WO2024055854A1 - Controlling method and related device for autonomous mobile device - Google Patents

Controlling method and related device for autonomous mobile device Download PDF

Info

Publication number
WO2024055854A1
WO2024055854A1 PCT/CN2023/116605 CN2023116605W WO2024055854A1 WO 2024055854 A1 WO2024055854 A1 WO 2024055854A1 CN 2023116605 W CN2023116605 W CN 2023116605W WO 2024055854 A1 WO2024055854 A1 WO 2024055854A1
Authority
WO
WIPO (PCT)
Prior art keywords
sign
mobile device
autonomous mobile
map
signal intensity
Prior art date
Application number
PCT/CN2023/116605
Other languages
French (fr)
Inventor
Shaoguang ZHANG
Degan LIN
Original Assignee
Willand (Beijing) Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Willand (Beijing) Technology Co., Ltd. filed Critical Willand (Beijing) Technology Co., Ltd.
Publication of WO2024055854A1 publication Critical patent/WO2024055854A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/648Performing a task within a working area or space, e.g. cleaning
    • G05D1/6484Performing a task within a working area or space, e.g. cleaning by taking into account parameters or characteristics of the working area or space, e.g. size or shape
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0285Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/224Output arrangements on the remote controller, e.g. displays, haptics or speakers
    • G05D1/2244Optic
    • G05D1/2245Optic providing the operator with a purely computer-generated representation of the environment of the vehicle, e.g. virtual reality
    • G05D1/2246Optic providing the operator with a purely computer-generated representation of the environment of the vehicle, e.g. virtual reality displaying a map of the environment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/229Command input data, e.g. waypoints
    • G05D1/2297Command input data, e.g. waypoints positional data taught by the user, e.g. paths
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • G05D1/248Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons generated by satellites, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/15Specific applications of the controlled vehicles for harvesting, sowing or mowing in agriculture or forestry
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/20Land use
    • G05D2107/23Gardens or lawns
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles

