WO2024057369A1 - Ship-steering system and ship - Google Patents

Ship-steering system and ship Download PDF

Info

Publication number
WO2024057369A1
WO2024057369A1 PCT/JP2022/034117 JP2022034117W WO2024057369A1 WO 2024057369 A1 WO2024057369 A1 WO 2024057369A1 JP 2022034117 W JP2022034117 W JP 2022034117W WO 2024057369 A1 WO2024057369 A1 WO 2024057369A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
operating
hull
maneuvering
marine vessel
Prior art date
Application number
PCT/JP2022/034117
Other languages
French (fr)
Japanese (ja)
Inventor
宏平 寺田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/034117 priority Critical patent/WO2024057369A1/en
Publication of WO2024057369A1 publication Critical patent/WO2024057369A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring

Definitions

  • the present invention relates to a ship maneuvering system and a ship.
  • a jet propulsion boat is equipped with a steering system on a console that allows the boat operator to steer the jet propulsion boat.
  • the steering system described in Patent Document 1 has a steering operation unit that controls the direction of travel of the jet propulsion boat, a paddle operation unit that is provided on the steering operation unit and operates the engine throttle, and an auto-cruise operation button that is provided on the steering operation unit and is operated when sailing while maintaining a constant speed of the jet propulsion boat.
  • the paddle operation unit is operated in a normal sailing state, and has a first operation unit that operates the throttle in the forward direction, and a second operation unit that operates the throttle in the reverse direction.
  • the auto-cruise operation button is operated in an auto-cruise sailing state, and has a mode switching button that switches between the auto-cruise sailing state and the normal sailing state, an increase speed button that speeds up the jet propulsion boat, a decrease speed button that slows down the jet propulsion boat, and a low speed switching button that switches the speed of the jet propulsion boat to a low speed state so that it does not exceed a predetermined speed.
  • An object of the present invention is to provide a ship maneuvering system and a ship with excellent operability.
  • a marine vessel maneuvering system is a marine vessel maneuvering system for maneuvering a vessel body, comprising: a steering wheel having a steering wheel; an operation member provided on the steering wheel for causing the vessel body to execute a predetermined function; and a control unit that changes the function executed by operating the operating member according to a plurality of ship maneuvering modes in which the behavior of the operating member is different from one another.
  • a ship is a ship including a ship body and a ship maneuvering system for operating the ship body, wherein the ship maneuvering system includes a steering having a steering wheel, and a ship provided on the steering wheel, and a control unit that changes the function executed by operating the operating member in accordance with a plurality of ship maneuvering modes in which the behavior of the ship is different from each other.
  • the ship maneuvering system includes a steering having a steering wheel, and a ship provided on the steering wheel, and a control unit that changes the function executed by operating the operating member in accordance with a plurality of ship maneuvering modes in which the behavior of the ship is different from each other.
  • the ship maneuvering system includes an operating member for causing the ship to perform a predetermined function.
  • the functions executed by operating the operating member are changed according to a plurality of ship maneuvering modes in which the behavior of the ship body differs from each other.
  • a predetermined function can be executed by appropriately operating the same operating member regardless of the ship maneuvering mode.
  • FIG. 2 is a side view of the ship shown in FIG. 1.
  • FIG. FIG. 2 is a schematic side view showing the configuration of a first marine vessel propulsion device.
  • 2 is a block diagram of a control system of the ship shown in FIG. 1.
  • FIG. 3 is a front view of the steering device when viewed directly across from the boat operator.
  • FIG. 3 is a rear perspective view of the steering device when viewed diagonally from the side opposite to the boat operator.
  • 3 is a flowchart showing a control program related to a ship maneuvering mode executed by a controller.
  • 8 is a flowchart showing processing executed in the subroutine (step S702) of the flowchart shown in FIG. 7.
  • 8 is a flowchart showing processing executed in the subroutine (step S703) of the flowchart shown in FIG. 7.
  • 8 is a flowchart showing processing executed in the subroutine (step S704) of the flowchart shown in FIG. 7.
  • 8 is a flowchart showing a process executed in a subroutine (step S704) of the flowchart shown in FIG. 7 in a modification of the first embodiment.
  • 8 is a flowchart showing a process executed in a subroutine (step S704) of the flowchart shown in FIG. 7 in a modification of the first embodiment. It is a figure which shows an example of the screen (during the 1st ship maneuvering mode) displayed on the display part in the 3rd modification of 1st Embodiment.
  • FIG. 7 is a front view of the steering device according to the second embodiment when viewed directly across from the boat operator side.
  • FIG. 7 is a front view of a steering device according to a modified example of the second embodiment when viewed directly across from the boat operator side.
  • each embodiment of the present invention will be described in detail with reference to the drawings.
  • the configurations described in each embodiment below are merely examples, and the scope of the present invention is not limited by the configurations described in each embodiment.
  • each part constituting the present invention can be replaced with any part that can perform the same function.
  • arbitrary components may be added.
  • any two or more configurations (features) of each embodiment can be combined.
  • FIG. 1 is a plan view of a ship according to a first embodiment.
  • a boat 1 is, for example, a jet propulsion boat, and is a type of boat called a jet boat or a sports boat.
  • the ship 1 includes a hull 2, a first engine 3L, a second engine 3R, a first ship propulsion device (propulsion device) 4L, and a second ship propulsion device (propulsion device) 4R.
  • the hull 2 has a deck 11 and a hull 12. Hull 12 is arranged below deck 11.
  • a steering seat 13 is arranged on the deck 11. Further, a steering device 14 as a steering device for a ship is arranged in the boat operator seat 13.
  • the hull 2 is equipped with a first engine 3L, a second engine 3R, a first marine propulsion device 4L, and a second marine propulsion device 4R.
  • the number of engines is two in this embodiment, it is not limited to this, for example, it may be one or three or more.
  • the number of ship propulsion devices is two in this embodiment, it is not limited to this, and may be one or three or more, for example.
  • the first engine 3L and the second engine 3R are housed in the hull 2.
  • the output shaft of the first engine 3L is connected to the first marine propulsion device 4L.
  • the output shaft of the second engine 3R is connected to the second marine propulsion device 4R.
  • the first marine propulsion device 4L is driven by the first engine 3L, and generates propulsive force that propels the hull 2.
  • the second marine vessel propulsion device 4R is driven by the second engine 3R, and generates a propulsive force that propels the hull 2.
  • the first marine propulsion device 4L and the second marine propulsion device 4R are arranged side by side in the left-right direction of the hull 2.
  • FIG. 3 is a schematic side view showing the configuration of the first marine propulsion device.
  • a part of the first marine propulsion device 4L is shown in a cross-sectional view. Since the first marine propulsion device 4L and the second marine propulsion device 4R have the same configuration except for the difference in their arrangement positions, the first marine propulsion device 4L will be representatively explained.
  • the first marine vessel propulsion device 4L is a jet propulsion device that sucks water around the hull 2 and injects it.
  • the first marine propulsion device 4L includes a first impeller shaft 21L, a first impeller 22L, a first impeller housing 23L, a first nozzle 24L, a first deflector 25L, and a first reverse bucket 26L.
  • the first impeller shaft 21L is arranged to extend in the front-rear direction.
  • the front portion of the first impeller shaft 21L is connected to the output shaft of the first engine 3L via a coupling 28L.
  • a rear portion of the first impeller shaft 21L is disposed within the first impeller housing 23L.
  • the first impeller housing 23L is arranged behind the water suction section 27L.
  • the first nozzle 24L is arranged at the rear of the first impeller housing 23L.
  • the first impeller 22L is attached to the rear part of the first impeller shaft 21L.
  • the first impeller 22L is arranged within the first impeller housing 23L.
  • the first impeller 22L rotates together with the first impeller shaft 21L and sucks water from the water suction section 27L.
  • the first impeller 22L injects the sucked water backward from the first nozzle 24L.
  • the first deflector 25L is arranged behind the first nozzle 24L.
  • the first reverse bucket 26L is arranged behind the first deflector 25L.
  • the first deflector 25L is configured to change the direction of water jet from the first nozzle 24L to the left and right. That is, by changing the direction of the first deflector 25L to the left and right, the traveling direction of the ship 1 is changed to the left and right. In this way, in the ship 1 of this embodiment, the first deflector 25L functions as a direction changing unit that changes the traveling direction of the ship body 2.
  • the first steering actuator 32L is connected to the first deflector 25L of the first marine propulsion device 4L (see FIG. 4).
  • the first reverse bucket 26L is provided so as to be switchable between a forward position, a reverse position, and a neutral position.
  • water from the first nozzle 24L is sprayed rearward. This causes the ship 1 to move forward.
  • the first reverse bucket 26L is in the reverse position, the direction of water jetting from the first nozzle 24L is changed forward. This causes the ship 1 to move backward.
  • the first reverse bucket 26L functions as a direction changing unit that changes the traveling direction of the ship body 2, similarly to the first deflector 25L.
  • the neutral position of the first reverse bucket 26L is a position between the forward position and the reverse position.
  • the first reverse bucket 26L changes the direction of the jet from the first nozzle 24L to the left or right of the hull 2 in the neutral position. Therefore, the first reverse bucket 26L reduces the propulsive force that moves the hull 2 forward in the neutral position. As a result, the hull 2 is decelerated or the hull 2 is held at a stopped position.
  • the second marine propulsion device 4R is configured similarly to the first marine propulsion device 4L.
  • FIG. 4 is a block diagram of the control system of the ship shown in FIG.
  • the ship 1 includes a controller (control unit) 40 and a steering device 14.
  • the controller 40 includes an arithmetic unit such as a CPU, and a storage device such as a RAM or ROM (not shown), and is programmed to control each component of the ship 1.
  • the controller 40 may be a single device or may be configured by a plurality of mutually separate control units.
  • the ship 1 has a first steering actuator 32L and a first shift actuator 34L.
  • the controller 40 is communicably connected to the first engine 3L, the first steering actuator 32L, and the first shift actuator 34L.
  • the first steering actuator 32L changes the steering angle of the first deflector 25L.
  • the first steering actuator 32L is, for example, an electric motor.
  • the first steering actuator 32L may be another actuator such as a hydraulic cylinder.
  • the first shift actuator 34L is connected to the first reverse bucket 26L of the first marine propulsion device 4L.
  • the first shift actuator 34L switches the position of the first reverse bucket 26L between a forward position, a reverse position, and a neutral position.
  • the first shift actuator 34L is, for example, an electric motor.
  • the first shift actuator 34L may be another actuator such as a hydraulic cylinder.
  • the ship 1 has a second steering actuator 32R and a second shift actuator 34R.
  • the second steering actuator 32R is connected to the second deflector 25R of the second marine propulsion device 4R.
  • the second shift actuator 34R is connected to the second reverse bucket 26R of the second marine propulsion device 4R.
  • These structures are devices for controlling the second marine propulsion device 4R, and have the same structure as the first steering actuator 32L and first shift actuator 34L described above.
  • the controller 40 is communicably connected to the second steering actuator 32R and the second shift actuator 34R.
  • the ship 1 has a display section 39 and a setting operation section 38.
  • the display unit 39 includes a display and displays various information based on instructions from the controller 40.
  • the setting operation section 38 includes, in addition to operators for performing operations related to boat maneuvering, setting operators for performing various settings, and input operators for inputting various instructions (none of which are shown). A signal input through the setting operation section 38 is supplied to the controller 40 .
  • the controller 40 is communicably connected to the steering device 14.
  • the steering device 14 includes a steering wheel 51, a first paddle (right paddle) 61, and a second paddle (left paddle) 62. Each of these can be operated independently, and when operated by a boat operator, the operation signal is supplied to the controller 40.
  • the controller 40, the steering device 14, and the display unit 39 constitute a ship maneuvering system 10 that controls the ship body 2.
  • FIG. 5 is a front view of the steering device when viewed directly across from the boat operator.
  • FIG. 6 is a rear perspective view of the steering device when viewed diagonally from the side opposite to the boat operator. Note that the vertical and horizontal directions in FIG. 5 correspond to the vertical and horizontal directions of the ship 1, the depth side of the figure is the bow side of the ship 1, and the near side of the figure is the stern side of the ship 1.
  • the steering device 14 has a steering wheel 50, a first paddle (protruding member) 61, and a second paddle (protruding member) 62.
  • the steering wheel 50 has a steering wheel 51 and a column 52 that rotatably supports the steering wheel 51.
  • the steering wheel 51 has a central portion 53 that is rotatably supported on the column 52 around a rotation fulcrum (steering axis) O51, an annular wheel portion 54 that is arranged concentrically with the central portion 53, and three spoke portions 55, 56, and 57 that connect the central portion 53 and the wheel portion 54.
  • the operator can turn the boat 1 left and right by rotating the steering wheel 51 left and right.
  • the spoke portions 55 to 57 are located in the clock position such that the spoke portion 55 is located at 6 o'clock, the spoke portion 56 is located at 10 o'clock, and the spoke portion 57 is located at 2 o'clock.
  • the first paddle 61 and the second paddle 62 are used in place of a conventional remote control unit to adjust the output (rotational speed) of the first engine 3L and second engine 3R, to switch the ship 1 between forward and backward movement, etc. It is an operating member for causing a predetermined function to be executed. Thereby, the conventional remote control unit can be omitted, and accordingly, for example, the layout of instruments such as instruments in the ship's steering seat 13 can be improved and the cost of the ship 1 can be reduced.
  • the first paddle 61 is a plate member having a substantially T-shape, and is arranged so as to protrude from the column 52 of the steering wheel 50 to the right side.
  • the second paddle 62 is a substantially T-shaped plate member, and is arranged to protrude leftward from the column 52 of the steering wheel 50.
  • the steering wheel 51 is provided on the stern side of the first paddle 61 and the second paddle 62, that is, on the boat operator's side of the boat operator seat 13. Note that it is preferable that both the first paddle 61 and the second paddle 62 be placed within the reach of the fingers of the boat operator who grips the wheel portion 30 of the steering wheel 51. This allows the boat operator to operate the first paddle 61 and the second paddle 62 while holding the steering wheel 51, that is, without releasing the steering wheel 51.
  • the column 52 supports the first paddle 61 and the second paddle 62 so that they can each be tilted approximately in the front-rear direction ( ⁇ 1 direction). Further, the first paddle 61 and the second paddle 62 are each urged forward. Then, when the boat operator pulls the first paddle 61 toward the front (rearward) once against the urging force, the controller 40 accepts the operation from the first paddle 61 (the same applies to the operation of the second paddle 62). .
  • the operation of the first paddle 61 that is, the tilting of the first paddle 61 toward the operator's side, is converted into an analog signal by, for example, a potentiometer, and transmitted to the controller 40.
  • the first paddle 61 and the spoke portion 57 are arranged so as to overlap, and the second paddle 62 and the spoke portion 56 are arranged so as to overlap. Further, the first paddle 61 and the second paddle 62 are attached to the column 52 so as to rotate in the same manner as the steering wheel 51 rotates. Therefore, even if the steering wheel 51 rotates, when the operator looks at the steering wheel 51, the first paddle 61 and the spoke portion 57 remain overlapped, and the second paddle 62 and the spoke portion 56 remain overlapped. be.
  • the first paddle 61 and the second paddle 62 may be fixed to the column 52 with respect to the direction in which the steering wheel 51 is rotated. In this case, even if the steering wheel 51 rotates, the first paddle 61 and the second paddle 62 are configured not to rotate.
  • the ship 1 is configured to be able to switch between a plurality of ship maneuvering modes in which the behavior of the ship body 2 is different from each other.
  • the plurality of ship maneuvering modes of this embodiment include a first ship maneuvering mode (normal mode), a second ship maneuvering mode (cruise control mode) different from the first ship maneuvering mode, and a first ship maneuvering mode and a second ship maneuvering mode.
  • a different third ship operation mode (berthing mode) is included.
  • the marine vessel maneuvering mode may include other marine vessel maneuvering modes different from the first marine vessel maneuvering mode to the third marine vessel maneuvering mode.
  • the controller 40 can change the function executed by operating the first paddle 61 and the function executed by operating the second paddle 62 according to each ship maneuvering mode.
  • the switching operation method for switching between the first marine vessel maneuvering mode and the third marine vessel maneuvering mode is not particularly limited. Examples include a method of operating a switching operation button provided on the spoke portion 57.
  • the first paddle 61 and the second paddle 62 are each supported so as to be tiltable in the ⁇ 1 direction (see FIG. 6). Therefore, the operating directions (operating methods) of the first paddle 61 and the second paddle 62 are the same regardless of each boat maneuvering mode. As a result, the operating directions of the first paddle 61 and the second paddle 62 do not change depending on the boat maneuvering mode, so that the boat operator can change the operating direction of the first paddle 61 and the second paddle 62 regardless of the boat maneuvering mode. It can prevent you from getting lost.
  • FIG. 7 is a flowchart showing a control program related to the ship maneuvering mode executed by the controller.
  • FIG. 8 is a flowchart showing the processing executed in the subroutine (step S702) of the flowchart shown in FIG.
  • FIG. 9 is a flowchart showing the processing executed in the subroutine (step S703) of the flowchart shown in FIG.
  • FIG. 10 is a flowchart showing the processing executed in the subroutine (step S704) of the flowchart shown in FIG.
  • the control program executed by the controller 40 is stored in advance in a storage section (not shown) of the controller 40.
  • step S701 the controller 40 determines whether the ship maneuvering mode has been switched and that state has been set (determined). Note that each marine vessel maneuvering mode remains set in that marine vessel maneuvering mode until the mode switching operation described above is performed. As a result of the determination in step S701, if it is determined that the first marine vessel maneuvering mode has been set, the process proceeds to step S702. As a result of the determination in step S701, if it is determined that the second ship maneuvering mode has been set, the process proceeds to step S703. As a result of the determination in step S701, if it is determined that the third marine vessel maneuvering mode has been set, the process proceeds to step S704.
  • step S702 the controller 40 executes the first marine vessel maneuvering mode, that is, when the first paddle 61 and the second paddle 62 are each operated, the controller 40 controls each paddle to perform a function according to the first marine vessel maneuvering mode. do. Specifically, with the first boat maneuvering mode set, the controller 40 moves the boat 2 forward in the ⁇ 1 direction (see FIG. 1) by operating the first paddle 61, and moves the boat 2 forward by operating the second paddle 62. Control is performed to move the vehicle backward in the ⁇ 1' direction (see FIG. 1). In this way, in the first marine vessel maneuvering mode, the first paddle 61 and the second paddle 62 move the hull 2 forward and backward.
  • step S703 the controller 40 executes the second marine vessel maneuvering mode, that is, when the first paddle 61 and the second paddle 62 are each operated, the controller 40 controls each paddle to perform a function according to the second marine vessel maneuvering mode. do. Specifically, with the second boat maneuvering mode set, the controller 40 increases the speed of the hull 2 in the ⁇ 1 direction by operating the first paddle 61, and increases the speed of the hull 2 in the ⁇ 1 direction by operating the second paddle 62. Control is performed to reduce the speed of the hull 2 heading towards. In this way, in the second marine vessel maneuvering mode, the speed of the hull 2 is changed by the first paddle 61 and the second paddle 62.
  • step S704 the controller 40 executes the third marine vessel maneuvering mode, that is, when the first paddle 61 and the second paddle 62 are each operated, the controller 40 controls each paddle to perform a function according to the third marine vessel maneuvering mode. do. Specifically, with the third boat maneuvering mode set, the controller 40 moves the hull 2 in parallel to the right, that is, in the ⁇ 2 direction (see FIG. 1) by operating the first paddle 61, By operating 62, control is performed to move the hull 2 in parallel to the left, that is, in the ⁇ 2' direction (see FIG. 1). In this way, in the third marine vessel maneuvering mode, the first paddle 61 and the second paddle 62 execute parallel movement of the hull 2 in the left-right direction.
  • parallel movement means that the hull 2 moves in the horizontal direction about the center of gravity G (see FIG. 1) without rotating in the yaw direction.
