WO2024055899A1 - 多旋翼航空器电机与机臂的连接器及连接方法 - Google Patents

多旋翼航空器电机与机臂的连接器及连接方法 Download PDF

Info

Publication number
WO2024055899A1
WO2024055899A1 PCT/CN2023/117534 CN2023117534W WO2024055899A1 WO 2024055899 A1 WO2024055899 A1 WO 2024055899A1 CN 2023117534 W CN2023117534 W CN 2023117534W WO 2024055899 A1 WO2024055899 A1 WO 2024055899A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse
base
motor
guide positioning
lock
Prior art date
Application number
PCT/CN2023/117534
Other languages
English (en)
French (fr)
Inventor
胡华智
贺达年
卢兴捷
姜国军
曾凡胜
Original Assignee
亿航智能设备(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211123221.9A external-priority patent/CN115520380A/zh
Priority claimed from CN202222464166.1U external-priority patent/CN218806528U/zh
Application filed by 亿航智能设备(广州)有限公司 filed Critical 亿航智能设备(广州)有限公司
Publication of WO2024055899A1 publication Critical patent/WO2024055899A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/16Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like specially adapted for mounting power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/24Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with rotor blades fixed in flight to act as lifting surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle

Definitions

  • the present invention relates to the technical field of aircraft motor installation, and in particular to a connector and a connection method between a multi-rotor aircraft motor and an arm.
  • connection between the motor and the arm of a multi-rotor aircraft is mostly based on the motor base.
  • Bolts are installed in the radial direction of the motor stator or bolts are installed in the axial direction of the motor stator.
  • the aerodynamics are complex and The coupling of working conditions such as gyro precession and vibration, the stiffness and intensity resonance of the connector between the motor and the arm, and the radial mounting of bolts on the motor stator make multi-rotor aircraft prone to bolt loosening and breakage under complex multi-physics coupling.
  • the prior art discloses a UAV propeller interlocking buckle type double insurance quick disassembly structure, facing the connection between the propeller and the motor upper cover, including a propeller fixing component, a motor fixing component and a positioning component , through the upper plate and the inner clamping block 1, slot 1, clamping block 2, slot 2, locking plate, movable shaft, pull ring, pagoda spring, nut, wave washer, etc., the propeller and the motor upper cover are connected Double fixation, the double circumferential positioning of the upper plate and the inner clamping block 1, clamping slot 1, clamping block 2, and clamping slot 2 can provide high concentricity and can also be used when the propeller generates push and pull forces.
  • the V-shaped bumps at both ends of the locking plate are fixed together with the V-shaped grooves of the upper plate and the V-shaped grooves of the base, which reduces the radial gap between the motor fixing component and the propeller fixing component, eliminating the possibility of the propeller There is a risk of loosening when the motor rotates forward and reverse.
  • the space for the connection part of the motor fixed component is limited, which makes it difficult to route the thick wiring harness of the motor and to operate the motor base and motor torque wrench.
  • the present invention proposes a multi-rotor aircraft motor and
  • the connector and connection method of the aircraft arm can not only securely install the motor of the multi-rotor aircraft, but also keep the motor stator from rotating during the locking connection to prevent the motor wiring harness from being routed out. Wire tangle phenomenon.
  • a connector between a multi-rotor aircraft motor and an aircraft arm includes a base, a lock plate component, and a guide and positioning component. One side of the base is connected to the aircraft arm.
  • the lock disc component includes a forward lock. disc structure and reverse locking disc structure.
  • the guide and positioning components include a forward guide and positioning structure and a reverse guide and positioning structure. The forward guide and positioning structure and the reverse guide and positioning structure are respectively embedded in the forward locking disc structure and the reverse locking disc.
  • one end of the forward lock plate structure is connected to the forward propeller motor, the other end is inserted into the forward end of the base through the forward guide positioning structure, and is connected to the forward end of the base through forward threads; reverse One end of the lock plate structure is connected to the reverse propeller motor, the other end is inserted into the reverse end of the base through the reverse guide positioning structure, and is connected to the reverse end of the base through reverse threads.
  • the connector proposed in this technical solution includes a base, a locking disk component, and a guide and positioning component.
  • One end of the forward locking disk structure is connected to the forward propeller motor, and the other end is inserted into the forward end of the base through the forward guide and positioning structure. And it is connected with the forward end of the base through a forward thread. Finally, it can be screwed into the root of the base with a customized torque wrench.
  • the guide positioning component ensures that the motor is installed and positioned accurately, the motor stator does not rotate, and the wiring harness does not When the winding phenomenon occurs, one side of the base is connected to the arm, and the multi-rotor aircraft motor and the arm are locked and connected.
  • One end of the reverse lock disk structure is connected to the reverse propeller motor, and the other end is inserted into the reverse end of the base through the reverse guide positioning structure, and is connected with the reverse end of the base through reverse threads, and is screwed in reversely During the process, the guide and positioning components ensure that the motor is installed and positioned accurately, the motor stator does not rotate, and the wire harness does not become entangled.
  • the base includes a connecting frame and a sleeve, one end of the connecting frame is connected to the machine arm, the other end of the connecting frame is vertically connected to the sleeve, and the forward end of the sleeve passes through the forward locking disk structure.
  • Forward thread connection, the reverse end of the sleeve and the reverse lock disc structure are connected through reverse threads.
  • the thread connection between the lock disc component and the base corresponds to the forward and reverse rotation of the propeller, ensuring that when the propeller rotates The lock plate component counteracts the propeller torque to prevent the lock disc component from loosening from the base.
  • the sleeve is provided with several inclined slot holes.
  • the motor stator receives a reaction force, and the reaction force received by the electronic stator is transmitted to the base.
  • the forward end and the reverse end of the base are respectively affected by forward force.
  • the reaction forces of the propeller motor and the reverse propeller motor are in opposite directions.
  • the inclined direction of the inclined slot hole is conducive to the bending and torsion resistance of the base.