Definitions

  • the present invention relates to the technical field of autonomous mobile devices, and in particular, to a controlling method and a related device for an autonomous mobile device.
  • Autonomous mobile devices refer to mobile devices, for example, autonomous mobile devices are lawnmowers, sweepers, and so on.
  • An autonomous mobile device relies on positioning information of its own positioning module to perform working tasks.
  • the positioning module is limited by a fence, a high wall, a tree crown and other factors, which will reduce positioning accuracy of the positioning module. If the accuracy of positioning declines, the autonomous mobile device will go out of a working area and easily collide with dynamic obstacles such as people or animals, leading to hurting people or animals, and damaging the autonomous mobile device. It can be seen that the security of autonomous mobile devices is low.
  • the present invention provides a controlling method and a related device for an autonomous mobile device to solve the problem of low security of the autonomous mobile device.
  • the present invention provides a controlling method for an autonomous mobile device, and the controlling method is applied to the autonomous mobile device, including:
  • each position of the autonomous mobile device by positional sampling by during a process of walking, and a signal intensity of a positioning signal corresponding to the position;
  • the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
  • the step of constructing the second map according to the sign includes:
  • the step of obtaining the sign corresponding to the position according to the signal intensity includes:
  • the step of obtaining the sign corresponding to the position according to the signal intensity includes:
  • the step of determining the target type of the sign to be set at the position according to the comparison result corresponding to the signal intensity includes:
  • a first sign type is determined as the target type of the sign to be set at the position, and the first sign type is a sign type indicating that the signal intensity of the positioning signal at the position is low;
  • a second sign type is determined as the target type of the sign to be set at the position, and the second sign type is a sign type for recommending to establish a base station at the position.
  • the method further includes:
  • the present invention further provides a controlling method for an autonomous mobile device, and the controlling method is applied to a control terminal, including:
  • the second map includes the position and a target color corresponding to the position, and the sign includes the target color.
  • the second map displays the position and the sign having a target type corresponding to the position, and the target type includes a first sign type for indicating that the signal intensity of the positioning signal at the position is low, and a second sign type for recommending to establish a base station at the position.
  • the present invention further provides an autonomous mobile device, including:
  • a controlling module configured to control the autonomous mobile device to walk along a boundary of a working area specified by a walking instruction
  • an obtaining module configured to obtain each position of the autonomous mobile device by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position;
  • the obtaining module further configured to obtain a sign corresponding to the position according to the signal intensity, and construct a second map according to the sign, and the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
  • the present invention further provides an autonomous mobile device, including a memory and a processor;
  • the memory is configured to store computer execution instructions
  • the processor is configured to execute the computer execution instructions stored in the memory to cause the autonomous mobile device to implement the controlling method for the autonomous mobile device as described above.
  • the present invention further provides a control terminal, including:
  • a sending module configured to send a walking instruction to an autonomous mobile device, wherein the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map comprising respective positions and respective signs corresponding to respective positions in a one-to-one relationship;
  • a receiving module configured to receive the second map sent by the autonomous mobile device, and display the second map.
  • the present invention further provides a control terminal, including a memory and a processor;
  • the memory is configured to store computer execution instructions
  • the processor is configured to execute the computer execution instructions stored in the memory to cause the autonomous mobile device to implement the controlling method for the autonomous mobile device as described above.
  • the present invention further provides a computer readable storage medium, where the computer readable storage medium stores computer execution instructions that, when executed by a processor, is configured to implement the controlling method for the autonomous mobile device as described above.
  • the autonomous mobile device when walking along a boundary of a working area specified by a walking instruction, obtains each position of the autonomous mobile device by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position, obtains a sign corresponding to the position based on the signal intensity, and creates a second map through the sign.
  • a sign is configured to indicate a signal intensity of a positioning signal of the autonomous mobile device at a position, so that signal intensities for positions where the autonomous mobile device passes through can be accurately understood through the second map, thereby facilitating an operator to guide the device to keep away from positions having positioning signals with low signal intensities, and preventing the autonomous mobile device from going out of the boundary of the working area, and improving the security of the autonomous mobile device.
  • FIG. 1 is a flowchart of a controlling method for an autonomous mobile device according to the first embodiment of the present invention.
  • FIG. 2 is an interface view of an autonomous mobile device/control terminal of the present invention.
  • FIG. 3 is a flowchart of a controlling method for an autonomous mobile device according to the second embodiment of the present invention.
  • FIG. 4 is a flowchart of a controlling method for an autonomous mobile device according to the third embodiment of the present invention.
  • FIG. 5 is another interface view of the autonomous mobile device/control terminal of the present invention.
  • FIG. 6 is yet another interface view of the autonomous mobile device/control terminal of the present invention.
  • FIG. 7 is a flowchart of a controlling method for an autonomous mobile device according to the fourth embodiment of the present invention.
  • FIG. 8 is a flowchart of a controlling method for an autonomous mobile device according to the fifth embodiment of the present invention.
  • FIG. 9 is a flowchart of a controlling method for an autonomous mobile device according to the sixth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a functional module of an autonomous mobile device of the present invention.
  • FIG. 11 is a schematic diagram of a function module of a control terminal of the present invention.
  • FIG. 12 is a schematic diagram of a hardware structure of an autonomous mobile device/control terminal of the present invention.
  • FIG. 1 is a flowchart of a controlling method for an autonomous mobile device according to the first embodiment of the present invention:
  • step S101 controlling the autonomous mobile device to walk along a boundary of a working area specified by a walking instruction.
  • an executive body is an autonomous mobile device.
  • a device used below refers to an autonomous mobile device.
  • the device can be a lawnmower, a sweeper, or a robot.
  • the device walks along the boundary of a working area specified by a walking instruction.
  • the walking instruction can be triggered by a user to the device. For example, the user inputs a working task on the device, and a working area and a working time are specified in the working task, and when the current time reaches the working time, the walking instruction is triggered to make the device walk along the boundary of the working area independently.
  • the walking instruction may also be sent by a control terminal.
  • the control terminal may be a terminal device loaded with a control program, and the control terminal, for example, can be a mobile phone, a computer, a tablet and so on.
  • the control terminal sends the walking instruction to the device, and the device parses the walking instruction to obtain a direction to be walked, and then the device walks along the direction.
  • the direction to be walked is tangent to the working area, that is, the device walks along the boundary of the working area specified by the walking instruction.
  • the control terminal continuously sends walking instructions to the device to change the direction to be walked, thus making the device walk along the boundary of the working area for a round.
  • Step S102 obtaining each position of the autonomous mobile device by positional sampling during a process of walking, and a signal intensity of a positioning signal corresponding to the position.
  • the device is positioned in the process of walking.
  • the device may use a RTK (Real-Time Kinematic) module to perform positional sampling to obtain each position, and obtain the signal intensity corresponding to the position.
  • RTK Real-Time Kinematic
  • the device collects PRN codes and carrier-to-noise ratios from observation data of satellites for positions where the device itself is located at intervals of time or distance.
  • a PRN code represents a satellite, and a satellite will produce a plurality of measurements (carrier-to-noise ratios) according to different frequency bands of transmission signals, the plurality of measurements are used as a group of observation data of the satellite.
  • the device After the device records observation data of satellites for all sampling points (positions) , the device firstly removes carrier-to-noise ratios that have been interfered and corresponding PRN codes.
  • the interference may be caused by occlusion of vegetation or reflection of buildings, and then the device removes carrier-to-noise ratios that below a threshold and corresponding PRN codes.
  • the unqualified carrier-to-noise ratios and corresponding PRN codes for the sampling points are removed.
  • the device Based on the number of same PRN codes in the observation data of respective satellites after the removal operation, the device counts the number of times that each satellite is observed by the device, and sorts respective satellites in descending order of the number of times, and selects the top N satellites as public satellites.
  • the device Based on original observation data of satellites for each sampling point (observation data of satellites in which removal has not been done) , the device determines the number of public satellites observed by the device at the sampling point, and determines a signal intensity of a positioning signal based on this number. The greater the number, the greater the signal intensity of the positioning signal of the device at the sampling point.
  • Step S103 obtaining a sign corresponding to the position according to the signal intensity, and constructing a second map according to the sign, where the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
  • the device obtains a sign corresponding to the position through the signal intensity, so that a second map can be created through the sign.
  • the sign is configured to indicate the signal intensity of the positioning signal of the device at the position.
  • the device records the path that has been walked by the device during the process of walking, and after the device completes walking, an initial map can be created through the path that has been walked by the device.
  • the device obtains a plurality of positions and corresponding signal intensities by means of positional sampling, and determines signs corresponding to the positions through the signal intensities, respectively, and the device can set the signs corresponding to the positions on the initial map to obtain the second map.
  • the device can display the second map, or send the second map to a control terminal, or display the second map and send the second map to the control terminal for displaying.
  • a sign corresponding to a position may be a display attribute of the position in the second map.
  • the shape of the position on the second map is triangular; if the signal intensity of the positioning signal of the device at the position is low, the shape of the position on the second map is circular, that is, the display attribute is a display shape of the position.
  • the display attribute may also be a color, for example, if the signal intensity of the positioning signal of the device at the position is high, the color of the position on the second map is green; if the signal intensity of the positioning signal of the device at the position is low, the color of the position on the second map is red.
  • FIG. 2 is a second map displayed by a device and/or a control terminal.
  • the second map shows respective positions and a walking path of the device, and different shapes are used for the positions to set signs of the positions, that is, positions with shapes of triangle and positions with shapes of circle are included.
  • the autonomous mobile device when walking along the boundary of the working area specified by the walking instruction, obtains each position by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position, obtains a sign corresponding to the position based on the signal intensity, and constructs a second map through the sign.
  • a sign is used to indicate a signal intensity of a positioning signal at a position, so that signal intensities for positions where the autonomous mobile device passes through can be accurately understood through the second map, thereby facilitating an operator to guide the device to keep away from positions having positioning signals with low signal intensities, and preventing the autonomous mobile device from going out of the boundary of the working area, and improving the security of the autonomous mobile device.
  • FIG. 3 is a flowchart of a controlling method for an autonomous mobile device according to the second embodiment of the present invention. Based on the first embodiment, step S103 includes:
  • step S103 obtaining a first map including a boundary and/or a channel that restricts the working area.
  • a first map is stored in a device.
  • the first map is created by the device during a mapping phase.
  • a control terminal controls the device to walk along the boundary of the working area specified by the working task, and the device performs positional sampling to obtain respective positions during the process of walking. After walking along the boundary for a round, the device can fit respective positions obtained by positional sampling into a virtual boundary, and the virtual boundary and the internal area within the virtual boundary may form the first map.
  • the first map includes a boundary and/or a channel that restricts the working area.
  • the first map is a map formed by the boundary of the lawn, or the first map is a map formed by the enclosing of roads around the lawn.
  • Step S302 setting respective signs corresponding to respective positions on the first map to obtain the second map.
  • the device After obtaining the first map, the device determines positions on the first map by current positional sampling, and sets signs corresponding to the positions on the first map to obtain a second map.
  • the frequency at which the device performs positional sampling to obtain positions is higher, for example, the device performs positional sampling by an interval of 0.2 meters to obtain one position, or the device performs positional sampling by an interval of 3 seconds to obtain one position.
