WO2024055532A1 - 无源电子设备、微能源采集方法及储能方法 - Google Patents

无源电子设备、微能源采集方法及储能方法 Download PDF

Info

Publication number
WO2024055532A1
WO2024055532A1 PCT/CN2023/078741 CN2023078741W WO2024055532A1 WO 2024055532 A1 WO2024055532 A1 WO 2024055532A1 CN 2023078741 W CN2023078741 W CN 2023078741W WO 2024055532 A1 WO2024055532 A1 WO 2024055532A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
energy
signal
frequency
electrical
Prior art date
Application number
PCT/CN2023/078741
Other languages
English (en)
French (fr)
Inventor
欧阳红军
樊俊超
Original Assignee
深圳市每开创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市每开创新科技有限公司 filed Critical 深圳市每开创新科技有限公司
Publication of WO2024055532A1 publication Critical patent/WO2024055532A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3883Arrangements for mounting batteries or battery chargers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of electronic technology, and in particular to a passive electronic device, a micro-energy collection method and an energy storage method.
  • Batteries will not only pose challenges to the structure of electronic devices, such as waterproof structures, but also increase the production costs of electronic devices and the maintenance costs of battery loss. At the same time, waste Batteries will also bring environmental problems and affect people's daily life.
  • Batteries will not only pose challenges to the structure of electronic devices, such as waterproof structures, but also increase the production costs of electronic devices and the maintenance costs of battery loss. At the same time, waste Batteries will also bring environmental problems and affect people's daily life.
  • This application provides a passive electronic device, a micro-energy collection method and an energy storage method.
  • the passive electronic device can collect wireless radio frequency micro-energy in free space to provide power.
  • the passive electronic device does not require battery power.
  • this application provides a passive electronic device, including:
  • the wireless receiving module is used to receive wireless signals in the space, frequency-lock the wireless signals of a specific frequency, and convert the frequency-locked wireless signals into electrical signals;
  • a power management module is electrically connected to the wireless receiving module, and the power management module is used to receive the electrical signal and convert the electrical signal into electrical energy;
  • a load module is electrically connected to the power management module, and the load module is used to operate under the supply of electric energy provided by the power management module.
  • this application also provides a micro-energy collection method, including:
  • this application also provides an energy storage method, including:
  • the nominal electrical signal will be extracted to form a stable output of aggregated electrical energy.
  • the wireless receiving module can capture the wireless signal in the space and frequency-lock the wireless signal of a specific frequency and then lock the frequency.
  • the wireless signal is converted into an electrical signal;
  • the power management module can receive the electrical signal and convert the electrical signal into electrical energy;
  • the load module can work under the supply of electrical energy provided by the power management module. Therefore, on the one hand, the passive electronic device of this application does not require traditional batteries for power supply and can achieve "zero-power wireless radio frequency communication"; on the other hand, the wireless receiving module can automatically perform automatic transmission based on the frequency of micro-energy scattered and propagated in space.
  • the wireless receiving module can proactively accurately identify and capture micro-energy sources in multiple frequency bands (such as 800MHz to 2.4GHz), which can improve the sensitivity and efficiency of the wireless receiving module in receiving wireless signals; on the other hand, the embodiment of the present application
  • the wireless receiving module can also adapt to micro energy sources in a wider frequency band, making the passive electronic tags of the embodiments of the present application applicable to a wider range of scenarios.
  • Figure 1 is a first structural schematic diagram of a passive electronic device provided by an embodiment of the present application.
  • Figure 2 is a first application scenario diagram of the passive electronic device shown in Figure 1.
  • FIG. 3 is a first structural schematic diagram of the wireless receiving module shown in FIG. 1 .
  • FIG. 4 is a schematic structural diagram of the radio frequency identification unit shown in FIG. 3 .
  • FIG. 5 is a second structural schematic diagram of the wireless receiving module shown in FIG. 1 .
  • FIG. 6 is a schematic structural diagram of the power control unit shown in FIG. 5 .
  • FIG. 7 is a first structural schematic diagram of the power management module shown in FIG. 1 .
  • FIG. 8 is a schematic diagram of electrical connections of the power management module shown in FIG. 7 .
  • FIG. 9 is a second structural schematic diagram of a passive electronic device provided by an embodiment of the present application.
  • FIG. 10 is a second structural schematic diagram of the power management module shown in FIG. 1 .
  • FIG. 11 is a third structural schematic diagram of the power management module shown in FIG. 1 .
  • FIG. 12 is a schematic structural diagram of the amplification unit shown in FIG. 7 .
  • FIG. 13 is a third structural schematic diagram of a passive electronic device provided by an embodiment of the present application.
  • Figure 14 is a fourth structural schematic diagram of a passive electronic device provided by an embodiment of the present application.
  • Figure 15 is a fifth structural schematic diagram of a passive electronic device provided by an embodiment of the present application.
  • Figure 16 is a sixth structural schematic diagram of a passive electronic device provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of electrical connections of the passive electronic equipment shown in FIG. 16 .
  • Figure 18 is a first structural schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 19 is a second structural schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 20 is a third structural schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 21 is a fourth structural schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 22 is a first application scenario diagram of the positioning method according to the embodiment of the present application.
  • Figure 23 is a second application scenario diagram of the positioning method according to the embodiment of the present application.
  • Figure 24 is a first structural schematic diagram of an energy emitting device provided by an embodiment of the present application.
  • Figure 25 is a second structural schematic diagram of an energy emitting device provided by an embodiment of the present application.
  • Figure 26 is a schematic diagram of an application scenario of the energy emitting device shown in Figure 24.
  • Embodiments of the present application provide a passive electronic device that can adopt the principle of microwave space scattering and follow the law of conservation of energy to wirelessly scatter electromagnetic wave signals of various types of weak nanoampere currents in the air from various emission sources. Identify and effectively capture micro-energy. By collecting algorithm chips, these micro-energy can be accurately compared and stored in the energy storage medium. The micro-energy in all computing units can be effectively stored, and over time, a larger micro-energy can be formed. A large energy pool can provide continuous escort work for various intelligent node terminal devices with extremely low power consumption, allowing various IoT devices to truly achieve battery-free, maintenance-free adaptive intelligent work.
  • the passive electronic device in the embodiment of the present application may be an electronic tag device, or may also be, but is not limited to, a passive lock, a passive umbrella, etc.
  • the embodiment of the present application does not specify the specific form of the passive electronic device. limited.
  • FIG. 1 is a first structural schematic diagram of the passive electronic device 100 provided by an embodiment of the present application.
  • FIG. 2 is a first application scenario diagram of the passive electronic device 100 shown in FIG. 1 .
  • the passive electronic device 100 may include a wireless receiving module 110, a power management module 120, and a load module 130.
  • the wireless receiving module 110 can receive wireless signals in the space, and can convert the wireless signals into electrical signals (or electrical energy). Under the action of the electrical signal (or electrical energy), the wireless receiving module 110 can be activated and continue to receive wireless signals in the space, so that the wireless receiving module 110 can form an effective positive feedback mechanism, so that the entire wireless receiving module 110 can Complete micro-energy collection work without battery or power source stimulation.
  • the wireless receiving module 110 can form an effective positive feedback mechanism, so that the entire wireless receiving module 110 can Complete micro-energy collection work without battery or power source stimulation.
  • radio electromagnetic waves scattered around such as but not limited to wireless fidelity (Wireless Fidelity, Wi-Fi) signals at home and Bluetooth around shared bicycles.
  • the wireless receiving module 110 in the embodiment of the present application can receive wireless signals in space and can convert these wireless signals in the form of electromagnetic waves into electrical signals or electrical energy signals in the form of current.
  • the wireless receiving module 110 can convert wireless signals into An electrical signal or electrical energy signal in the form of a microcurrent, which may be a nanoamp level microcurrent.
  • the electrical energy or electrical signals converted by the wireless receiving module 110 can be used by the wireless receiving module 110 itself to work, and excess electrical energy or electrical signals can also be transmitted to the power management module 120 for management.
  • the power management module 120 may be directly or indirectly electrically connected to the wireless receiving module 110 to receive transmissions from the wireless receiving module 110 electrical signal or electrical energy signal or micro current.
  • the electrical connection may be a physical electrical connection formed through electrical connectors such as wires, or it may be a non-contact coupled electrical connection formed through electromagnetic coupling.
  • the embodiments of the present application do not limit the specific electrical connection method between the power management module 120 and the wireless receiving module 110; and, for the electrical connection relationships involved in subsequent embodiments of the present application, reference can also be made to the description of the embodiments of the present application, which will not be discussed later. Let’s go into details.
  • the power management module 120 can receive the electrical signal, power signal or micro-current transmitted by the wireless receiving module 110, and can convert the electrical signal, power signal or micro-current into stable power for each module to work. It can be understood that the electrical signal or electrical energy signal or micro-current transmitted by the wireless receiving module 110 may be primary electrical energy, and the electrical energy converted by the power management module 120 may be secondary electrical energy.
  • the power management module 120 can manage the electrical signal, power or micro-current transmitted by the wireless receiving module 110. For example, but not limited to, the power management module 120 can amplify, convert, distribute and store the electrical signal, power signal or micro-current. and other operations, so that the primary electrical energy can be converted into secondary electrical energy and the secondary electrical energy can be managed overall, so that the power management module 120 can realize the central control function of the passive electronic device 100 .
