WO2024055793A1 - 投影设备及投影画质调整方法 - Google Patents

投影设备及投影画质调整方法 Download PDF

Info

Publication number
WO2024055793A1
WO2024055793A1 PCT/CN2023/112977 CN2023112977W WO2024055793A1 WO 2024055793 A1 WO2024055793 A1 WO 2024055793A1 CN 2023112977 W CN2023112977 W CN 2023112977W WO 2024055793 A1 WO2024055793 A1 WO 2024055793A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
projection
color
background color
parameter
Prior art date
Application number
PCT/CN2023/112977
Other languages
English (en)
French (fr)
Inventor
唐高明
刘显荣
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2024055793A1 publication Critical patent/WO2024055793A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof

Definitions

  • the present application relates to the technical field of projection equipment, and in particular to a projection equipment and a projection image quality adjustment method.
  • a projection device is a display device that can project images or videos onto a screen.
  • the projection equipment needs to project the projection screen content on the curtain wall through the light emitting component.
  • the curtain wall can be a screen used in conjunction with projection equipment, such as a Fresnel hard screen.
  • the curtain wall can also be a plane set in the projection direction of the light emitting component, such as a wall or ceiling.
  • the presentation effect of the projected image will be affected by the color of the curtain wall.
  • the color of the curtain wall may also be different.
  • the color of the wall surface is determined by the color of the wallpaper or wall paint. That is, in some application scenarios, the color of the curtain wall is not pure white, which will cause different effects on the light of the projected image. Reflection distorts the colors viewed by users and reduces user experience.
  • a projection device including: a light emitting component, a camera, and a controller.
  • the light emitting component is configured to project projection content to the projection surface;
  • the camera is configured to capture sampling images; and the controller is configured to perform the following program steps:
  • control the light emitting component In response to the control instruction, control the light emitting component to project a corrected image to the projection surface, where the corrected image includes a chart based on standard color parameters;
  • Some embodiments of the present application provide a projection image quality adjustment method, which is applied to the above-mentioned projection equipment.
  • the projection equipment includes a light emitting component, a camera and a controller.
  • the projection image quality adjustment method includes:
  • control the light emitting component In response to the control instruction, control the light emitting component to project a corrected image to the projection surface, where the corrected image includes a chart based on standard color parameters;
  • Figure 1 is a schematic diagram of the projection state of the projection device according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a projection device according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of the circuit architecture of a projection device according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of an optical path of a projection device according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of the system framework of a projection device according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of a projection device with a camera according to an embodiment of the present application.
  • Figure 7 is a schematic flowchart of image quality adjustment according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of the background color value extraction position points in the sampled image according to an embodiment of the present application.
  • Figure 9 is a schematic flowchart of controlling projection of a light emitting component according to an embodiment of the present application.
  • Figure 10 is a schematic flow chart of resampling according to an embodiment of the present application.
  • Figure 11 is a schematic flowchart of extracting stored white balance parameters according to an embodiment of the present application.
  • Figure 12 is a schematic flowchart of storing white balance parameters according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various types of projection equipment.
  • the following will take a projector as an example to explain the projection equipment and projection image quality adjustment methods.
  • a projector is a device that can project images or videos onto a screen.
  • the projector can communicate with computers, radio and television networks, the Internet, Video Compact Disc (VCD), and digital video discs (VCD) through different interfaces.
  • VCD Video Compact Disc
  • VCD digital video discs
  • Digital Video Disk, referred to as DVD), game console, digital video camera (Digital Video, referred to as DV), etc. are connected to play corresponding video signals.
  • Projectors are widely used in homes, offices, schools, entertainment venues, etc.
  • FIG. 1 is a schematic diagram of the projection state of the projection device according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the projection device according to an embodiment of the present application.
  • the projection screen 1 is fixed in the first position, and the projection device 2 is placed in the second position, so that the image projected by it matches the projection screen 1 .
  • the projection device 2 includes a laser light source 100, an optical machine 200, and a lens 300.
  • the projection image is projected onto the projection medium 400.
  • the laser light source 100 provides illumination for the light engine 200.
  • the light engine 200 modulates the light source beam and outputs it to the lens 300 for imaging, and projects it to the projection medium 400 to form a projection picture.
  • the laser light source 100 , the optical engine 200 , and the lens 300 are jointly used to emit projection light to project a projection image
  • the laser light source 100 , the optical engine 200 , and the lens 300 are collectively referred to as the light emitting component 21 .
  • the laser light source 100 includes a laser component and an optical lens component.
  • the light beam emitted by the laser component can pass through the optical lens component to provide illumination for the optical machine.
  • the optical lens assembly requires a higher level of environmental cleanliness and airtight sealing; while the chamber where the laser assembly is installed can be sealed with a lower dustproof level to reduce sealing costs.
  • the light-emitting component of the projector can also be implemented by an LED light source.
  • the optical engine 200 may be implemented to include a blue optical engine, a green optical engine, a red optical engine, and may also include a heat dissipation system, a circuit control system, and the like.
  • FIG. 3 is a schematic diagram of the circuit architecture of a projection device according to an embodiment of the present application.
  • the projection device may include a display control circuit 10 , a laser light source 20 , at least one laser driving component 30 , and at least one brightness sensor 40 .
  • the laser light source 20 may include a display control circuit 10 and at least one laser driving component 30 .
  • a corresponding at least one laser wherein, the at least one refers to one or more, and the plurality refers to two or more.
  • the projection equipment can achieve adaptive adjustment. For example, by disposing the brightness sensor 40 in the light path of the laser light source 20, the brightness sensor 40 can detect the laser light source 20. the first brightness value, and sends the first brightness value to the display control circuit 10 .
  • the display control circuit 10 may obtain the second brightness value corresponding to the driving current of each laser, and when determining that the difference between the second brightness value of the laser and the first brightness value of the laser is greater than the difference threshold, determine that the laser has experienced catastrophic behavior.
  • Catastrophic Optical Damage (COD) fault the display control circuit 10 can adjust the current control signal of the corresponding laser driving component of the laser until the difference is less than or equal to the difference threshold, thereby eliminating the COD fault of the laser .
  • the projection equipment can promptly eliminate the COD failure of the laser, reduce the damage rate of the laser, and improve the image display effect of the projection equipment.
  • Figure 4 is a schematic diagram of an optical path of a projection device according to an embodiment of the present application.
  • the laser light source 20 may include an independently provided blue laser 201 , a red laser 202 and a green laser 203 .
  • the projection device may also be called a three-color projection device.
  • the blue laser 201 , The red laser 202 and the green laser 203 are both small lasers (Multi_chip LD, MCL for short), which are small in size and are conducive to compact arrangement of optical paths.
  • the laser light source also includes an optical component 210.
  • the optical component 210 is used to combine the laser light emitted by the blue laser 201, the red laser 202 and the green laser 203, and perform shaping and homogenization, which will ultimately meet the incident requirements.
  • the light beam is incident on the optical machine.
  • the projection device may be configured with a controller, or the projection device may be connected to the controller.
  • the controller includes a central processing unit (Central Processing Unit, referred to as CPU), video processor, audio processor, graphics processor (Graphics Processing Unit, referred to as GPU), random access memory (Random Access Memory, referred to as RAM), read-only Memory (Read-Only Memory, ROM for short), at least one of the first to nth interfaces used for input/output, communication bus (Bus), etc.
  • CPU central processing unit
  • video processor video processor
  • audio processor graphics processor
  • GPU Random Access Memory
  • RAM Read-Only Memory
  • ROM read-only Memory
  • the projection device may be configured with a camera, or the projection device may be connected to a camera for cooperating with the projection device to realize adjustment and control of the projection process.
  • the camera can be implemented as a 3D camera or a binocular camera; when the camera is implemented as a binocular camera, it specifically includes a left camera and a right camera; the binocular camera can obtain the projection screen corresponding to the projection device, that is, the image presented on the projection surface And the playback content, the image or playback content is projected by the light machine built into the projection equipment.
  • the controller can use coupled light based on the image captured by the camera.
  • the angle between the projection surface of the machine and the correct display of the projected image are realized by automatic keystone correction.
  • Figure 5 is a schematic diagram of the system framework of a projection device according to an embodiment of the present application.
  • the projection device has the characteristics of telephoto micro-projection, and its controller passes The display of the projected image can be controlled through a preset algorithm to achieve functions such as automatic keystone correction, automatic screen entry, automatic obstacle avoidance, automatic focusing, and eye protection.
  • the projection device is configured with a gyro sensor; when the device is moving, the gyro sensor can sense position movement and actively collect movement data; then the collected data is sent to the application service layer through the system framework layer, Supports the application data required during user interface interaction and application interaction.
  • the collected data can also be used for data invocation by the controller in algorithm service implementation.
  • the projection device is configured with a time-of-flight sensor. After the time-of-flight sensor collects corresponding data, it is sent to the corresponding time-of-flight service of the service layer. After the above-mentioned time-of-flight service obtains the data, it passes the collected data through the process communication framework. Sent to the application service layer, the data will be used for interactive use of controller data calls, user interfaces, program applications, etc.
  • the projection device is configured with a camera for collecting images.
  • the camera can be a binocular camera, a depth camera, a 3D camera, etc.; the camera collection data will be sent to the camera service, and then the camera service will send the collected image data to Process communication framework, and/or projection equipment correction service; the projection equipment correction service can receive camera collection data sent by the camera service, and the controller can call corresponding control algorithms in the algorithm library for different functions that need to be implemented.
  • data is exchanged with the application service through the process communication framework, and then the calculation results are fed back to the correction service through the process communication framework; the correction service sends the obtained calculation results to the projection device operating system to generate control information. command, and sends the control signaling to the optical-mechanical control driver to control the optical-mechanical working conditions and realize automatic correction of the displayed image.
  • users can use the above-mentioned projection device in a variety of different scenarios, and different projection surfaces can be used as the projection medium 400 in different usage scenarios.
  • some users need to project projection onto a Fresnel hard screen, that is, the projection medium 400 is a Fresnel hard screen; some users need to project onto a white wall, that is, the projection medium 400 is a white wall; The user needs to project the projection onto the ceiling, that is, the projection medium 400 is the ceiling.
  • the projection medium 400, the projection surface, the background wall, etc. all refer to the media used to present projection images. Unless otherwise stated, the projection medium 400, the projection surface, and the background wall have the same meaning and function.
  • the projection device may present different projection effects. Since the color of the projection medium 400 itself has different reflection effects on different colors in the projection image, color distortion may occur for the non-pure white projection medium 400 . That is, when the background wall used in the projection process is a solid-color background, such as solid-color latex paint, putty wall, solid-color curtain, etc., the projection picture will appear to be biased to the background color. For example, the projection picture presented to the pure gray background will be biased. Gray; the projection picture presented by a pure yellow background is yellowish, etc.
  • a solid-color background such as solid-color latex paint, putty wall, solid-color curtain, etc.
  • the lighting color in the usage scene will also Affects the presentation of the projected image.
  • lighting equipment such as incandescent lamps, warm light lamps, yellow light lamps, and pink lamps used in the scene will also bias the projection medium 400 to one color, causing the projection picture presented by the projection medium 400 to also suffer from color distortion, reducing the projection picture quality. quality.