  • the frequency at which the device performs positional sampling to obtain positions is lower, for example, the device performs positional sampling by an interval of 0.5 meters to obtain one position, or the device performs positional sampling by an interval of 5 seconds to obtain one position.
  • the device sets signs corresponding to respective positions on the first map to obtain the second map, and the first map includes a boundary and/or a channel that restricts the working area, so that the created second map can visually display the working area where the device performs the task.
  • FIG. 4 is a flowchart of a controlling method for an autonomous mobile device according to the third embodiment of the present invention. Based on the first embodiment, step S103 includes:
  • step S401 determining a target color corresponding to the position according to the signal intensity, and constructing a second map according to the sign, in which the sign includes the target color and is used to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
  • the device may set the target color of the position in the first map through the signal intensity observed at the position.
  • different signal intensities correspond to different colors.
  • the signal intensity is divided into 7 levels, and the signal intensity of level 1, 2, 3, 4, 5, 6 and 7 corresponds to light red, orange, red, green, cyan, blue, and purple, respectively. The higher the level, the greater the signal intensity.
  • each partition in which a signal intensity is located is determined, and each partition corresponds to a color system including colors, and a target color is determined in the color system by the signal intensity.
  • the partition [4, 6] corresponds to a green color system, the target color is light green if the signal intensity is 4; the corresponding target color is dark green if the signal intensity is 6.
  • a second map can be created according to target colors corresponding to respective positions, that is, the color of each position is a target color corresponding to the position in the second map.
  • different signal intensities correspond to different colors.
  • the color of a position is green, cyan, blue, or purple
  • the signal intensity of the positioning signal of the device at the position is high
  • the color of the position is purple
  • the signal intensity of the positioning signal of the device at the position is the highest.
  • the color of a position is light red, orange, or red
  • it can be determined that the signal intensity of the positioning signal of the device at the position is low
  • when the color of the position is light red, the signal intensity of the positioning signal of the device at the position is very low.
  • a control terminal displays a walking path of a device, and displays colors of different positions on the walking path.
  • the colors are different in color deepness, signal intensities of positioning signals of the device at positions on the path where the colors are located are different.
  • a display interface of a control terminal includes a control area and a display area, and a second map is displayed in the display area.
  • Coverage and Progress can be shown in the control area. Coverage represents the area of grass that has been mowed by a lawnmower, for example, the area of grass that has been mowed may be 0.0m 2 , and a corresponding progress value of Progress can be showed, for example, the progress value may be 0%.
  • a STOP/START button is also shown in the control area, for example, STOP indicates that the lawnmower is currently mowing, and if STOP is pressed the lawnmower will stop mowing.
  • a button of returning to a home page is shown in the control area, and the button of returning to the home page is the button marked with HOME in FIG. 6.
  • the communication mode between the control terminal and the lawnmower, electric quantity of the lawnmower, and communication quality with the lawnmower can also be displayed in the control area.
  • the control area can also be locked, for example, a button having a shape of lock in the control area can be clicked, and the control area can be locked or unlocked. Other buttons in the locked control area cannot respond to the click operation of the user. Colors on the boundary of the working area are displayed in the display area. If there are different colors on the boundary, the signal intensities of positions corresponding to the colors are different.
  • the device determines a target color corresponding to a signal intensity, thereby constructing a second map according to target colors corresponding to respective positions, so that the control terminal or device can accurately determine the signal intensity of the positioning signal of the device at a position through the color of the position on the second map.
  • FIG. 7 is a flowchart of a controlling method for an autonomous mobile device according to the fourth embodiment of the present invention. Based on the first embodiment or the second embodiment, step S103 includes:
  • step S701 comparing the signal intensity with a preset intensity to obtain a comparison result corresponding to the signal intensity.
  • a preset intensity is stored in the device, and if the signal intensity of the positioning signal of the device at a position reaches the preset intensity, it can be determined that the positioning accuracy of the device at the position is good.
  • Step S702 determining a target type of a sign to be set at the position according to the comparison result corresponding to the signal intensity.
  • the device After obtaining the signal intensity of each position, the device compares the signal intensity with the preset intensity to obtain the comparison result corresponding to the signal intensity.
  • the comparison result is, for example, that the signal intensity is greater than the preset intensity by n, where n is a positive value or a negative value.
  • the device determines a corresponding level of the signal intensity based on the comparison result of the signal intensity, that is, the level of the signal intensity is determined based on n. If n is different, the level is different.
  • the device determines the target type of the sign to be set through the level.
  • there are seven signs and each sign is a sign with a number of 1, 2, 3, 4, 5, 6, or 7, respectively.
  • Level 1 corresponds to a sign containing the number 1
  • level 2 corresponds to a sign containing the number 2
  • Level 7 corresponds to a sign containing the number 7.
  • the types of signs at respective levels can be the same or different.
  • signs at respective levels have different shapes of circle, square, triangle, etc. for example.
  • the signs are different in color.
  • the color for level 1 is light red
  • the color for level 2 is orange
  • the color for level 3 is red
  • the color for level 4 is green
  • the color for level 5 is cyan
  • the color for level 6 is blue
  • the color for level 6 is purple.
  • Step S703 determining the sign corresponding to the target type as the sign corresponding to the position.
  • the device After determining the target type of the sign corresponding to each position, the device determines the sign corresponding to the target type as the sign corresponding to the position.
  • the sign corresponding to the target type is set on the first map to instruct the control terminal to determine the signal intensity of the positioning signal of the corresponding position based on the sign corresponding to the target type.
  • FIG. 8 is a flowchart of a controlling method for an autonomous mobile device according to the fifth embodiment of the present invention. Based on the fourth embodiment, step S702 includes:
  • step S801 when the comparison result is that the signal intensity is less than the preset intensity, a first sign type is determined as the target type of the sign to be set at the position, and the first sign type is an sign type indicating that the signal intensity of the positioning signal at the position is low.
  • Step S802 when the comparison result is that the signal intensity is greater than or equal to the preset intensity, a second sign type is determined as the target type of the sign to be set at the position, and the second sign type is a sign type for recommending to establish a base station at the position.
  • the comparison result is that the signal intensity is less than the preset intensity, and the signal intensity is greater than or equal to the preset intensity.
  • the first sign type is determined as the target type of the sign to be set at the position. If the signal intensity is greater than or equal to the preset intensity, the second sign type is determined as the target type of the sign to be set at the position.
  • the first sign type is used to indicate the signal intensity of the positioning signal of the device at the position is low, while the second sign type is a sign type for recommending to establish a base station at the position, that is, the second sign type is used to indicate that the signal intensity of the positioning signal of the device at the position is high.
  • the control terminal can determine the best position for establishing the base station through the second sign type.
  • a sign of the first sign type may be red, while a sign of the second sign type may be green, that is, positions with low positioning accuracy are set to be red on the first map, and positions with high positioning accuracy are set to be green on the first map.
  • different types of signs are set by different comparison results between respective signal intensities and the preset intensity, so that the control terminal or device can determine signal intensities of positioning signals of the device at different positions through different types of signs, and then establish a base station through signal intensities of positioning signals, so as to improve the working efficiency of the autonomous mobile device.
  • the present invention further provides a controlling method for an autonomous mobile device.
  • FIG. 9 is a flowchart of a controlling method for an autonomous mobile device according to the sixth embodiment of the present invention, the method comprising:
  • step S901 sending a walking instruction to the autonomous mobile device, in which the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map including respective positions and respective signs corresponding to respective positions in a one-to-one relationship.
  • an executive body is a control terminal.
  • the control terminal is a terminal device loaded with a program controlling an autonomous mobile device, and the terminal device may be a mobile phone, a computer, or a tablet.
  • a device used below refers to an autonomous mobile device.
  • the device can be a lawnmower, a sweeper, or a robot.
  • control terminal controls the device to walk in the working area to create the map of the working area.
  • the control terminal may be a terminal device loaded with a control program, and the terminal device, for example, can be a mobile phone, a computer, a tablet, etc.
  • the control terminal sends a walking instruction to the device.
  • the device parses the walking instruction to obtain a direction to be walked, and the device walks along the direction.
  • the direction to be walked is tangent to the working area, that is, the device walks along the boundary of the working area specified by the walking instruction.
  • the control terminal continuously sends walking instructions to the device to change the direction to be walked, thus making the device walk along the boundary of the working area for a round. It can be understood that the walking instruction is used to instruct the autonomous mobile device to walk along the boundary of the working area for a round.
  • the device is positioned in the process of walking.
  • the device may use a RTK (Real-Time Kinematic) module to perform positional sampling to obtain each position, and obtain the signal intensity corresponding to the position.
  • RTK Real-Time Kinematic
  • the device collects PRN codes and carrier-to-noise ratios form observation data of satellites for positions where the device is located at intervals of time or distance.
  • a PRN code represents a satellite, and a satellite will produce a plurality of measurements (carrier-to-noise ratios) according to different frequency bands of transmission signals, the plurality of measurements are used as a group of observation data of the satellite.
  • the device After the device records observation data of satellites for all sampling points (positions) , the device firstly removes carrier-to-noise ratios that have been interfered and corresponding PRN codes.
  • the interference may be caused by occlusion of vegetation or reflection of buildings, and then the device removes carrier-to-noise ratios that below a threshold and corresponding PRN codes.
  • the unqualified carrier-to-noise ratios and corresponding PRN codes in the sampling points are removed.
  • the device Based on the number of same PRN codes in the observation data of respective satellites after the removal operation, the device counts the number of times that each satellite is observed by the device, and sorts respective satellites in descending order of the number of times, and selects the top N satellites as public satellites.
  • the device Based on original observation data of satellites for each sampling point (observation data of satellites in which removal has not been done) , the device determines the number of public satellites observed by the device at the sampling point, and determines a signal intensity of a positioning signal based on this number. The greater the number, the greater the signal intensity of the positioning signal of the device at the sampling point.
  • the device obtains a sign corresponding to the position through the signal intensity, so that a second map can be created through the sign.
  • the sign is configured to indicate the signal intensity of the positioning signal of the device at the position.
  • the device records the path that has been walked by the device during the process of walking, and after the device completes walking, an initial map can be created through the path that has been walked by the device.
  • the device obtains a plurality of positions and corresponding signal intensities by means of positional sampling, and determines signs corresponding to the positions through the signal intensities, respectively, and the device can set the signs corresponding to the positions on the initial map to obtain the second map.
  • the device can display the second map, or send the second map to a control terminal, or display the second map and send the second map to the control terminal for displaying.
  • a first map is stored in the device.
  • a second map is created by the first map and respective signs.
  • the first map is created by the device during a mapping phase. Before the device performs a working task, it is necessary to create a map.
  • a control terminal controls the device to walk along the boundary of the working area specified by the working task, and the device performs positional sampling to obtain respective positions during the process of walking. After walking along the boundary for a round, the device can fit respective positions obtained by positional sampling into a virtual boundary, and the virtual boundary and the internal area within the virtual boundary may form the first map.
  • the first map includes a boundary and/or a channel that restricts the working area.
  • the first map is a map formed by the boundary of the lawn, or the first map is a map formed by the enclosing of roads around the lawn.
  • the device determines positions on the first map by current positional sampling, and sets signs corresponding to the positions on the first map to obtain a second map.
  • the frequency at which the device performs positional sampling to obtain positions is higher, for example, the device performs positional sampling by an interval of 0.2 meters to obtain one position, or the device performs positional sampling by an interval of 3 seconds to obtain one position.
