む。 Specifically, the first intensity function calculating section 33A includes a first monotonically increasing neural network 33A-1a, a second monotonically increasing neural network 33A-1b, a cumulative intensity function calculating section 33A-2, and an automatic differentiation section 33A-3. including.
 第1単調増加ニューラルネットワーク33A-1aは、時間によって規定される単調増加関数に従ったスカラ値を出力として算出するようにモデル化された数理モデルである。第1単調増加ニューラルネットワーク33A-1aには、複数のパラメタθ{p2a}に基づく複数の重み及びバイアス項が適用される。第1単調増加ニューラルネットワーク33A-1aに適用される各重みは、非負値である。複数のパラメタθ{p2a}が適用された第1単調増加ニューラルネットワーク33A-1aは、時間tによって規定される単調増加関数に従って、出力f(t)及びf(0)を算出する。第1単調増加ニューラルネットワーク33A-1aは、算出された出力f(t)およびf(0)を累積強度関数算出部33A-2に送信する。
 また、第2単調増加ニューラルネットワーク33A-1bは、周期及び時間によって規定される単調増加関数に従ったスカラ値を出力として算出するようにモデル化された数理モデルである。第2単調増加ニューラルネットワーク33A-1bには、複数のパラメタθ{p2b}に基づく複数の重み及びバイアス項が適用される。第2単調増加ニューラルネットワーク33A-1bに適用される各重みは、非負値である。複数のパラメタθ{p2b}が適用された第2単調増加ニューラルネットワーク33A-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g(t´)、g(τ)及びg(0)を算出する。第2単調増加ニューラルネットワーク33A-1bは、算出された出力g(t´)、g(τ)及びg(0)を累積強度関数算出部33A-2に送信する。
The first monotonically increasing neural network 33A-1a is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by time. A plurality of weights and bias terms based on a plurality of parameters θ{p2a} are applied to the first monotonically increasing neural network 33A-1a. Each weight applied to the first monotonically increasing neural network 33A-1a is a non-negative value. The first monotonically increasing neural network 33A-1a to which a plurality of parameters θ{p2a} are applied calculates outputs f a (t) and f a (0) according to a monotonically increasing function defined by time t. The first monotonically increasing neural network 33A-1a transmits the calculated outputs f a (t) and f a (0) to the cumulative intensity function calculation unit 33A-2.
Further, the second monotonically increasing neural network 33A-1b is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by period and time. A plurality of weights and bias terms based on a plurality of parameters θ{p2b} are applied to the second monotonically increasing neural network 33A-1b. Each weight applied to the second monotonically increasing neural network 33A-1b is a non-negative value. The second monotonically increasing neural network 33A-1b to which a plurality of parameters θ{p2b} are applied outputs g a (t'), g a (τ) and g a (0) are calculated. The second monotonically increasing neural network 33A-1b transmits the calculated outputs g a (t'), g a (τ), and g a (0) to the cumulative intensity function calculation unit 33A-2.
 累積強度関数算出部33A-2は、以下に示す式(5)、(6)及び(7)に従って、周期τ、出力f(t)、f(0)、g(t´)、g(τ)及びg(0)に基づいて、累積強度関数Λ(t)を算出する。 The cumulative intensity function calculation unit 33A-2 calculates the period τ, the outputs f a (t), f a (0), g a (t'), according to equations (5), (6), and (7) shown below. A cumulative intensity function Λ a (t) is calculated based on g a (τ) and g a (0).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 累積強度関数算出部33A-2は、算出された累積強度関数Λ(t)を自動微分部33A-3に送信する。 The cumulative intensity function calculation unit 33A-2 transmits the calculated cumulative intensity function Λ a (t) to the automatic differentiation unit 33A-3.
 自動微分部33A-3は、累積強度関数Λ(t)を自動微分することにより、強度関数λ(t)を算出する。自動微分部33A-3は、算出された強度関数λ(t)を第1更新部34Aに送信する。 The automatic differentiator 33A-3 calculates the intensity function λ a (t) by automatically differentiating the cumulative intensity function Λ a (t). The automatic differentiator 33A-3 transmits the calculated intensity function λ a (t) to the first updater 34A.
 第1更新部34Aは、強度関数λ(t)及びサポート系列Esに基づいて、パラメタセットθ{p2a,p2b}を更新する。更新された複数のパラメタθ{p2a}及びθ{p2a}はそれぞれ、第1単調増加ニューラルネットワーク33A-1a及び第2単調増加ニューラルネットワーク33A-1bに適用される。また、第1更新部34Aは、更新されたパラメタセットθ{p2a,p2b}を第1判定部35Aに送信する。 The first updating unit 34A updates the parameter set θ{p2a, p2b} based on the intensity function λ a (t) and the support sequence Es. The updated plurality of parameters θ{p2a} and θ{p2a} are respectively applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Further, the first updating unit 34A transmits the updated parameter set θ{p2a, p2b} to the first determining unit 35A.
 具体的には、第1更新部34Aは、評価関数算出部34A-1、及び最適化部34A-2を含む。 Specifically, the first update section 34A includes an evaluation function calculation section 34A-1 and an optimization section 34A-2.
 評価関数算出部34A-1は、強度関数λ(t)及びサポート系列Esに基づいて、評価関数L(Es)を算出する。評価関数L(Es)は、例えば、負の対数尤度である。評価関数算出部34A-1は、算出された評価関数L(Es)を最適化部34A-2に送信する。 The evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es) based on the intensity function λ a (t) and the support series Es. The evaluation function L a (Es) is, for example, a negative log likelihood. The evaluation function calculation unit 34A-1 transmits the calculated evaluation function L a (Es) to the optimization unit 34A-2.
 最適化部34A-2は、評価関数L(Es)に基づいて、パラメタセットθ{p2a,p2b}を最適化する。最適化には、例えば、誤差逆伝播法が用いられる。最適化部34A-2は、最適化されたパラメタセットθ{p2a,p2b}で、第1単調増加ニューラルネットワーク33A-1a、及び第2単調増加ニューラルネットワーク33A-1bに適用されるパラメタセットθ{p2a,p2b}を更新する。 The optimization unit 34A-2 optimizes the parameter set θ{p2a, p2b} based on the evaluation function L a (Es). For example, an error backpropagation method is used for the optimization. The optimization unit 34A-2 is the optimized parameter set θ{p2a, p2b}, and the parameter set θ{ applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. p2a, p2b}.
 第1判定部35Aは、更新されたパラメタセットθ{p2a,p2b}に基づいて、第1条件が満たされたか否かを判定する。第1条件は、例えば、パラメタセットθ{p2a,p2b}が第1判定部35Aに送信された回数(すなわち、第1強度関数算出部33A及び第1更新部34Aにおけるパラメタセットの更新ループ数)が閾値以上となることであってもよい。第1条件は、例えば、パラメタセットθ{p2a,p2b}の更新前後の値の変化量が閾値以下となることであってもよい。以下では、第1強度関数算出部33A及び第1更新部34Aにおけるパラメタセットの更新ループは、インナーループ(inner loop)とも呼ぶ。 The first determination unit 35A determines whether the first condition is satisfied based on the updated parameter set θ{p2a, p2b}. The first condition is, for example, the number of times the parameter set θ{p2a, p2b} is transmitted to the first determination unit 35A (that is, the number of update loops of the parameter set in the first intensity function calculation unit 33A and the first update unit 34A). may be greater than or equal to a threshold value. The first condition may be, for example, that the amount of change in the value of the parameter set θ{p2a, p2b} before and after updating is equal to or less than a threshold value. Hereinafter, the parameter set update loop in the first intensity function calculation unit 33A and the first update unit 34A is also referred to as an inner loop.
 第1条件が満たされない場合、第1判定部35Aは、インナーループによる更新を繰り返し実行させる。第1条件が満たされた場合、第1判定部35Aは、インナーループによる更新を終了させると共に、最後に更新されたパラメタセットθ{p2a,p2b}を第2強度関数算出部33Bに送信する。以下の説明では、学習前のパラメタセットと区別するために、学習機能における第2強度関数算出部33Bに送信されるパラメタセットをθ’{p2a,p2b}と記載する。 If the first condition is not satisfied, the first determination unit 35A causes the update to be repeatedly executed using the inner loop. If the first condition is satisfied, the first determination unit 35A ends the update using the inner loop, and transmits the last updated parameter set θ{p2a, p2b} to the second intensity function calculation unit 33B. In the following description, the parameter set sent to the second intensity function calculation unit 33B in the learning function will be described as θ'{p2a, p2b} in order to distinguish it from the parameter set before learning.
 第2強度関数算出部33Bは、時間t、時間t´及び周期τに基づき、強度関数λ(t)を算出する。第2強度関数算出部33Bは、算出された強度関数λ(t)を第2更新部34Bに送信する。 The second intensity function calculation unit 33B calculates the intensity function λ b (t) based on the time t, the time t′, and the period τ. The second intensity function calculation unit 33B transmits the calculated intensity function λ b (t) to the second update unit 34B.
 具体的には、第2強度関数算出部33Bは、第1単調増加ニューラルネットワーク33B-1a、第2単調増加ニューラルネットワーク33B-1b、累積強度関数算出部33B-2、及び自動微分部33B-3を含む。 Specifically, the second intensity function calculating section 33B includes a first monotonically increasing neural network 33B-1a, a second monotonically increasing neural network 33B-1b, a cumulative intensity function calculating section 33B-2, and an automatic differentiation section 33B-3. including.
 第1単調増加ニューラルネットワーク33B-1aは、時間によって規定される単調増加関数に従ったスカラ値を出力として算出するようにモデル化された数理モデルである。第1単調増加ニューラルネットワーク33B-1aには、複数のパラメタθ’{p2a}が重み及びバイアス項として適用される。複数のパラメタθ’{p2a}が適用された第1単調増加ニューラルネットワーク33B-1aは、時間tによって規定される単調増加関数に従って、出力f(t)及びf(0)を算出する。第1単調増加ニューラルネットワーク33B-1aは、算出された出力f(t)及びf(0)を累積強度関数算出部33B-2に送信する。
 第2単調増加ニューラルネットワーク33B-1bは、時間および周期によって規定される単調増加関数に従ったスカラ値を出力として算出するようにモデル化された数理モデルである。第2単調増加ニューラルネットワーク33B-1bには、複数のパラメタθ’{p2b}が重み及びバイアス項として適用される。複数のパラメタθ’{p2b}が適用された第2単調増加ニューラルネットワーク33B-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g(t´)、g(τ)及びg(0)を算出する。第2単調増加ニューラルネットワーク33B-1bは、算出された出力g(t´)、g(τ)及びg(0)を累積強度関数算出部33B-2に送信する。
The first monotonically increasing neural network 33B-1a is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by time. A plurality of parameters θ'{p2a} are applied to the first monotonically increasing neural network 33B-1a as weights and bias terms. The first monotonically increasing neural network 33B-1a to which a plurality of parameters θ'{p2a} are applied calculates outputs f b (t) and f b (0) according to a monotonically increasing function defined by time t. The first monotonically increasing neural network 33B-1a transmits the calculated outputs f b (t) and f b (0) to the cumulative intensity function calculation unit 33B-2.
The second monotonically increasing neural network 33B-1b is a mathematical model modeled to calculate as an output a scalar value according to a monotonically increasing function defined by time and period. A plurality of parameters θ'{p2b} are applied as weights and bias terms to the second monotonically increasing neural network 33B-1b. The second monotonically increasing neural network 33B-1b to which a plurality of parameters θ'{p2b} are applied outputs g b (t'), g according to a monotonically increasing function defined by time t, time t', and period τ. Calculate b (τ) and g b (0). The second monotonically increasing neural network 33B-1b transmits the calculated outputs g b (t'), g b (τ), and g b (0) to the cumulative intensity function calculation unit 33B-2.