  • the projection device in order to improve the projection image quality, at least includes a light emitting component 21 , a camera 22 and a controller 23 .
  • the light emitting component 21 is configured to project the projection content to the projection surface (projection medium 400).
  • the projected content includes the user interface and the played media assets.
  • the light emitting component 21 can project the setting interface to the projection surface; and when the user uses the projection device to watch multimedia resources such as movies and TV series, the light emitting component 21 can project the media. source screen to the projection surface.
  • the camera 22 is configured to capture a sample image.
  • the camera 22 can capture the environment in which the projection device is located to obtain a scene image.
  • the camera 22 can capture images of different objects according to different shooting purposes. For example, when the projection device adjusts the projection image quality, the camera 22 can capture the projection surface to obtain a sample image including the projection screen content; when the projection device automatically avoids obstacles, the camera 22 can capture the target in front of the light output component to obtain a sample image including the obstacle target.
  • the controller 23 is configured to execute the program steps corresponding to the projection image quality adjustment method.
  • the projection image quality adjustment method specifically includes the following content:
  • the controller 23 may obtain a control instruction for image quality adjustment.
  • control instructions for image quality adjustment can be actively input by the user. For example, when the user finds that the color of the projected image is distorted, he presses the "auto white balance" button on the remote control (or on the projection device) to input control instructions for image quality adjustment.
  • control instructions for image quality adjustment can also be input when the user performs other related specific operations. For example, when the projection device detects that the user turns it on for the first time (or when it is turned on for the first time after restoring factory settings), it can automatically trigger image quality adjustment according to the initialization program of the projection device. Then when the user controls the projection device to turn it on for the first time, the initialization program Automatically input control instructions for image quality adjustment.
  • control instructions for image quality adjustment can also be automatically input when the projection device detects a change in the usage scene.
  • a light-sensitive sensor can be built into the projection device. When it is detected that the brightness change in the environment exceeds the preset projection brightness range, the projection device can determine the brightness of the projection device. Using scene changes, control instructions for image quality adjustment can be automatically input.
  • the projection equipment can also be equipped with components such as gyroscopes, gravity acceleration sensors, and vibration sensors to detect whether the projection equipment moves. When the movement of the projection equipment is detected, image quality adjustment can be automatically triggered to adjust the image quality. Adapt to the new usage environment, that is, enter control instructions for image quality adjustment.
  • the projection device can input the input method for image quality adjustment through other methods other than the input method of the above example.
  • Control instructions for example, voice control the projection equipment to adjust the image quality; when the projection equipment projects different types of media asset images, it can automatically trigger image quality adjustment when switching media asset images, etc.
  • other input methods that can be thought of fall within the protection scope of this application.
  • the controller 23 can control the light emitting component 21 to project the correction image.
  • the rectified image includes a chart based on standard color parameters.
  • the corrected image may be an image that facilitates color correction, such as a solid color image based on standard red, standard green, standard blue, standard white, and standard black.
  • the standard color parameters can be represented by standard color values, that is, colors with standard RGB chromaticity values.
  • the RGB chromaticity value of standard red is (255,0,0); the RGB chromaticity value of standard green is (0,255,0); the RGB chromaticity value of standard blue is (0,0,255); the RGB chromaticity value of standard white is (255,255,255); the RGB chromaticity value of standard black is (0,0,0).
  • the light emitting component 21 can project a corrected image based on any of the above standard colors to the projection surface. For example, it can project a pure white corrected image to the projection surface; it can also project a corrected image based on multiple standard colors in sequence. Image to the projection surface, for example, corrected images of pure red, green, blue, white, and black are projected onto the projection surface in sequence.
  • the controller 23 can also be configured to acquire multiple corrected images, and then control the light emitting component 21 to project the multiple corrected images to the projection surface in sequence.
  • multiple corrected images are based on different standard color values.
  • the light emitting component 21 can preset a projection time for the corrected image of each color, and the projection time should be set to allow the camera 22 to complete the photographing process.
  • the light emitting component 21 can first project a pure red corrected image, when the projection time reaches 5 s, it can change to project a pure green corrected image, and when the projection time of the green corrected image reaches 5 s, it can change to a pure green corrected image. Project a pure blue corrected image, and so on, until all five colors of corrected images have been projected.
  • the rectified image may also include a card with a specific shape pattern.
  • the picture card can be composed of multiple pattern groups based on different standard shapes, sizes, and positions.
  • the controller 23 can determine whether the projection picture is deformed by checking the shape, size, and position of the picture card in the projection picture, so as to determine the projection parameters according to the deformation of the shape in the picture card, so as to alleviate the distortion and perspective effects on the projection. The impact of the picture.
  • the controller 23 can control the camera 22 to capture the projected corrected image to obtain a sampled image.
  • the controller 23 may receive a receipt signal from the light emitting component 21 after controlling the light emitting component 21 to project the correction image.
  • a photographing instruction is sent to the camera 22 so that the camera 22 responds to the photographing instruction by photographing the corrected image and obtaining a sampled image.
  • the controller 23 can also control the camera 22 to separately collect images for each corrected image to obtain multiple sampled images. That is, in some embodiments, during the step of obtaining the sampled image captured by the camera for the correction image, the controller 23 is also configured to: obtain the projection content switching signal of the light emitting component, wherein the projection content switching signal projects different contents on the light emitting component. The corrected image is generated. And in response to the projection content switching signal, a shooting instruction is sent to the camera 22 so that the camera 22 shoots a plurality of sampled images for a plurality of corrected images.
  • a projection content switching signal will be generated and passed to the controller. twenty three.
  • the controller 23 sends a shooting instruction to the camera 22 so that the camera 22 can shoot the sampled image corresponding to the pure red correction image.
  • the light emitting component 21 projects the pure red corrected image for 5 seconds, it will automatically switch to projecting the pure green corrected image.
  • a projection content switching signal will be generated, and the controller 23 will respond to the projection content switching signal again and send a shooting instruction to the camera 22.
  • the camera 22 captures a pure green corrected image.
  • the controller 23 sends a corresponding shooting instruction to the camera 22 until all corrected images are projected, thereby obtaining the same number of sampled images. That is, corresponding to the light emitting component 21 sequentially projecting corrected images of pure red, green, blue, white, and black, the camera 22 can perform 5 photography operations to obtain a total of sampled images including the corrected image content of pure red, green, blue, white, and black. .
  • the controller 23 when the controller 23 sends a photographing instruction to the camera 22 for the first time within a detection cycle, it can trigger the camera to automatically adjust the photographing parameters, such as focus, aperture, brightness, etc., so as to obtain clear sampled image.
  • the shooting parameters of the camera 22 can also be controlled to remain stable, so that the subsequent sampled images taken by the camera 22 are consistent with the parameters of the first sampled image, and the shooting parameters are not affected by the color of the sampled image. Influence, That is, the mode of the camera 22 is solidified so that the sampling images collected by the camera 22 have a high degree of consistency.
  • the controller 23 can also perform feature extraction on the sampled image, that is, extract the background color parameters from the sampled image. Similar to the standard color parameters, the background color parameters can also be represented by background color values. For sampled images with solid color content, the controller can directly extract color values from the solid color area of the sampled image. Since the sampled image is an image collected directly by the camera 22 for the final display effect of the projection screen, the difference between its color value and the original standard color of the corrected image can be used to determine the projection color difference, that is, the degree of color distortion.
  • the proportion of the area occupied by the projected image in the image captured by the camera 22 should be large enough.
  • the shooting range of the camera 22 is smaller than the range of the projection surface, that is, the entire picture in the sampled image is the projection picture.
  • the projection device can automatically adjust the focal length of the camera 22 when taking a picture with the camera 22 for the first time, so that the shooting range is smaller than or equal to the range of the projected image.
  • the controller 23 may also perform an image recognition algorithm on the sampled image to identify the projected picture area in the sampled image.
  • the projected image is generally a connected area with high brightness and regular shape.
  • the connected area corresponding to the projected image usually occupies a larger area, that is, the largest connected area has the greatest possibility of being the projected image area.
  • the controller 23 when executing the step of extracting the background color value from the sampled image, is also configured to: identify the maximum connected area from the sampled image, where the maximum connected area is when the color difference of the pixel points in the sampled image is less than the color difference threshold, And the area composed of multiple pixels that occupies the largest area.
  • the controller 23 After identifying the maximum connected area, the controller 23 also needs to extract the color values of multiple position points in the maximum connected area. For example, as shown in Figure 8, according to the identified shape of the maximum connected area, 9 sampling points are evenly extracted in the maximum connected area, and the 9 sampling points are arranged in a 3 ⁇ 3 rectangular array in the maximum connected area, so that each The sampling points correspond to different locations within the maximum connected area.
  • the controller 23 can also crop the sampled image according to the content recognition result in the sampled image. For example, after the maximum connected area is identified, the sampled image is cropped according to the boundary position of the maximum connected area.
  • the camera 500 has the same shooting parameters when shooting multiple corrected images, for the sampling images corresponding to the multiple corrected images, the location and range of the projection area are also consistent, so After the sampling image corresponding to the first corrected image is cut, other subsequent images can be cut in sequence according to the cutting method of the first corrected image, without having to repeatedly identify the largest connected area.
  • S400 Generate color difference gain parameters based on background color parameters and standard color parameters.
  • the controller 23 can perform correction of the color distortion problem, that is, calculate the color difference gain parameter of the background color parameters relative to the standard color parameters.
  • the color difference gain parameter is a gain parameter calculated through a compensation algorithm after comparing the difference between the background color value and the standard color value. Through the color difference gain parameter, image quality compensation can be performed to improve the color distortion problem.
  • the income parameters can be calculated through the system's built-in gain function (gains).
  • the controller 23 can also separately calculate the difference profit for the multiple sampled images. For example, after the controller 23 analyzes the five sampled images captured by the camera 22, it can perform RGB calculations based on the color values of each pixel in the sampled images. Then perform gains calculation with the standard RGB three colors of red, green, blue, white, and black to obtain the color difference gain parameter of the standard color value.
  • S500 Adjust the image quality curve of the projected content according to the color difference gain parameters, and control the light emitting component to project the projected content to the projection surface according to the adjusted image quality curve.
  • the projection process can be adjusted according to the color difference gain parameters, so that the projection equipment can adjust the image quality curve of the projected content according to the color difference gain parameters when setting the image parameters, that is, based on the debugged curve, the gains parameters Compensate according to the curve into the image quality parameters to achieve reverse curve superposition of the RGB color values of the background wall.
  • the light emitting component 21 is then controlled to project the projection content according to the adjusted image quality curve, so that the final effect seen by the user is the effect of returning to the original color, thereby improving the projection image quality.
  • the above projection image quality adjustment method can use the camera 22 to sample and take pictures of the projection image based on the standard color value correction image to obtain the background color value in the sampled image, and then compare it with the standard color value to determine the projection