  • the frequency at which the device performs positional sampling to obtain positions is lower, for example, the device performs positional sampling by an interval of 0.5 meters to obtain one position, or the device performs positional sampling by an interval of 5 seconds to obtain one position.
  • Step S902 receiving the second map sent by the autonomous mobile device, and displaying the second map.
  • the control terminal After receiving the second map, the control terminal outputs prompt information, and the prompt information is used to whether to display signs corresponding to respective positions in the second map. If a determination operation is triggered based on the prompt information, the control terminal displays the second map, and displays respective positions and corresponding signs in the second map.
  • the prompt information may be displayed in the form of a prompt box, and the prompt box has a confirmation button and a deny button. If it is detected that the confirmation button is clicked, the click operation is a confirmation operation used to trigger the prompt information.
  • a sign corresponding to a position may be a display attribute of the position in the second map.
  • the shape of the position on the second map is triangular; if the signal intensity of the positioning signal of the device at the position is low, the shape of the position on the second map is circular, that is, the display attribute is a display shape of the position.
  • the display attribute may also be a color, for example, if the signal intensity of the positioning signal of the device at the position is high, the color of the position on the second map is green; if the signal intensity of the positioning signal of the device at the position is low, the color of the position on the second map is red.
  • FIG. 2 is a second map displayed by a device and/or a control terminal.
  • the second map shows respective positions and a walking path of the device, and different shapes are used for the positions to set signs of the positions, that is, positions with shapes of triangle and positions with shapes of circle are included.
  • the control terminal displays a second map, and respective positions on the boundary of the working area displayed in the second map have corresponding signs, and each sign is used to indicate a signal intensity of a positioning signal at a position. Therefore, signal intensities for positions where the autonomous mobile device passes through can be accurately understood through the second map, thereby facilitating an operator to guide the device to keep away from positions having positioning signals with low signal intensities, and preventing the autonomous mobile device from going out of the boundary of the working area, and improving the security of the autonomous mobile device.
  • the second map displayed by the control terminal includes each position and a corresponding target color, and the sign includes the target color.
  • the device may set the target color of the position in the first map through the signal intensity observed at the position.
  • different signal intensities correspond to different colors.
  • the signal intensity is divided into 7 levels, and the signal intensity of level 1, 2, 3, 4, 5, 6 and 7 corresponds to light red, orange, red, green, cyan, blue and purple, respectively. The higher the level, the greater the signal intensity.
  • each partition in which a signal intensity is located is determined, and each partition corresponds to a color system including colors, and a target color is determined in the color system by the signal intensity.
  • the partition [4, 6] corresponds to a green color system, the target color is light green if the signal intensity is 4; the corresponding target color is dark green if the signal intensity is 6.
  • the color of each position is set to a corresponding target color in the first map, and the target color is the sign corresponding to the position.
  • a second map can be created according to target colors corresponding to respective positions, that is, the color of each position is a target color corresponding to the position in the second map.
  • different signal intensities correspond to different colors.
  • the color of a position is green, cyan, blue, or purple
  • the signal intensity of the positioning signal of the device at the position is high, and when the color of the position is purple, the signal intensity of the positioning signal of the device at the position is the highest.
  • the color of a position is light red, orange, or red
  • it can be determined that the signal intensity of the positioning signal of the device at the position is low, and when the color of the position is light red, and the signal intensity of the positioning signal of the device at the position is very low.
  • the level of a signal may be further subdivided, for example, the signal intensity level corresponds to an RGB color table.
  • a ring of a colored ribbon is shown in a control terminal.
  • the second map can also be called a thermal map.
  • a control terminal displays a walking path of a device, and displays colors of different positions on the walking path.
  • the colors are different in color deepness, signal intensities of positioning signals of the device at positions on the path where the colors are located are different.
  • a display interface of a control terminal includes a control area and a display area, and a second map is displayed in the display area.
  • Coverage and Progress can be shown in the control area. Coverage represents the area of grass that has been mowed by a lawnmower, for example, the area of grass that has been mowed may be 0.0m 2 , and a corresponding progress value of Progress can be showed, for example, the progress value may be 0%.
  • a STOP/START button is also shown in the control area, for example, STOP indicates that the lawnmower is currently mowing, and if STOP is pressed the lawnmower will stop mowing.
  • a button of returning to a home page is shown in the control area, and the button of returning to the home page is the button marked with HOME in FIG. 6.
  • the communication mode between the control terminal and the lawnmower, electric quantity of the lawnmower, and communication quality with the lawnmower can also be displayed in the control area.
  • the control area can also be locked, for example, a button having a shape of lock in the control area can be clicked, and the control area can be locked or unlocked. Other buttons in the locked control area cannot respond to the click operation of the user. Colors on the boundary of the working area are displayed in the display area. If there are different colors on the boundary, the signal intensities of positions corresponding to the colors are different.
  • control terminal displays a color of a position based on the second map, thereby accurately determining the signal intensity of the positioning signal of the device at the position based on the color.
  • the second map displayed by the control terminal includes each position and a corresponding target color, and the sign includes the target color.
  • a preset intensity is stored in the device, and if the signal intensity of the positioning signal of the device at a position reaches the preset intensity, it can be determined that the positioning accuracy of the device at the position is good.
  • the device After obtaining the signal intensity of each position, the device compares the signal intensity with the preset intensity to obtain the comparison result corresponding to the signal intensity.
  • the comparison result is, for example, that the signal intensity is greater than the preset intensity by n, where n is a positive value or a negative value.
  • the device determines a corresponding level of the signal intensity based on the comparison result of the signal intensity, that is, the level of the signal intensity is determined based on n. If n is different, the level is different.
  • the device determines the target type of the sign to be set through the level.
  • there are seven signs and each sign is a sign with a number of 1, 2, 3, 4, 5, 6, or 7, respectively.
  • Level 1 corresponds to a sign containing the number 1
  • level 2 corresponds to a sign containing the number 2
  • Level 7 corresponds to a sign containing the number 7.
  • the signs are different in color.
  • the color for level 1 is light red
  • the color for level 2 is orange
  • the color for level 3 is red
  • the color for level 4 is green
  • the color for level 5 is cyan
  • the color for level 6 is blue
  • the color for level 6 is purple.
  • the device After determining the target type of the sign corresponding to each position, the device determines the sign corresponding to the target type as the sign corresponding to the position.
  • the comparison result is that the signal intensity is less than the preset intensity, and the signal intensity is greater than or equal to the preset intensity.
  • the first sign type is determined as the target type of the sign to be set at the position. If the signal intensity is greater than or equal to the preset intensity, the second sign type is determined as the target type of the sign to be set at the position.
  • the first sign type is used to indicate that the signal intensity of the positioning signal of the device at the position is low, while the second sign type is a sign type for recommending to establish a base station at the position, that is, the second sign type is used to indicate that the signal intensity of the positioning signal of the device at the position is high.
  • the control terminal can determine the best position for establishing the base station through the second sign type.
  • a sign of the first sign type may be red, while a sign of the second sign type may be green, that is, positions with low positioning accuracy are set to be red on the first map, and positions with high positioning accuracy are set to be green on the first map.
  • the control terminal displays each position and a corresponding sign having a target type based on the second map, the target type includes a first sign type indicating that the signal intensity of a position signal at the position is low, and a second sign type for recommending to establish a base station at the position.
  • the circular shapes of the positions in FIG. 2 are signs corresponding to the second sign type, and the triangular shapes of the positions are signs corresponding to the first sign type.
  • control terminal determines signal intensities of positioning signals of the device at different positions based on different types of signs in the displayed second map, and then establishes a base station through signal intensities of positioning signals to improve the working efficiency of the autonomous mobile device.
  • the present invention further provides an autonomous mobile device, referring to FIG. 10, the autonomous mobile device 1000 includes:
  • a controlling module 1010 configured to control the autonomous mobile device to walk along a boundary of a working area specified by a walking instruction
  • an obtaining module 1020 configured to obtain each position of the autonomous mobile device by positional sampling during a process of walking, and a signal intensity of a positioning signal corresponding to the position;
  • the obtaining module 1020 is further configured to obtain a sign corresponding to the position according to the signal intensity, and construct a second map according to the sign, wherein the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
  • the obtaining module 1020 includes:
  • an obtaining unit configured to obtain a first map including a boundary and/or a channel that restricts the working area
  • a setting unit configured to set respective signs corresponding to respective positions on the first map to obtain the second map.
  • the obtaining module 1020 includes:
  • a first determining unit configured to determine a target color corresponding to the position according to the signal intensity, and the sign includes the target color.
  • the obtaining module 1020 includes:
  • a comparison unit configured to compare the signal intensity with a preset intensity to obtain a comparison result corresponding to the signal intensity
  • a second determining unit configured to determine a target type of a sign to be set at the position according to the comparison result corresponding to the signal intensity
  • the second determining unit is further configured to determine the sign corresponding to the target type as the sign corresponding to the position.
  • the second determining unit includes:
  • a determining subunit configured to determine a first sign type as the target type of the position to be set at the position when the comparison result is that the signal intensity is less than the preset intensity, and the first sign type is a sign type indicating that the signal intensity of the positioning signal at the position is low;
  • the determining subunit is further configured to determine a second sign type as the target type of the sign to be set at the position when the comparison result is that the signal intensity is greater than or equal to the preset intensity, and the second sign type is a sign type for recommending to establish a base station at the position.
  • the autonomous mobile device 1000 includes:
  • a display module configured to display the second map and/or send the second map to the control terminal for displaying.
  • control terminal 1100 includes:
  • a sending module 1110 configured to send a walking instruction to an autonomous mobile device, in which the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map including respective positions and respective signs corresponding to respective positions in a one-to-one relationship;
  • a receiving module 1120 configured to receive the second map sent by the autonomous mobile device, and display the second map.
  • the second map includes each position and a corresponding target color
  • the sign includes the target color
  • the second map displays each position and a corresponding sign having a target type
  • the target type includes a first sign type indicating that the signal intensity of the positioning signal corresponding to the position is low and a second sign type for recommending to establish a base station at the position.
  • FIG. 12 is a schematic diagram of a hardware structure of an autonomous mobile device/control terminal of the present invention.
  • the autonomous mobile device/control terminal 1200 may include a processor 1201 such as a CPU, a memory 1202, and a transceiver 1203.
  • a processor 1201 such as a CPU
  • a memory 1202 such as a RAM
  • FIG. 12 does not constitute a limitation to the autonomous mobile device and may include more or less components than those shown in FIG. 12, or combinations of certain components, or different component arrangements.
  • the memory 1202 may be implemented by any type of a volatile or non-volatile memory device or a combination thereof, such as a static random access memory (SRAM) , an electrically erasable programmable read-only memory (EEPROM) , an erasable programmable read-only memory (EPROM) , a programmable read-only memory (PROM) , a read-only memory (ROM) , a magnetic memory, a flash memory, a disk, or an optical disc.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • the processor 1201 may invoke a computer program stored in the memory 1202 to complete all or part of the above steps of the control method for the autonomous mobile device.
  • the transceiver 1203 is used for receiving information transmitted by an external device and transmitting information to the external device.
  • a non-temporary computer-readable storage medium is provided, and instructions in the storage medium when executed by a processor of an autonomous mobile device/control terminal cause the autonomous mobile device/control terminal to execute the control method for the autonomous mobile device.
  • a computer program product includes a computer program, the computer program when executed by a processor of an autonomous mobile device cause the autonomous mobile device/control terminal to execute the control method for the autonomous mobile device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