  • step S801 the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S801, if it is determined that the first paddle 61 has been operated, the process proceeds to step S802. On the other hand, as a result of the determination in step S801, if it is determined that the first paddle 61 is not operated, the process advances to step S804.
  • step S802 the controller 40 determines whether the operating speed at which the first paddle 61 is operated is greater than a threshold value (predetermined value). As a result of the determination in step S802, if it is determined that the operating speed is not greater than the threshold value, the process advances to step S803. On the other hand, as a result of the determination in step S802, if it is determined that the operating speed is greater than the threshold value, the process returns to step S801 and the subsequent steps are sequentially executed.
  • a threshold value predetermined value
  • step S803 the controller 40 moves the first reverse bucket 26L and the second reverse bucket 26R to forward positions, and operates the first engine 3L and the second engine 3R at a predetermined position according to the amount of operation of the first paddle 61. Controlled by rotation speed. Thereby, the first watercraft propulsion device 4L and the second watercraft propulsion device 4 are each controlled to inject water rearward, that is, the thrust is controlled, and the ship 1 moves forward. After that, the process returns to step S801, and the subsequent steps are sequentially executed.
  • step S802 if it is determined that the operation speed is greater than the threshold value, the process returns to step S801, and the subsequent steps are sequentially executed. Therefore, the controller 40 does not control the first engine 3L and the second engine 3R (the first marine propulsion device 4L and the second marine propulsion device 4) when the operating speed is higher than the threshold value.
  • the operating speed is greater than the threshold value corresponds to, for example, a case where the boat operator suddenly operates the first paddle 61 strongly.
  • the ship 1 if the ship 1 is controlled in accordance with the operation, the ship 1 will suddenly accelerate and there is room for improvement in ride comfort, but since the first engine 3L and the second engine 3R are not controlled, the sudden acceleration This improves ride comfort.
  • a method of not controlling the first engine 3L and the second engine 3R is used as a method of suppressing sudden acceleration, the method is not limited to this.
  • a control method may be used that reduces the rate of change of the propulsive forces in the first marine propulsion device 4L and the second marine propulsion device 4 per unit time. In this case too, sudden acceleration is suppressed and ride comfort is improved.
  • step S804 the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S804, if it is determined that the second paddle 62 has been operated, the process proceeds to step S805. On the other hand, if it is determined in step S804 that the second paddle 62 is not operated, the process returns to step S801, and the subsequent steps are sequentially executed.
  • step S805 similarly to step S802, the controller 40 determines whether the operating speed at which the second paddle 62 is operated is greater than the threshold value. As a result of the determination in step S805, if it is determined that the operating speed is not greater than the threshold value, the process proceeds to step S806. On the other hand, if it is determined in step S805 that the operating speed is greater than the threshold, the process returns to step S804, and the subsequent steps are sequentially executed.
  • step S806 the controller 40 sets the first reverse bucket 26L and the second reverse bucket 26R to the reverse position, and operates the first engine 3L and the second engine 3R in accordance with the operation amount of the second paddle 62. Controlled by rotation speed. Thereby, the first watercraft propulsion device 4L and the second watercraft propulsion device 4 are each controlled to inject water forward, that is, the thrust is controlled, and the boat 1 moves backward. After that, the process returns to step S804, and the subsequent steps are sequentially executed.
  • step S805 if it is determined that the operation speed is greater than the threshold value, the process returns to step S804, and the subsequent steps are sequentially executed. This is similar to the process performed when the operating speed is determined to be greater than the threshold value as a result of the determination in step S802, and therefore has the effect of suppressing sudden acceleration and improving ride comfort.
  • the hull 2 is moved forward by operating the first paddle 61, and the hull 2 is moved backward by operating the second paddle 62.
  • the function executed by operating the first paddle 61 and the function executed by operating the second paddle 62 may be reversed. That is, the hull 2 may be moved forward by operating the second paddle 62, and the hull 2 may be moved backward by operating the first paddle 61.
  • step S901 the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S901, if it is determined that the first paddle 61 has been operated, the process proceeds to step S902. On the other hand, as a result of the determination in step S901, if it is determined that the first paddle 61 is not operated, the process advances to step S903.
  • step S902 the controller 40 sets the positions of the first reverse bucket 26L and the second reverse bucket 26R to forward positions, and adjusts the rotational speed of the first engine 3L and the second engine 3R according to the number of operations of the first paddle 61. Increase gradually. Thereby, the magnitude of the propulsive force in the first marine propulsion device 4L and the second marine propulsion device 4 can be increased by the number of operations of the first paddle 61, and the speed of the hull 2 can also be increased. Further, after increasing the speed, the process returns to step S901, and the subsequent steps are sequentially executed. Note that it is preferable that a limit (upper limit) be regulated for the speed of the hull 2 obtained in step S902.
  • step S903 the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S903, if it is determined that the second paddle 62 has been operated, the process advances to step S904. On the other hand, if it is determined in step S903 that the second paddle 62 is not operated, the process returns to step S901, and the subsequent steps are sequentially executed.
  • step S904 the controller 40 sets the positions of the first reverse bucket 26L and the second reverse bucket 26R to neutral positions, and adjusts the rotational speed of the first engine 3L and the second engine 3R according to the number of operations of the second paddle 62. gradually decrease. Thereby, the magnitude of the propulsive force in the first marine propulsion device 4L and the second marine propulsion device 4 can be reduced by the number of operations of the second paddle 62, and the speed of the hull 2 can also be reduced.
  • step S905 the controller 40 determines whether the speed of the hull 2 obtained in step S904 has reached a threshold value (predetermined value).
  • This threshold value is not particularly limited, and may be, for example, a predetermined low speed value such as zero.
  • the process advances to step S906.
  • the process returns to step S903, and the subsequent steps are sequentially executed.
  • step S906 the controller 40 switches the marine vessel maneuvering mode from the second marine vessel maneuvering mode to the first marine vessel maneuvering mode, and maintains that state.
  • the reason for switching the ship maneuvering mode from the second ship maneuvering mode to the first ship maneuvering mode is that the ship speed deviated from the navigable speed conditions in the second ship maneuvering mode, which is the cruise control mode. This is because it is preferable to shift to the first ship maneuvering mode.
  • step S905 may be inserted between step S905 and step S906.
  • the process returns to step S901
  • the process returns to step S903.
  • the controller 40 changes the speed of the hull 2 in stages according to the number of operations of the first paddle 61 and the second paddle 62. It is not limited to the number of operations.
  • the speed of the hull 2 may be changed in stages depending on the length of time for one operation of the first paddle 61 or the second paddle 62. In this case, for example, by continuing to pull the first paddle 61 forward for a predetermined period of time, the boat speed can be increased in stages. Furthermore, by continuing to pull the second paddle 62 forward for a predetermined period of time, the boat speed can be reduced in stages. Further, the speed of the hull 2 may be changed in stages according to the amount of one-time operation of the first paddle 61 or the second paddle 62.
  • the boat speed can be increased by one step, and the first paddle 61 is operated with the operation amount "2" which is larger than the operation amount "1".
  • the boat speed can be decreased by one step, and by operating the second paddle 62 once with the operating amount "2", which is larger than the operating amount "1".
  • the button twice the ship speed can be reduced by two steps.
  • the ship speed is the speed at which the first engine 3L or the second engine 3R is at idle speed (hereinafter referred to as "predetermined speed"). may reach.
  • the vessel 1 may be restricted from decelerating below a predetermined speed. Therefore, in the ship 1, intermittent shift operation is performed in order to escape from this restricted state.
  • "Intermittent shift operation” refers to a driving pattern in which the vehicle is no longer in a shift operable state and is shifted to neutral, and the shift operation is repeated to shift to forward. Intermittent shift operation enables deceleration below a predetermined speed. Therefore, it is preferable that the ship 1 shifts to intermittent shift operation when the ship speed reaches a predetermined speed.
  • the speed of the hull 2 is increased by operating the first paddle 61, and the speed of the hull 2 is decreased by operating the second paddle 62.
  • the function executed by operating the first paddle 61 and the function executed by operating the second paddle 62 may be reversed. That is, the speed of the hull 2 may be increased by operating the second paddle 62, and the speed of the hull 2 may be decreased by operating the first paddle 61.
  • step S1001 the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S1001, if it is determined that the first paddle 61 has been operated, the process advances to step S1002. On the other hand, as a result of the determination in step S1001, if it is determined that the first paddle 61 is not operated, the process advances to step S1003.
  • step S1002 the controller 40 moves the hull 2 in the right lateral direction by appropriately controlling the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit (first deflector 25L, etc.). Generates thrust to move parallel to. Thereby, the ship 1 can move in parallel in the right lateral direction, and can smoothly perform operations corresponding to docking or leaving the dock. Further, the process returns to step S1001, and the subsequent steps are sequentially executed.
  • step S1003 the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S1003, if it is determined that the second paddle 62 has been operated, the process advances to step S1004. On the other hand, if it is determined in step S1003 that the second paddle 62 is not operated, the process returns to step S1001, and the subsequent steps are sequentially executed.
  • step S1004 the controller 40 moves the hull 2 in the left-lateral direction by appropriately controlling the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit (first deflector 25L, etc.). Generates thrust to move parallel to. Thereby, the ship 1 can move in parallel in the left-lateral direction, and can smoothly perform operations corresponding to docking or leaving the dock. Further, the process returns to step S1003, and the subsequent steps are sequentially executed.
  • the ship maneuvering system 10 includes the first paddle 61 and the second paddle 62 as operating members for causing the ship body 2 to perform predetermined functions.
  • the functions executed by operating the first paddle 61 and the functions executed by operating the second paddle 62 are respectively changed according to the first to third vessel maneuvering modes. Thereby, regardless of the boat maneuvering mode, by appropriately operating the same first paddle 61 and second paddle 62, functions corresponding to each boat maneuvering mode can be executed. As a result, it is possible to eliminate the need to operate different operation units depending on the ship maneuvering mode, thereby making it possible to improve the operability of the ship 1.
  • the controller 40 may change the rotatable range of the steering wheel 51 according to each ship maneuvering mode.
  • the rotatable range may be set to be smaller in the order of, for example, the first marine vessel maneuvering mode, the second marine vessel maneuvering mode, and the third marine vessel maneuvering mode.
  • the rotatable range of the steering wheel 51 in each boat maneuvering mode is ensured in just the right range.
  • the rotatable range in the first marine vessel maneuvering mode and the rotatable range in the second marine vessel maneuvering mode may be the same.
  • the ship 1 has a display section 39 that includes a display.
  • the display unit 39 also functions as a notification unit that notifies the setting state of each ship maneuvering mode with an image displayed on a display. This allows the vessel operator to understand whether the currently set vessel maneuvering mode is one of the first to third vessel maneuvering modes, and to determine the appropriate mode according to the vessel maneuvering mode. You can perform simple paddle operations.
  • the image display mode of each ship maneuvering mode is not particularly limited, and may be a display mode using at least one of characters, graphics, symbols, etc., for example.
  • the notification of the mode setting state may be audible notification in addition to the notification by image display.
  • the ship 1 it is also possible to notify the setting state of each ship maneuvering mode by changing the operating force required to operate the first paddle 61 and the second paddle 62 according to each ship maneuvering mode.
  • the operating force can be set as, for example, the second marine vessel maneuvering mode, the first marine vessel maneuvering mode, and the third marine vessel maneuvering mode in descending order of magnitude. Note that the change in the operating force can be controlled by the controller 40.
  • FIG. 11 is a flowchart showing the process executed in the subroutine (step S704) of the flowchart shown in FIG. 7 in the first modification of the first embodiment.
  • step S1101 the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S1101, if it is determined that the first paddle 61 has been operated, the process advances to step S1102. On the other hand, if it is determined in step S1101 that the first paddle 61 is not operated, the process advances to step S1103.
  • step S1102 the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the above-mentioned direction change unit to move the hull 2 in the diagonally forward right direction, that is, in the ⁇ 3 direction (Fig. (see 1). Thereby, the ship 1 can move diagonally in parallel to the right front direction, and can smoothly perform operations corresponding to docking. Further, the process returns to step S1101, and the subsequent steps are sequentially executed.
  • step S1103 the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S1103, if it is determined that the second paddle 62 has been operated, the process advances to step S1104. On the other hand, if it is determined in step S1103 that the second paddle 62 is not operated, the process returns to step S1101, and the subsequent steps are sequentially executed.
  • step S1104 the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the direction change unit described above to move the hull 2 diagonally forward leftward, that is, in the ⁇ 3′ direction ( (see Figure 1). Thereby, the ship 1 can move diagonally in parallel to the left front direction, and can smoothly perform operations in response to docking. Further, the process returns to step S1103, and the subsequent steps are sequentially executed.
  • FIG. 12 is a flowchart showing the process executed in the subroutine (step S704) of the flowchart shown in FIG. 7 in the second modified example of the first embodiment.
  • step S1201 the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S1201, if it is determined that the first paddle 61 has been operated, the process advances to step S1202. On the other hand, as a result of the determination in step S1201, if it is determined that the first paddle 61 is not operated, the process advances to step S1203.
  • step S1202 the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit to move the hull 2 in the diagonal right rear direction, that is, in the ⁇ 4 direction ( (see Figure 1). Thereby, the ship 1 can move diagonally in parallel to the right and rear, and can smoothly perform operations in response to docking. Further, the process returns to step S1201, and the subsequent steps are sequentially executed.
  • step S1203 the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S1203, if it is determined that the second paddle 62 has been operated, the process advances to step S1204. On the other hand, if it is determined in step S1203 that the second paddle 62 is not operated, the process returns to step S1201, and the subsequent steps are sequentially executed.
  • step S1204 the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit to move the hull 2 in the diagonal left rear direction, that is, in the ⁇ 4′ direction. (See Figure 1). As a result, the ship 1 can move diagonally in parallel to the left and rear, and can smoothly perform operations in response to docking. Further, the process returns to step S1203, and the subsequent steps are sequentially executed.
  • FIG. 13 is a diagram illustrating an example of a screen displayed on the display unit (in the first ship maneuvering mode) in the third modification of the first embodiment.
  • FIG. 14 is a diagram illustrating an example of a screen displayed on the display unit (in the second ship maneuvering mode) in the third modification of the first embodiment.
  • FIG. 15 is a diagram illustrating an example of a screen displayed on the display unit (in the third ship operation mode) in the third modification of the first embodiment.
  • the display unit 39 displays a mode name 130 indicating that the mode is the first marine vessel maneuvering mode, a steering wheel 50, a first paddle 61, and a second paddle 62. Further, an arrow 131 is displayed on the first paddle 61 in an overlapping manner. The arrow 131 is an upward arrow indicating the traveling direction (forward) of the vessel 1 when the first paddle 61 is operated in the first vessel maneuvering mode. An arrow 132 is displayed on the second paddle 62 in an overlapping manner. The arrow 132 is a downward arrow indicating the traveling direction (backwards) of the vessel 1 when the second paddle 62 is operated in the first vessel maneuvering mode.
  • the mode name 130 allows the boat operator to understand that the currently set boat maneuvering mode is the first boat maneuvering mode. Further, from the arrow 131, it is also possible to understand how the ship 1 behaves when the first paddle 61 is operated in the first ship maneuvering mode, that is, it moves forward. Similarly, from the arrow 132, it is also possible to understand how the vessel 1 behaves when the second paddle 62 is operated in the first vessel maneuvering mode, that is, it moves astern.
  • the display unit 39 displays a mode name 140 indicating that the mode is the second marine vessel maneuvering mode, a steering wheel 50, a first paddle 61, and a second paddle 62. Further, a symbol 141 is displayed on the first paddle 61 in an overlapping manner. The symbol 141 is a "+" symbol indicating an increase in boat speed when the first paddle 61 is operated in the second boat maneuvering mode. A symbol 142 is displayed on the second paddle 62 in an overlapping manner. The symbol 142 is a "-" symbol indicating a decrease in boat speed when the second paddle 62 is operated in the second boat maneuvering mode.
  • the mode name 140 allows the boat operator to understand that the currently set boat maneuvering mode is the second boat maneuvering mode.
  • the display unit 39 displays a mode name 150 indicating the third marine vessel maneuvering mode, a steering wheel 50, a first paddle 61, and a second paddle 62. Further, an arrow 151 is displayed on the first paddle 61 in an overlapping manner. The arrow 151 is a rightward arrow indicating the traveling direction (right lateral direction) of the vessel 1 when the first paddle 61 is operated in the third vessel maneuvering mode. An arrow 152 is displayed on the second paddle 62 in an overlapping manner. The arrow 152 is a leftward arrow indicating the traveling direction (left lateral direction) of the vessel 1 when the second paddle 62 is operated in the third vessel maneuvering mode.
  • the mode name 150 allows the boat operator to understand that the currently set boat maneuvering mode is the third boat maneuvering mode. Further, from the arrow 151, it is also possible to understand how the ship 1 behaves when the first paddle 61 is operated in the third ship maneuvering mode, that is, it moves in parallel in the right lateral direction. Similarly, from the arrow 152, it is also possible to understand how the vessel 1 behaves when the second paddle 62 is operated in the third vessel maneuvering mode, that is, it moves parallel to the left lateral direction. .
  • FIG. 16 is a front view of the steering device in the second embodiment when viewed directly across from the boat operator side.
  • the steering device 14 has a lever 63, which is arranged to protrude rightward from the column 52 in the shape of a rod, as an operating member.
  • the lever 63 is supported so as to be rotatable in the vertical direction, that is, in the ⁇ 2 direction around the column 52.
  • the lever 63 is rotated upward in the ⁇ 2 direction, the same function as the first paddle 61 is exhibited, and the lever 63 is rotated downward in the ⁇ 2 direction. It can be configured so that the same function as the second paddle 62 is exhibited when the rotation operation is performed.
  • FIG. 17 is a front view of a steering device according to a modified example of the second embodiment, when viewed directly across from the boat operator side.
  • the steering device 14 includes, in addition to the lever 63, a lever 64 that is arranged to protrude leftward in the shape of a rod as an operating member. Like the lever 63, the lever 64 is supported so as to be rotatable in the ⁇ 2 direction. In this modification, for example, when the lever 63 is rotated, the same function as the first paddle 61 is exhibited, and when the lever 64 is rotated, the same function as the second paddle 62 is exhibited. It can be configured to
  • the boat 1 to which the present invention is applied is not limited to a jet propulsion boat, but may be a boat having an outboard motor, an outboard/outboard motor, or an inboard motor as a boat propulsion device.
  • the ship 1 to which the present invention is applied may include an electric motor instead of an internal combustion engine, or may further include a hybrid engine consisting of an engine and an electric motor.
  • the operating members are protruding members that protrude to the left or right of the ship, but are not limited thereto. It may be a member, and its protruding direction is not particularly limited. Further, the operating member is not limited to a protruding member, and may be configured, for example, as a button installed on a steering wheel.

