WO2024057361A1 - Solubilized protein production method - Google Patents

Solubilized protein production method Download PDF

Info

Publication number
WO2024057361A1
WO2024057361A1 PCT/JP2022/034058 JP2022034058W WO2024057361A1 WO 2024057361 A1 WO2024057361 A1 WO 2024057361A1 JP 2022034058 W JP2022034058 W JP 2022034058W WO 2024057361 A1 WO2024057361 A1 WO 2024057361A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
less
solubilized
insoluble
fraction
Prior art date
Application number
PCT/JP2022/034058
Other languages
French (fr)
Japanese (ja)
Inventor
雅尚 渡辺
武 土肥
学 柴▲崎▼
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to PCT/JP2022/034058 priority Critical patent/WO2024057361A1/en
Publication of WO2024057361A1 publication Critical patent/WO2024057361A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for producing a solubilized protein from an insoluble protein in an inclusion body, and a method for separating and purifying the solubilized protein from the inclusion body according to its molecular weight.
  • the recombinant protein When a desired recombinant protein derived from a eukaryote is expressed in E. coli using gene recombination technology, the recombinant protein often forms an abnormal three-dimensional structure within the cell and becomes an insoluble protein, causing them to interact with each other. They aggregate to form insoluble protein aggregates called inclusion bodies.
  • Proteins in inclusion bodies are generally not easily degraded by proteases, and can be recovered as aggregates containing almost no other contaminants. On the other hand, proteins in inclusion bodies cannot be purified unless they are solubilized, and biological activity is often lost in inclusion bodies, so they often require refolding after solubilization. .
  • Patent Documents 1 and 2 Non-patent document 1
  • this method requires complicated operations, increases production costs, and is expected to reduce yield. Therefore, there has been a need for a new technique for purifying insoluble proteins contained in inclusion bodies in a simple and inexpensive manner without using columns.
  • insoluble proteins contained in inclusion bodies which are aggregates of recombinant proteins expressed in microorganisms, are solubilized without using a denaturing agent, and the solubilization obtained without using a column etc.
  • the present inventors have conducted extensive research and found that by mixing an insoluble fraction containing inclusion bodies with a lithium solution of a predetermined concentration, the desired target protein can be isolated according to its molecular weight.
  • the present invention is based on this new knowledge and provides the following.
  • a method for producing a solubilized target protein from an inclusion body comprising a mixing step of mixing an insoluble fraction with a lithium solution, and a step of mixing the soluble fraction containing the solubilized target protein and the insoluble fraction after the mixing step.
  • the method includes a separation step of separating.
  • the method according to (1) which includes, before the mixing step, an obtaining step of obtaining an insoluble fraction containing inclusion bodies containing the target protein from a cell lysate of a microorganism expressing the target protein.
  • the method according to (1) or (2) comprising a recovery step of recovering the soluble fraction after the separation step.
  • the concentration of the lithium solution is more than 1.25M and less than 5M when the molecular weight of the target protein is less than 30,000, and more than 5M and less than 8M when it is more than 30,000 and less than 50,000, and less than 8M when it is more than 50,000.
  • a method for separating and purifying a target protein derived from inclusion bodies as a solubilized protein comprising: a first mixing step of mixing an insoluble fraction with a first lithium solution; a first separation step of separating the soluble fraction from the first separation step; a removal step of removing the soluble fraction after the first separation step; a second mixing step of mixing the insoluble fraction after the removal step with a second lithium solution; a second separation step of separating an insoluble fraction and a soluble fraction after the second mixing step, wherein the concentration of the first lithium solution is 6M or more when the molecular weight of the target solubilized protein is less than 30,000.
  • the concentration of the second lithium solution is 1.25M when the molecular weight of the target solubilized protein is less than 30,000. and less than 6M, exceeds 5M and less than 8M when it is 30,000 or more and less than 50,000, and is 8M or more when it is 50,000 or more.
  • the lithium solution is a lithium bromide solution.
  • the target solubilized protein is an exogenous protein expressed in a microorganism.
  • a method for solubilizing insoluble proteins in inclusion bodies comprising a mixing step of mixing an insoluble fraction with a lithium solution, and a soluble fraction containing a solubilized target protein and an insoluble fraction after the mixing step.
  • the method includes a separation step of separating.
  • the method according to (11) which includes, before the mixing step, an obtaining step of obtaining an insoluble fraction containing inclusion bodies containing the target protein from a cell lysate of a microorganism expressing the target protein.
  • the method according to (11) or (12) which includes a recovery step of recovering the soluble fraction after the separation step.
  • the concentration of the lithium solution is more than 1.25M and less than 6M when the molecular weight of the target protein is less than 30,000, and more than 6M and less than 8M when it is more than 30,000 and less than 50,000, and less than 8M when it is more than 50,000.
  • an insoluble exogenous protein contained in an inclusion body can be made into a solubilized protein without using a denaturing agent or the like.
  • the target protein contained in the inclusion body can be separated and purified as a solubilized target protein according to its molecular weight without using a denaturing agent.
  • FIG. 2 is a diagram showing a production flow in the method for separating and purifying solubilized proteins of the present invention.
  • FIG. 3 is an SDS polyacrylamide gel electrophoresis (SDS-PAGE) diagram showing the results of solubilizing the target protein (bw753 ⁇ C protein) in the insoluble fraction with various candidate solubilization solutions.
  • the numbers on the horizontal axis correspond to the numbers shown in Table 1.
  • two arrows indicate the band positions of the solubilized bw753 ⁇ C protein.
  • FIG. 3 is an SDS-PAGE diagram showing the results of verifying the solubilization conditions of the solubilization solution.
  • FIG. 2 is an SDS-PAGE diagram showing the correlation between the concentration of the solubilization solution and the molecular weight of the protein to be solubilized.
  • FIG. 2 is an SDS-PAGE diagram showing the results of removal of contaminant proteins and separation and purification of target proteins by two-step solubilization treatment according to molecular weight.
  • the first aspect of the present invention is a method for solubilizing insoluble proteins in inclusion bodies and producing solubilized proteins.
  • the method for producing a solubilized protein of the present invention is characterized in that the insoluble fraction containing the inclusion bodies is mixed with a lithium solution to solubilize the protein in the inclusion bodies to form a solubilized protein.
  • a solubilized target protein can be obtained by efficiently solubilizing an insoluble target protein synthesized in a microorganism such as E. coli by genetic recombination technology.
  • inclusion body refers to a protein formed by exposing the hydrophobic residues of amino acids constituting the protein to the molecular surface due to overexpression or abnormal three-dimensional structure of a recombinant protein that is not originally produced in the host. refers to an insoluble aggregate formed due to hydrophobic interactions between The proteins that constitute inclusion bodies are, in principle, insoluble proteins. In this specification, the term particularly refers to the above-mentioned insoluble aggregate formed by expression of a foreign gene or the like within the cells of a genetically modified microorganism.
  • solubility fraction refers to the aqueous phase fraction obtained by fractionating a sample.
  • the supernatant or filtrate obtained after fractionating a cell lysate by centrifugation or filtration is particularly applicable.
  • Insoluble fraction refers to a hydrophobic fraction obtained by fractionating a sample. In this specification, it particularly refers to precipitates or residues (filtrate) obtained after fractionating a cell lysate by centrifugation or filtration.
  • target protein refers to a protein that is intended to be produced and obtained in the production method of the present invention.
  • the target proteins herein are in principle exogenous proteins expressed in microorganisms and contained as insoluble proteins in inclusion bodies.
  • exogenous protein refers to a protein expressed from a foreign gene introduced into a host by artificial techniques such as genetic recombination technology. Although not limited, fibroin protein or its derivative proteins are preferred.
  • Fib protein is a protein that constitutes fibroin, which is a fiber component of silk thread.
  • Fib proteins include fibroin H chain protein (herein often referred to as “Fib H protein”) and fibroin L chain protein (herein often referred to as “Fib L protein”). However, it can be either.
  • Fib H protein which is a major constituent protein of fibroin.
  • the Fib protein may be a wild type fibroin protein (wild type Fib protein) or a mutant fibroin protein.
  • mutant fibroin protein (mutant Fib protein) is a protein consisting of an amino acid sequence in which one or more amino acids are added, deleted, or substituted in the amino acid sequence of wild-type Fib protein, or the above-mentioned amino acid sequence.
  • plural refers to, for example, 2 to 20, 2 to 15, 2 to 10, 2 to 7, 2 to 5, 2 to 4, or 2 to 3.
  • amino acid identity is when two amino acid sequences are aligned and gaps are introduced into one or both amino acid sequences as necessary to maximize the amino acid identity between the two. , refers to the ratio (%) of amino acids identical to the wild-type amino acid sequence to all amino acid residues in the mutant amino acid sequence.
  • derived protein thereof refers to a recombinant fibroin protein or a modified recombinant fibroin protein.
  • recombinant fibroin protein refers to a recombinant fibroin H chain gene (herein often referred to as “rFib protein”) that has been cloned using gene cloning technology.
  • Fib H protein encoded by the recombinant fibroin light chain gene (often referred to herein as the rFib L gene); refers to protein.
  • the rFib protein does not need to be composed of the same amino acid sequence as the wild-type full-length Fib protein, as long as it contains the basic components of the Fib protein.
  • the rFib protein does not have to be a Fib protein derived from a single organism, but may be a chimeric fibroin protein (chimeric Fib protein) composed of polypeptides derived from two or more biological species.
  • chimeric Fib protein composed of polypeptides derived from two or more biological species.
  • An example is a chimeric Fib H protein composed of Fib H proteins from bagworms and silkworms.
  • the rFib protein also includes a mutant rFib protein in which mutations similar to those of the mutant Fib protein are introduced into the rFib protein.
  • the biological species from which the fibroin protein is derived in this specification is not particularly limited. Examples include silkworms or species belonging to organisms belonging to the order Araneae.
  • insect is a general term for insects that have silk glands and can spin silk threads. Specifically, it refers to the types of Lepidoptera, Hymenoptera, Paleoptera, Chamoptera, etc. that are capable of spinning silk for nesting, cocooning, or movement during the larval stage. The growth stage, such as larva or adult, does not matter. For example, among the Lepidoptera, there are the Bombycidae, Saturnidae, Psychidae, Brahmaeidae, Eupterotidae, and Lasiocampidae, which can spin large amounts of silk. , species belonging to the family Archtiidae, Noctuidae, etc.
  • japonica belonging to the genus Saturnia and the genera Acanthopsyche, Anatolopsyche, Bacotia, Bambalina, Canephora, Chalioides, Dahlica, Species belonging to the genus Diplodoma, Eumeta, Eumasia, Kozhantshikovia, Mahasena, Nipponopsyche, Paranarychia, Proutia, Psyche, Pteroma, Siederia, Striglocyrbasia, Taleporia, Theriodopteryx, and Trigonodoma, etc. Applicable.
  • silkworms which are the larvae of silkworm moths
  • bagworms which are the larvae of moths belonging to the family Minogatidae
  • minoga include Eumeta japonica, Eumeta minuscula, and Nipponopsyche fuscescens.
  • organisms belonging to the order Araneae include species belonging to the families Araneidae, Nephilidae, Tetragnathidae, Theridiidae, and Linyphiidae. Specific examples include A. ventricosus, A. uyemurai, and A. maccacus, which belong to the genus Araneus; A. amoena, which belongs to the genus Argiope; and A. ventricosus, which belongs to the genus Nephila. N. clavata) etc.
  • water-soluble protein refers to a protein that has hydrophilic amino acid residues exposed on its molecular surface and is soluble in water or an aqueous solution.
  • insoluble protein refers to a protein that does not dissolve in water or an aqueous solution. Specifically, in this specification, as a result of abnormal folding of an originally water-soluble exogenous protein expressed in a microorganism to form a three-dimensional structure within the cell, hydrophobic residues of amino acids are exposed on the protein surface, resulting in water-soluble It refers to a protein that has become insoluble in water. Insoluble proteins aggregate within cells by hydrophobic interactions with each other and/or by electrostatic interactions with nucleic acids, forming the inclusion bodies.
  • solubilization refers to converting an insoluble protein into a water-soluble protein by solubilization treatment.
  • solubilized protein refers to a protein that has become water-soluble by solubilizing an insoluble protein.
  • the term "solubilized target protein” refers to the final product of the production method of this embodiment, in which the target protein contained in the inclusion body as an insoluble protein is converted to a solubilized protein by a solubilization treatment. say something
  • microorganism refers to a unicellular organism that can accumulate inclusion bodies within its cells, and in principle includes prokaryotes.
  • the type of microorganism is not limited. In genetic recombination technology, any microorganism commonly used in the field may be used. For example, Escherichia coli is suitable.
  • microorganism refers to a transformant (genetically modified microorganism) that expresses a target protein through genetic recombination.
  • the flow of the manufacturing method of the present invention is shown in FIG.
  • the production method of the present invention includes a mixing step (S0103) and a separation step (S0104) as essential steps, and an acquisition step (S0101), a washing step (S0102), and a recovery step (S0105) as optional steps. .
  • S0103 mixing step
  • S0104 separation step
  • S0101 acquisition step
  • S0102 washing step
  • S0105 recovery step
  • the “acquisition step” is a step of acquiring an insoluble fraction from the cell lysate. This step is an optional step that is performed as necessary before the mixing step described below. This insoluble fraction contains inclusion bodies containing the target protein.
  • the "cell disruption solution” used in this step refers to a cell extract obtained by physically and/or chemically disrupting the cell walls of microorganisms in an aqueous solution.
  • the microorganism is derived from a genetically modified microorganism that expresses the target protein.
  • Genetically modified microorganisms may be produced by transformation methods known in the art. Examples include, but are not limited to, methods in which an expression vector such as a plasmid containing a gene encoding a target protein is introduced into microbial cells by heat shock or electroporation.
  • the transformed microorganism may be cultured under conditions that maintain the introduced expression vector and the like. After culturing, the microorganisms are collected by centrifugation, and the cells are disrupted to prepare a cell disruption solution.
  • the cell disruption method may be performed according to a cell disruption method known in the art.
  • physical crushing methods include the French press method and the ultrasonic crushing method. These physical crushing methods are preferably carried out at low temperatures, such as on ice, in order to prevent protein denaturation due to heat and oxidation generated during processing.
  • chemical disruption methods include decomposition of cell walls using enzymes such as lysozyme and surfactants.
  • the method for obtaining the insoluble fraction from the cell lysate may be performed according to a method known in the art for separating a water-soluble fraction and an insoluble fraction. Examples include centrifugation and filtration.
  • the cell disruption solution is centrifuged at an appropriate centrifugal acceleration to separate the supernatant, which is a water-soluble fraction, and the precipitate, which is an insoluble fraction, and then the insoluble fraction can be obtained by removing the supernatant.
  • the centrifugal acceleration is not limited, for example, the centrifugation time (sedimentation time) may be within the range of 10 to 30 minutes depending on the centrifugal acceleration.
  • the filtration method is a method in which the cell disruption solution is passed through a filter (membrane filter) to separate the filtrate, which is a water-soluble fraction, and the residue, which is an insoluble fraction, and the residue captured on the filter surface is recovered.
  • a filter membrane filter
  • the filter pore size may be in the range of 0.05 ⁇ m to 10 ⁇ m.
  • the acquisition step can be performed multiple times. In this case, the supernatant or filtrate obtained in the previous acquisition step is used again as a cell disruption solution.
  • the acquisition conditions each time may be the same or different. Generally, it is preferable to make the conditions more stringent as the number of times the test is repeated. For example, if centrifugation is used, the rotational speed should be higher or the centrifugation should be performed for a longer period of time.
  • the "washing step” (S0102) is a step of washing the insoluble fraction after the acquisition step (S0101), and is an optional step in the production method of this embodiment. By this step, impurities mixed in the insoluble fraction can be easily removed.
  • the cleaning liquid used for cleaning is not particularly limited. Examples include water, physiological saline, phosphate buffer, HEPES buffer, NaHCO 3 /CO 2 buffer, Tris-HCl buffer, glycine buffer, and the like. Further, Triton X-100 (polyethylene glycol mono-p-isooctylphenyl ether), urea, EDTA, etc. may be added as necessary.
  • the cleaning method is not limited.
  • One example is a method of recovering.
  • the washing solution may simply be passed through the insoluble fraction without suspension.
  • the “mixing step” (S0103) is a step of mixing the insoluble fraction with the lithium solution. This step is a central step in the manufacturing method of this embodiment. By this method, target proteins that were contained as insoluble proteins in inclusion bodies are converted to solubilized proteins.
  • the insoluble fraction used in this step can be the insoluble fraction obtained in the obtaining step (S0101).
  • lithium solution is a solution containing lithium ions.
  • lithium salt can be obtained by dissolving it in water or an aqueous solution.
  • the lithium salt is not particularly limited as long as it can be ionized in an aqueous solution to generate lithium ions. Examples include lithium chloride, lithium bromide, lithium thiocyanate, and the like. Preferred is lithium bromide.
  • Solubilization of insoluble proteins contained in inclusion bodies is based on the correlation between the molecular weight of the protein and the concentration of the lithium solution. Therefore, the concentration of the lithium solution used depends on the molecular weight of the target protein to be solubilized. For example, when the molecular weight of the target protein is less than 30,000, the lower limit of the concentration of lithium solution is above 1.25M, for example, 1.3M or more, 1.4M or more, 1.5M or more, 1.6M or more, 1.7M or more, 1.8M or more. , 1.9M or more, 2M or more, 2.1M or more, 2.2M or more, 2.3M or more, 2.4M or more, or 2.5M or more.
  • the upper limit is less than 6M, for example, 5.9M or less, 5.8M or less, 5.7M or less, 5.6M or less, 5.5M or less, 5.4M or less, 5.3M or less, 5.2M or less, 5.1M or less, or 5M or less.
  • the lower limit of the concentration of the lithium solution is more than 5M, for example, 5.1M or more, 5.2M or more, 5.3M or more, 5.4M or more, 5.5M or more, 5.6M or more. , 5.7M or more, 5.8M or more, 5.9M or more, or 6M or more.
  • the upper limit is less than 8M, for example, 7.9M or less, 7.8M or less, 7.7M or less, 7.6M or less, 7.5M or less, 7.4M or less, 7.3M or less, 7.2M or less, 7.1M or less, or 7M or less.
  • the concentration of the lithium solution should be adjusted to a concentration higher than 9M, such as 9.1M or higher, 9.2M or higher, 93M or higher, 9.4M or higher, 9.5M or higher, 9.6M or higher, 9.7M or higher. , 9.8M or more, 9.9M or more, or 10M or more.
  • the upper limit may be below the saturation concentration.
  • the volume mixing ratio of the insoluble fraction and the lithium solution is not particularly limited as long as it is 1 mL or more per 1 g of the insoluble fraction.
  • a range of 2 mL to 7 mL is suitable.
  • the mixing temperature is not particularly limited as long as it is within the range of 10 to 85°C.
  • the temperature may be 15 to 82°C, 18 to 80°C, 20 to 78°C, 25 to 75°C, 28 to 70°C, or 30 to 65°C.
  • the temperature is preferably 60°C or lower, or 50°C or lower.
  • the mixing time is not particularly limited. For example, it may be carried out for 5 minutes to 180 minutes, 10 minutes to 150 minutes, 15 minutes to 120 minutes, 20 minutes to 90 minutes, or 30 minutes to 60 minutes.
  • the “separation step” (S0104) is a step of separating the soluble fraction and insoluble fraction after the mixing step, and is an essential step in the production method of this embodiment. Since the target protein migrates to the soluble fraction, it can be obtained as a solubilized protein.
  • This step may be performed according to a method known in the art for separating a water-soluble fraction and an insoluble fraction. As described in "1-3-1. Obtaining step” above, examples of methods for separating the water-soluble fraction and insoluble fraction include centrifugation and filtration. The basic procedure is based on the method described in “1-3-1. Acquisition step” above, so a detailed description will be omitted. The solubilized target protein is included in the soluble fraction obtained in this step.
  • Recovery Step is a step of recovering the soluble fraction after the separation step, and is an optional step in the production method of this embodiment.
  • the soluble fraction obtained after the separation step contains the solubilized target protein of interest.
  • the insoluble target protein contained in the inclusion bodies can be obtained as a solubilized target protein contained in an aqueous solution.
  • the recovery method is performed according to the separation method performed in the separation step. For example, when a water-soluble fraction and an insoluble fraction are separated by centrifugation in the separation step, the supernatant may be collected. When a water-soluble fraction and an insoluble fraction are separated by a filtration method in the separation step, the filtrate may be collected. The collected supernatant and filtrate can be repeatedly subjected to separation steps as necessary. In this case, in the separation step, the same method may be used for separation, or different methods may be combined each time for separation. For example, after separation by centrifugation, the collected supernatant is separated again by filtration and the filtrate is collected to obtain a soluble fraction that does not contain insoluble impurities.
  • the target protein may be purified from the collected soluble fraction, if necessary.
  • Proteins may be purified by methods known in the art. For example, gel electrophoresis, gel filtration chromatography, ion exchange chromatography, reversed phase chromatography, affinity chromatography, salting out method, solvent precipitation method, solvent extraction method, dialysis method, ultrafiltration method, etc. alone, Alternatively, they may be used in combination as appropriate.
  • insoluble exogenous proteins expressed in host microorganisms and contained in inclusion bodies can be easily soluble without using denaturants etc. as in conventional methods.
  • Solubilized proteins can be produced by solubilization.
  • the second aspect of the present invention is a method for separating and purifying an insoluble target protein in an inclusion body as a solubilized target protein.
  • the method of this embodiment is a method that applies the phenomenon that the molecular weight of the insoluble protein that is solubilized differs depending on the concentration of the lithium solution.
  • insoluble proteins in inclusion bodies are solubilized according to their molecular weights, and other proteins are separated and removed from the sample, without using a denaturing agent as in conventional methods. It can be purified by
  • the flow of the method of this embodiment is shown in FIG.
  • the method of this embodiment includes a first mixing step (S0203), a first separation step (S0204), a removal step (S0205), a second mixing step (S0206), and a second separation step (S0207) as essential steps, It also includes an acquisition step (S0201), a washing step (S0202), and a collection step (S0208) as optional steps. Each step will be specifically explained below.
  • the “acquisition step” (S0201) is a step of acquiring an insoluble fraction from the cell disruption solution. This is an optional step that is performed as necessary before the first mixing step, which will be described later. This step corresponds to the acquisition step (S0101) described in the manufacturing method of the first embodiment. Therefore, a detailed explanation will be omitted here.
  • the "washing process” (S0202) is a process of washing the insoluble fraction after the acquisition process (S0201) and/or the removal process (S0205) described below, and is a selective process performed as necessary. be. This step corresponds to the cleaning step (S0102) described in the manufacturing method of the first embodiment. Therefore, a detailed explanation will be omitted here.
  • the "first mixing step” (S0203) is a step of mixing an insoluble fraction containing an inclusion body containing an insoluble target protein with a first lithium solution, and is an essential step in this method.
  • the insoluble fraction used in this step contains inclusion bodies containing the insoluble target protein.
  • the insoluble fraction obtained in the obtaining step (S0201) can be used.
  • This step is characterized by maintaining the insoluble target protein as insoluble and solubilizing other insoluble proteins contained in the inclusion bodies.
  • solubilization of the insoluble protein contained in the inclusion body is based on the correlation between the molecular weight of the protein and the concentration of the lithium solution.
  • a lithium solution having a concentration other than that which solubilizes the target protein may be mixed with the insoluble fraction in this step. Therefore, the first lithium solution used in this step has a concentration that does not solubilize an insoluble protein having the molecular weight of the target protein.
  • the concentration of the first lithium solution is set to a concentration exceeding 5M, such as 5.1M or more, 5.2M or more, 5.3M or more, 5.4M or more, 5.5M or more, 5.6M or more,
  • 5M such as 5.1M or more, 5.2M or more, 5.3M or more, 5.4M or more, 5.5M or more, 5.6M or more
  • concentration 5.7M or more, 5.8M or more, 5.9M or more, or 6M or more
  • proteins in less than 30,000 inclusion bodies containing the target protein remain insoluble.
  • the concentration of the first lithium solution is less than 6M, 5.9M or less, 5.8M or less, 5.7M or less, 5.6M or less, 5.5M or less, 5.4M or less, 5.3
  • insoluble proteins with a molecular weight of less than 30,000 contained in inclusion bodies are solubilized, but in inclusion bodies of 30,000 or more containing the target protein. of proteins remain insoluble.
  • the concentration of the first lithium solution is less than 8M, 7.9M or less, 7.8M or less, 7.7M or less, 7.6M or less, 7.5M or less, 7.4M or less, 7.3M or less.
  • concentration By reducing the concentration to 7.2M or less, 7.1M or less, or 7M or less, insoluble proteins with a molecular weight of less than 50,000 contained in inclusion bodies are solubilized, but proteins in inclusion bodies with a molecular weight of 50,000 or more containing the target protein are solubilized. Remains insoluble. After this step, by separating into an insoluble fraction and a soluble fraction in a first separation step described below, it becomes possible to separate and remove a part of the contaminant proteins contained in the inclusion bodies as a soluble fraction.
  • first separation step Separats the insoluble fraction (herein referred to as “first insoluble fraction”) and the soluble fraction (herein referred to as “first insoluble fraction”) after the first mixing step (S0203).
  • first insoluble fraction the insoluble fraction
  • first insoluble fraction the soluble fraction
  • this step is an essential step in the method of this embodiment.
  • the difference from the separation step (S0104) described in the production method of the first embodiment is that in the separation step of the first embodiment, the target protein was included as a solubilized protein in the soluble fraction after separation. In this step, the target protein is included as an insoluble protein in the first insoluble fraction. In other words, the objects to be recovered after separation are different from each other. Specifically, in the separation step (S0104), the precipitate or filtrate after separation is unnecessary, whereas in this step (S0204), the first soluble fraction, which is the supernatant or filtrate after separation, is unnecessary. becomes.
  • the “removal step” (S0205) is a step of removing the first soluble fraction after the first separation step (S0204), and is an essential step in the method of this embodiment.
  • First separation step the recovery targets in the first embodiment and the main removal step are opposite to each other, and the recovery targets in the first embodiment are opposite to each other.
  • the soluble fraction is collected, whereas in the removal step of this step, the first soluble fraction is removed and the first insoluble fraction is collected. This is because some of the insoluble proteins contained in the inclusion bodies, which have a molecular weight other than the target protein, are solubilized and separated from the target protein.
  • the first separation step to removal step can be repeated multiple times as necessary.
  • the “second mixing step” (S0206) is a step of mixing the first insoluble fraction obtained after the removal step with the second lithium solution, and is an essential step in this method.
  • This step corresponds to the mixing step (S0103) described in the manufacturing method of the first embodiment. Therefore, here, the difference from the mixing step (S0103) will be explained below.
  • the insoluble fraction used in the mixing step (S0103) of the first embodiment and the first insoluble fraction used in this step both contain the target protein in the form of an insoluble protein.
  • a part of insoluble proteins having a different molecular weight from the target protein has been removed in the first mixing step (S0203) to removal step (S0205), and furthermore, the first insoluble fraction is recovered.
  • the difference is that the first unnecessary fraction obtained is treated in this step, the target protein is solubilized, and the rest remains as an insoluble fraction.
  • basically the same procedures and operations as in the mixing step (S0103) of the first embodiment may be used.
  • the concentration of the second lithium solution used in this step may be determined depending on the molecular weight of the target protein to be solubilized. For example, if the molecular weight of the target protein is less than 30,000, the lower limit for the second lithium solution is a concentration exceeding 1.25M, for example, 1.3M or more, 1.4M or more, 1.5M or more, 1.6M or more, 1.7M or more, 1.8M.
  • 1.9M or more 2M or more, 2.1M or more, 2.2M or more, 2.3M or more, 2.4M or more, or 2.5M or more, and the upper limit is less than 6M, such as 5.9M or less, 5.8M or less, 5.7M or less,
  • concentration 5.6M or less, 5.5M or less, 5.4M or less, 5.3M or less, 5.2M or less, 5.1M or less, or 5M or less
  • proteins with a molecular weight of less than 30,000 are solubilized. On the other hand, other proteins remain insoluble.
  • the molecular weight of the target protein is 30,000 or more and less than 50,000
  • use a second lithium solution with a lower limit of concentration exceeding 5M such as 5.1M or more, 5.2M or more, 5.3M or more, 5.4M or more, 5.5M or more.
  • the upper limit is less than 8M, 7.9M or less, 7.8M or less, 7.7M or less, 7.6M or less, 7.5M or less, 7.4 Set to M or less, 7.3M or less, 7.2M or less, 7.1M or less, or 7M or less.
  • proteins with a molecular weight of 30,000 or more and less than 50,000 are solubilized, but other proteins remain insoluble.
  • proteins with a molecular weight of less than 30,000 have already been solubilized and removed in the first mixing step (S0203) to removal step (S0205)
  • proteins with a molecular weight of 30,000 or more and less than 50,000 are substantially solubilized here. That will happen.
  • the molecular weight of the target protein is 50,000 or more
  • the lower limit of the second lithium solution is 8M or more, such as 9M or more, 9.1M or more, 9.2M or more, 9.3M or more, 9.4M or more, 9.5M or more, 9.6M or more.
  • 9.7M or more, 9.8M or more, 9.9M or more, or 10M or more and by setting the upper limit below the saturation concentration, proteins with a molecular weight of 50,000 or more can be solubilized.
  • Second separation step Separats the insoluble fraction (herein referred to as “second insoluble fraction") after the second mixing step (S0206) and the soluble fraction ( In this specification, this step is an essential step in the method of this embodiment.
  • the second soluble fraction contains the solubilized target protein.
  • the “recovery step” (S0207) is a step of recovering the second soluble fraction.
  • the second soluble fraction obtained after the second separation step (S0206) contains the solubilized target protein of interest. By collecting this second soluble fraction, the insoluble target compound contained in the inclusion body can be separated and purified as a soluble target protein that does not contain insoluble proteins of other molecular weights.
  • the collected second soluble fraction can be repeatedly subjected to the second separation step as necessary.
  • the separation may be performed using the same method, or may be performed using a combination of different methods each time. For example, after separation by centrifugation, the collected supernatant is separated again by filtration and the filtrate is collected to obtain a soluble fraction that does not contain insoluble impurities.
  • the soluble target protein contained in the soluble fraction collected by the separation and purification method of this embodiment is already in a purified state, it may be further purified if necessary.
  • the protein may be purified by the known method described in the recovery step (S0105) in the production method of the first embodiment.
  • target proteins contained in inclusion bodies can be solubilized without using denaturing agents, and solubilized target proteins can be separated according to their molecular weights. , can be purified.
  • solubilized protein separation and purification method of the present invention it is possible to reduce the number of purification steps and obtain highly pure solubilized target proteins easily and at low cost.
  • Target protein "bw753 ⁇ C protein” consisting of a 721 amino acid sequence shown in SEQ ID NO: 2 was used as a target protein expressed in E. coli.
  • the bw753 ⁇ C protein is encoded by the bw753 ⁇ C gene consisting of the base sequence shown in SEQ ID NO: 1.
  • the bw753 ⁇ C gene is a modified recombinant bagworm fibroin H chain gene (rbFib H gene) that was newly constructed in WO2020/235692 based on the base information of the Fib H gene of Fib H gene identified in JP-A-2018-074403.
  • pET-22b-bw753 ⁇ C was constructed as a gene expression vector containing this bw753 ⁇ C gene in an expressible state, and used in cells of Escherichia coli BL21 (DE3) strain (Novagen).
  • a transformant, bw753 ⁇ C strain was obtained using a conventional method.
  • the suspension was centrifuged at 10,600 ⁇ G for 20 minutes at 20°C, the supernatant was removed, and the precipitate was collected.
  • the above-mentioned operations of suspension in a washing buffer, centrifugation, and precipitate collection by removing the supernatant were repeated four times for washing, and the precipitates were again suspended in the washing buffer, collected, and dispensed into 1.5 mL tubes. Finally, after centrifugation at 16,000 x G for 20 minutes at 20°C, the supernatant was removed and the precipitate was collected as an insoluble fraction containing inclusion bodies.
  • the collected supernatant was fractionated by 10% SDS-PAGE, and the gel after electrophoresis was stained for total protein with Coomassie brilliant blue (CBB).
  • CBB Coomassie brilliant blue
  • the insoluble target protein (bw753 ⁇ C protein) in the inclusion bodies contained in the insoluble fraction is solubilized with a solubilization solution and can be fractionated by SDS-PAGE if it exists as a solubilized protein in the supernatant (solubilized fraction). Therefore, the presence of the target protein (bw753 ⁇ C protein) in each solubilized fraction was confirmed by moving within the gel by electrophoresis and forming a band at its own molecular weight position.
  • each supernatant of No. 1, No. 6, and No. 7 was subjected to SDS-PAGE in parallel with known concentrations of bovine serum albumin (BSA), and after the gel was stained with CBB, the BSA band was detected.
  • BSA bovine serum albumin
  • 14.5M lithium chloride solution was 0.3mg
  • 12.3M lithium bromide solution had the highest solubilization rate.
  • the amounts of contaminant proteins other than bw753 ⁇ C protein were all small, but in this case as well, the 12.3M lithium bromide solution had the least amount of contaminant proteins.
  • a lithium bromide solution was used as the solubilization solution.
  • Example 2 Verification of conditions for lithium solution as a solubilization solution> (the purpose)
  • a lithium solution was discovered as a novel solubilizing solution capable of solubilizing insoluble target proteins in inclusion bodies. Therefore, in this example, the optimal solubilization conditions for insoluble proteins in inclusion bodies using a lithium solution will be verified from the treatment time and treatment temperature.
  • Example 3 Concentration of lithium solution and solubilized amount of insoluble protein> (the purpose) In this example, the relationship between the concentration of lithium solution and the amount of solubilized insoluble protein in inclusion bodies will be verified.
  • Example 4 Establishment of a method for separating and purifying solubilized target protein by multi-step solubilization treatment based on the molecular weight of target protein> (the purpose)
  • the results of Example 3 revealed that insoluble proteins in inclusion bodies contained in the insoluble fraction can be efficiently solubilized by using a lithium solution with a concentration based on its molecular weight as a solubilization solution.
  • insoluble contaminant proteins other than the target protein contained in the inclusion bodies are solubilized using a lithium solution with a concentration that can solubilize insoluble proteins of those molecular weights, removed, and then recovered.
  • the target protein remaining in the insoluble fraction is suspended and centrifuged by solubilizing it with a lithium solution at a concentration other than that used to solubilize contaminant proteins that can solubilize insoluble proteins of that molecular weight.
  • the target protein bw753 ⁇ C protein (A) was solubilized, but the contaminant protein ( B) was also soluble at the same time.
  • the insoluble fraction was solubilized with a 6M lithium bromide solution, and the resulting 6M lithium bromide insoluble fraction was solubilized with an 8M lithium bromide solution.
  • the target protein bw753 ⁇ C protein (A) was also solubilized, but almost no contaminant protein (B) was detected. From the above results, it was confirmed that the target protein can be efficiently solubilized with high purity by performing the solubilization treatment in multiple stages using lithium solutions with different concentrations. All publications, patents, and patent applications cited herein are incorporated by reference in their entirety.