  • the color distortion of the picture can be adjusted according to the color distortion to improve the projection image quality.
  • the camera 22 can be used as a built-in component of the projection device, and by presetting the shooting position and shooting parameters of the camera 22, the camera 22 can shoot the entire light emitting area. Moreover, there are different settings such as exposure time for the camera 22 to take pictures, which leads to the problem of inconsistent collected image effects.
  • the projection equipment used in the above embodiment can also solidify the photographing mode when triggering the color recognition of the projection wall and projection curtain, so that the collected images can be captured. The sampled images will have a high degree of consistency.
  • the projection equipment uses the camera 22 to directly shoot the projection picture, and the lighting around the projection equipment can be superimposed into the background wall color, that is, the image quality is adjusted based on the final projection effect, so that it is easier to adjust the final effect and restore it to the original after adjustment. Color effect.
  • the controller 23 is also configured to perform the step of generating the color difference gain parameter based on the background color parameter and the standard color parameter. for:
  • the controller 23 can read the description information of the corresponding file of the corrected image to obtain the standard color value that has a mapping relationship with the current corrected image.
  • the controller 23 can also perform color recognition on the corrected image before controlling the light emitting component 21 to project the corrected image, that is, traverse the color values of each pixel in the corrected image, thereby determining the corresponding pixels with the most identical colors.
  • Color value as standard color value.
  • the difference between the standard color value and the background color value can be calculated.
  • the color difference value ⁇ B can be compared with the preset color difference threshold B. As shown in Figure 9, it specifically includes:
  • the controller controls the light emitting component according to Project content to the projection surface in original quality.
  • the color difference gain parameter can be generated based on the color difference value ⁇ B, and the color difference gain parameter can be set to the white balance parameter of the current image mode.
  • the sampled image can be acquired again and a secondary judgment can be made to verify the image quality adjustment effect. That is, after performing the step of setting the difference gain to the white balance parameter of the current image mode, the controller 23 is also configured to:
  • the light emitting component 21 controls the light emitting component to project the corrected image according to the image mode after setting the white balance parameters. For example, after setting the color difference gain parameter to the white balance parameter of the current image mode, the light emitting component 21 projects the projection content in a manner that reduces the red channel by 20 points of chromaticity value, and then projects the corrected image again according to the white balance parameter.
  • the red channel The channel will reduce the chroma value by 20 points to deal with the reddish color distortion problem of the picture.
  • the camera 22 can take pictures again to obtain a resampled image, so as to make another judgment and image quality adjustment based on the resampled image.
  • the number of resampling times can be preset, that is, the threshold of the number of shots can be set.
  • the controller 23 can obtain the cumulative number of shots of the corrected image by the camera 21 and obtain the preset shot number threshold.
  • the cumulative number of shots is then compared with the preset number of shots threshold to determine whether to perform resampling based on the comparison result.
  • S1010 determining whether the number of shots is less than the shooting number threshold; when the number of shots is less than the shooting number threshold, executing S1002; when the number of shots is greater than or equal to the shooting number threshold, executing S1011;
  • the cumulative number of shots is greater than or equal to the preset shot number threshold, it means that the current image quality adjustment process has reached the maximum number of automatic adjustments. Color distortion may still affect the user's viewing experience after multiple image quality adjustments. In this case, you can prompt The user performs manual adjustment, that is, generating prompt information and controlling the light emitting component 21 to project the prompt information to the projection surface, where the prompt information is used to prompt the user that the current image quality adjustment fails.
  • the camera 22 can be controlled to shoot the corrected image again to obtain a resampled image.
  • the background color value is extracted from the resampled image, and the step of calculating the difference between the standard color value and the background color value is performed, that is, judgment and image quality adjustment are performed again.
  • the specific image quality adjustment method can be the same as the image quality adjustment method provided in the above embodiment, that is, for the resampled image, the background color value and the standard color value can be compared to determine the mitigation of color distortion defects. If the color difference between the background color value of the resampled image and the standard color value is less than or equal to the color difference threshold, it means that this image quality adjustment is effective, so the light emitting component 21 can be controlled to maintain the adjusted white balance parameters for projection. .
  • the image quality is adjusted again, that is, the color difference gain parameter of the background color value of the resampled image relative to the standard color value is calculated, and based on The chromatic aberration gain parameter adjusts the image quality curve of the projected content.
  • resampling after calculating the color difference value between the background color value and the standard color value in the resampled image, by comparing it with the color difference threshold, when the color difference value is less than or equal to the color difference threshold, resampling can be performed again. Sampling, and performing multiple image quality adjustments through resampling. Wherein, after each calculation of the difference between the background color value and the standard color value in the resampled image, the color difference threshold for comparison can be set to a different value.
  • the first color difference threshold in the first resampling process, can be set relatively large, and in the second resampling process, the second color difference threshold can be set smaller than the first color difference threshold.
  • the difference between the background color value and the standard color value in the image obtained by the second resampling is less than or equal to the second color difference value, it is determined that the color difference distortion of the current projection screen is small, then the resampling is stopped, and the current projection screen is determined according to the current color difference value.
  • the determined white balance parameters can control the light emitting component for projection.
  • the third resampling is performed, thereby gradually reducing the color difference threshold multiple times to make the background color
  • the values gradually approach the standard color values.
  • a fixed number of resampling times can also be set. For example, if the number of resampling times is set to 4, then combined with the first sampling, the camera 22 will capture a total of 5 images during one image quality adjustment process. .
  • the projection device can go through five color comparisons to finally determine the white balance parameters that match the current scene. Obviously, if after five color contrast and white balance parameter adjustments, the color difference value in any adjustment process is still less than the color difference threshold, the light emitting component 21 can be controlled to project prompt information according to the above embodiment to remind the user of the image quality. The result of the adjustment.
  • the compensation parameters are consistent for a specific background color or color difference value. Therefore, the background color (or color difference value) can be adjusted. value) and the compensation parameters are stored in association, so that in the subsequent image quality adjustment process, the compensation parameters can be determined directly based on the background color (or color difference value) without repeated judgments, reducing the amount of data processing.
  • the projection device further includes a memory, wherein the memory is configured to store the white balance parameter.
  • a data comparison table can be preset in the memory of the projection device.
  • the data comparison table stores background color, standard color, color difference value and white balance parameters.
  • the background color, standard color, color difference value and white balance parameters are stored in the data comparison table.
  • the controller is also configured to:
  • the difference between the background color value in the resampled image and the standard color value is less than or equal to the preset color difference threshold, obtain the white balance parameters of the current image mode.
  • the image quality adjustment process is effective when it is determined that the color difference between the adjusted projection screen color and the standard color is small and will not have a major impact on the user's viewing experience. Therefore, it can be Get the white balance parameters corresponding to the current image mode. Then set the correlation between the background color value (or color difference value) of the sampled image and the white balance parameter of the current image mode, and store the white balance parameter according to the set correlation.
  • the controller 23 may first query the stored white balance parameters in the memory according to the background color value. If the white balance parameter associated with the background color value is queried, the white balance parameter is directly extracted, and the light emitting component is controlled to directly project the projection content to the projection surface according to the extracted white balance parameter. If no white balance parameter associated with the background color value is queried, continue to perform the step of calculating the color difference gain parameter of the background color value relative to the standard color value, thereby adjusting the image quality in the manner provided in the above embodiment.
  • a specific matching interval can also be set according to the background color value.
  • a deviation value of " ⁇ 10" can be preset, that is, Set the matching interval of the background color value B1 to (B1-10, B1+10).
  • S1202. Determine whether it overlaps with the matching interval; if it does not overlap with the matching interval, execute S1203; if it overlaps with the matching interval, execute S1204;
  • the projection device can also compare the current background color value with the stored background color value before storing it. If the background color values are equal or the corresponding matching intervals overlap, the corresponding color differences of the resampled images during the adjustment process can be compared, thereby storing the background color value with the smaller color difference value and the corresponding color difference value and white balance parameters.
  • the current background color value B1 and the corresponding white balance parameter are WB1, and the corresponding color difference value determined by the resampling process is ⁇ B1; while storing the current background color value B1 and the corresponding white balance parameter WB1, if Obtain through traversal the stored values similar to the current background color value B1
  • the background color value B2 as well as the corresponding white balance parameter WB2 and the color difference value ⁇ B2 in the resampling process, can be compared with the color difference value ⁇ B1 determined in the current resampling process and the stored color difference value ⁇ B2 in the resampling process.
  • a projection device is also provided.
  • the projection device includes a light emitting component 21, a camera 22 and a controller 23, wherein the light emitting component 21 is configured to project projection content to the projection. surface; the camera 22 is configured to capture a sampling image; the controller 23 is configured to perform the projection image quality adjustment method provided in the above embodiment, specifically including:
  • S500 Adjust the image quality curve of the projected content according to the color difference gain parameters, and control the light emitting component to project the projected content to the projection surface according to the adjusted image quality curve.
  • the controller of the projection device can be configured with four functional levels: application layer, framework layer, middleware, and driver layer, and three main functional modules: setting module, background color recognition module, and image quality processing module.
  • the application layer is mainly used to complete the triggering of background recognition; that is, user-initiated triggering and conditional automatic triggering can be used to achieve the effect of not affecting the user's normal viewing when the user is performing normal viewing.
  • the framework layer is used to provide channel support and pass the user's trigger actions to the middleware.
  • the middleware is used to complete the reading of raw data, image collection, color recognition, and data processing.
  • the driver layer is used to deliver the white balance parameters calculated by the middleware to the image quality processing module.
  • the projection device provided in the above embodiments can first control the light emitting component to project a corrected image based on a standard color parameter chart to the projection surface after obtaining the control instructions for image quality adjustment, and then use the camera to Corrective images are taken to obtain sampled images, and background color parameters are extracted from the sampled images; then the background color parameters are calculated relative to the standard color parameters The color difference gain parameter; finally, the image quality curve of the projection content is adjusted according to the color difference gain parameter, and the light machine is controlled to project the projection content to the projection surface according to the adjusted image quality curve.
  • the projection equipment can use the camera to detect the real-time projection of the picture effect of the light emitting component, and adjust the picture quality curve of the projected content according to the color difference gain parameters, thereby mitigating the impact of the color of the projection surface on the color of the projected content, improving the quality of the projection picture, and making the projection equipment Able to adapt to background walls of different colors to improve user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