Abstract

[Problem] The present invention addresses the problem of providing a ship-steering system having exceptional operability, and a ship. [Solution] Provided is a ship-steering system for steering a ship, the ship-steering system comprising: a steering component that has a steering wheel; an operation member for causing execution of a prescribed function on the ship, the operation member being provided to the steering component; and a control unit that, in accordance with a plurality of ship-steering modes involving mutually different behaviors of the ship, changes the function being executed through operating of the operation member.

Description

操船システムおよび船舶Ship handling systems and ships
 本発明は、操船システムおよび船舶に関する。 The present invention relates to a ship maneuvering system and a ship.
 ジェット推進艇には、操船者がジェット推進艇の操縦を行うためのコンソールに、操船システムが搭載されている。特許文献1に記載の操船システムは、ジェット推進艇の進行方向を操作するステアリング操作部と、ステアリング操作部に設けられ、エンジンのスロットルを操作するパドル操作部と、ステアリング操作部に設けられ、ジェット推進艇の速度を一定に維持した状態で航行する場合に操作されるオートクルーズ操作ボタンとを有する。パドル操作部は、通常航行状態で操作されるものであり、前進方向へのスロットル操作を行う第1操作部と、後進方向へのスロットル操作を行う第2操作部とを有する。オートクルーズ操作ボタンは、オートクルーズ航行状態で操作されるものであり、オートクルーズ航行状態と通常航行状態とを切り替えるモード切替ボタンと、ジェット推進艇を増速させる増速ボタンと、ジェット推進艇を減速させる減速ボタンと、ジェット推進艇の速度が所定の速度以上にならないような低速状態に切り替える低速切替ボタンとを有する。  A jet propulsion boat is equipped with a steering system on a console that allows the boat operator to steer the jet propulsion boat. The steering system described in Patent Document 1 has a steering operation unit that controls the direction of travel of the jet propulsion boat, a paddle operation unit that is provided on the steering operation unit and operates the engine throttle, and an auto-cruise operation button that is provided on the steering operation unit and is operated when sailing while maintaining a constant speed of the jet propulsion boat. The paddle operation unit is operated in a normal sailing state, and has a first operation unit that operates the throttle in the forward direction, and a second operation unit that operates the throttle in the reverse direction. The auto-cruise operation button is operated in an auto-cruise sailing state, and has a mode switching button that switches between the auto-cruise sailing state and the normal sailing state, an increase speed button that speeds up the jet propulsion boat, a decrease speed button that slows down the jet propulsion boat, and a low speed switching button that switches the speed of the jet propulsion boat to a low speed state so that it does not exceed a predetermined speed.
特開2018-069776号公報Japanese Patent Application Publication No. 2018-069776
 このように特許文献1に記載の操船システムでは、パドル操作部とオートクルーズ操作ボタンとがステアリング操作部に集約されてはいるものの、通常航行状態では、第1操作部および第2操作部の2つの操作部を操作する必要がある一方、オートクルーズ航行状態では、モード切替ボタン、増速ボタン、減速ボタン、低速切替ボタンを操作する必要がある。すなわち、特許文献1に記載の操船システムでは、ジェット推進艇の航行状態に応じて異なる操作部を操作する必要があり、操船が煩雑となる。したがって、従来のジェット推進艇等の船舶では操作性について改善の余地がある。 In this way, in the boat maneuvering system described in Patent Document 1, although the paddle operating section and the auto cruise operating button are integrated into the steering operating section, in normal sailing conditions, the first operating section and the second operating section On the other hand, in the autocruise state, it is necessary to operate the mode switch button, speed increase button, deceleration button, and low speed switch button. That is, in the marine vessel maneuvering system described in Patent Document 1, it is necessary to operate different operation units depending on the sailing state of the jet propulsion boat, which makes marine vessel maneuvering complicated. Therefore, there is room for improvement in the operability of conventional vessels such as jet propulsion boats.
 本発明は、操作性に優れた操船システムおよび船舶を提供することを目的とする。 An object of the present invention is to provide a ship maneuvering system and a ship with excellent operability.
 この発明の一態様による操船システムは、船体を操縦する操船システムであって、ステアリングホイールを有するステアリングと、前記ステアリングに設けられ、前記船体に対する所定の機能を実行させるための操作部材と、前記船体の挙動が互いに異なる複数の操船モードに応じて、前記操作部材の操作により実行される前記機能を変更する制御部と、を備える。 A marine vessel maneuvering system according to one aspect of the present invention is a marine vessel maneuvering system for maneuvering a vessel body, comprising: a steering wheel having a steering wheel; an operation member provided on the steering wheel for causing the vessel body to execute a predetermined function; and a control unit that changes the function executed by operating the operating member according to a plurality of ship maneuvering modes in which the behavior of the operating member is different from one another.
 また、この発明の一態様による船舶は、船体と、該船体を操縦する操船システムと、を備える船舶であって、前記操船システムは、ステアリングホイールを有するステアリングと、前記ステアリングに設けられ、前記船体に対する所定の機能を実行させるための操作部材と、前記船体の挙動が互いに異なる複数の操船モードに応じて、前記操作部材の操作により実行される前記機能を変更する制御部と、を備える。 Further, a ship according to an aspect of the present invention is a ship including a ship body and a ship maneuvering system for operating the ship body, wherein the ship maneuvering system includes a steering having a steering wheel, and a ship provided on the steering wheel, and a control unit that changes the function executed by operating the operating member in accordance with a plurality of ship maneuvering modes in which the behavior of the ship is different from each other.
 この構成によれば、操船システムは、船体に対する所定の機能を実行させるための操作部材を有する。そして、操作部材の操作により実行される機能は、船体の挙動が互いに異なる複数の操船モードに応じて変更される。これにより、操船モードに関わらず、同じ操作部材を適宜操作することにより、所定の機能を実行することができる。その結果、操船モードに応じて異なる操作部を操作する必要を無くすことができ、もって、船舶の操作性を優れたものとすることができる。 According to this configuration, the ship maneuvering system includes an operating member for causing the ship to perform a predetermined function. The functions executed by operating the operating member are changed according to a plurality of ship maneuvering modes in which the behavior of the ship body differs from each other. Thereby, a predetermined function can be executed by appropriately operating the same operating member regardless of the ship maneuvering mode. As a result, it is possible to eliminate the need to operate different operation units depending on the ship maneuvering mode, thereby making it possible to improve the operability of the ship.
 本発明によれば、船舶の操作性を優れたものとすることができる。 According to the present invention, it is possible to improve the operability of a ship.
第1実施形態における船舶の平面図である。It is a top view of a ship in a 1st embodiment. 図1に示す船舶の側面図である。2 is a side view of the ship shown in FIG. 1. FIG. 第1船舶推進機の構成を示す模式的側面図である。FIG. 2 is a schematic side view showing the configuration of a first marine vessel propulsion device. 図1に示す船舶の制御系のブロック図である。2 is a block diagram of a control system of the ship shown in FIG. 1. FIG. ステアリング装置を操船者側から真向かいに見たときの正面図である。FIG. 3 is a front view of the steering device when viewed directly across from the boat operator. ステアリング装置を操船者とは反対側から斜めに見たときの背面斜視図である。FIG. 3 is a rear perspective view of the steering device when viewed diagonally from the side opposite to the boat operator. コントローラで実行される操船モードに関する制御プログラムを示すフローチャートである。3 is a flowchart showing a control program related to a ship maneuvering mode executed by a controller. 図7に示すフローチャートのサブルーチン(ステップS702)で実行される処理を示すフローチャートである。8 is a flowchart showing processing executed in the subroutine (step S702) of the flowchart shown in FIG. 7. 図7に示すフローチャートのサブルーチン(ステップS703)で実行される処理を示すフローチャートである。8 is a flowchart showing processing executed in the subroutine (step S703) of the flowchart shown in FIG. 7. 図7に示すフローチャートのサブルーチン(ステップS704)で実行される処理を示すフローチャートである。8 is a flowchart showing processing executed in the subroutine (step S704) of the flowchart shown in FIG. 7. 第1実施形態の変形例における、図7に示すフローチャートのサブルーチン(ステップS704)で実行される処理を示すフローチャートである。8 is a flowchart showing a process executed in a subroutine (step S704) of the flowchart shown in FIG. 7 in a modification of the first embodiment. 第1実施形態の変形例における、図7に示すフローチャートのサブルーチン(ステップS704)で実行される処理を示すフローチャートである。8 is a flowchart showing a process executed in a subroutine (step S704) of the flowchart shown in FIG. 7 in a modification of the first embodiment. 第1実施形態の第3の変形例における、表示部に表示される画面(第1操船モード時)の一例を示す図である。It is a figure which shows an example of the screen (during the 1st ship maneuvering mode) displayed on the display part in the 3rd modification of 1st Embodiment. 第1実施形態の第3の変形例における、表示部に表示される画面(第2操船モード時)の一例を示す図である。It is a figure which shows an example of the screen (during the 2nd ship maneuvering mode) displayed on the display part in the 3rd modification of 1st Embodiment. 第1実施形態の第3の変形例における、表示部に表示される画面(第3操船モード時)の一例を示す図である。It is a figure which shows an example of the screen (during the 3rd ship maneuvering mode) displayed on the display part in the 3rd modification of 1st Embodiment. 第2実施形態におけるステアリング装置を操船者側から真向かいに見たときの正面図である。FIG. 7 is a front view of the steering device according to the second embodiment when viewed directly across from the boat operator side. 第2実施形態の変形例におけるステアリング装置を操船者側から真向かいに見たときの正面図である。FIG. 7 is a front view of a steering device according to a modified example of the second embodiment when viewed directly across from the boat operator side.
 以下、本発明の各実施形態について図面を参照しながら詳細に説明する。しかしながら、以下の各実施形態に記載されている構成はあくまで例示に過ぎず、本発明の範囲は各実施形態に記載されている構成によって限定されることはない。例えば、本発明を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。また、各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせることもできる。 Hereinafter, each embodiment of the present invention will be described in detail with reference to the drawings. However, the configurations described in each embodiment below are merely examples, and the scope of the present invention is not limited by the configurations described in each embodiment. For example, each part constituting the present invention can be replaced with any part that can perform the same function. Moreover, arbitrary components may be added. Further, any two or more configurations (features) of each embodiment can be combined.
 <第1実施形態>
 以下、図1~図10を参照して、第1実施形態について説明する。図1は、第1実施形態に係る船舶の平面図である。図1では、船舶1の内部の構成の一部が示されている。図2は、図1に示す船舶の側面図である。図1、図2に示すように、船舶1は、一例としてジェット推進艇であり、ジェットボートまたはスポーツボートと呼ばれるタイプの船である。船舶1は、船体2、第1エンジン3L、第2エンジン3R、第1船舶推進機(推進機)4L、第2船舶推進機(推進機)4Rを備える。船体2は、デッキ11とハル12とを有する。ハル12は、デッキ11の下方に配置されている。デッキ11には、操船席13が配置されている。また、操船席13には、船舶用ステアリング装置としてのステアリング装置14が配置されている。
<First embodiment>
The first embodiment will be described below with reference to FIGS. 1 to 10. FIG. 1 is a plan view of a ship according to a first embodiment. In FIG. 1, a part of the internal configuration of a ship 1 is shown. FIG. 2 is a side view of the ship shown in FIG. 1. As shown in FIGS. 1 and 2, a boat 1 is, for example, a jet propulsion boat, and is a type of boat called a jet boat or a sports boat. The ship 1 includes a hull 2, a first engine 3L, a second engine 3R, a first ship propulsion device (propulsion device) 4L, and a second ship propulsion device (propulsion device) 4R. The hull 2 has a deck 11 and a hull 12. Hull 12 is arranged below deck 11. A steering seat 13 is arranged on the deck 11. Further, a steering device 14 as a steering device for a ship is arranged in the boat operator seat 13.
 船体2には、第1エンジン3Lおよび第2エンジン3Rと、第1船舶推進機4Lおよび第2船舶推進機4Rとが搭載されている。なお、エンジンの数は、本実施形態で2つであるが、これに限定されず、例えば、1つ又は3つ以上であってもよい。船舶推進機の数についても、本実施形態で2つであるが、これに限定されず、例えば、1つ又は3つ以上であってもよい。第1エンジン3Lおよび第2エンジン3Rは船体2に収容される。第1エンジン3Lの出力軸は、第1船舶推進機4Lに接続されている。第2エンジン3Rの出力軸は、第2船舶推進機4Rに接続されている。第1船舶推進機4Lは、第1エンジン3Lによって駆動され、船体2を推進させる推進力を発生させる。第2船舶推進機4Rは、第2エンジン3Rによって駆動され、船体2を推進させる推進力を発生させる。第1船舶推進機4Lと第2船舶推進機4Rとは、船体2の左右方向に並んで配置されている。 The hull 2 is equipped with a first engine 3L, a second engine 3R, a first marine propulsion device 4L, and a second marine propulsion device 4R. In addition, although the number of engines is two in this embodiment, it is not limited to this, for example, it may be one or three or more. Although the number of ship propulsion devices is two in this embodiment, it is not limited to this, and may be one or three or more, for example. The first engine 3L and the second engine 3R are housed in the hull 2. The output shaft of the first engine 3L is connected to the first marine propulsion device 4L. The output shaft of the second engine 3R is connected to the second marine propulsion device 4R. The first marine propulsion device 4L is driven by the first engine 3L, and generates propulsive force that propels the hull 2. The second marine vessel propulsion device 4R is driven by the second engine 3R, and generates a propulsive force that propels the hull 2. The first marine propulsion device 4L and the second marine propulsion device 4R are arranged side by side in the left-right direction of the hull 2.
 図3は、第1船舶推進機の構成を示す模式的側面図である。図3では、第1船舶推進機4Lの一部が断面図で示されている。第1船舶推進機4Lと第2船舶推進機4Rとは、配置位置が異なること以外は同じ構成であるため、第1船舶推進機4Lについて代表的に説明する。第1船舶推進機4Lは、船体2のまわりの水を吸い込んで噴射するジェット推進機である。図3に示すように、第1船舶推進機4Lは、第1インペラシャフト21L、第1インペラ22L、第1インペラハウジング23L、第1ノズル24L、第1デフレクタ25L、第1リバースバケット26Lを含む。第1インペラシャフト21Lは、前後方向に延びるように配置されている。第1インペラシャフト21Lの前部は、カップリング28Lを介して第1エンジン3Lの出力軸に接続されている。第1インペラシャフト21Lの後部は、第1インペラハウジング23L内に配置されている。第1インペラハウジング23Lは、水吸引部27Lの後方に配置されている。第1ノズル24Lは、第1インペラハウジング23Lの後方に配置されている。 FIG. 3 is a schematic side view showing the configuration of the first marine propulsion device. In FIG. 3, a part of the first marine propulsion device 4L is shown in a cross-sectional view. Since the first marine propulsion device 4L and the second marine propulsion device 4R have the same configuration except for the difference in their arrangement positions, the first marine propulsion device 4L will be representatively explained. The first marine vessel propulsion device 4L is a jet propulsion device that sucks water around the hull 2 and injects it. As shown in FIG. 3, the first marine propulsion device 4L includes a first impeller shaft 21L, a first impeller 22L, a first impeller housing 23L, a first nozzle 24L, a first deflector 25L, and a first reverse bucket 26L. The first impeller shaft 21L is arranged to extend in the front-rear direction. The front portion of the first impeller shaft 21L is connected to the output shaft of the first engine 3L via a coupling 28L. A rear portion of the first impeller shaft 21L is disposed within the first impeller housing 23L. The first impeller housing 23L is arranged behind the water suction section 27L. The first nozzle 24L is arranged at the rear of the first impeller housing 23L.
 第1インペラ22Lは、第1インペラシャフト21Lの後部に取り付けられている。第1インペラ22Lは、第1インペラハウジング23L内に配置されている。第1インペラ22Lは、第1インペラシャフト21Lとともに回転して、水吸引部27Lから水を吸引する。第1インペラ22Lは、吸引した水を第1ノズル24Lから後方に噴射させる。 The first impeller 22L is attached to the rear part of the first impeller shaft 21L. The first impeller 22L is arranged within the first impeller housing 23L. The first impeller 22L rotates together with the first impeller shaft 21L and sucks water from the water suction section 27L. The first impeller 22L injects the sucked water backward from the first nozzle 24L.
 第1デフレクタ25Lは、第1ノズル24Lの後方に配置されている。第1リバースバケット26Lは、第1デフレクタ25Lの後方に配置されている。第1デフレクタ25Lは、第1ノズル24Lからの水の噴射方向を左右方向に転換するように構成されている。すなわち、第1デフレクタ25Lの向きが左右方向に変更されることにより、船舶1の進行方向が左右に変更される。このように本実施形態の船舶1では、第1デフレクタ25Lが、船体2の進行方向を転換する方向変換部として機能する。 The first deflector 25L is arranged behind the first nozzle 24L. The first reverse bucket 26L is arranged behind the first deflector 25L. The first deflector 25L is configured to change the direction of water jet from the first nozzle 24L to the left and right. That is, by changing the direction of the first deflector 25L to the left and right, the traveling direction of the ship 1 is changed to the left and right. In this way, in the ship 1 of this embodiment, the first deflector 25L functions as a direction changing unit that changes the traveling direction of the ship body 2.
 第1ステアリングアクチュエータ32Lは、第1船舶推進機4Lの第1デフレクタ25Lに接続されている(図4参照)。第1リバースバケット26Lは、前進位置と後進位置と中立位置とに切替可能に設けられている。第1リバースバケット26Lが前進位置にある状態では、第1ノズル24Lからの水は後方へ向けて噴射される。これにより船舶1が前進する。第1リバースバケット26Lが後進位置にある状態では、第1ノズル24Lからの水の噴射方向が前方に転換される。これにより船舶1が後進する。このように本実施形態の船舶1では、第1リバースバケット26Lが、第1デフレクタ25Lと同様に、船体2の進行方向を転換する方向変換部として機能する。 The first steering actuator 32L is connected to the first deflector 25L of the first marine propulsion device 4L (see FIG. 4). The first reverse bucket 26L is provided so as to be switchable between a forward position, a reverse position, and a neutral position. When the first reverse bucket 26L is in the forward position, water from the first nozzle 24L is sprayed rearward. This causes the ship 1 to move forward. When the first reverse bucket 26L is in the reverse position, the direction of water jetting from the first nozzle 24L is changed forward. This causes the ship 1 to move backward. In this way, in the ship 1 of this embodiment, the first reverse bucket 26L functions as a direction changing unit that changes the traveling direction of the ship body 2, similarly to the first deflector 25L.
 ここで、第1リバースバケット26Lの中立位置は、前進位置と後進位置との間の位置である。第1リバースバケット26Lは、中立位置において、第1ノズル24Lからの噴流の向きを船体2の左方または右方へ変更する。従って、第1リバースバケット26Lは、中立位置において、船体2を前進させる推進力を低減させる。これにより、船体2が減速されるか、あるいは船体2が停止位置に保持される。なお、図示を省略するが、第2船舶推進機4Rは、第1船舶推進機4Lと同様に構成される。 Here, the neutral position of the first reverse bucket 26L is a position between the forward position and the reverse position. The first reverse bucket 26L changes the direction of the jet from the first nozzle 24L to the left or right of the hull 2 in the neutral position. Therefore, the first reverse bucket 26L reduces the propulsive force that moves the hull 2 forward in the neutral position. As a result, the hull 2 is decelerated or the hull 2 is held at a stopped position. Although not shown, the second marine propulsion device 4R is configured similarly to the first marine propulsion device 4L.
 次に、船舶1の制御系について図4を参照して説明する。図4は、図1に示す船舶の制御系のブロック図である。図4に示すように、船舶1は、コントローラ(制御部)40およびステアリング装置14を有する。コントローラ40は、CPU等の演算装置と、RAM,ROM等の記憶装置とを含んでおり(図示せず)、船舶1を構成する各部を制御するようにプログラムされている。なお、コントローラ40は、単一の装置であってもよいし、互いに別体の複数のコントロールユニットによって構成されてもよい。 Next, the control system of the ship 1 will be explained with reference to FIG. 4. FIG. 4 is a block diagram of the control system of the ship shown in FIG. As shown in FIG. 4, the ship 1 includes a controller (control unit) 40 and a steering device 14. The controller 40 includes an arithmetic unit such as a CPU, and a storage device such as a RAM or ROM (not shown), and is programmed to control each component of the ship 1. Note that the controller 40 may be a single device or may be configured by a plurality of mutually separate control units.
 船舶1は、第1ステアリングアクチュエータ32L、第1シフトアクチュエータ34Lを有する。コントローラ40は、第1エンジン3L、第1ステアリングアクチュエータ32Lおよび第1シフトアクチュエータ34Lと通信可能に接続されている。第1ステアリングアクチュエータ32Lは、第1デフレクタ25Lの舵角を変更する。第1ステアリングアクチュエータ32Lは、例えば、電動モータである。あるいは、第1ステアリングアクチュエータ32Lは、油圧シリンダ等の他のアクチュエータであってもよい。第1シフトアクチュエータ34Lは、第1船舶推進機4Lの第1リバースバケット26Lに接続されている。第1シフトアクチュエータ34Lは、第1リバースバケット26Lの位置を前進位置と後進位置と中立位置とに切り替える。第1シフトアクチュエータ34Lは、例えば、電動モータである。あるいは、第1シフトアクチュエータ34Lは、油圧シリンダ等の他のアクチュエータであってもよい。 The ship 1 has a first steering actuator 32L and a first shift actuator 34L. The controller 40 is communicably connected to the first engine 3L, the first steering actuator 32L, and the first shift actuator 34L. The first steering actuator 32L changes the steering angle of the first deflector 25L. The first steering actuator 32L is, for example, an electric motor. Alternatively, the first steering actuator 32L may be another actuator such as a hydraulic cylinder. The first shift actuator 34L is connected to the first reverse bucket 26L of the first marine propulsion device 4L. The first shift actuator 34L switches the position of the first reverse bucket 26L between a forward position, a reverse position, and a neutral position. The first shift actuator 34L is, for example, an electric motor. Alternatively, the first shift actuator 34L may be another actuator such as a hydraulic cylinder.