 累積強度関数算出部33B-2は、上述の式(5)、(6)及び(7)(ただし、Λ、f、gをΛ、f、gと読み替える)に従って、周期τ及び出力f(t)、f(0)、g(t´)、g(τ)及びg(0)に基づいて、累積強度関数Λ(t)を算出する。累積強度関数算出部33B-2は、算出された累積強度関数Λ(t)を自動微分部33B-3に送信する。 The cumulative intensity function calculation unit 33B-2 calculates the period according to the above equations (5), (6), and (7) (where Λ a , f a , and g a are replaced with Λ b , f b , and g b ). A cumulative intensity function Λ b (t) is calculated based on τ and the outputs f b (t), f b (0), g b (t'), g b (τ), and g b (0). The cumulative intensity function calculation unit 33B-2 transmits the calculated cumulative intensity function Λ b (t) to the automatic differentiation unit 33B-3.
 自動微分部33B-3は、累積強度関数Λ(t)を自動微分することにより、強度関数λ(t)を算出する。自動微分部33B-3は、算出された強度関数λ(t)を第2更新部34Bに送信する。 The automatic differentiation section 33B-3 calculates the intensity function λ b (t) by automatically differentiating the cumulative intensity function Λ b (t). The automatic differentiator 33B-3 transmits the calculated intensity function λ b (t) to the second updater 34B.
 第2更新部34Bは、強度関数λ(t)及びクエリ系列Eqに基づいて、パラメタセットθ{p2a,p2b}を更新する。更新された複数のパラメタθ{p2a}及びθ{p2b}はそれぞれ、第1単調増加ニューラルネットワーク33A-1a及び第2単調増加ニューラルネットワーク33A-1bに適用される。また、第2更新部34Bは、更新されたパラメタセットθ{p2a,p2b}を第2判定部35Bに送信する。 The second updating unit 34B updates the parameter set θ{p2a, p2b} based on the intensity function λ b (t) and the query sequence Eq. The updated plurality of parameters θ{p2a} and θ{p2b} are respectively applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Further, the second updating section 34B transmits the updated parameter set θ{p2a, p2b} to the second determining section 35B.
 具体的には、第2更新部34Bは、評価関数算出部34B-1、及び最適化部34B-2を含む。 Specifically, the second update unit 34B includes an evaluation function calculation unit 34B-1 and an optimization unit 34B-2.
 評価関数算出部34B-1は、強度関数λ(t)及びクエリ系列Eqに基づいて、評価関数L(Eq)を算出する。評価関数L(Eq)は、例えば、負の対数尤度である。評価関数算出部34B-1は、算出された評価関数L(Eq)を最適化部34B-2に送信する。 The evaluation function calculation unit 34B-1 calculates the evaluation function L b (Eq) based on the intensity function λ b (t) and the query sequence Eq. The evaluation function L b (Eq) is, for example, a negative log likelihood. The evaluation function calculation unit 34B-1 transmits the calculated evaluation function L b (Eq) to the optimization unit 34B-2.
 最適化部34B-2は、評価関数L(Eq)に基づいて、パラメタセットθ{p2a,p2b}を最適化する。パラメタセットθ{p2a,p2b}の最適化には、例えば、誤差逆伝播法が用いられる。より具体的には、最適化部34B-2は、パラメタセットθ’{p2a,p2b}を用いて評価関数L(Eq)のパラメタセットθ{p2a,p2b}に関する二階微分を算出し、パラメタセットθ{p2a,p2b}を最適化する。そして、最適化部34B-2は、最適化されたパラメタセットθ{p2a,p2b}で、第1単調増加ニューラルネットワーク33A-1a、及び第2単調増加ニューラルネットワーク33A-1bに適用されるパラメタセットθ{p2a,p2b}を更新する。 The optimization unit 34B-2 optimizes the parameter set θ{p2a, p2b} based on the evaluation function L b (Eq). For example, an error backpropagation method is used to optimize the parameter set θ{p2a, p2b}. More specifically, the optimization unit 34B-2 calculates the second derivative of the evaluation function L b (Eq) with respect to the parameter set θ{p2a, p2b} using the parameter set θ′{p2a, p2b}, and Optimize the set θ{p2a, p2b}. The optimization unit 34B-2 then sets the parameter set θ{p2a, p2b} to be applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Update θ{p2a, p2b}.
 第2判定部35Bは、更新されたパラメタセットθ{p2a,p2b}に基づいて、第2条件が満たされたか否かを判定する。第2条件は、例えば、パラメタセットθ{p2a,p2b}が第2判定部35Bに送信された回数(すなわち、第2強度関数算出部33B及び第2更新部34Bにおけるパラメタセットの更新ループ数)が閾値以上となることであってもよい。第2条件は、例えば、パラメタセットθ{p2a,p2b}の更新前後の値の変化量が閾値以下となることであってもよい。以下では、第2強度関数算出部33B及び第2更新部34Bにおけるパラメタセットの更新ループは、アウターループ(outer loop)とも呼ぶ。 The second determination unit 35B determines whether the second condition is satisfied based on the updated parameter set θ{p2a, p2b}. The second condition is, for example, the number of times the parameter set θ{p2a, p2b} is transmitted to the second determination unit 35B (that is, the number of update loops of the parameter set in the second intensity function calculation unit 33B and the second update unit 34B). may be greater than or equal to a threshold value. The second condition may be, for example, that the amount of change in the value of the parameter set θ{p2a, p2b} before and after updating is equal to or less than a threshold value. Hereinafter, the parameter set update loop in the second intensity function calculation unit 33B and the second update unit 34B will also be referred to as an outer loop.
 第2条件が満たされない場合、第2判定部35Bは、アウターループによるパラメタセットの更新を繰り返し実行させる。第2条件が満たされた場合、第2判定部35Bは、アウターループによるパラメタセットの更新を終了させると共に、最後に更新されたパラメタセットθ{p2a,p2b}を学習済みパラメタ36としてメモリ11に記憶させる。以下の説明では、アウターループによる学習前のパラメタセットと区別するために、学習済みパラメタ36内のパラメタセットをθ{p2a,p2b}と記載する。 If the second condition is not satisfied, the second determination unit 35B causes the parameter set to be updated repeatedly using the outer loop. If the second condition is satisfied, the second determination unit 35B ends the updating of the parameter set by the outer loop, and stores the last updated parameter set θ{p2a, p2b} in the memory 11 as the learned parameters 36. Make me remember. In the following description, the parameter set in the learned parameters 36 will be described as θ{p2a * , p2b * } in order to distinguish it from the parameter set before learning by the outer loop.
 以上のような構成により、イベント予測装置1は、学習用データセット30に基づいて、学習済みパラメタ36を生成する機能を有する。 With the above configuration, the event prediction device 1 has a function of generating learned parameters 36 based on the learning data set 30.
 2.2 予測機能構成
 図9は、第2実施形態に係るイベント予測装置の予測機能の構成の一例を示すブロック図である。
2.2 Prediction Functional Configuration FIG. 9 is a block diagram showing an example of the configuration of the prediction function of the event prediction device according to the second embodiment.
 図9に示されるように、イベント予測装置1は、第1強度関数算出部33A、第1更新部34A、第1判定部35A、第2強度関数算出部33B、及び予測系列生成部38を備えるコンピュータとして更に機能する。また、イベント予測装置1のメモリ11は、予測動作に使用される情報として、予測用データ37を更に記憶する。予測用データ37の構成は、第1実施形態における予測用データ28と同等である。 As shown in FIG. 9, the event prediction device 1 includes a first intensity function calculation section 33A, a first update section 34A, a first determination section 35A, a second intensity function calculation section 33B, and a prediction sequence generation section 38. It also functions as a computer. Furthermore, the memory 11 of the event prediction device 1 further stores prediction data 37 as information used for prediction operations. The configuration of the prediction data 37 is equivalent to the prediction data 28 in the first embodiment.
 なお、図9では、第1単調増加ニューラルネットワーク33A-1a、及び第2単調増加ニューラルネットワーク33A-1bに学習済みパラメタ36からパラメタセットθ{p2a,p2b}が適用されている場合が示される。 Note that FIG. 9 shows a case where the parameter set θ{p2a * , p2b * } is applied from the learned parameters 36 to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. It will be done.
 複数のパラメタθ{p2a}が適用された第1単調増加ニューラルネットワーク33A-1aは、時間tによって規定される単調増加関数に従って、出力f (t)及びf (0)を算出する。第1単調増加ニューラルネットワーク33A-1aは、算出された出力f (t)及びf (0)を累積強度関数算出部33A-2に送信する。
 また、複数のパラメタθ{p2b}が適用された第2単調増加ニューラルネットワーク33A-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g (t´)、g (τ)及びg (0)を算出する。第2単調増加ニューラルネットワーク33A-1bは、算出された出力g (t´)、g (τ)及びg (0)を累積強度関数算出部33A-2に送信する。
The first monotonically increasing neural network 33A-1a to which a plurality of parameters θ{p2a * } is applied calculates outputs f a * (t) and f a * (0) according to a monotonically increasing function defined by time t. do. The first monotonically increasing neural network 33A-1a transmits the calculated outputs f a * (t) and f a * (0) to the cumulative intensity function calculation unit 33A-2.
Further, the second monotonically increasing neural network 33A-1b to which a plurality of parameters θ{p2b * } is applied outputs g a * (t' ), g a * (τ) and g a * (0) are calculated. The second monotonically increasing neural network 33A-1b transmits the calculated outputs g a * (t'), g a * (τ), and g a * (0) to the cumulative intensity function calculation unit 33 A-2.
 累積強度関数算出部33A-2は、上述の式(5)、(6)及び(7)(ただし、f、g、λ、及びΛをf 、g 、λ 、及びΛ と読み替える)に従って、及び出力f (t)、f (0)、g (t´)、g (τ)及びg (0)に基づいて、累積強度関数Λ (t)を算出する。累積強度関数算出部33A-2は、算出された累積強度関数Λ (t)を自動微分部33A-3に送信する。 The cumulative intensity function calculation unit 33A-2 calculates the above equations (5), (6), and (7) (where f a , g a , λ a , and Λ a are replaced by f a * , g a * , λ a * , and Λ a * ) and based on the outputs f a * (t), f a * (0), g a * (t'), g a * (τ) and g a * (0) Then, the cumulative intensity function Λ a * (t) is calculated. The cumulative intensity function calculation unit 33A-2 transmits the calculated cumulative intensity function Λ a * (t) to the automatic differentiation unit 33A-3.
 自動微分部33A-3は、累積強度関数Λ (t)を自動微分することにより、強度関数λ (t)を算出する。自動微分部33A-3は、算出された強度関数λ (t)を第1判定部35Aに送信する。 The automatic differentiation section 33A-3 calculates the intensity function λ a * (t) by automatically differentiating the cumulative intensity function Λ a * (t). The automatic differentiation section 33A-3 transmits the calculated intensity function λ a * (t) to the first determination section 35A.
 評価関数算出部34A-1は、強度関数λ (t)及び予測系列Esに基づいて、評価関数L(Es)を算出する。評価関数L(Es)は、例えば、負の対数尤度である。評価関数算出部34A-1は、算出された評価関数L(Es)を最適化部34A-2に送信する。 The evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es * ) based on the intensity function λ a * (t) and the prediction sequence Es * . The evaluation function L a (Es * ) is, for example, a negative log likelihood. The evaluation function calculation unit 34A-1 transmits the calculated evaluation function L a (Es * ) to the optimization unit 34A-2.