  • the load module 130 may be electrically connected to the power management module 120 directly or indirectly.
  • the load module 130 can receive the electric energy (secondary electric energy) transmitted by the power management module 120, and can perform corresponding operations under the supply of the electric energy to realize the work of the load module 130.
  • the load module 130 can be a functional module of the passive electronic device 100, which can enable the passive electronic device 100 to have corresponding functions.
  • the passive electronic device 100 in the embodiment of the present application can transmit Bluetooth signals, near field communication signals, etc.
  • the passive electronic device 100 in the embodiment of the present application can have the function of collecting corresponding parameters; of course, the load module 130 in the embodiment of the present application can also include multiple functional structures, So that the load module 130 can have different functions. Based on this, the embodiment of the present application does not limit the specific structure of the load module 130. Any structure of the load module 130 that can work under the supply of electric energy provided by the power management module 120 is within the protection scope of the embodiment of the present application.
  • the wireless receiving module 110 and the power management module 120 cooperate to convert wireless signals in the space into electrical energy and supply it to the load module 130 to make the load module 130 work. Therefore, the passive electronic device 100 of the embodiment of the present application does not require traditional batteries for power supply, reconstructing the traditional energy transmission mechanism represented by batteries in the past for power supply and wire transmission; breaking through the radio frequency communication under extremely low power consumption.
  • Fig. 3 is a first structural schematic diagram of the wireless receiving module 110 shown in Fig. 1.
  • the wireless receiving module 110 can receive wireless signals in space, can frequency-lock wireless signals of a specific frequency (including electrical signals corresponding to the wireless signals), and can frequency-lock wireless signals (including electrical signals corresponding to the wireless signals).
  • the electrical signal corresponding to the signal) is converted into an electrical signal or an electrical energy signal (first-level electrical energy).
  • the wireless receiving module 110 can convert the frequency-locked wireless signal into a micro-current signal or electrical energy in the form of micro-current.
  • the power management module 120 can receive and manage the electrical signal or the electrical energy signal or the micro current, and convert the electrical signal or the electrical energy signal or the micro current into electrical energy (secondary electrical energy), so that the load module 130 can manage the electrical energy in the power management module 120 .
  • Module 120 operates on a supply of electrical energy.
  • the wireless receiving module 110 may include a receiving antenna unit 111 and a radio frequency identification unit 112 .
  • the receiving antenna unit 111 can receive wireless signals in the space.
  • the radio frequency identification unit 112 may be electrically connected to the receiving antenna unit 111 directly or indirectly.
  • the radio frequency identification unit 112 can convert the wireless signal received by the receiving antenna unit 111 into a digital signal, and can perform frequency division identification on the digital signal.
  • the radio frequency identification unit 112 can also frequency-lock the digital signal of a specific frequency.
  • the receiving antenna unit 111 can capture micro-energy sources of different frequencies scattered and propagated in space.
  • the receiving antenna unit 111 may be a probe-type antenna with high sensitivity. Since radio frequency signals are scattered in the surrounding environment when propagating in space, they are invisible and intangible to conventional human eyes. Various radio frequency signals are mixed and cannot be identified in complex environments.
  • the receiving antenna unit 111 of the embodiment of the present application can find a specific frequency signal as quickly as possible and can eliminate interference from other wireless signals.
  • the receiving antenna unit 111 in the embodiment of the present application can adaptively FM receive wireless signals in the frequency range from 800MHz to 2.4GHz.
  • the gain and sensitivity of the receiving antenna unit 111 can be in the range of 0 to +15dB, and the maximum can not exceed the Radio Regulatory Commission. Specified +20dB.
  • the signal received by the receiving antenna unit 111 can quickly reach the radio frequency identification unit 112.
  • the receiving antenna unit 111 in the embodiment of the present application may include an antenna radiator for receiving signals or an antenna radio frequency circuit.
  • the antenna radio frequency circuit may excite the electromagnetic wave signal received by the antenna radiator and convert it into an analog signal and form an analog signal.
  • a reference signal source so that the receiving antenna unit 111 can quickly transmit the reference signal source to the radio frequency identification unit 112 .
  • the antenna radio frequency circuit can also be integrated in other modules of the passive electronic device 100 , for example, the radio frequency circuit can also be integrated in the radio frequency identification unit 112 .
  • the embodiment of the present application does not limit the specific structure of the receiving antenna unit 111.
  • the radio frequency identification unit 112 can identify, divide and analyze the digital signal corresponding to the wireless signal transmitted by the receiving antenna unit 111.
  • the radio frequency identification unit 112 can optimize the signal strength and gain effect of the digital signal corresponding to the wireless signal. A better signal is identified, and the frequency of the identified signal is used as a specific frequency to further compare the wireless signal of the specific frequency.
  • the corresponding digital signal is frequency-locked, and the digital signal corresponding to the frequency-locked wireless signal is converted into an electrical signal, electrical energy, or microcurrent.
  • the wireless receiving module 110 can store or transmit the specific frequency parameter to the receiving antenna unit 111 or the radio frequency identification unit 112, so that the receiving antenna unit 111 or the radio frequency identification unit 112 can quickly capture and lock the specific frequency parameter. frequency signal.
  • the specific frequency when the radio frequency identification unit 112 performs the frequency locking operation may also be a preset frequency.
  • the radio frequency identification unit 112 can also identify, divide and analyze the wireless signal transmitted by the receiving antenna unit 111, and capture the signal of a specific frequency to perform a frequency locking operation.
  • the wireless receiving module 110 (such as the radio frequency identification unit 112, or the power control unit 113 below) can be activated under the action of the electrical signal or electrical energy or micro-current converted from the wireless signal received by the receiving antenna unit 111, and to the receiving antenna unit 111.
  • the antenna unit 111 (such as the radio frequency circuit of the receiving antenna unit 111) transmits a preset frequency so that the receiving antenna unit 111 can capture more wireless signals of the preset frequency.
  • the activated wireless receiving module 110 can also transmit the preset frequency to the radio frequency identification unit 112 so that the radio frequency identification unit 112 can frequency-lock the signal of the preset frequency.
  • the above is only an exemplary example of the radio frequency identification unit 112 in the embodiment of the present application locking a specific frequency wireless signal, and it is not limited thereto. Any solution that can enable the radio frequency identification unit 112 to perform a frequency locking operation is within the protection scope of the embodiments of the present application.
  • the radio frequency identification unit 112 can transmit the frequency-locked digital signal to the power management module 120 for subsequent operations; the radio frequency identification unit 112 can also further amplify the frequency-locked digital signal into an electrical signal or Electric energy signal or micro current, and part of the energy of the electric signal or electric energy signal or micro current can be used by the receiving antenna unit 111 and the radio frequency identification unit 112 to work themselves, and the other part of the electric signal or the energy of the electric energy signal or micro current can be transmitted to the electric energy Subsequent operations in the management module 120.
  • the radio frequency identification unit 112 can also transmit the frequency-locked digital signal to the power control unit in subsequent embodiments (such as the power control unit 113 shown in FIG. 5 below) to perform corresponding operations.
  • the embodiment of the present application does not limit the operation of the radio frequency identification unit 112 after frequency locking.
  • the radio frequency identification unit 112 may be, but is not limited to, a circuit-integrated chip structure, or may be, but is not limited to, a structure integrating different independent devices.
  • the embodiment of the present application does not limit the specific structure of the radio frequency identification unit 112.
  • the wireless receiving module 110 in the embodiment of the present application can capture wireless signals in space.
  • the wireless receiving module 110 can also frequency-lock wireless signals of a specific frequency and convert the frequency-locked wireless signals into electrical energy. Therefore, on the one hand, the wireless receiving module 110 in the embodiment of the present application can adaptively capture according to the frequency of micro-energy sources scattered and propagated in space, and the wireless receiving module 110 can actively capture micro-energy sources in multiple frequency bands (for example, 800 MHz to 2.4 GHz).
  • Precise identification and capture can improve the sensitivity and efficiency of the wireless receiving module 110 in receiving wireless signals; on the other hand, the wireless receiving module 110 in the embodiment of the present application can also adapt to micro energy sources in a wider frequency band, so that the wireless receiving module 110 in the embodiment of the present application can Passive electronic tags are applicable to a wider range of scenarios.
  • Fig. 4 is a schematic structural diagram of the radio frequency identification unit 112 shown in Fig. 3.
  • the radio frequency identification unit 112 may include an analog frequency generator 1121, a frequency tuner 1122 and a frequency locker 1123.
  • the analog frequency generator 1121 may be directly or indirectly electrically connected to the receiving antenna unit 111, and the analog frequency generator 1121 may convert wireless signals received by the receiving antenna unit 111 into digital signals. It can be understood that in this process, the receiving antenna unit 111 may first convert the received wireless signal into an analog signal and transmit the analog signal to the analog frequency generator 1121, and then the analog frequency generator 1121 will compare with the wireless signal. The analog signal is converted into a digital signal; it is also possible that the receiving antenna unit 111 directly transmits the wireless signal to the analog frequency generator 1121, and then a part of the circuit structure inside the analog frequency generator 1121 first converts the wireless signal into an analog signal, and then another A portion of the circuit converts the analog signal into a digital signal. It should be noted that the embodiment of the present application does not limit the specific working process of the analog frequency generator 1121.
  • analog frequency generator 1121 may include, but is not limited to, an analog-to-digital converter.
  • the embodiment of the present application does not limit the specific structure of the analog frequency generator 1121.