 船舶1は、第2ステアリングアクチュエータ32R、第2シフトアクチュエータ34Rを有する。第2ステアリングアクチュエータ32Rは、第2船舶推進機4Rの第2デフレクタ25Rに接続されている。第2シフトアクチュエータ34Rは、第2船舶推進機4Rの第2リバースバケット26Rに接続されている。これらの構成は、第2船舶推進機4Rを制御するための装置であり、上述した第1ステアリングアクチュエータ32Lおよび第1シフトアクチュエータ34Lと同様の構成である。コントローラ40は、第2ステアリングアクチュエータ32Rおよび第2シフトアクチュエータ34Rと通信可能に接続されている。 The ship 1 has a second steering actuator 32R and a second shift actuator 34R. The second steering actuator 32R is connected to the second deflector 25R of the second marine propulsion device 4R. The second shift actuator 34R is connected to the second reverse bucket 26R of the second marine propulsion device 4R. These structures are devices for controlling the second marine propulsion device 4R, and have the same structure as the first steering actuator 32L and first shift actuator 34L described above. The controller 40 is communicably connected to the second steering actuator 32R and the second shift actuator 34R.
 船舶1は、表示部39および設定操作部38を有する。表示部39は、ディスプレイを備え、コントローラ40からの指示に基づき各種情報を表示する。設定操作部38は、操船に関する操作をするための操作子の他、各種設定を行うための設定操作子、各種指示を入力するための入力操作子を含む(いずれも図示せず)。設定操作部38で入力された信号は、コントローラ40に供給される。 The ship 1 has a display section 39 and a setting operation section 38. The display unit 39 includes a display and displays various information based on instructions from the controller 40. The setting operation section 38 includes, in addition to operators for performing operations related to boat maneuvering, setting operators for performing various settings, and input operators for inputting various instructions (none of which are shown). A signal input through the setting operation section 38 is supplied to the controller 40 .
 コントローラ40は、ステアリング装置14と通信可能に接続されている。ステアリング装置14は、ステアリングホイール51、第1パドル(右パドル)61、第2パドル(左パドル)62を有する。これらは、それぞれ独立して操作可能であり、操船者によって操作された際に、その操作信号がコントローラ40に供給される。本実施形態では、コントローラ40、ステアリング装置14および表示部39は、船体2を操縦する操船システム10を構成する。 The controller 40 is communicably connected to the steering device 14. The steering device 14 includes a steering wheel 51, a first paddle (right paddle) 61, and a second paddle (left paddle) 62. Each of these can be operated independently, and when operated by a boat operator, the operation signal is supplied to the controller 40. In this embodiment, the controller 40, the steering device 14, and the display unit 39 constitute a ship maneuvering system 10 that controls the ship body 2.
 図5は、ステアリング装置を操船者側から真向かいに見たときの正面図である。図6は、ステアリング装置を操船者とは反対側から斜めに見たときの背面斜視図である。なお、図5の上下方向および左右方向は、船舶1の上下方向および左右方向と一致し、図の奥行き側が船舶1の船首側であり、図の手前側が船舶1の船尾側である。 FIG. 5 is a front view of the steering device when viewed directly across from the boat operator. FIG. 6 is a rear perspective view of the steering device when viewed diagonally from the side opposite to the boat operator. Note that the vertical and horizontal directions in FIG. 5 correspond to the vertical and horizontal directions of the ship 1, the depth side of the figure is the bow side of the ship 1, and the near side of the figure is the stern side of the ship 1.
 図5、図6に示すように、ステアリング装置14は、ステアリング50と、第1パドル(突出部材)61および第2パドル(突出部材)62とを有する。ステアリング50は、ステアリングホイール51と、ステアリングホイール51を回転可能に支持するコラム52を有する。ステアリングホイール51は、コラム52に対して回転支点(ステアリング軸)O51を中心に回転可能に支持された中央部53と、中央部53と同心的に配置された環状のホイール部54と、中央部53とホイール部54とを接続する、例えば3つのスポーク部55、56、57を有する。操船者は、ステアリングホイール51を左右に回転操作することで船舶1を左右に旋回させることができる。なお、スポーク部55~スポーク部57は、ステアリングホイール51が船舶1を直進させる位置にあるとき、クロックポジションでスポーク部55が6時の方向に位置し、スポーク部56が10時の方向に位置し、スポーク部57が2時の方向に位置する。 5 and 6, the steering device 14 has a steering wheel 50, a first paddle (protruding member) 61, and a second paddle (protruding member) 62. The steering wheel 50 has a steering wheel 51 and a column 52 that rotatably supports the steering wheel 51. The steering wheel 51 has a central portion 53 that is rotatably supported on the column 52 around a rotation fulcrum (steering axis) O51, an annular wheel portion 54 that is arranged concentrically with the central portion 53, and three spoke portions 55, 56, and 57 that connect the central portion 53 and the wheel portion 54. The operator can turn the boat 1 left and right by rotating the steering wheel 51 left and right. When the steering wheel 51 is in a position to move the boat 1 straight, the spoke portions 55 to 57 are located in the clock position such that the spoke portion 55 is located at 6 o'clock, the spoke portion 56 is located at 10 o'clock, and the spoke portion 57 is located at 2 o'clock.
 第1パドル61および第2パドル62は、従来のリモコンユニットに代えて、例えば、第1エンジン3Lおよび第2エンジン3Rの出力(回転数)の調整、船舶1の前後進の切り替え等、船体2に対する所定の機能を実行させるための操作部材である。これにより、従来のリモコンユニットを省略することができ、その分、例えば、操船席13における計器等の機器のレイアウトの改善、船舶1のコストダウンを図ることができる。第1パドル61は、略T字状を呈する板部材であり、ステアリング50のコラム52から右側へ突出して配置されている。第2パドル62は、略T字状を呈する板部材であり、ステアリング50のコラム52から左側へ突出して配置されている。一方、ステアリングホイール51は、第1パドル61および第2パドル62よりも船尾側、すなわち、操船席13の操船者側に設けられる。なお、第1パドル61および第2パドル62は、いずれもステアリングホイール51のホイール部30を握る操船者の指が届く範囲に配置されるのが好ましい。これにより、操船者は、ステアリングホイール51を把持したままの状態で、すなわち、ステアリングホイール51から手を放さずとも、第1パドル61および第2パドル62を操作することができる。 The first paddle 61 and the second paddle 62 are used in place of a conventional remote control unit to adjust the output (rotational speed) of the first engine 3L and second engine 3R, to switch the ship 1 between forward and backward movement, etc. It is an operating member for causing a predetermined function to be executed. Thereby, the conventional remote control unit can be omitted, and accordingly, for example, the layout of instruments such as instruments in the ship's steering seat 13 can be improved and the cost of the ship 1 can be reduced. The first paddle 61 is a plate member having a substantially T-shape, and is arranged so as to protrude from the column 52 of the steering wheel 50 to the right side. The second paddle 62 is a substantially T-shaped plate member, and is arranged to protrude leftward from the column 52 of the steering wheel 50. On the other hand, the steering wheel 51 is provided on the stern side of the first paddle 61 and the second paddle 62, that is, on the boat operator's side of the boat operator seat 13. Note that it is preferable that both the first paddle 61 and the second paddle 62 be placed within the reach of the fingers of the boat operator who grips the wheel portion 30 of the steering wheel 51. This allows the boat operator to operate the first paddle 61 and the second paddle 62 while holding the steering wheel 51, that is, without releasing the steering wheel 51.
 また、コラム52は、第1パドル61および第2パドル62をそれぞれ略前後方向(α1方向)へ傾倒可能に支持する。また、第1パドル61および第2パドル62は、それぞれ、前方に向かって付勢されている。そして、操船者が第1パドル61を付勢力に抗して手前(後方)に1回引くことにより、コントローラ40が第1パドル61からの操作を受け付ける(第2パドル62の操作についても同様)。第1パドル61の操作、すなわち、第1パドル61の操船者の手前側への傾倒は、例えば、ポテンショメータによってアナログ信号に変換されて、コントローラ40へ送信される。 Further, the column 52 supports the first paddle 61 and the second paddle 62 so that they can each be tilted approximately in the front-rear direction (α1 direction). Further, the first paddle 61 and the second paddle 62 are each urged forward. Then, when the boat operator pulls the first paddle 61 toward the front (rearward) once against the urging force, the controller 40 accepts the operation from the first paddle 61 (the same applies to the operation of the second paddle 62). . The operation of the first paddle 61, that is, the tilting of the first paddle 61 toward the operator's side, is converted into an analog signal by, for example, a potentiometer, and transmitted to the controller 40.
 ステアリング装置14では、操船者からステアリングホイール51を眺めたときに、第1パドル61とスポーク部57とが重なるように配置され、第2パドル62とスポーク部56とが重なるように配置される。また、第1パドル61および第2パドル62は、ステアリングホイール51の回転に伴い、同じように回転するように、コラム52へ取り付けられる。従って、ステアリングホイール51が回転しても、操船者からステアリングホイール51を眺めたとき、第1パドル61とスポーク部57とが重なったままであり、第2パドル62とスポーク部56とが重なったままである。なお、第1パドル61および第2パドル62をコラム52へステアリングホイール51の回転操作方向に関して固定してもよい。この場合、ステアリングホイール51が回転しても、第1パドル61および第2パドル62が回転しないように構成されることとなる。 In the steering device 14, when the steering wheel 51 is viewed from a boat operator, the first paddle 61 and the spoke portion 57 are arranged so as to overlap, and the second paddle 62 and the spoke portion 56 are arranged so as to overlap. Further, the first paddle 61 and the second paddle 62 are attached to the column 52 so as to rotate in the same manner as the steering wheel 51 rotates. Therefore, even if the steering wheel 51 rotates, when the operator looks at the steering wheel 51, the first paddle 61 and the spoke portion 57 remain overlapped, and the second paddle 62 and the spoke portion 56 remain overlapped. be. Note that the first paddle 61 and the second paddle 62 may be fixed to the column 52 with respect to the direction in which the steering wheel 51 is rotated. In this case, even if the steering wheel 51 rotates, the first paddle 61 and the second paddle 62 are configured not to rotate.
 船舶1は、船体2の挙動が互いに異なる複数の操船モードに切り替え可能に構成されている。本実施形態の複数の操船モードには、第1操船モード(ノーマルモード)と、第1操船モードとは異なる第2操船モード(クルーズコントロールモード)と、第1操船モードおよび第2操船モードとは異なる第3操船モード(着岸モード)とが含まれている。なお、操船モードには、第1操船モード~第3操船モードと異なる他の操船モードが含まれていてもよい。コントローラ40は、各操船モードに応じて、第1パドル61の操作により実行される機能と、第2パドル62の操作により実行される機能とを変更することができる。なお、第1操船モード~第3操船モードに切り替える切替操作方法については、特に限定されないが、例えば、表示部39上に表示された切替操作ボタンを操作する方法、ステアリングホイール51のスポーク部55~スポーク部57に設けられた切替操作ボタンを操作する方法等が挙げられる。 The ship 1 is configured to be able to switch between a plurality of ship maneuvering modes in which the behavior of the ship body 2 is different from each other. The plurality of ship maneuvering modes of this embodiment include a first ship maneuvering mode (normal mode), a second ship maneuvering mode (cruise control mode) different from the first ship maneuvering mode, and a first ship maneuvering mode and a second ship maneuvering mode. A different third ship operation mode (berthing mode) is included. Note that the marine vessel maneuvering mode may include other marine vessel maneuvering modes different from the first marine vessel maneuvering mode to the third marine vessel maneuvering mode. The controller 40 can change the function executed by operating the first paddle 61 and the function executed by operating the second paddle 62 according to each ship maneuvering mode. Note that the switching operation method for switching between the first marine vessel maneuvering mode and the third marine vessel maneuvering mode is not particularly limited. Examples include a method of operating a switching operation button provided on the spoke portion 57.
 また、前述したように、第1パドル61および第2パドル62は、それぞれα1方向(図6参照)へ傾倒可能に支持されている。従って、第1パドル61および第2パドル62の操作方向(操作方法)は、いずれも、各操船モードに関わらず同じである。これにより、操船モードごとに第1パドル61および第2パドル62の操作方向が変わることが無いため、いかなる操船モードであっても、操船者が第1パドル61および第2パドル62の操作方向に迷うのを抑制することができる。 Further, as described above, the first paddle 61 and the second paddle 62 are each supported so as to be tiltable in the α1 direction (see FIG. 6). Therefore, the operating directions (operating methods) of the first paddle 61 and the second paddle 62 are the same regardless of each boat maneuvering mode. As a result, the operating directions of the first paddle 61 and the second paddle 62 do not change depending on the boat maneuvering mode, so that the boat operator can change the operating direction of the first paddle 61 and the second paddle 62 regardless of the boat maneuvering mode. It can prevent you from getting lost.
 以下、各操船モードについて図7~図10を参照して説明する。図7は、コントローラで実行される操船モードに関する制御プログラムを示すフローチャートである。図8は、図7に示すフローチャートのサブルーチン(ステップS702)で実行される処理を示すフローチャートである。図9は、図7に示すフローチャートのサブルーチン(ステップS703)で実行される処理を示すフローチャートである。図10は、図7に示すフローチャートのサブルーチン(ステップS704)で実行される処理を示すフローチャートである。なお、コントローラ40で実行される制御プログラムは、コントローラ40の記憶部(不図示)に予め記憶されている。 Hereinafter, each ship maneuvering mode will be explained with reference to FIGS. 7 to 10. FIG. 7 is a flowchart showing a control program related to the ship maneuvering mode executed by the controller. FIG. 8 is a flowchart showing the processing executed in the subroutine (step S702) of the flowchart shown in FIG. FIG. 9 is a flowchart showing the processing executed in the subroutine (step S703) of the flowchart shown in FIG. FIG. 10 is a flowchart showing the processing executed in the subroutine (step S704) of the flowchart shown in FIG. Note that the control program executed by the controller 40 is stored in advance in a storage section (not shown) of the controller 40.
 図7に示すように、ステップS701では、コントローラ40は、操船モードが切り替えられて、その状態が設定された(決定された)か否かを判断する。なお、各操船モードは、前述したモード切替操作が行われるまでは、当該操船モードに設定された状態が維持される。ステップS701での判断の結果、第1操船モードに設定されたと判断された場合には、処理はステップS702に進む。ステップS701での判断の結果、第2操船モードに設定されたと判断された場合には、処理はステップS703に進む。ステップS701での判断の結果、第3操船モードに設定されたと判断された場合には、処理はステップS704に進む。 As shown in FIG. 7, in step S701, the controller 40 determines whether the ship maneuvering mode has been switched and that state has been set (determined). Note that each marine vessel maneuvering mode remains set in that marine vessel maneuvering mode until the mode switching operation described above is performed. As a result of the determination in step S701, if it is determined that the first marine vessel maneuvering mode has been set, the process proceeds to step S702. As a result of the determination in step S701, if it is determined that the second ship maneuvering mode has been set, the process proceeds to step S703. As a result of the determination in step S701, if it is determined that the third marine vessel maneuvering mode has been set, the process proceeds to step S704.
 ステップS702では、コントローラ40は、第1操船モードを実行する、すなわち、第1パドル61および第2パドル62がそれぞれ操作された際、各パドルに第1操船モードに応じた機能を発揮させるよう制御する。具体的には、第1操船モードが設定された状態で、コントローラ40は、第1パドル61の操作により船体2をβ1方向(図1参照)に前進させ、第2パドル62の操作により船体2をβ1’方向(図1参照)に後進させる制御を行う。このように第1操船モードでは、第1パドル61および第2パドル62により船体2の前進後進が実行される。 In step S702, the controller 40 executes the first marine vessel maneuvering mode, that is, when the first paddle 61 and the second paddle 62 are each operated, the controller 40 controls each paddle to perform a function according to the first marine vessel maneuvering mode. do. Specifically, with the first boat maneuvering mode set, the controller 40 moves the boat 2 forward in the β1 direction (see FIG. 1) by operating the first paddle 61, and moves the boat 2 forward by operating the second paddle 62. Control is performed to move the vehicle backward in the β1' direction (see FIG. 1). In this way, in the first marine vessel maneuvering mode, the first paddle 61 and the second paddle 62 move the hull 2 forward and backward.
 ステップS703では、コントローラ40は、第2操船モードを実行する、すなわち、第1パドル61および第2パドル62がそれぞれ操作された際、各パドルに第2操船モードに応じた機能を発揮させるよう制御する。具体的には、第2操船モードが設定された状態で、コントローラ40は、第1パドル61の操作により、β1方向に向かう船体2の速度を増加させ、第2パドル62の操作により、β1方向に向かう船体2の速度を減少させる制御を行う。このように第2操船モードでは、第1パドル61および第2パドル62により船体2の速度変更が実行される。 In step S703, the controller 40 executes the second marine vessel maneuvering mode, that is, when the first paddle 61 and the second paddle 62 are each operated, the controller 40 controls each paddle to perform a function according to the second marine vessel maneuvering mode. do. Specifically, with the second boat maneuvering mode set, the controller 40 increases the speed of the hull 2 in the β1 direction by operating the first paddle 61, and increases the speed of the hull 2 in the β1 direction by operating the second paddle 62. Control is performed to reduce the speed of the hull 2 heading towards. In this way, in the second marine vessel maneuvering mode, the speed of the hull 2 is changed by the first paddle 61 and the second paddle 62.
 ステップS704では、コントローラ40は、第3操船モードを実行する、すなわち、第1パドル61および第2パドル62がそれぞれ操作された際、各パドルに第3操船モードに応じた機能を発揮させるよう制御する。具体的には、第3操船モードが設定された状態で、コントローラ40は、第1パドル61の操作により船体2を右方向、すなわち、β2方向(図1参照)へ平行移動させ、第2パドル62の操作により船体2を左方向、すなわち、β2’方向(図1参照)へ平行移動させる制御を行う。このように第3操船モードでは、第1パドル61および第2パドル62により船体2の左右方向への平行移動が実行される。ここで「平行移動」とは、船体2が重心G(図1参照)を中心にヨー方向に回転することなく水平方向に移動することを意味する。 In step S704, the controller 40 executes the third marine vessel maneuvering mode, that is, when the first paddle 61 and the second paddle 62 are each operated, the controller 40 controls each paddle to perform a function according to the third marine vessel maneuvering mode. do. Specifically, with the third boat maneuvering mode set, the controller 40 moves the hull 2 in parallel to the right, that is, in the β2 direction (see FIG. 1) by operating the first paddle 61, By operating 62, control is performed to move the hull 2 in parallel to the left, that is, in the β2' direction (see FIG. 1). In this way, in the third marine vessel maneuvering mode, the first paddle 61 and the second paddle 62 execute parallel movement of the hull 2 in the left-right direction. Here, "parallel movement" means that the hull 2 moves in the horizontal direction about the center of gravity G (see FIG. 1) without rotating in the yaw direction.
 図8に示すように、ステップS801では、コントローラ40は、第1パドル61が操作されたか否かを判断する。ステップS801での判断の結果、第1パドル61が操作されたと判断された場合には、処理はステップS802に進む。一方、ステップS801での判断の結果、第1パドル61が操作されていないと判断された場合には、処理はステップS804に進む。 As shown in FIG. 8, in step S801, the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S801, if it is determined that the first paddle 61 has been operated, the process proceeds to step S802. On the other hand, as a result of the determination in step S801, if it is determined that the first paddle 61 is not operated, the process advances to step S804.
 ステップS802では、コントローラ40は、第1パドル61が操作された際の操作速度が閾値(所定の値)よりも大きいか否かを判断する。ステップS802での判断の結果、操作速度が閾値よりも大きくはないと判断された場合には、処理はステップS803に進む。一方、ステップS802での判断の結果、操作速度が閾値よりも大きいと判断された場合には、処理はステップS801に戻り、それ以降のステップを順次実行する。 In step S802, the controller 40 determines whether the operating speed at which the first paddle 61 is operated is greater than a threshold value (predetermined value). As a result of the determination in step S802, if it is determined that the operating speed is not greater than the threshold value, the process advances to step S803. On the other hand, as a result of the determination in step S802, if it is determined that the operating speed is greater than the threshold value, the process returns to step S801 and the subsequent steps are sequentially executed.
 ステップS803では、コントローラ40は、第1リバースバケット26Lおよび第2リバースバケット26Rの位置を前進位置にして、第1パドル61の操作量に応じて、第1エンジン3Lおよび第2エンジン3Rを所定の回転数で制御する。これにより、第1船舶推進機4Lおよび第2船舶推進機4は、それぞれ、水を後方へ向けて噴射するよう制御され、すなわち、推力が制御され、船舶1が前進する。その後、処理はステップS801に戻り、それ以降のステップを順次実行する。 In step S803, the controller 40 moves the first reverse bucket 26L and the second reverse bucket 26R to forward positions, and operates the first engine 3L and the second engine 3R at a predetermined position according to the amount of operation of the first paddle 61. Controlled by rotation speed. Thereby, the first watercraft propulsion device 4L and the second watercraft propulsion device 4 are each controlled to inject water rearward, that is, the thrust is controlled, and the ship 1 moves forward. After that, the process returns to step S801, and the subsequent steps are sequentially executed.