本申请公开一种投影设备及投影画质调整方法,在获取用于画质调整的控制指令后,先控制出光组件向投影面投射包括基于标准颜色值图卡的矫正图像,再通过相机对矫正图像进行拍摄,以获得采样图像,以及从采样图像中提取背景颜色值;再计算背景颜色值相对于标准颜色值的色差收益参数;最后根据色差收益参数调整投影内容的画质曲线,以及控制出光组件按照调整后的画质曲线投射投影内容至投影面。

Description

投影设备及投影画质调整方法
相关申请的交叉引用
本申请要求在2022年09月15日提交中国专利局、申请号为202211122420.8、申请名称为“一种投影设备及投影画质调整方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影设备技术领域,尤其涉及一种投影设备及投影画质调整方法。
背景技术
投影设备是一种可以将图像或视频投射到屏幕上的显示设备。在投影过程中,投影设备需要通过出光组件将投影画面内容投射在幕墙上。其中,幕墙可以是与投影设备配套使用的屏幕,例如菲涅尔硬屏。幕墙还可以是设置在出光组件投射方向上的平面,如墙体或天花板。
投影画面的呈现效果,会受到幕墙颜色的影响。根据用户使用场景的不同,幕墙的颜色也可能不同。例如,将墙体作为幕墙时,墙体表面的颜色由墙纸或墙皮涂料的颜色决定,即在部分应用场景下,幕墙的颜色并不是纯白色,这将对投影画面的光造成不同效果的反射,使用户观看到的色彩失真,降低用户体验。
发明内容
本申请一些实施例提供一种投影设备,包括:出光组件、相机以及控制器。其中,所述出光组件被配置为投射投影内容至投影面;所述相机被配置为拍摄采样图像;所述控制器被配置为执行以下程序步骤:
获取用于画质调整的控制指令;
响应于所述控制指令,控制所述出光组件向投影面投射矫正图像,所述矫正图像包括基于标准颜色参数的图卡;
获取所述相机对所述投影面上的矫正图像拍摄的采样图像,以及从所述采样图像中提取背景颜色参数;
根据所述背景颜色参数与标准颜色参数生成色差收益参数;
根据所述色差收益参数调整投影内容的画质曲线,以及控制所述出光组件按照调整后的画质曲线投射投影内容至投影面。
本申请一些实施例提供一种投影画质调整方法,应用于上述投影设备,所述投影设备包括出光组件、相机以及控制器,所述投影画质调整方法包括:
获取用于画质调整的控制指令;
响应于所述控制指令,控制所述出光组件向投影面投射矫正图像,所述矫正图像包括基于标准颜色参数的图卡;
获取所述相机对所述矫正图像拍摄的采样图像,以及从所述采样图像中提取背景颜色参数;
根据所述背景颜色参数与标准颜色参数生成色差收益参数;
根据所述色差收益参数调整投影内容的画质曲线,以及控制所述出光组件按照调整后的画质曲线投射投影内容至投影面。
附图说明
图1为根据本申请实施例的投影设备的投影状态示意图;
图2为根据本申请实施例的投影设备的结构示意图;
图3为根据本申请实施例的投影设备的电路架构示意图;
图4为根据本申请实施例的投影设备的光路示意图;
图5为根据本申请实施例的投影设备的系统框架示意图;
图6为根据本申请实施例的带有相机的投影设备示意图;
图7为根据本申请实施例的画质调整的流程示意图;
图8为根据本申请实施例的采样图像中背景颜色值提取位置点示意图;
图9为根据本申请实施例的控制出光组件投影的流程示意图;
图10为根据本申请实施例的重采样的流程示意图;
图11为根据本申请实施例的提取存储的白平衡参数的流程示意图;
图12为根据本申请实施例的存储白平衡参数的流程示意图。
具体实施方式
为使本申请的目的和实施方式更加清楚,下面将结合本申请示例性实施例中的附图,对本申请示例性实施方式进行清楚、完整地描述,显然,描述的示例性实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,本申请中对于术语的简要说明,仅是为了方便理解接下来描述的实施方式,而不是意图限定本申请的实施方式。除非另有说明,这些术语应当按照其普通和通常的含义理解。
本申请实施例可以应用于各种类型的投影设备。下文中将以投影仪为例,对投影设备以及投影画质调整方法进行阐述。
投影仪是一种可以将图像、或视频投射到屏幕上的设备,投影仪可以通过不同的接口同计算机、广电网络、互联网、视频压缩盘片(Video Compact Disc,简称VCD)、数字视频光盘(Digital Video Disk,简称DVD)、游戏机、数码摄像机(Digital Video,简称DV)等相连接播放相应的视频信号。投影仪广泛应用于家庭、办公室、学校和娱乐场所等。
图1为根据本申请实施例的投影设备的投影状态示意图,图2为根据本申请实施例的投影设备的结构示意图。
在一些实施例中,参考图1-2,投影屏幕1固定于第一位置,投影设备2放置于第二位置,使得其投影出的画面与投影屏幕1吻合。投影设备2包括激光光源100,光机200,镜头300,投影画面被投射至投影介质400上。其中,激光光源100为光机200提供照明,光机200对光源光束进行调制,并输出至镜头300进行成像,投射至投影介质400形成投影画面。由于激光光源100,光机200,镜头300共同用于发出投影光,以投射投影画面,因此将激光光源100,光机200,镜头300统称为出光组件21。
在一些实施例中,激光光源100包括激光器组件和光学镜片组件,激光器组件发出的光束可透过光学镜片组件进而为光机提供照明。其中,光学镜片组件需要较高等级的环境洁净度、气密等级密封;而安装激光器组件的腔室可以采用密封等级较低的防尘等级密封,以降低密封成本。
在一些实施例中,投影仪的发光部件还可以通过LED光源实现。
在一些实施例中,光机200可实施为包括蓝色光机、绿色光机、红色光机,还可以包括散热系统、电路控制系统等。
图3为根据本申请实施例的投影设备的电路架构示意图。
在一些实施例中,参考图3,投影设备可以包括显示控制电路10、激光光源20、至少一个激光器驱动组件30以及至少一个亮度传感器40,该激光光源20可以包括与至少一个激光器驱动组件30一一对应的至少一个激光器。其中,该至少一个是指一个或多个,多个是指两个或两个以上。
基于该电路架构,投影设备可以实现自适应调整。例如,通过在激光光源20的出光路径中设置亮度传感器40,使亮度传感器40可以检测激光光源20 的第一亮度值,并将第一亮度值发送至显示控制电路10。
显示控制电路10可以获取每个激光器的驱动电流对应的第二亮度值,并在确定激光器的第二亮度值与激光器的第一亮度值的差值大于差值阈值时,确定该激光器发生灾变性光学镜面损伤(Catastrophic Optical Damage,简称COD)故障;则显示控制电路10可以调整激光器的对应的激光器驱动组件的电流控制信号,直至该差值小于等于该差值阈值,从而消除该激光器的COD故障。投影设备能够及时消除激光器的COD故障,降低激光器的损坏率,提高投影设备的图像显示效果。
图4为根据本申请实施例的投影设备的光路示意图。
在一些实施例中,参考图3-4,激光光源20可以包括独立设置的蓝色激光器201、红色激光器202和绿色激光器203,该投影设备也可以称为三色投影设备,蓝色激光器201、红色激光器202和绿色激光器203均为小型激光器(Multi_chip LD,简称MCL),其体积小,利于光路的紧凑排布。
在一些实施例中,激光光源还包括光学组件210,光学组件210用于将蓝色激光器201、红色激光器202和绿色激光器203出射的激光合光,并进行整形和匀化,最终将符合入射需求的光束入射光机。
在一些实施例中,投影设备可以配置控制器,或者投影设备可以连接控制器。控制器包括中央处理器(Central Processing Unit,简称CPU),视频处理器,音频处理器,图形处理器(Graphics Processing Unit,简称GPU),随机存取存储器(Random Access Memory,简称RAM),只读存储器(Read-Only Memory,简称ROM),用于输入/输出的第一接口至第n接口,通信总线(Bus)等中的至少一种。
在一些实施例中,投影设备可以配置相机,或者投影设备可以连接相机,用于和投影设备协同运行,以实现对投影过程的调节控制。相机可具体实施为3D相机,或双目相机;在相机实施为双目相机时,具体包括左相机、以及右相机;双目相机可获取投影设备对应的投影屏幕,即投影面所呈现的图像及播放内容,该图像或播放内容由投影设备内置的光机进行投射。
当投影设备移动位置后,其投射角度、及至投影面距离发生变化,会导致投影图像发生形变,投影图像会显示为梯形图像、或其他畸形图像;控制器可基于相机拍摄的图像,通过耦合光机投影面之间夹角和投影图像的正确显示实现自动梯形校正。
图5为根据本申请实施例的投影设备的系统框架示意图。
在一些实施例中,参考图5,投影设备具备长焦微投的特点,其控制器通 过预设算法可对投影图像进行显示控制,以实现显示画面自动梯形校正、自动入幕、自动避障、自动调焦、以及防射眼等功能。
在一些实施例中,投影设备配置有陀螺仪传感器;设备在移动过程中,陀螺仪传感器可感知位置移动、并主动采集移动数据;然后通过系统框架层将已采集数据发送至应用程序服务层,支撑用户界面交互、应用程序交互过程中所需应用数据,采集数据还可用于控制器在算法服务实现中的数据调用。
在一些实施例中,投影设备配置有飞行时间传感器,在飞行时间传感器采集到相应数据后,被发送至服务层对应的飞行时间服务;上述飞行时间服务获取数据后,将采集数据通过进程通信框架发送至应用程序服务层,数据将用于控制器的数据调用、用户界面、程序应用等交互使用。
在一些实施例中,投影设备配置有用于采集图像的相机,该相机可为双目相机、深度相机或3D相机等;相机采集数据将发送至摄像头服务,然后由摄像头服务将采集图像数据发送至进程通信框架、和/或投影设备校正服务;投影设备校正服务可接收摄像头服务发送的相机采集数据,控制器针对所需实现的不同功能可在算法库中调用对应的控制算法。
在一些实施例中,通过进程通信框架、与应用程序服务进行数据交互,然后经进程通信框架将计算结果反馈至校正服务;校正服务将获取的计算结果发送至投影设备操作系统,以生成控制信令,并将控制信令发送至光机控制驱动以控制光机工况、实现显示图像的自动校正。
在一些实施例中,用户可以在多种不同的场景中使用上述投影设备,在不同的使用场景下,可以使用不同的投影面作为投影介质400。例如,有的用户需要将投影投到菲涅尔硬屏上,即投影介质400为菲涅尔硬屏;有的用户需要将投影投到白墙上,即投影介质400为白墙;有的用户则需要将投影投到天花板上,即投影介质400为天花板。为了便于描述,在本申请实施例中,投影介质400、投影面、背景墙等均是指用于呈现投影画面的介质,除另有说明外,投影介质400、投影面以及背景墙具有相同的含义和功能。
在不同的投影介质400上,投影设备可能会呈现不同的投影效果。由于投影介质400本身的颜色会对投影画面中不同的颜色具有不同的反射作用,因此对于非纯白色的投影介质400,会造成颜色失真。即当投影过程中使用的背景墙是纯色背景时,诸如纯色的乳胶漆、腻子墙、纯色幕布等,会使投影画面呈现为偏背景颜色的效果,例如,纯灰色背景所呈现的投影画面偏灰;纯黄色背景所呈现的投影画面偏黄等。
另外,除投影介质400本身的颜色影响之外,使用场景中的光照颜色也会 影响到投影画面的呈现效果。例如,场景中使用的白炽灯、暖光灯、黄光灯、粉灯等照明设备也会使投影介质400偏向一种颜色,从而导致投影介质400呈现的投影画面也出现颜色失真的问题,降低投影画质。
为了提高投影画质,本申请实施例提供一种投影画质调整方法,该方法可以应用于上述投影设备。如图6所示,为了使投影设备能够实施上述投影画质调整方法,投影设备至少包括出光组件21、相机22以及控制器23。
其中,出光组件21被配置为投射投影内容至投影面(投影介质400)。投影内容包括用户界面以及播放的媒资画面。例如,当用户使用投影设备配套的遥控器对投影设备进行设置时,出光组件21可以投射设置界面至投影面;而当用户使用投影设备观看电影、电视剧等多媒体资源时,出光组件21可以投射媒资画面至投影面。
相机22被配置为拍摄采样图像。相机22可以对投影设备所处环境进行拍摄,从而获得场景图像。相机22可以根据不同的拍摄用途,对不同是事物进行图像采集。例如,当投影设备对投影画质进行调整时,相机22可以对投影面进行拍摄,以获得包括投影画面内容的采样图像;当投影设备进行自动躲避障碍物时,相机22可以对出光组件投射前方的目标进行拍摄,以获得包括障碍物目标的采样图像。