  • each of the forward locking disk structure and the reverse locking disk structure includes a locking disk joint, a locking disk itself
  • the body extends a platform along the inner wall of the sleeve in the radial direction of the sleeve axis.
  • the platform is provided with several anti-rotation grooves.
  • the locking disc joint is provided with several anti-rotation bosses.
  • the locking disc is provided with a plurality of anti-rotation bosses. When the joint is installed on the lock plate body, the anti-rotation boss is disposed in the anti-rotation groove.
  • the locking disc joint is provided with an anti-rotation boss, and the base is provided with a platform and an anti-rotation groove, so that the forward locking disc structure/reverse locking disc structure can be realized before it is threadedly connected to the base.
  • Anti-rotation function so that the lock disc joint can be realized to be stationary, while the forward lock disc structure/reverse lock disc structure can have both axial spiral movement and radial rotation movement, realizing the forward lock disc structure/reverse lock Disc structure thread locking disc joint.
  • a guide positioning groove is vertically provided along the inner wall of the sleeve.
  • the forward guide positioning structure and the reverse guide positioning structure respectively embedded in the forward locking disk structure and the reverse locking disk structure are introduced into the sleeve through the guide positioning groove. barrel to achieve precise installation of the motor.
  • both the forward guide positioning structure and the reverse guide positioning structure adopt guide positioning pins.
  • the lock disk joint in the forward lock disk structure is connected to the forward propeller motor through bolts
  • the lock disk joint in the reverse lock disk structure is connected to the reverse propeller motor through bolts
  • the forward locking disk structure/reverse locking disk structure is threaded and locked with the base.
  • the thread locking force of the forward locking disk structure/reverse locking disk structure there is sufficient friction between the end face of the lock disk joint and the base platform, coupled with the anti-rotation boss on the lock disk joint and the guide positioning structure in the guide positioning groove, ensuring a firm and reliable installation of the motor and the base.
  • the connector further includes a plurality of anti-loosening components, a plurality of first fixing holes are provided on the outer surface of the base, and a plurality of second fixing holes are provided on the lock plate body, each of which is anti-loosening.
  • the loose parts pass through a first fixing hole on the base and a second fixing hole on the lock plate body in sequence and then are locked, ensuring a firm and reliable installation of the motor and the base.
  • the anti-loosening component is an anti-loosening fuse.
  • This application also proposes a method for connecting a multi-rotor aircraft motor and an aircraft arm.
  • the method includes a sequential connection method for a forward multi-rotor aircraft motor and an aircraft arm, and a connection method for a reverse multi-rotor aircraft motor and an aircraft arm. The steps are:
  • the present invention proposes a connector and a connection method between a multi-rotor aircraft motor and an arm.
  • the connector includes a base, a lock plate component, and a guide and positioning component.
  • One end of the forward lock plate structure is connected to the forward propeller motor, and the other end is connected to the forward propeller motor.
  • One end is inserted into the forward end of the base through the forward guide positioning structure, and is connected to the forward end of the base through a forward thread, and is screwed into the root of the base.
  • the guide positioning component ensures accurate installation and positioning of the motor.
  • the wire harness does not become entangled
  • one side of the base is connected to the arm, and the multi-rotor aircraft motor and the arm are locked and connected.
  • One end of the reverse lock disk structure is connected to the reverse propeller motor, and the other end is inserted into the reverse end of the base through the reverse guide positioning structure, and is connected with the reverse end of the base through reverse threads, and is screwed in reversely
  • the guide and positioning components ensure that the motor is installed and positioned accurately, the motor stator does not rotate, and the wire harness does not become entangled.
  • Figure 1 shows a schematic diagram of the overall structure of the connector between the multi-rotor aircraft motor and the arm proposed in Embodiment 1 of the present invention
  • Figure 2 shows an exploded view of the structure of the connector between the motor and the arm of the multi-rotor aircraft proposed in Embodiment 1 of the present invention
  • Figure 3 shows a cross-sectional view of the connector between the multi-rotor aircraft motor and the arm proposed in Embodiment 1 of the present invention
  • Figure 4 shows a schematic diagram of the rotation direction of the motor rotor and the reaction force direction of the motor stator on the connector between the multi-rotor aircraft motor and the arm proposed in Embodiment 2 of the present invention
  • Figure 5 shows a schematic flow chart of the connection between the motor and the arm of the multi-rotor aircraft proposed in Embodiment 3 of the present invention.
  • this embodiment proposes a connector between a multi-rotor aircraft motor and an arm.
  • the connector includes a base 1, a lock plate component 2, a guide and positioning component 3, and a part of the base 1
  • the side is connected to the machine arm.
  • the locking disk component 2 includes a forward locking disk structure 21 and a reverse locking disk structure 22.
  • the guide and positioning component 3 includes a forward guide and positioning structure 31 and a reverse guide and positioning structure 32.
  • the forward guide and positioning The structure 31 and the reverse guide positioning structure 32 are respectively embedded in the forward locking disk structure 21 and the reverse locking disk structure 22.
  • One end of the forward locking disk structure 21 is connected to the forward propeller motor, and the other end passes through the forward guide positioning structure.
  • the guide positioning component 3 ensures accurate installation and positioning of the motor.
  • the base 1 includes a connecting frame 11 and a sleeve 12.
  • One end of the connecting frame 11 is connected to the machine arm, the other end of the connecting frame 11 is vertically connected to the sleeve 12, and the forward end of the sleeve 12 is connected to the arm.
  • the forward locking disc structure 21 is connected through forward threads, and the reverse end of the sleeve 12 is connected to the reverse locking disc structure 22 through reverse threads.
  • both the forward guide positioning structure 31 and the reverse guide positioning structure 32 adopt guide positioning pins.
  • the connector proposed in this embodiment includes a base 1 and a lock plate component 2.
  • One end of the forward lock plate structure 21 is connected to the forward propeller motor, and the other end is inserted into the forward end of the base 1 and connected with the base 1
  • the forward end is connected through a forward thread, and is screwed into the root of the motor connection seat.
  • the motor stator does not rotate, and the wire harness does not become entangled.