  • the frequency tuner 1122 may be electrically connected to the analog frequency generator 1121 directly or indirectly.
  • the frequency tuner 1122 can perform operations such as identification, analysis, frequency division, etc. on digital signals, so as to divide the frequency of micro-energy signals in multiple frequency bands (such as 800MHz to 2.4GHz) received by the antenna receiving unit, so that the frequency locker 1123 can Also perform frequency locking on a signal of a certain frequency.
  • the frequency tuner 1122 can also perform other processing on the digital signal, such as but not limited to tuning the digital signal.
  • the embodiment of the present application does not limit the specific working mode of the frequency tuner 1122.
  • the frequency locker 1123 can be directly or indirectly electrically connected to the frequency tuner 1122, and the frequency locker 1123 can frequency-lock the digital signal of a specific frequency in order to capture more signals of the specific frequency.
  • the frequency locker 1123 can determine a specific frequency to implement the frequency locking operation according to the signal with the best signal strength and better gain effect in the digital signal analyzed by the frequency tuner 1122; the frequency locker 1123 can also implement the frequency locking operation according to the specific frequency parameters pre-stored by the passive electronic tag.
  • the frequency locker 1123 can also implement the frequency locking operation according to other methods, and the embodiment of the present application does not limit the specific working method of the frequency locker 1123.
  • radio frequency identification unit 112 in the embodiment of the present application.
  • the specific structure of the radio frequency identification unit 112 is not limited to this. For example, but not limited to, it may also include other circuit structures.
  • the embodiment of the present application does not limit the specific structure of the radio frequency identification unit 112.
  • the radio frequency identification unit 112 in the embodiment of the present application includes an analog frequency generator 1121, a frequency tuner 1122 and a frequency locker 1123. The three components cooperate with each other. When a valid radio frequency signal is detected and captured, the radio frequency identification unit 112 can quickly By adaptively capturing the oscillation frequency point of a specific frequency and performing co-frequency resonance, the radio frequency identification unit 112 can adaptively and quickly convert wireless signals into electrical energy signals.
  • FIG. 5 is a second structural schematic diagram of the wireless receiving module 110 shown in FIG. 1 .
  • the wireless receiving module 110 in the embodiment of the present application may also include a power control unit 113.
  • the power control unit 113 may be electrically connected to the radio frequency identification unit 112 directly or indirectly.
  • the power control unit 113 can receive the frequency-locked signal, such as a digital signal, transmitted by the radio frequency identification unit 112, and gain-amplify the signal, such as the digital signal, to form an electrical signal or an electrical energy signal or a microcurrent (that is, to achieve first-level electrical energy); electrical energy
  • the control unit 113 can also perform operations such as distribution, storage, and management of the electrical signal, electrical energy signal, or microcurrent, so that the first-level electrical energy formed by the electrical signal, electrical energy signal, or microcurrent can support the normal operation of the entire wireless receiving module 110 .
  • the power control unit 113 can transmit an electrical signal or an electrical energy signal or a primary electrical energy formed by a micro current to the radio frequency identification unit 112 and the receiving antenna unit 111 to maintain the normal operation of the radio frequency identification unit 112 and the receiving antenna unit 111 ;
  • the power control unit 113 can also transmit the excess energy to the power management unit. module 120 to activate the power management module 120 and power the power management module 120 to work.
  • the wireless receiving module 110 in the embodiment of the present application also includes a receiving antenna unit 111, a radio frequency identification unit 112 and a power control unit 113.
  • the receiving antenna unit 111 can capture micro energy signals from space, and the radio frequency identification unit 112 can perform micro energy signal processing.
  • the power control unit 113 can store and manage the frequency-locked signal. Therefore, the micro energy signal can activate the radio frequency identification unit 112, and excess micro energy can also be continuously stored in the power control unit. 113, an effective positive feedback mechanism is formed, so that the entire wireless receiving module 110 can work without battery excitation.
  • FIG. 6 is a schematic structural diagram of the power control unit 113 shown in FIG. 5 .
  • the power control unit 113 in the embodiment of the present application may include a reference signal source circuit 1131, an excitation gain circuit 1132 and a micro energy storage management circuit 1133.
  • the reference signal source circuit 1131 can be electrically connected to the frequency locker 1123 directly or indirectly, and the reference signal source circuit 1131 can receive the frequency-locked signal, such as a digital signal, transmitted by the frequency locker 1123 .
  • the excitation gain circuit 1132 can be directly or indirectly electrically connected to the reference signal source circuit 1131.
  • the excitation gain circuit 1132 can gain-amplify the frequency-locked signal, such as a digital signal, and form a first-level electrical energy in the form of an electrical signal, an electrical energy signal, or a microcurrent.
  • the excitation gain circuit 1132 can perform one-level gain amplification on the frequency-locked signal, such as a digital signal, and amplify the gain to a certain multiple to form a nanoamp level electrical signal, an electrical energy signal, or a microcurrent.
  • the micro energy storage management circuit 1133 can be directly or indirectly electrically connected to the excitation gain circuit 1132, and the micro energy storage management circuit 1133 can manage the amplified electrical signal, electric energy signal or micro current of the excitation gain circuit 1132.
  • the micro energy storage management circuit 1133 can be equipped with a small capacitor device, which can store amplified electrical signals or electrical energy signals or first-level electrical energy of micro currents; for another example, the micro energy storage management circuit 1133 can be based on the receiving antenna unit 111, radio frequency Identify the work requirements of the unit 112 and transmit part of the stored electrical signal or electrical energy signal or micro-current to the receiving antenna unit 111 and the radio frequency identification unit 112 to maintain the normal operation of both.
  • the micro energy storage management circuit 1133 can transmit excess electrical signals or electrical energy signals or micro currents to the power management module 120 to activate and maintain the operation of the power management module 120 after maintaining the normal operation of the wireless receiving module 110 .
  • the power control unit 113 may use the reference signal source circuit 1131, One or more of the excitation gain circuit 1132 and the micro energy storage management circuit 1133 are combined into one circuit structure; for another example, the power control unit 113 may also include more circuit structures.
  • the embodiment of the present application does not limit the specific structure of the power control unit 113. Any structure that can amplify and manage the frequency-locked signal of the radio frequency identification unit 112 can be within the protection scope of the embodiment of the present application.
  • the power control unit 113 in the embodiment of the present application includes a reference signal source circuit 1131, an excitation gain circuit 1132 and a micro energy storage management circuit 1133.
  • the three components cooperate with each other to amplify and store the frequency-locked signal of the radio frequency identification unit 112.
  • the power control unit 113 can complete the first-level amplification and storage management of micro energy signals.
  • the wireless receiving module 110 in the embodiment of the present application is not limited thereto.
  • the wireless receiving module 110 may also include more functions. other structures.
  • the embodiment of the present application does not limit the specific structure of the wireless receiving module 110. Among them, please refer to Figure 1 again.
  • the power management module 120 in the embodiment of the present application can receive the electrical signal or the electrical energy signal or the micro current (first-level electrical energy) transmitted by the wireless receiving module 110, and can convert the electrical signal or the electrical energy or the micro current. Converted into stable output of aggregated electrical energy (secondary electrical energy). At this time, the load module 130 can work under the supply of the stably output aggregated electric energy.
  • the electrical signal or electrical energy signal or micro-current transmitted by the wireless receiving module 110 to the power management module 120 may be in the form of an AC electrical signal, and the power management module 120 may convert the electrical signal transmitted by the wireless receiving module 110 within a preset unit time.
  • the signals or electric energy signals or micro-current electric signals are collected and mixed into a group, and the electric signals or electric energy with similar characteristics in each group are The signal or micro-current signal is extracted and packaged so that the electrical signal or electric energy signal or micro-current signal with AC characteristics can be converted into a stable output of aggregated electrical energy.
  • the stably output aggregated electric energy can be supplied to the load module 130 so that the load module 130 can operate normally.
  • the power management module 120 may include a rectifier and implement the above functions through the rectifier.
  • the embodiment of the present application does not limit the specific manner in which the power management module 120 achieves stable output of aggregated power.
  • the power management module 120 can also store the stably output aggregated power.
  • the power management module 120 can include a supercapacitor structure to store power.
  • the load module 130 and the wireless receiving module 110 can maintain normal operation under the action of the stored electric energy.
  • the passive electronic device 100 can also separately include an energy storage module, which can be electrically connected to the power management module 120 to receive and store the aggregated power output by the power management module 120 .
  • the energy storage module can also be directly or indirectly electrically connected to other modules of the passive electronic device 100, such as the wireless receiving module 110 and the load module 130, to maintain the normal operation of both. It should be noted that the embodiments of the present application do not limit the specific storage method of aggregated electric energy.
  • the power management module 120 in the embodiment of the present application can convert the electric energy or micro-current transmitted by the wireless receiving module 110 into a stable output of aggregated electric energy.
  • the stable output of the aggregated electric energy can ensure the normal operation of the load module 130 . Therefore, the power management module 120 of the present application can convert alternating current signals into stable output power without the need for complex hardware structure support. It has a simple structure, is easy to operate, has lower energy storage costs, and has better power supply effects.
  • Figure 7 is a first structural schematic diagram of the power management module 120 shown in Figure 1.
  • Figure 8 is a circuit diagram of the power management module 120 shown in Figure 7. Connection diagram.
  • the power management module 120 may include an amplification unit 121 and a power management unit 122.