控制器23则被配置为执行投影画质调整方法对应的程序步骤,如图7所示,投影画质调整方法具体包括以下内容:
S100:获取用于画质调整的控制指令。
为了触发控制投影设备进行画质调整,控制器23可以获取用于画质调整的控制指令。
在一些实施例中,用于画质调整的控制指令,可以由用户主动输入。例如,用户在发觉投影画面色彩失真时,通过按下遥控器上的(或投影设备上的)“自动白平衡”按键,输入用于画质调整的控制指令。
在一些实施例中,用于画质调整的控制指令,还可以在用户执行其他相关特定操作时完成输入。例如,当投影设备检测到用户首次开机(或恢复出厂设置后的首次开机时),可以按照投影设备的初始化程序,自动触发进行画质调整,则在用户控制投影设备首次开机时,由初始化程序自动输入用于画质调整的控制指令。
在一些实施例中,用于画质调整的控制指令,还可以由投影设备检测到使用场景发生改变时自动输入。例如,投影设备中可以内置有光敏传感器,当检测到环境中的亮度变化量超过预设的投影亮度范围时,确定投影设备的 使用场景改变,此时可以自动输入用于画质调整的控制指令。又例如,投影设备中还可以设置有陀螺仪、重力加速度传感器、振动传感器等元器件,用于检测投影设备是否发生移动,当检测到投影设备发生移动时,可以自动触发进行画质调整,以适应新的使用环境,即输入用于画质调整的控制指令。
需要说明的是,上述实施例简述了用于画质调整的控制指令的输入方式,显然,在实际应用中,投影设备可以通过上述示例的输入方式以外的其他方式输入用于画质调整的控制指令,例如,语音控制投影设备进行画质调整;在投影设备投射不同类型的媒资画面时,可以在切换媒资画面时自动触发画质调整等方式。基于上述控制指令的输入方式,而联想到的其他输入方式,都属于本申请的保护范围。
S200:响应于控制指令,控制出光组件向投影面投射矫正图像。
在获取用于画质调整的控制指令后,控制器23可以控制出光组件21投射矫正图像。其中,矫正图像包括基于标准颜色参数的图卡。矫正图像可以是便于进行色彩矫正的图像,例如基于标准红色、标准绿色、标准蓝色、标准白色以及标准黑色的纯色图像。
对于矫正图像,其中的标准颜色参数可以使用标准颜色值表示,即拥有标准RGB色度值的颜色,例如标准红色的RGB色度值为(255,0,0);标准绿色的RGB色度值为(0,255,0);标准蓝色的RGB色度值为(0,0,255);标准白色的RGB色度值为(255,255,255);标准黑色的RGB色度值为(0,0,0)。
在实际画质调整过程中,出光组件21可以投射基于上述任一种标准颜色的矫正图像至投影面,例如,向投影面投射纯白色的矫正图像;也可以依次投射基于多种标准颜色的矫正图像至投影面,例如依次向投影面投射纯红、绿、蓝、白、黑色的矫正图像。
那么控制器23在执行控制出光组件21向投影面投射矫正图像的过程中,还可以被配置为获取多个矫正图像,再控制出光组件21依次向投影面投射多个矫正图像。其中,多个矫正图像分别基于不同的标准颜色值。出光组件21在投射矫正图像的过程中,可以为每个颜色的矫正图像预设投影时间,该投影时间应设置为能够满足相机22完成拍照处理为准。例如,在预设投影时间5s时,出光组件21可以先投射纯红色矫正图像,在投射时长达到5s时,改为投射纯绿色矫正图像,并在绿色矫正图像的投射时长达到5s时,改为投射纯蓝色矫正图像,以此类推,直至将全部五种颜色的矫正图像完成投射。
在一些实施例中,矫正图像除具有纯色背景外,还可以包括特定形状图案的图卡。其中,图卡可以由多个基于不同标准形状、尺寸、位置的图案组 成,控制器23可以通过对投影画面中图卡的形状、尺寸、位置的状态,确定投影画面是否发生变形,以便根据图卡中形状的变形情况确定投影参数,以缓解畸变、透视效果对投影画面的影响。
S300:获取相机对投影面上的矫正图像拍摄的采样图像,以及从采样图像中提取背景颜色参数。
在控制出光组件21投射矫正图像后,控制器23可以控制相机22对投射的矫正图像进行图像拍摄,以获得采样图像。为了获得采样图像,控制器23可以在控制出光组件21投射矫正图像后,接收出光组件21的回执信号。当接收到回执信号后,向相机22发送拍照指令,以使相机22响应于拍照指令,对矫正图像进行拍摄,获得采样图像。
当出光组件21依次投射多张矫正图像时,控制器23还可以控制相机22分别对每个矫正图像进行图像采集以获得多个采样图像。即在一些实施例中,控制器23在执行获取相机对矫正图像拍摄的采样图像的步骤中,还被配置为:获取出光组件的投射内容切换信号,其中,投射内容切换信号在出光组件投射不同的矫正图像时生成。并响应于投射内容切换信号,向相机22发送拍摄指令,以使相机22对多个矫正图像拍摄多个采样图像。
例如,控制器23控制出光组件21投射第一个纯红色矫正图像后,由于出光组件21需要从投射其他内容切换到投射纯红色矫正图像,因此会生成一个投射内容切换信号,并传递给控制器23。控制器23则响应于该投射内容切换信号,向相机22发送拍摄指令,从而使相机22可以拍摄纯红色矫正图像对应的采样图像。而在出光组件21投射纯红色矫正图像5s后,会自动切换至投射纯绿色矫正图像,同理会产生投射内容切换信号,则控制器23再次响应该投射内容切换信号,向相机22发送拍摄指令,从而使相机22拍摄获得纯绿色矫正图像。依次类推,在出光组件21每次切换投射的矫正图像时,控制器23均相应的向相机22发送拍摄指令,直至所有矫正图像投射完成,从而获得相同数量的采样图像。即对应于出光组件21依次投射纯红、绿、蓝、白、黑色的矫正图像,相机22可以执行5次拍照,共获得包括纯红、绿、蓝、白、黑色的矫正图像内容的采样图像。
为了获得更好的拍照效果,在一些实施例中,控制器23在一个检测周期内首次向相机22发送拍照指令时,可以触发相机自动调整拍摄参数,如焦距、光圈、亮度等,从而获得清晰的采样图像。并且,进行拍摄参数的自动调整后,还可以控制相机22的拍摄参数维持稳定不变,以使相机22后续拍摄的采样图像与首张采样图像的参数一致,避免拍摄参数对采样图像种颜色的影响, 即固化相机22的模式,使相机22采集获得的采样图像会有高度的一致性。
在获取采样图像后,控制器23还可以对采样图像进行特征提取,即从采样图像中提取背景颜色参数。与标准颜色参数同理,背景颜色参数也可以通过背景颜色值进行表示。对于纯色内容的采样图像,控制器可以直接从采样图像的纯色区域内提取颜色值。而由于采样图像是相机22直接对投影画面最终显示效果采集的图像,因此其颜色值与矫正图像原始标准色之间的差距即可以用于确定投影色差,即色彩失真的程度。
显然,为了便于提取采样图像中的背景颜色值,相机22拍摄的图像中,投影画面所占的区域比例应足够大。例如,相机22的拍摄范围小于投影面的范围,即整个采样图像中的画面均为投影画面。为了实现这一效果,投影设备可以在首次通过相机22进行拍照时,自动调整相机22的焦距,使拍摄范围小于或等于投影画面的范围。
在一些实施例中,在获得采样图像后,控制器23还可以对采样图像执行图像识别算法,识别出采样图像中的投影画面区域。通常,受出光组件发射光照影响,投影画面一般为亮度较高,且形状规则的一个连通区域。而在拍摄的采样图像中,投影画面对应的连通区域通常占较大的区域面积,即最大连通区域作为投影画面区域的可能性最大。为此,控制器23在执行从采样图像中提取背景颜色值的步骤时,还被配置为:从采样图像中识别最大连通区域,其中,最大连通区域为采样图像中像素点色差小于色差阈值,且所占面积最大的多个像素点组成的区域。
在识别出最大连通区域后,控制器23还需要在最大连通区域中提取多个位置点的颜色值。例如,如图8所示,根据识别出的最大连通区域形状,在最大连通区域内均匀提取9个采样点,9个采样点在最大连通区域中按照3×3的形式矩形阵列,使每个采样点对应位于最大连通区域内的不同位置。
再根据多个位置点的颜色值计算背景颜色值,其中,背景颜色值为多个位置点的颜色值的平均值。例如,在9个采样点分别提取的颜色值分别为C11、C12、C13、C21、C22、C23、C31、C32、C33,则计算出的背景颜色值为:
B1=(C11+C12+C13+C21+C22+C23+C31+C32+C33)/9。
需要说明的是,为了便于提取背景颜色值,在相机22获取采样图像后,控制器23还可以根据采样图像中的内容识别结果,对采样图像进行裁切。例如,当识别到最大连通区域后,按照最大连通区域的边界位置,对采样图像进行裁切。显然,由于相机500在拍摄多个矫正图像时的拍摄参数一致,对于多个矫正图像对应的采样图像,投影区域所在的位置和范围也是一致的,因 此在首张矫正图像对应的采样图像完成裁切后,还可以按照首张矫正图像的裁切方式,依次裁切后续其他图像,不必重复进行最大连通区域的识别。
S400:根据背景颜色参数与标准颜色参数生成色差收益参数。
在提取出背景颜色参数后,控制器23可以执行对颜色失真问题的矫正,即计算背景颜色参数相对于标准颜色参数的色差收益参数。其中,色差收益参数是通过对比背景颜色值与标准颜色值之间的差值后,通过补偿算法计算出的收益参数,通过色差收益参数,可以进行画质补偿,以改善颜色失真问题。收益参数可以通过系统内置的增益函数(gains)计算获得。
例如,从采样图像中识别出最大连通区域后,根据采样图像中的背景颜色值B1和矫正图像对应的标准颜色值B0,计算背景颜色值B1相对于标准颜色值B0的增益gain1,并设置到白平衡,以供后续进行画质调整。
同理,在出光组件21依次投射多个矫正图像时,控制器23还可以针对多张采样图像分别进行差值收益的计算。例如,当控制器23解析相机22拍摄到的5张采样图像后,可以基于采样图像中各像素点的颜色值,进行RGB计算。再同标准红、绿、蓝、白、黑的RGB三色进行gains计算,以获得标准颜色值的色差收益参数。
S500:根据色差收益参数调整投影内容的画质曲线,以及控制出光组件按照调整后的画质曲线投射投影内容至投影面。
在计算色差收益参数后,可以根据色差收益参数对投射过程进行调整,以使投影设备在设定图像参数时,根据色差收益参数调整投影内容的画质曲线,即根据调试的曲线,进行gains参数按曲线进行补偿到画质参数中,实现对背景墙的RGB色值进行反向曲线叠加。再控制出光组件21按照调整后的画质曲线投射投影内容,以使用户看到的最终效果是恢复到原始色彩的效果,提高投影画质。
由以上实施方式可知,上述投影画质调整方法可以通过相机22对基于标准色值矫正图像的投影画面进行采样拍照,以获取采样图像中的背景颜色值,再与标准颜色值进行对比可以确定投影画面的色彩失真情况,从而按照色彩失真情况对投影过程进行调整,提高投影画质。
并且,在上述实施例中,相机22可以作为投影设备的一个内置部件,则通过预设相机22的拍摄位置和拍摄参数,使相机22可以拍全出光区域。并且对于相机22拍照存在曝光时间等的设置不同,导致采集图像效果不一致的问题,上述实施例中使用的投影设备还可以再触发投影墙、投影幕布的颜色识别时,固化拍照模式,使采集到的采样图像会有高度的一致性。此外,由于 投影设备使用相机22直接对投影画面进行拍摄,可以将投影设备周围的光照叠加到背景墙颜色中,即基于最终投影效果进行画质调整,从而在调整后更容易调整出最终效果是恢复到原始色彩的效果。
当背景颜色值与标准颜色值之间的差距较小时,则当前色彩失真对用户的观看体验影响较小,因此,为了尽快使出光组件将用户界面或媒资画面投射至投影面,在一些实施例中,还可以根据背景颜色值与标准颜色值之间的差距来控制是否执行画质调整,即控制器23在执行根据背景颜色参数与标准颜色参数生成色差收益参数的步骤中,还被配置为:
获取矫正图像对应的标准颜色值以及采样图像对应的背景颜色值。由于矫正图像包括基于标准颜色值的图卡,即一种矫正图像与一种标准颜色值之间具有映射关系,因此,当控制器23控制出光组件21投射一个矫正图像至投影面时,控制器23可以读取矫正图像对应文件的描述信息,从而获得与当前矫正图像具有映射关系的标准颜色值。
在一些实施例中,控制器23还可以在控制出光组件21投射矫正图像前,对矫正图像进行颜色识别,即遍历矫正图像中各像素点的颜色值,从而确定相同颜色最多的像素点对应的颜色值,作为标准颜色值。
在获取标准颜色值以后,可以计算标准颜色值与背景颜色值的差值。为了便于描述标准颜色值与背景颜色值的差值可以简称为色差值。例如,在矫正图像中读取到的标准颜色值为B0,在采样图像中提取的背景颜色值为B1,则可以计算两者的差值,即色差值为:ΔB=B1-B0。
基于上式计算获得标准颜色值与背景颜色值的差值ΔB后,可以对该色差值ΔB与预设的色差阈值B进行比较。如图9所示,具体包括:
S901、获取标准颜色值和背景颜色值;
S902、计算标准颜色值与背景颜色值的差值;