 最適化部34A-2は、評価関数L(Es)に基づいて、パラメタセットθ{p2a,p2b}を最適化する。最適化には、例えば、誤差逆伝播法が用いられる。最適化部34A-2は、最適化されたパラメタセットθ{p2a,p2b}で、第1単調増加ニューラルネットワーク33A-1a、及び第2単調増加ニューラルネットワーク33A-1bに適用されるパラメタセットθ{p2a,p2b}を更新する。 The optimization unit 34A-2 optimizes the parameter set θ{p2a * , p2b * } based on the evaluation function L a (Es * ). For example, an error backpropagation method is used for the optimization. The optimization unit 34A-2 uses the optimized parameter set θ{p2a * , p2b * } as a parameter set to be applied to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b. Update θ{p2a * , p2b * }.
 第1判定部35Aは、更新されたパラメタセットθ{p2a,p2b}に基づいて、第3条件が満たされたか否かを判定する。第3条件は、例えば、パラメタセットθ{p2a,p2b}の更新のインナーループ数が閾値以上となることであってもよい。第3条件は、例えば、パラメタセットθ{p2a,p2b}の更新前後の値の変化量が閾値以下となることであってもよい。 The first judgment unit 35A judges whether the third condition is satisfied based on the updated parameter set θ{p2a * , p2b * }. The third condition may be, for example, that the number of inner loops for updating the parameter set θ{p2a * , p2b * } is equal to or greater than a threshold. The third condition may be, for example, that the amount of change in the value of the parameter set θ{p2a * , p2b * } before and after the update is equal to or less than a threshold.
 第3条件が満たされない場合、第1判定部35Aは、インナーループによるパラメタセットの更新を繰り返し実行させる。第3条件が満たされた場合、第1判定部35Aは、インナーループによるパラメタセットの更新を終了させると共に、最後に更新されたパラメタセットθ{p2a,p2b}を第2強度関数算出部33Bに送信する。以下の説明では、インナーループ学習前のパラメタセットと区別するために、予測機能における第2強度関数算出部33Bに送信されるパラメタセットをθ’{p2a,p2b}と記載する。 If the third condition is not satisfied, the first determination unit 35A causes the inner loop to repeatedly update the parameter set. If the third condition is satisfied, the first determination unit 35A ends the update of the parameter set by the inner loop, and sends the last updated parameter set θ{p2a * , p2b * } to the second intensity function calculation unit. 33B. In the following description, in order to distinguish it from the parameter set before inner loop learning, the parameter set sent to the second strength function calculation unit 33B in the prediction function will be described as θ'{p2a * , p2b * }.
 パラメタθ’{p2a}が適用された第1単調増加ニューラルネットワーク33B-1aは、時間tによって規定される単調増加関数に従って、出力f (t)及びf (0)を算出する。第1単調増加ニューラルネットワーク33B-1aは、算出された出力f (t)及びf (0)を累積強度関数算出部33B-2に送信する。
 パラメタθ’{p2b}が適用された第2単調増加ニューラルネットワーク33B-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g (t´)、g (τ)及びg (0)を算出する。第2単調増加ニューラルネットワーク33B-1bは、算出された出力f (t)、f (0)、g (t´)、g (τ)及びg (0)を累積強度関数算出部33B-2に送信する。
The first monotonically increasing neural network 33B-1a to which the parameter θ'{p2a * } is applied calculates the outputs f b * (t) and f b * (0) according to the monotonically increasing function defined by the time t. . The first monotonically increasing neural network 33B-1a transmits the calculated outputs f b * (t) and f b * (0) to the cumulative intensity function calculation unit 33B-2.
The second monotonically increasing neural network 33B-1b to which the parameter θ'{p2b * } is applied outputs g b * (t'), g according to a monotonically increasing function defined by time t, time t' and period τ. Calculate b * (τ) and g b * (0). The second monotonically increasing neural network 33B-1b outputs the calculated outputs f b * (t), f b * (0), g b * (t'), g b * (τ), and g b * (0). is transmitted to the cumulative intensity function calculation unit 33B-2.
 累積強度関数算出部33B-2は、上述の式(5)、(6)及び(7)(ただし、f、g、λ、及びΛをf 、g 、λ 、及びΛ と読み替える)に従って、周期τ、出力f (t)、f (0)、g (t´)、g (τ)及びg (0)に基づいて、累積強度関数Λ (t)を算出する。累積強度関数算出部33B-2は、算出された累積強度関数Λ (t)を自動微分部33B-3に送信する。 The cumulative intensity function calculation unit 33B-2 calculates the above equations (5), (6), and (7) (where f a , g a , λ a , and Λ a are replaced by f b * , g b * , λ b * , and Λ b * ), the period τ, the output f b * (t), f b * (0), g b * (t'), g b * ( τ ), and g b * (0) The cumulative intensity function Λ b * (t) is calculated based on . The cumulative intensity function calculation unit 33B-2 transmits the calculated cumulative intensity function Λ b * (t) to the automatic differentiation unit 33B-3.
 自動微分部33B-3は、累積強度関数Λ (t)を自動微分することにより、強度関数λ (t)を算出する。自動微分部33B-3は、算出された強度関数λ (t)を予測系列生成部38に送信する。 The automatic differentiation section 33B-3 calculates the intensity function λ b * (t) by automatically differentiating the cumulative intensity function Λ b * (t). The automatic differentiation section 33B-3 transmits the calculated intensity function λ b * (t) to the prediction sequence generation section 38.
 予測系列生成部38は、強度関数λ (t)に基づいて、予測系列Eqを生成する。予測系列生成部38は、生成された予測系列Eqをユーザに出力する。なお、予測系列Eqの生成には、例えば、Lewis方式等を用いたシミュレーションが実行される。 The predicted sequence generation unit 38 generates the predicted sequence Eq * based on the intensity function λ b * (t). The predicted sequence generation unit 38 outputs the generated predicted sequence Eq * to the user. Note that to generate the predicted sequence Eq * , a simulation using the Lewis method or the like is performed, for example.
 以上のような構成により、イベント予測装置1は、学習済みパラメタ36に基づいて、予測用系列Esに後続する予測系列Eqを予測する機能を有する。 With the above configuration, the event prediction device 1 has a function of predicting the prediction sequence Eq * following the prediction sequence Es * based on the learned parameters 36 .
 2.3 学習動作
 図10は、第2実施形態に係るイベント予測装置における学習動作の概要の一例を示すフローチャートである。図10の例では、予め学習用データセット30がメモリ11内に記憶されているものとする。
2.3 Learning Operation FIG. 10 is a flowchart showing an example of an overview of the learning operation in the event prediction device according to the second embodiment. In the example of FIG. 10, it is assumed that the learning data set 30 is stored in the memory 11 in advance.
 図10に示すように、ユーザからの学習動作の開始指示に応じて(開始)、初期化部32は、規則Xに基づいて、パラメタセットθ{p2a,p2b}を初期化する(S50)。S50の処理によって初期化されたパラメタセットθ{p2a,p2b}は、第1強度関数算出部33Aに適用される。 As shown in FIG. 10, in response to the user's instruction to start the learning operation (start), the initialization unit 32 initializes the parameter set θ{p2a, p2b} based on rule X (S50). The parameter set θ{p2a, p2b} initialized by the process of S50 is applied to the first intensity function calculation unit 33A.
 データ抽出部31は、学習用データセット30から系列Evを抽出する。続いて、データ抽出部31は、抽出された系列Evからサポート系列Es及びクエリ系列Eqを更に抽出する(S51)。 The data extraction unit 31 extracts the series Ev from the learning data set 30. Subsequently, the data extraction unit 31 further extracts the support sequence Es and the query sequence Eq from the extracted sequence Ev (S51).
 S50の処理で初期化されたパラメタセットθ{p2a,p2b}が適用された第1強度関数算出部33A、及び第1更新部34Aは、パラメタセットθ{p2a,p2b}の第1更新処理を実行する(S52)。第1更新処理の詳細については、後述する。 The first intensity function calculation unit 33A and the first update unit 34A to which the parameter set θ{p2a, p2b} initialized in the process of S50 is applied perform the first update process of the parameter set θ{p2a, p2b}. Execute (S52). Details of the first update process will be described later.
 S52の処理の後、第1判定部35Aは、S52の処理で更新されたパラメタセットθ{p2a,p2b}に基づいて、第1条件が満たされるか否かを判定する(S53)。 After the process of S52, the first determination unit 35A determines whether the first condition is satisfied based on the parameter set θ{p2a, p2b} updated in the process of S52 (S53).
 第1条件が満たされていない場合(S53;no)、S52の処理で更新されたパラメタセットθ{p2a,p2b}が適用された第1強度関数算出部33A、及び第1更新部34Aは、第1更新処理を再度実行する(S52)。このように、S53の処理で第1条件が満たされると判定されるまで、第1更新処理が繰り返される(インナーループ)。 If the first condition is not satisfied (S53; no), the first intensity function calculation unit 33A and the first update unit 34A to which the parameter set θ{p2a, p2b} updated in the process of S52 is applied, The first update process is executed again (S52). In this way, the first update process is repeated (inner loop) until it is determined in the process of S53 that the first condition is satisfied.
 第1条件が満たされた場合(S53;yes)、第1判定部35Aは、S52の処理で最後に更新されたパラメタセットθ{p2a,p2b}を、パラメタセットθ’{p2a,p2b}として第2強度関数算出部33Bに適用する(S54)。 If the first condition is satisfied (S53; yes), the first determination unit 35A sets the parameter set θ{p2a, p2b} that was last updated in the process of S52 as the parameter set θ'{p2a, p2b}. It is applied to the second intensity function calculation unit 33B (S54).
 パラメタセットθ’{p2a,p2b}が適用された第2強度関数算出部33B、及び第2更新部34Bは、パラメタセットθ{p2a,p2b}の第2更新処理を実行する(S55)。第2更新処理の詳細については、後述する。 The second intensity function calculation unit 33B and the second update unit 34B to which the parameter set θ'{p2a, p2b} is applied execute a second update process for the parameter set θ{p2a, p2b} (S55). Details of the second update process will be described later.
 S55の処理の後、第2判定部35Bは、S55の処理で更新されたパラメタセットθ{p2a,p2b}に基づいて、第2条件が満たされるか否かを判定する(S56)。 After the process of S55, the second determination unit 35B determines whether the second condition is satisfied based on the parameter set θ{p2a, p2b} updated in the process of S55 (S56).
 第2条件が満たされていない場合(S56;no)、データ抽出部31は、新たなサポート系列Es及びクエリ系列Eqを抽出する(S51)。そして、S56の処理で第2条件が満たされると判定されるまで、インナーループ及び第2更新処理が繰り返される(アウターループ)。 If the second condition is not satisfied (S56; no), the data extraction unit 31 extracts a new support sequence Es and a query sequence Eq (S51). Then, the inner loop and the second update process are repeated (outer loop) until it is determined in the process of S56 that the second condition is satisfied.
 第2条件が満たされた場合(S56;yes)、第2判定部35Bは、S55の処理で最後に更新されたパラメタセットθ{p2a,p2b}を、パラメタセットθ{p2a,p2b}として学習済みパラメタ36に記憶させる(S57)。 If the second condition is satisfied (S56; yes), the second determination unit 35B converts the parameter set θ{p2a, p2b} that was last updated in the process of S55 into the parameter set θ{p2a * , p2b * } The learned parameter 36 is stored as the learned parameter 36 (S57).