  • the amplifying unit 121 can be directly or indirectly electrically connected to the wireless receiving module 110.
  • the amplifying module can be directly or indirectly electrically connected to the power control unit 113 of the wireless receiving module 110. Further, the amplifying module can be connected to the micro energy storage of the power control unit 113.
  • the management circuit 1133 is electrically connected directly or indirectly.
  • the amplifying unit 121 can receive the electrical signal, electrical energy, or micro current transmitted by the wireless receiving module 110, and can amplify the electrical signal, electrical energy signal, or micro current.
  • the amplification unit 121 can synchronize and invert the nanoampere-level electrical signals or electric energy or micro-current transmitted by the wireless receiving module 110 and perform inversion amplification.
  • the amplification unit 121 can realize two-level amplification of micro-energy sources.
  • the amplifying unit 121 may be, but is not limited to, a power amplifier.
  • the embodiments of the present application do not limit the specific structure of the amplification unit 121. Any circuit or structure that can amplify electrical energy or microcurrent is within the scope of the embodiments of the present application.
  • the power management unit 122 may be electrically connected to the amplification unit 121 directly or indirectly.
  • the power management unit 122 is capable of receiving the amplified electrical signal or electrical energy signal or micro-current transmitted by the amplifying unit 121 for effective energy management.
  • the power management unit 122 may convert the amplified electrical signal or electrical energy signal or micro-current into stably output aggregated electrical energy.
  • the power management unit 122 may adopt an energy recovery algorithm, which uses an energy point innovative feature set hybrid algorithm to achieve stable output of aggregated power.
  • the power management unit 122 can collect and mix the electrical signals or electrical energy signals or micro-current electrical signals transmitted by the wireless receiving module 110 within a preset unit time period into one group, and collect the electrical signals or electrical signals with similar characteristics in each group.
  • the electric energy signal or micro-current signal is extracted and packaged nominally, so that the electric signal or electric energy signal or micro-current signal with AC characteristics can form a stable output of aggregated electric energy.
  • the stably output aggregated electric energy can be supplied to the load module 130 so that the load module 130 can operate normally.
  • the power management unit 122 can also implement the above functions in other ways. For example, but not limited to, the power management unit 122 can implement the above functions through a rectifier.
  • the embodiment of the present application does not limit the specific manner in which the power management unit 122 achieves stable output of aggregated power.
  • the power management unit 122 can also be directly or indirectly electrically connected to the wireless receiving module 110.
  • the power management unit 122 can be directly or indirectly electrically connected to the power control unit 113 of the wireless receiving module 110.
  • the power management unit 122 may be directly or indirectly electrically connected to the micro energy storage management circuit 1133 of the power control unit 113 .
  • the power management unit 122 can be activated and in a working state under the excitation of the electrical signal or electrical energy signal or micro current transmitted by the wireless receiving module 110 to convert the amplified electrical signal, electrical energy signal or micro current amplified by the amplification unit 121 into a stable The aggregate electrical energy output.
  • the power management unit 122 can also be activated and put into operation under the action of the amplified electrical signal or electrical energy signal or micro-current provided by the amplifying unit 121, so that the power management unit 122 achieves stable output of aggregated electrical energy. It should be noted that the embodiments of the present application do not limit the specific method of the power management unit 122. Any working method that can convert the amplified electrical signal or electrical energy signal or micro-current of the amplification unit 121 into stable output of aggregated electrical energy can be used. Within the protection scope of the embodiments of this application.
  • the power management unit 122 can also store aggregated power.
  • the power management unit 122 may include a power storage unit such as but not limited to a supercapacitor.
  • the supercapacitor may store the aggregated power converted by the power management unit 122 and may transmit the aggregated power to other modules when other modules require power support. electrical energy.
  • FIG. 9 is a second structural schematic diagram of the passive electronic device 100 provided by the embodiment of the present application.
  • FIG. 10 is the power management module 120 shown in FIG. 1
  • the second structural diagram of An electrical energy storage unit 124 is provided.
  • the electric energy storage unit 140 or the electric energy storage unit 124 can be directly or indirectly electrically connected to the electric energy management unit 122 and store the aggregated electric energy transmitted by the electric energy management unit 122, and can provide electric energy support for other modules. Based on this, the embodiment of the present application does not limit the specific storage method of the aggregated electric energy.
  • the power management module 120 in the embodiment of the present application includes an amplification unit 121 and a power management unit 122.
  • the amplification unit 121 can realize one-level power inversion amplification of the electrical signal or power signal or micro-current transmitted by the wireless receiving module 110.
  • the power management unit 122 The amplified scattered weak energy with AC characteristics can be effectively combined into a stable output aggregate energy, and the aggregate energy can effectively ensure the normal operation of the load module 130 .
  • FIG. 11 is a third structural schematic diagram of the power management module 120 shown in FIG. 1 .
  • the power management module 120 may also include a control management unit 123.
  • the control management unit 123 may be directly or indirectly electrically connected to at least one of other units in the power management module 120, the wireless receiving module 110, and the load module 130.
  • the control management unit 123 may be electrically connected to the power management unit 122 directly or indirectly.
  • the power management unit 122 may transmit stably output aggregated power to the control management unit 123, and the control management unit 123 may receive the aggregated power and activate work.
  • the control management unit 123 may be electrically connected to the amplification unit 121 directly or indirectly.
  • the control management unit 123 may control the operation of the amplification unit 121 according to the aggregate power transmitted by the power management unit 122 .
  • the control management unit 123 may control the amplification factor of the amplification unit 121.
  • the amplification unit 121 can receive the electrical signal or electrical energy signal or micro current transmitted by the wireless receiving module 110, such as the micro energy storage management circuit 1133, and first amplify the electrical signal or electrical energy according to a preset amplification factor (for example, amplify one time).
  • the signal or micro current is amplified, and the amplified electrical signal or electrical energy signal or micro current is transmitted to the power management unit 122 and formed into aggregated electrical energy, so that the control management unit 123 can be activated by the aggregated electrical energy, and the control management unit 123 can be activated by the aggregated electrical energy.
  • the control management unit 123 can control and adjust the magnification factor of the amplification unit 121 according to the aggregate power transmitted by the power management unit 122 (for example, adjust to amplify two times, three times...), and the amplification unit 121 can continue to adjust the amplification factor according to the adjusted amplification factor.
  • the received electrical signal or electrical energy signal or micro-current is amplified, which can make the conversion rate of aggregated electrical energy faster. It can be understood that during this process, the control management unit 123 can adjust the working parameters of the amplification unit 121 multiple times according to the actual situation. The embodiment of the present application does not limit the specific working method of the control management unit 123 to control the amplification unit 121.
  • control management unit 123 can also be electrically connected to the load module 130.
  • the control management unit 123 can control the power management unit 122 or the power storage unit to provide power to the load module 130 according to the working parameters of the load module 130, and ensure that the load Module 130 operates normally.
  • control management unit 123 can also reversely control the work of the amplification unit 121 and the power management unit 122 according to the working status of the load module 130 (for example, the power consumption of the load module 130).
  • the working state of the amplification unit 121 is adjusted, and the power distribution ratio of the power management unit 122 to the load module 130 is adjusted.
  • the embodiment of the present application does not limit the specific control method of the load module 130, the amplification unit 121, and the power management unit 122 by the control management unit 123.
  • the control management unit 123 may also be directly or indirectly electrically connected to the wireless receiving module 110, and the control management unit 123 may also control the wireless receiving module 110. For example, but not limited to, when the aggregate electric energy stored in the passive electronic device 100 reaches a certain level and there is no need to convert micro energy into aggregate electric energy, at this time, the control management unit 123 can control the wireless receiving module 110 to stop working. It should be noted that the above are only exemplary details for the control management unit 123 to control the wireless receiving module 110, and other control schemes may also be within the protection scope of the embodiments of the present application.
  • control management unit 123 may be a microcontroller unit (Microcontroller Unit, MCU for short).
  • the control management unit 123 can be a micro-computing processing center of the entire passive electronic device 100.
  • the control management unit 123 can work under the stimulation of the aggregate energy provided by the power management unit 122, and can undertake the effective signal source of the amplification unit 121. The calculation can also control the operation of the load module 130. Therefore, the control management unit 123 can control various modules and units of the passive electronic device 100, which will not be described in detail here.
  • the power management module 120 in the embodiment of the present application includes an amplification unit 121, a power management unit 122 and a control management unit 123.
  • the three modules independently complete their respective tasks and can cooperate with each other.
  • the amplification unit 121 can synchronously invert and amplify the basic signal (electrical signal/electric energy/microcurrent) transmitted by the wireless receiving module 110.
  • the first-level electric energy stored in the wireless receiving module 110 can stimulate and wake up the electric energy management unit 122.
  • the electric energy management unit 122 can Quick activation can improve the response rate of the passive electronic device 100; at the same time, the power management unit 122 can convert the signal amplified by the amplification unit 121 into a stable output of aggregate energy, and the control management unit 123 can according to the working status of the passive electronic device 100 Process business logic information between various modules and units of the entire passive electronic device 100.
  • FIG. 12 is a schematic structural diagram of the amplification unit 121 shown in FIG. 7 .
  • the amplification unit 121 may include a reference sampling circuit 1211, a multiple amplification circuit 1212, and an amplification feedback circuit 1213.
  • the reference sampling circuit 1211 can be directly or indirectly electrically connected to the wireless receiving module 110, such as the power control unit 113 or the micro energy storage management circuit 1133 of the wireless receiving module 110.