S903、判断色差值是否大于色差阈值;在色差值小于或等于色差阈值时,执行S904,在色差值大于色差阈值时,执行S905;
S904、控制出光组件按照原画质投射投影内容至投影面;
S905、根据色差值生成色差收益参数;
S906、将色差收益参数设置到当前图像模式的白平衡参数。
如果色差值ΔB小于或等于预设色差阈值B,则说明当前色彩失真对用户观看体验影响较小,因此可以不进行画质调整,直接按照原画质进行投影,即控制器控制出光组件按照原画质投射投影内容至投影面。
如果色差值ΔB大于预设色差阈值B,则说明当前色彩失真情况对用户的 观影体验影响较大,需要进行画质调整。因此可以根据色差值ΔB生成色差收益参数,以及将色差收益参数设置到当前图像模式的白平衡参数。
在一些实施例中,在每次将色差收益参数设置到当前图像模式的白平衡参数后,还可以通过再次获取采样图像,并进行二次判断,以验证画质调整效果。即控制器23在执行将差值收益设置到当前图像模式的白平衡参数的步骤后,还被配置为:
控制出光组件按照设置白平衡参数后的图像模式投射矫正图像。例如,将色差收益参数设置到当前图像模式的白平衡参数后,出光组件21按照将红色通道减轻20点色度值的方式投射投影内容,则按照该白平衡参数再次投射矫正图像,理论上红色通道将减轻20点色度值,以应对画面偏红的色彩失真问题。
对于出光组件21在设置白平衡参数后投射的矫正图像,相机22可以再次执行拍照,以获取重采样图像,以根据重采样图像再次进行判断和画质调整。由于在部分实施例中,受场景影响,导致自动进行画质调整的效果不能达到用户要求,因此投影设备不能无数次的进行重采样。为此,可以预先设置重采样次数,即设置拍摄次数阈值。
相应的,投影设备在投射矫正图像后,控制器23可以获取相机21对矫正图像的累计拍摄次数以及获取预设拍摄次数阈值。再对累计拍摄次数和预设拍摄次数阈值进行对比,以根据对比结果确定是否进行重采样。如图10所示,具体包括:
S1001、读取矫正图像的标准颜色值;
S1002、控制相机拍摄采样图像;
S1003、识别采样图像的最大连通区域;
S1004、提取采样图像的背景颜色值;
S1005、根据标准颜色值和背景颜色值计算色差值;
S1006、根据色差值设置白平衡参数;
S1007、判断色差值是否小于色差阈值;在色差值小于色差阈值时,执行S1008,在色差值大于或等于色差阈值时,执行S1009;
S1008、存储白平衡参数;
S1009、获取累计拍摄次数;
S1010、判断拍摄次数是否小于拍摄次数阈值;在拍摄次数小于拍摄次数阈值时,执行S1002;在拍摄次数大于或等于拍摄阈值时,执行S1011;
S1011、生成提示信息。
如果累计拍摄次数大于或等于预设拍摄次数阈值,即表明当前画质调整过程已达到最大自动调整次数,可能经过多次画质调整后色彩失真情况仍能够影响用户的观看体验,此时可以提示用户进行手动调节,即生成提示信息并控制出光组件21投射提示信息至投影面,其中,提示信息用于提示用户当前画质调整失败。
如果累计拍摄次数小于预设拍摄次数阈值,则表明当前画质调整过程未达到最大自动调整次数,因此可以控制相机22对矫正图像再次执行拍摄,以获得重采样图像。从而在重采样图像中提取背景颜色值,以及执行计算标准颜色值与背景颜色值的差值的步骤,即再次进行判断以及进行画质调整。
其中,具体的画质调整方式,可以与上述实施例中提供的画质调整方法相同,即对于重采样图像,可以对比其背景颜色值与标准颜色值,确定色彩失真缺陷的缓解情况。如果重采样图像的背景颜色值与标准颜色值之间的色差值小于或等于色差阈值,则说明此次画质调整有效,因此可以控制出光组件21维持此次调整后的白平衡参数进行投影。如果重采样图像的背景颜色值与标准颜色值之间的色差值大于色差阈值,则再次进行画质调整,即计算重采样图像的背景颜色值相对于标准颜色值的色差收益参数,以及根据色差收益参数调整投影内容的画质曲线。
需要说明的是,由于受光照条件、相机22的拍摄参数等因素影响,相机22拍摄的采样图像与真实投影效果之间也可能存在差异,因此为了减少拍摄过程的影响,在一些实施例中,还可以通过多次拍摄的采样图像,实现多次画质调整,以将投影画面调整至相对最佳的状态。基于此,在上述实施例中,进行对矫正图像进行重采样,以及对重采样图像中背景颜色值与标准颜色值的对比,并不仅仅是对画质调整结果的检验,而且还可以通过多次重采样,使最终呈现的投影画面中的颜色更接近标准颜色。
即在一些实施例中,在计算重采样图像中背景颜色值与标准颜色值之间的色差值后,通过与色差阈值进行对比,可以在色差值小于或等于色差阈值时,再次进行重采样,并通过重采样的方式进行多次画质调整。其中,在每次计算重采样图像中背景颜色值与标准颜色值之间的差值之后,进行对比的色差阈值可以设置为不同值。
例如,在第一次重采样过程中,第一色差阈值可以设置的相对较大,而在第二次重采样过程中,第二色差阈值可以设置的相对第一色差阈值较小。当第二次重采样获得的图像中,背景颜色值与标准颜色值的差值小于或等于第二色差值时,确定当前投影画面色差失真较小,则停止重采样,按照当前 确定的白平衡参数控制出光组件进行投影即可。当第二次重采样获得的图像中,背景颜色值与标准颜色值的差值大于第二色差值时,再进行第三次重采样,从而通过多次逐渐变小色差阈值,使背景颜色值逐渐接近标准颜色值。
在一些实施例中,还可以设置固定的重采样次数,例如,设置重采样次数为4,则与第一次进行采样相结合,在一次画质调整过程中,相机22共进行5次图像拍摄。当设置固定的重采样次数后,投影设备可以经过5次颜色对比,最终确定符合当前场景的白平衡参数。显然,如果经过5次颜色对比和白平衡参数调整后,仍没有任何一次调整过程中的色差值小于色差阈值,则可以按照上述实施例,控制出光组件21投射提示信息,以提示用户画质调整的结果。
由于在上述实施例中,通过调整图像模式的画质曲线,对色彩失真情况进行补偿,对于特定的背景颜色或色差值,补偿的参数是一致的,因此,可以对背景颜色(或色差值)与补偿参数进行关联存储,以便在后续画质调整过程中可以直接根据背景颜色(或色差值),确定补偿参数,无需重复判断,减少数据处理量。
即在一些实施例中,投影设备还包括存储器,其中,存储器被配置为存储白平衡参数。例如,在投影设备的存储器中可以预设数据对照表,数据对照表中存储有背景颜色、标准颜色、色差值以及白平衡参数,背景颜色、标准颜色、色差值以及白平衡参数之间具有关联关系,即通过背景颜色或色差值,可以确定对应标准颜色下的白平衡参数,以供后续投影设备调整画质曲线。因此,控制器还被配置为:
如果重采样图像中的背景颜色值与标准颜色值的差值小于或等于预设色差阈值,获取当前图像模式的白平衡参数。通过重采样图像,确定调整后投影画面的颜色与标准色彩之间的色差较小,不会对用户观影体验造成较大影响时,可以判断此次画质调整过程是有效的,因此,可以获取当前图像模式对应的白平衡参数。再设置采样图像的背景颜色值(或色差值)与当前图像模式白平衡参数的关联关系,并根据设置的关联关系存储白平衡参数。
可见,在上述实施例中,经过对重采样图像对画质调整结果进行验证后,如果调整后的画质能够缓解色彩失真的问题,则将对应的白平衡参数进行存储,以供后续画质调整过程中直接调用。即如图11所示,具体包括:
S1101、从采样图像中提取背景颜色值;
S1102、根据背景颜色值在存储器中查询存储的白平衡参数;
S1103、判断是否查询到白平衡参数;在未查询到白平衡参数时,执行S1104,在查询到白平衡参数时,执行S1105;
S1104、根据背景颜色参数与标准颜色参数生成色差收益参数;
S1105、提取白平衡参数;
S1106、控制出光组件按照白平衡参数投射投影内容至投影面。
在一些实施例中,控制器23在执行从采样图像中提取背景颜色值的步骤后,可以先根据背景颜色值在存储器中查询存储的白平衡参数。如果查询到与背景颜色值具有关联关系的白平衡参数,则直接提取白平衡参数,并控制出光组件直接按照提取的白平衡参数投射投影内容至投影面。如果未查询到与背景颜色值具有关联关系的白平衡参数,则继续执行计算背景颜色值相对于标准颜色值的色差收益参数的步骤,从而按照上述实施例中提供的方式对画质进行调整。
需要说明的是,在存储器中存储背景颜色值与白平衡参数时,还可以根据背景颜色值设置特定的匹配区间,例如,对于背景颜色值B1,可以预设“±10”的偏差值,即设置该背景颜色值B1的匹配区间为(B1-10,B1+10)。在设置匹配区间后,当后续提取出的背景颜色值在该匹配区间内时,则可以直接按照该区间对应的白平衡参数控制出光组件进行投射,从而减少重复判断的次数,提高画质调整效率。即如图12所示,具体包括:
S1201、对比背景颜色值;
S1202、判断是否与匹配区间重叠;在与匹配区间不重叠时,执行S1203,在与匹配区间重叠时,执行S1204;
S1203、存储白平衡参数;
S1204、对比色差值;
S1205、判断色差值是否小于存储的色差值;在大于或等于存储的色差值时,执行S1206,在小于存储的色差值时,执行S1207;
S1206、保留存储的白平衡参数;
S1207,替换存储的白平衡参数。
在一些实施例中,如图12所示,在每次画质调整获得新的白平衡参数后,投影设备还可以在存储前,对当前背景颜色值与已存储的背景颜色值进行比对,如果出现背景颜色值相等或者对应匹配区间重叠,则可以对调整过程中重采样图像对应色差进行对比,从而存储色差值较小的那个背景颜色值以及对应色差值和白平衡参数。
例如,经过画质调整,确定当前背景颜色值B1以及对应白平衡参数为WB1,对应重采样过程确定的色差值为ΔB1;而在存储当前背景颜色值B1以及对应白平衡参数WB1时,如果通过遍历获取到已存储与当前背景颜色值B1相近的 背景颜色值B2,以及对应白平衡参数WB2和重采样过程中的色差值ΔB2时,可以对当前重采样过程确定的色差值为ΔB1与已存储的重采样过程中的色差值ΔB2进行对比,以根据对比结果存储色差值更小的那一组背景颜色值和白平衡参数。即,当ΔB1≥ΔB2时,则舍弃当前背景颜色值B1以及对应白平衡参数为WB1,仍然保留存储背景颜色值B2以及对应白平衡参数WB2;而当ΔB1<ΔB2时,则使用当前背景颜色值B1以及对应白平衡参数为WB1替换已存储的背景颜色值B2以及对应白平衡参数WB2,作为后续画质调整过程中能够直接调用的白平衡参数。
基于上述投影画质调整方法,在本申请的部分实施例中还提供一种投影设备,投影设备包括出光组件21、相机22以及控制器23,其中,出光组件21被配置为投射投影内容至投影面;相机22被配置为拍摄采样图像;控制器23则被配置为执行上述实施例中提供的投影画质调整方法,具体包括:
S100:获取用于画质调整的控制指令;
S200:响应于控制指令,控制出光组件向投影面投射矫正图像,矫正图像包括基于标准颜色参数的图卡;
S300:获取相机对投影面上的矫正图像拍摄的采样图像,以及从采样图像中提取背景颜色参数;
S400:根据背景颜色参数与标准颜色参数生成色差收益参数;
S500:根据色差收益参数调整投影内容的画质曲线,以及控制出光组件按照调整后的画质曲线投射投影内容至投影面。
为了实施上述画质调整方法,在上述投影设备的控制器或者操作系统中,可以根据功能预先配置多个功能层级和模块。例如,投影设备的控制器可以配置有:应用层、框架层、中间件、驱动层四个功能层级,以及设置模块、背景色识别模块以及画质处理模块三个主要功能模块。其中,应用层主要用于完成背景识别的触发;即可以采用用户主动触发和条件自动触发的方式,以达到在用户进行正常观看的时候,不影响用户正常观看的效果。框架层用于提供通路支持,将用户的触发动作传递到中间件。中间件则用于完成原始数据的读取、图像采集、色彩识别,以及数据处理。驱动层则用于将中间件计算得到的白平衡参数下发到画质处理模块。
由以上实施方式可知,上述实施例中提供的投影设备可以在获取用于画质调整的控制指令后,先控制出光组件向投影面投射包括基于标准颜色参数图卡的矫正图像,再通过相机对矫正图像进行拍摄,以获得采样图像,以及从采样图像中提取背景颜色参数;再计算背景颜色参数相对于标准颜色参数 的色差收益参数;最后根据色差收益参数调整投影内容的画质曲线,以及控制光机按照调整后的画质曲线投射投影内容至投影面。投影设备可以通过相机对出光组件实时投射的画面效果进行检测,并按照颜色色差收益参数调整投影内容的画质曲线,从而缓解投影面颜色对投影内容颜色的影响,提高投影画面质量,使投影设备能够适应不同颜色的背景墙,提高用户体验。
本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。