 S57の処理が終わると、イベント予測装置1における学習動作は、終了となる(終了)。 When the process of S57 ends, the learning operation in the event prediction device 1 ends (ends).
 図11は、第2実施形態に係るイベント予測装置における第1更新処理の一例を示すフローチャートである。図11に示されるS52-1a~S52-4の処理は、図10におけるS52の処理に対応する。 FIG. 11 is a flowchart illustrating an example of the first update process in the event prediction device according to the second embodiment. The processing of S52-1a to S52-4 shown in FIG. 11 corresponds to the processing of S52 in FIG. 10.
 S51の処理の後(開始)、S50の処理で初期化された複数のパラメタθ{p2a}が適用された第1単調増加ニューラルネットワーク33A-1aは、時間tによって規定される単調増加関数に従って、出力f(t)及びf(0)を算出する(S52-1a)。
 また、S50の処理で初期化された複数のパラメタθ{p2b}が適用された第2単調増加ニューラルネットワーク33A-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g(t´)、g(τ)及びg(0)を算出する(S52-1b)。
After the process of S51 (start), the first monotonically increasing neural network 33A-1a to which the plurality of parameters θ{p2a} initialized in the process of S50 are applied follows the monotonically increasing function defined by the time t. Outputs f a (t) and f a (0) are calculated (S52-1a).
Further, the second monotonically increasing neural network 33A-1b to which the plurality of parameters θ{p2b} initialized in the process of S50 is applied follows a monotonically increasing function defined by time t, time t', and period τ. Outputs g a (t'), g a (τ), and g a (0) are calculated (S52-1b).
 累積強度関数算出部33A-2は、S52-1aの処理で算出された出力f(t)、f(0)並びにS52-1bの処理で算出されたg(t´)、g(τ)及びg(0)に基づいて、累積強度関数Λ(t)を算出する(S52-2)。 The cumulative intensity function calculation unit 33A-2 outputs f a (t), f a (0) calculated in the process of S52-1a, and g a (t'), g a calculated in the process of S52-1b. The cumulative intensity function Λ a (t) is calculated based on (τ) and g a (0) (S52-2).
 自動微分部33A-3は、S52-2の処理で算出された累積強度関数Λ(t)に基づいて、強度関数λ(t)を算出する(S52-3)。 The automatic differentiator 33A-3 calculates the intensity function λ a (t) based on the cumulative intensity function Λ a (t) calculated in the process of S52-2 (S52-3).
 第1更新部34Aは、S52-3で算出された強度関数λ(t)及びS51の処理で抽出されたサポート系列Esに基づいて、パラメタセットθ{p2a,p2b}を更新する(S52-4)。具体的には、評価関数算出部34A-1は、強度関数λ(t)及びサポート系列Esに基づいて、評価関数L(Es)を算出する。最適化部34A-2は、誤差逆伝播法を用いて、評価関数L(Es)に基づく最適化されたパラメタセットθ{p2a,p2b}を算出する。最適化部34A-2は、最適化されたパラメタセットθ{p2a,p2b}を、第1単調増加ニューラルネットワーク33A-1a、及び第2単調増加ニューラルネットワーク33A-1bに適用する。 The first updating unit 34A updates the parameter set θ{p2a, p2b} based on the intensity function λ a (t) calculated in S52-3 and the support sequence Es extracted in the process of S51 (S52- 4). Specifically, the evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es) based on the intensity function λ a (t) and the support series Es. The optimization unit 34A-2 uses the error backpropagation method to calculate an optimized parameter set θ{p2a, p2b} based on the evaluation function L a (Es). The optimization unit 34A-2 applies the optimized parameter set θ{p2a, p2b} to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b.
 S52-4の処理が終了すると、第1更新処理は終了となる(終了)。 When the process of S52-4 ends, the first update process ends (end).
 図12は、第2実施形態に係るイベント予測装置における第2更新処理の一例を示すフローチャートである。図12に示されるS55-1a~S55-4の処理は、図10におけるS55の処理に対応する。 FIG. 12 is a flowchart illustrating an example of the second update process in the event prediction device according to the second embodiment. The processing of S55-1a to S55-4 shown in FIG. 12 corresponds to the processing of S55 in FIG.
 S54の処理の後(開始)、複数のパラメタθ’{p2a}が適用された第1単調増加ニューラルネットワーク33B-1aは、時間tによって規定される単調増加関数に従って、出力f(t)及びf(0)を算出する(S55-1a)。
 また、複数のパラメタθ’{p2b}が適用された第2単調増加ニューラルネットワーク33B-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g(t´)、g(τ)及びg(0)を算出する(S55-1b)。
After the process of S54 (start), the first monotonically increasing neural network 33B-1a to which the plurality of parameters θ'{p2a} is applied outputs f b (t) and f b (0) is calculated (S55-1a).
Further, the second monotonically increasing neural network 33B-1b to which a plurality of parameters θ'{p2b} is applied outputs g b (t') according to a monotonically increasing function defined by time t, time t', and period τ. , g b (τ) and g b (0) are calculated (S55-1b).
 累積強度関数算出部33B-2は、S55-1aの処理で算出された出力f(t)及びf(0)並びにS55-1bの処理で算出されたg(t´)、g(τ)及びg(0)に基づいて、累積強度関数Λ(t)を算出する(S55-2)。 The cumulative intensity function calculation unit 33B-2 outputs f b (t) and f b (0) calculated in the process of S55-1a, and g b (t') and g b calculated in the process of S55-1b. (τ) and g b (0), the cumulative intensity function Λ b (t) is calculated (S55-2).
 自動微分部33B-3は、S55-2の処理で算出された累積強度関数Λ(t)に基づいて、強度関数λ(t)を算出する(S55-3)。 The automatic differentiator 33B-3 calculates the intensity function λ b (t) based on the cumulative intensity function Λ b (t) calculated in the process of S55-2 (S55-3).
 第2更新部34Bは、S55-3で算出された強度関数λ(t)及びS51の処理で抽出されたクエリ系列Eqに基づいて、パラメタセットθ{p2a,p2b}を更新する(S55-4)。具体的には、評価関数算出部34B-1は、強度関数λ(t)及びクエリ系列Eqに基づいて、評価関数L(Eq)を算出する。最適化部34B-2は、誤差逆伝播法を用いて、評価関数L(Eq)に基づく最適化されたパラメタセットθ{p2a,p2b}を算出する。最適化部34B-2は、最適化されたパラメタセットθ{p2a,p2b}を、第1単調増加ニューラルネットワーク33A-1a、及び第2単調増加ニューラルネットワーク33A-1bに適用する。 The second updating unit 34B updates the parameter set θ{p2a, p2b} based on the intensity function λ b (t) calculated in S55-3 and the query sequence Eq extracted in the process of S51 (S55- 4). Specifically, the evaluation function calculation unit 34B-1 calculates the evaluation function L b (Eq) based on the intensity function λ b (t) and the query sequence Eq. The optimization unit 34B-2 uses the error backpropagation method to calculate an optimized parameter set θ{p2a, p2b} based on the evaluation function L b (Eq). The optimization unit 34B-2 applies the optimized parameter set θ{p2a, p2b} to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b.
 S55-4の処理が終了すると、第2更新処理は終了となる(終了)。 When the process of S55-4 ends, the second update process ends (end).
 2.4 予測動作
 図13は、第2実施形態に係るイベント予測装置における予測動作の一例を示すフローチャートである。図13の例では、予め実行された学習動作によって、学習済みパラメタ36内のパラメタセットθ{p2a,p2b}が、第1強度関数算出部33Aに適用されているものとする。また、図13の例では、予測用データ37が、メモリ11内に記憶されているものとする。
2.4 Prediction Operation FIG. 13 is a flowchart showing an example of prediction operation in the event prediction device according to the second embodiment. In the example of FIG. 13, it is assumed that the parameter set θ{p2a * , p2b * } in the learned parameters 36 has been applied to the first intensity function calculation unit 33A by a learning operation performed in advance. Further, in the example of FIG. 13, it is assumed that the prediction data 37 is stored in the memory 11.
 図13に示すように、ユーザからの予測動作の開始指示に応じて(開始)、複数のパラメタθ{p2a}が適用された第1単調増加ニューラルネットワーク33A-1aは、時間tによって規定される単調増加関数に従って、出力f (t)及びf (0)を算出する(S60a)。
 また、複数のパラメタθ{p2b}が適用された第2単調増加ニューラルネットワーク33A-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g (t´)、g (τ)及びg (0)を算出する(S60b)。
As shown in FIG. 13, in response to a user's instruction to start a predicted operation (start), the first monotonically increasing neural network 33A-1a to which a plurality of parameters θ{p2a * } is applied is defined by time t. The outputs f a * (t) and f a * (0) are calculated according to a monotonically increasing function (S60a).
Further, the second monotonically increasing neural network 33A-1b to which a plurality of parameters θ{p2b * } is applied outputs g a * (t' ), g a * (τ) and g a * (0) are calculated (S60b).
 累積強度関数算出部33A-2は、S60aの処理で算出された出力f (t)及びf (0)並びにS60bの処理で算出された出力g (t´)、g (τ)及びg (0)に基づいて、累積強度関数Λ (t)を算出する(S61)。 The cumulative intensity function calculation unit 33A-2 calculates the outputs f a * (t) and f a * (0) calculated in the process of S60a, and the outputs g a * (t'), g a calculated in the process of S60b. A cumulative intensity function Λ a * (t) is calculated based on * (τ) and g a * (0) (S61).
 自動微分部33A-3は、S61の処理で算出された累積強度関数Λ (t)に基づいて、強度関数λ (t)を算出する(S62)。 The automatic differentiation unit 33A-3 calculates the intensity function λ a * (t) based on the cumulative intensity function Λ a * (t) calculated in the process of S61 (S62).
 第1更新部34Aは、S62で算出された強度関数λ (t)及び予測用系列Esに基づいて、パラメタセットθ{p2a,p2b}を更新する(S63)。具体的には、評価関数算出部34A-1は、強度関数λ (t)及び予測用系列Esに基づいて、評価関数L(Es)を算出する。最適化部34A-2は、誤差逆伝播法を用いて、評価関数L(Es)に基づく最適化されたパラメタセットθ{p2a,p2b}を算出する。最適化部34A-2は、最適化されたパラメタセットθ{p2a,p2b}を、第1単調増加ニューラルネットワーク33A-1a、及び第2単調増加ニューラルネットワーク33A-1bに適用する。 The first updating unit 34A updates the parameter set θ{p2a * , p2b * } based on the intensity function λ a * (t) and the prediction sequence Es * calculated in S62 (S63). Specifically, the evaluation function calculation unit 34A-1 calculates the evaluation function L a (Es * ) based on the intensity function λ a * (t) and the prediction sequence Es * . The optimization unit 34A-2 uses the error backpropagation method to calculate an optimized parameter set θ{p2a * , p2b * } based on the evaluation function L a (Es * ). The optimization unit 34A-2 applies the optimized parameter set θ{p2a * , p2b * } to the first monotonically increasing neural network 33A-1a and the second monotonically increasing neural network 33A-1b.
 第1判定部35Aは、S63の処理で更新されたパラメタセットθ{p2a,p2b}に基づいて、第3条件が満たされるか否かを判定する(S64)。 The first determination unit 35A determines whether the third condition is satisfied based on the parameter set θ{p2a * , p2b * } updated in the process of S63 (S64).