  • the reference sampling circuit 1211 can receive the electrical signal or electrical energy transmitted by the wireless receiving module 110 or microcurrent.
  • the multiple amplifying circuit 1212 can be directly or indirectly electrically connected to the reference sampling circuit 1211.
  • the multiple amplifying circuit 1212 can amplify the received electrical signal, electrical energy or micro current by a certain multiple to achieve secondary inversion of the solid line electrical signal, electrical energy or micro current. enlarge.
  • the multiple amplifier circuit 1212 can be directly or indirectly electrically connected to the power management unit 122 so that the multiple amplifier circuit 1212 can transmit the inverter amplified signal to the power management unit 122 .
  • the multiplier amplifier circuit 1212 can also transmit the amplified signal to the amplification feedback circuit 1213, and the amplification feedback circuit 1213 transmits the inverter-amplified signal to the power management unit 122.
  • the embodiment of the present application does not limit the specific manner in which the amplified electrical signal is transmitted to the power management unit 122 .
  • the amplification feedback circuit 1213 may be directly or indirectly electrically connected to the multiple amplification circuit 1212.
  • the amplification feedback circuit 1213 can also be directly or indirectly electrically connected to the control management unit 123 of the power management module 120 described below.
  • the amplification feedback circuit 1213 can receive the adjustment information of the amplification factor transmitted by the control management unit 123.
  • the amplification feedback circuit 1213 can transmit the adjustment information to the multiple amplification circuit 1212, so that the multiple amplification circuit 1212 amplifies the received electrical signal or electric energy or micro-current according to the adjusted amplification factor.
  • the amplification circuit in the embodiment of the present application includes a reference sampling circuit 1211, a multiple amplification circuit 1212, and an amplification feedback circuit 1213 that cooperate and cooperate with each other to achieve secondary inversion amplification of electrical signals/electric energy/microcurrents and also receive control
  • the control of the management unit 123 enables adaptive control of the secondary inverter amplification of the electrical signal/electric energy/microcurrent, so that the amplification circuit of the embodiment of the present application can enable the weak signal source to achieve effective voltage stabilization in the power management module 120. flow.
  • the above is only an exemplary description of the amplification unit 121 provided in the embodiment of the present application.
  • the specific structure of the amplification unit 121 is not limited thereto.
  • the amplification unit 121 may also include a multi-stage multiple amplification circuit inside. . Any structure that can perform two-level inverter amplification on the electrical signal or electrical energy signal or micro-current transmitted by the wireless receiving module 110 can be within the protection scope of the amplification unit 121 in the embodiment of the present application.
  • the above is only an exemplary description of the power management module 120 provided in the embodiment of the present application.
  • the specific structure of the power management module 120 is not limited thereto.
  • the power management module 120 may include more or fewer modules.
  • the embodiment of this application does not limit the specific structure of the power management module 120. Any structural solution that can receive the electrical signal/electric energy/microcurrent transmitted by the wireless receiving module 110 and convert it into electrical energy can be implemented in this application. within the scope of protection.
  • FIG. 13 is a third structural schematic diagram of a passive electronic device 100 provided by an embodiment of the present application.
  • the load module 130 of the passive electronic device 100 may include a Bluetooth unit 131 .
  • the Bluetooth unit 131 may be directly or indirectly electrically connected to the power management module 120, and the Bluetooth unit 131 may transmit signals to the outside, such as broadcast signals, under the supply of power provided by the power management module 120. For example, after the power management module 120 receives the electrical signal transmitted by the wireless receiving module 110 and converts the electrical signal into a stable output of aggregated power, the Bluetooth unit 131 can provide the stable output of the aggregated power to the power management module 120 . external broadcast signal.
  • the Bluetooth unit 131 may be directly or indirectly electrically connected to the power management unit 122 of the power management module 120 to receive the stably output aggregated power transmitted by the power management unit 122 .
  • the Bluetooth unit 131 may also be directly or indirectly electrically connected to an electrical energy storage unit that stores aggregate electrical energy to receive the stably output aggregate electrical energy transmitted by the electrical energy storage unit.
  • the Bluetooth unit 131 can also be directly or indirectly electrically connected to the control management unit 123 of the power management module 120 to receive control from the control management unit 123.
  • the control management unit 123 can control the Bluetooth module to broadcast signals to the outside under certain trigger conditions. Stop broadcasting signals outside under another certain trigger condition.
  • Bluetooth unit 131 or the passive electronic device 100 can, but is not limited to, implement the positioning function, code scanning function, and content push function of the passive electronic device 100 .
  • the embodiment of the present application does not limit the specific application scenarios of the Bluetooth unit 131.
  • the Bluetooth unit 131 can be responsible for independently parsing a part of the special content surrounding the BLE protocol stack, and can actively broadcast wireless signals and send becan signals.
  • the Bluetooth unit 131 in the embodiment of the present application can only transmit broadcast signals to the outside and not be used to receive signals.
  • the Bluetooth unit 131 may not include hardware and software structures suitable for the signal receiving function.
  • the Bluetooth unit 131 can serve as a BLE signal radio frequency transmitter. To simplify the design, the Bluetooth unit 131 must not only ensure that it is compatible with the internationally accepted Bluetooth protocol stack while completing its own extremely low-power working state, but also take into account the power of the transmitted signal to ensure that the scene receiving terminal (such as the aforementioned electronic terminal 300 ) wireless sensing experience.
  • the connection and disconnection of the Bluetooth unit 131 itself is a 0-1 switch sensor.
  • the Bluetooth unit 131 either transmits signals to the outside, such as broadcast signals, or stops transmitting signals, which is equivalent to being in a
  • the state changes in fixed scenarios make the active upload and transmission of the Bluetooth unit 131 of this application much more significant than the traditional passive reception of Ultra High Frequency (UHF).
  • UHF Ultra High Frequency
  • the Bluetooth unit 131 of this application will be a good network for the expansion and application of self-organizing networks, which will be more popular in the Internet of Things in the future.
  • the Bluetooth unit 131 in the embodiment of the present application only broadcasts signals without receiving signals, which not only makes the structure of the Bluetooth unit 131 in the embodiment of the present application simpler and lower in cost, but also makes the Bluetooth unit 131 in the embodiment of the present application operate at an extremely low cost. It can operate under power consumption. Therefore, the Bluetooth unit 131 in the embodiment of the present application is more suitable for the passive electronic tag of the present application.
  • Figure 14 is a fourth structural schematic diagram of a passive electronic device 100 provided by an embodiment of the present application.
  • Figure 15 is a passive electronic device 100 provided by an embodiment of the present application. Schematic diagram of the fifth structure.
  • the load module 130 of the embodiment of the present application may also include a sensor unit 132.
  • the sensor unit 132 may be, but is not limited to, a microsystem sensor (MEMS).
  • MEMS microsystem sensor
  • the sensor unit 132 may be connected to the power management module
  • the block 120 is directly or indirectly electrically connected, and the sensor unit 132 can collect parameter information under the supply of electric energy provided by the power management module 120 .
  • the sensor unit 132 can collect parameters on the supply of the stable output of the aggregated power provided by the power management module 120 information.
  • the parameter information may be, but is not limited to, parameter information in the current environment of the passive electronic device 100, such as but is not limited to temperature parameter information, humidity parameter information, pressure parameter information, altitude parameter information, etc.
  • the sensor unit 132 may Collect parameters such as temperature parameters, humidity, pressure, and altitude in the current environment of the passive electronic device 100 .
  • the sensor unit 132 may be directly or indirectly electrically connected to the power management unit 122 of the power management module 120 to receive the stably output aggregated power transmitted by the power management unit 122 .
  • the sensor unit 132 may also be directly or indirectly electrically connected to an electrical energy storage unit that stores aggregate electrical energy, so as to receive a stable output of aggregate electrical energy transmitted by the electrical energy storage unit.
  • the sensor unit 132 can also be directly or indirectly electrically connected to the control management unit 123 of the power management module 120 to receive control from the control management unit 123.
  • the control management unit 123 can control the sensor unit 132 to collect presets under certain trigger conditions. Parameter information, stop collecting preset parameter information under another certain trigger condition.
  • the load module 130 in the embodiment of the present application may include at least one of the sensor unit 132 and the Bluetooth unit 131.
  • the load module 130 may include the Bluetooth unit 131 but not the sensor unit 132 ; for another example, as shown in FIG. 14 , the load module 130 may include the sensor unit 132 but not the Bluetooth unit 131 ; for another example, As shown in FIG. 15 , the load module 130 may include a Bluetooth unit 131 and a sensor unit 132 at the same time.
  • the load module 130 in the embodiment of the present application may include one or more (two or more) Bluetooth units 131 and one or more (two or more) load modules 130 . Based on this, the embodiment of the present application does not limit the arrangement and quantity of the Bluetooth unit 131 and the sensor unit 132 .
  • the sensor unit 132 can be communicatively connected with other electronic terminals, servers, or cloud platforms, and the sensor can transmit the collected parameter information to other electronic terminals, servers, or cloud platforms, so that the electronic terminals, servers, or cloud platforms can Relevant information in the current environment of the passive electronic device 100 can be obtained.
  • the sensor unit 132 can also be directly or indirectly electrically connected to the Bluetooth unit 131.
  • the sensor unit 132 can convert the collected relevant information into an electrical signal, such as an analog signal, and send it to the Bluetooth unit 131.