  • One side of the base 1 is connected to the arm, and the multi-rotor aircraft motor is connected to the machine arm. The machine arms are all locked and connected.
  • One end of the reverse lock disk structure 22 is connected to the reverse propeller motor, and the other end is connected to the reverse end of the base 1 through reverse threads.
  • the motor stator Without rotation, the wire harness will not be tangled.
  • each of the forward locking disk structure 21 and the reverse locking disk structure 22 includes a locking disk joint 201 and a locking disk body 202 along the inner wall of the sleeve 12 in the radial direction of the axis of the sleeve 12
  • the platform 122 is provided with a plurality of anti-rotation grooves 123
  • the lock plate joint 202 is provided with a plurality of anti-rotation protrusions.
  • Platform 203 when the lock disc joint 201 is installed on the lock disc body 202, the anti-rotation boss 203 is disposed in the anti-rotation groove 123.
  • the lock disc joint 201 is provided with an anti-rotation boss 203, and the base 1 is provided with a platform 122 and an anti-rotation groove 123, so that the forward lock disc structure 21/reverse lock disc structure 22 are not yet threaded with the base 1
  • the anti-rotation function can be realized when connected, so that the lock disc joint 201 can be kept stationary, while the forward lock disc structure 21/reverse lock disc structure 22 can not only move axially spirally, but also can rotate radially, realizing forward movement.
  • the locking disc joint is threaded to the locking disc structure 21/reverse locking disc structure 22.
  • guide positioning grooves 124 are vertically provided along the inner wall of the sleeve 12, which are respectively embedded in the forward guide positioning structure 31 and the reverse guide structure 21 and the reverse lock plate structure 22.
  • the positioning structure 32 is introduced into the sleeve 12 through the guide positioning groove 124 to ensure accurate installation of the motor.
  • the lock disk joint 201 in the forward lock disk structure 21 is connected to the forward propeller motor through bolts, and the lock disk joint 201 in the reverse lock disk structure 22 is connected to the reverse propeller motor through bolts.
  • the locking disk joint 201 is connected to the motor through the anti-loosening external hexagonal bolt 5.
  • the forward locking disk structure 21/reverse locking disk structure 22 are threadedly connected and locked with the base 1.
  • this connector also includes a number of anti-loosening components 4, a number of first fixing holes 13 are provided on the outer surface of the base 1, and a number of second fixing holes 204 are provided on the lock plate body 202, each The anti-loosening component 4 passes through a first fixing hole 13 on the base 1 and a second fixing hole 204 on the lock plate body 202 in sequence and then is locked.
  • the anti-loosening component 4 is an anti-loosening fuse.
  • the forward guide positioning structure 31 will be installed on the lock plate joint 201, and the lock plate joint 201 is set on the lock plate body 202 and is defined as an assembly. 1.
  • Component 1 is connected to the forward propeller motor through anti-loosening external hexagonal bolts.
  • the actual implementation is not limited to the locking method, and the above assembled part is defined as component 2.
  • the connecting frame 11 of the motor connecting seat 1 One end and the machine arm are installed with glue and rivets. The same part as above is defined as component three. Coat the lock plate body 202 of component two with thread glue and guide and position it into the base 1 of component 3 through the forward guide positioning structure 31.
  • the reverse propeller motor part For the assembly of the reverse propeller motor part: install another set of the reverse guide positioning structure 32 on another lock plate joint 201, and insert the lock plate body 202 to define component five.
  • the component five and the reverse propeller motor pass through another Set of anti-loosening external hexagonal bolts 5 for locking connection.
  • the actual implementation is not limited to the locking method defined as component six.
  • the component six is guided and positioned through the reverse guide positioning structure 32 and inserted into the reverse end of the component four base 1. Then use a customized torque wrench to spirally screw it into the root of the base 1. During the screw-in process, the motor stator remains non-rotating so that the wire harness will not be entangled. The lock plate body on this side is locked.
  • the reverse propeller motor part is assembled. .
  • an anti-loosening fuse is installed between the lock plate body 202 in both directions and the base 1.
  • it is not limited to this anti-loosening method. The entire multi-rotor aircraft motor and arm connection installation is completed.
  • this embodiment proposes a method for connecting a multi-rotor aircraft motor and an aircraft arm.
  • the method includes a sequential connection method for a forward multi-rotor aircraft motor and an aircraft arm, and a reverse multi-rotor aircraft motor method. How to connect to the machine arm, the steps are:
  • the forward guide positioning structure 31 is installed on the lock plate joint 201.
  • the lock plate joint 202 is set on the lock plate body 201 and is defined as component 1.
  • the component 1 and the forward propeller motor are locked and connected through anti-loosening external hexagonal bolts.
  • the above assembled part is defined as component 2.
  • One end of the connecting frame 11 of the base 1 is installed with the machine arm through adhesive and rivets. The same part as above is defined as component 3.
  • the lock plate body 201 is coated with thread glue and guided and positioned by the forward guide positioning structure 31 to insert the positive end of the base 1 in the assembly 3, and then spirally screwed into the root of the base through a customized torque wrench. During the screwing process, The motor stator remains non-rotating so that the motor outlet wire harness will not be tangled. Finally, the lock plate body 201 is locked, and the forward-rotating motor is assembled and is defined as component 4.
  • the reverse propeller motor part For the assembly of the reverse propeller motor part: install another set of the reverse guide positioning structure 32 on another lock disk joint 201, and the lock disk body 202 is inserted into it to define assembly 5.
  • the assembly 5 and the reverse propeller motor pass through another set of lock disk joints 201.
  • the actual implementation is not limited to the locking method defined as component 6.
  • the component 6 is guided and positioned through the reverse guide positioning structure 32 and inserted into the reverse end of the base 1 of the component 4. Then use a customized torque wrench to spirally screw it into the root of the base 1. During the screw-in process, the motor stator remains non-rotating so that the wire harness will not be entangled.
  • the lock plate body on this side is locked.
  • the reverse propeller motor part is assembled.
  • an anti-loosening fuse is installed between the lock plate body 202 in both directions and the base 1.
  • it is not limited to this anti-loosening method.
  • the entire multi-rotor aircraft motor and arm connection installation is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