 前述したようにステップS802での判断の結果、操作速度が閾値よりも大きいと判断された場合には、処理はステップS801に戻り、それ以降のステップを順次実行する。従って、コントローラ40は、操作速度が閾値よりも大きい場合には、第1エンジン3Lおよび第2エンジン3R(第1船舶推進機4Lおよび第2船舶推進機4)に対する制御を行わないこととなる。ここで「操作速度が閾値よりも大きい場合」とは、例えば、操船者が第1パドル61をとっさに強く操作した場合に相当する。この場合、操作に応じて船舶1が制御されると船舶1が急加速して乗り心地に改善の余地が生まれるが、第1エンジン3Lおよび第2エンジン3Rに対する制御が行わないことにより、急加速を抑制して、乗り心地が向上する。なお、急加速の抑制方法としては、第1エンジン3Lおよび第2エンジン3Rに対する制御を行わない方法を用いているが、これに限定されない。例えば、第1船舶推進機4Lおよび第2船舶推進機4における推進力の単位時間当たりの変化率を減少させる制御方法を用いてもよい。この場合も急加速を抑制して、乗り心地が向上する。 As described above, as a result of the determination in step S802, if it is determined that the operation speed is greater than the threshold value, the process returns to step S801, and the subsequent steps are sequentially executed. Therefore, the controller 40 does not control the first engine 3L and the second engine 3R (the first marine propulsion device 4L and the second marine propulsion device 4) when the operating speed is higher than the threshold value. Here, "the operating speed is greater than the threshold value" corresponds to, for example, a case where the boat operator suddenly operates the first paddle 61 strongly. In this case, if the ship 1 is controlled in accordance with the operation, the ship 1 will suddenly accelerate and there is room for improvement in ride comfort, but since the first engine 3L and the second engine 3R are not controlled, the sudden acceleration This improves ride comfort. Note that although a method of not controlling the first engine 3L and the second engine 3R is used as a method of suppressing sudden acceleration, the method is not limited to this. For example, a control method may be used that reduces the rate of change of the propulsive forces in the first marine propulsion device 4L and the second marine propulsion device 4 per unit time. In this case too, sudden acceleration is suppressed and ride comfort is improved.
 ステップS804では、コントローラ40は、第2パドル62が操作されたか否かを判断する。ステップS804での判断の結果、第2パドル62が操作されたと判断された場合には、処理はステップS805に進む。一方、ステップS804での判断の結果、第2パドル62が操作されていないと判断された場合には、処理はステップS801に戻り、それ以降のステップを順次実行する。 In step S804, the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S804, if it is determined that the second paddle 62 has been operated, the process proceeds to step S805. On the other hand, if it is determined in step S804 that the second paddle 62 is not operated, the process returns to step S801, and the subsequent steps are sequentially executed.
 ステップS805では、ステップS802と同様に、コントローラ40は、第2パドル62が操作された際の操作速度が閾値よりも大きいか否かを判断する。ステップS805での判断の結果、操作速度が閾値よりも大きくはないと判断された場合には、処理はステップS806に進む。一方、ステップS805での判断の結果、操作速度が閾値よりも大きいと判断された場合には、処理はステップS804に戻り、それ以降のステップを順次実行する。 In step S805, similarly to step S802, the controller 40 determines whether the operating speed at which the second paddle 62 is operated is greater than the threshold value. As a result of the determination in step S805, if it is determined that the operating speed is not greater than the threshold value, the process proceeds to step S806. On the other hand, if it is determined in step S805 that the operating speed is greater than the threshold, the process returns to step S804, and the subsequent steps are sequentially executed.
 ステップS806では、コントローラ40は、第1リバースバケット26Lおよび第2リバースバケット26Rの位置を後進位置にして、第2パドル62の操作量に応じて、第1エンジン3Lおよび第2エンジン3Rを所定の回転数で制御する。これにより、第1船舶推進機4Lおよび第2船舶推進機4は、それぞれ、水を前方へ向けて噴射するよう制御され、すなわち、推力が制御され、船舶1が後進する。その後、処理はステップS804に戻り、それ以降のステップを順次実行する。 In step S806, the controller 40 sets the first reverse bucket 26L and the second reverse bucket 26R to the reverse position, and operates the first engine 3L and the second engine 3R in accordance with the operation amount of the second paddle 62. Controlled by rotation speed. Thereby, the first watercraft propulsion device 4L and the second watercraft propulsion device 4 are each controlled to inject water forward, that is, the thrust is controlled, and the boat 1 moves backward. After that, the process returns to step S804, and the subsequent steps are sequentially executed.
 前述したようにステップS805での判断の結果、操作速度が閾値よりも大きいと判断された場合には、処理はステップS804に戻り、それ以降のステップを順次実行する。これは、ステップS802での判断の結果、操作速度が閾値よりも大きいと判断された場合の処理と同様であり、よって、急加速を抑制して、乗り心地を向上させる効果を奏する。 As described above, as a result of the determination in step S805, if it is determined that the operation speed is greater than the threshold value, the process returns to step S804, and the subsequent steps are sequentially executed. This is similar to the process performed when the operating speed is determined to be greater than the threshold value as a result of the determination in step S802, and therefore has the effect of suppressing sudden acceleration and improving ride comfort.
 なお、本実施形態では、第1パドル61および第2パドル62のうち、第1パドル61の操作により船体2を前進させ、第2パドル62の操作により船体2を後進させているが、これに限定されない。例えば、第1パドル61の操作により実行される機能と、第2パドル62の操作により実行される機能とは、逆転してもよい。すなわち、第2パドル62の操作により船体2を前進させ、第1パドル61の操作により船体2を後進させてもよい。 Note that in this embodiment, out of the first paddle 61 and the second paddle 62, the hull 2 is moved forward by operating the first paddle 61, and the hull 2 is moved backward by operating the second paddle 62. Not limited. For example, the function executed by operating the first paddle 61 and the function executed by operating the second paddle 62 may be reversed. That is, the hull 2 may be moved forward by operating the second paddle 62, and the hull 2 may be moved backward by operating the first paddle 61.
 図9に示すように、ステップS901では、コントローラ40は、第1パドル61が操作されたか否かを判断する。ステップS901での判断の結果、第1パドル61が操作されたと判断された場合には、処理はステップS902に進む。一方、ステップS901での判断の結果、第1パドル61が操作されていないと判断された場合には、処理はステップS903に進む。 As shown in FIG. 9, in step S901, the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S901, if it is determined that the first paddle 61 has been operated, the process proceeds to step S902. On the other hand, as a result of the determination in step S901, if it is determined that the first paddle 61 is not operated, the process advances to step S903.
 ステップS902では、コントローラ40は、第1リバースバケット26Lおよび第2リバースバケット26Rの位置を前進位置にして、第1パドル61の操作回数に応じて、第1エンジン3Lおよび第2エンジン3Rの回転数を段階的に増加させる。これにより、第1パドル61の操作回数分だけ、第1船舶推進機4Lおよび第2船舶推進機4での推進力の大きさを増加させて、船体2の速度も増加させることができる。また、増速後、処理はステップS901に戻り、それ以降のステップを順次実行する。なお、ステップS902で得られる船体2の速度には、限界(上限)が規制されているのが好ましい。 In step S902, the controller 40 sets the positions of the first reverse bucket 26L and the second reverse bucket 26R to forward positions, and adjusts the rotational speed of the first engine 3L and the second engine 3R according to the number of operations of the first paddle 61. Increase gradually. Thereby, the magnitude of the propulsive force in the first marine propulsion device 4L and the second marine propulsion device 4 can be increased by the number of operations of the first paddle 61, and the speed of the hull 2 can also be increased. Further, after increasing the speed, the process returns to step S901, and the subsequent steps are sequentially executed. Note that it is preferable that a limit (upper limit) be regulated for the speed of the hull 2 obtained in step S902.
 ステップS903では、コントローラ40は、第2パドル62が操作されたか否かを判断する。ステップS903での判断の結果、第2パドル62が操作されたと判断された場合には、処理はステップS904に進む。一方、ステップS903での判断の結果、第2パドル62が操作されていないと判断された場合には、処理はステップS901に戻り、それ以降のステップを順次実行する。 In step S903, the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S903, if it is determined that the second paddle 62 has been operated, the process advances to step S904. On the other hand, if it is determined in step S903 that the second paddle 62 is not operated, the process returns to step S901, and the subsequent steps are sequentially executed.
 ステップS904では、コントローラ40は、第1リバースバケット26Lおよび第2リバースバケット26Rの位置を中立位置にして、第2パドル62の操作回数に応じて、第1エンジン3Lおよび第2エンジン3Rの回転数を段階的に減少させる。これにより、第2パドル62の操作回数分だけ、第1船舶推進機4Lおよび第2船舶推進機4での推進力の大きさを減少させて、船体2の速度も減少させることができる。 In step S904, the controller 40 sets the positions of the first reverse bucket 26L and the second reverse bucket 26R to neutral positions, and adjusts the rotational speed of the first engine 3L and the second engine 3R according to the number of operations of the second paddle 62. gradually decrease. Thereby, the magnitude of the propulsive force in the first marine propulsion device 4L and the second marine propulsion device 4 can be reduced by the number of operations of the second paddle 62, and the speed of the hull 2 can also be reduced.
 ステップS905では、コントローラ40は、ステップS904で得られた船体2の速度が閾値(所定の値)に到達したか否かを判断する。この閾値としては、特に限定されず、例えばゼロ(零)等の所定の低速値とすることができる。ステップS905での判断の結果、速度が閾値に到達したと判断された場合には、処理はステップS906に進む。一方、ステップS905での判断の結果、速度が閾値に到達していないと判断された場合には、処理はステップS903に戻り、それ以降のステップを順次実行する。 In step S905, the controller 40 determines whether the speed of the hull 2 obtained in step S904 has reached a threshold value (predetermined value). This threshold value is not particularly limited, and may be, for example, a predetermined low speed value such as zero. As a result of the determination in step S905, if it is determined that the speed has reached the threshold value, the process advances to step S906. On the other hand, if it is determined in step S905 that the speed has not reached the threshold, the process returns to step S903, and the subsequent steps are sequentially executed.
 ステップS906では、コントローラ40は、操船モードを第2操船モードから第1操船モードに切り替えて、その状態を維持する。操船モードを第2操船モードから第1操船モードに切り替える理由としては、クルーズコントロールモードである第2操船モードでの航行可能な速度条件から船速が外れたため、その後の操船を考慮して、ノーマルモードである第1操船モードに移行した方が好ましいからである。 In step S906, the controller 40 switches the marine vessel maneuvering mode from the second marine vessel maneuvering mode to the first marine vessel maneuvering mode, and maintains that state. The reason for switching the ship maneuvering mode from the second ship maneuvering mode to the first ship maneuvering mode is that the ship speed deviated from the navigable speed conditions in the second ship maneuvering mode, which is the cruise control mode. This is because it is preferable to shift to the first ship maneuvering mode.
 また、ステップS905とステップS906との間に、次の処理が挿入されていてもよい。例えば、ステップS905実行後所定時間の間に、第1パドル61の操作があった場合には処理がステップS901に戻ったり、第2パドル62の操作があった場合には処理がステップS903に戻ったりしてもよい。これにより、当該パドルの操作回数分だけ船速が変更されて、その変更状態で第2操船モードが維持される。 Furthermore, the following process may be inserted between step S905 and step S906. For example, if the first paddle 61 is operated within a predetermined time after step S905 is executed, the process returns to step S901, or if the second paddle 62 is operated, the process returns to step S903. You may also As a result, the boat speed is changed by the number of times the paddle is operated, and the second boat maneuvering mode is maintained in the changed state.
 なお、本実施形態では、コントローラ40は、第1パドル61や第2パドル62の操作回数に応じて、船体2の速度を段階的に変更させているが、の速度変更条件についてはパドルの操作回数に限定されない。例えば、第1パドル61や第2パドル62に対する1回の操作時間の長さに応じて、船体2の速度を段階的に変更させてもよい。この場合、例えば第1パドル61を所定時間手前に引き続けることにより、船速を段階的に増加させることができる。また、第2パドル62を所定時間手前に引き続けることにより、船速を段階的に減少させることができる。また、第1パドル61や第2パドル62に対する1回の操作量に応じて、船体2の速度を段階的に変更させてもよい。この場合、例えば第1パドル61を操作量「1」で1回操作することにより、船速を1段階増加させることができ、第1パドル61を操作量「1」よりも大きい操作量「2」で1回操作することにより、船速を2段階増加させることができる。また、第2パドル62操作量「1」で1回操作することにより、船速を1段階減少させることができ、第2パドル62を操作量「1」よりも大きい操作量「2」で1回操作することにより、船速を2段階減少させることができる。 In this embodiment, the controller 40 changes the speed of the hull 2 in stages according to the number of operations of the first paddle 61 and the second paddle 62. It is not limited to the number of operations. For example, the speed of the hull 2 may be changed in stages depending on the length of time for one operation of the first paddle 61 or the second paddle 62. In this case, for example, by continuing to pull the first paddle 61 forward for a predetermined period of time, the boat speed can be increased in stages. Furthermore, by continuing to pull the second paddle 62 forward for a predetermined period of time, the boat speed can be reduced in stages. Further, the speed of the hull 2 may be changed in stages according to the amount of one-time operation of the first paddle 61 or the second paddle 62. In this case, for example, by operating the first paddle 61 once with the operation amount "1", the boat speed can be increased by one step, and the first paddle 61 is operated with the operation amount "2" which is larger than the operation amount "1". By operating it once, you can increase the ship's speed by two steps. In addition, by operating the second paddle 62 once with the operating amount "1", the boat speed can be decreased by one step, and by operating the second paddle 62 once with the operating amount "2", which is larger than the operating amount "1". By operating the button twice, the ship speed can be reduced by two steps.
 また、第2パドル62で船速を段階的に減少させている際に、当該船速が、第1エンジン3Lや第2エンジン3Rのアイドル回転数時の速度(以下「所定速度」と言う)に達することがある。そして、船舶1は、所定速度以下の減速が規制される場合がある。そこで、船舶1では、この規制状態から脱するために間欠シフト運転が行われる。「間欠シフト運転」とは、シフト操作可能状態から外れてニュートラルにしたり、シフト操作してフォワードにしたりを繰り返す運転パターンのことである。間欠シフト運転により、所定速度以下の減速が可能となる。従って、船舶1は、船速が所定速度に達した場合に、間欠シフト運転に移行するのが好ましい。 In addition, when the ship speed is gradually decreased with the second paddle 62, the ship speed is the speed at which the first engine 3L or the second engine 3R is at idle speed (hereinafter referred to as "predetermined speed"). may reach. The vessel 1 may be restricted from decelerating below a predetermined speed. Therefore, in the ship 1, intermittent shift operation is performed in order to escape from this restricted state. "Intermittent shift operation" refers to a driving pattern in which the vehicle is no longer in a shift operable state and is shifted to neutral, and the shift operation is repeated to shift to forward. Intermittent shift operation enables deceleration below a predetermined speed. Therefore, it is preferable that the ship 1 shifts to intermittent shift operation when the ship speed reaches a predetermined speed.
 また、本実施形態では、第1パドル61および第2パドル62のうち、第1パドル61の操作により船体2の速度を増加させ、第2パドル62の操作により船体2の速度を減少させているが、これに限定されない。例えば、第1パドル61の操作により実行される機能と、第2パドル62の操作により実行される機能とは、逆転してもよい。すなわち、第2パドル62の操作により船体2の速度を増加させ、第1パドル61の操作により船体2の速度を減少させてもよい。 Furthermore, in this embodiment, of the first paddle 61 and the second paddle 62, the speed of the hull 2 is increased by operating the first paddle 61, and the speed of the hull 2 is decreased by operating the second paddle 62. However, it is not limited to this. For example, the function executed by operating the first paddle 61 and the function executed by operating the second paddle 62 may be reversed. That is, the speed of the hull 2 may be increased by operating the second paddle 62, and the speed of the hull 2 may be decreased by operating the first paddle 61.
 図10に示すように、ステップS1001では、コントローラ40は、第1パドル61が操作されたか否かを判断する。ステップS1001での判断の結果、第1パドル61が操作されたと判断された場合には、処理はステップS1002に進む。一方、ステップS1001での判断の結果、第1パドル61が操作されていないと判断された場合には、処理はステップS1003に進む。 As shown in FIG. 10, in step S1001, the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S1001, if it is determined that the first paddle 61 has been operated, the process advances to step S1002. On the other hand, as a result of the determination in step S1001, if it is determined that the first paddle 61 is not operated, the process advances to step S1003.
 ステップS1002では、コントローラ40は、第1船舶推進機4Lと、第2船舶推進機4Rと、前述した方向変換部(第1デフレクタ25L等)とを適宜制御することにより、船体2を右横方向へ平行移動させる推力を発生させる。これにより、船舶1が右横方向へ平行移動して、着岸又は離岸に応じた操作を円滑に行うことができる。また、処理はステップS1001に戻り、それ以降のステップを順次実行する。 In step S1002, the controller 40 moves the hull 2 in the right lateral direction by appropriately controlling the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit (first deflector 25L, etc.). Generates thrust to move parallel to. Thereby, the ship 1 can move in parallel in the right lateral direction, and can smoothly perform operations corresponding to docking or leaving the dock. Further, the process returns to step S1001, and the subsequent steps are sequentially executed.
 ステップS1003では、コントローラ40は、第2パドル62が操作されたか否かを判断する。ステップS1003での判断の結果、第2パドル62が操作されたと判断された場合には、処理はステップS1004に進む。一方、ステップS1003での判断の結果、第2パドル62が操作されていないと判断された場合には、処理はステップS1001に戻り、それ以降のステップを順次実行する。 In step S1003, the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S1003, if it is determined that the second paddle 62 has been operated, the process advances to step S1004. On the other hand, if it is determined in step S1003 that the second paddle 62 is not operated, the process returns to step S1001, and the subsequent steps are sequentially executed.
 ステップS1004では、コントローラ40は、第1船舶推進機4Lと、第2船舶推進機4Rと、前述した方向変換部(第1デフレクタ25L等)とを適宜制御することにより、船体2を左横方向へ平行移動させる推力を発生させる。これにより、船舶1が左横方向へ平行移動して、着岸又は離岸に応じた操作を円滑に行うことができる。また、処理はステップS1003に戻り、それ以降のステップを順次実行する。 In step S1004, the controller 40 moves the hull 2 in the left-lateral direction by appropriately controlling the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit (first deflector 25L, etc.). Generates thrust to move parallel to. Thereby, the ship 1 can move in parallel in the left-lateral direction, and can smoothly perform operations corresponding to docking or leaving the dock. Further, the process returns to step S1003, and the subsequent steps are sequentially executed.
 以上のように操船システム10は、船体2に対する所定の機能を実行させるための操作部材としての第1パドル61および第2パドル62を有する。そして、第1パドル61の操作により実行される機能と、第2パドル62の操作により実行される機能とは、第1操船モード~第3操船モードに応じて、それぞれ変更される。これにより、操船モードに関わらず、同じ第1パドル61および第2パドル62を適宜操作することにより、各操船モードに応じた機能を実行することができる。その結果、操船モードに応じて異なる操作部を操作する必要を無くすことができ、もって、船舶1の操作性を優れたものとすることができる。 As described above, the ship maneuvering system 10 includes the first paddle 61 and the second paddle 62 as operating members for causing the ship body 2 to perform predetermined functions. The functions executed by operating the first paddle 61 and the functions executed by operating the second paddle 62 are respectively changed according to the first to third vessel maneuvering modes. Thereby, regardless of the boat maneuvering mode, by appropriately operating the same first paddle 61 and second paddle 62, functions corresponding to each boat maneuvering mode can be executed. As a result, it is possible to eliminate the need to operate different operation units depending on the ship maneuvering mode, thereby making it possible to improve the operability of the ship 1.
 また、コントローラ40は、各操船モードに応じてステアリングホイール51の回転可能範囲を変更してもよい。この場合の回転可能範囲は、例えば第1操船モード、第2操船モード、第3操船モードの順に小さく設定されていてもよい。これにより、各操船モードでのステアリングホイール51の回転可能範囲が過不足なく確保されることとなる。また、第1操船モードでの回転可能範囲と、第2操船モードでの回転可能範囲とは、同じであってもよい。 Furthermore, the controller 40 may change the rotatable range of the steering wheel 51 according to each ship maneuvering mode. In this case, the rotatable range may be set to be smaller in the order of, for example, the first marine vessel maneuvering mode, the second marine vessel maneuvering mode, and the third marine vessel maneuvering mode. As a result, the rotatable range of the steering wheel 51 in each boat maneuvering mode is ensured in just the right range. Further, the rotatable range in the first marine vessel maneuvering mode and the rotatable range in the second marine vessel maneuvering mode may be the same.