  • the Bluetooth unit 131 can convert the electrical signal, such as an analog signal. The signal is actively broadcast and sent out. It should be noted that the above is only an exemplary description of the external transmission of the parameter information collected by the sensor unit 132. The embodiment of the present application does not limit the specific manner of external transmission of the parameter information collected by the sensor unit 132.
  • the sensor unit 132 in the embodiment of the present application is a flexible design unit option in the framework of the entire passive electronic device 100.
  • the passive electronic device 100 may or may not be equipped with the sensor unit 132. .
  • the sensor unit 132 can adapt to different scenarios where it is necessary to perform spatial perception of the current environmental parameters of the passive electronic device 100, such as temperature, humidity, pressure, height, etc. Subsequently, the sensor unit 132 can be attached to a space wireless network node, and can wirelessly collect these parameters in real time and report them to the cloud platform server, so that the entire system not only adds feasible and rich content, but also is close to the needs of life, greatly satisfying different scenarios. needs.
  • the sensor unit 132 in the embodiment of the present application is a variable task unit that loads a sensing load. It can collect parameter information of the current environment of the passive electronic device 100 and use the Bluetooth unit 131 to actively broadcast and report it to the cloud platform, which can reduce the sensor load.
  • the power consumption of the unit 132 can also expand the application scenarios of the passive electronic device 100 and improve the adaptability of the passive electronic device 100 .
  • FIG. 16 is a sixth structural schematic diagram of the passive electronic device 100 provided by the embodiment of the present application.
  • FIG. 17 is an electrical connection schematic diagram of the passive electronic device shown in FIG. 16 .
  • Passive electronic device 100 also includes an encrypted storage unit 150 .
  • the encrypted storage unit 150 can be directly or indirectly electrically connected to at least one of the wireless receiving module 110, the power management module 120, and the load module 130.
  • the encrypted storage unit 150 can store data and prevent illegal tampering with the data.
  • the encrypted storage unit 150 can be responsible for saving important configuration parameters in the normal operation of the passive electronic device 100 in the case of power outage, such as encrypted storage, and can prevent malicious and illegal tampering with the data; at the same time, the encrypted storage unit 150 The sectors in the upper redundant space can store other randomly erasable data. Therefore, the encrypted storage unit 150 can ensure a reasonable allocation of storage space within a limited storage space and control storage operations with benign power consumption, achieving a two-way balance between energy consumption and access to content.
  • the encrypted storage unit 150 can cooperate with the data encryption of the power management module 120 and the load module 130.
  • the encrypted storage unit 150 can be used as a storage center of the encrypted data center of the power management unit 122 in the power management module 120, and can also be used as a storage center for the power management module 120.
  • the storage center of the business logic processing center of the control management unit 123 in the management module 120 can also be used as the storage center of the special configuration protocol in the Bluetooth unit 131, and can also be used as the analog sensing data storage center in the sensor unit 132.
  • the encrypted storage unit 150 can be, but is not limited to, a memory, and the memory can be designed so that it can both store data and prevent data from being illegally tampered with.
  • the embodiment of the present application does not limit the specific structure of the encryption storage unit 150.
  • the encrypted storage unit 150 can be used as a separate module of the passive electronic device 100, and the encrypted storage unit 150 can be integrated in other modules.
  • the encrypted storage unit 150 can be integrated in the power management module 120. as part of the power management module 120 .
  • the embodiment of the present application does not limit the specific structure of the encryption storage unit 150.
  • the encrypted storage unit 150 in the embodiment of the present application can not only store data, but also encrypt and save important data to prevent it. Therefore, the encrypted storage unit 150 of the embodiment of the present application can ensure reasonable allocation of storage space within the limited storage space and control storage operations with benign power consumption, so as to achieve a two-way balance between energy consumption and access content.
  • the passive electronic device 100, the Bluetooth unit 131, the encrypted storage unit 150 and the sensor unit 132 in the embodiment of the present application can work independently of each other and can work cooperatively with each other.
  • the Bluetooth unit 131 can be responsible for parsing a special part of the content surrounding the BLE protocol stack and actively broadcasting and sending signals;
  • the encrypted storage unit 150 can be responsible for encrypting and saving important configuration parameters in the event of power outage, and redundant space sectors can Store other randomly erasable data;
  • the sensor unit 132 serves as a variable pseudo sensing load and can simulate signal collection parameters and then actively broadcast and send them with the Bluetooth unit 131. Therefore, the passive electronic device 100 in the embodiment of the present application can do Energy consumption and access content are balanced in both directions.
  • the passive electronic device 100 is only an exemplary description of the passive electronic device 100 in the embodiment of the present application.
  • the specific structure of the passive electronic device 100 is not limited.
  • the passive electronic device 100 may also include a sleep unit and a wake-up unit. etc.
  • the embodiment of the present application does not limit the specific structure of the passive electronic device 100 .
  • wireless signal acquisition method/wireless signal acquisition method/micro energy acquisition method/micro energy acquisition method may include:
  • Receive wireless signals or micro-energy in the space lock the frequency of wireless signals or micro-energy at a specific frequency, and convert the locked wireless signal or micro-energy into micro-current, electrical energy or electrical signals (such as other forms of electrical energy such as level of electrical energy).
  • the method of the embodiment of the present application may also include: receiving wireless signals or micro-energy sources in the space; converting the wireless signals or micro-energy sources into digital signals, frequency dividing the digital signals, and converting the digital signals at specific frequencies.
  • the signal is frequency-locked; the frequency-locked digital signal is gain-amplified and formed into micro-current, electrical energy or electrical signal (such as first-level electrical energy), and the micro-current, electrical energy or electrical signal (such as electrical energy in other forms, such as Level 1 electrical energy) for management.
  • wireless signals or micro-energy sources can refer to various types of weak electromagnetic wave signals with nanoampere currents scattered wirelessly in the air by various emission sources.
  • radio electromagnetic waves scattered around such as but not limited to home Wi-Fi signals, BLE signals around shared bicycles, 3G signals, 4G signals, 5G signals from communication base stations, etc.
  • These different frequencies Wireless signals or micro energy sources can work in the same space in real time.
  • the wireless signal acquisition method/wireless signal acquisition method/micro energy acquisition method/micro energy acquisition method in the embodiments of the present application can collect or acquire these wireless signals or micro energy sources in space.
  • the concepts of wireless signal and micro energy in any embodiment of this application are interchangeable, that is, table.
  • the expression "wireless signal” can be replaced by the expression "micro energy”. No details will be given here.
  • the wireless signal acquisition method/wireless signal acquisition method/micro energy acquisition method/micro energy acquisition method in the embodiments of the present application can be applied to the passive electronic device 100 or the passive electronic device 100 in any of the above embodiments. in the wireless receiving module 110.
  • this method can also be applied to other modules, devices, storage media, and electronic equipment that can implement this solution, which is not limited by the embodiments of the present application.
  • the receiving antenna unit of the passive electronic device 100 may be used, but is not limited to, to receive wireless signals or micro-energy sources in the space;
  • the radio frequency identification unit may be used, but is not limited to, to detect wireless signals of a specific frequency.
  • the signal or micro-energy source is used to identify and lock the frequency;
  • the power control unit may be used, but is not limited to, to convert the frequency-locked wireless signal into micro-current, electrical energy or electrical signal (such as other forms of electrical energy, such as first-level electrical energy).
  • the method in this step is not limited to wireless signals or micro-energy sources of a specific frequency, and frequency-locked wireless signals or micro-energy sources. They can also be current signals corresponding to the wireless signals or micro-energy sources of a specific frequency, such as analog signals, and The frequency-locked wireless signal is converted into a current signal corresponding to a micro energy source, such as a digital signal.
  • the operation correspondence of these two steps in the method of the embodiment of the present application is not limited to wireless signals and micro energy sources, but may also include current signals corresponding to wireless signals and micro energy sources.
  • the wireless signal acquisition method/wireless signal acquisition method/micro energy acquisition method/micro energy acquisition method can receive wireless signals or micro energy sources in space, and can frequency-lock wireless signals or micro energy sources at specific frequencies. And convert the frequency-locked wireless signal or micro-energy into electrical energy. Therefore, on the one hand, the method of the embodiment of the present application can adaptively capture according to the frequency of micro-energy sources scattered and propagated in space, and can proactively accurately identify and capture micro-energy sources in multiple frequency bands (such as 800MHz to 2.4GHz). Improve the sensitivity and efficiency of receiving wireless signals; on the other hand, the method of the embodiment of the present application can also adapt to micro-energy sources in a wider frequency band, making the method of the embodiment of the present application applicable to a wider range of scenarios.
  • the energy storage method/energy storage method includes:
  • the energy storage method/energy storage method also includes: collecting and mixing microcurrents/electrical energy/electrical signals (other forms of electrical energy such as primary electrical energy) with AC characteristics or scattering characteristics within a preset unit time period. Group them into a group and assign the corresponding Extract the nominal value of the microcurrent/electrical energy/electrical signal (equal form of electrical energy, such as first-level electrical energy) near the characteristic point, so that the nominal microcurrent/electrical energy/electrical signal (equal form of electrical energy, such as first-level electrical energy) is formed. Stable output of aggregated electrical energy.