 第3条件が満たされていない場合(S64;no)、S63の処理で更新されたパラメタセットθ{p2a,p2b}が適用された第1強度関数算出部33A、及び第1更新部34Aは、S60a~S64の処理を更に実行する。このように、S64の処理で第3条件が満たされると判定されるまで、パラメタセットθ{p2a,p2b}の更新処理が繰り返される(インナーループ)。 If the third condition is not satisfied (S64; no), the first intensity function calculation unit 33A and the first update unit 34A to which the parameter set θ{p2a * , p2b * } updated in the process of S63 are applied. further executes the processes of S60a to S64. In this way, the process of updating the parameter set θ{p2a * , p2b * } is repeated (inner loop) until it is determined in the process of S64 that the third condition is satisfied.
 第3条件が満たされた場合(S64;yes)、第1判定部35Aは、S63の処理で最後に更新されたパラメタセットθ{p2a,p2b}を、θ’{p2a,p2b}として第2強度関数算出部33Bに適用する(S65)。 If the third condition is satisfied (S64; yes), the first determination unit 35A converts the parameter set θ{p2a * , p2b * } that was last updated in the process of S63 into θ'{p2a * , p2b * } is applied to the second intensity function calculation unit 33B (S65).
 複数のパラメタθ’{p2a}が適用された第1単調増加ニューラルネットワーク33B-1aは、時間tによって規定される単調増加関数に従って、出力f (t)及びf (0)を算出する(S66a)。
 また、複数のパラメタθ’{p2b}が適用された第2単調増加ニューラルネットワーク33B-1bは、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g (t´)、g (τ)及びg (0)を算出する(S66b)。
The first monotonically increasing neural network 33B-1a to which a plurality of parameters θ'{p2a * } are applied outputs f b * (t) and f b * (0) according to a monotonically increasing function defined by time t. Calculate (S66a).
Further, the second monotonically increasing neural network 33B-1b to which a plurality of parameters θ'{p2b * } is applied outputs g b * (t '), g b * (τ) and g b * (0) are calculated (S66b).
 累積強度関数算出部33B-2は、S66aの処理で算出された出力f (t)及びf (0)並びにS66bの処理で算出された出力g (t´)、g (τ)及びg (0)に基づいて、累積強度関数Λ (t)を算出する(S67)。 The cumulative intensity function calculation unit 33B-2 calculates the outputs f b * (t) and f b * (0) calculated in the process of S66a, and the outputs g b * (t'), g b calculated in the process of S66b. A cumulative intensity function Λ b * (t) is calculated based on * (τ) and g b * (0) (S67).
 自動微分部33B-3は、S67の処理で算出された累積強度関数Λ (t)に基づいて、強度関数λ (t)を算出する(S68)。 The automatic differentiator 33B-3 calculates the intensity function λ b * (t) based on the cumulative intensity function Λ b * (t) calculated in the process of S67 (S68).
 予測系列生成部38は、S68で算出された強度関数λ (t)に基づいて、予測系列Eqを生成する(S69)。そして、予測系列生成部38は、S69の処理で生成された予測系列Eqを、ユーザに出力する。 The predicted sequence generation unit 38 generates the predicted sequence Eq * based on the intensity function λ b * (t) calculated in S68 (S69). Then, the predicted sequence generation unit 38 outputs the predicted sequence Eq * generated in the process of S69 to the user.
 S69の処理が終わると、イベント予測装置1における予測動作は、終了となる(終了)。 When the process of S69 ends, the prediction operation in the event prediction device 1 ends (end).
 2.5 第2実施形態に係る効果
 第2実施形態によれば、パラメタセットθ{p2a,p2b}が適用された第1強度関数算出部33Aは、時間t、時間t´及び周期τを入力として、強度関数λ(t)を算出する。第1更新部34Aは、強度関数λ(t)及びサポート系列Esに基づき、パラメタセットθ{p2a,p2b}をパラメタセットθ’{p2a,p2b}に更新する。パラメタセットθ’{p2a,p2b}が適用された第2強度関数算出部33Bは、時間t、時間t´及び周期τを入力として、強度関数λ(t)を算出する。第2更新部34Bは、λ(t)及びクエリ系列Eqに基づいて、パラメタセットθ{p2a,p2b}を更新する。これにより、MAML等のメタ学習手法を用いた場合でも、点過程をモデリングすることができる。
2.5 Effects of Second Embodiment According to the second embodiment, the first intensity function calculation unit 33A to which the parameter set θ{p2a, p2b} is applied inputs the time t, the time t', and the period τ. The intensity function λ a (t) is calculated as follows. The first updating unit 34A updates the parameter set θ{p2a, p2b} to the parameter set θ'{p2a, p2b} based on the intensity function λ a (t) and the support sequence Es. The second intensity function calculation unit 33B to which the parameter set θ'{p2a, p2b} is applied calculates the intensity function λ b (t) by inputting the time t, the time t', and the period τ. The second updating unit 34B updates the parameter set θ{p2a, p2b} based on λ b (t) and the query sequence Eq. This allows point processes to be modeled even when a meta-learning method such as MAML is used.
 この場合、累積強度関数算出部33A-2は、出力f(t)、f(0)、g(t´)、g(τ)及びg(0)に基づいて累積強度関数Λ(t)を算出する。累積強度関数算出部33B-2は、出力f(t)f(0)、g(t´)、g(τ)及びg(0)に基づいて累積強度関数Λ(t)を算出する。これにより、第1単調増加ニューラルネットワーク33A-1a及び33B-1の出力に求められる表現力の要求を緩和することができる。このため、第1実施形態と同等の効果を奏することができる。 In this case, the cumulative intensity function calculation unit 33A-2 calculates the cumulative intensity function based on the outputs f a (t), f a (0), g a (t'), g a (τ), and g a (0). Calculate Λ a (t). The cumulative intensity function calculation unit 33B-2 calculates the cumulative intensity function Λ b ( t) based on the outputs f b (t) f b (0), g b (t'), g b (τ), and g b ) is calculated. Thereby, the requirement for expressiveness required for the outputs of the first monotonically increasing neural networks 33A-1a and 33B-1 can be relaxed. Therefore, effects similar to those of the first embodiment can be achieved.
 3. 第3実施形態
 次に、第3実施形態に係る情報処理装置について説明する。
3. Third Embodiment Next, an information processing apparatus according to a third embodiment will be described.
 第3実施形態は、第1実施形態において、複数種類の周期τ、例えばτ(i=1~n)、すなわちτ,τ,…τが用意される。 In the third embodiment, in the first embodiment, a plurality of types of periods τ, for example, τ i (i=1 to n), that is, τ 1 , τ 2 , . . . τ n, are prepared.
 第3実施形態に係るイベント予測装置の構成は、第1実施形態と同様である。
 一方で、第3実施形態では、累積強度関数算出部24-2は、上記の式(2)、及び(3)、並びに以下の式(8)に従って、周期τ、出力f(z,t)、g(z,t´)及びg(z,τ)などに基づいて、累積強度関数Λ(t)を算出する。 
 λ(u)に係る式(3)の右辺のf(z,t)及びf(z,0)は第1単調増加ニューラルネットワーク24-1aにより算出される。λ(u)に係る式(8)の右辺のg(z,t´)、g(z,τ)、及びg(z,0)は、i番目の第2単調増加ニューラルネットワーク24-1bにより算出される。
The configuration of the event prediction device according to the third embodiment is the same as that of the first embodiment.
On the other hand, in the third embodiment, the cumulative intensity function calculation unit 24-2 calculates the period τ i and the output f i (z, t), g i (z, t ' i ), g i (z, τ i ), etc., the cumulative intensity function Λ(t) is calculated.
f(z, t) and f(z, 0) on the right side of equation (3) regarding λ 1 (u) are calculated by the first monotonically increasing neural network 24-1a. g i (z, t' i ), g i (z, τ i ), and g i (z, 0) on the right side of equation (8) regarding λ 2 (u) are the i-th second monotonically increasing Calculated by the neural network 24-1b.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(2)、(3)、及び(8)に示されるように、累積強度関数Λ(t)は、第1単調増加ニューラルネットワーク24-1aからの出力f(z,t)及びf(z,0)に、i番目の第2単調増加ニューラルネットワーク24-1bからの出力g(z,t´)などが考慮されてなる。累積強度関数算出部24-2は、算出された累積強度関数Λ(t)を自動微分部24-3に送信する。 As shown in equations (2), (3), and (8), the cumulative intensity function Λ(t) is the output f(z, t) and f(z , 0), the output g i (z, t' i ) from the i-th second monotonically increasing neural network 24-1b, etc. are taken into consideration. The cumulative intensity function calculation unit 24-2 transmits the calculated cumulative intensity function Λ(t) to the automatic differentiation unit 24-3.
 4. 第4実施形態
 次に、第4実施形態に係る情報処理装置について説明する。
4. Fourth Embodiment Next, an information processing apparatus according to a fourth embodiment will be described.
 第4実施形態は、第2実施形態において、複数種類の周期τ、例えばτ,τ,…τが用意される。 In the fourth embodiment, a plurality of types of periods τ, for example, τ 1 , τ 2 , . . . τ n , are prepared in the second embodiment.
 第4実施形態に係るイベント予測装置の構成は、第2実施形態と同様である。 
 一方で、第4実施形態では、第1強度関数算出部33Aの累積強度関数算出部33A-2は、上記の式(5)、(6)、及び以下に示す式(9)に従って、周期τ、出力f(t)、g(t´)及びg(τ)などに基づいて、累積強度関数Λ(t)を算出する。 
 λa1(u)に係る式(6)の右辺のf(t)及びf(0)は第1単調増加ニューラルネットワーク33A-1aにより算出される。λa2(u)に係る式(9)の右辺の
Figure JPOXMLDOC01-appb-M000005
は第2単調増加ニューラルネットワーク33A-1bにより算出される。
The configuration of the event prediction device according to the fourth embodiment is similar to that of the second embodiment.
On the other hand, in the fourth embodiment, the cumulative intensity function calculation unit 33A-2 of the first intensity function calculation unit 33A calculates the period τ according to the above equations (5) and (6) and the following equation (9). A cumulative intensity function Λ a (t) is calculated based on i , outputs f a (t), g a (t'), g ai ), and the like.
f a (t) and f a (0) on the right side of equation (6) regarding λ a1 (u) are calculated by the first monotonically increasing neural network 33A-1a. The right side of equation (9) regarding λ a2 (u)
Figure JPOXMLDOC01-appb-M000005
is calculated by the second monotonically increasing neural network 33A-1b.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 第4実施形態において、式(5)、(6)、及び(9)に示されるように、累積強度関数Λ(t)は、第1単調増加ニューラルネットワーク33A-1aからの出力f(t)及びf(0)に、第2単調増加ニューラルネットワーク33A-1bからの出力
Figure JPOXMLDOC01-appb-M000007
が考慮されてなる。累積強度関数算出部33A-2は、算出された累積強度関数Λ(t)を自動微分部33A-3に送信する。
In the fourth embodiment, as shown in equations (5), (6), and (9), the cumulative intensity function Λ a (t) is the output f a (t) from the first monotonically increasing neural network 33A-1a. t) and f a (0), the output from the second monotonically increasing neural network 33A-1b
Figure JPOXMLDOC01-appb-M000007
will be taken into consideration. The cumulative intensity function calculation unit 33A-2 transmits the calculated cumulative intensity function Λ a (t) to the automatic differentiation unit 33A-3.