Abstract

The present invention develops a method involving: solubilizing, without using a modifying agent, an insoluble protein included in an inclusion body, which is aggregate of a recombinant protein expressed in a microorganism; separating same as a solubilized protein without using a column or the like; and purifying same. Provided is a method for producing a solubilized target protein from an inclusion body by mixing an insoluble fraction and a lithium solution, and subsequently separating a soluble fraction including the solubilized target protein from the insoluble fraction.

Description

可溶化タンパク質製造方法Solubilized protein production method
 本発明は、封入体中の不溶性タンパク質から可溶化タンパク質を製造する方法、及びその可溶化タンパク質を分子量に応じて封入体から分離精製する方法に関する。 The present invention relates to a method for producing a solubilized protein from an insoluble protein in an inclusion body, and a method for separating and purifying the solubilized protein from the inclusion body according to its molecular weight.
 遺伝子組換え技術を用いて真核生物に由来する目的の組換えタンパク質を大腸菌で発現させた場合、組換えタンパク質は、しばしば細胞内で異常な立体構造を形成して不溶性タンパク質となり、それらが互いに凝集して封入体と呼ばれる不溶性タンパク質凝集体を形成する。 When a desired recombinant protein derived from a eukaryote is expressed in E. coli using gene recombination technology, the recombinant protein often forms an abnormal three-dimensional structure within the cell and becomes an insoluble protein, causing them to interact with each other. They aggregate to form insoluble protein aggregates called inclusion bodies.
 封入体中のタンパク質は、一般にプロテアーゼによる分解を受けにくく、凝集体として他の夾雑物をほとんど含まずに回収することができる。反面、封入体中のタンパク質は、可溶化しなければ精製ができず、また封入体中では生理活性が失われていることが多いため、しばしば可溶化後の再生(リフォールディング)を必要とする。 Proteins in inclusion bodies are generally not easily degraded by proteases, and can be recovered as aggregates containing almost no other contaminants. On the other hand, proteins in inclusion bodies cannot be purified unless they are solubilized, and biological activity is often lost in inclusion bodies, so they often require refolding after solubilization. .
 封入体に含まれる不溶性タンパク質を精製する場合、従来は、尿素又はグアニジン等の変性剤を添加して不溶性タンパク質を可溶化した後にカラム精製する方法が一般的であった(特許文献1及び2、非特許文献1)。しかし、この方法は煩雑な操作が必要な上、生産コストが向上し、収量も下がることが想定される。そこで、カラムを使用せずに簡便かつ安価な方法で封入体に含まれる不溶性タンパク質を精製する新たな技術が求められていた。 When purifying insoluble proteins contained in inclusion bodies, the conventional method was to solubilize the insoluble proteins by adding a denaturing agent such as urea or guanidine, and then purify them by column (Patent Documents 1 and 2, Non-patent document 1). However, this method requires complicated operations, increases production costs, and is expected to reduce yield. Therefore, there has been a need for a new technique for purifying insoluble proteins contained in inclusion bodies in a simple and inexpensive manner without using columns.
特開2011-088922JP2011-088922 特表2017-526649Special table 2017-526649
 本発明では、微生物内で発現させた組換えタンパク質の凝集体である封入体中に含まれる不溶性タンパク質を、変性剤を用いることなく可溶化し、カラム等を使用せずに得られた可溶化タンパク質を分離し、精製する方法を開発する。 In the present invention, insoluble proteins contained in inclusion bodies, which are aggregates of recombinant proteins expressed in microorganisms, are solubilized without using a denaturing agent, and the solubilization obtained without using a column etc. Develop methods to isolate and purify proteins.
 上記課題を解決するため、本発明者らが鋭意研究を重ねた結果、封入体を含む不溶性画分を所定の濃度のリチウム溶液と混合することによって、目的とする標的タンパク質を分子量に応じて可溶化し、分離精製する方法を開発した。本発明は、当該新たな知見に基づくものであって、以下を提供する。 In order to solve the above problems, the present inventors have conducted extensive research and found that by mixing an insoluble fraction containing inclusion bodies with a lithium solution of a predetermined concentration, the desired target protein can be isolated according to its molecular weight. We developed a method to solubilize, separate and purify. The present invention is based on this new knowledge and provides the following.
 (1)封入体から可溶化標的タンパク質を製造する方法であって、不溶性画分をリチウム溶液と混合する混合工程、及び前記混合工程後の可溶化標的タンパク質を含む可溶性画分と不溶性画分とを分離する分離工程を含む前記方法。
 (2)前記混合工程前に、標的タンパク質を発現する微生物の細胞破砕液から標的タンパク質を包含する封入体を含む不溶性画分を取得する取得工程を含む、(1)に記載の方法。
 (3)前記分離工程後の可溶性画分を回収する回収工程を含む、(1)又は(2)に記載の方法。
 (4)前記リチウム溶液の濃度は、標的タンパク質の分子量が、30,000未満のときに1.25Mを超え、かつ5M未満であり、30,000以上50,000未満のときに5M以上8M未満であり、50,000以上のときに9Mを超える濃度である、(1)~(3)のいずれかに記載の方法。
 (5)前記リチウム溶液が臭化リチウム溶液である、(1)~(4)のいずれかに記載の方法。
 (6)前記標的タンパク質がフィブロインタンパク質又はその派生タンパク質である、(1)~(5)のいずれかに記載の方法。
 (7)前記微生物が大腸菌である、(2)~(6)のいずれかに記載の製造方法。
(1) A method for producing a solubilized target protein from an inclusion body, comprising a mixing step of mixing an insoluble fraction with a lithium solution, and a step of mixing the soluble fraction containing the solubilized target protein and the insoluble fraction after the mixing step. The method includes a separation step of separating.
(2) The method according to (1), which includes, before the mixing step, an obtaining step of obtaining an insoluble fraction containing inclusion bodies containing the target protein from a cell lysate of a microorganism expressing the target protein.
(3) The method according to (1) or (2), comprising a recovery step of recovering the soluble fraction after the separation step.
(4) The concentration of the lithium solution is more than 1.25M and less than 5M when the molecular weight of the target protein is less than 30,000, and more than 5M and less than 8M when it is more than 30,000 and less than 50,000, and less than 8M when it is more than 50,000. The method according to any one of (1) to (3), wherein the concentration exceeds 9M.
(5) The method according to any one of (1) to (4), wherein the lithium solution is a lithium bromide solution.
(6) The method according to any one of (1) to (5), wherein the target protein is a fibroin protein or a derived protein thereof.
(7) The production method according to any one of (2) to (6), wherein the microorganism is Escherichia coli.
 (8)封入体由来の標的タンパク質を可溶化タンパク質として分離し、精製する方法であって、不溶性画分を第1リチウム溶液と混合する第1混合工程、前記第1混合工程後の不溶性画分と可溶性画分を分離する第1分離工程、前記第1分離工程後の可溶性画分を除去する除去工程、前記除去工程後の不溶性画分を第2リチウム溶液と混合する第2混合工程、前記第2混合工程後の不溶性画分と可溶性画分を分離する第2分離工程、を含み、前記第1リチウム溶液の濃度は、目的とする可溶化タンパク質の分子量が30,000未満のときに6M以上であり、30,000以上50,000未満のときに5M以下であり、50,000以上のときに8M未満であって、前記第2リチウム溶液の濃度は、目的とする可溶化タンパク質の分子量が30,000未満のときに1.25Mを超え、かつ6M未満であり、30,000以上50,000未満のときに5Mを超え、かつ8M未満であり、50,000以上のときに8M以上である、前記方法。
 (9)前記リチウム溶液が臭化リチウム溶液である、(8)に記載の方法。
 (10)前記目的とする可溶化タンパク質が微生物で発現させた外因性タンパク質である、(8)又は(9)に記載の方法。
(8) A method for separating and purifying a target protein derived from inclusion bodies as a solubilized protein, the method comprising: a first mixing step of mixing an insoluble fraction with a first lithium solution; a first separation step of separating the soluble fraction from the first separation step; a removal step of removing the soluble fraction after the first separation step; a second mixing step of mixing the insoluble fraction after the removal step with a second lithium solution; a second separation step of separating an insoluble fraction and a soluble fraction after the second mixing step, wherein the concentration of the first lithium solution is 6M or more when the molecular weight of the target solubilized protein is less than 30,000. 5M or less when the molecular weight is 30,000 or more and less than 50,000, and less than 8M when the molecular weight is 50,000 or more, and the concentration of the second lithium solution is 1.25M when the molecular weight of the target solubilized protein is less than 30,000. and less than 6M, exceeds 5M and less than 8M when it is 30,000 or more and less than 50,000, and is 8M or more when it is 50,000 or more.
(9) The method according to (8), wherein the lithium solution is a lithium bromide solution.
(10) The method according to (8) or (9), wherein the target solubilized protein is an exogenous protein expressed in a microorganism.
 (11)封入体中の不溶性タンパク質を可溶化する方法であって、不溶性画分をリチウム溶液と混合する混合工程、及び前記混合工程後の可溶化標的タンパク質を含む可溶性画分と不溶性画分とを分離する分離工程を含む前記方法。
 (12)前記混合工程前に、標的タンパク質を発現する微生物の細胞破砕液から標的タンパク質を包含する封入体を含む不溶性画分を取得する取得工程を含む、(11)に記載の方法。
 (13)前記分離工程後の可溶性画分を回収する回収工程を含む、(11)又は(12)に記載の方法。
 (14)前記リチウム溶液の濃度は、標的タンパク質の分子量が、30,000未満のときに1.25Mを超え、かつ6M未満であり、30,000以上50,000未満のときに6M以上8M未満であり、50,000以上のときに9Mを超える濃度である、(11)~(13)のいずれかに記載の方法。
(11) A method for solubilizing insoluble proteins in inclusion bodies, comprising a mixing step of mixing an insoluble fraction with a lithium solution, and a soluble fraction containing a solubilized target protein and an insoluble fraction after the mixing step. The method includes a separation step of separating.
(12) The method according to (11), which includes, before the mixing step, an obtaining step of obtaining an insoluble fraction containing inclusion bodies containing the target protein from a cell lysate of a microorganism expressing the target protein.
(13) The method according to (11) or (12), which includes a recovery step of recovering the soluble fraction after the separation step.
(14) The concentration of the lithium solution is more than 1.25M and less than 6M when the molecular weight of the target protein is less than 30,000, and more than 6M and less than 8M when it is more than 30,000 and less than 50,000, and less than 8M when it is more than 50,000. The method according to any one of (11) to (13), wherein the concentration exceeds 9M.
 本発明の可溶化タンパク質製造方法によれば、封入体に包含された不溶性の外因性タンパク質を、変性剤等を使用することなく、可溶化タンパク質にすることができる。 According to the method for producing a solubilized protein of the present invention, an insoluble exogenous protein contained in an inclusion body can be made into a solubilized protein without using a denaturing agent or the like.
 本発明の可溶化タンパク質分離精製方法によれば、封入体に含まれる標的タンパク質を、変性剤を使用することなく、その分子量に応じて可溶化標的タンパク質として分離し、精製することができる。 According to the solubilized protein separation and purification method of the present invention, the target protein contained in the inclusion body can be separated and purified as a solubilized target protein according to its molecular weight without using a denaturing agent.
本発明の可溶化タンパク質製造方法における製造フローを示す図である。It is a diagram showing a production flow in the solubilized protein production method of the present invention. 本発明の可溶化タンパク質の分離精製方法における製造フローを示す図である。FIG. 2 is a diagram showing a production flow in the method for separating and purifying solubilized proteins of the present invention. 不溶性画分中の標的タンパク質(bw753ΔCタンパク質)を様々な候補可溶化溶液で可溶化処理した結果を示すSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)図である。図中、横軸の番号は、表1に示した番号に対応する。図中、2本の矢印は可溶化したbw753ΔCタンパク質のバンド位置を示す。FIG. 3 is an SDS polyacrylamide gel electrophoresis (SDS-PAGE) diagram showing the results of solubilizing the target protein (bw753ΔC protein) in the insoluble fraction with various candidate solubilization solutions. In the figure, the numbers on the horizontal axis correspond to the numbers shown in Table 1. In the figure, two arrows indicate the band positions of the solubilized bw753ΔC protein. 可溶化溶液の可溶化条件を検証した結果を示すSDS-PAGE図である。可溶化溶液には10Mの臭化リチウム溶液を用いた。30℃、60℃、及び80℃の処理温度と、30分、60分、及び120分の処理時間の組み合わせで、図3で使用した不溶性画分に対し可溶化処理を行った。図中、2本の矢印は可溶化したbw753ΔCタンパク質のバンド位置を示す。FIG. 3 is an SDS-PAGE diagram showing the results of verifying the solubilization conditions of the solubilization solution. A 10M lithium bromide solution was used as the solubilization solution. The insoluble fraction used in FIG. 3 was solubilized using combinations of treatment temperatures of 30°C, 60°C, and 80°C and treatment times of 30 minutes, 60 minutes, and 120 minutes. In the figure, two arrows indicate the band positions of the solubilized bw753ΔC protein. 可溶化溶液の濃度と可溶化するタンパク質の分子量との相関関係を示すSDS-PAGE図である。FIG. 2 is an SDS-PAGE diagram showing the correlation between the concentration of the solubilization solution and the molecular weight of the protein to be solubilized. 分子量に応じた二段階可溶化処理による夾雑タンパク質の除去、及び標的タンパク質の分離精製結果を示すSDS-PAGE図である。各泳動図において、1:6M臭化リチウム可溶性画分、2:8M臭化リチウム可溶性画分、3:6M臭化リチウム不溶性画分に由来する8M臭化リチウム可溶性画分を示す。Aは可溶化したbw753ΔCタンパク質のバンド位置を、Bは封入体中に含まれている夾雑タンパク質のバンド位置を示す。FIG. 2 is an SDS-PAGE diagram showing the results of removal of contaminant proteins and separation and purification of target proteins by two-step solubilization treatment according to molecular weight. In each electropherogram, 1: 6M lithium bromide soluble fraction, 2: 8M lithium bromide soluble fraction, and 3: 8M lithium bromide soluble fraction derived from 6M lithium bromide insoluble fraction are shown. A shows the band position of the solubilized bw753ΔC protein, and B shows the band position of the contaminant protein contained in the inclusion body.
1.封入体由来の可溶化タンパク質製造方法
1-1.概要
 本発明の第1の態様は、封入体中の不溶性タンパク質を可溶化し、可溶化タンパク質を製造方法である。本発明の可溶化タンパク質製造方法は、封入体を含む不溶性画分をリチウム溶液と混合することによって封入体中のタンパク質を可溶化し、可溶化タンパク質にすることを特徴とする。本発明によれば、遺伝子組換え技術により大腸菌等の微生物内で合成された不溶性標的タンパク質を、効率的に可溶化することによって、可溶化標的タンパク質を得ることができる。
1. Method for producing solubilized protein derived from inclusion bodies 1-1. Overview The first aspect of the present invention is a method for solubilizing insoluble proteins in inclusion bodies and producing solubilized proteins. The method for producing a solubilized protein of the present invention is characterized in that the insoluble fraction containing the inclusion bodies is mixed with a lithium solution to solubilize the protein in the inclusion bodies to form a solubilized protein. According to the present invention, a solubilized target protein can be obtained by efficiently solubilizing an insoluble target protein synthesized in a microorganism such as E. coli by genetic recombination technology.
1-2.定義
 本明細書で使用する以下の用語について定義する。
 本明細書において「封入体」とは、宿主内では本来生成されない組換えタンパク質等の過剰発現や異常な立体構造により、タンパク質を構成するアミノ酸の疎水性残基が分子表面に露出することでタンパク質間の疎水相互作用が生じ形成される不溶性の凝集体をいう。封入体を構成するタンパク質は、原則として不溶性タンパク質である。なお、本明細書では、特に遺伝子組換え微生物の細胞内で外来遺伝子等の発現によって形成される前記不溶性凝集体を意味するものとする。
1-2. Definitions The following terms used in this specification are defined.
In this specification, the term "inclusion body" refers to a protein formed by exposing the hydrophobic residues of amino acids constituting the protein to the molecular surface due to overexpression or abnormal three-dimensional structure of a recombinant protein that is not originally produced in the host. refers to an insoluble aggregate formed due to hydrophobic interactions between The proteins that constitute inclusion bodies are, in principle, insoluble proteins. In this specification, the term particularly refers to the above-mentioned insoluble aggregate formed by expression of a foreign gene or the like within the cells of a genetically modified microorganism.
 「可溶性画分」とは、試料を分画処理して得られる水相画分をいう。本明細書では、特に、細胞破砕液を遠心分離又は濾過により分画処理した後に得られる、それぞれ上清又は濾液が該当する。 "Soluble fraction" refers to the aqueous phase fraction obtained by fractionating a sample. In this specification, the supernatant or filtrate obtained after fractionating a cell lysate by centrifugation or filtration is particularly applicable.
 「不溶性画分」とは、試料を分画処理して得られる疎水画分をいう。本明細書では、特に、細胞破砕液を遠心分離又は濾過により分画処理した後に得られる、それぞれ沈殿又は残渣(濾物)が該当する。 "Insoluble fraction" refers to a hydrophobic fraction obtained by fractionating a sample. In this specification, it particularly refers to precipitates or residues (filtrate) obtained after fractionating a cell lysate by centrifugation or filtration.
 本明細書において「標的タンパク質」とは、本発明の製造方法において、製造、及び取得を目的とするタンパク質をいう。本明細書の標的タンパク質は、原則として微生物中で発現される外因性タンパク質で、封入体中に不溶性タンパク質として含まれる。本明細書において「外因性タンパク質」とは、遺伝子組換え技術等の人為的技術によって宿主に導入された外来遺伝子より発現するタンパク質をいう。限定はしないが、フィブロインタンパク質又はその派生タンパク質が好ましい。 As used herein, the term "target protein" refers to a protein that is intended to be produced and obtained in the production method of the present invention. The target proteins herein are in principle exogenous proteins expressed in microorganisms and contained as insoluble proteins in inclusion bodies. As used herein, "exogenous protein" refers to a protein expressed from a foreign gene introduced into a host by artificial techniques such as genetic recombination technology. Although not limited, fibroin protein or its derivative proteins are preferred.