一种多旋翼航空器电机与机臂的连接器及连接方法,连接器包括基座(1)、锁盘部件(2)、导向定位部件(3),基座(1)的一侧与机臂连接,锁盘部件(2)包括正向锁盘结构(21)与反向锁盘结构(22),导向定位部件(3)包括正向导向定位结构(31)与反向导向定位结构(32),正向导向定位结构(31)与反向导向定位结构(32)分别内嵌于正向锁盘结构(21)与反向锁盘结构(22),正向锁盘结构(21)的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构(31)插入基座(1)的正向端部,并与基座(1)的正向端部通过正向螺纹连接;反向锁盘结构(22)的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构(32)插入基座(1)的反向端部,并与基座(1)的反向端部通过反向螺纹连接。

Description

多旋翼航空器电机与机臂的连接器及连接方法 技术领域
本发明涉及航空器电机安装的技术领域,特别是涉及一种多旋翼航空器电机与机臂的连接器及连接方法。
背景技术
多旋翼航空器电机与机臂连接时,常面临如下问题:电机与机臂连接不牢靠、电机与机臂连接器复杂笨重、电机生产安装定位困难等。
目前,多旋翼航空器电机与机臂的连接大多基于电机座,在电机定子径向安装螺栓固定或在电机定子轴向安装螺栓固定,然而,在多旋翼航空器的螺旋桨运行工作中,空气动力复杂、陀螺进动、振动等工况耦合,电机与机臂连接器刚度强度共振,电机定子径向安装螺栓固定的方式使得多旋翼航空器在复杂多物理场耦合下,易发生螺栓松动和断裂的后果。
为解决上述技术问题,现有技术中公开了一种无人机螺旋桨互嵌卡扣式双保险快速拆装结构,面向螺旋桨和电机上盖的连接,包括螺旋桨固定组件、电机固定组件和定位组件,通过上板与底座内部的卡块一、卡槽一、卡块二、卡槽二、锁定板、活动轴、拉环、宝塔弹簧、螺母、波形垫片等实现了螺旋桨与电机上盖的双重固定,上板与底座内部的卡块一、卡槽一、卡块二、卡槽二的双重圆周定位可以提供较高的同心度的同时,还可以实现在螺旋桨产生推拉力时都可以使用,锁定板两端的V型凸块一与上板的V型凹槽一和底座的V型凹槽二的配合固定减少了电机固定组件与螺旋桨固定组件之间配合的径向间隙,杜绝了螺旋桨在电机正反转时有松脱的风险,但由于电机大小较为固定,电机固定组件的连接部位空间受限,导致电机粗大线束布线出线困难、电机座与电机力矩扳手操作困难。
发明内容
为解决多旋翼航空器电机与机臂连接过程中,安装定位困难,与机臂连接不牢固、连接器复杂且容易造成电机粗大线束布线出线困难的问题,本发明提出了一种多旋翼航空器电机与机臂的连接器及连接方法,既可以实现多旋翼航空器电机牢靠地安装,又可以在锁紧连接时保持电机定子不转动,避免电机线束布线出 线缠绕现象。
为了达到上述技术效果,本发明的技术方案如下:
一种多旋翼航空器电机与机臂的连接器,所述连接器包括基座、锁盘部件、导向定位部件,所述基座的一侧与机臂连接,所述锁盘部件包括正向锁盘结构与反向锁盘结构,导向定位部件包括正向导向定位结构与反向导向定位结构,正向导向定位结构与反向导向定位结构分别内嵌于正向锁盘结构与反向锁盘结构,正向锁盘结构的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构插入基座的正向端部,并与基座的正向端部通过正向螺纹连接;反向锁盘结构的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构插入基座的反向端部,并与基座的反向端部通过反向螺纹连接。
本技术方案提出的连接器包括基座、锁盘部件、导向定位部件,正向锁盘结构的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构插入基座的正向端部,并与基座的正向端部通过正向螺纹连接,最后可以通过定制力矩扳手螺旋旋入基座根部,旋入过程中导向定位部件保证电机安装定位精准,且电机定子不转动,线束不会出现缠绕现象,基座的一侧与机臂连接,多旋翼航空器电机与机臂均锁紧连接。反向锁盘结构的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构插入基座的反向端部,并与基座的反向端部通过反向螺纹连接,反向旋入过程中导向定位部件保证电机安装定位精准,且电机定子不转动,线束不会出现缠绕现象。
优选地,所述基座包括连接架与套筒,连接架的一端与机臂连接,连接架的另一端与所述套筒垂直连接,套筒的正向端部与正向锁盘结构通过正向螺纹连接,套筒的反向端部与反向锁盘结构通过反向螺纹连接,整体上,锁盘部件与基座的螺纹连接是和螺旋桨的正反转对应的,确保螺旋桨旋转时锁盘部件与螺旋桨扭力相抵消,以免锁盘部件从基座中松动。
优选地,所述套筒上设有若干个斜槽孔。
在此,在多旋翼航空器电机转子及螺旋桨的旋向下,电机定子受到反作用力,电子定子受到的反作用力传输至基座上,基座的正向端部和反向端部分别受到正向螺旋桨电机和反向螺旋桨电机的反作用力,两股反作用力的方向相反,斜槽孔的倾斜方向设置有利于基座的抗弯抗扭。
优选地,正向锁盘结构与反向锁盘结构中的每一个均包括锁盘接头、锁盘本 体沿套筒的内壁向套筒轴的径向方向延伸出平台,所述平台上设有若干个止转凹槽,所述锁盘接头上设有若干个止转凸台,所述锁盘接头套装于锁盘本体时,使得止转凸台设置于止转凹槽内。
在此,锁盘接头上设有有止转凸台,基座内设有平台和止转凹槽,使得正向锁盘结构/反向锁盘结构还未与基座螺纹连接时就能实现止转功能,这样可以实现锁盘接头静止不动,而正向锁盘结构/反向锁盘结构既可以轴向螺旋运动,又可以径向旋转运动,实现正向锁盘结构/反向锁盘结构螺纹锁紧锁盘接头。