An autonomous mobile device, a controlling method, and a computer readable storage medium. The method includes: controlling the autonomous mobile device to walk along a boundary of a working area specified by a walking instruction(step S101); obtaining each position of the autonomous mobile device by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position(step S102); obtaining a sign corresponding to the position according to the signal intensity, and constructing a second map according to the sign, in which the sign is used to configured the signal intensity of the positioning signal of the autonomous mobile device at the position(step S103). A sign indicates a signal intensity of a positioning signal at a position, so that signal intensities for positions where the autonomous mobile device passes through can be accurately understood through the second map, thereby facilitating an operator to guide the device to keep away from positions having positioning signals with low signal intensities, and preventing the autonomous mobile device from going out of the boundary of the working area, and improving the security of the autonomous mobile device.

Description

CONTROLLING METHOD AND RELATED DEVICE FOR AUTONOMOUS MOBILE DEVICE TECHNICAL FIELD
The present invention relates to the technical field of autonomous mobile devices, and in particular, to a controlling method and a related device for an autonomous mobile device.
BACKGROUND
Autonomous mobile devices refer to mobile devices, for example, autonomous mobile devices are lawnmowers, sweepers, and so on.
An autonomous mobile device relies on positioning information of its own positioning module to perform working tasks. However, the positioning module is limited by a fence, a high wall, a tree crown and other factors, which will reduce positioning accuracy of the positioning module. If the accuracy of positioning declines, the autonomous mobile device will go out of a working area and easily collide with dynamic obstacles such as people or animals, leading to hurting people or animals, and damaging the autonomous mobile device. It can be seen that the security of autonomous mobile devices is low.
SUMMARY
The present invention provides a controlling method and a related device for an autonomous mobile device to solve the problem of low security of the autonomous mobile device.
In one aspect, the present invention provides a controlling method for an autonomous mobile device, and the controlling method is applied to the autonomous mobile device, including:
controlling the autonomous mobile device to walk along a boundary of a working  area specified by a walking instruction;
obtaining each position of the autonomous mobile device by positional sampling by during a process of walking, and a signal intensity of a positioning signal corresponding to the position;
obtaining a sign corresponding to the position according to the signal intensity, and constructing a second map according to the sign, in which the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
In an embodiment, the step of constructing the second map according to the sign, includes:
obtaining a first map including a boundary and/or a channel that restricts the working area;
setting respective signs corresponding to respective positions on the first map to obtain the second map.
In an embodiment, the step of obtaining the sign corresponding to the position according to the signal intensity, includes:
determining a target color corresponding to the position according to the signal intensity, and the sign includes the target color.
In an embodiment, the step of obtaining the sign corresponding to the position according to the signal intensity, includes:
comparing the signal intensity with a preset intensity to obtain a comparison result corresponding to the signal intensity;
determining a target type of a sign to be set at the position according to the comparison result corresponding to the signal intensity;
determining the sign corresponding to the target type as the sign corresponding to the position.
In an embodiment, the step of determining the target type of the sign to be set at the position according to the comparison result corresponding to the signal intensity, includes:
when the comparison result is that the signal intensity is less than the preset intensity, a first sign type is determined as the target type of the sign to be set at the position, and the first sign type is a sign type indicating that the signal intensity of the positioning signal at the position  is low;
when the comparison result is that the signal intensity is greater than or equal to the preset intensity, a second sign type is determined as the target type of the sign to be set at the position, and the second sign type is a sign type for recommending to establish a base station at the position.
In an embodiment, after the second map is created according to the sign, the method further includes:
displaying the second map and/or sending the second map to a control terminal for displaying.
In another aspect, the present invention further provides a controlling method for an autonomous mobile device, and the controlling method is applied to a control terminal, including:
sending a walking instruction to the autonomous mobile device, and the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map including respective positions and respective signs corresponding to respective positions in a one-to-one relationship;
receiving the second map sent by the autonomous mobile device, and displaying the second map.
In an embodiment, the second map includes the position and a target color corresponding to the position, and the sign includes the target color.
In an embodiment, the second map displays the position and the sign having a target type corresponding to the position, and the target type includes a first sign type for indicating that the signal intensity of the positioning signal at the position is low, and a second sign type for recommending to establish a base station at the position.
In another aspect, the present invention further provides an autonomous mobile device, including:
a controlling module, configured to control the autonomous mobile device to walk along a boundary of a working area specified by a walking instruction;
an obtaining module, configured to obtain each position of the autonomous mobile device by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position;
the obtaining module further configured to obtain a sign corresponding to the position according to the signal intensity, and construct a second map according to the sign, and the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
In another aspect, the present invention further provides an autonomous mobile device, including a memory and a processor;
the memory is configured to store computer execution instructions;
the processor is configured to execute the computer execution instructions stored in the memory to cause the autonomous mobile device to implement the controlling method for the autonomous mobile device as described above.
In another aspect, the present invention further provides a control terminal, including:
a sending module, configured to send a walking instruction to an autonomous mobile device, wherein the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map comprising respective positions and respective signs corresponding to respective positions in a one-to-one relationship;
a receiving module, configured to receive the second map sent by the autonomous mobile device, and display the second map.
In another aspect, the present invention further provides a control terminal, including a memory and a processor;
the memory is configured to store computer execution instructions;
the processor is configured to execute the computer execution instructions stored in the memory to cause the autonomous mobile device to implement the controlling method for the autonomous mobile device as described above.
In another aspect, the present invention further provides a computer readable storage medium, where the computer readable storage medium stores computer execution instructions that, when executed by a processor, is configured to implement the controlling method for the autonomous mobile device as described above.
For a controlling method and a related device for an autonomous mobile device provided in the present invention, the autonomous mobile device when walking along a boundary of a working area specified by a walking instruction, obtains each position of the autonomous mobile device by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position, obtains a sign corresponding to the position based on the signal intensity, and creates a second map through the sign. In the present invention, a sign is configured to indicate a signal intensity of a positioning signal of the autonomous mobile device at a position, so that signal intensities for positions where the autonomous mobile device passes through can be accurately understood through the second map, thereby facilitating an operator to guide the device to keep away from positions having positioning signals with low signal intensities, and preventing the autonomous mobile device from going out of the boundary of the working area, and improving the security of the autonomous mobile device.
BRIEF DESCRIPTION OF DRAWINGS
The accompanying drawings herein, which are incorporated in the specification and constitute a part of the specification, illustrate embodiments that comply with the present disclosure, and are used to illustrate principles of the present disclosure with the specification.
FIG. 1 is a flowchart of a controlling method for an autonomous mobile device according to the first embodiment of the present invention.
FIG. 2 is an interface view of an autonomous mobile device/control terminal of the present invention.
FIG. 3 is a flowchart of a controlling method for an autonomous mobile device according to the second embodiment of the present invention.
FIG. 4 is a flowchart of a controlling method for an autonomous mobile device  according to the third embodiment of the present invention.
FIG. 5 is another interface view of the autonomous mobile device/control terminal of the present invention.
FIG. 6 is yet another interface view of the autonomous mobile device/control terminal of the present invention.
FIG. 7 is a flowchart of a controlling method for an autonomous mobile device according to the fourth embodiment of the present invention.
FIG. 8 is a flowchart of a controlling method for an autonomous mobile device according to the fifth embodiment of the present invention.
FIG. 9 is a flowchart of a controlling method for an autonomous mobile device according to the sixth embodiment of the present invention.
FIG. 10 is a schematic diagram of a functional module of an autonomous mobile device of the present invention.
FIG. 11 is a schematic diagram of a function module of a control terminal of the present invention.
FIG. 12 is a schematic diagram of a hardware structure of an autonomous mobile device/control terminal of the present invention.
The specific embodiments of the present disclosure have been shown according to the above accompanying drawings and are described in detail herein. These accompanying drawings and the written description are not intended to limit the scope of the present disclosure in any way, but to illustrate concepts of the present disclosure to those of ordinary skill in the art with reference to specific embodiments.
DESCRIPTION OF EMBODIMENTS
The exemplary embodiments will be described in detail here and the examples are shown in the accompanying drawings. When the following description refers to the accompanying drawings, unless otherwise indicated, the same numbers in different accompanying drawings represent the same or similar elements. The embodiments described in the following exemplary embodiments do not represent all embodiments consistent with the  present disclosure. On the contrary they are only examples of devices and methods consistent with some aspects of the present disclosure as detailed in the appended claims.
The following is a detailed explanation of the technical solutions of the present invention and how the technical solutions of the application solve the above technical problems with specific examples. The following specific embodiments may be combined with each other and the same or similar concepts or processes may not be repeated in some embodiments. Embodiments of the present invention will be described below in combination with the drawings.
Referring to FIG. 1, FIG. 1 is a flowchart of a controlling method for an autonomous mobile device according to the first embodiment of the present invention:
step S101, controlling the autonomous mobile device to walk along a boundary of a working area specified by a walking instruction.
In the present embodiment, an executive body is an autonomous mobile device. For ease of description, a device used below refers to an autonomous mobile device. The device can be a lawnmower, a sweeper, or a robot.
It is necessary to create a map of a working area corresponding to a working task before the device performs the working task. For this, the device walks along the boundary of a working area specified by a walking instruction. The walking instruction can be triggered by a user to the device. For example, the user inputs a working task on the device, and a working area and a working time are specified in the working task, and when the current time reaches the working time, the walking instruction is triggered to make the device walk along the boundary of the working area independently.
The walking instruction may also be sent by a control terminal. The control terminal may be a terminal device loaded with a control program, and the control terminal, for example, can be a mobile phone, a computer, a tablet and so on. The control terminal sends the walking instruction to the device, and the device parses the walking instruction to obtain a direction to be walked, and then the device walks along the direction. The direction to be walked is tangent to the working area, that is, the device walks along the boundary of the working area specified by the walking instruction. The control terminal continuously sends walking instructions to the device to change the direction to be walked, thus making the device walk along the boundary  of the working area for a round.
Step S102, obtaining each position of the autonomous mobile device by positional sampling during a process of walking, and a signal intensity of a positioning signal corresponding to the position.
The device is positioned in the process of walking. The device may use a RTK (Real-Time Kinematic) module to perform positional sampling to obtain each position, and obtain the signal intensity corresponding to the position. Specifically, in the process of walking, the device collects PRN codes and carrier-to-noise ratios from observation data of satellites for positions where the device itself is located at intervals of time or distance. A PRN code represents a satellite, and a satellite will produce a plurality of measurements (carrier-to-noise ratios) according to different frequency bands of transmission signals, the plurality of measurements are used as a group of observation data of the satellite.
After the device records observation data of satellites for all sampling points (positions) , the device firstly removes carrier-to-noise ratios that have been interfered and corresponding PRN codes. The interference may be caused by occlusion of vegetation or reflection of buildings, and then the device removes carrier-to-noise ratios that below a threshold and corresponding PRN codes. Through these two steps, the unqualified carrier-to-noise ratios and corresponding PRN codes for the sampling points are removed. Based on the number of same PRN codes in the observation data of respective satellites after the removal operation, the device counts the number of times that each satellite is observed by the device, and sorts respective satellites in descending order of the number of times, and selects the top N satellites as public satellites.
Based on original observation data of satellites for each sampling point (observation data of satellites in which removal has not been done) , the device determines the number of public satellites observed by the device at the sampling point, and determines a signal intensity of a positioning signal based on this number. The greater the number, the greater the signal intensity of the positioning signal of the device at the sampling point.
Step S103, obtaining a sign corresponding to the position according to the signal intensity, and constructing a second map according to the sign, where the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the  position.
The device obtains a sign corresponding to the position through the signal intensity, so that a second map can be created through the sign. The sign is configured to indicate the signal intensity of the positioning signal of the device at the position.
In one example, the device records the path that has been walked by the device during the process of walking, and after the device completes walking, an initial map can be created through the path that has been walked by the device. During the process of walking, the device obtains a plurality of positions and corresponding signal intensities by means of positional sampling, and determines signs corresponding to the positions through the signal intensities, respectively, and the device can set the signs corresponding to the positions on the initial map to obtain the second map. The device can display the second map, or send the second map to a control terminal, or display the second map and send the second map to the control terminal for displaying.
A sign corresponding to a position may be a display attribute of the position in the second map. For example, if the signal intensity of the positioning signal of the device at the position is high, the shape of the position on the second map is triangular; if the signal intensity of the positioning signal of the device at the position is low, the shape of the position on the second map is circular, that is, the display attribute is a display shape of the position. The display attribute may also be a color, for example, if the signal intensity of the positioning signal of the device at the position is high, the color of the position on the second map is green; if the signal intensity of the positioning signal of the device at the position is low, the color of the position on the second map is red.
Referring to FIG. 2, FIG. 2 is a second map displayed by a device and/or a control terminal. The second map shows respective positions and a walking path of the device, and different shapes are used for the positions to set signs of the positions, that is, positions with shapes of triangle and positions with shapes of circle are included.