 「フィブロインタンパク質」(本明細書では、しばしば「Fibタンパク質」と表記する)とは、絹糸の繊維成分であるフィブロインを構成するタンパク質である。Fibタンパク質には、フィブロインH鎖タンパク質(本明細書では、しばしば「Fib Hタンパク質」と表記する)、フィブロインL鎖タンパク質(本明細書では、しばしば「Fib Lタンパク質」と表記する)が知られているが、いずれであってもよい。好ましくは、フィブロインの主要構成タンパク質であるFib Hタンパク質である。Fibタンパク質は、野生型フィブロインタンパク質(野生型Fibタンパク質)であってもよいし、変異型フィブロインタンパク質であってもよい。 "Fibroin protein" (herein often referred to as "Fib protein") is a protein that constitutes fibroin, which is a fiber component of silk thread. Fib proteins include fibroin H chain protein (herein often referred to as "Fib H protein") and fibroin L chain protein (herein often referred to as "Fib L protein"). However, it can be either. Preferably, it is Fib H protein, which is a major constituent protein of fibroin. The Fib protein may be a wild type fibroin protein (wild type Fib protein) or a mutant fibroin protein.
 「変異型フィブロインタンパク質」(変異型Fibタンパク質)とは、野生型Fibタンパク質のアミノ酸配列において、1又は複数個のアミノ酸が付加、欠失、又は置換したアミノ酸配列からなるタンパク質、又は前述のアミノ酸配列に対して90%以上、好ましくは95%以上、より好ましくは96%以上、97%以上、98%以上又は99%以上のアミノ酸同一性を有するアミノ酸配列からなるタンパク質が挙げられる。本明細書において「複数個」とは、例えば、2~20個、2~15個、2~10個、2~7個、2~5個、2~4個又は2~3個をいう。「アミノ酸同一性」とは、二つのアミノ酸配列を整列(アラインメント)し、必要に応じて一方又は両方のアミノ酸配列にギャップを導入して、両者のアミノ酸一致度が最も高くなるようにしたときに、変異型アミノ酸配列の全アミノ酸残基に対する野生型アミノ酸配列との同一アミノ酸の割合(%)をいう。 "Mutant fibroin protein" (mutant Fib protein) is a protein consisting of an amino acid sequence in which one or more amino acids are added, deleted, or substituted in the amino acid sequence of wild-type Fib protein, or the above-mentioned amino acid sequence. Examples include proteins consisting of an amino acid sequence having an amino acid identity of 90% or more, preferably 95% or more, more preferably 96% or more, 97% or more, 98% or more, or 99% or more to. As used herein, "plurality" refers to, for example, 2 to 20, 2 to 15, 2 to 10, 2 to 7, 2 to 5, 2 to 4, or 2 to 3. "Amino acid identity" is when two amino acid sequences are aligned and gaps are introduced into one or both amino acid sequences as necessary to maximize the amino acid identity between the two. , refers to the ratio (%) of amino acids identical to the wild-type amino acid sequence to all amino acid residues in the mutant amino acid sequence.
 本明細書において「その派生タンパク質」とは、組換えフィブロインタンパク質、又は改変型組換えフィブロインタンパク質をいう。 As used herein, the term "derived protein thereof" refers to a recombinant fibroin protein or a modified recombinant fibroin protein.
 本明細書において「組換えフィブロインタンパク質」(recombinant fibroin protein: 本明細書では、しばしば「rFibタンパク質」と表記する)とは、遺伝子クローニング技術を用いてクローニングされた組換えフィブロインH鎖遺伝子(本明細書では、しばしば「rFib H遺伝子」と表記する)にコードされるFib Hタンパク質、又は組換えフィブロインL鎖遺伝子(本明細書では、しばしば「rFib L遺伝子」と表記する)にコードされるFib Lタンパク質をいう。rFibタンパク質は、Fibタンパク質の基本構成成分を含んでいれば、野生型の全長Fibタンパク質と同一のアミノ酸配列で構成されている必要はない。また、rFibタンパク質は、単一生物由来のFibタンパク質でなくてもよく、二以上の生物種に由来するポリペプチドで構成されたキメラフィブロインタンパク質(キメラFibタンパク質)であってもよい。例えば、ミノムシとカイコのFib Hタンパク質で構成されたキメラFib Hタンパク質が挙げられる。rFibタンパク質には、前記変異型Fibタンパク質と同様の変異をrFibタンパク質に導入した変異型rFibタンパク質も包含する。 As used herein, "recombinant fibroin protein" (herein often referred to as "rFib protein") refers to a recombinant fibroin H chain gene (herein often referred to as "rFib protein") that has been cloned using gene cloning technology. Fib H protein encoded by the recombinant fibroin light chain gene (often referred to herein as the rFib L gene); Refers to protein. The rFib protein does not need to be composed of the same amino acid sequence as the wild-type full-length Fib protein, as long as it contains the basic components of the Fib protein. Furthermore, the rFib protein does not have to be a Fib protein derived from a single organism, but may be a chimeric fibroin protein (chimeric Fib protein) composed of polypeptides derived from two or more biological species. An example is a chimeric Fib H protein composed of Fib H proteins from bagworms and silkworms. The rFib protein also includes a mutant rFib protein in which mutations similar to those of the mutant Fib protein are introduced into the rFib protein.
 本明細書におけるフィブロインタンパク質の由来生物種は、特に限定をしない。例えば、絹糸虫又はクモ目(Araneae)に属する生物に属する種が挙げられる。 The biological species from which the fibroin protein is derived in this specification is not particularly limited. Examples include silkworms or species belonging to organisms belonging to the order Araneae.
 本明細書において「絹糸虫」とは、絹糸腺を有し、絹糸を吐糸することのできる昆虫の総称をいう。具体的には、鱗翅目、膜翅目、脈翅目、毛翅目等のうち主として幼虫期に営巣、営繭又は移動のために吐糸することのできる種類を指す。幼虫、又は成虫等の成長ステージは問わない。例えば、鱗翅目であれば、多量の絹糸を吐糸できるカイコガ科(Bombycidae)、ヤママユガ科(Saturniidae)、ミノガ科(Psychidae)、イボタガ科(Brahmaeidae)、オビガ科(Eupterotidae)、カレハガ科(Lasiocampidae)、ヒトリガ科(Archtiidae)、ヤガ科(Noctuidae)等に属する種が挙げられる。具体的には、例えば、Bombyx属に属するカイコガ(B. mori)及びクワコ(B. mandarina)、Samia属に属するシンジュサン(S. cynthia)及びエリサン(S. cynthia ricini)、Antheraea属に属するヤママユガ(A. yamamai)及びサクサン(A. pernyi)、Saturnia属に属するヒメヤママユ(S. japonica)、及びミノガ科であるAcanthopsyche属、Anatolopsyche属、Bacotia属、Bambalina属、Canephora属、Chalioides属、Dahlica属、Diplodoma属、Eumeta属、Eumasia属、Kozhantshikovia属、Mahasena属、Nipponopsyche属、Paranarychia属、Proutia属、Psyche属、Pteroma属、Siederia属、Striglocyrbasia属、Taleporia属、Theriodopteryx属、及びTrigonodoma属に属する種等が該当する。特に、カイコガの幼虫であるカイコ、及びミノガ科に属する蛾の幼虫であるミノムシは絹糸虫として好適である。ミノガの具体例としては、オオミノガ(Eumeta japonica)、チャミノガ(Eumeta minuscula)、及びシバミノガ(Nipponopsyche fuscescens)が挙げられる。 As used herein, "silkworm" is a general term for insects that have silk glands and can spin silk threads. Specifically, it refers to the types of Lepidoptera, Hymenoptera, Paleoptera, Chamoptera, etc. that are capable of spinning silk for nesting, cocooning, or movement during the larval stage. The growth stage, such as larva or adult, does not matter. For example, among the Lepidoptera, there are the Bombycidae, Saturnidae, Psychidae, Brahmaeidae, Eupterotidae, and Lasiocampidae, which can spin large amounts of silk. , species belonging to the family Archtiidae, Noctuidae, etc. Specifically, for example, silk moths (B. mori and B. mandarina) belonging to the genus Bombyx, S. cynthia and S. cynthia ricini belonging to the genus Samia, and S. cynthia ricini belonging to the genus Antheraea. (A. yamamai) and A. pernyi, S. japonica belonging to the genus Saturnia, and the genera Acanthopsyche, Anatolopsyche, Bacotia, Bambalina, Canephora, Chalioides, Dahlica, Species belonging to the genus Diplodoma, Eumeta, Eumasia, Kozhantshikovia, Mahasena, Nipponopsyche, Paranarychia, Proutia, Psyche, Pteroma, Siederia, Striglocyrbasia, Taleporia, Theriodopteryx, and Trigonodoma, etc. Applicable. In particular, silkworms, which are the larvae of silkworm moths, and bagworms, which are the larvae of moths belonging to the family Minogatidae, are suitable as silkworms. Specific examples of minoga include Eumeta japonica, Eumeta minuscula, and Nipponopsyche fuscescens.
 クモ目に属する生物として、例えば、コガネグモ科(Aranidae)、ジョロウグモ科(Nephilidae)、アシナガグモ科(Tetragnathidae)、ヒメグモ科(Theridiidae)、及びサラグモ科(Linyphiidae)に属する種が挙げられる。具体的な例として、Araneus属に属するオニグモ(A. ventricosus)、ヤマオニグモ(A. uyemurai)及びヤエンオニグモ(A. maccacus)、Argiope属に属するコガネグモ(A. amoena)、及びNephila属に属するジョロウグモ(N. clavata)等が挙げられる。 Examples of organisms belonging to the order Araneae include species belonging to the families Araneidae, Nephilidae, Tetragnathidae, Theridiidae, and Linyphiidae. Specific examples include A. ventricosus, A. uyemurai, and A. maccacus, which belong to the genus Araneus; A. amoena, which belongs to the genus Argiope; and A. ventricosus, which belongs to the genus Nephila. N. clavata) etc.
 本明細書において「水溶性タンパク質」とは、分子表面にアミノ酸の親水性残基を露出し、水や水溶液に溶解可能なタンパク質をいう。 As used herein, the term "water-soluble protein" refers to a protein that has hydrophilic amino acid residues exposed on its molecular surface and is soluble in water or an aqueous solution.
 本明細書において「不溶性タンパク質」とは、水又は水溶液に溶解しないタンパク質をいう。本明細書では、特に微生物内で発現させた、本来は水溶性の外因性タンパク質が細胞内で異常な折り畳みにより立体構造を形成した結果、アミノ酸の疎水性残基がタンパク質表面に露出し、水等に溶解しない性質になったタンパク質をいう。不溶性タンパク質は、細胞内で互いに疎水相互作用により、及び/又は核酸との静電的相互作用により凝集し、前記封入体を形成する。 As used herein, "insoluble protein" refers to a protein that does not dissolve in water or an aqueous solution. Specifically, in this specification, as a result of abnormal folding of an originally water-soluble exogenous protein expressed in a microorganism to form a three-dimensional structure within the cell, hydrophobic residues of amino acids are exposed on the protein surface, resulting in water-soluble It refers to a protein that has become insoluble in water. Insoluble proteins aggregate within cells by hydrophobic interactions with each other and/or by electrostatic interactions with nucleic acids, forming the inclusion bodies.
 本明細書において「可溶化」とは、不溶性タンパク質を可溶化処理によって、水溶性タンパク質に変換することをいう。 As used herein, "solubilization" refers to converting an insoluble protein into a water-soluble protein by solubilization treatment.
 本明細書において「可溶化タンパク質」とは、不溶性タンパク質の可溶化によって水溶性となったタンパク質をいう。 As used herein, "solubilized protein" refers to a protein that has become water-soluble by solubilizing an insoluble protein.
 本明細書において「可溶化標的タンパク質」とは、本態様の製造方法における最終産物であって、不溶性タンパク質として封入体中に含有されていた標的タンパク質が可溶化処理によって可溶化タンパク質に変換されたものをいう。 As used herein, the term "solubilized target protein" refers to the final product of the production method of this embodiment, in which the target protein contained in the inclusion body as an insoluble protein is converted to a solubilized protein by a solubilization treatment. say something
 本明細書において「微生物」とは、細胞内に封入体を蓄積し得る単細胞生物をいい、原則として原核生物が該当する。微生物の種類は限定しない。遺伝子組換え技術において、当該分野で一般的に使用される微生物であればよい。例えば、大腸菌(Escherichia coli)は好適である。なお、本明細書では特に断りのない限り、「微生物」と記載した場合は、遺伝子組換えによって標的タンパク質を発現する形質転換体(遺伝子組換え微生物)を意味するものとする。 As used herein, the term "microorganism" refers to a unicellular organism that can accumulate inclusion bodies within its cells, and in principle includes prokaryotes. The type of microorganism is not limited. In genetic recombination technology, any microorganism commonly used in the field may be used. For example, Escherichia coli is suitable. In this specification, unless otherwise specified, the term "microorganism" refers to a transformant (genetically modified microorganism) that expresses a target protein through genetic recombination.
1-3.製造方法
 本発明の製造方法のフローを図1に示す。本発明の製造方法は、混合工程(S0103)、及び分離工程(S0104)を必須の工程として、また取得工程(S0101)、洗浄工程(S0102)、及び回収工程(S0105)を選択的工程として含む。以下、各工程について具体的に説明をする。
1-3. Manufacturing method The flow of the manufacturing method of the present invention is shown in FIG. The production method of the present invention includes a mixing step (S0103) and a separation step (S0104) as essential steps, and an acquisition step (S0101), a washing step (S0102), and a recovery step (S0105) as optional steps. . Each step will be specifically explained below.
1-3-1.取得工程
 「取得工程」(S0101)は、細胞破砕液から不溶性画分を取得する工程である。本工程は後述する混合工程前に、必要に応じて行う選択的工程である。この不溶性画分に標的タンパク質を包含する封入体が含まれる。
1-3-1. Acquisition Step The “acquisition step” (S0101) is a step of acquiring an insoluble fraction from the cell lysate. This step is an optional step that is performed as necessary before the mixing step described below. This insoluble fraction contains inclusion bodies containing the target protein.
 本工程で使用する「細胞破砕液」は、微生物の細胞壁を水溶液中で、物理的及び/又は化学的に破砕して得られる細胞抽出液をいう。前記微生物は、標的タンパク質を発現する遺伝子組換え微生物に由来する。遺伝子組換え微生物は、当該分野で公知の形質転換法等によって作製すればよい。限定はしないが、例えば標的タンパク質をコードする遺伝子を含むプラスミド等の発現ベクターをヒートショック法又はエレクトロポレーション法等で微生物細胞内に導入する方法が挙げられる。形質転換した微生物は、導入した発現ベクター等を維持する条件下で培養すればよい。培養後、遠心分離によって微生物を回収し、細胞を破砕して細胞破砕液を調製する。 The "cell disruption solution" used in this step refers to a cell extract obtained by physically and/or chemically disrupting the cell walls of microorganisms in an aqueous solution. The microorganism is derived from a genetically modified microorganism that expresses the target protein. Genetically modified microorganisms may be produced by transformation methods known in the art. Examples include, but are not limited to, methods in which an expression vector such as a plasmid containing a gene encoding a target protein is introduced into microbial cells by heat shock or electroporation. The transformed microorganism may be cultured under conditions that maintain the introduced expression vector and the like. After culturing, the microorganisms are collected by centrifugation, and the cells are disrupted to prepare a cell disruption solution.
 細胞の破砕方法は、当該分野で公知の細胞破砕方法に準じて行えばよい。例えば、物理的破砕方法であれば、フレンチプレス法や超音波破砕法が挙げられる。これらの物理的破砕方法は、処理時に発生する熱や酸化によるタンパク質変性を防ぐため氷中等の低温下で行うことが好ましい。また、化学的破砕方法として、リゾチーム等の酵素や界面活性剤による細胞壁の分解が挙げられる。 The cell disruption method may be performed according to a cell disruption method known in the art. For example, physical crushing methods include the French press method and the ultrasonic crushing method. These physical crushing methods are preferably carried out at low temperatures, such as on ice, in order to prevent protein denaturation due to heat and oxidation generated during processing. Furthermore, examples of chemical disruption methods include decomposition of cell walls using enzymes such as lysozyme and surfactants.
 細胞破砕液から不溶性画分を取得する方法は、水溶性画分と不溶性画分とを分離する当該分野で公知の方法に準じて行えばよい。例えば、遠心分離法や濾過法が挙げられる。 The method for obtaining the insoluble fraction from the cell lysate may be performed according to a method known in the art for separating a water-soluble fraction and an insoluble fraction. Examples include centrifugation and filtration.
 遠心分離法では、細胞破砕液を適当な遠心加速度で遠心して水溶性画分である上清と不溶性画分である沈殿に分離した後、上清を除くことで不溶性画分を取得できる。遠心加速度は限定しないが、例えば10,000×G~30,000×Gの範囲内で遠心時間(沈降時間)は遠心加速度に応じて10~30分間の範囲で行えばよい。 In the centrifugation method, the cell disruption solution is centrifuged at an appropriate centrifugal acceleration to separate the supernatant, which is a water-soluble fraction, and the precipitate, which is an insoluble fraction, and then the insoluble fraction can be obtained by removing the supernatant. Although the centrifugal acceleration is not limited, for example, the centrifugation time (sedimentation time) may be within the range of 10 to 30 minutes depending on the centrifugal acceleration.
 濾過法は、細胞破砕液をフィルター(メンブレンフィルター)に通液して、水溶性画分である濾液と不溶性画分である残渣を分離し、フィルター表面上に捕捉された残渣を回収する方法である。フィルター孔径は、0.05μm~10μmの範囲であればよい。 The filtration method is a method in which the cell disruption solution is passed through a filter (membrane filter) to separate the filtrate, which is a water-soluble fraction, and the residue, which is an insoluble fraction, and the residue captured on the filter surface is recovered. be. The filter pore size may be in the range of 0.05 μm to 10 μm.
 取得工程は、複数回行うことができる。この場合、前回の取得工程で得た上清又は濾液を再度細胞破砕液として使用する。各回の取得条件は同一であってもよいし、異なっていてもよい。通常、回数を重ねるほど、よりストリンジェントな条件にするのが好適である。例えば、遠心分離法であれば、より高回転数にするか、長時間遠心にする。 The acquisition step can be performed multiple times. In this case, the supernatant or filtrate obtained in the previous acquisition step is used again as a cell disruption solution. The acquisition conditions each time may be the same or different. Generally, it is preferable to make the conditions more stringent as the number of times the test is repeated. For example, if centrifugation is used, the rotational speed should be higher or the centrifugation should be performed for a longer period of time.
1-3-2.洗浄工程
 「洗浄工程」(S0102)は、前記取得工程(S0101)後の不溶性画分を洗浄する工程で、本態様の製造方法における選択的な工程である。本工程により不溶性画分中に混在する夾雑物を簡易に除去することができる。
1-3-2. Washing Step The "washing step" (S0102) is a step of washing the insoluble fraction after the acquisition step (S0101), and is an optional step in the production method of this embodiment. By this step, impurities mixed in the insoluble fraction can be easily removed.
 洗浄に使用する洗浄液は、特に限定はしない。例えば、水、生理食塩水、リン酸緩衝液、HEPESバッファ、NaHCO3/CO2バッファ、トリス塩酸バッファ、グリシンバッファ等が挙げられる。また、必要に応じてTriton X-100(ポリエチレングリコールモノ-p-イソオクチルフェニルエーテル)、尿素、EDTAなどを添加してもよい。 The cleaning liquid used for cleaning is not particularly limited. Examples include water, physiological saline, phosphate buffer, HEPES buffer, NaHCO 3 /CO 2 buffer, Tris-HCl buffer, glycine buffer, and the like. Further, Triton X-100 (polyethylene glycol mono-p-isooctylphenyl ether), urea, EDTA, etc. may be added as necessary.
 洗浄方法は限定しない。例えば、不溶性画分を前記洗浄液で懸濁した後、遠心し、再度沈殿物として不溶性画分を回収する方法や、前記懸濁液を、フィルターに通液して、再度濾物として不溶性画分を回収する方法が挙げられる。懸濁を行わずに、単に不溶性画分に前記洗浄液を通液するだけでもよい。 The cleaning method is not limited. For example, there is a method in which the insoluble fraction is suspended in the washing solution, centrifuged, and the insoluble fraction is collected again as a precipitate, or the suspension is passed through a filter and the insoluble fraction is collected again as a filtrate. One example is a method of recovering. The washing solution may simply be passed through the insoluble fraction without suspension.