优选地,沿套筒的内壁还竖直设有导向定位槽,分别内嵌于正向锁盘结构与反向锁盘结构的正向导向定位结构与反向导向定位结构通过导向定位槽导入套筒中,实现电机的精准安装。
优选地,正向导向定位结构与反向导向定位结构均采用导向定位销。
优选地,正向锁盘结构中的锁盘接头通过螺栓与正向螺旋桨电机连接,反向锁盘结构中的锁盘接头通过螺栓与反向螺旋桨电机连接。
在此,锁盘接头通过螺栓与电机连接后,正向锁盘结构/反向锁盘结构与基座螺纹连接锁紧,在正向锁盘结构/反向锁盘结构螺纹锁紧力作用下,锁盘接头端面与基座平台存在足够大的摩擦力,再加上锁盘接头上的止转凸台和导向定位槽中的导向定位结构,保证了电机与基座的牢固可靠安装。
优选地,所述连接器还包括若干个防松部件,所述基座的外侧面上设有若干个第一固定孔,所述锁盘本体上设有若干个第二固定孔,每一个防松部件依次穿过基座上的一个第一固定孔、锁盘本体上的一个第二固定孔后锁紧,保证了电机与基座的牢固可靠安装。
优选地,所述防松部件为防松保险丝。
本申请还提出一种多旋翼航空器电机与机臂的连接方法,所述方法包括依次进行的正向多旋翼航空器电机与机臂的连接方法、反向多旋翼航空器电机与机臂的连接方法,步骤为:
S1.将正向锁盘结构的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构插入基座的正向端部,并与基座的正向端部通过正向螺纹连接;
S2.将基座的一侧与机臂连接;
S3.通过定制力矩扳手将正向锁盘结构螺旋旋入基座的根部;
S4.将反向锁盘结构的一端与反向螺旋桨电机连接,另一端通过反向导向定 位结构插入基座的反向端部,并与基座的反向端部通过反向螺纹连接;
S5.通过定制力矩扳手将反向锁盘结构螺旋旋入基座的根部。与现有技术相比,本发明技术方案的有益效果是:
本发明提出一种多旋翼航空器电机与机臂的连接器及连接方法,其中,连接器包括基座、锁盘部件、导向定位部件,正向锁盘结构的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构插入基座的正向端部,并与基座的正向端部通过正向螺纹连接,一直旋入基座根部,旋入过程中导向定位部件保证电机安装定位精准,且电机定子不转动,线束不会出现缠绕现象,基座的一侧与机臂连接,多旋翼航空器电机与机臂均锁紧连接。反向锁盘结构的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构插入基座的反向端部,并与基座的反向端部通过反向螺纹连接,反向旋入过程中导向定位部件保证电机安装定位精准,且电机定子不转动,线束不会出现缠绕现象。
附图说明
图1表示本发明实施例1中提出的多旋翼航空器电机与机臂的连接器的整体结构示意图;
图2表示本发明实施例1中提出的多旋翼航空器电机与机臂的连接器的结构爆炸图;
图3表示本发明实施例1中提出的多旋翼航空器电机与机臂的连接器的剖视图;
图4表示本发明实施例2中提出的多旋翼航空器电机与机臂的连接器上电机转子旋向及电机定子所受反作用力方向示意图;
图5表示本发明实施例3中提出的多旋翼航空器电机与机臂的连接的流程示意图。
其中,1-基座;2-锁盘部件;3-导向定位部件;21-正向锁盘结构;22-反向锁盘结构;31-正向导向定位结构;32-反向导向定位结构;11-连接架;12-套筒;121-斜槽孔;锁盘接头-201;锁盘本体-202;122-平台;123-止转凹槽;203-止转凸台;124-导向定位槽;4-防松部件;13-第一固定孔;204-第二固定孔;5-防松外六角螺栓。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好地说明本实施例,附图某些部位会有省略、放大或缩小,并不代表实际尺寸;
对于本领域技术人员来说,附图中某些公知内容说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
附图中描述位置关系的仅用于示例性说明,不能理解为对本专利的限制;
实施例1
如图1与图2所示,本实施例提出了一种多旋翼航空器电机与机臂的连接器,此连接器包括基座1、锁盘部件2、导向定位部件3,基座1的一侧与机臂连接,所述锁盘部件2包括正向锁盘结构21与反向锁盘结构22,导向定位部件3包括正向导向定位结构31与反向导向定位结构32,正向导向定位结构31与反向导向定位结构32分别内嵌于正向锁盘结构21与反向锁盘结构22,正向锁盘结构21的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构31插入基座1的正向端部,并与基座1的正向端部通过正向螺纹连接;反向锁盘结构22的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构32插入基座1的反向端部,并与基座1的反向端部通过反向螺纹连接,导向定位部件3保证了电机安装定位精准。
参见图1,基座1包括连接架11与套筒12,连接架11的一端与机臂连接,连接架11的另一端与所述套筒12垂直连接,套筒12的正向端部与正向锁盘结构21通过正向螺纹连接,套筒12的反向端部与反向锁盘结构22通过反向螺纹连接。
在本实施例中,正向导向定位结构31与反向导向定位结构32均采用导向定位销。
本实施例提出的连接器包括基座1、锁盘部件2,正向锁盘结构21的一端与正向螺旋桨电机连接,另一端插入基座1的正向端部,并与基座1的正向端部通过正向螺纹连接,一直旋入电机连接座根部,旋入过程中电机定子不转动,线束不会出现缠绕现象,基座1的一侧与机臂连接,多旋翼飞机电机与机臂均锁紧连接。反向锁盘结构22的一端与反向螺旋桨电机连接,另一端基座1的反向端部,并与基座1的反向端部通过反向螺纹连接,反向旋入过程中电机定子不转动,线束不会出现缠绕现象。