 前述したように、船舶1は、ディスプレイを備える表示部39を有する。表示部39は、ディスプレイで表示した画像で各操船モードの設定状態を報知する報知部としても機能する。これにより、操船者は、現在の設定されている操船モードが第1操船モード~第3操船モードうちのいずかの操船モードであるのかを把握することができ、当該操船モードに応じた適切なパドル操作を行うことができる。各操船モードの画像表示態様としては、特に限定されず、例えば、文字、図形および記号等のうちの少なくとも1つを用いた表示態様とすることができる。なお、モード設定状態の報知は、画像表示による報知の他に、音声による報知であってもよい。また、船舶1では、各操船モードに応じて第1パドル61および第2パドル62の操作に必要な操作力を変更することにより、各操船モードの設定状態を報知することも可能である。この場合の操作力は、例えば、大きいものから順に、第2操船モード、第1操船モード、第3操船モードと設定することができる。なお、操作力の変更は、コントローラ40により制御可能である。 As mentioned above, the ship 1 has a display section 39 that includes a display. The display unit 39 also functions as a notification unit that notifies the setting state of each ship maneuvering mode with an image displayed on a display. This allows the vessel operator to understand whether the currently set vessel maneuvering mode is one of the first to third vessel maneuvering modes, and to determine the appropriate mode according to the vessel maneuvering mode. You can perform simple paddle operations. The image display mode of each ship maneuvering mode is not particularly limited, and may be a display mode using at least one of characters, graphics, symbols, etc., for example. Note that the notification of the mode setting state may be audible notification in addition to the notification by image display. Furthermore, in the ship 1, it is also possible to notify the setting state of each ship maneuvering mode by changing the operating force required to operate the first paddle 61 and the second paddle 62 according to each ship maneuvering mode. In this case, the operating force can be set as, for example, the second marine vessel maneuvering mode, the first marine vessel maneuvering mode, and the third marine vessel maneuvering mode in descending order of magnitude. Note that the change in the operating force can be controlled by the controller 40.
 <第1の変形例>
 以下、図11を参照して、第1実施形態の第1の変形例について説明するが、前述した実施形態との相違点を中心に説明し、相違の無い事項はその説明を省略する。図11は、第1実施形態の第1の変形例における、図7に示すフローチャートのサブルーチン(ステップS704)で実行される処理を示すフローチャートである。
<First modification example>
The first modified example of the first embodiment will be described below with reference to FIG. 11, but the explanation will focus on the differences from the embodiment described above, and the explanation of the same items will be omitted. FIG. 11 is a flowchart showing the process executed in the subroutine (step S704) of the flowchart shown in FIG. 7 in the first modification of the first embodiment.
 図11に示すように、ステップS1101では、コントローラ40は、第1パドル61が操作されたか否かを判断する。ステップS1101での判断の結果、第1パドル61が操作されたと判断された場合には、処理はステップS1102に進む。一方、ステップS1101での判断の結果、第1パドル61が操作されていないと判断された場合には、処理はステップS1103に進む。 As shown in FIG. 11, in step S1101, the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S1101, if it is determined that the first paddle 61 has been operated, the process advances to step S1102. On the other hand, if it is determined in step S1101 that the first paddle 61 is not operated, the process advances to step S1103.
 ステップS1102では、コントローラ40は、第1船舶推進機4Lと、第2船舶推進機4Rと、前述した方向変換部とを適宜制御することにより、船体2を斜め右前方向、すなわち、β3方向(図1参照)へ平行移動させる推力を発生させる。これにより、船舶1が斜め右前方向へ平行移動して、着岸に応じた操作を円滑に行うことができる。また、処理はステップS1101に戻り、それ以降のステップを順次実行する。 In step S1102, the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the above-mentioned direction change unit to move the hull 2 in the diagonally forward right direction, that is, in the β3 direction (Fig. (see 1). Thereby, the ship 1 can move diagonally in parallel to the right front direction, and can smoothly perform operations corresponding to docking. Further, the process returns to step S1101, and the subsequent steps are sequentially executed.
 ステップS1103では、コントローラ40は、第2パドル62が操作されたか否かを判断する。ステップS1103での判断の結果、第2パドル62が操作されたと判断された場合には、処理はステップS1104に進む。一方、ステップS1103での判断の結果、第2パドル62が操作されていないと判断された場合には、処理はステップS1101に戻り、それ以降のステップを順次実行する。 In step S1103, the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S1103, if it is determined that the second paddle 62 has been operated, the process advances to step S1104. On the other hand, if it is determined in step S1103 that the second paddle 62 is not operated, the process returns to step S1101, and the subsequent steps are sequentially executed.
 ステップS1104では、コントローラ40は、第1船舶推進機4Lと、第2船舶推進機4Rと、前述した方向変換部とを適宜制御することにより、船体2を斜め左前方向、すなわち、β3’方向(図1参照)へ平行移動させる推力を発生させる。これにより、船舶1が斜め左前方向へ平行移動して、着岸に応じた操作を円滑に行うことができる。また、処理はステップS1103に戻り、それ以降のステップを順次実行する。 In step S1104, the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the direction change unit described above to move the hull 2 diagonally forward leftward, that is, in the β3′ direction ( (see Figure 1). Thereby, the ship 1 can move diagonally in parallel to the left front direction, and can smoothly perform operations in response to docking. Further, the process returns to step S1103, and the subsequent steps are sequentially executed.
 <第2の変形例>
 以下、図12を参照して、第1実施形態の第2の変形例について説明するが、第1の変形例と同様に、前述した実施形態との相違点を中心に説明し、相違の無い事項はその説明を省略する。図12は、第1実施形態の第2の変形例における、図7に示すフローチャートのサブルーチン(ステップS704)で実行される処理を示すフローチャートである。
<Second modification example>
The second modification of the first embodiment will be described below with reference to FIG. Explanation of the matters will be omitted. FIG. 12 is a flowchart showing the process executed in the subroutine (step S704) of the flowchart shown in FIG. 7 in the second modified example of the first embodiment.
 図12に示すように、ステップS1201では、コントローラ40は、第1パドル61が操作されたか否かを判断する。ステップS1201での判断の結果、第1パドル61が操作されたと判断された場合には、処理はステップS1202に進む。一方、ステップS1201での判断の結果、第1パドル61が操作されていないと判断された場合には、処理はステップS1203に進む。 As shown in FIG. 12, in step S1201, the controller 40 determines whether the first paddle 61 has been operated. As a result of the determination in step S1201, if it is determined that the first paddle 61 has been operated, the process advances to step S1202. On the other hand, as a result of the determination in step S1201, if it is determined that the first paddle 61 is not operated, the process advances to step S1203.
 ステップS1202では、コントローラ40は、第1船舶推進機4Lと、第2船舶推進機4Rと、前述した方向変換部とを適宜制御することにより、船体2を斜め右後方向、すなわち、β4方向(図1参照)へ平行移動させる推力を発生させる。これにより、船舶1が斜め右後方向へ平行移動して、着岸に応じた操作を円滑に行うことができる。また、処理はステップS1201に戻り、それ以降のステップを順次実行する。 In step S1202, the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit to move the hull 2 in the diagonal right rear direction, that is, in the β4 direction ( (see Figure 1). Thereby, the ship 1 can move diagonally in parallel to the right and rear, and can smoothly perform operations in response to docking. Further, the process returns to step S1201, and the subsequent steps are sequentially executed.
 ステップS1203では、コントローラ40は、第2パドル62が操作されたか否かを判断する。ステップS1203での判断の結果、第2パドル62が操作されたと判断された場合には、処理はステップS1204に進む。一方、ステップS1203での判断の結果、第2パドル62が操作されていないと判断された場合には、処理はステップS1201に戻り、それ以降のステップを順次実行する。 In step S1203, the controller 40 determines whether the second paddle 62 has been operated. As a result of the determination in step S1203, if it is determined that the second paddle 62 has been operated, the process advances to step S1204. On the other hand, if it is determined in step S1203 that the second paddle 62 is not operated, the process returns to step S1201, and the subsequent steps are sequentially executed.
 ステップS1204では、コントローラ40は、第1船舶推進機4Lと、第2船舶推進機4Rと、前述した方向変換部とを適宜制御することにより、船体2を斜め左後方向、すなわち、β4’方向(図1参照)へ平行移動させる推力を発生させる。これにより、船舶1が斜め左後方向へ平行移動して、着岸に応じた操作を円滑に行うことができる。また、処理はステップS1203に戻り、それ以降のステップを順次実行する。 In step S1204, the controller 40 appropriately controls the first marine propulsion device 4L, the second marine propulsion device 4R, and the aforementioned direction changing unit to move the hull 2 in the diagonal left rear direction, that is, in the β4′ direction. (See Figure 1). As a result, the ship 1 can move diagonally in parallel to the left and rear, and can smoothly perform operations in response to docking. Further, the process returns to step S1203, and the subsequent steps are sequentially executed.
 <第3の変形例>
 以下、図13~図15を参照して、第1実施形態の第3の変形例について説明するが、第1の変形例と同様に、前述した実施形態との相違点を中心に説明し、相違の無い事項はその説明を省略する。図13は、第1実施形態の第3の変形例における、表示部に表示される画面(第1操船モード時)の一例を示す図である。図14は、第1実施形態の第3の変形例における、表示部に表示される画面(第2操船モード時)の一例を示す図である。図15は、第1実施形態の第3の変形例における、表示部に表示される画面(第3操船モード時)の一例を示す図である。
<Third modification example>
Hereinafter, a third modification of the first embodiment will be described with reference to FIGS. 13 to 15. Similar to the first modification, the explanation will focus on the differences from the above-described embodiment, Explanation of items with no difference will be omitted. FIG. 13 is a diagram illustrating an example of a screen displayed on the display unit (in the first ship maneuvering mode) in the third modification of the first embodiment. FIG. 14 is a diagram illustrating an example of a screen displayed on the display unit (in the second ship maneuvering mode) in the third modification of the first embodiment. FIG. 15 is a diagram illustrating an example of a screen displayed on the display unit (in the third ship operation mode) in the third modification of the first embodiment.
 図13に示す第1操船モードで表示部39には、第1操船モードである旨を示すモード名称130と、ステアリング50と、第1パドル61および第2パドル62とが表示される。また、第1パドル61には、矢印131が重ねて表示される。矢印131は、第1操船モードで第1パドル61を操作したときの船舶1の進行方向(前進)を示す上向きの矢印である。第2パドル62には、矢印132が重ねて表示される。矢印132は、第1操船モードで第2パドル62を操作したときの船舶1の進行方向(後進)を示す下向きの矢印である。モード名称130により、操船者は、現在の設定されている操船モードが第1操船モードであることを把握することができる。また、矢印131により、第1操船モードで第1パドル61を操作したときに船舶1がどのような挙動を示すのか、すなわち、前進することを把握することもできる。これと同様に、矢印132により、第1操船モードで第2パドル62を操作したときに船舶1がどのような挙動を示すのか、すなわち、後進することを把握することもできる。 In the first marine vessel maneuvering mode shown in FIG. 13, the display unit 39 displays a mode name 130 indicating that the mode is the first marine vessel maneuvering mode, a steering wheel 50, a first paddle 61, and a second paddle 62. Further, an arrow 131 is displayed on the first paddle 61 in an overlapping manner. The arrow 131 is an upward arrow indicating the traveling direction (forward) of the vessel 1 when the first paddle 61 is operated in the first vessel maneuvering mode. An arrow 132 is displayed on the second paddle 62 in an overlapping manner. The arrow 132 is a downward arrow indicating the traveling direction (backwards) of the vessel 1 when the second paddle 62 is operated in the first vessel maneuvering mode. The mode name 130 allows the boat operator to understand that the currently set boat maneuvering mode is the first boat maneuvering mode. Further, from the arrow 131, it is also possible to understand how the ship 1 behaves when the first paddle 61 is operated in the first ship maneuvering mode, that is, it moves forward. Similarly, from the arrow 132, it is also possible to understand how the vessel 1 behaves when the second paddle 62 is operated in the first vessel maneuvering mode, that is, it moves astern.
 図14に示す第2操船モードで表示部39には、第2操船モードである旨を示すモード名称140と、ステアリング50と、第1パドル61および第2パドル62とが表示される。また、第1パドル61には、記号141が重ねて表示される。記号141は、第2操船モードで第1パドル61を操作したときの船速の増加を示す「+」記号である。第2パドル62には、記号142が重ねて表示される。記号142は、第2操船モードで第2パドル62を操作したとき船速の減少を示す「-」記号である。モード名称140により、操船者は、現在の設定されている操船モードが第2操船モードであることを把握することができる。また、記号141により、第2操船モードで第1パドル61を操作したときに船舶1がどのような挙動を示すのか、すなわち、船速が増加することを把握することもできる。これと同様に、記号142により、第2操船モードで第2パドル62を操作したときに船舶1がどのような挙動を示すのか、すなわち、船速が減速することを把握することもできる。 In the second marine vessel maneuvering mode shown in FIG. 14, the display unit 39 displays a mode name 140 indicating that the mode is the second marine vessel maneuvering mode, a steering wheel 50, a first paddle 61, and a second paddle 62. Further, a symbol 141 is displayed on the first paddle 61 in an overlapping manner. The symbol 141 is a "+" symbol indicating an increase in boat speed when the first paddle 61 is operated in the second boat maneuvering mode. A symbol 142 is displayed on the second paddle 62 in an overlapping manner. The symbol 142 is a "-" symbol indicating a decrease in boat speed when the second paddle 62 is operated in the second boat maneuvering mode. The mode name 140 allows the boat operator to understand that the currently set boat maneuvering mode is the second boat maneuvering mode. Further, from the symbol 141, it is also possible to understand how the ship 1 behaves when the first paddle 61 is operated in the second ship maneuvering mode, that is, the ship speed increases. Similarly, from the symbol 142, it is also possible to understand how the ship 1 behaves when the second paddle 62 is operated in the second ship maneuvering mode, that is, the ship speed decreases.
 図15に示す第3操船モードで表示部39には、第3操船モードである旨を示すモード名称150と、ステアリング50と、第1パドル61および第2パドル62とが表示される。また、第1パドル61には、矢印151が重ねて表示される。矢印151は、第3操船モードで第1パドル61を操作したときの船舶1の進行方向(右横方向)を示す右向きの矢印である。第2パドル62には、矢印152が重ねて表示される。矢印152は、第3操船モードで第2パドル62を操作したときの船舶1の進行方向(左横方向)を示す左向きの矢印である。モード名称150により、操船者は、現在の設定されている操船モードが第3操船モードであることを把握することができる。また、矢印151により、第3操船モードで第1パドル61を操作したときに船舶1がどのような挙動を示すのか、すなわち、右横方向に平行移動することを把握することもできる。これと同様に、矢印152により、第3操船モードで第2パドル62を操作したときに船舶1がどのような挙動を示すのか、すなわち、左横方向に平行移動することを把握することもできる。 In the third marine vessel maneuvering mode shown in FIG. 15, the display unit 39 displays a mode name 150 indicating the third marine vessel maneuvering mode, a steering wheel 50, a first paddle 61, and a second paddle 62. Further, an arrow 151 is displayed on the first paddle 61 in an overlapping manner. The arrow 151 is a rightward arrow indicating the traveling direction (right lateral direction) of the vessel 1 when the first paddle 61 is operated in the third vessel maneuvering mode. An arrow 152 is displayed on the second paddle 62 in an overlapping manner. The arrow 152 is a leftward arrow indicating the traveling direction (left lateral direction) of the vessel 1 when the second paddle 62 is operated in the third vessel maneuvering mode. The mode name 150 allows the boat operator to understand that the currently set boat maneuvering mode is the third boat maneuvering mode. Further, from the arrow 151, it is also possible to understand how the ship 1 behaves when the first paddle 61 is operated in the third ship maneuvering mode, that is, it moves in parallel in the right lateral direction. Similarly, from the arrow 152, it is also possible to understand how the vessel 1 behaves when the second paddle 62 is operated in the third vessel maneuvering mode, that is, it moves parallel to the left lateral direction. .
 <第2実施形態>
 以下、図16を参照して、第2実施形態について説明するが、前述した第1実施形態との相違点を中心に説明し、相違の無い事項はその説明を省略する。前記第1実施形態では、ステアリングに設けられ、船体に対する所定の機能を実行させるための操作部材として板状のパドルを用いたが、本実施形態では、操作部材の形状が異なる。図16は、第2実施形態におけるステアリング装置を操船者側から真向かいに見たときの正面図である。
<Second embodiment>
The second embodiment will be described below with reference to FIG. 16, focusing on the differences from the first embodiment described above, and omitting the description of the same items. In the first embodiment, a plate-shaped paddle is used as an operating member that is provided on the steering wheel and is used to perform a predetermined function on the hull, but in this embodiment, the shape of the operating member is different. FIG. 16 is a front view of the steering device in the second embodiment when viewed directly across from the boat operator side.
 図16に示すように、ステアリング装置14は、操作部材として、コラム52から右方向に棒状に突出して配置されたレバー63を有する。レバー63は、上下方向、すなわち、コラム52回りにα2方向に回動可能に支持されている。本実施形態では、例えば、α2方向のうちの上方に向かってレバー63を回動操作した場合に、第1パドル61と同様の機能が発揮され、α2方向のうちの下方に向かってレバー63を回動操作した場合に、第2パドル62と同様の機能が発揮されるよう構成することができる。 As shown in FIG. 16, the steering device 14 has a lever 63, which is arranged to protrude rightward from the column 52 in the shape of a rod, as an operating member. The lever 63 is supported so as to be rotatable in the vertical direction, that is, in the α2 direction around the column 52. In this embodiment, for example, when the lever 63 is rotated upward in the α2 direction, the same function as the first paddle 61 is exhibited, and the lever 63 is rotated downward in the α2 direction. It can be configured so that the same function as the second paddle 62 is exhibited when the rotation operation is performed.
 <変形例>
 以下、図17を参照して、第2実施形態の変形例について説明するが、前述した実施形態との相違点を中心に説明し、相違の無い事項はその説明を省略する。図17は、第2実施形態の変形例におけるステアリング装置を操船者側から真向かいに見たときの正面図である。
<Modified example>
Hereinafter, a modified example of the second embodiment will be described with reference to FIG. 17, but the explanation will focus on the differences from the embodiment described above, and the explanation of the same items will be omitted. FIG. 17 is a front view of a steering device according to a modified example of the second embodiment, when viewed directly across from the boat operator side.
 図17に示すように、ステアリング装置14は、操作部材として、レバー63の他にさらに、左方向に棒状に突出して配置されたレバー64を有する。レバー64は、レバー63と同様にα2方向に回動可能に支持されている。本変形例では、例えば、レバー63を回動操作した場合に、第1パドル61と同様の機能が発揮され、レバー64を回動操作した場合に、第2パドル62と同様の機能が発揮されるよう構成することができる。 As shown in FIG. 17, the steering device 14 includes, in addition to the lever 63, a lever 64 that is arranged to protrude leftward in the shape of a rod as an operating member. Like the lever 63, the lever 64 is supported so as to be rotatable in the α2 direction. In this modification, for example, when the lever 63 is rotated, the same function as the first paddle 61 is exhibited, and when the lever 64 is rotated, the same function as the second paddle 62 is exhibited. It can be configured to
 以上、本発明の好ましい各実施形態について説明したが、本発明は上述した各実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。例えば、本発明が適用される船舶1は、ジェット推進艇に限定されず、例えば、船舶推進機として船外機、船内外機または船内機を有する船舶であってもよい。さらに、本発明が適用される船舶1は、内燃機関であるエンジンの代わりに電気モータを備えてもよく、さらに、エンジンと電気モータからなるハイブリッド機関を備えてもよい。また、操作部材(第1パドル61、第2パドル62)は、船舶の左または右方向に突出した突出部材であるが、これに限定されず、例えば、船舶の前または後方向に突出した突出部材であってもよく、その突出方向については特に限定されない。また、操作部材は、突出部材に限定されず、例えば、ステアリングホイールに設置されたボタンで構成されていてもよい。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made within the scope of the invention. For example, the boat 1 to which the present invention is applied is not limited to a jet propulsion boat, but may be a boat having an outboard motor, an outboard/outboard motor, or an inboard motor as a boat propulsion device. Furthermore, the ship 1 to which the present invention is applied may include an electric motor instead of an internal combustion engine, or may further include a hybrid engine consisting of an engine and an electric motor. Further, the operating members (first paddle 61, second paddle 62) are protruding members that protrude to the left or right of the ship, but are not limited thereto. It may be a member, and its protruding direction is not particularly limited. Further, the operating member is not limited to a protruding member, and may be configured, for example, as a button installed on a steering wheel.
1 船舶、2 船体、4L 第1船舶推進機(推進機)、4R 第2船舶推進機(推進機)、10 操船システム、39 表示部、40 コントローラ(制御部)、50 ステアリング、51 ステアリングホイール、52 コラム、61 第1パドル(右パドル)、62 第2パドル(左パドル)、63 レバー、64 レバー 1 Ship, 2 Hull, 4L First ship propulsion device (propulsion device), 4R Second ship propulsion device (propulsion device), 10 Ship maneuvering system, 39 Display unit, 40 Controller (control unit), 50 Steering, 51 Steering wheel, 52 Column, 61 1st paddle (right paddle), 62 2nd paddle (left paddle), 63 Lever, 64 Lever