In the present embodiment, the autonomous mobile device, when walking along the boundary of the working area specified by the walking instruction, obtains each position by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position, obtains a sign corresponding to the position based on the signal  intensity, and constructs a second map through the sign. In the present invention, a sign is used to indicate a signal intensity of a positioning signal at a position, so that signal intensities for positions where the autonomous mobile device passes through can be accurately understood through the second map, thereby facilitating an operator to guide the device to keep away from positions having positioning signals with low signal intensities, and preventing the autonomous mobile device from going out of the boundary of the working area, and improving the security of the autonomous mobile device.
Referring to FIG. 3, FIG. 3 is a flowchart of a controlling method for an autonomous mobile device according to the second embodiment of the present invention. Based on the first embodiment, step S103 includes:
step S103, obtaining a first map including a boundary and/or a channel that restricts the working area.
In the present embodiment, a first map is stored in a device. The first map is created by the device during a mapping phase. Before the device performs a working task, it is necessary to create a map. In this regard, a control terminal controls the device to walk along the boundary of the working area specified by the working task, and the device performs positional sampling to obtain respective positions during the process of walking. After walking along the boundary for a round, the device can fit respective positions obtained by positional sampling into a virtual boundary, and the virtual boundary and the internal area within the virtual boundary may form the first map.
In addition, the first map includes a boundary and/or a channel that restricts the working area. For example, if the working area is a lawn, the first map is a map formed by the boundary of the lawn, or the first map is a map formed by the enclosing of roads around the lawn.
Step S302, setting respective signs corresponding to respective positions on the first map to obtain the second map.
After obtaining the first map, the device determines positions on the first map by current positional sampling, and sets signs corresponding to the positions on the first map to obtain a second map.
It should be noted that when the device creates the first map, the frequency at which  the device performs positional sampling to obtain positions is higher, for example, the device performs positional sampling by an interval of 0.2 meters to obtain one position, or the device performs positional sampling by an interval of 3 seconds to obtain one position. Compared with the frequency at which positions are obtained on the first map, when the device creates the second map, the frequency at which the device performs positional sampling to obtain positions is lower, for example, the device performs positional sampling by an interval of 0.5 meters to obtain one position, or the device performs positional sampling by an interval of 5 seconds to obtain one position.
In the present embodiment, the device sets signs corresponding to respective positions on the first map to obtain the second map, and the first map includes a boundary and/or a channel that restricts the working area, so that the created second map can visually display the working area where the device performs the task.
Referring to FIG. 4, FIG. 4 is a flowchart of a controlling method for an autonomous mobile device according to the third embodiment of the present invention. Based on the first embodiment, step S103 includes:
step S401, determining a target color corresponding to the position according to the signal intensity, and constructing a second map according to the sign, in which the sign includes the target color and is used to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
In the present embodiment, the device may set the target color of the position in the first map through the signal intensity observed at the position.
In one example, different signal intensities correspond to different colors. For example, the signal intensity is divided into 7 levels, and the signal intensity of level 1, 2, 3, 4, 5, 6 and 7 corresponds to light red, orange, red, green, cyan, blue, and purple, respectively. The higher the level, the greater the signal intensity.
In another example, each partition in which a signal intensity is located is determined, and each partition corresponds to a color system including colors, and a target color is determined in the color system by the signal intensity. For example, the partition [4, 6] corresponds to a green color system, the target color is light green if the signal intensity is 4; the corresponding target color is dark green if the signal intensity is 6.
After the target color of the position corresponding to the signal intensity is determined, a second map can be created according to target colors corresponding to respective positions, that is, the color of each position is a target color corresponding to the position in the second map.
In one example, different signal intensities correspond to different colors. When the color of a position is green, cyan, blue, or purple, the signal intensity of the positioning signal of the device at the position is high, and when the color of the position is purple, the signal intensity of the positioning signal of the device at the position is the highest. If the color of a position is light red, orange, or red, it can be determined that the signal intensity of the positioning signal of the device at the position is low, and when the color of the position is light red, the signal intensity of the positioning signal of the device at the position is very low.
Referring to FIG. 5, a control terminal displays a walking path of a device, and displays colors of different positions on the walking path. The colors are different in color deepness, signal intensities of positioning signals of the device at positions on the path where the colors are located are different.
Further, referring to FIG. 6, a display interface of a control terminal includes a control area and a display area, and a second map is displayed in the display area. Coverage and Progress can be shown in the control area. Coverage represents the area of grass that has been mowed by a lawnmower, for example, the area of grass that has been mowed may be 0.0m2, and a corresponding progress value of Progress can be showed, for example, the progress value may be 0%. A STOP/START button is also shown in the control area, for example, STOP indicates that the lawnmower is currently mowing, and if STOP is pressed the lawnmower will stop mowing. A button of returning to a home page is shown in the control area, and the button of returning to the home page is the button marked with HOME in FIG. 6. The communication mode between the control terminal and the lawnmower, electric quantity of the lawnmower, and communication quality with the lawnmower can also be displayed in the control area. For example, it is shown in the control area that the electric quantity of the lawnmower is 98%, the communication mode between the lawnmower and the control terminal is Bluetooth, and the signal quality between the lawnmower and the control terminal is 4 bars of signal. In addition, the control area can also be locked, for example, a button having a shape  of lock in the control area can be clicked, and the control area can be locked or unlocked. Other buttons in the locked control area cannot respond to the click operation of the user. Colors on the boundary of the working area are displayed in the display area. If there are different colors on the boundary, the signal intensities of positions corresponding to the colors are different.
In the present embodiment, the device determines a target color corresponding to a signal intensity, thereby constructing a second map according to target colors corresponding to respective positions, so that the control terminal or device can accurately determine the signal intensity of the positioning signal of the device at a position through the color of the position on the second map.
Referring to FIG. 7, FIG. 7 is a flowchart of a controlling method for an autonomous mobile device according to the fourth embodiment of the present invention. Based on the first embodiment or the second embodiment, step S103 includes:
step S701, comparing the signal intensity with a preset intensity to obtain a comparison result corresponding to the signal intensity.
In the present embodiment, a preset intensity is stored in the device, and if the signal intensity of the positioning signal of the device at a position reaches the preset intensity, it can be determined that the positioning accuracy of the device at the position is good.
Step S702, determining a target type of a sign to be set at the position according to the comparison result corresponding to the signal intensity.
After obtaining the signal intensity of each position, the device compares the signal intensity with the preset intensity to obtain the comparison result corresponding to the signal intensity. The comparison result is, for example, that the signal intensity is greater than the preset intensity by n, where n is a positive value or a negative value. The device determines a corresponding level of the signal intensity based on the comparison result of the signal intensity, that is, the level of the signal intensity is determined based on n. If n is different, the level is different.
The device determines the target type of the sign to be set through the level. In one example, there are seven signs, and each sign is a sign with a number of 1, 2, 3, 4, 5, 6, or 7, respectively. Level 1 corresponds to a sign containing the number 1, and level 2 corresponds to a sign containing the number 2... Level 7 corresponds to a sign containing the number 7.
The types of signs at respective levels can be the same or different. For example, signs at respective levels have different shapes of circle, square, triangle, etc. for example.
In another example, if levels are different, the signs are different in color. For example, the color for level 1 is light red, the color for level 2 is orange, the color for level 3 is red, the color for level 4 is green, the color for level 5 is cyan, the color for level 6 is blue, and the color for level 6 is purple.
Step S703, determining the sign corresponding to the target type as the sign corresponding to the position.
After determining the target type of the sign corresponding to each position, the device determines the sign corresponding to the target type as the sign corresponding to the position.
In the present embodiment, by comparing the signal intensity with the preset intensity to determine the target type of the sign to be set at the position, the sign corresponding to the target type is set on the first map to instruct the control terminal to determine the signal intensity of the positioning signal of the corresponding position based on the sign corresponding to the target type.
Referring to FIG. 8, FIG. 8 is a flowchart of a controlling method for an autonomous mobile device according to the fifth embodiment of the present invention. Based on the fourth embodiment, step S702 includes:
step S801, when the comparison result is that the signal intensity is less than the preset intensity, a first sign type is determined as the target type of the sign to be set at the position, and the first sign type is an sign type indicating that the signal intensity of the positioning signal at the position is low.
Step S802, when the comparison result is that the signal intensity is greater than or equal to the preset intensity, a second sign type is determined as the target type of the sign to be set at the position, and the second sign type is a sign type for recommending to establish a base station at the position.
In the present embodiment, the comparison result is that the signal intensity is less than the preset intensity, and the signal intensity is greater than or equal to the preset intensity.
If the signal intensity is less than the preset intensity, the first sign type is determined  as the target type of the sign to be set at the position. If the signal intensity is greater than or equal to the preset intensity, the second sign type is determined as the target type of the sign to be set at the position. The first sign type is used to indicate the signal intensity of the positioning signal of the device at the position is low, while the second sign type is a sign type for recommending to establish a base station at the position, that is, the second sign type is used to indicate that the signal intensity of the positioning signal of the device at the position is high. The control terminal can determine the best position for establishing the base station through the second sign type.
A sign of the first sign type may be red, while a sign of the second sign type may be green, that is, positions with low positioning accuracy are set to be red on the first map, and positions with high positioning accuracy are set to be green on the first map.
In the present embodiment, different types of signs are set by different comparison results between respective signal intensities and the preset intensity, so that the control terminal or device can determine signal intensities of positioning signals of the device at different positions through different types of signs, and then establish a base station through signal intensities of positioning signals, so as to improve the working efficiency of the autonomous mobile device.
The present invention further provides a controlling method for an autonomous mobile device.
Referring to FIG. 9, FIG. 9 is a flowchart of a controlling method for an autonomous mobile device according to the sixth embodiment of the present invention, the method comprising:
step S901, sending a walking instruction to the autonomous mobile device, in which the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map including respective positions and respective signs corresponding to respective positions in a one-to-one relationship.
In the present embodiment, an executive body is a control terminal. The control terminal is a terminal device loaded with a program controlling an autonomous mobile device,  and the terminal device may be a mobile phone, a computer, or a tablet. For ease of description, a device used below refers to an autonomous mobile device. The device can be a lawnmower, a sweeper, or a robot.
It is necessary to create a map of a working area corresponding to a working task before the device performs the working task. When creating the map, the control terminal controls the device to walk in the working area to create the map of the working area. The control terminal may be a terminal device loaded with a control program, and the terminal device, for example, can be a mobile phone, a computer, a tablet, etc.
The control terminal sends a walking instruction to the device. The device parses the walking instruction to obtain a direction to be walked, and the device walks along the direction. The direction to be walked is tangent to the working area, that is, the device walks along the boundary of the working area specified by the walking instruction. The control terminal continuously sends walking instructions to the device to change the direction to be walked, thus making the device walk along the boundary of the working area for a round. It can be understood that the walking instruction is used to instruct the autonomous mobile device to walk along the boundary of the working area for a round.
The device is positioned in the process of walking. The device may use a RTK (Real-Time Kinematic) module to perform positional sampling to obtain each position, and obtain the signal intensity corresponding to the position. Specifically, in the process of walking, the device collects PRN codes and carrier-to-noise ratios form observation data of satellites for positions where the device is located at intervals of time or distance. A PRN code represents a satellite, and a satellite will produce a plurality of measurements (carrier-to-noise ratios) according to different frequency bands of transmission signals, the plurality of measurements are used as a group of observation data of the satellite.
After the device records observation data of satellites for all sampling points (positions) , the device firstly removes carrier-to-noise ratios that have been interfered and corresponding PRN codes. The interference may be caused by occlusion of vegetation or reflection of buildings, and then the device removes carrier-to-noise ratios that below a threshold and corresponding PRN codes. Through these two steps, the unqualified carrier-to-noise ratios and corresponding PRN codes in the sampling points are removed. Based on the  number of same PRN codes in the observation data of respective satellites after the removal operation, the device counts the number of times that each satellite is observed by the device, and sorts respective satellites in descending order of the number of times, and selects the top N satellites as public satellites.
Based on original observation data of satellites for each sampling point (observation data of satellites in which removal has not been done) , the device determines the number of public satellites observed by the device at the sampling point, and determines a signal intensity of a positioning signal based on this number. The greater the number, the greater the signal intensity of the positioning signal of the device at the sampling point.
The device obtains a sign corresponding to the position through the signal intensity, so that a second map can be created through the sign. The sign is configured to indicate the signal intensity of the positioning signal of the device at the position.
In one example, the device records the path that has been walked by the device during the process of walking, and after the device completes walking, an initial map can be created through the path that has been walked by the device. During the process of walking, the device obtains a plurality of positions and corresponding signal intensities by means of positional sampling, and determines signs corresponding to the positions through the signal intensities, respectively, and the device can set the signs corresponding to the positions on the initial map to obtain the second map. The device can display the second map, or send the second map to a control terminal, or display the second map and send the second map to the control terminal for displaying.
In another example, a first map is stored in the device. A second map is created by the first map and respective signs. The first map is created by the device during a mapping phase. Before the device performs a working task, it is necessary to create a map. In this regard, a control terminal controls the device to walk along the boundary of the working area specified by the working task, and the device performs positional sampling to obtain respective positions during the process of walking. After walking along the boundary for a round, the device can fit respective positions obtained by positional sampling into a virtual boundary, and the virtual boundary and the internal area within the virtual boundary may form the first map. The first map includes a boundary and/or a channel that restricts the working area. For example, if the  working area is a lawn, the first map is a map formed by the boundary of the lawn, or the first map is a map formed by the enclosing of roads around the lawn. After the device obtains the first map, the device determines positions on the first map by current positional sampling, and sets signs corresponding to the positions on the first map to obtain a second map.