1-3-3.混合工程
 「混合工程」(S0103)は、不溶性画分をリチウム溶液と混合する工程である。本工程は、本態様の製造方法における中心的な工程である。本方法によって、封入体中で不溶性タンパク質として包含されていた標的タンパク質は、可溶化タンパク質に変換される。
1-3-3. Mixing Step The “mixing step” (S0103) is a step of mixing the insoluble fraction with the lithium solution. This step is a central step in the manufacturing method of this embodiment. By this method, target proteins that were contained as insoluble proteins in inclusion bodies are converted to solubilized proteins.
 本工程で使用する不溶性画分は、前記取得工程(S0101)で取得した不溶性画分を使用することができる。 The insoluble fraction used in this step can be the insoluble fraction obtained in the obtaining step (S0101).
 「リチウム溶液」とは、リチウムイオンを含む溶液である。通常、リチウム塩を水や水溶液に溶解して得ることができる。リチウム塩は、水溶液中で電離してリチウムイオンを発生する塩であれば特に限定はしない。例えば、塩化リチウム、臭化リチウム、チオシアン酸リチウム等が挙げられる。好ましくは臭化リチウムである。 A "lithium solution" is a solution containing lithium ions. Usually, lithium salt can be obtained by dissolving it in water or an aqueous solution. The lithium salt is not particularly limited as long as it can be ionized in an aqueous solution to generate lithium ions. Examples include lithium chloride, lithium bromide, lithium thiocyanate, and the like. Preferred is lithium bromide.
 封入体に包含される不溶性タンパク質の可溶化は、タンパク質の分子量とリチウム溶液の濃度の相関関係に基づく。したがって、使用するリチウム溶液の濃度は、可溶化すべき標的タンパク質の分子量に応じて定まる。例えば、標的タンパク質の分子量が30,000未満のときはリチウム溶液の濃度を下限は1.25Mを超える濃度、例えば、1.3M以上、1.4M以上、1.5M以上、1.6M以上、1.7M以上、1.8M以上、1.9M以上、2M以上、2.1M以上、2.2M以上、2.3M以上、2.4M以上、又は2.5M以上とする。また上限は6M未満、例えば、5.9M以下、5.8M以下、5.7M以下、5.6M以下、5.5M以下、5.4M以下、5.3M以下、5.2M以下、5.1M以下、又は5M以下とする。また標的タンパク質の分子量が30,000以上50,000未満のときはリチウム溶液の濃度を下限は5Mを超える濃度、例えば、5.1M以上、5.2M以上、5.3M以上、5.4M以上、5.5M以上、5.6M以上、5.7M以上、5.8M以上、5.9M以上、又は6M以上とする。また上限は8M未満、例えば、7.9M以下、7.8M以下、7.7M以下、7.6M以下、7.5M以下、7.4M以下、7.3M以下、7.2M以下、7.1M以下、又は7M以下とする。さらに標的タンパク質の分子量が50,000以上のときはリチウム溶液の濃度を、9Mを超える濃度、例えば、9.1M以上、9.2M以上、93M以上、9.4M以上、9.5M以上、9.6M以上、9.7M以上、9.8M以上、9.9M以上、又は10M以上とする。この時、上限は飽和濃度以下であればよい。 Solubilization of insoluble proteins contained in inclusion bodies is based on the correlation between the molecular weight of the protein and the concentration of the lithium solution. Therefore, the concentration of the lithium solution used depends on the molecular weight of the target protein to be solubilized. For example, when the molecular weight of the target protein is less than 30,000, the lower limit of the concentration of lithium solution is above 1.25M, for example, 1.3M or more, 1.4M or more, 1.5M or more, 1.6M or more, 1.7M or more, 1.8M or more. , 1.9M or more, 2M or more, 2.1M or more, 2.2M or more, 2.3M or more, 2.4M or more, or 2.5M or more. The upper limit is less than 6M, for example, 5.9M or less, 5.8M or less, 5.7M or less, 5.6M or less, 5.5M or less, 5.4M or less, 5.3M or less, 5.2M or less, 5.1M or less, or 5M or less. In addition, when the molecular weight of the target protein is 30,000 or more and less than 50,000, the lower limit of the concentration of the lithium solution is more than 5M, for example, 5.1M or more, 5.2M or more, 5.3M or more, 5.4M or more, 5.5M or more, 5.6M or more. , 5.7M or more, 5.8M or more, 5.9M or more, or 6M or more. The upper limit is less than 8M, for example, 7.9M or less, 7.8M or less, 7.7M or less, 7.6M or less, 7.5M or less, 7.4M or less, 7.3M or less, 7.2M or less, 7.1M or less, or 7M or less. Furthermore, when the molecular weight of the target protein is 50,000 or more, the concentration of the lithium solution should be adjusted to a concentration higher than 9M, such as 9.1M or higher, 9.2M or higher, 93M or higher, 9.4M or higher, 9.5M or higher, 9.6M or higher, 9.7M or higher. , 9.8M or more, 9.9M or more, or 10M or more. At this time, the upper limit may be below the saturation concentration.
 不溶性画分とリチウム溶液との容量混合比は、不溶性画分1g当たり1mL以上ならば、特に限定はしない。例えば、不溶性画分1g当たり1.5mL以上、2mL以上、2.5mL以上、3mL以上、3.5mL以上、4mL以上、4.5mL以上、5mL以上、6mL以上、7mL以上、8mL以上、9mL以上、又は10mL以上であればよい。通常は、2mL~7mLの範囲が好適である。 The volume mixing ratio of the insoluble fraction and the lithium solution is not particularly limited as long as it is 1 mL or more per 1 g of the insoluble fraction. For example, 1.5 mL or more, 2 mL or more, 2.5 mL or more, 3 mL or more, 3.5 mL or more, 4 mL or more, 4.5 mL or more, 5 mL or more, 6 mL or more, 7 mL or more, 8 mL or more, 9 mL or more, or 10 mL or more per gram of insoluble fraction. That's fine. Usually, a range of 2 mL to 7 mL is suitable.
 混合後は、必要に応じて混合液を撹拌してもよい。
 混合温度は、10~85℃の範囲内であれば特に限定はしない。例えば15~82℃、18~80℃、20~78℃、25~75℃、28~70℃、又は30~65℃の範囲で行えばよい。タンパク質の変性や失活を防ぐため、60℃以下、又は50℃以下が好ましい。
 混合時間は、特に限定はしない。例えば、5分間~180分間、10分間~150分間、15分間~120分間、20分間~90分間、又は30分間~60分間の範囲で行えばよい。
After mixing, the mixed liquid may be stirred if necessary.
The mixing temperature is not particularly limited as long as it is within the range of 10 to 85°C. For example, the temperature may be 15 to 82°C, 18 to 80°C, 20 to 78°C, 25 to 75°C, 28 to 70°C, or 30 to 65°C. In order to prevent protein denaturation and inactivation, the temperature is preferably 60°C or lower, or 50°C or lower.
The mixing time is not particularly limited. For example, it may be carried out for 5 minutes to 180 minutes, 10 minutes to 150 minutes, 15 minutes to 120 minutes, 20 minutes to 90 minutes, or 30 minutes to 60 minutes.
1-3-4.分離工程
 「分離工程」(S0104)は、前記混合工程後の可溶性画分と不溶性画分とを分離する工程で、本態様の製造方法における必須の工程である。標的タンパク質は可溶性画分に移行するため、可溶化タンパク質として得ることができる。
1-3-4. Separation Step The “separation step” (S0104) is a step of separating the soluble fraction and insoluble fraction after the mixing step, and is an essential step in the production method of this embodiment. Since the target protein migrates to the soluble fraction, it can be obtained as a solubilized protein.
 本工程は、水溶性画分と不溶性画分とを分離する当該分野で公知の方法に準じて行えばよい。前述の「1-3-1.取得工程」に記載の通り、水溶性画分と不溶性画分とを分離する方法の例として、遠心分離法や濾過法が挙げられる。基本的な手順については、前述の「1-3-1.取得工程」に記載の方法に準ずるため、具体的な記載は省略する。
 本工程で得られた可溶性画分中に可溶化された標的タンパク質が包含される。
This step may be performed according to a method known in the art for separating a water-soluble fraction and an insoluble fraction. As described in "1-3-1. Obtaining step" above, examples of methods for separating the water-soluble fraction and insoluble fraction include centrifugation and filtration. The basic procedure is based on the method described in "1-3-1. Acquisition step" above, so a detailed description will be omitted.
The solubilized target protein is included in the soluble fraction obtained in this step.
1-3-5.回収工程
 「回収工程」(S0105)は、前記分離工程後の可溶性画分を回収する工程で、本態様の製造方法における選択的な工程である。
1-3-5. Recovery Step The “recovery step” (S0105) is a step of recovering the soluble fraction after the separation step, and is an optional step in the production method of this embodiment.
 前述の「1-3-4.分離工程」で記載したように、分離工程後に得られる可溶性画分中には目的とする可溶化標的タンパク質が包含される。この可溶性画分を回収することで、封入体中に包含されていた不溶性標的タンパク質を水溶液中に含まれる可溶化標的タンパク質として得ることができる。 As described in "1-3-4. Separation step" above, the soluble fraction obtained after the separation step contains the solubilized target protein of interest. By collecting this soluble fraction, the insoluble target protein contained in the inclusion bodies can be obtained as a solubilized target protein contained in an aqueous solution.
 回収方法は、分離工程で実行した分離方法に応じて行われる。例えば、分離工程で遠心分離法により水溶性画分と不溶性画分とを分離した場合には、上清を回収すればよい。分離工程で濾過法により水溶性画分と不溶性画分とを分離した場合には、濾液を回収すればよい。回収した上清や濾液は、必要に応じて繰り返し分離工程に供することができる。この場合、分離工程では同一方法で分離してもよいし、各回で異なる方法を組み合わせて分離してもよい。例えば、遠心分離法で分離後、回収した上清を濾過法で再度分離し、濾液を回収することで、不溶性の夾雑物を含まない可溶性画分を得ることができる。 The recovery method is performed according to the separation method performed in the separation step. For example, when a water-soluble fraction and an insoluble fraction are separated by centrifugation in the separation step, the supernatant may be collected. When a water-soluble fraction and an insoluble fraction are separated by a filtration method in the separation step, the filtrate may be collected. The collected supernatant and filtrate can be repeatedly subjected to separation steps as necessary. In this case, in the separation step, the same method may be used for separation, or different methods may be combined each time for separation. For example, after separation by centrifugation, the collected supernatant is separated again by filtration and the filtrate is collected to obtain a soluble fraction that does not contain insoluble impurities.
 回収した可溶性画分から、必要に応じて標的タンパク質を精製してもよい。タンパク質の精製法は、当該分野で公知の方法で行えばよい。例えば、ゲル電気泳動法、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー、逆相クロマトグラフィー、アフィニティークロマトグラフィー、塩析法、溶媒沈殿法、溶媒抽出法、透析法、限外濾過法等を単独で、あるいは適宜組み合わせて使用すればよい。 The target protein may be purified from the collected soluble fraction, if necessary. Proteins may be purified by methods known in the art. For example, gel electrophoresis, gel filtration chromatography, ion exchange chromatography, reversed phase chromatography, affinity chromatography, salting out method, solvent precipitation method, solvent extraction method, dialysis method, ultrafiltration method, etc. alone, Alternatively, they may be used in combination as appropriate.
1-4.効果
 本発明の可溶化タンパク質製造方法によれば、宿主微生物内で発現させ、封入体に包含された不溶性の外因性タンパク質を、従来法のように変性剤等を使用することなく、容易に可溶化させて、可溶化タンパク質を製造することができる。
1-4. Effects According to the method for producing solubilized proteins of the present invention, insoluble exogenous proteins expressed in host microorganisms and contained in inclusion bodies can be easily soluble without using denaturants etc. as in conventional methods. Solubilized proteins can be produced by solubilization.
2.封入体由来の可溶化タンパク質分離精製方法
2-1.概要
 本発明の第2の態様は、封入体中の不溶性標的タンパク質を可溶化標的タンパク質として分離し、精製する方法である。本態様の方法は、リチウム溶液の濃度に依存して可溶化する不溶性タンパク質の分子量が異なる事象を応用した方法である。本態様の分離精製方法によれば、従来法のような変性剤を使用することなく、封入体中の不溶性タンパク質をその分子量に応じて、可溶化すると共に、他のタンパク質を試料から分離除去することによって精製することができる。
2. Method for separating and purifying solubilized proteins derived from inclusion bodies 2-1. Overview The second aspect of the present invention is a method for separating and purifying an insoluble target protein in an inclusion body as a solubilized target protein. The method of this embodiment is a method that applies the phenomenon that the molecular weight of the insoluble protein that is solubilized differs depending on the concentration of the lithium solution. According to the separation and purification method of this embodiment, insoluble proteins in inclusion bodies are solubilized according to their molecular weights, and other proteins are separated and removed from the sample, without using a denaturing agent as in conventional methods. It can be purified by
2-2.方法
 本態様の方法のフローを図2に示す。本態様の方法は、第1混合工程(S0203)、第1分離工程(S0204)、除去工程(S0205)、第2混合工程(S0206)、及び第2分離工程(S0207)を必須の工程として、また取得工程(S0201)、洗浄工程(S0202)、及び回収工程(S0208)を選択的工程として含む。以下、各工程について具体的に説明をする。
2-2. Method The flow of the method of this embodiment is shown in FIG. The method of this embodiment includes a first mixing step (S0203), a first separation step (S0204), a removal step (S0205), a second mixing step (S0206), and a second separation step (S0207) as essential steps, It also includes an acquisition step (S0201), a washing step (S0202), and a collection step (S0208) as optional steps. Each step will be specifically explained below.
2-2-1.取得工程
 「取得工程」(S0201)は、細胞破砕液から不溶性画分を取得する工程である。後述する第1混合工程前に、必要に応じて行う選択的工程である。本工程は第1態様の製造方法に記載の取得工程(S0101)に準ずる。したがって、ここでの具体的な説明については省略をする。
2-2-1. Acquisition Step The “acquisition step” (S0201) is a step of acquiring an insoluble fraction from the cell disruption solution. This is an optional step that is performed as necessary before the first mixing step, which will be described later. This step corresponds to the acquisition step (S0101) described in the manufacturing method of the first embodiment. Therefore, a detailed explanation will be omitted here.
2-2-2.洗浄工程
 「洗浄工程」(S0202)は、前記取得工程(S0201)後、及び/又は後述する除去工程(S0205)後の不溶性画分を洗浄する工程で、必要に応じて行う選択的な工程である。本工程は第1態様の製造方法に記載の洗浄工程(S0102)に準ずる。したがって、ここでの具体的な説明については省略をする。
2-2-2. Washing process The "washing process" (S0202) is a process of washing the insoluble fraction after the acquisition process (S0201) and/or the removal process (S0205) described below, and is a selective process performed as necessary. be. This step corresponds to the cleaning step (S0102) described in the manufacturing method of the first embodiment. Therefore, a detailed explanation will be omitted here.
2-2-3.第1混合工程
 「第1混合工程」(S0203)は、不溶性標的タンパク質を包含する封入体を含む不溶性画分を第1リチウム溶液と混合する工程で、本方法における必須の工程である。
2-2-3. First Mixing Step The "first mixing step" (S0203) is a step of mixing an insoluble fraction containing an inclusion body containing an insoluble target protein with a first lithium solution, and is an essential step in this method.
 本工程で使用する不溶性画分は、不溶性標的タンパク質を包含する封入体を含む。この不溶性画分は、前記取得工程(S0201)で取得した不溶性画分を使用することができる。 The insoluble fraction used in this step contains inclusion bodies containing the insoluble target protein. As this insoluble fraction, the insoluble fraction obtained in the obtaining step (S0201) can be used.
 本工程の基本的な手順や操作は、第1態様の製造方法に記載の混合工程(S0103)に準ずる。したがって、ここでは本工程に特徴的な方法について以下で説明をする。 The basic steps and operations of this step are in accordance with the mixing step (S0103) described in the manufacturing method of the first embodiment. Therefore, the characteristic method of this step will be explained below.
 本工程では、不溶性標的タンパク質を不溶性のままで維持し、封入体中に含まれるそれ以外の不溶性タンパク質を可溶化することを特徴とする。第1態様の製造方法における「1-3-3.混合工程」に記載のように、封入体に包含される不溶性タンパク質の可溶化はタンパク質の分子量とリチウム溶液の濃度の相関関係に基づく。封入体に含まれる標的タンパク質以外の夾雑タンパク質を除去するには、本工程で標的タンパク質を可溶化する濃度以外のリチウム溶液を不溶性画分と混合すればよい。したがって、本工程で使用する第1リチウム溶液は、標的タンパク質の分子量を有する不溶性タンパク質を可溶化しない濃度のリチウム溶液を使用する。 This step is characterized by maintaining the insoluble target protein as insoluble and solubilizing other insoluble proteins contained in the inclusion bodies. As described in "1-3-3. Mixing step" in the production method of the first embodiment, solubilization of the insoluble protein contained in the inclusion body is based on the correlation between the molecular weight of the protein and the concentration of the lithium solution. In order to remove contaminant proteins other than the target protein contained in the inclusion bodies, a lithium solution having a concentration other than that which solubilizes the target protein may be mixed with the insoluble fraction in this step. Therefore, the first lithium solution used in this step has a concentration that does not solubilize an insoluble protein having the molecular weight of the target protein.
 例えば、標的タンパク質の分子量が30,000未満の場合、第1リチウム溶液の濃度を5Mを超える濃度、例えば、5.1M以上、5.2M以上、5.3M以上、5.4M以上、5.5M以上、5.6M以上、5.7M以上、5.8M以上、5.9M以上、又は6M以上にすることによって、封入体中に含まれる30,000以上の分子量を有する不溶性タンパク質は可溶化される。一方、標的タンパク質を含む30,000未満の封入体中のタンパク質は不溶性のままである。同様に、標的タンパク質の分子量が30,000以上50,000未満の場合、第1リチウム溶液の濃度を6M未満、5.9M以下、5.8M以下、5.7M以下、5.6M以下、5.5M以下、5.4M以下、5.3M以下、5.2M以下、5.1M以下、又は5M以下にすることによって、封入体中に含まれる30,000未満の分子量を有する不溶性タンパク質は可溶化されるが、標的タンパク質を含む30,000以上の封入体中のタンパク質は不溶性のままである。さらに、標的タンパク質の分子量が50,000以上の場合、第1リチウム溶液の濃度を8M未満、7.9M以下、7.8M以下、7.7M以下、7.6M以下、7.5M以下、7.4M以下、7.3M以下、7.2M以下、7.1M以下、又は7M以下にすることによって、封入体中に含まれる50,000未満の分子量を有する不溶性タンパク質は可溶化されるが、標的タンパク質を含む50,000以上の封入体中のタンパク質は不溶性のままである。本工程後、後述する第1分離工程で不溶性画分と可溶性画分とに分離すれば、封入体中に含まれる夾雑タンパク質の一部を可溶性画分として分離除去することが可能となる。 For example, when the molecular weight of the target protein is less than 30,000, the concentration of the first lithium solution is set to a concentration exceeding 5M, such as 5.1M or more, 5.2M or more, 5.3M or more, 5.4M or more, 5.5M or more, 5.6M or more, By increasing the concentration to 5.7M or more, 5.8M or more, 5.9M or more, or 6M or more, insoluble proteins having a molecular weight of 30,000 or more contained in the inclusion bodies are solubilized. On the other hand, proteins in less than 30,000 inclusion bodies containing the target protein remain insoluble. Similarly, when the molecular weight of the target protein is 30,000 or more and less than 50,000, the concentration of the first lithium solution is less than 6M, 5.9M or less, 5.8M or less, 5.7M or less, 5.6M or less, 5.5M or less, 5.4M or less, 5.3 By lowering M or lower, 5.2M or lower, 5.1M or lower, or 5M or lower, insoluble proteins with a molecular weight of less than 30,000 contained in inclusion bodies are solubilized, but in inclusion bodies of 30,000 or more containing the target protein. of proteins remain insoluble. Furthermore, when the molecular weight of the target protein is 50,000 or more, the concentration of the first lithium solution is less than 8M, 7.9M or less, 7.8M or less, 7.7M or less, 7.6M or less, 7.5M or less, 7.4M or less, 7.3M or less, By reducing the concentration to 7.2M or less, 7.1M or less, or 7M or less, insoluble proteins with a molecular weight of less than 50,000 contained in inclusion bodies are solubilized, but proteins in inclusion bodies with a molecular weight of 50,000 or more containing the target protein are solubilized. Remains insoluble. After this step, by separating into an insoluble fraction and a soluble fraction in a first separation step described below, it becomes possible to separate and remove a part of the contaminant proteins contained in the inclusion bodies as a soluble fraction.