 また、第2強度関数算出部33Bの累積強度関数算出部33B-2は、上記の式(5)、(6)、及び式(9)(ただし、λ、f、及びgをλ、f、及びgと読み替える)に従って、周期τ、出力f(t)、g(t´)及びg(τ)などに基づいて、累積強度関数Λ(t)を算出する。 
 f(t)及びf(0)は第1単調増加ニューラルネットワーク33B-1aにより算出される。
Figure JPOXMLDOC01-appb-M000008
は第2単調増加ニューラルネットワーク33B-1bにより算出される。
Further, the cumulative intensity function calculation unit 33B-2 of the second intensity function calculation unit 33B calculates the above equations (5), (6), and equation (9) (where λ a , f a , and g a b , f b , and g b ), the cumulative intensity function Λ b (t) is calculated based on the period τ i , the outputs f b (t), g b (t'), g bi ), etc. Calculate.
f b (t) and f b (0) are calculated by the first monotonically increasing neural network 33B-1a.
Figure JPOXMLDOC01-appb-M000008
is calculated by the second monotonically increasing neural network 33B-1b.
 第4実施形態において、累積強度関数Λ(t)は、第1単調増加ニューラルネットワーク33B-1aからの出力f(t)及びf(0)に、第2単調増加ニューラルネットワーク33B-1bからの出力
Figure JPOXMLDOC01-appb-M000009
が考慮されてなる。累積強度関数算出部33B-2は、算出された累積強度関数Λ(t)を自動微分部33B-3に送信する。
In the fourth embodiment, the cumulative intensity function Λ b (t) is applied to the outputs f b (t) and f b (0) from the first monotonically increasing neural network 33B-1a and the outputs f b (t) and f b (0) from the first monotonically increasing neural network 33B-1b. output from
Figure JPOXMLDOC01-appb-M000009
will be taken into consideration. The cumulative intensity function calculation unit 33B-2 transmits the calculated cumulative intensity function Λ b (t) to the automatic differentiation unit 33B-3.
 5. 第5実施形態
 次に、第5実施形態に係る情報処理装置について説明する。
5. Fifth Embodiment Next, an information processing apparatus according to a fifth embodiment will be described.
 第5実施形態は、第1実施形態において、周期τを学習可能なパラメタとする。
 学習時、床関数内に学習可能なパラメタが含まれてしまうと、勾配が0になる。
 第5実施形態では、例えば文献「Edward Wilson, et al., “Backpropagation Learning for Systems with Discrete-Valued Functions」,” Proceedings of the World Congress on Neural Networks, San Diego, California, June 1994.,<
http://www.intellization.com/files/NN_noisy_backprop_paper_WCNN_94.pdf>」などに開示される公知の手法によって学習を行なう。
 周期τは、上記の第3実施形態と同様に複数種類用意されてもよく、複数種類のτには、学習するものと、任意に与えられるものとの双方が含まれてもよい。
In the fifth embodiment, in the first embodiment, the period τ is a learnable parameter.
During learning, if a learnable parameter is included in the floor function, the gradient becomes 0.
In the fifth embodiment, for example, the document "Edward Wilson, et al., "Backpropagation Learning for Systems with Discrete-Valued Functions"," Proceedings of the World Congress on Neural Networks, San Diego, California, June 1994.
Learning is performed using a known method disclosed in http://www.intellization.com/files/NN_noisy_backprop_paper_WCNN_94.pdf>.
A plurality of types of period τ may be prepared as in the third embodiment, and the plurality of types of period τ may include both a learned period and an arbitrarily given period τ.
 6. 第6実施形態
 次に、第6実施形態に係る情報処理装置について説明する。
6. Sixth Embodiment Next, an information processing apparatus according to a sixth embodiment will be described.
 第6実施形態は、第2実施形態において、周期τを学習可能なパラメタとする。
 学習時、床関数内に学習可能なパラメタが含まれてしまうと、勾配が0になる。
 第5実施形態と同様に、第6実施形態では、「Edward Wilson, “Backpropagation Learning for Systems with Discrete-Valued Functions」,” Proceedings of the World Congress on Neural Networks, San Diego, California, June 1994.」などに開示される公知の手法によって学習を行なう。
 周期τは、上記の第4実施形態と同様に複数種類用意されてもよく、複数種類のτには、学習するものと、任意に与えられるものとの双方が含まれてもよい。
In the sixth embodiment, in the second embodiment, the period τ is a learnable parameter.
During learning, if a learnable parameter is included in the floor function, the gradient becomes 0.
Similar to the fifth embodiment, the sixth embodiment includes “Edward Wilson, “Backpropagation Learning for Systems with Discrete-Valued Functions”,” Proceedings of the World Congress on Neural Networks, San Diego, California, June 1994.” Learning is performed using a known method disclosed in .
A plurality of types of period τ may be prepared as in the fourth embodiment, and the plurality of types of τ may include both a learned period and an arbitrarily given period τ.
 7. その他の変形例等
 上述した実施形態には、種々の変形が適用され得る。以下の変形例については、第1実施形態との差異点について説明する。
7. Other Modifications, etc. Various modifications may be applied to the embodiments described above. Regarding the following modified example, differences from the first embodiment will be explained.
 7.1 第1変形例
 上述した第1実施形態では、各イベントは、マーク又は付加情報が付されない場合について説明したが、これに限られない。例えば、各イベントは、マーク又は付加情報が付されてもよい。各イベントに付されるマーク又は付加情報は、例えば、ユーザが購入したもの、及び決済方法等である。以下では、簡単のため、マーク又は付加情報は、単に「マーク」と呼ぶ。
7.1 First Modification In the first embodiment described above, each event is described as having no mark or additional information attached thereto, but the present invention is not limited to this. For example, each event may be marked or provided with additional information. The marks or additional information attached to each event include, for example, what the user has purchased and the payment method. Hereinafter, for the sake of simplicity, the mark or additional information will be simply referred to as a "mark."
 図14は、第1変形例に係るイベント予測装置の潜在表現算出部の構成の一例を示すブロック図である。潜在表現算出部23は、ニューラルネットワーク23-2を更に含む。また、図14の例では、サポート系列Esは、イベント発生時間t、及びマークmiの組の系列である(Es={(t,mi)})。 FIG. 14 is a block diagram illustrating an example of a configuration of a latent expression calculation unit of an event prediction device according to a first modification. The latent expression calculation unit 23 further includes a neural network 23-2. Further, in the example of FIG. 14, the support series Es is a series of a pair of event occurrence time t i and mark mi (Es={(t i , mi)}).
 ニューラルネットワーク23-2は、マークmを入力として、マークmを考慮したパラメタNN2(m)を出力するようにモデル化された数理モデルである。そして、ニューラルネットワーク23-2は、サポート系列Es内のイベント発生時間tに、出力NN2(m)を結合することにより、系列Es´={[tNN2(m)]}を生成する。ニューラルネットワーク23-2は、生成された系列Es´をニューラルネットワーク23-1に送信する。 The neural network 23-2 is a mathematical model modeled to input the mark m i and output a parameter NN2(m i ) that takes the mark m i into consideration. Then, the neural network 23-2 generates the sequence Es′={[t i NN2(m i )]} by combining the output NN2(m i ) with the event occurrence time t i in the support sequence Es. do. Neural network 23-2 transmits the generated sequence Es' to neural network 23-1.
 ニューラルネットワーク23-1は、系列Es´を入力として、潜在表現zを出力する。ニューラルネットワーク23-1は、出力された潜在表現zを強度関数算出部24に送信する。 The neural network 23-1 receives the sequence Es' as input and outputs the latent expression z. The neural network 23-1 transmits the output latent expression z to the strength function calculation unit 24.
 なお、図14では記載が省略されているが、ニューラルネットワーク23-2には、複数のパラメタが適用される。ニューラルネットワーク23-2に適用される複数のパラメタは、複数のパラメタp1、p2a、及びp2bと同様に、初期化部22による初期化、及び更新部25による更新が行われる。 Although not shown in FIG. 14, a plurality of parameters are applied to the neural network 23-2. The plurality of parameters applied to the neural network 23-2 are initialized by the initialization unit 22 and updated by the update unit 25, similarly to the plurality of parameters p1, p2a, and p2b.
 以上のように構成することにより、潜在表現算出部23は、マークmを考慮しつつ潜在表現zを算出することができる。これにより、イベントの予測精度を向上させることができる。 With the above configuration, the latent expression calculation unit 23 can calculate the latent expression z while taking the mark m i into consideration. This makes it possible to improve event prediction accuracy.
 7.2 第2変形例
 上述した第1実施形態では、系列には、付加情報が付されない場合について説明したが、これに限られない。例えば、系列には、付加情報が付されてもよい。系列に付される付加情報は、例えば、ユーザの性別及び年代等の、ユーザの属性情報である。
7.2 Second Modification In the first embodiment described above, the case where additional information is not attached to the series has been described, but the present invention is not limited to this. For example, additional information may be attached to the series. The additional information attached to the series is, for example, user attribute information such as the user's gender and age.
 図15は、第2変形例に係るイベント予測装置の強度関数算出部の構成の一例を示すブロック図である。強度関数算出部24は、ニューラルネットワーク24-5及び24-6を更に含む。 FIG. 15 is a block diagram illustrating an example of the configuration of the intensity function calculation unit of the event prediction device according to the second modification. The intensity function calculation unit 24 further includes neural networks 24-5 and 24-6.
 ニューラルネットワーク24-5は、付加情報aを入力として、付加情報aを考慮したパラメタNN3(a)を出力するようにモデル化された数理モデルである。ニューラルネットワーク24-5は、出力されたパラメタNN3(a)をニューラルネットワーク24-6に送信する。 The neural network 24-5 is a mathematical model modeled to input the additional information a and output a parameter NN3(a) that takes the additional information a into consideration. Neural network 24-5 transmits the output parameter NN3(a) to neural network 24-6.
 ニューラルネットワーク24-6は、潜在表現z及びパラメタNN3(a)を入力として、付加情報aを考慮した潜在表現z´=NN4([z,NN3(a)])を出力する。ニューラルネットワーク24-6は、出力された潜在表現z´を第1単調増加ニューラルネットワーク24-1aおよび第2単調増加ニューラルネットワーク24-1bに送信する。 The neural network 24-6 inputs the latent expression z and the parameter NN3(a) and outputs a latent expression z'=NN4([z, NN3(a)]) that takes into account the additional information a. The neural network 24-6 transmits the output latent representation z' to the first monotonically increasing neural network 24-1a and the second monotonically increasing neural network 24-1b.
 第1単調増加ニューラルネットワーク24-1aは、潜在表現z´及び時間tによって規定される単調増加関数に従って、出力f(z´,t)およびf(z´,0)を算出する。第1単調増加ニューラルネットワーク24-1aは、算出された出力f(z´,t)およびf(z´,0)を累積強度関数算出部24-2に送信する。 
 第2単調増加ニューラルネットワーク24-1bは、潜在表現z´、時間t、時間t´、及び周期τによって規定される単調増加関数に従って、出力g(z´,t´)、g(z´,τ)、及びg(z´,0)を算出する。第2単調増加ニューラルネットワーク24-1bは、算出された出力g(z´,t´)、g(z´,τ)、及びg(z´,0)を累積強度関数算出部24-2に送信する。
The first monotonically increasing neural network 24-1a calculates outputs f(z', t) and f(z', 0) according to a monotonically increasing function defined by the latent expression z' and time t. The first monotonically increasing neural network 24-1a transmits the calculated outputs f(z', t) and f(z', 0) to the cumulative intensity function calculation unit 24-2.
The second monotonically increasing neural network 24-1b outputs g(z', t'), g(z', τ) and g(z', 0). The second monotonically increasing neural network 24-1b sends the calculated outputs g(z', t'), g(z', τ), and g(z', 0) to the cumulative intensity function calculation unit 24-2. Send.