It should be noted that when the device creates the first map, the frequency at which the device performs positional sampling to obtain positions is higher, for example, the device performs positional sampling by an interval of 0.2 meters to obtain one position, or the device performs positional sampling by an interval of 3 seconds to obtain one position. Compared with the frequency at which positions are obtained on the first map, when the device creates the second map, the frequency at which the device performs positional sampling to obtain positions is lower, for example, the device performs positional sampling by an interval of 0.5 meters to obtain one position, or the device performs positional sampling by an interval of 5 seconds to obtain one position.
Step S902, receiving the second map sent by the autonomous mobile device, and displaying the second map.
After receiving the second map, the control terminal outputs prompt information, and the prompt information is used to whether to display signs corresponding to respective positions in the second map. If a determination operation is triggered based on the prompt information, the control terminal displays the second map, and displays respective positions and corresponding signs in the second map. For example, the prompt information may be displayed in the form of a prompt box, and the prompt box has a confirmation button and a deny button. If it is detected that the confirmation button is clicked, the click operation is a confirmation operation used to trigger the prompt information.
A sign corresponding to a position may be a display attribute of the position in the second map. For example, if the signal intensity of the positioning signal of the device at the position is high, the shape of the position on the second map is triangular; if the signal intensity of the positioning signal of the device at the position is low, the shape of the position on the second map is circular, that is, the display attribute is a display shape of the position. The display attribute may also be a color, for example, if the signal intensity of the positioning signal of the device at the position is high, the color of the position on the second map is green; if the signal  intensity of the positioning signal of the device at the position is low, the color of the position on the second map is red.
Referring to FIG. 2, FIG. 2 is a second map displayed by a device and/or a control terminal. The second map shows respective positions and a walking path of the device, and different shapes are used for the positions to set signs of the positions, that is, positions with shapes of triangle and positions with shapes of circle are included.
In the present embodiment, the control terminal displays a second map, and respective positions on the boundary of the working area displayed in the second map have corresponding signs, and each sign is used to indicate a signal intensity of a positioning signal at a position. Therefore, signal intensities for positions where the autonomous mobile device passes through can be accurately understood through the second map, thereby facilitating an operator to guide the device to keep away from positions having positioning signals with low signal intensities, and preventing the autonomous mobile device from going out of the boundary of the working area, and improving the security of the autonomous mobile device.
In one embodiment, the second map displayed by the control terminal includes each position and a corresponding target color, and the sign includes the target color.
In the present embodiment, the device may set the target color of the position in the first map through the signal intensity observed at the position.
In one example, different signal intensities correspond to different colors. For example, the signal intensity is divided into 7 levels, and the signal intensity of level 1, 2, 3, 4, 5, 6 and 7 corresponds to light red, orange, red, green, cyan, blue and purple, respectively. The higher the level, the greater the signal intensity.
In another example, each partition in which a signal intensity is located is determined, and each partition corresponds to a color system including colors, and a target color is determined in the color system by the signal intensity. For example, the partition [4, 6] corresponds to a green color system, the target color is light green if the signal intensity is 4; the corresponding target color is dark green if the signal intensity is 6.
After the target color of the position corresponding to the signal intensity is determined, the color of each position is set to a corresponding target color in the first map, and the target color is the sign corresponding to the position.
After the target color of the position corresponding to the signal intensity is determined, a second map can be created according to target colors corresponding to respective positions, that is, the color of each position is a target color corresponding to the position in the second map.
In one example, different signal intensities correspond to different colors. When the color of a position is green, cyan, blue, or purple, the signal intensity of the positioning signal of the device at the position is high, and when the color of the position is purple, the signal intensity of the positioning signal of the device at the position is the highest. If the color of a position is light red, orange, or red, it can be determined that the signal intensity of the positioning signal of the device at the position is low, and when the color of the position is light red, and the signal intensity of the positioning signal of the device at the position is very low.
In one embodiment, the level of a signal may be further subdivided, for example, the signal intensity level corresponds to an RGB color table. Finally, a ring of a colored ribbon is shown in a control terminal. The second map can also be called a thermal map.
Referring to FIG. 5, a control terminal displays a walking path of a device, and displays colors of different positions on the walking path. The colors are different in color deepness, signal intensities of positioning signals of the device at positions on the path where the colors are located are different.
Further, referring to FIG. 6, a display interface of a control terminal includes a control area and a display area, and a second map is displayed in the display area. Coverage and Progress can be shown in the control area. Coverage represents the area of grass that has been mowed by a lawnmower, for example, the area of grass that has been mowed may be 0.0m2, and a corresponding progress value of Progress can be showed, for example, the progress value may be 0%. A STOP/START button is also shown in the control area, for example, STOP indicates that the lawnmower is currently mowing, and if STOP is pressed the lawnmower will stop mowing. A button of returning to a home page is shown in the control area, and the button of returning to the home page is the button marked with HOME in FIG. 6. The communication mode between the control terminal and the lawnmower, electric quantity of the lawnmower, and communication quality with the lawnmower can also be displayed in the control area. For example, it is shown in the control area that the electric quantity of the  lawnmower is 98%, the communication mode between the lawnmower and the control terminal is Bluetooth, and the signal quality between the lawnmower and the control terminal is 4 bars of signal. In addition, the control area can also be locked, for example, a button having a shape of lock in the control area can be clicked, and the control area can be locked or unlocked. Other buttons in the locked control area cannot respond to the click operation of the user. Colors on the boundary of the working area are displayed in the display area. If there are different colors on the boundary, the signal intensities of positions corresponding to the colors are different.
In the present embodiment, the control terminal displays a color of a position based on the second map, thereby accurately determining the signal intensity of the positioning signal of the device at the position based on the color.
In one embodiment, the second map displayed by the control terminal includes each position and a corresponding target color, and the sign includes the target color.
In the present embodiment, a preset intensity is stored in the device, and if the signal intensity of the positioning signal of the device at a position reaches the preset intensity, it can be determined that the positioning accuracy of the device at the position is good.
After obtaining the signal intensity of each position, the device compares the signal intensity with the preset intensity to obtain the comparison result corresponding to the signal intensity. The comparison result is, for example, that the signal intensity is greater than the preset intensity by n, where n is a positive value or a negative value. The device determines a corresponding level of the signal intensity based on the comparison result of the signal intensity, that is, the level of the signal intensity is determined based on n. If n is different, the level is different.
The device determines the target type of the sign to be set through the level. In one example, there are seven signs, and each sign is a sign with a number of 1, 2, 3, 4, 5, 6, or 7, respectively. Level 1 corresponds to a sign containing the number 1, and level 2 corresponds to a sign containing the number 2... Level 7 corresponds to a sign containing the number 7.
In another example, if levels are different, the signs are different in color. For example, the color for level 1 is light red, the color for level 2 is orange, the color for level 3 is red, the color for level 4 is green, the color for level 5 is cyan, the color for level 6 is blue, and the color for level 6 is purple.
After determining the target type of the sign corresponding to each position, the device determines the sign corresponding to the target type as the sign corresponding to the position.
In addition, the comparison result is that the signal intensity is less than the preset intensity, and the signal intensity is greater than or equal to the preset intensity.
If the signal intensity is less than the preset intensity, the first sign type is determined as the target type of the sign to be set at the position. If the signal intensity is greater than or equal to the preset intensity, the second sign type is determined as the target type of the sign to be set at the position. The first sign type is used to indicate that the signal intensity of the positioning signal of the device at the position is low, while the second sign type is a sign type for recommending to establish a base station at the position, that is, the second sign type is used to indicate that the signal intensity of the positioning signal of the device at the position is high. The control terminal can determine the best position for establishing the base station through the second sign type.
A sign of the first sign type may be red, while a sign of the second sign type may be green, that is, positions with low positioning accuracy are set to be red on the first map, and positions with high positioning accuracy are set to be green on the first map.
It is understandable that the control terminal displays each position and a corresponding sign having a target type based on the second map, the target type includes a first sign type indicating that the signal intensity of a position signal at the position is low, and a second sign type for recommending to establish a base station at the position. Referring to FIG. 2, the circular shapes of the positions in FIG. 2 are signs corresponding to the second sign type, and the triangular shapes of the positions are signs corresponding to the first sign type.
In the present embodiment, the control terminal determines signal intensities of positioning signals of the device at different positions based on different types of signs in the displayed second map, and then establishes a base station through signal intensities of positioning signals to improve the working efficiency of the autonomous mobile device.
The present invention further provides an autonomous mobile device, referring to FIG. 10, the autonomous mobile device 1000 includes:
a controlling module 1010, configured to control the autonomous mobile device to  walk along a boundary of a working area specified by a walking instruction;
an obtaining module 1020, configured to obtain each position of the autonomous mobile device by positional sampling during a process of walking, and a signal intensity of a positioning signal corresponding to the position;
the obtaining module 1020 is further configured to obtain a sign corresponding to the position according to the signal intensity, and construct a second map according to the sign, wherein the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
In an embodiment, the obtaining module 1020 includes:
an obtaining unit, configured to obtain a first map including a boundary and/or a channel that restricts the working area;
a setting unit, configured to set respective signs corresponding to respective positions on the first map to obtain the second map.
In one embodiment, the obtaining module 1020 includes:
a first determining unit, configured to determine a target color corresponding to the position according to the signal intensity, and the sign includes the target color.
In one embodiment, the obtaining module 1020 includes:
a comparison unit, configured to compare the signal intensity with a preset intensity to obtain a comparison result corresponding to the signal intensity;
a second determining unit, configured to determine a target type of a sign to be set at the position according to the comparison result corresponding to the signal intensity;
the second determining unit is further configured to determine the sign corresponding to the target type as the sign corresponding to the position.
In one embodiment, the second determining unit includes:
a determining subunit, configured to determine a first sign type as the target type of the position to be set at the position when the comparison result is that the signal intensity is less than the preset intensity, and the first sign type is a sign type indicating that the signal intensity of the positioning signal at the position is low;
the determining subunit is further configured to determine a second sign type as the target type of the sign to be set at the position when the comparison result is that the signal  intensity is greater than or equal to the preset intensity, and the second sign type is a sign type for recommending to establish a base station at the position.
In one embodiment, the autonomous mobile device 1000 includes:
a display module, configured to display the second map and/or send the second map to the control terminal for displaying.
The present invention further provides a control terminal. Referring to FIG. 11, the control terminal 1100 includes:
a sending module 1110, configured to send a walking instruction to an autonomous mobile device, in which the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map including respective positions and respective signs corresponding to respective positions in a one-to-one relationship;
a receiving module 1120, configured to receive the second map sent by the autonomous mobile device, and display the second map.
In one embodiment, the second map includes each position and a corresponding target color, and the sign includes the target color.
In one embodiment, the second map displays each position and a corresponding sign having a target type, the target type includes a first sign type indicating that the signal intensity of the positioning signal corresponding to the position is low and a second sign type for recommending to establish a base station at the position.
FIG. 12 is a schematic diagram of a hardware structure of an autonomous mobile device/control terminal of the present invention.
The autonomous mobile device/control terminal 1200 may include a processor 1201 such as a CPU, a memory 1202, and a transceiver 1203. Those skilled in the art will understand that the structure shown in FIG. 12 does not constitute a limitation to the autonomous mobile device and may include more or less components than those shown in FIG. 12, or combinations of certain components, or different component arrangements. The memory 1202 may be implemented by any type of a volatile or non-volatile memory device or a combination thereof,  such as a static random access memory (SRAM) , an electrically erasable programmable read-only memory (EEPROM) , an erasable programmable read-only memory (EPROM) , a programmable read-only memory (PROM) , a read-only memory (ROM) , a magnetic memory, a flash memory, a disk, or an optical disc.
The processor 1201 may invoke a computer program stored in the memory 1202 to complete all or part of the above steps of the control method for the autonomous mobile device.
The transceiver 1203 is used for receiving information transmitted by an external device and transmitting information to the external device.
A non-temporary computer-readable storage medium is provided, and instructions in the storage medium when executed by a processor of an autonomous mobile device/control terminal cause the autonomous mobile device/control terminal to execute the control method for the autonomous mobile device.
A computer program product is provided, and the computer program product includes a computer program, the computer program when executed by a processor of an autonomous mobile device cause the autonomous mobile device/control terminal to execute the control method for the autonomous mobile device.
After considering the specification and implementing the invention disclosed herein, those skilled in the art will easily think of other embodiments of the present disclosure. The purpose of the invention is to cover any variants, uses or adaptive changes of the present disclosure, these variants, uses or adaptive changes follow general principles of the present disclosure, and include common knowledge or conventional technical means in the art that are not disclosed herein. The specification and embodiments are only regarded as exemplary, and the true scope and spirit of this disclosure are indicated in the appended claims.
It should be understood that the present disclosure is not limited to the specific structure described above and shown in the drawings and various modifications and changes can be made without departing from the scope of this disclosure. The scope of this disclosure is limited only by the appended claims.