2-2-4.第1分離工程
 「第1分離工程」(S0204)は、前記第1混合工程(S0203)後の不溶性画分(本明細書では、「第1不溶性画分」と表記する)と可溶性画分(本明細書では、「第1可溶性画分」と表記する)を分離する工程で、本態様の方法における必須の工程である。
2-2-4. First separation step The “first separation step” (S0204) separates the insoluble fraction (herein referred to as “first insoluble fraction”) and the soluble fraction (herein referred to as “first insoluble fraction”) after the first mixing step (S0203). In this specification, this step is an essential step in the method of this embodiment.
 本工程の基本的な手順や操作は、第1態様の製造方法に記載の分離工程(S0104)に準ずる。したがって、ここでは分離工程(S0104)との違いについて以下で説明をする。 The basic steps and operations of this step are similar to the separation step (S0104) described in the manufacturing method of the first embodiment. Therefore, here, the difference from the separation step (S0104) will be explained below.
 第1態様の製造方法に記載の分離工程(S0104)との違いは、第1態様の分離工程では分離後の可溶性画分中に可溶化タンパク質として標的タンパク質が包含されていたのに対して、本工程では第1不溶性画分中に不溶性タンパク質として標的タンパク質が包含されている点である。つまり、分離後の回収対象が互いに異なる。具体的には、分離工程(S0104)では分離後の沈殿物又は濾物が不要となるのに対して、本工程(S0204)では分離後の上清又は濾液である第1可溶性画分が不要となる。 The difference from the separation step (S0104) described in the production method of the first embodiment is that in the separation step of the first embodiment, the target protein was included as a solubilized protein in the soluble fraction after separation. In this step, the target protein is included as an insoluble protein in the first insoluble fraction. In other words, the objects to be recovered after separation are different from each other. Specifically, in the separation step (S0104), the precipitate or filtrate after separation is unnecessary, whereas in this step (S0204), the first soluble fraction, which is the supernatant or filtrate after separation, is unnecessary. becomes.
2-2-5.除去工程
 「除去工程」(S0205)は、前記第1分離工程(S0204)後の第1可溶性画分を除去する工程で、本態様の方法における必須の工程である。
2-2-5. Removal Step The “removal step” (S0205) is a step of removing the first soluble fraction after the first separation step (S0204), and is an essential step in the method of this embodiment.
 本工程の基本的な手順や操作は、第1態様の製造方法に記載の回収工程(S0105)に準ずる。したがって、共通する手順や操作について、ここでの説明は省略する。ただし、前述の「2-2-4.第1分離工程」の項で説明したように、第1態様の回収工程と本除去工程とでは回収対象が互いに逆であって、第1態様の回収工程では可溶性画分を回収するのに対して、本工程の除去工程では第1可溶性画分を除去し、第1不溶性画分を回収する。これは、封入体中に含まれる不溶性タンパク質のうち、標的タンパク質以外の分子量を有する一部のタンパク質を可溶化することで、標的タンパク質と分離するためである。
 第1分離工程~除去工程は、必要に応じて複数回繰り返すことができる。
The basic procedures and operations of this step are similar to the recovery step (S0105) described in the manufacturing method of the first embodiment. Therefore, descriptions of common procedures and operations will be omitted here. However, as explained in the above section "2-2-4. First separation step," the recovery targets in the first embodiment and the main removal step are opposite to each other, and the recovery targets in the first embodiment are opposite to each other. In this step, the soluble fraction is collected, whereas in the removal step of this step, the first soluble fraction is removed and the first insoluble fraction is collected. This is because some of the insoluble proteins contained in the inclusion bodies, which have a molecular weight other than the target protein, are solubilized and separated from the target protein.
The first separation step to removal step can be repeated multiple times as necessary.
2-2-6.第2混合工程
 「第2混合工程」(S0206)は、前記除去工程後に得られる第1不溶性画分を第2リチウム溶液と混合する工程で、本方法における必須の工程である。
2-2-6. Second Mixing Step The “second mixing step” (S0206) is a step of mixing the first insoluble fraction obtained after the removal step with the second lithium solution, and is an essential step in this method.
 本工程は、第1態様の製造方法に記載の混合工程(S0103)に準ずる。したがって、ここでは混合工程(S0103)との違いについて以下で説明をする。 This step corresponds to the mixing step (S0103) described in the manufacturing method of the first embodiment. Therefore, here, the difference from the mixing step (S0103) will be explained below.
 第1態様の混合工程(S0103)で使用する不溶性画分及び本工程で使用する第1不溶性画分は、いずれも標的タンパク質を不溶性タンパク質の状態で包含する。しかし、本工程の第1不溶性画分は、前記第1混合工程(S0203)~除去工程(S0205)によって、標的タンパク質と分子量の異なる不溶性タンパク質の一部が予め除去されている点、さらに、回収した第1不要性画分を本工程で処理し、標的タンパク質を可溶化し、それ以外を不溶性画分のままにする点が異なる。その他については、基本的に第1態様の混合工程(S0103)と同一の手順、及び操作で行えばよい。 The insoluble fraction used in the mixing step (S0103) of the first embodiment and the first insoluble fraction used in this step both contain the target protein in the form of an insoluble protein. However, in the first insoluble fraction of this step, a part of insoluble proteins having a different molecular weight from the target protein has been removed in the first mixing step (S0203) to removal step (S0205), and furthermore, the first insoluble fraction is recovered. The difference is that the first unnecessary fraction obtained is treated in this step, the target protein is solubilized, and the rest remains as an insoluble fraction. For the rest, basically the same procedures and operations as in the mixing step (S0103) of the first embodiment may be used.
 本工程で使用する第2リチウム溶液の濃度は、可溶化すべき標的タンパク質の分子量に応じて定めればよい。例えば、標的タンパク質の分子量が30,000未満であれば、第2リチウム溶液を下限は1.25Mを超える濃度、例えば、1.3M以上、1.4M以上、1.5M以上、1.6M以上、1.7M以上、1.8M以上、1.9M以上、2M以上、2.1M以上、2.2M以上、2.3M以上、2.4M以上、又は2.5M以上、また上限は6M未満、例えば、5.9M以下、5.8M以下、5.7M以下、5.6M以下、5.5M以下、5.4M以下、5.3M以下、5.2M以下、5.1M以下、又は5M以下に設定することで分子量30000未満のタンパク質は可溶化される。一方、それ以外のタンパク質は不溶性のままである。同様に、標的タンパク質の分子量が30,000以上50,000未満であれば、第2リチウム溶液を、下限は5Mを超える濃度、例えば5.1M以上、5.2M以上、5.3M以上、5.4M以上、5.5M以上、5.6M以上、5.7M以上、5.8M以上、5.9M以上、又は6M以上に設定し、また上限は8M未満、7.9M以下、7.8M以下、7.7M以下、7.6M以下、7.5M以下、7.4M以下、7.3M以下、7.2M以下、7.1M以下、又は7M以下に設定する。これによって、分子量が30,000以上50000未満のタンパク質は可溶化されるが、それ以外のタンパク質は不溶性のままである。ここで、30,000未満のタンパク質は第1混合工程(S0203)~除去工程(S0205)で既に可溶化され、除かれているため、ここでは実質的に分子量が30,000以上50,000未満のタンパク質が可溶化されることになる。さらに、標的タンパク質の分子量が50,000以上であれば、第2リチウム溶液を下限は8M以上、例えば9M以上、9.1M以上、9.2M以上、9.3M以上、9.4M以上、9.5M以上、9.6M以上、9.7M以上、9.8M以上、9.9M以上、又は10M以上に設定し、そして上限は飽和濃度以下に設定することで分子量50,000以上のタンパク質を可溶化できる。 The concentration of the second lithium solution used in this step may be determined depending on the molecular weight of the target protein to be solubilized. For example, if the molecular weight of the target protein is less than 30,000, the lower limit for the second lithium solution is a concentration exceeding 1.25M, for example, 1.3M or more, 1.4M or more, 1.5M or more, 1.6M or more, 1.7M or more, 1.8M. 1.9M or more, 2M or more, 2.1M or more, 2.2M or more, 2.3M or more, 2.4M or more, or 2.5M or more, and the upper limit is less than 6M, such as 5.9M or less, 5.8M or less, 5.7M or less, By setting the concentration to 5.6M or less, 5.5M or less, 5.4M or less, 5.3M or less, 5.2M or less, 5.1M or less, or 5M or less, proteins with a molecular weight of less than 30,000 are solubilized. On the other hand, other proteins remain insoluble. Similarly, if the molecular weight of the target protein is 30,000 or more and less than 50,000, use a second lithium solution with a lower limit of concentration exceeding 5M, such as 5.1M or more, 5.2M or more, 5.3M or more, 5.4M or more, 5.5M or more. Set to 5.6M or more, 5.7M or more, 5.8M or more, 5.9M or more, or 6M or more, and the upper limit is less than 8M, 7.9M or less, 7.8M or less, 7.7M or less, 7.6M or less, 7.5M or less, 7.4 Set to M or less, 7.3M or less, 7.2M or less, 7.1M or less, or 7M or less. As a result, proteins with a molecular weight of 30,000 or more and less than 50,000 are solubilized, but other proteins remain insoluble. Here, since proteins with a molecular weight of less than 30,000 have already been solubilized and removed in the first mixing step (S0203) to removal step (S0205), proteins with a molecular weight of 30,000 or more and less than 50,000 are substantially solubilized here. That will happen. Furthermore, if the molecular weight of the target protein is 50,000 or more, the lower limit of the second lithium solution is 8M or more, such as 9M or more, 9.1M or more, 9.2M or more, 9.3M or more, 9.4M or more, 9.5M or more, 9.6M or more. , 9.7M or more, 9.8M or more, 9.9M or more, or 10M or more, and by setting the upper limit below the saturation concentration, proteins with a molecular weight of 50,000 or more can be solubilized.
2-2-7.第2分離工程
 「第2分離工程」(S0207)は、前記第2混合工程(S0206)後の不溶性画分(本明細書では、「第2不溶性画分」と表記する)と可溶性画分(本明細書では、「第2可溶性画分」と表記する)を分離する工程で、本態様の方法における必須の工程である。第2可溶性画分には、可溶化標的タンパク質が含まれる。
2-2-7. Second separation step "Second separation step" (S0207) separates the insoluble fraction (herein referred to as "second insoluble fraction") after the second mixing step (S0206) and the soluble fraction ( In this specification, this step is an essential step in the method of this embodiment. The second soluble fraction contains the solubilized target protein.
 本工程の基本的な手順や操作は、第1態様の製造方法に記載の分離工程(S0104)と同一である。したがって、ここでの具体的な説明については省略をする。 The basic procedures and operations of this step are the same as the separation step (S0104) described in the manufacturing method of the first embodiment. Therefore, a detailed explanation will be omitted here.
2-2-8.回収工程
 「回収工程」(S0207)は、第2可溶性画分を回収する工程である。前述のように第2分離工程(S0206)後に得られる第2可溶性画分中には目的とする可溶化標的タンパク質が包含される。この第2可溶性画分を回収することで、封入体中に包含されていた不溶性標的化合物を、他の分子量の不溶性タンパク質を含まない可溶性標的タンパク質として分離精製することができる。
2-2-8. Recovery Step The “recovery step” (S0207) is a step of recovering the second soluble fraction. As described above, the second soluble fraction obtained after the second separation step (S0206) contains the solubilized target protein of interest. By collecting this second soluble fraction, the insoluble target compound contained in the inclusion body can be separated and purified as a soluble target protein that does not contain insoluble proteins of other molecular weights.
 本工程の基本的な手順や操作は、第1態様の製造方法に記載の回収工程(S0105)と同一である。したがって、ここでの具体的な説明については省略をする。 The basic steps and operations of this step are the same as the recovery step (S0105) described in the manufacturing method of the first embodiment. Therefore, a detailed explanation will be omitted here.
 回収した第2可溶性画分は、必要に応じて繰り返し第2分離工程に供することができる。この場合、同一方法で分離してもよいし、各回で異なる方法を組み合わせて分離してもよい。例えば、遠心分離法で分離後、回収した上清を濾過法で再度分離し、濾液を回収することで、不溶性の夾雑物を含まない可溶性画分を得ることができる。 The collected second soluble fraction can be repeatedly subjected to the second separation step as necessary. In this case, the separation may be performed using the same method, or may be performed using a combination of different methods each time. For example, after separation by centrifugation, the collected supernatant is separated again by filtration and the filtrate is collected to obtain a soluble fraction that does not contain insoluble impurities.
 本態様の分離精製方法で回収された可溶性画分に含まれる可溶性標的タンパク質は、すでに精製された状態にあるが、必要に応じてさらに精製を行ってもよい。タンパク質の精製法は、第1態様の製造方法に記載の回収工程(S0105)に記載の公知の方法で行えばよい。 Although the soluble target protein contained in the soluble fraction collected by the separation and purification method of this embodiment is already in a purified state, it may be further purified if necessary. The protein may be purified by the known method described in the recovery step (S0105) in the production method of the first embodiment.
2-3.効果
 本発明の可溶化タンパク質分離精製方法によれば、変性剤を使用することなく、封入体に含まれる標的タンパク質を可溶化することができると共に、その分子量に応じて可溶化標的タンパク質を分離し、精製することができる。
2-3. Effects According to the solubilized protein separation and purification method of the present invention, target proteins contained in inclusion bodies can be solubilized without using denaturing agents, and solubilized target proteins can be separated according to their molecular weights. , can be purified.
 本発明の可溶化タンパク質分離精製方法によれば、精製における工程数を減少させ、容易かつ低コストで高純度な可溶化標的タンパク質を得ることができる。 According to the solubilized protein separation and purification method of the present invention, it is possible to reduce the number of purification steps and obtain highly pure solubilized target proteins easily and at low cost.
<実施例1:封入体中に含まれる不溶性標的タンパク質の可溶化剤の検討>
(目的)
 大腸菌で発現され、封入体中に包含されている不溶性タンパク質を可溶化する非変性可溶化剤を探索する。
<Example 1: Examination of solubilizing agents for insoluble target proteins contained in inclusion bodies>
(the purpose)
We search for nondenaturing solubilizing agents that solubilize insoluble proteins expressed in E. coli and contained in inclusion bodies.
(方法)
(1)標的タンパク質の調製
 大腸菌で発現させる標的タンパク質として、配列番号2で示す721個のアミノ酸配列からなる「bw753ΔCタンパク質」を用いた。bw753ΔCタンパク質は、配列番号1で示す塩基配列からなるbw753ΔC遺伝子にコードされている。bw753ΔC遺伝子は、特開2018-074403で同定されたオオミノガFib H遺伝子の塩基情報に基づき、WO2020/235692にて新たに構築された改変型組換えミノムシフィブロインH鎖遺伝子(rbFib H遺伝子)である。特願2019-097154の実施例に記載のように、このbw753ΔC遺伝子を発現可能な状態で包含する遺伝子発現ベクターとしてpET-22b-bw753ΔCを構築し、大腸菌BL21(DE3)株(Novagen社)の細胞内に常法を用いて導入して形質転換体bw753ΔC株を得た。
(Method)
(1) Preparation of target protein "bw753ΔC protein" consisting of a 721 amino acid sequence shown in SEQ ID NO: 2 was used as a target protein expressed in E. coli. The bw753ΔC protein is encoded by the bw753ΔC gene consisting of the base sequence shown in SEQ ID NO: 1. The bw753ΔC gene is a modified recombinant bagworm fibroin H chain gene (rbFib H gene) that was newly constructed in WO2020/235692 based on the base information of the Fib H gene of Fib H gene identified in JP-A-2018-074403. As described in the example of patent application 2019-097154, pET-22b-bw753ΔC was constructed as a gene expression vector containing this bw753ΔC gene in an expressible state, and used in cells of Escherichia coli BL21 (DE3) strain (Novagen). A transformant, bw753ΔC strain, was obtained using a conventional method.
(2)標的タンパク質の発現誘導
 bw753ΔC株をLB培地に植菌し、37℃で振盪培養後、OD600が0.7に達した時点で、IPTGを終濃度1mMになるように添加し、さらに20℃で22時間培養してbw753ΔCタンパク質の発現を誘導した。誘導培養後、遠心による沈殿として菌体を回収した。
(2) Induction of target protein expression The bw753ΔC strain was inoculated into LB medium and cultured with shaking at 37°C. When the OD 600 reached 0.7, IPTG was added to a final concentration of 1mM, and further incubated at 20°C. The cells were cultured for 22 hours to induce the expression of bw753ΔC protein. After the induced culture, the bacterial cells were collected as a precipitate by centrifugation.
(3)不溶性画分の単離
 回収した菌体を元の培養液量の精製水で懸濁した後、フレンチプレスを用いて菌体破砕を行った。菌体破砕液を12,000×Gで、30分間、15℃にて遠心後、得られた沈澱10gを10gの精製水で懸濁し、2gの懸濁液3本を10,600×Gで20分間、20℃にて再遠心した。得られた沈殿に各1mLの洗浄用緩衝液[100 mM Tris-HCl(pH 7.0), 10mM EDTA・2Na, 2M 尿素, 2% (w/v) Triton X-100]を添加してボルテックスミキサーで再懸濁した。懸濁液を10,600×Gで20分間、20℃にて遠心し、上清を除いて沈殿を回収した。上記、洗浄用緩衝液による懸濁、遠心、及び上清除去による沈殿回収の操作を4回繰り返して洗浄し、再度洗浄用緩衝液で沈殿を懸濁して集め、1.5mLチューブに分注した。最後に16,000×Gで20分間、20℃にて遠心後、上清を除いて、封入体を含む不溶性画分として沈殿を回収した。
(3) Isolation of insoluble fraction The collected cells were suspended in purified water of the original culture solution volume, and then the cells were disrupted using a French press. Centrifuge the cell suspension at 12,000 x G for 30 minutes at 15°C, suspend 10 g of the resulting precipitate in 10 g of purified water, and centrifuge three bottles of 2 g suspension at 10,600 x G for 20 minutes for 20 minutes. Centrifuged again at ℃. Add 1 mL of washing buffer [100 mM Tris-HCl (pH 7.0), 10 mM EDTA・2Na, 2M urea, 2% (w/v) Triton X-100] to each precipitate and mix with a vortex mixer. Resuspend. The suspension was centrifuged at 10,600×G for 20 minutes at 20°C, the supernatant was removed, and the precipitate was collected. The above-mentioned operations of suspension in a washing buffer, centrifugation, and precipitate collection by removing the supernatant were repeated four times for washing, and the precipitates were again suspended in the washing buffer, collected, and dispensed into 1.5 mL tubes. Finally, after centrifugation at 16,000 x G for 20 minutes at 20°C, the supernatant was removed and the precipitate was collected as an insoluble fraction containing inclusion bodies.