Claims (20)

  1. 一种投影设备,包括:
    出光组件,被配置为投射投影内容至投影面;
    相机,被配置为拍摄采样图像;
    控制器,被配置为:
    获取用于画质调整的控制指令;
    响应于所述控制指令,控制所述出光组件向投影面投射矫正图像;所述矫正图像包括基于标准颜色参数的图卡;
    获取所述相机对所述投影面上的矫正图像拍摄的采样图像,以及从所述采样图像中提取背景颜色参数;
    根据所述背景颜色参数与标准颜色参数生成色差收益参数;
    根据所述色差收益参数调整投影内容的画质曲线,以及控制所述出光组件按照调整后的画质曲线投射投影内容至投影面。
  2. 根据权利要求1所述的投影设备,其中,所述控制器执行控制所述出光组件向投影面投射矫正图像,还被配置为:
    获取多个矫正图像;所述多个矫正图像分别基于不同的标准颜色参数;
    控制所述出光组件依次向投影面投射多个矫正图像。
  3. 根据权利要求2所述的投影设备,其中,所述控制器执行获取所述相机对所述矫正图像拍摄的采样图像,还被配置为:
    获取所述出光组件的投射内容切换信号;所述投射内容切换信号在所述出光组件投射不同的矫正图像时生成;
    响应于所述投射内容切换信号,向所述相机发送拍摄指令,以使所述相机对多个所述矫正图像拍摄多个采样图像。
  4. 根据权利要求1所述的投影设备,其中,所述控制器执行从所述采样图像中提取背景颜色值,还被配置为:
    从所述采样图像中识别最大连通区域;所述最大连通区域为所述采样图像中像素点色差小于色差阈值,且所占面积最大的多个像素点组成的区域;
    在所述最大连通区域中提取多个位置点的颜色值;
    根据多个位置点的颜色值计算所述背景颜色值;所述背景颜色值为多个位置点的颜色值的平均值。
  5. 根据权利要求1所述的投影设备,其中,所述控制器执行根据所述背景颜色参数与标准颜色参数生成色差收益参数,还被配置为:
    获取所述矫正图像对应的标准颜色值以及所述采样图像对应的背景颜色值;
    计算所述标准颜色值与所述背景颜色值的差值;
    如果所述差值大于预设色差阈值,根据所述差值生成色差收益参数,以及将所述色差收益参数设置到当前图像模式的白平衡参数。
  6. 根据权利要求5所述的投影设备,其中,所述控制器执行计算所述标准颜色值与所述背景颜色值的差值的步骤后,还被配置为:
    如果所述差值小于或等于预设色差阈值,控制所述出光组件按照原画质投射投影内容至投影面。
  7. 根据权利要求5所述的投影设备,其中,所述控制器执行将所述色差收益参数设置到当前图像模式的白平衡参数的步骤后,还被配置为:
    控制所述出光组件按照设置白平衡参数后的图像模式投射所述矫正图像;
    获取所述相机对所述矫正图像的累计拍摄次数;
    如果所述累计拍摄次数小于预设拍摄次数阈值,控制所述相机对所述矫正图像再次执行拍摄,以获得重采样图像;
    在所述重采样图像中提取背景颜色值,以及执行计算所述标准颜色值与所述背景颜色值的差值的步骤。
  8. 根据权利要求7所述的投影设备,其中,所述控制器执行获取所述相机对所述矫正图像的累计拍摄次数的步骤后,还被配置为:
    如果所述累计拍摄次数大于或等于预设拍摄次数阈值,生成提示信息;所述提示信息用于提示用户当前画质调整失败;
    控制所述出光组件投射所述提示信息至投影面。
  9. 根据权利要求7所述的投影设备,还包括存储器,所述存储器被配置为存储白平衡参数;所述控制器还被配置为:
    如果所述重采样图像中的背景颜色值与标准颜色值的差值小于或等于预设色差阈值,获取当前图像模式的白平衡参数;
    设置采样图像的背景颜色参数与当前图像模式白平衡参数的关联关系;
    根据所述关联关系存储所述白平衡参数。
  10. 根据权利要求9所述的投影设备,其中,所述控制器执行从所述采样图像中提取背景颜色值的步骤后,还被配置为:
    根据所述背景颜色参数在所述存储器中查询存储的白平衡参数;
    如果查询到与所述背景颜色参数具有关联关系的白平衡参数,提取所述白平衡参数,以及控制所述出光组件按照所述白平衡参数投射投影内容至投 影面;
    如果未查询到与所述背景颜色参数具有关联关系的白平衡参数,执行根据所述背景颜色参数与标准颜色参数生成色差收益参数的步骤。
  11. 一种投影画质调整方法,应用于投影设备,所述投影设备包括出光组件、相机以及控制器,所述投影画质调整方法包括:
    获取用于画质调整的控制指令;
    响应于所述控制指令,控制所述出光组件向投影面投射矫正图像,所述矫正图像包括基于标准颜色参数的图卡;
    获取所述相机对所述矫正图像拍摄的采样图像,以及从所述采样图像中提取背景颜色参数;
    根据所述背景颜色参数与标准颜色参数生成色差收益参数;
    根据所述色差收益参数调整投影内容的画质曲线,以及控制所述出光组件按照调整后的画质曲线投射投影内容至投影面。
  12. 根据权利要求11所述的方法,其中,所述控制所述出光组件向投影面投射矫正图像,包括:
    获取多个矫正图像;所述多个矫正图像分别基于不同的标准颜色参数;
    控制所述出光组件依次向投影面投射多个矫正图像。
  13. 根据权利要求12所述的方法,其中,所述获取所述相机对所述矫正图像拍摄的采样图像,包括:
    获取所述出光组件的投射内容切换信号;所述投射内容切换信号在所述出光组件投射不同的矫正图像时生成;
    响应于所述投射内容切换信号,向所述相机发送拍摄指令,以使所述相机对多个所述矫正图像拍摄多个采样图像。
  14. 根据权利要求11所述的方法,其中,所述从所述采样图像中提取背景颜色值,包括:
    从所述采样图像中识别最大连通区域;所述最大连通区域为所述采样图像中像素点色差小于色差阈值,且所占面积最大的多个像素点组成的区域;
    在所述最大连通区域中提取多个位置点的颜色值;
    根据多个位置点的颜色值计算所述背景颜色值;所述背景颜色值为多个位置点的颜色值的平均值。
  15. 根据权利要求11所述的方法,其中,所述根据所述背景颜色参数与标准颜色参数生成色差收益参数,包括:
    获取所述矫正图像对应的标准颜色值以及所述采样图像对应的背景颜色 值;
    计算所述标准颜色值与所述背景颜色值的差值;
    如果所述差值大于预设色差阈值,根据所述差值生成色差收益参数,以及将所述色差收益参数设置到当前图像模式的白平衡参数。
  16. 根据权利要求15所述的方法,其中,所述计算所述标准颜色值与所述背景颜色值的差值后,还包括:
    如果所述差值小于或等于预设色差阈值,控制所述出光组件按照原画质投射投影内容至投影面。
  17. 根据权利要求15所述的方法,其中,所述将所述色差收益参数设置到当前图像模式的白平衡参数后,还包括:
    控制所述出光组件按照设置白平衡参数后的图像模式投射所述矫正图像;
    获取所述相机对所述矫正图像的累计拍摄次数;
    如果所述累计拍摄次数小于预设拍摄次数阈值,控制所述相机对所述矫正图像再次执行拍摄,以获得重采样图像;
    在所述重采样图像中提取背景颜色值,以及计算所述标准颜色值与所述背景颜色值的差值。
  18. 根据权利要求17所述的方法,其中,所述获取所述相机对所述矫正图像的累计拍摄次数后,还包括:
    如果所述累计拍摄次数大于或等于预设拍摄次数阈值,生成提示信息;所述提示信息用于提示用户当前画质调整失败;
    控制所述出光组件投射所述提示信息至投影面。
  19. 根据权利要求17所述的方法,所述投影设备还包括存储器,所述存储器被配置为存储白平衡参数;所述方法还包括:
    如果所述重采样图像中的背景颜色值与标准颜色值的差值小于或等于预设色差阈值,获取当前图像模式的白平衡参数;
    设置采样图像的背景颜色参数与当前图像模式白平衡参数的关联关系;
    根据所述关联关系存储所述白平衡参数。
  20. 根据权利要求19所述的方法,其中,所述从所述采样图像中提取背景颜色值后,还包括:
    根据所述背景颜色参数在所述存储器中查询存储的白平衡参数;
    如果查询到与所述背景颜色参数具有关联关系的白平衡参数,提取所述白平衡参数,以及控制所述出光组件按照所述白平衡参数投射投影内容至投影面;
    如果未查询到与所述背景颜色参数具有关联关系的白平衡参数,根据所述背景颜色参数与标准颜色参数生成色差收益参数。
PCT/CN2023/112977 2022-09-15 2023-08-14 投影设备及投影画质调整方法 WO2024055793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211122420.8A CN115529445A (zh) 2022-09-15 2022-09-15 一种投影设备及投影画质调整方法
CN202211122420.8 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024055793A1 true WO2024055793A1 (zh) 2024-03-21