Claims (20)

  1.  船体を操縦する操船システムであって、
     ステアリングホイールを有するステアリングと、
     前記ステアリングに設けられ、前記船体に対する所定の機能を実行させるための操作部材と、
     前記船体の挙動が互いに異なる複数の操船モードに応じて、前記操作部材の操作により実行される前記機能を変更する制御部と、を備える、操船システム。
    A ship maneuvering system for maneuvering a ship,
    a steering wheel having a steering wheel;
    an operating member provided on the steering wheel and configured to perform a predetermined function on the hull;
    A ship maneuvering system comprising: a control unit that changes the function executed by operating the operating member according to a plurality of ship maneuvering modes in which the behavior of the ship body differs from each other.
  2.  前記操作部材の操作方法は、前記各操船モードに関わらず、同じである、請求項1に記載の操船システム。 The marine vessel maneuvering system according to claim 1, wherein a method for operating the operating member is the same regardless of each of the marine vessel maneuvering modes.
  3.  前記複数の操船モードには、第1操船モードが含まれており、
     前記制御部は、前記第1操船モードが設定された状態では、前記操作部材の操作により前記船体の前進と後進とを実行させる、請求項1に記載の操船システム。
    The plurality of ship maneuvering modes include a first ship maneuvering mode,
    The marine vessel maneuvering system according to claim 1, wherein the control unit causes the hull to move forward and backward by operating the operating member when the first marine vessel maneuvering mode is set.
  4.  前記操作部材は、前記ステアリングから突出して配置された一対の突出部材であり、
     前記制御部は、前記第1操船モードが設定された状態では、前記一対の突出部材のうちの一方の突出部材の操作により前記船体の前進を実行させ、他方の突出部材の操作により前記船体の後進を実行させる、請求項3に記載の操船システム。
    The operating members are a pair of protruding members arranged to protrude from the steering wheel,
    In the state where the first ship maneuvering mode is set, the control unit causes the hull to move forward by operating one of the pair of protruding members, and causes the hull to move forward by operating the other protruding member. The marine vessel maneuvering system according to claim 3, wherein the marine vessel maneuvering system executes reverse movement.
  5.  前記複数の操船モードには、前記第1操船モードとは異なる第2操船モードが含まれており、
     前記制御部は、前記第2操船モードが設定された状態では、前記操作部材の操作により前記船体の速度変更を実行させる、請求項3に記載の操船システム。
    The plurality of ship maneuvering modes include a second ship maneuvering mode different from the first ship maneuvering mode,
    The marine vessel maneuvering system according to claim 3, wherein the control unit changes the speed of the hull by operating the operating member when the second marine vessel maneuvering mode is set.
  6.  前記制御部は、前記操作部材の操作回数、前記操作部材に対する1回の操作時間の長さ、前記操作部材に対する1回の操作量のうちのいずれかの条件に応じて、前記船体の速度を段階的に変更させる、請求項5に記載の操船システム。 The control unit controls the speed of the hull according to any one of the number of operations of the operating member, the length of time for one operation of the operating member, and the amount of one operation of the operating member. The ship maneuvering system according to claim 5, wherein the ship maneuvering system is changed in stages.
  7.  前記船体には、前記制御部によって制御され、前記船体を推進させる推進力を発生する推進機が搭載されており、
     前記制御部は、前記操作部材の操作に基づいて、前記推進機における前記推進力の大きさを変更することにより、前記船体の速度を変更させる、請求項5に記載の操船システム。
    The hull is equipped with a propulsion device that is controlled by the control unit and generates a propulsive force that propels the hull,
    The ship maneuvering system according to claim 5, wherein the control unit changes the speed of the ship by changing the magnitude of the propulsive force in the propulsion device based on the operation of the operating member.
  8.  前記操作部材は、前記ステアリングから突出して配置された一対の突出部材であり、
     前記制御部は、前記第2操船モードが設定された状態では、前記一対の突出部材のうちの一方の突出部材の操作により前記船体の速度を増加させ、他方の突出部材の操作により前記船体の速度を減少させる、請求項5に記載の操船システム。
    The operating members are a pair of protruding members arranged to protrude from the steering wheel,
    In the state where the second ship maneuvering mode is set, the control unit increases the speed of the hull by operating one of the pair of projecting members, and increases the speed of the hull by operating the other projecting member. 6. A marine vessel maneuvering system according to claim 5, which reduces speed.
  9.  前記制御部は、前記第2操船モードが設定された状態で前記船体の速度が減少して所定の値に到達した場合には、前記操船モードを前記第2操船モードから前記第1操船モードに切り替える、請求項5に記載の操船システム。 When the speed of the hull decreases and reaches a predetermined value while the second marine vessel maneuvering mode is set, the control unit changes the marine vessel maneuvering mode from the second marine vessel maneuvering mode to the first marine vessel maneuvering mode. The ship maneuvering system according to claim 5, wherein the ship maneuvering system switches.
  10.  前記複数の操船モードには、前記第1操船モードとは異なる第3操船モードが含まれており、
     前記制御部は、前記第3操船モードが設定された状態では、前記操作部材の操作により、前記船体の左右方向への移動と、前記船体の斜め左右前後方向の移動とのうちの少なくとも一方の移動を実行させる、請求項3に記載の操船システム。
    The plurality of marine vessel maneuvering modes include a third marine vessel maneuvering mode different from the first marine vessel maneuvering mode,
    In the state where the third ship maneuvering mode is set, the control unit causes at least one of movement of the ship body in the left-right direction and movement of the ship body in the diagonal right-left, front-back, and front-back directions by operating the operation member. The ship maneuvering system according to claim 3, which causes movement to be executed.
  11.  前記船体には、前記制御部によって制御され、前記船体を推進させる推進力を発生する推進機と、前記制御部によって制御され、前記船体の進行方向を転換する方向変換部とが搭載されており、
     前記制御部は、前記操作部材の操作に基づいて、前記推進機と前記方向変換部とを制御することにより、前記船体を左右方向、又は斜め左右前後方向へ移動させる、請求項10に記載の操船システム。
    The hull is equipped with a propulsion unit that is controlled by the control unit and generates a propulsive force to propel the hull, and a direction change unit that is controlled by the control unit and changes the direction of travel of the hull. ,
    The controller according to claim 10, wherein the control unit moves the hull in the left-right direction or diagonally left-right and front-back directions by controlling the propulsion device and the direction changing unit based on the operation of the operating member. Ship handling system.
  12.  前記操作部材は、前記ステアリングから突出して配置された一対の突出部材であり、
     前記制御部は、前記第3操船モードが設定された状態では、前記一対の突出部材のうちの一方の突出部材の操作により前記船体を左方向へ移動させ、他方の突出部材の操作により前記船体の右方向へ移動させる、請求項10に記載の操船システム。
    The operating members are a pair of protruding members arranged to protrude from the steering wheel,
    In the state where the third boat maneuvering mode is set, the control unit moves the hull to the left by operating one of the pair of protruding members, and moves the hull to the left by operating the other protruding member. The ship maneuvering system according to claim 10, wherein the ship maneuvering system moves the ship to the right.
  13.  前記操作部材は、前記ステアリングから突出して配置された一対の突出部材であり、
     前記制御部は、前記第3操船モードが設定された状態では、前記一対の突出部材のうちの一方の突出部材の操作により前記船体を斜め左前方または斜め左後方へ移動させ、他方の突出部材の操作により前記船体を斜め右前方または斜め右後方へ移動させる、請求項10に記載の操船システム。
    The operating members are a pair of protruding members arranged to protrude from the steering wheel,
    In the state where the third ship maneuvering mode is set, the control unit moves the hull diagonally forward left or diagonally left rear by operating one of the pair of protruding members, and moves the hull diagonally to the left forward or diagonally left rear by operating one of the pair of protruding members, The ship maneuvering system according to claim 10, wherein the ship body is moved diagonally to the right forward or diagonally to the right by the operation.
  14.  前記各操船モードの設定状態を報知する報知部を備える、請求項1に記載の操船システム。 The ship maneuvering system according to claim 1, further comprising a notification unit that notifies the setting state of each of the ship maneuvering modes.
  15.  前記報知部は、前記各操船モードの設定状態を画像で報知するディスプレイを有する、請求項14に記載の操船システム。 The marine vessel maneuvering system according to claim 14, wherein the notification unit includes a display that notifies the setting state of each of the marine vessel maneuvering modes in an image.
  16.  前記報知部は、前記各操船モードに応じて前記操作部材の操作に必要な操作力を変更することにより、前記各操船モードの設定状態を報知する、請求項14に記載の操船システム。 The marine vessel maneuvering system according to claim 14, wherein the notification unit notifies the setting state of each of the marine vessel maneuvering modes by changing the operating force required to operate the operating member according to each of the marine vessel maneuvering modes.
  17.  前記制御部は、前記各操船モードに応じて前記ステアリングホイールの回転可能範囲を変更する、請求項1に記載の操船システム。 The marine vessel maneuvering system according to claim 1, wherein the control unit changes the rotatable range of the steering wheel according to each of the marine vessel maneuvering modes.
  18.  前記船体には、前記制御部によって制御され、前記船体を推進させる推進力を発生する推進機が搭載されており、
     前記制御部は、前記操作部材が操作された際の操作速度が所定の値よりも大きい場合には、前記推進機に対する制御を行わないか、または、前記推進機における前記推進力の単位時間当たりの変化率を減少させる制御を行う、請求項1に記載の操船システム。
    The hull is equipped with a propulsion device that is controlled by the control unit and generates a propulsive force that propels the hull,
    If the operation speed at which the operation member is operated is greater than a predetermined value, the control unit does not control the propulsion device, or controls the propulsion force of the propulsion device per unit time. The ship maneuvering system according to claim 1, wherein control is performed to reduce the rate of change of.
  19.  前記ステアリングは、前記ステアリングホイールを回転可能に支持するコラムを有し、
     前記操作部材は、前記コラムから突出して配置された、パドルまたはレバーで構成されている、請求項1に記載の操船システム。
    The steering wheel includes a column that rotatably supports the steering wheel;
    The marine vessel maneuvering system according to claim 1, wherein the operating member comprises a paddle or a lever arranged to protrude from the column.
  20.  船体と、該船体を操縦する操船システムと、を備える船舶であって、
     前記操船システムは、
     ステアリングホイールを有するステアリングと、
     前記ステアリングに設けられ、前記船体に対する所定の機能を実行させるための操作部材と、
     前記船体の挙動が互いに異なる複数の操船モードに応じて、前記操作部材の操作により実行される前記機能を変更する制御部と、を備える、船舶。
    A ship comprising a hull and a ship maneuvering system for operating the hull,
    The ship handling system includes:
    a steering wheel having a steering wheel;
    an operating member provided on the steering wheel and configured to perform a predetermined function on the hull;
    A ship, comprising: a control unit that changes the function executed by operating the operation member according to a plurality of ship maneuvering modes in which the behavior of the ship body differs from each other.
PCT/JP2022/034117 2022-09-12 2022-09-12 Ship-steering system and ship WO2024057369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034117 WO2024057369A1 (en) 2022-09-12 2022-09-12 Ship-steering system and ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034117 WO2024057369A1 (en) 2022-09-12 2022-09-12 Ship-steering system and ship