  • the energy storage method/energy storage method also includes: receiving micro-current, electrical energy or electrical signal (such as a form of electrical energy such as primary electrical energy) with AC characteristics or scattering characteristics, and converting the micro-current/electric energy into /electrical signals (equal forms of electrical energy, such as first-level electrical energy) are amplified; the amplified microcurrent/electrical energy/electrical signals (equal forms of electrical energy, such as first-level electrical energy) within a preset unit time period are collected and mixed into a group, And extract the nominal value of the microcurrent/electrical energy/electrical signal (equal form of electric energy such as first-level electric energy) with similar characteristic points in each group, so that the nominal microcurrent/electrical energy/electrical signal (equal form of electric energy) is extracted For example, primary electric energy) forms a stable output of aggregated electric energy; receives the aggregated electric energy and supplies power to other functional modules to support the work of the functional modules.
  • micro-current, electrical energy or electrical signal such as a form of electrical energy such as
  • the energy storage method/energy storage method in the embodiment of the present application can be applied to the passive electronic device 100 or the power management module 120 of the passive electronic device 100 in any of the above embodiments.
  • this method can also be applied to other modules, devices, storage media, and electronic equipment that can implement this solution, which is not limited by the embodiments of the present application.
  • the amplification unit can be used, but is not limited to, to receive micro-current, electrical energy or electrical signal (such as first-level electrical energy) with AC characteristics or scattering characteristics, and convert the micro-current into a
  • the current/electric energy/electrical signal (electrical energy in other forms such as first-level electric energy) can be amplified;
  • the amplified micro-current/electrical energy/electrical signal (electrical energy in other forms such as first-level electric energy) within a preset unit time period can be amplified but is not limited to First-level electric energy) are collected and mixed into one group, and the micro-current/electric energy/electrical signal (such as first-level electric energy) with similar characteristic points in each group is extracted and nominally extracted, so that the nominal micro-current/electrical energy/electrical signal after extraction is
  • Current/electrical energy/electrical signals (electrical energy in other forms such as primary electric energy) form a stable output of aggregated electric energy;
  • the control management unit can be used to receive
  • the energy storage method/energy storage method of the embodiment of the present application can convert microcurrent, electrical energy or electrical signals (such as primary electrical energy) with AC characteristics or scattering characteristics into aggregated electrical energy with a stable output.
  • the stable output The aggregated electric energy can ensure the normal operation of the functional modules; this energy storage method/energy storage method does not require complex hardware structure support to convert AC signals into stable output electric energy, with lower energy storage costs and better power supply effects.
  • an embodiment of the present application further provides a communication system 10.
  • FIG. 18, is a first structural schematic diagram of the communication system 10 provided by an embodiment of the present application.
  • the communication system 10 may include passive electronic devices 100 and energy emitting devices 200 .
  • the passive electronic device 100 may be the passive electronic device 100 of any of the aforementioned embodiments.
  • the energy transmitting device 200 may be a device capable of transmitting wireless signals, such as but not limited to a mobile phone, a router, a hotspot device, a base station device, etc.
  • an energy emitting device 200 that matches the passive electronic device 100 can also be specially designed to improve the matching degree between the energy emitting device 200 and the passive electronic device 100, so as to improve the use of micro energy by the passive electronic device 100. Conversion efficiency into electrical energy.
  • the energy transmitting device 200 can transmit wireless signals to space, and the wireless signals can be, but are not limited to, Wi-Fi signals, NFC signals, BLE signals, 3G signals, 4G signals, and 5G signals.
  • the passive electronic device 100 can be communicatively connected with the energy transmitting device 200 , and the passive electronic device 100 can receive the wireless signal and convert the wireless signal into electrical energy for the load module 130 of the passive electronic device 100 to work.
  • the specific working mode of the passive electronic device 100 can be referred to the foregoing embodiments, and will not be described in detail here.
  • the energy transmitting device 200 can transmit wireless signals to the passive electronic device 100, and the passive electronic device 100 can use the wireless signal to convert into electrical energy and work. Therefore, the communication system 10 of the present application can realize Passive work.
  • an embodiment of the present application also provides a communication system 10.
  • FIG. 19 is a second structural schematic diagram of the communication system 10 provided by an embodiment of the present application.
  • the communication system 10 may include passive electronic devices 100 and electronic terminals 300 .
  • the passive electronic device 100 may be the passive electronic device 100 of any of the aforementioned embodiments.
  • the passive electronic device 100 can receive wireless signals in the space (such as but not limited to wireless signals transmitted by the energy transmitting device 200 ) and can convert the wireless signals into electrical energy for the load module 130 of the passive electronic device 100 to operate.
  • the specific working mode of the passive electronic device 100 can be referred to the foregoing embodiments, and will not be described in detail here.
  • the electronic terminal 300 can be communicatively connected with the passive electronic device 100 .
  • the electronic terminal 300 can be communicatively connected with the Bluetooth unit 131 of the passive electronic device 100 , and the electronic terminal 300 can receive signals actively broadcast by the Bluetooth unit 131 , so that the electronic terminal 300 can receive signals provided by the passive electronic device 100 related information.
  • the electronic terminal 300 can be a smartphone, a tablet, or other devices, or it can also be a game device, an augmented reality (Augmented Reality, AR) device, a car device, a data storage device, an audio playback device, a video playback device, Laptops, desktop computing devices, and more.
  • augmented reality Augmented Reality, AR
  • the embodiment of the present application does not limit the specific structure of the electronic terminal 300.
  • the passive electronic device 100 can collect wireless signals in the space and convert them into electrical energy and work.
  • the passive electronic device 100 can also communicate and transmit relevant information to the electronic terminal 300, so that the electronic terminal 300 can Obtain relevant information of the passive electronic device 100 .
  • the communication system 10 of the present application can utilize passive electronic devices that work passively. 100 collects information, the communication system 10 has a wider scope of application.
  • an embodiment of the present application also provides a communication system 10.
  • the communication system 10 may include a passive electronic device 100, an energy emitting device 200, and an electronic terminal 300.
  • the energy transmitting device 200 may be a device that can transmit wireless signals, such as but not limited to a mobile phone, a router, a hotspot device, a base station device, or a specially designed energy transmitting device 200 that matches the passive electronic device 100 .
  • the energy transmitting device 200 can transmit wireless signals to space.
  • the wireless signals can be, but are not limited to, Wi-Fi signals, NFC signals, BLE signals, 3G signals, 4G signals, and 5G signals.
  • the passive electronic device 100 may be the passive electronic device 100 of any of the aforementioned embodiments.
  • the passive electronic device 100 can be communicatively connected with the energy transmitting device 200 , and the passive electronic device 100 can receive the wireless signal and convert the wireless signal into electrical energy for the load module 130 of the passive electronic device 100 to work.
  • the specific working mode of the passive electronic device 100 can be referred to the foregoing embodiments, and will not be described in detail here.
  • the electronic terminal 300 can be communicatively connected with the passive electronic device 100 .
  • the electronic terminal 300 may receive signals transmitted outwardly by the passive electronic device 100 .
  • the electronic terminal 300 can be communicatively connected to the Bluetooth unit 131 of the passive electronic device 100 , and the electronic terminal 300 can receive signals actively broadcast by the Bluetooth unit 131 , so that the electronic terminal 300 can receive relevant information provided by the passive electronic device 100 .
  • the energy transmitting device 200 can transmit wireless signals to the passive electronic device 100, and the passive electronic device 100 can use the wireless signal to convert into electrical energy and work.
  • the passive electronic device 100 can also communicate relevant information. Transmitted to the electronic terminal 300 so that the electronic terminal 300 can obtain relevant information of the passive electronic device 100 . Therefore, the three devices of the communication system 10 of the present application cooperate with each other and work cooperatively to realize the passive operation of the passive electronic device 100, and the communication system 10 has a wider applicable scope.
  • an embodiment of the present application further provides a communication system 10.
  • a communication system 10 may include passive electronic devices 100 and external devices 400 .
  • the passive electronic device 100 may be the passive electronic device 100 of any of the aforementioned embodiments.
  • the passive electronic device 100 can be communicatively connected with the energy transmitting device 200 , and the passive electronic device 100 can receive the wireless signal and convert the wireless signal into electrical energy for the load module 130 of the passive electronic device 100 to work.
  • the specific working mode of the passive electronic device 100 can be referred to the foregoing embodiments, and will not be described in detail here.
  • the external device 400 may be communicatively connected with the passive electronic device 100 .
  • the external device 400 may be a device that can transmit wireless signals to the passive electronic device 100 so that the passive electronic device 100 can achieve passive operation, and can also receive information actively transmitted outwardly by the passive electronic device 100 .
  • the external device 400 can transmit wireless signals to space, and the wireless signals can be, but are not limited to, Wi-Fi signals, NFC signals, BLE signals, 3G signals, 4G signals, and 5G signals.
  • the external device 400 can also receive signals transmitted externally by the passive electronic device 100 .
  • the external device 400 can receive signals actively broadcast externally by the Bluetooth unit 131 so that the external device 400 can receive the passive electronic device. 100 related information provided.
  • the external device 400 can be, but is not limited to, a smartphone, a tablet, and other devices, and can also be a game device, an augmented reality (Augmented Reality, AR) device, a car device, a data storage device, an audio playback device, Video playback devices, laptops, desktop computing devices, etc.
  • Different modules or programs can be set up inside the external device 400 so that the external device 400 can transmit wireless signals to the passive electronic device 100 and the external device 400 can receive signals actively broadcast by the passive electronic device 100 .
  • the embodiment of the present application does not limit the specific structure of the external device 400.