 累積強度関数算出部24-2及び自動微分部24-3の構成は、第1実施形態と同等であるため、説明を省略する。なお、累積強度関数算出部24-2による累積強度関数の算出には、上記式(2)~(4)(ただし、zをz´と読み替える)が用いられ得る。 The configurations of the cumulative intensity function calculation unit 24-2 and the automatic differentiation unit 24-3 are the same as those in the first embodiment, so their description will be omitted. Note that the above equations (2) to (4) (where z is read as z') can be used to calculate the cumulative intensity function by the cumulative intensity function calculation unit 24-2.
 なお、図15では記載が省略されているが、ニューラルネットワーク24-5及び24-6にはそれぞれ、複数のパラメタが適用される。ニューラルネットワーク24-5及び24-6に適用される複数のパラメタは、複数のパラメタp1、p2a、及びp2bと同様に、初期化部22による初期化、及び更新部25による更新が行われる。 Although not shown in FIG. 15, a plurality of parameters are applied to each of the neural networks 24-5 and 24-6. The plurality of parameters applied to the neural networks 24-5 and 24-6 are initialized by the initialization unit 22 and updated by the updater 25, similarly to the plurality of parameters p1, p2a, and p2b.
 以上のように構成することにより、強度関数算出部24は、付加情報aを考慮しつつ出力f(z´,t)を算出することができる。これにより、イベントの予測精度を向上させることができる。 By configuring as described above, the intensity function calculation unit 24 can calculate the output f(z', t) while taking the additional information a into consideration. This makes it possible to improve event prediction accuracy.
 7.3 第3変形例
 上述した第2実施形態では、系列Esには、付加情報が付されない場合について説明したが、これに限られない。例えば、系列には、付加情報が付されてもよい。
7.3 Third Modification In the second embodiment described above, a case has been described in which additional information is not attached to the series Es, but the present invention is not limited to this. For example, additional information may be attached to the series.
 図16は、第3変形例に係るイベント予測装置の第1強度関数算出部の構成の一例を示すブロック図である。図17は、第3変形例に係るイベント予測装置の第2強度関数算出部の構成の一例を示すブロック図である。第1強度関数算出部33A及び第2強度関数算出部33Bは、それぞれ、ニューラルネットワーク33A-4及び33B-4を更に含む。 FIG. 16 is a block diagram illustrating an example of the configuration of the first intensity function calculation unit of the event prediction device according to the third modification. FIG. 17 is a block diagram illustrating an example of the configuration of the second intensity function calculation unit of the event prediction device according to the third modification. The first intensity function calculation section 33A and the second intensity function calculation section 33B further include neural networks 33A-4 and 33B-4, respectively.
 ニューラルネットワーク33A-4及び33B-4は、付加情報aを入力として、付加情報aを考慮したパラメタNN5(a)を出力するようにモデル化された数理モデルである。ニューラルネットワーク33A-4及び33B-4は、出力されたパラメタNN5(a)をそれぞれ第1単調増加ニューラルネットワーク33A-1a及び33B-1a並びに第2単調増加ニューラルネットワーク33A-1b及び33B-1bに送信する。 The neural networks 33A-4 and 33B-4 are mathematical models modeled to input additional information a and output a parameter NN5(a) that takes additional information a into consideration. Neural networks 33A-4 and 33B-4 transmit the output parameter NN5(a) to first monotonically increasing neural networks 33A-1a and 33B-1a and second monotonically increasing neural networks 33A-1b and 33B-1b, respectively. do.
 第1単調増加ニューラルネットワーク33A-1aは、パラメタNN5(a)及び時間tによって規定される単調増加関数に従って、出力f(t)及びf(0)を算出する。第1単調増加ニューラルネットワーク33B-1aは、パラメタNN5(a)及び時間tによって規定される単調増加関数に従って、出力f(t)及びf(0)を算出する。ここで、出力f(t)及びf(t)はいずれも、MNN1([t,NN5(a)])と表される。第1単調増加ニューラルネットワーク33A-1aは、算出された出力f(t)及びf(0)を累積強度関数算出部33A-2に送信する。第1単調増加ニューラルネットワーク33B-1aは、算出された出力f(t)及びf(0)を累積強度関数算出部33B-2に送信する。 The first monotonically increasing neural network 33A-1a calculates outputs f a (t) and f a (0) according to a monotonically increasing function defined by parameter NN5(a) and time t. The first monotonically increasing neural network 33B-1a calculates outputs f b (t) and f b (0) according to a monotonically increasing function defined by parameter NN5(a) and time t. Here, both the outputs f a (t) and f b (t) are expressed as MNN1 ([t, NN5(a)]). The first monotonically increasing neural network 33A-1a transmits the calculated outputs f a (t) and f a (0) to the cumulative intensity function calculation unit 33A-2. The first monotonically increasing neural network 33B-1a transmits the calculated outputs f b (t) and f b (0) to the cumulative intensity function calculation unit 33B-2.
 第2単調増加ニューラルネットワーク33A-1bは、パラメタNN5(a)、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g(t´)、g(τ)、及びg(0)を算出する。第2単調増加ニューラルネットワーク33B-1bは、パラメタNN5(a)、時間t、時間t´及び周期τによって規定される単調増加関数に従って、出力g(t´)、g(τ)、及びg(0)を算出する。ここで、出力g(t´)及びg(t´)はいずれも、MNN2([t´,NN5(a)])と表される。第2単調増加ニューラルネットワーク33A-1bは、算出された出力g(t´)、g(0)及びg(0)を累積強度関数算出部33A-2に送信する。第2単調増加ニューラルネットワーク33B-1bは、算出された出力g(t´)、g(τ)及のg(0)を累積強度関数算出部33B-2に送信する。 The second monotonically increasing neural network 33A-1b outputs g a (t'), g a (τ), and Calculate g a (0). The second monotonically increasing neural network 33B-1b outputs g b (t'), g b (τ), and Calculate g b (0). Here, both the outputs g a (t') and g b (t') are expressed as MNN2 ([t', NN5(a)]). The second monotonically increasing neural network 33A-1b transmits the calculated outputs g a (t'), g a (0), and g a (0) to the cumulative intensity function calculation unit 33A-2. The second monotonically increasing neural network 33B-1b transmits the calculated outputs g b (t'), g b (τ), and g b (0) to the cumulative intensity function calculation unit 33B-2.
 累積強度関数算出部33A-2及び33B-2、並びに自動微分部33A-3及び33B-3の構成は、第2変形例と同等であるため、説明を省略する。 The configurations of the cumulative intensity function calculation units 33A-2 and 33B-2 and the automatic differentiation units 33A-3 and 33B-3 are the same as those in the second modification, and therefore their description will be omitted.
 なお、図16及び図17では記載が省略されているが、ニューラルネットワーク33A-4及び33B-4にはそれぞれ、複数のパラメタが適用される。ニューラルネットワーク33A-4に適用される複数のパラメタは、パラメタセットθ{p2a,p2b}と同様に、初期化部32による初期化、及び第1更新部34Aによる更新が行われる。ニューラルネットワーク33B-4に適用される複数のパラメタは、パラメタセットθ’{p2a,p2b}と同様に、第2更新部34Bによる更新に用いられる。 Although descriptions are omitted in FIGS. 16 and 17, a plurality of parameters are applied to each of the neural networks 33A-4 and 33B-4. The plurality of parameters applied to the neural network 33A-4 are initialized by the initialization unit 32 and updated by the first update unit 34A, similarly to the parameter set θ{p2a, p2b}. The plurality of parameters applied to the neural network 33B-4 are used for updating by the second updating unit 34B, similar to the parameter set θ'{p2a, p2b}.
 以上のように構成することにより、第1強度関数算出部33Aは、付加情報aを考慮しつつ、出力f(t)及びg(t´)算出することができ、第2強度関数算出部33Bは、付加情報aを考慮しつつ、出力f(t)及びg(t´)を算出することができる。これにより、イベントの予測精度を向上させることができる。 With the above configuration, the first intensity function calculation unit 33A can calculate the outputs f a (t) and g a (t') while taking the additional information a into consideration, and the second intensity function calculation The unit 33B can calculate the outputs f b (t) and g b (t') while considering the additional information a. This makes it possible to improve event prediction accuracy.
 7.4 その他
 上述した第1実施形態乃至第6実施形態、及び第1変形例乃至第3変形例では、イベントの次元を時間の1次元として記載したが、これに限られない。例えば、イベントの次元は、2以上の任意の次元数(例えば、時空間の3次元)に拡張され得る。
7.4 Others In the first to sixth embodiments and the first to third modified examples described above, the dimension of the event is described as one dimension of time, but it is not limited to this. For example, the dimensionality of an event may be extended to any number of dimensions greater than or equal to two (eg, three dimensions in space and time).
 上述した第1実施形態乃至第6実施形態、及び第1変形例乃至第3変形例では、学習動作及び予測動作が、イベント予測装置1内に記憶されたプログラムで実行される場合について説明したが、これに限られない。例えば、学習動作及び予測動作は、クラウド上の計算リソースで実行されてもよい。 In the first to sixth embodiments and the first to third variations described above, the learning operation and the prediction operation are executed by a program stored in the event prediction device 1. , but not limited to this. For example, learning operations and prediction operations may be performed on computational resources on the cloud.
 上記の各実施形態に係る情報処理装置は、点過程をメタ学習する構成に限られず、メタ学習によらずに点過程を学習する構成に対しても適用され得る。また、各実施形態に係る情報処理装置は、例えば、単調増加性を保証したい回帰問題を解く構成に対しても適用され得る。単調増加性を保証したい回帰問題の例としては、ローンの利用額から与信リスクを推定する問題等が挙げられる。また、各実施形態に係る情報処理装置は、可逆変換を保証するニューラルネットワークが用いられる問題を解く構成に対しても適用され得る。可逆変換を保証するニューラルネットワークが用いられる問題の例としては、経験分布の密度推定、VAE(Variational Auto-Encoders)、音声合成、尤度なし推定(likelihood-free inference)、確率的プログラミング(probabilistic programming)、及び画像生成等が挙げられる。また、各実施形態に係る情報処理装置は、生存分析のハザード関数が用いられる問題を解く構成に対しても適用され得る。 The information processing apparatus according to each of the embodiments described above is not limited to a configuration that meta-learns a point process, but can also be applied to a configuration that learns a point process without using meta-learning. Further, the information processing apparatus according to each embodiment can be applied to, for example, a configuration for solving a regression problem in which monotonically increasing property is desired to be guaranteed. An example of a regression problem for which monotonically increasing property is desired is the problem of estimating credit risk from loan usage amount. Furthermore, the information processing apparatus according to each embodiment can also be applied to a configuration that solves a problem using a neural network that guarantees reversible transformation. Examples of problems that use neural networks that guarantee reversible transformations include density estimation of empirical distributions, VAE (Variational Auto-Encoders), speech synthesis, likelihood-free inference, and probabilistic programming. ), image generation, etc. Furthermore, the information processing apparatus according to each embodiment can also be applied to a configuration that solves a problem in which a survival analysis hazard function is used.