参见图2及图3,正向锁盘结构21与反向锁盘结构22中的每一个均包括锁盘接头201、锁盘本体202沿套筒12的内壁向套筒12轴的径向方向延伸出平台122,平台122上设有若干个止转凹槽123,锁盘接头202上设有若干个止转凸 台203,所述锁盘接头201套装于锁盘本体202时,使得止转凸台203设置于止转凹槽123内。
锁盘接头201上设有有止转凸台203,基座1内设有平台122和止转凹槽123,使得正向锁盘结构21/反向锁盘结构22还未与基座1螺纹连接时就能实现止转功能,这样可以实现锁盘接头201静止不动,而正向锁盘结构21/反向锁盘结构22既可以轴向螺旋运动,又可以径向旋转运动,实现正向锁盘结构21/反向锁盘结构22螺纹锁紧锁盘接头。
如图3所示,沿套筒12的内壁还竖直设有导向定位槽124,分别内嵌于正向锁盘结构21与反向锁盘结构22的正向导向定位结构31与反向导向定位结构32通过导向定位槽124导入套筒12中,能够保证电机的精准安装。
正向锁盘结构21中的锁盘接头201通过螺栓与正向螺旋桨电机连接,反向锁盘结构22中的锁盘接头201通过螺栓与反向螺旋桨电机连接。在本实施例中,锁盘接头201通过防松外六角螺栓5与电机连接,正向锁盘结构21/反向锁盘结构22与基座1螺纹连接锁紧,在正向锁盘结构21/反向锁盘结构22螺纹锁紧力作用下,锁盘接头201的端面与基座1的平台存在足够大的摩擦力,再加上锁盘接头201上的止转凸台203和导向定位槽124中的导向定位结构,保证了电机与基座1的牢固可靠安装。
参见图2,此连接器还包括若干个防松部件4,基座1的外侧面上设有若干个第一固定孔13,锁盘本体202上设有若干个第二固定孔204,每一个防松部件4依次穿过基座1上的一个第一固定孔13、锁盘本体202上的一个第二固定孔204后锁紧,在本实施中,防松部件4为防松保险丝。
在具体实施时,结合实施例1的内容,对于正向螺旋桨电机部分的组装,将将正向导向定位结构31安装于锁盘接头201,锁盘接头201套装于锁盘本体202后定义为组件1,组件一与正向螺旋桨电机通过防松外六角螺栓锁紧连接,当然实际实施时不限于锁紧方式,并将以上组装好的部分定义为组件二,电机连接座1的连接架11的一端与机臂通过粘胶加铆钉安装,同以上的部分定义为组件三,将组件二的锁盘本体202涂上螺纹胶并通过正向导向定位结构31导向定位插入组件3中基座1的正向端部,然后通过定制力矩扳手螺旋旋入电机连接座根部,在旋入过程中,电机定子一直保持不转动,使得电机出线线束不会出现缠绕现象,最后锁紧锁盘本体202,正转电机组装完毕定义为组件四。
对于反向螺旋桨电机部分的组装:将另一套即反向导向定位结构32安装于另一个锁盘接头201,套入锁盘本体202定义为组件五,组件五与反向螺旋桨电机通过另一套防松外六角螺栓5锁紧连接,当然实际实施时也不限于锁紧方式定义为组件六,将组件六通过反向导向定位结构32导向定位插入组件四基座1的反向端部,然后通过定制力矩扳手螺旋旋入基座1的根部,旋入过程中电机定子一直保持不转动,使得线束不会出现缠绕现象,并锁紧本侧的锁盘本体,反向螺旋桨电机部分组装完毕。最后,两个方向的锁盘本体202与基座1之间安装防松保险丝,当然实际实施时,并不局限于此种防松方式,整个多旋翼飞机电机与机臂的连接安装完毕。
实施例2
在本实施例中,基于实施例1的连接器的基础结构,提出在套筒12上设有若干个斜槽孔121,在多旋翼航空器电机转子及螺旋桨的旋向下,电机定子受到反作用力,电子定子受到的反作用力传输至基座1上,基座1的正向端部和反向端部分别受到正向螺旋桨电机和反向螺旋桨电机的反作用力,图4所示的即是多旋翼航空器电机与机臂的连接器上电机转子旋向及电机定子所受反作用力方向示意图,其中,“箭头”代表电机定子所受的反作用力的大体方向,可以看出两股反作用力的方向相反,而由图3可以得出,斜槽孔121的倾斜方向设置有利于基座的抗弯抗扭。
实施例3
如图5所示,本实施例中提出了一种多旋翼航空器电机与机臂的连接方法,该方法包括依次进行的正向多旋翼航空器电机与机臂的连接方法、反向多旋翼航空器电机与机臂的连接方法,步骤为:
S1.将正向锁盘结构21的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构31插入基座1的正向端部,并与基座1的正向端部通过正向螺纹连接;
S2.将基座1的一侧与机臂连接;
S3.通过定制力矩扳手将正向锁盘结构21螺旋旋入基座1的根部;
S4.将反向锁盘结构22的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构32插入基座1的反向端部,并与基座1的反向端部通过反向螺纹连接;
S5.通过定制力矩扳手将反向锁盘结构22螺旋旋入基座1的根部。
在具体实施时,结合实施例1的内容,对于正向螺旋桨电机部分的组装,将 将正向导向定位结构31安装于锁盘接头201,锁盘接头202套装于锁盘本体201后定义为组件1,组件1与正向螺旋桨电机通过防松外六角螺栓锁紧连接,当然实际实施时不限于锁紧方式,并将以上组装好的部分定义为组件2,基座1的连接架11的一端与机臂通过粘胶加铆钉安装,同以上的部分定义为组件3,将组件2的锁盘本体201涂上螺纹胶并通过正向导向定位结构31导向定位插入组件3中基座1的正向端部,然后通过定制力矩扳手螺旋旋入基座根部,在旋入过程中,电机定子一直保持不转动,使得电机出线线束不会出现缠绕现象,最后锁紧锁盘本体201,正转电机组装完毕定义为组件4。