Family

ID=84697518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112977 WO2024055793A1 (zh) 2022-09-15 2023-08-14 投影设备及投影画质调整方法

Country Status (2)

Country Link
CN (1) CN115529445A (zh)
WO (1) WO2024055793A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115529445A (zh) * 2022-09-15 2022-12-27 海信视像科技股份有限公司 一种投影设备及投影画质调整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088807A1 (en) * 2006-10-13 2008-04-17 Samsung Electronics Co.; Ltd Method and apparatus for adjusting image colors of image projector
CN103209311A (zh) * 2012-01-14 2013-07-17 复旦大学 基于相机的多投影自动校正显示系统
CN106791737A (zh) * 2015-11-25 2017-05-31 中兴通讯股份有限公司 投影画面的颜色校正方法及装置
WO2022036539A1 (zh) * 2020-08-18 2022-02-24 华为技术有限公司 一种多相机色彩一致性校正方法和装置
CN114205570A (zh) * 2021-11-16 2022-03-18 海信视像科技股份有限公司 一种投影设备及自动校正投影图像的显示控制方法
CN115529445A (zh) * 2022-09-15 2022-12-27 海信视像科技股份有限公司 一种投影设备及投影画质调整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088807A1 (en) * 2006-10-13 2008-04-17 Samsung Electronics Co.; Ltd Method and apparatus for adjusting image colors of image projector
CN103209311A (zh) * 2012-01-14 2013-07-17 复旦大学 基于相机的多投影自动校正显示系统
CN106791737A (zh) * 2015-11-25 2017-05-31 中兴通讯股份有限公司 投影画面的颜色校正方法及装置
WO2022036539A1 (zh) * 2020-08-18 2022-02-24 华为技术有限公司 一种多相机色彩一致性校正方法和装置
CN114205570A (zh) * 2021-11-16 2022-03-18 海信视像科技股份有限公司 一种投影设备及自动校正投影图像的显示控制方法
CN115529445A (zh) * 2022-09-15 2022-12-27 海信视像科技股份有限公司 一种投影设备及投影画质调整方法

Also Published As

Publication number Publication date
CN115529445A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN115022606B (zh) 一种投影设备及避障投影方法
US8023009B2 (en) Imaging apparatus for correcting optical distortion and wide-angle distortion
JP5612774B2 (ja) 追尾枠の初期位置設定装置およびその動作制御方法
US8284294B2 (en) Compound-eye image pickup apparatus
WO2024055793A1 (zh) 投影设备及投影画质调整方法
CN102870422A (zh) 成像设备、成像设备主体以及阴影校正方法
CN116055696A (zh) 一种投影设备及投影方法
US20110279738A1 (en) Control device and projection video display device
JP6253007B2 (ja) 表示装置
CN115002432A (zh) 一种投影设备及避障投影方法
CN114866751A (zh) 一种投影设备及触发校正方法
CN115002433A (zh) 投影设备及roi特征区域选取方法
CN115883803A (zh) 投影设备及投影画面矫正方法
WO2024066776A9 (zh) 投影设备及投影画面处理方法
CN116320335A (zh) 一种投影设备及调整投影画面尺寸的方法
JP2016015017A (ja) 撮像装置、投光装置、および画像処理方法、ビームライト制御方法、並びにプログラム
WO2023088303A1 (zh) 投影设备及避障投影方法
CN115604445A (zh) 一种投影设备及投影避障方法
CN115623181A (zh) 一种投影设备及投影画面移动方法
CN115243021A (zh) 一种投影设备及避障投影方法
CN114928728A (zh) 投影设备及异物检测方法
CN114760454A (zh) 一种投影设备及触发校正方法
CN112912935A (zh) 虚拟现实实时拍摄监看系统及控制方法
CN114885141A (zh) 一种投影检测方法及投影设备
CN116647654B (zh) 投影仪热失焦的补偿方法、系统、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864527

Country of ref document: EP

Kind code of ref document: A1