(4)候補可溶化溶液による封入体中の不溶性タンパク質の可溶化
 表1に示す濃度で10種類の化合物の水溶液を候補可溶化溶液として調製した。
(4) Solubilization of insoluble proteins in inclusion bodies using candidate solubilization solutions Aqueous solutions of 10 types of compounds at the concentrations shown in Table 1 were prepared as candidate solubilization solutions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (3)で得られた不溶性画分に、各候補可溶化溶液を500μLずつ添加し、ボルテックスミキサーで懸濁した。その後、室温でローテーター(TAITEC社製、RT-50)を使って1晩転倒混和させた後、16,000×Gで20分間、20℃にて遠心し、可溶性画分である上清を回収した。 500 μL of each candidate solubilization solution was added to the insoluble fraction obtained in (3) and suspended using a vortex mixer. Thereafter, the mixture was mixed overnight using a rotator (manufactured by TAITEC, RT-50) by inversion, and then centrifuged at 16,000×G for 20 minutes at 20° C. to collect the supernatant, which is a soluble fraction.
 回収した上清を10%SDS-PAGEによって分画し、泳動後のゲルをクマシーブリリアントブルー(CBB)で全タンパク質染色した。不溶性画分に含まれる封入体中の不溶性標的タンパク質(bw753ΔCタンパク質)は可溶化溶液により可溶化されて上清(可溶化画分)中に可溶化タンパク質として存在すればSDS-PAGEにより分画可能となるため、泳動によってゲル内を移動し、それ自身の分子量位置でバンドを形成することから、各可溶化画分中の標的タンパク質(bw753ΔCタンパク質)の存在を確認した。 The collected supernatant was fractionated by 10% SDS-PAGE, and the gel after electrophoresis was stained for total protein with Coomassie brilliant blue (CBB). The insoluble target protein (bw753ΔC protein) in the inclusion bodies contained in the insoluble fraction is solubilized with a solubilization solution and can be fractionated by SDS-PAGE if it exists as a solubilized protein in the supernatant (solubilized fraction). Therefore, the presence of the target protein (bw753ΔC protein) in each solubilized fraction was confirmed by moving within the gel by electrophoresis and forming a band at its own molecular weight position.
(結果)
 結果を図3に示す。bw753ΔCタンパク質の分子量に相当するバンドの位置を2本の矢印で示した。飽和チオシアン酸リチウム溶液(No.1)、14.5M塩化リチウム溶液(No.6)、及び12.3M臭化リチウム溶液(No.7)の、いずれもリチウム溶液を候補可溶化溶液として用いた場合のみ、可溶化bw753ΔCタンパク質が確認できた。この結果から、不溶性画分における封入体中の不溶性標的タンパク質を可溶化する可溶化溶液として、リチウム溶液が有効であることが明らかとなった。
(result)
The results are shown in Figure 3. The position of the band corresponding to the molecular weight of bw753ΔC protein is indicated by two arrows. Saturated lithium thiocyanate solution (No. 1), 14.5M lithium chloride solution (No. 6), and 12.3M lithium bromide solution (No. 7), all only when lithium solution is used as the candidate solubilization solution. , solubilized bw753ΔC protein was confirmed. These results revealed that the lithium solution is effective as a solubilization solution for solubilizing the insoluble target protein in the inclusion bodies in the insoluble fraction.
 なお、No.1、No.6、及びNo.7の各上清を、既知濃度のウシ血清アルブミン(BSA)と並列にSDS-PAGEを行い、泳動後のゲルをCBB染色した後に、BSAバンドの相対量として、各上清中のbw753ΔCタンパク質の可溶化量を算出した結果、不溶性画分1gあたりの可溶化bw753ΔCタンパク質量は、飽和チオシアン酸リチウム溶液は2.7mg、12.3M臭化リチウム溶液は2.8mg、14.5M塩化リチウム溶液は0.3mgであり、12.3M臭化リチウム溶液が最も可溶化率が高かった。さらに、bw753ΔCタンパク質以外の夾雑タンパク質の混在量はいずれも少なかったが、この場合も12.3M臭化リチウム溶液が最も夾雑タンパク質の混在が少なかった。以上の結果より、以降の実施例では、可溶化溶液として臭化リチウム溶液を用いた。 In addition, each supernatant of No. 1, No. 6, and No. 7 was subjected to SDS-PAGE in parallel with known concentrations of bovine serum albumin (BSA), and after the gel was stained with CBB, the BSA band was detected. As a result of calculating the solubilized amount of bw753ΔC protein in each supernatant as the relative amount of 2.8mg, 14.5M lithium chloride solution was 0.3mg, and 12.3M lithium bromide solution had the highest solubilization rate. Furthermore, the amounts of contaminant proteins other than bw753ΔC protein were all small, but in this case as well, the 12.3M lithium bromide solution had the least amount of contaminant proteins. Based on the above results, in the following examples, a lithium bromide solution was used as the solubilization solution.
<実施例2:リチウム溶液の可溶化溶液としての条件検証>
(目的)
 実施例1で、封入体中の不溶性標的タンパク質を可溶化できる新規可溶化溶液として、リチウム溶液を見出した。そこで、本実施例ではリチウム溶液を用いた封入体中の不溶性タンパク質の至適可溶化条件を処理時間及び処理温度から検証する。
<Example 2: Verification of conditions for lithium solution as a solubilization solution>
(the purpose)
In Example 1, a lithium solution was discovered as a novel solubilizing solution capable of solubilizing insoluble target proteins in inclusion bodies. Therefore, in this example, the optimal solubilization conditions for insoluble proteins in inclusion bodies using a lithium solution will be verified from the treatment time and treatment temperature.
(方法)
 実施例1の「(3)不溶性画分の単離」で単離した9本の不溶性画分に、10M臭化リチウム溶液を500μL添加し、ボルテックスミキサーで懸濁した。その後、30℃、60℃、及び80℃の各温度に設定したブロック恒温槽で30分間、60分間、及び120分間インキュベーションさせた後、16,000×Gで20分間、20℃にて遠心し、可溶性画分である上清を回収した。回収した上清は、実施例1と同様の条件でSDS-PAGEを実施し、泳動後のゲルをCBB染色により全タンパク質染色した。
(Method)
To the nine insoluble fractions isolated in "(3) Isolation of insoluble fractions" of Example 1, 500 μL of 10M lithium bromide solution was added and suspended using a vortex mixer. After that, the cells were incubated for 30 minutes, 60 minutes, and 120 minutes in a block thermostat set at 30°C, 60°C, and 80°C, and then centrifuged at 16,000 x G for 20 minutes at 20°C. A supernatant fraction was collected. The collected supernatant was subjected to SDS-PAGE under the same conditions as in Example 1, and the gel after electrophoresis was stained for total protein with CBB staining.
(結果)
 結果を図4に示す。この図では、bw753ΔCタンパク質の分子量に相当するバンドのみを示している。図から可溶化溶液として10M臭化リチウム溶液を用いた場合、処理温度や処理時間による可溶化率に大きな差はみられなかった。
(result)
The results are shown in Figure 4. In this figure, only the band corresponding to the molecular weight of bw753ΔC protein is shown. The figure shows that when a 10M lithium bromide solution was used as the solubilization solution, there was no significant difference in solubilization rate depending on treatment temperature or treatment time.
<実施例3:リチウム溶液の濃度と不溶性タンパク質の可溶化量>
(目的)
 本実施例ではリチウム溶液の濃度と封入体中の不溶性タンパク質の可溶化量の関係について検証する。
<Example 3: Concentration of lithium solution and solubilized amount of insoluble protein>
(the purpose)
In this example, the relationship between the concentration of lithium solution and the amount of solubilized insoluble protein in inclusion bodies will be verified.
(方法)
 実施例1の「(3)不溶性画分の単離」で単離した不溶性画分8本に、1.25M、2.5M、5M、6M、7M、8M、9M、及び10Mの臭化リチウム溶液をそれぞれ500μL添加し、ボルテックスミキサーで懸濁した。その後、30℃に設定した恒温水槽で、120分間インキュベーションした後、16,000×Gで20分間、20℃にて遠心し、可溶性画分である上清を回収した。回収した上清は、実施例1と同様の条件でSDS-PAGEを実施し、泳動後のゲルをCBB染色により全タンパク質染色した。
(Method)
1.25M, 2.5M, 5M, 6M, 7M, 8M, 9M, and 10M lithium bromide solutions were added to the 8 insoluble fractions isolated in "(3) Isolation of insoluble fractions" in Example 1. 500 μL of each was added and suspended using a vortex mixer. Thereafter, the mixture was incubated for 120 minutes in a thermostatic water bath set at 30°C, and then centrifuged at 16,000×G for 20 minutes at 20°C to collect the supernatant, which is a soluble fraction. The collected supernatant was subjected to SDS-PAGE under the same conditions as in Example 1, and the gel after electrophoresis was stained for total protein with CBB staining.
(結果)
 結果を図5に示す。bw753ΔCタンパク質の分子量に相当するバンド位置を矢印で示す。非常に興味深いことに、bw753ΔCタンパク質以外の夾雑タンパク質のうち、分子量30,000未満のタンパク質は2.5Mと5Mの臭化リチウム溶液により可溶化されたが6M以上の臭化リチウム溶液ではほとんど可溶化されなかった。さらに、分子量30,000~50,000の夾雑タンパク質は、6M~8Mの臭化リチウム溶液により効率的に可溶化されたが6M未満や10Mではほとんど可溶化されないか、可溶化量が非常に低かった。一方、分子量60,000~70,000のbw753ΔCタンパク質は8M~10Mの臭化リチウム溶液を使用したときに効率的に可溶化された。以上の結果より、リチウム溶液による不溶性タンパク質の可溶化には、リチウム溶液の濃度とタンパク質の分子量との間で相関関係があることが明らかとなった。
(result)
The results are shown in Figure 5. The band position corresponding to the molecular weight of bw753ΔC protein is indicated by an arrow. Very interestingly, among contaminant proteins other than the bw753ΔC protein, proteins with molecular weights less than 30,000 were solubilized by 2.5M and 5M lithium bromide solutions, but hardly solubilized by 6M or higher lithium bromide solutions. . In addition, contaminant proteins with molecular weights of 30,000 to 50,000 were efficiently solubilized by 6M to 8M lithium bromide solutions, but were hardly solubilized or the amount solubilized was very low at less than 6M or 10M. On the other hand, bw753ΔC protein with a molecular weight of 60,000 to 70,000 was efficiently solubilized using 8M to 10M lithium bromide solution. The above results revealed that there is a correlation between the concentration of the lithium solution and the molecular weight of the protein in the solubilization of insoluble proteins by the lithium solution.
<実施例4:標的タンパク質の分子量に基づく、多段階可溶化処理による可溶化標的タンパク質の分離精製方法の確立>
(目的)
 実施例3の結果から不溶性画分に含まれる封入体中の不溶性タンパク質は、その分子量に基づく濃度のリチウム溶液を可溶化溶液として用いることで、効率的に可溶化できることが明らかとなった。
<Example 4: Establishment of a method for separating and purifying solubilized target protein by multi-step solubilization treatment based on the molecular weight of target protein>
(the purpose)
The results of Example 3 revealed that insoluble proteins in inclusion bodies contained in the insoluble fraction can be efficiently solubilized by using a lithium solution with a concentration based on its molecular weight as a solubilization solution.
 上記相関関係を利用して、封入体中に含まれる標的タンパク質以外の不溶性夾雑タンパク質を、それらの分子量の不溶性タンパク質を可溶化し得る濃度のリチウム溶液を用いて可溶化し、除去した後、回収された不溶性画分中に残る標的タンパク質を、その分子量の不溶性タンパク質を可溶化し得る、夾雑タンパク質の可溶化に用いた濃度以外の濃度のリチウム溶液で可溶化することによって、懸濁、及び遠心の操作のみで、可溶化標的タンパク質を高純度で分離精製できることを検証する。 Utilizing the above correlation, insoluble contaminant proteins other than the target protein contained in the inclusion bodies are solubilized using a lithium solution with a concentration that can solubilize insoluble proteins of those molecular weights, removed, and then recovered. The target protein remaining in the insoluble fraction is suspended and centrifuged by solubilizing it with a lithium solution at a concentration other than that used to solubilize contaminant proteins that can solubilize insoluble proteins of that molecular weight. We will verify that it is possible to separate and purify the solubilized target protein to a high degree of purity by simply performing the following steps.
(方法)
(1)6M臭化リチウム溶液処理による可溶性画分の回収
 実施例1の「(3)不溶性画分の単離」で単離した不溶性画分に、6M臭化リチウム溶液を500μL添加し、ボルテックスミキサーで懸濁した。その後、30℃に設定した恒温水槽で、120分間インキュベーション後、16,000×Gで20分間、20℃にて遠心し、可溶性画分である上清を「6M臭化リチウム可溶化画分」として回収した。
 回収した上清(6M臭化リチウム可溶化画分)はSDS-PAGEを実施し、泳動後のゲルをCBB染色により全タンパク質染色を行った。
(Method)
(1) Recovery of soluble fraction by treatment with 6M lithium bromide solution 500 μL of 6M lithium bromide solution was added to the insoluble fraction isolated in “(3) Isolation of insoluble fraction” in Example 1, and vortexed. Suspended using a mixer. Then, after incubation for 120 minutes in a thermostatic water bath set at 30℃, centrifugation was performed at 16,000×G for 20 minutes at 20℃, and the soluble fraction, the supernatant, was collected as the "6M lithium bromide solubilized fraction". did.
The collected supernatant (6M lithium bromide solubilized fraction) was subjected to SDS-PAGE, and the gel after electrophoresis was stained with total protein by CBB staining.
(2)8M臭化リチウム溶液処理による可溶性画分の回収
 実施例1の「(3)不溶性画分の単離」で単離した不溶性画分に、8M臭化リチウム溶液を500μL添加し、ボルテックスミキサーで懸濁した。その後、30℃に設定した恒温水槽で、120分間インキュベーション後、16,000×Gで20分間、20℃にて遠心し、可溶性画分である上清を「8M臭化リチウム可溶化画分」として回収した。回収した上清(8M臭化リチウム可溶化画分)はSDS-PAGEを実施し、泳動後のゲルをCBB染色により全タンパク質染色を行った。
(2) Recovery of soluble fraction by treatment with 8M lithium bromide solution 500 μL of 8M lithium bromide solution was added to the insoluble fraction isolated in “(3) Isolation of insoluble fraction” in Example 1, and vortexed. Suspended using a mixer. Then, after incubation for 120 minutes in a thermostatic water bath set at 30℃, centrifugation was performed at 16,000 x G for 20 minutes at 20℃, and the soluble fraction, the supernatant, was collected as the "8M lithium bromide solubilized fraction". did. The collected supernatant (8M lithium bromide solubilized fraction) was subjected to SDS-PAGE, and the gel after electrophoresis was stained with total protein by CBB staining.
(3)6M及び8Mの臭化リチウム溶液を用いた二段階可溶化処理による可溶性画分の回収
 実施例1の「(3)不溶性画分の単離」で単離した不溶性画分に、6M臭化リチウム溶液を500μL添加し、ボルテックスミキサーで懸濁した。その後、30℃に設定した恒温水槽で、120分間インキュベーションした後、16,000×Gで20分間、20℃にて遠心した。沈殿物として得られた「6M臭化リチウム不溶性画分」に精製水500μLを添加、懸濁した。16,000×Gで20分間、20℃にて再遠心した後、上清を除いて、再び沈殿を回収した。この精製水による懸濁、遠心、及び上清除去(沈殿回収)の3ステップからなる一連の操作を3回繰り返して「6M臭化リチウム不溶性画分」を洗浄した。洗浄後した「6M臭化リチウム不溶性画分」に8M臭化リチウム溶液を500μLで添加、懸濁し、30℃、120分間インキュベーション後、16,000×Gで20分間、20℃にて遠心し、可溶性画分である上清(8M臭化リチウム可溶化画分)を回収した。この2段階の可溶化処理後に回収した上清(6M/8M臭化リチウム可溶化画分)はSDS-PAGEを実施し、泳動後のゲルをCBB染色により全タンパク質染色を行った。
(3) Recovery of soluble fraction by two-step solubilization using 6M and 8M lithium bromide solutions. 500 μL of lithium bromide solution was added and suspended using a vortex mixer. Thereafter, it was incubated for 120 minutes in a thermostatic water bath set at 30°C, and then centrifuged at 16,000×G for 20 minutes at 20°C. 500 μL of purified water was added to the “6M lithium bromide insoluble fraction” obtained as a precipitate and suspended. After recentrifugation at 16,000 x G for 20 minutes at 20°C, the supernatant was removed and the precipitate was collected again. This series of operations consisting of the three steps of suspension in purified water, centrifugation, and supernatant removal (sediment collection) was repeated three times to wash the "6M lithium bromide insoluble fraction." Add 500 μL of 8M lithium bromide solution to the washed 6M lithium bromide insoluble fraction, suspend, incubate at 30℃ for 120 minutes, and centrifuge at 16,000×G for 20 minutes at 20℃ to remove the soluble fraction. The supernatant (8M lithium bromide solubilized fraction) was collected. The supernatant (6M/8M lithium bromide solubilized fraction) collected after the two-step solubilization treatment was subjected to SDS-PAGE, and the gel after electrophoresis was stained with total protein by CBB staining.
(結果)
 結果を図6に示す。図中、各SDS-PAGE画像の下に記載したレーン1、2及び3は、それぞれ、上記方法の(1)、(2)及び(3)に記載の各処理後に回収された可溶化画分の泳動図である。不溶性画分を6Mの臭化リチウム溶液で可溶化した6M臭化リチウム可溶化画分(レーン1)では、標的タンパク質であるbw753ΔCタンパク質(A)は可溶化されていないが、分子量50,000以下の夾雑タンパク質(B)は可溶化されていた。また、不溶性画分を8Mの臭化リチウム溶液で可溶化した8M臭化リチウム可溶化画分(レーン2)では、標的タンパク質であるbw753ΔCタンパク質(A)が可溶化されているものの、夾雑タンパク質(B)も同時に可溶されていた。一方、不溶性画分を6Mの臭化リチウム溶液で可溶化し、その処理で得られた6M臭化リチウム不溶性画分を8Mの臭化リチウム溶液で可溶化して得られた、二段階可溶化処理による6M/8M臭化リチウム可溶化画分(レーン3)においても、標的タンパク質であるbw753ΔCタンパク質(A)が可溶化されていたが、夾雑タンパク質(B)はほとんど検出されなかった。以上の結果より、濃度の異なるリチウム溶液を用いて多段階で可溶化処理を行うことによって、標的タンパク質を高純度で効率的に可溶化できることが確認された。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
(result)
The results are shown in Figure 6. In the figure, lanes 1, 2, and 3 listed below each SDS-PAGE image represent the solubilized fractions collected after each treatment described in (1), (2), and (3) of the above method, respectively. FIG. In the 6M lithium bromide solubilized fraction (lane 1), in which the insoluble fraction was solubilized with a 6M lithium bromide solution, the target protein bw753ΔC protein (A) was not solubilized, but contaminants with a molecular weight of less than 50,000 were detected. Protein (B) was solubilized. In addition, in the 8M lithium bromide solubilized fraction (lane 2), which was obtained by solubilizing the insoluble fraction with 8M lithium bromide solution, the target protein bw753ΔC protein (A) was solubilized, but the contaminant protein ( B) was also soluble at the same time. On the other hand, the insoluble fraction was solubilized with a 6M lithium bromide solution, and the resulting 6M lithium bromide insoluble fraction was solubilized with an 8M lithium bromide solution. In the 6M/8M lithium bromide solubilized fraction (lane 3) resulting from the treatment, the target protein bw753ΔC protein (A) was also solubilized, but almost no contaminant protein (B) was detected. From the above results, it was confirmed that the target protein can be efficiently solubilized with high purity by performing the solubilization treatment in multiple stages using lithium solutions with different concentrations.
All publications, patents, and patent applications cited herein are incorporated by reference in their entirety.