 また、各実施形態に記載された手法は、計算機(コンピュータ)に実行させることができるプログラム(ソフトウエア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク(Floppy disk)、ハードディスク(hard disk)等)、光ディスク(optical disc)(CD-ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ(Flash memory)等)等の記録媒体に格納し、また通信媒体により伝送して頒布され得る。なお、媒体側に格納されるプログラムには、計算機に実行させるソフトウエア手段(実行プログラムのみならずテーブル(table)、データ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウエア手段を構築し、このソフトウエア手段によって動作が制御されることにより上述した処理を実行する。なお、本明細書でいう記録媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスク、半導体メモリ等の記憶媒体を含むものである。 In addition, the method described in each embodiment can be applied to a magnetic disk (floppy (registered trademark) disk, hard disk) as a program (software means) that can be executed by a computer (computer). etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memories (ROM, RAM, Flash memory, etc.), and are stored in recording media, or transmitted and distributed via communication media. can be done. Note that the programs stored on the medium side also include a setting program for configuring software means (including not only execution programs but also tables and data structures) in the computer to be executed by the computer. A computer that realizes this device reads a program recorded on a recording medium, and if necessary, constructs software means using a setting program, and executes the above-described processing by controlling the operation of the software means. Note that the recording medium referred to in this specification is not limited to one for distribution, and includes storage media such as a magnetic disk and a semiconductor memory provided inside a computer or in a device connected via a network.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 Note that the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof. Moreover, each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.
  1…イベント予測装置
  10…制御回路
  11…メモリ
  12…通信モジュール
  13…ユーザインタフェース
  14…ドライブ
  15…記憶媒体
  20,30,40,50…学習用データセット
  21,31…データ抽出部
  22,32…初期化部
  23…潜在表現算出部
  23-1,23-2,24-4,24-5,24-6,33A-4,33B-4…ニューラルネットワーク
  24…強度関数算出部
  24-1a,33A-1a,33B-1a…第1単調増加ニューラルネットワーク
  24-1b,33A-1b,33B-1b…第2単調増加ニューラルネットワーク
  24-2,33A-2,33B-2…累積強度関数算出部
  24-3,33A-3,33B-3…自動微分部
  25…更新部
  25-1,34A-1,34B-1…評価関数算出部
  25-2,34A-2,34B-2…最適化部
  26…判定部
  27,36…学習済みパラメタ
  28,37…予測用データ
  29,38…予測系列生成部
  33A…第1強度関数算出部
  33B…第2強度関数算出部
  34A…第1更新部
  34B…第2更新部
  35A…第1判定部
  35B…第2判定部
1...Event prediction device 10...Control circuit 11...Memory 12...Communication module 13...User interface 14...Drive 15... Storage medium 20, 30, 40, 50...Learning data set 21, 31... Data extraction unit 22, 32... Initialization unit 23...Latent expression calculation unit 23-1, 23-2, 24-4, 24-5, 24-6, 33A-4, 33B-4...Neural network 24...Intensity function calculation unit 24-1a, 33A -1a, 33B-1a...First monotonically increasing neural network 24-1b, 33A-1b, 33B-1b...Second monotonically increasing neural network 24-2, 33A-2, 33B-2...Cumulative intensity function calculation unit 24- 3, 33A-3, 33B-3... Automatic differentiation section 25... Update section 25-1, 34A-1, 34B-1... Evaluation function calculation section 25-2, 34A-2, 34B-2... Optimization section 26... Judgment unit 27, 36...Learned parameters 28, 37...Prediction data 29, 38...Prediction sequence generation unit 33A...First intensity function calculation unit 33B...Second intensity function calculation unit 34A...First update unit 34B...Second Update section 35A...First judgment section 35B...Second judgment section

Claims (8)

  1.  第1の単調増加ニューラルネットワークと、
     第2の単調増加ニューラルネットワークと、
     前記第1の単調増加ニューラルネットワークからの出力と、パラメタと、に基づいて第1の累積関数を算出する第1算出部と、
     前記第2の単調増加ニューラルネットワークからの出力と、パラメタと、周期と、に基づいて第2の累積関数を算出する第2算出部と、
     を備えた、情報処理装置。
    a first monotonically increasing neural network;
    a second monotonically increasing neural network;
    a first calculation unit that calculates a first cumulative function based on an output from the first monotonically increasing neural network and a parameter;
    a second calculation unit that calculates a second cumulative function based on the output from the second monotonically increasing neural network, the parameter, and the period;
    An information processing device equipped with
  2.  前記第1算出部は、
      前記第1の単調増加ニューラルネットワークからの出力と、パラメタと、に基づいて第1の累積強度関数を算出し、
     前記第2算出部は、
      前記第2の単調増加ニューラルネットワークからの出力と、パラメタと、周期と、に基づいて第2の累積強度関数を算出し、
     前記算出された第1及び第2の累積強度関数に基づき、点過程に関する強度関数を算出する第3算出部を更に備えた、
     請求項1記載の情報処理装置。
    The first calculation unit is
    Calculating a first cumulative intensity function based on the output from the first monotonically increasing neural network and the parameter;
    The second calculation unit is
    Calculating a second cumulative intensity function based on the output from the second monotonically increasing neural network, the parameter, and the period;
    further comprising a third calculation unit that calculates an intensity function related to a point process based on the calculated first and second cumulative intensity functions;
    The information processing device according to claim 1.
  3.  前記算出された強度関数に基づき、前記パラメタを更新する更新部を更に備えた、
     請求項2記載の情報処理装置。
    further comprising an updating unit that updates the parameter based on the calculated intensity function;
    The information processing device according to claim 2.
  4.  連続時間上で離散的に並ぶ複数のイベントを含む系列に含まれる全てのイベント、又は前記系列に含まれる前記複数のイベントの数を入力として、前記パラメタを出力するニューラルネットワークを更に備えた、
     請求項1記載の情報処理装置。
    Further comprising a neural network that receives as input all events included in a series including a plurality of events arranged discretely in continuous time, or the number of the plurality of events included in the series, and outputs the parameter.
    The information processing device according to claim 1.
  5.  前記第1及び第2の単調増加ニューラルネットワークに適用される複数の重みを、平均が正となる分布に基づいて初期化する初期化部を更に備えた、
     請求項1記載の情報処理装置。
    further comprising an initialization unit that initializes a plurality of weights applied to the first and second monotonically increasing neural networks based on a distribution with a positive average;
    The information processing device according to claim 1.
  6.  情報処理装置により行なわれる方法であって、
     前記情報処理装置の第1出力部により、第1の単調増加ニューラルネットワークから単調増加関数に従ったスカラ値を出力することと、
     前記情報処理装置の第2出力部により、第2の単調増加ニューラルネットワークから単調増加関数に従ったスカラ値を出力することと、
     前記情報処理装置の第1算出部により、前記第1の単調増加ニューラルネットワークから出力されたスカラ値と、パラメタと、に基づいて第1の累積関数を算出することと、
     前記情報処理装置の第2算出部により、前記第2の単調増加ニューラルネットワークから出力されたスカラ値と、パラメタと、周期と、に基づいて第2の累積関数を算出することと、
     を備えた、情報処理方法。
    A method performed by an information processing device, the method comprising:
    outputting a scalar value according to a monotonically increasing function from a first monotonically increasing neural network by a first output unit of the information processing device;
    outputting a scalar value according to a monotonically increasing function from a second monotonically increasing neural network by a second output unit of the information processing device;
    A first calculation unit of the information processing device calculates a first cumulative function based on the scalar value output from the first monotonically increasing neural network and the parameter;
    Calculating a second cumulative function by a second calculation unit of the information processing device based on the scalar value output from the second monotonically increasing neural network, the parameter, and the period;
    An information processing method with
  7.  前記第1算出部は、
      前記第1の単調増加ニューラルネットワークからの出力と、パラメタと、に基づいて第1の累積強度関数を算出し、
     前記第2算出部は、
      前記第2の単調増加ニューラルネットワークからの出力と、パラメタと、周期と、に基づいて第2の累積強度関数を算出し、
     前記情報処理装置の第3算出部により、前記算出された第1及び第2の累積強度関数に基づき、点過程に関する強度関数を算出することを更に備えた、
     請求項6記載の情報処理方法。
    The first calculation unit is
    Calculating a first cumulative intensity function based on the output from the first monotonically increasing neural network and the parameter;
    The second calculation unit is
    Calculating a second cumulative intensity function based on the output from the second monotonically increasing neural network, the parameter, and the period;
    further comprising calculating, by a third calculation unit of the information processing device, an intensity function related to a point process based on the calculated first and second cumulative intensity functions;
    The information processing method according to claim 6.
  8.  コンピュータを、請求項1乃至請求項5のいずれか1項に記載の情報処理装置が備える各部として機能させるためのプログラム。 A program for causing a computer to function as each section included in the information processing apparatus according to any one of claims 1 to 5.
PCT/JP2022/034271 2022-09-13 2022-09-13 Information processing device, information processing method, and program WO2024057414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034271 WO2024057414A1 (en) 2022-09-13 2022-09-13 Information processing device, information processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034271 WO2024057414A1 (en) 2022-09-13 2022-09-13 Information processing device, information processing method, and program

Publications (1)

Publication Number Publication Date
WO2024057414A1 true WO2024057414A1 (en) 2024-03-21

Family

ID=90274540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034271 WO2024057414A1 (en) 2022-09-13 2022-09-13 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2024057414A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210374517A1 (en) * 2020-05-27 2021-12-02 Babylon Partners Limited Continuous Time Self Attention for Improved Computational Predictions
WO2022097230A1 (en) * 2020-11-05 2022-05-12 日本電信電話株式会社 Prediction method, prediction device, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210374517A1 (en) * 2020-05-27 2021-12-02 Babylon Partners Limited Continuous Time Self Attention for Improved Computational Predictions
WO2022097230A1 (en) * 2020-11-05 2022-05-12 日本電信電話株式会社 Prediction method, prediction device, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OMI TAKAHIRO, UEDA NAONORI, AIHARA KAZUYUKI: "Fully Neural Network based Model for General Temporal Point Processes", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, ARXIV.ORG, ITHACA, 10 January 2020 (2020-01-10), Ithaca, XP093146054, [retrieved on 20240327], DOI: 10.48550/arxiv.1905.09690v3 *

Similar Documents

Publication Publication Date Title
Singh et al. A quantum approach towards the adaptive prediction of cloud workloads
JP5356396B2 (en) Finding optimal system configurations using distributed probability-based active sampling
CN104951425B (en) A kind of cloud service performance self-adapting type of action system of selection based on deep learning
JP3404532B2 (en) Optimal fitting parameter determining method and apparatus, and optimal fitting parameter determining program
JP2018173813A (en) Comparison program, comparison method and comparison device
JP7007585B2 (en) Optimization device, optimization device control method, and optimization device control program
US20220027738A1 (en) Distributed synchronous training architecture using stale weights
JP7059458B2 (en) Generating hostile neuropil-based classification systems and methods
US9792889B1 (en) Music modeling
US8639643B2 (en) Classification of a document according to a weighted search tree created by genetic algorithms
JP6718500B2 (en) Optimization of output efficiency in production system
JP2023524657A (en) System and method for determining dependencies in multivariate time series data
Paliwal et al. Regal: Transfer learning for fast optimization of computation graphs
KR20190045038A (en) Method and apparatus for speech recognition
Huang et al. CMA evolution strategy assisted by kriging model and approximate ranking
JP2015114988A (en) Processing device, processing method, and program
Kronheim et al. TensorBNN: Bayesian inference for neural networks using TensorFlow
US20230059708A1 (en) Generation of Optimized Hyperparameter Values for Application to Machine Learning Tasks
Dehuri et al. A condensed polynomial neural network for classification using swarm intelligence
WO2024057414A1 (en) Information processing device, information processing method, and program
JP7344149B2 (en) Optimization device and optimization method
Ricardo et al. Developing machine learning and deep learning models for host overload detection in cloud data center
JP7256378B2 (en) Optimization system and method of controlling the optimization system
WO2023095294A1 (en) Information processing device, information processing method, and program
WO2023095295A1 (en) Information processing device, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958747

Country of ref document: EP

Kind code of ref document: A1