Claims (14)

  1. A controlling method for an autonomous mobile device, wherein the controlling method is applied to the autonomous mobile device, comprising steps of:
    controlling (S101) the autonomous mobile device to walk along a boundary of a working area specified by a walking instruction;
    obtaining (S102) each position of the autonomous mobile device by positional sampling during a process of walking, and a signal intensity of a positioning signal corresponding to the position;
    obtaining (S103) a sign corresponding to the position according to the signal intensity, and constructing a second map according to the sign, wherein the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
  2. The controlling method according to claim 1, wherein the step of constructing the second map according to the sign comprises:
    obtaining (S301) a first map comprising a boundary and/or a channel that restricts the working area;
    setting (S302) respective signs corresponding to respective positions on the first map to obtain the second map.
  3. The controlling method according to claim 1, wherein the step of obtaining the sign corresponding to the position according to the signal intensity comprises:
    determining (S401) a target color corresponding to the position according to the signal intensity, and the sign comprises the target color.
  4. The controlling method according to claim 1, wherein the step of obtaining the sign corresponding to the position according to the signal intensity comprises:
    comparing (S701) the signal intensity with a preset intensity to obtain a comparison result corresponding to the signal intensity;
    determining (S702) a target type of a sign to be set at the position according to the comparison result corresponding to the signal intensity;
    determining (S703) the sign corresponding to the target type as the sign corresponding to the position.
  5. The controlling method according to claim 4, wherein the step of determining the target type of the sign to be set at the position according to the comparison result corresponding to the signal intensity, comprises:
    when (S801) the comparison result is that the signal intensity is less than the preset intensity, a first sign type is determined as the target type of the sign to be set at the position, and the first sign type is a sign type indicating that the signal intensity of the positioning signal at the position is low;
    when (S802) the comparison result is that the signal intensity is greater than or equal to the preset intensity, a second sign type is determined as the target type of the sign to be set at the position, and the second sign type is a sign type for recommending to establish a base station at the position.
  6. The controlling method according to any one of claims 1 to 5, wherein after the second map is created according to the sign, the method further comprises:
    displaying the second map and/or sending the second map to a control terminal for displaying.
  7. A controlling method for an autonomous mobile device, wherein the controlling method is applied to a control terminal, comprising:
    sending a walking instruction to the autonomous mobile device, wherein the autonomous mobile device is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map comprising respective positions and respective signs corresponding to respective positions in a one-to-one relationship;
    receiving the second map sent by the autonomous mobile device, and displaying the second map.
  8. The controlling method according to claim 7, wherein the second map comprises the position and a target color corresponding to the position, and the sign comprises the target color.
  9. The controlling method according to claim 7, wherein the second map displays the position and the sign having a target type corresponding to the position, and the target type comprises a first sign type for indicating that the signal intensity of the positioning signal at the position is low, and a second sign type for recommending to establish a base station at the position.
  10. An autonomous mobile device (1000) , comprising:
    a controlling module (1010) , configured to control the autonomous mobile device (1000) to walk along a boundary of a working area specified by a walking instruction;
    an obtaining module (1020) , configured to obtain each position of the autonomous mobile device (1000) by positional sampling during a process of walking and a signal intensity of a positioning signal corresponding to the position;
    the obtaining module (1020) further configured to obtain a sign corresponding to the position according to the signal intensity, and construct a second map according to the sign, wherein the sign is configured to indicate the signal intensity of the positioning signal of the autonomous mobile device at the position.
  11. An autonomous mobile device (1000) , comprising a memory (1202) and a processor (1201) ;
    the memory (1202) is configured to store computer execution instructions;
    the processor (1201) is configured to execute the computer execution instructions stored in the memory (1202) to cause the autonomous mobile device (1000) to implement the controlling method for the autonomous mobile device (1000) according to any of claims 1 to 6.
  12. A control terminal (1100) , comprising:
    a sending module (1100) , configured to send a walking instruction to an autonomous mobile device (1000) , wherein the autonomous mobile device (1000) is instructed by the walking instruction to walk along a boundary of a working area, and to perform positional sampling to obtain each position and a signal intensity of a positioning signal corresponding to the position, and to obtain a corresponding sign according to the signal intensity, so as to obtain a second map comprising respective positions and respective signs corresponding to respective positions in a one-to-one relationship;
    a receiving module (1120) , configured to receive the second map sent by the autonomous mobile device (1000) , and display the second map.
  13. A control terminal (1100) , comprising a memory and a processor;
    the memory (1202) is configured to store computer execution instructions;
    the processor (1201) is configured to execute the computer execution instructions stored in the memory (1202) to cause the autonomous mobile device (1000) to implement the controlling method for the autonomous mobile device (1000) according to any of claims 7 to 9.
  14. A computer readable storage medium, wherein the computer readable storage medium stores computer execution instructions that, when executed by a processor (1201) , are configured to implement the controlling method for the autonomous mobile device (1000) according to any of claims 1 to 9.
PCT/CN2023/116605 2022-09-16 2023-09-01 Controlling method and related device for autonomous mobile device WO2024055854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211131444.X 2022-09-16
CN202211131444.XA CN115509227A (en) 2022-09-16 2022-09-16 Control method of autonomous mobile device and related device

Publications (1)

Publication Number Publication Date
WO2024055854A1 true WO2024055854A1 (en) 2024-03-21

Family

ID=84503943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116605 WO2024055854A1 (en) 2022-09-16 2023-09-01 Controlling method and related device for autonomous mobile device

Country Status (2)

Country Link
CN (1) CN115509227A (en)
WO (1) WO2024055854A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115509227A (en) * 2022-09-16 2022-12-23 未岚大陆(北京)科技有限公司 Control method of autonomous mobile device and related device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160129593A1 (en) * 2014-11-07 2016-05-12 F Robotics Acquisitions Ltd. Domestic robotic system and method
CN110769986A (en) * 2017-05-05 2020-02-07 美国iRobot公司 Method, system and equipment for drawing wireless communication signal to guide mobile robot
CN111158374A (en) * 2020-01-10 2020-05-15 惠州拓邦电气技术有限公司 Repositioning method, repositioning system, mobile robot and storage medium
CN113032501A (en) * 2019-12-09 2021-06-25 苏州宝时得电动工具有限公司 Map data sending and displaying method, device, equipment and storage medium
CN115509227A (en) * 2022-09-16 2022-12-23 未岚大陆(北京)科技有限公司 Control method of autonomous mobile device and related device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699986A (en) * 2016-01-13 2016-06-22 广东欧珀移动通信有限公司 Intelligent mobile terminal pose adjusting prompting method and apparatus thereof, and intelligent mobile terminal
CN113110416B (en) * 2016-12-15 2023-11-07 苏州宝时得电动工具有限公司 Operation method of self-mobile device, memory and server
CN109084783A (en) * 2017-06-13 2018-12-25 纵目科技(上海)股份有限公司 Map constructing method, system, car-mounted terminal and the storage medium of band signal intensity
CN107708063A (en) * 2017-10-31 2018-02-16 珠海格力电器股份有限公司 Signal map generation method and device and electronic equipment
CN109687921A (en) * 2018-12-05 2019-04-26 深圳豪客互联网有限公司 A kind of cellular signal strength detection method and device
CN112578779A (en) * 2019-09-29 2021-03-30 苏州宝时得电动工具有限公司 Map establishing method, self-moving equipment and automatic working system
US20210255638A1 (en) * 2020-02-19 2021-08-19 Positec Power Tools (Suzhou) Co., Ltd. Area Division and Path Forming Method and Apparatus for Self-Moving Device and Automatic Working System
CN112702693B (en) * 2020-12-23 2023-06-23 南京苏美达智能技术有限公司 Map construction method and positioning method of self-walking equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160129593A1 (en) * 2014-11-07 2016-05-12 F Robotics Acquisitions Ltd. Domestic robotic system and method
CN110769986A (en) * 2017-05-05 2020-02-07 美国iRobot公司 Method, system and equipment for drawing wireless communication signal to guide mobile robot
CN113032501A (en) * 2019-12-09 2021-06-25 苏州宝时得电动工具有限公司 Map data sending and displaying method, device, equipment and storage medium
CN111158374A (en) * 2020-01-10 2020-05-15 惠州拓邦电气技术有限公司 Repositioning method, repositioning system, mobile robot and storage medium
CN115509227A (en) * 2022-09-16 2022-12-23 未岚大陆(北京)科技有限公司 Control method of autonomous mobile device and related device

Also Published As

Publication number Publication date
CN115509227A (en) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2024055854A1 (en) Controlling method and related device for autonomous mobile device
AU2017376716B2 (en) Unmanned aerial vehicle operating method and device
US10386844B2 (en) System and method for using geo-fenced guidance lines
CN109491397B (en) Mowing robot and mowing area defining method thereof
US20210150184A1 (en) Target region operation planning method and apparatus, storage medium, and processor
WO2018094661A1 (en) Flight course planning method for agricultural unmanned aerial vehicle, and ground control end
EP3366100A1 (en) Method and system for navigating a robotic garden tool
CN108919814A (en) Grass trimmer working region generation method, apparatus and system
AU2014292142A1 (en) System for monitoring and controlling activities of at least one gardening tool within at least one activity zone
EP4075229B1 (en) Improved installation for a robotic work tool
CN110033497B (en) Region calibration method, device, electronic equipment and computer readable storage medium
EP3695701B1 (en) Robotic vehicle for boundaries determination
CN208752672U (en) A kind of Urban Park Green Space monitoring system
WO2023217231A1 (en) Operation boundary generation method, operation control method, equipment, and storage medium
CN112148813A (en) Random mower partitioning method and random mower
CN114995444A (en) Method, device, remote terminal and storage medium for establishing virtual working boundary
CN112204488A (en) Working method and device of self-moving equipment and self-moving equipment
US20240192704A1 (en) Map creating method and apparatus for autonomous robot, device, and storage medium
EP4209855B1 (en) Method for path planning of a gardening device, automatic gardening device and computer program product
EP4296722A1 (en) Method for recommending installation position of base station, storage medium, mower, and mobile electronic device
CN109709971A (en) For the method and apparatus of plant protection, storage medium and electronic equipment
CN114815812A (en) Operation control method and device for mowing robot, electronic equipment and storage medium
WO2023134659A1 (en) Map processing method, self-moving gardening device, and automatic mower
WO2022264409A1 (en) Information processing device, information processing method, and program
US20240248471A1 (en) Moving robot and control method thereof