对于反向螺旋桨电机部分的组装:将另一套即反向导向定位结构32安装于另一个锁盘接头201,套入锁盘本体202定义为组件5,组件5与反向螺旋桨电机通过另一套防松外六角螺栓5锁紧连接,当然实际实施时也不限于锁紧方式定义为组件6,将组件6通过反向导向定位结构32导向定位插入组件4基座1的反向端部,然后通过定制力矩扳手螺旋旋入基座1的根部,旋入过程中电机定子一直保持不转动,使得线束不会出现缠绕现象,并锁紧本侧的锁盘本体,反向螺旋桨电机部分组装完毕。最后,两个方向的锁盘本体202与基座1之间安装防松保险丝,当然实际实施时,并不局限于此种防松方式,整个多旋翼航空器电机与机臂的连接安装完毕。
显然,本发明的上述实施例仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种多旋翼航空器电机与机臂的连接器,其特征在于,所述连接器包括基座(1)、锁盘部件(2)、导向定位部件(3),所述基座(1)的一侧与机臂连接,所述锁盘部件(2)包括正向锁盘结构(21)与反向锁盘结构(22),导向定位部件(3)包括正向导向定位结构(31)与反向导向定位结构(32),正向导向定位结构(31)与反向导向定位结构(32)分别内嵌于正向锁盘结构(21)与反向锁盘结构(22),正向锁盘结构(21)的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构(31)插入基座(1)的正向端部,并与基座(1)的正向端部通过正向螺纹连接;反向锁盘结构(22)的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构(32)插入基座(1)的反向端部,并与基座(1)的反向端部通过反向螺纹连接。
  2. 根据权利要求1所述的多旋翼航空器电机与机臂的连接器,其特征在于,所述基座(1)包括连接架(11)与套筒(12),连接架(11)的一端与机臂连接,连接架(11)的另一端与所述套筒(12)垂直连接,套筒(12)的正向端部与正向锁盘结构(21)通过正向螺纹连接,套筒(12)的反向端部与反向锁盘结构(22)通过反向螺纹连接。
  3. 根据权利要求2所述的多旋翼航空器电机与机臂的连接器,其特征在于,所述套筒(12)上设有若干个斜槽孔(121)。
  4. 根据权利要求2所述的多旋翼航空器电机与机臂的连接器,其特征在于,正向锁盘结构(21)与反向锁盘结构(22)中的每一个均包括锁盘接头(201)、锁盘本体(202)沿套筒(12)的内壁向套筒(12)轴的径向方向延伸出平台(122),所述平台(122)上设有若干个止转凹槽(123),所述锁盘接头(202)上设有若干个止转凸台(203),所述锁盘接头(201)套装于锁盘本体(202)时,使得止转凸台(203)设置于止转凹槽(123)内。
  5. 根据权利要求4所述的多旋翼航空器电机与机臂的连接器,其特征在于,沿套筒(12)的内壁还竖直设有导向定位槽(124),分别内嵌于正向锁盘结构(21)与反向锁盘结构(22)的正向导向定位结构(31)与反向导向定位结构(32)通过导向定位槽(124)导入套筒(12)中。
  6. 根据权利要求5所述的多旋翼航空器电机与机臂的连接器,其特征在于, 正向导向定位结构(31)与反向导向定位结构(32)均采用导向定位销。
  7. 根据权利要求4所述的多旋翼航空器电机与机臂的连接器,其特征在于,正向锁盘结构(21)中的锁盘接头(201)通过螺栓与正向螺旋桨电机连接,反向锁盘结构(22)中的锁盘接头(201)通过螺栓与反向螺旋桨电机连接。
  8. 根据权利要求4所述的多旋翼航空器电机与机臂的连接器,其特征在于,所述连接器还包括若干个防松部件(4),所述基座(1)的外侧面上设有若干个第一固定孔(13),所述锁盘本体(202)上设有若干个第二固定孔(204),每一个防松部件(4)依次穿过基座(1)上的一个第一固定孔(13)、锁盘本体(202)上的一个第二固定孔(204)后锁紧。
  9. 根据权利要求8所述的多旋翼航空器电机与机臂的连接器,其特征在于,所述防松部件(4)为防松保险丝。
  10. 一种多旋翼航空器电机与机臂的连接方法,其特征在于,所述方法包括依次进行的正向多旋翼航空器电机与机臂的连接方法、反向多旋翼航空器电机与机臂的连接方法,步骤为:
    S1.将正向锁盘结构(21)的一端与正向螺旋桨电机连接,另一端通过正向导向定位结构(31)插入基座(1)的正向端部,并与基座(1)的正向端部通过正向螺纹连接;
    S2.将基座(1)的一侧与机臂连接;
    S3.通过定制力矩扳手将正向锁盘结构(21)螺旋旋入基座(1)的根部;
    S4.将反向锁盘结构(22)的一端与反向螺旋桨电机连接,另一端通过反向导向定位结构(32)插入基座(1)的反向端部,并与基座(1)的反向端部通过反向螺纹连接;
    S5.通过定制力矩扳手将反向锁盘结构(22)螺旋旋入基座(1)的根部。
PCT/CN2023/117534 2022-09-15 2023-09-07 多旋翼航空器电机与机臂的连接器及连接方法 WO2024055899A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211123221.9A CN115520380A (zh) 2022-09-15 2022-09-15 多旋翼航空器电机与机臂的连接器及连接方法
CN202222464166.1U CN218806528U (zh) 2022-09-15 2022-09-15 一种多旋翼飞机电机与机臂的连接结构
CN202211123221.9 2022-09-15
CN202222464166.1 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024055899A1 true WO2024055899A1 (zh) 2024-03-21