Claims (12)

  1.  封入体から可溶化標的タンパク質を製造する方法であって、
     不溶性画分をリチウム溶液と混合する混合工程、及び
     前記混合工程後の可溶化標的タンパク質を含む可溶性画分と不溶性画分とを分離する分離工程
    を含む前記方法。
    A method for producing a solubilized target protein from inclusion bodies, the method comprising:
    The method described above, comprising: a mixing step of mixing the insoluble fraction with a lithium solution; and a separation step of separating the soluble fraction containing the solubilized target protein and the insoluble fraction after the mixing step.
  2.  前記混合工程前に、標的タンパク質を発現する微生物の細胞破砕液から標的タンパク質を包含する封入体を含む不溶性画分を取得する取得工程を含む、請求項1に記載の方法。 The method according to claim 1, further comprising, before the mixing step, an obtaining step of obtaining an insoluble fraction containing inclusion bodies containing the target protein from a cell lysate of a microorganism expressing the target protein.
  3.  前記分離工程後の可溶性画分を回収する回収工程を含む、請求項1又は2に記載の方法。 The method according to claim 1 or 2, comprising a recovery step of recovering the soluble fraction after the separation step.
  4.  前記リチウム溶液の濃度は、標的タンパク質の分子量が、
      30,000未満のときに1.25Mを超え、かつ5M未満であり、
      30,000以上50,000未満のときに5M以上8M未満であり、
      50,000以上のときに9Mを超える濃度である、
    請求項1~3のいずれか一項に記載の方法。
    The concentration of the lithium solution is such that the molecular weight of the target protein is
    is less than 30,000, exceeds 1.25M, and is less than 5M,
    5M or more and less than 8M when the number is 30,000 or more and less than 50,000,
    50,000 or more when the concentration exceeds 9M,
    The method according to any one of claims 1 to 3.
  5.  前記リチウム溶液が臭化リチウム溶液である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the lithium solution is a lithium bromide solution.
  6.  前記標的タンパク質がフィブロインタンパク質又はその派生タンパク質である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the target protein is a fibroin protein or a derived protein thereof.
  7.  前記微生物が大腸菌である、請求項2~6のいずれか一項に記載の方法。 The method according to any one of claims 2 to 6, wherein the microorganism is Escherichia coli.
  8.  封入体由来の標的タンパク質を可溶化タンパク質として分離し、精製する方法であって、
     不溶性画分を第1リチウム溶液と混合する第1混合工程、
     前記第1混合工程後の不溶性画分と可溶性画分を分離する第1分離工程、
     前記第1分離工程後の可溶性画分を除去する除去工程、
     前記除去工程後に得られる不溶性画分を第2リチウム溶液と混合する第2混合工程、及び
     前記第2混合工程後の不溶性画分と可溶性画分を分離する第2分離工程、
    を含み、
     前記第1リチウム溶液の濃度は、目的とする可溶化タンパク質の分子量が、
      30,000未満のときに6M以上であり、
      30,000以上50,000未満のときに5M以下であり、
      50,000以上のときに8M未満であって、
     前記第2リチウム溶液の濃度は、目的とする可溶化タンパク質の分子量が、
      30,000未満のときに1.25Mを超え、かつ6M未満であり、
      30,000以上50,000未満のときに5Mを超え、かつ8M未満であり、
      50,000以上のときに8M以上である、
    前記方法。
    A method for separating and purifying a target protein derived from inclusion bodies as a solubilized protein, the method comprising:
    a first mixing step of mixing the insoluble fraction with a first lithium solution;
    a first separation step of separating an insoluble fraction and a soluble fraction after the first mixing step;
    a removal step of removing the soluble fraction after the first separation step;
    a second mixing step of mixing the insoluble fraction obtained after the removal step with a second lithium solution; and a second separation step of separating the insoluble fraction and soluble fraction after the second mixing step.
    including;
    The concentration of the first lithium solution is such that the molecular weight of the target solubilized protein is
    6M or more when less than 30,000,
    5M or less when 30,000 or more and less than 50,000,
    50,000 or more but less than 8M,
    The concentration of the second lithium solution is such that the molecular weight of the target solubilized protein is
    is less than 30,000, exceeds 1.25M, and is less than 6M,
    30,000 or more and less than 50,000, exceeding 5M and less than 8M,
    is more than 8M when more than 50,000,
    Said method.
  9.  前記混合工程前に、標的タンパク質を発現する微生物の細胞破砕液から標的タンパク質を包含する封入体を含む不溶性画分を取得する取得工程を含む、請求項8に記載の方法。 9. The method according to claim 8, further comprising, before the mixing step, an obtaining step of obtaining an insoluble fraction containing inclusion bodies containing the target protein from a cell lysate of a microorganism expressing the target protein.
  10.  前記第2分離工程後の可溶性画分を回収する回収工程を含む、請求項8又は9に記載の方法。 The method according to claim 8 or 9, comprising a recovery step of recovering the soluble fraction after the second separation step.
  11.  前記リチウム溶液が臭化リチウム溶液である、請求項8~10のいずれか一項に記載の方法。 The method according to any one of claims 8 to 10, wherein the lithium solution is a lithium bromide solution.
  12.  前記目的とする可溶化タンパク質が前記微生物で発現させた外因性タンパク質である、請求項9~11のいずれか一項に記載の方法。 The method according to any one of claims 9 to 11, wherein the target solubilized protein is an exogenous protein expressed in the microorganism.
PCT/JP2022/034058 2022-09-12 2022-09-12 Solubilized protein production method WO2024057361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034058 WO2024057361A1 (en) 2022-09-12 2022-09-12 Solubilized protein production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034058 WO2024057361A1 (en) 2022-09-12 2022-09-12 Solubilized protein production method