Publications (1)

Publication Number Publication Date
WO2024057369A1 true WO2024057369A1 (en) 2024-03-21

Family

ID=90274408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034117 WO2024057369A1 (en) 2022-09-12 2022-09-12 Ship-steering system and ship

Country Status (1)

Country Link
WO (1) WO2024057369A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103526A (en) * 2011-11-10 2013-05-30 Yamaha Motor Co Ltd Small vessel
JP2018069776A (en) * 2016-10-25 2018-05-10 ヤマハ発動機株式会社 Ship and maneuvering system
JP2019199148A (en) * 2018-05-16 2019-11-21 ヤンマー株式会社 Ship propulsion system and ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103526A (en) * 2011-11-10 2013-05-30 Yamaha Motor Co Ltd Small vessel
JP2018069776A (en) * 2016-10-25 2018-05-10 ヤマハ発動機株式会社 Ship and maneuvering system
JP2019199148A (en) * 2018-05-16 2019-11-21 ヤンマー株式会社 Ship propulsion system and ship

Similar Documents

Publication Publication Date Title
JP4430474B2 (en) Ship maneuvering method and maneuvering device
JP6947686B2 (en) Ship propulsion system and ships
JP5481059B2 (en) Maneuvering support apparatus and ship equipped with the same
JP5371401B2 (en) Maneuvering support apparatus and ship equipped with the same
JP4673187B2 (en) Multi-machine propulsion unit controller
US10661871B2 (en) Watercraft
JP6608553B1 (en) Avoiding ship maneuvering method and avoiding ship maneuvering system in congested waters
JP2006035884A (en) Steering system for ship propelling device
JP2016169691A (en) Jet propulsion watercraft and method for controlling the same
US20220374015A1 (en) Marine vessel propulsion control system and marine vessel
JP2018069776A (en) Ship and maneuvering system
JP6876816B2 (en) Ship maneuvering support device
WO2024057369A1 (en) Ship-steering system and ship
JP3437158B2 (en) Pod type propeller control device
JP2023131896A (en) Navigation assistance device and vessel
JP2022146791A (en) Maneuvering system and ship
JP2023094870A (en) Vessel propulsion system and vessel
JP2016159805A (en) Ship
JP5449510B2 (en) Maneuvering support device
US20220396346A1 (en) Marine vessel maneuvering system and marine vessel
US20230257090A1 (en) Marine vessel maneuvering system, and marine vessel
JP7171684B2 (en) Ship steering systems and vessels
US20230259133A1 (en) Marine vessel maneuvering system, and marine vessel
JP2010203416A (en) Pleasure boat
US20240132195A1 (en) Marine propulsion system and marine vessel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958704

Country of ref document: EP

Kind code of ref document: A1