Family

ID=90274233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117534 WO2024055899A1 (zh) 2022-09-15 2023-09-07 多旋翼航空器电机与机臂的连接器及连接方法

Country Status (1)

Country Link
WO (1) WO2024055899A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205311899U (zh) * 2015-12-25 2016-06-15 广州亿航智能技术有限公司 多旋翼载人飞行器
EP4011769A1 (fr) * 2020-12-16 2022-06-15 NEXTER Systems Dispositif de propulsion pour aérodyne à voilure tournante et à décollage et atterrissage verticaux et aérodyne équipé d'un tel dispositif de propulsion
CN216969996U (zh) * 2021-11-15 2022-07-15 深圳市大疆创新科技有限公司 多旋翼无人飞行器
CN115520380A (zh) * 2022-09-15 2022-12-27 亿航智能设备(广州)有限公司 多旋翼航空器电机与机臂的连接器及连接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205311899U (zh) * 2015-12-25 2016-06-15 广州亿航智能技术有限公司 多旋翼载人飞行器
EP4011769A1 (fr) * 2020-12-16 2022-06-15 NEXTER Systems Dispositif de propulsion pour aérodyne à voilure tournante et à décollage et atterrissage verticaux et aérodyne équipé d'un tel dispositif de propulsion
CN216969996U (zh) * 2021-11-15 2022-07-15 深圳市大疆创新科技有限公司 多旋翼无人飞行器
CN115520380A (zh) * 2022-09-15 2022-12-27 亿航智能设备(广州)有限公司 多旋翼航空器电机与机臂的连接器及连接方法

Similar Documents

Publication Publication Date Title
US8425189B2 (en) Rotor mounting
CN106837977A (zh) 具有自动防松功能的双螺母结构
CN107356164B (zh) 一种空气舵传动结构
JP2015036586A (ja) シャフトカップリングアセンブリおよびシャフトを連結するための方法
WO2024055899A1 (zh) 多旋翼航空器电机与机臂的连接器及连接方法
EP2995830B1 (en) Flexible coupling
JP2014031872A (ja) 回転機械のロータ接続用治具、及びロータ接続方法
CN106370411B (zh) 一种用于悬臂涡轮盘的高温超速试验转接装置
CN115520380A (zh) 多旋翼航空器电机与机臂的连接器及连接方法
CA2924897C (en) Apparatus for preventing separation of downhole motor from drillstring
CN113618382B (zh) 一种花键轴拆卸装置
CN203308872U (zh) 螺纹连接防松结构及连接器用尾部附件和圆形连接器
CN104613061A (zh) 承弯接头和飞行器
CN110254730A (zh) 一种发电机安装装置及一种航空飞行器
CN218806528U (zh) 一种多旋翼飞机电机与机臂的连接结构
CN2675944Y (zh) 一种多轴联接传动的精确联轴装置
CN209688414U (zh) 超声波诊断设备及其显示器支撑臂
CN112360887B (zh) 连接转动机构
JPH01202141A (ja) ステータコアと前後ハウジングとの締結構造
EP3696917B1 (en) An electrical connector system
CN112128200A (zh) 一种单面连接螺栓
RU2715449C1 (ru) Способ позиционирования и фиксации деталей
CN216715023U (zh) 联轴器及传动装置
CN114083396A (zh) 涡轮转子叶尖磨转接夹具及其安装方法
CN213235136U (zh) 用于透平转子主轴和轮毂的连接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864631

Country of ref document: EP

Kind code of ref document: A1