Publications (1)

Publication Number Publication Date
WO2024057361A1 true WO2024057361A1 (en) 2024-03-21

Family

ID=90274401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034058 WO2024057361A1 (en) 2022-09-12 2022-09-12 Solubilized protein production method

Country Status (1)

Country Link
WO (1) WO2024057361A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120214199A1 (en) * 2011-02-23 2012-08-23 Elona Biotechnologies Lis-pro proinsulin compositions and methods of producing lis-pro insulin analogs therefrom
JP2012182995A (en) * 2011-03-03 2012-09-27 Nippon Flour Mills Co Ltd Fibrinogen-producing transgenic silkworm
JP2014502140A (en) * 2010-09-28 2014-01-30 ザ ユニバーシティー オブ ノートルダム Chimeric spider silk and its use
WO2016153072A1 (en) * 2015-03-26 2016-09-29 国立大学法人信州大学 Blood clotting agent solution, method for producing blood clotting agent solution, and method for producing liquid blood embolic protein intrinsic composition e2p
WO2018030499A1 (en) * 2016-08-10 2018-02-15 Spiber株式会社 Production method for insoluble recombinant protein aggregate
WO2021011431A1 (en) * 2019-07-12 2021-01-21 Bolt Threads, Inc. Recombinant spider silk extrudate formulations
WO2021035184A1 (en) * 2019-08-22 2021-02-25 Bolt Threads, Inc. Methods for improved extraction of spider silk proteins
JP2022145193A (en) * 2021-03-19 2022-10-03 興和株式会社 Method for producing solubilized protein

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502140A (en) * 2010-09-28 2014-01-30 ザ ユニバーシティー オブ ノートルダム Chimeric spider silk and its use
US20120214199A1 (en) * 2011-02-23 2012-08-23 Elona Biotechnologies Lis-pro proinsulin compositions and methods of producing lis-pro insulin analogs therefrom
JP2012182995A (en) * 2011-03-03 2012-09-27 Nippon Flour Mills Co Ltd Fibrinogen-producing transgenic silkworm
WO2016153072A1 (en) * 2015-03-26 2016-09-29 国立大学法人信州大学 Blood clotting agent solution, method for producing blood clotting agent solution, and method for producing liquid blood embolic protein intrinsic composition e2p
WO2018030499A1 (en) * 2016-08-10 2018-02-15 Spiber株式会社 Production method for insoluble recombinant protein aggregate
WO2021011431A1 (en) * 2019-07-12 2021-01-21 Bolt Threads, Inc. Recombinant spider silk extrudate formulations
WO2021035184A1 (en) * 2019-08-22 2021-02-25 Bolt Threads, Inc. Methods for improved extraction of spider silk proteins
JP2022145193A (en) * 2021-03-19 2022-10-03 興和株式会社 Method for producing solubilized protein

Similar Documents

Publication Publication Date Title
Dash et al. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta
JP6081908B2 (en) Separation of insoluble target proteins
US7335739B2 (en) Methods for the purification and aqueous fiber spinning of spider silks and other structural proteins
JP2006517415A5 (en)
ES2688065T3 (en) Methods and systems to purify uncomplexed botulinum neurotoxin
Gautam et al. Non-chromatographic strategies for protein refolding
JP2022145193A (en) Method for producing solubilized protein
WO2024057361A1 (en) Solubilized protein production method
CN114657113A (en) Recombinant bacterium for expressing totipotent nuclease and application thereof
CN106632664A (en) Apolipoprotein II/I and preparation method, biological function and application thereof
JP2022545183A (en) Improved extraction method for spider silk protein
RU2230325C2 (en) Method for preparing purified preparation of botulinic toxin type a
Pathak et al. Construction and characterization of mutated LEA peptides in Escherichia coli to develop an efficient protein expression system
RU2015105274A (en) METHOD FOR PRODUCING PROTEINS OF FAMILY CYSTEINE PROTEASES (Triticum aestivum) AND PROTEIN TRITIKAIN-ALPH PROTEIN OBTAINED BY THIS METHOD
RU2143492C1 (en) Recombinant plasmid encoding fused protein as precursor of human insulin (variants), strain of bacterium escherichia coli - producer of fused protein as precursor of human insulin (variants), method of human insulin preparing
RU2144082C1 (en) Recombinant plasmid encoding fused protein-precursor of human insulin (variants), strain of bacterium escherichia coli - producer of fused protein-precursor of human insulin (variants), method of human insulin preparing
US20220372086A1 (en) Methods for isolating spider silk proteins via high shear solubilization
HAGIYA et al. The S layer composed of two different protein subunits from Clostridium difficile GAI 1152: a simple purification method and characterization
Sh Purification of recombinant PreS2-S protein, the surface antigen of human Hepatitis b virus (HBV) expressed in Bombyx mori larvae
CN115786310A (en) Protein mutant 5H-PSI for inducing membrane fusion under weak acidic condition, and coding gene and application thereof
CN115927261A (en) Induced membrane fusion protein mutant PSI-7M under weak acidic condition and coding gene and application thereof
Kedare et al. Recent Developments in Protein Extraction Methods from Bacteria, Yeast and Natural Sources for Various Applications
Pozzolini et al. The Lysosome Origin of Biosilica Machinery in the Demospongiae Model Petrosia
Ahsan et al. Overexpression in Escherichia coli and functional reconstitution of anchovy trypsinogen from the bacterial inclusion body
CN116239664A (en) Preparation method, product and application of amelogenin expressed based on inclusion body form