  • the external device 400 can integrate two functions of transmitting wireless signals and receiving broadcast signals of the passive electronic device 100.
  • the structure of the communication system 10 is simpler.
  • embodiments of the present application also provide a positioning method.
  • This positioning method can be applied to the passive electronic device 100 of any of the above embodiments or the communication system 10 of any embodiment.
  • the positioning method may include: the electronic terminal 300 of the communication system can send wireless signals (radio frequency energy) to the outside. If it is within the sensing range of the passive electronic device 100, the passive electronic device 100 can receive the wireless signal and perform power conversion. ; When the electronic terminal 300 receives the feedback information that the passive electronic device 100 has received the wireless signal, the electronic terminal 300 can locate the current location of the passive electronic device 100 .
  • wireless signals radio frequency energy
  • the electronic terminal 300 may first send out wireless signals (radio frequency energy) in a first coverage area (larger range, such as but not limited to 5 meters); when the electronic terminal 300 determines that there is a passive electronic device 100 in the first coverage area For example, after the Bluetooth unit 131 receives the wireless signal (radio frequency energy), the electronic terminal 300 can continue to transmit wireless signals to a second coverage area that is smaller than the first coverage area (a smaller range, such as but not limited to 1 meter).
  • a first coverage area larger range, such as but not limited to 5 meters
  • the electronic terminal 300 can continue to transmit wireless signals to a second coverage area that is smaller than the first coverage area (a smaller range, such as but not limited to 1 meter).
  • radio frequency energy when the electronic terminal 300 determines that there is a passive electronic device 100 such as the Bluetooth unit 131 within the second coverage area again and receives the wireless signal (radio frequency energy), it sends the coverage area again.
  • a smaller wireless signal radio frequency energy
  • the distance of the passive electronic device 100 can be determined at this time The distance of the electronic terminal 300 is between the (N-1)th coverage area and the Nth coverage area.
  • the positioning method of the present application can realize rapid positioning of the passive electronic device 100 .
  • the coverage range of the wireless signal (radio frequency energy) sent each time by the electronic terminal 300 may be smaller than the coverage range of the wireless signal (radio frequency energy) sent previously.
  • the electronic terminal 300 can reduce the coverage area of the wireless signal (radio frequency energy) in a decreasing manner at equal intervals.
  • the electronic terminal 300 can also reduce the coverage area of the wireless signal (radio frequency energy) in other ways. This is not limited in the embodiments of the present application. .
  • the passive electronic device 100 may be directly or indirectly connected to the object 500 to be located.
  • the passive electronic device 100 can be connected to the object 500 to be positioned by snapping, sticking, or other methods.
  • the electronic terminal 300 After the electronic terminal 300 realizes the positioning of the passive electronic device 100, the electronic terminal 300 can also realize the positioning of the object 500 to be positioned.
  • the electronic terminal 300 can first perform rough positioning and then gradually perform precise positioning by transmitting wireless signals (radio frequency energy) in different ranges, so as to facilitate the user to quickly find the passive electronic device 100 and the object to be located. 500.
  • wireless signals radio frequency energy
  • embodiments of the present application also provide a positioning method.
  • This positioning method can be applied to the passive electronic device 100 of any of the above embodiments or the communication system 10 of any embodiment.
  • the positioning method may include: the energy transmitting device 200 or the external device 400 may send a wireless signal (radio frequency energy) to the outside, and the passive electronic device 100 may receive the wireless signal (radio frequency energy) and convert it into electrical energy, so that the The load module works.
  • the Bluetooth unit 131 of the passive electronic device 100 can transmit a wireless signal to the outside, such as broadcasting the signal to the outside; the electronic terminal 300 or the external device 400 can receive the wireless signal, such as broadcasting the signal to the outside, and realize the positioning of the passive electronic device 100 .
  • the passive electronic device 100 may be directly or indirectly connected to the object 500 to be located.
  • the passive electronic device 100 can be connected to the object 500 to be positioned by snapping, sticking, or other methods.
  • the electronic terminal 300 After the electronic terminal 300 realizes the positioning of the passive electronic device 100, the electronic terminal 300 can also realize the positioning of the object 500 to be positioned.
  • the wireless signals, such as external broadcast signals, sent by the Bluetooth unit 131 of the passive electronic device 100 may carry relevant location information; the location information may be provided by the sensor unit 132 of the passive electronic device 100 .
  • the location information can also be provided by other modules of the passive electronic device 100, which is not limited in the embodiments of the present application.
  • the electronic terminal 300 or the external device 400 can also calculate and calculate the direction, distance, and location of the Bluetooth tag based on the wireless signals emitted externally by the passive electronic device 100, such as external broadcast signals.
  • the electronic terminal 300 or the external device 400 can receive wireless signals emitted by the passive electronic device 100 at multiple different locations, such as broadcast signals, and analyze the passive electronic device according to different information of the multiple wireless signals.
  • the current location of the device 100 is used to position the passive electronic device 100 and the object 500 to be located. It should be noted that the embodiment of the present application does not limit the specific manner in which the electronic terminal 300 or the external device 400 positions the passive electronic device 100 .
  • the passive electronic device 100 can realize passive operation in a scenario without battery supply, and the passive electronic device 100 can also realize the positioning function.
  • the scope of application of the passive electronic device 100 is wider.
  • the embodiment of the present application also provides a specific structure of the energy emitting device 200.
  • the energy transmitting device 200 can transmit wireless signals or micro energy to the passive electronic device 100 so that the passive electronic device 100 can achieve passive operation.
  • FIG. 24 is a first structural schematic diagram of an energy emitting device 200 provided by an embodiment of the present application.
  • the energy transmitting device 200 includes a transmitting module 210, a control module 220, an adjusting module 230 and an antenna module 240.
  • the transmitting module 210 may be an input source module of the energy transmitting device 200 .
  • the characteristics of the input source need to comply with the public safe wireless frequency bands and transmission power allowed by the State Radio Regulatory Commission to prevent interference and impact on other normal operating frequency bands.
  • the transmitting module 210 in the embodiment of the present application uses a multi-band, dynamic output power intelligent modulation method to determine the output source. For example, in the three allowed public frequency bands of 433MHz, 915MHz, and 2.4GHz, the transmit power changes with time and space, and the 0dB-27dB conversion is adaptively and dynamically adjusted to achieve the specified effective distance. Micro energy output.
  • the transmitting module 210 can input signals from an external fixed type, and the rated output power is specified by the transmitting source, and is usually set in the range of 12V, 24V, 48V/2A.
  • the transmitting module 210 can ensure that effective stimulation of the input source is achieved.
  • the control module 220 can be directly or indirectly electrically connected to the transmitting module 210.
  • the control module 220 can receive the signal output by the transmitting module 210 and perform a series of controls on the signal. For example, the control module 220 can start working when receiving the electrical signal (electrical energy signal) provided by the transmitting module 210 .
  • the control module 220 can transmit the electrical signal (power signal) provided by the transmitting module 210 to the subsequent adjustment module 230 and the antenna module 240 to achieve wireless transmission.
  • control module 220 can process business processes according to internal preset procedures and logic between units. Editing relationship, an artificial intelligence algorithm can be integrated inside the control module 220, so that the control module 220 can effectively capture a large number of parameters such as frequency adjustment processing fed back from the back-end units such as the antenna module 240 and the adjustment module 230, and can process them according to This parameter controls the adjustment module 230.
  • the adjustment module 230 may be directly or indirectly electrically connected to the control module 220, and the control module 220 may also be directly or indirectly electrically connected to the antenna module 240.
  • the adjustment module 230 can process and adjust the excitation signal (electrical signal) transmitted by the control module 220, and can transmit the processed and adjusted excitation signal to the antenna module 240 so that the antenna module 240 can operate under the action of the excitation signal. Transmit and receive wireless signals.
  • the adjustment module 230 can perform oscillation frequency locking, amplification, and dynamic adjustment on the excitation signal (electrical signal) transmitted by the control module 220, so that the adjustment module 230 can realize signal transmission in multiple frequency bands.
  • the antenna module 240 may be directly or indirectly electrically connected to the adjustment module 230 to receive the adjusted excitation signal and transmit wireless signals outward.
  • the antenna module 240 can also be directly or indirectly electrically connected to the control module 220.
  • the antenna module 240 can feed back the received signal to the control module 220, so that the control module 220 can adaptively control and adjust after receiving the back-end feedback signal.
  • Module 230 may be directly or indirectly electrically connected to the adjustment module 230 to receive the adjusted excitation signal and transmit wireless signals outward.
  • the antenna module 240 can also be directly or indirectly electrically connected to the control module 220.
  • the antenna module 240 can feed back the received signal to the control module 220, so that the control module 220 can adaptively control and adjust after receiving the back-end feedback signal.
  • Module 230 may be directly or indirectly electrically connected to the adjustment module 230 to receive the adjusted excitation signal and transmit wireless signals outward.
  • the antenna module 240 can also be directly or indirectly electrically connected to the control module 220.
  • the antenna module 240 may include an antenna radiator, and may also include a radio frequency circuit (including but not limited to a matching circuit, a tuning circuit, and a filter circuit) adapted to the antenna radiator, so that the antenna module 240 can be adjusted according to The relevant parameters output by the module 230 and dynamic impedance matching are used to optimize the performance of the antenna module 240.
  • a radio frequency circuit including but not limited to a matching circuit, a tuning circuit, and a filter circuit
  • the antenna module 240 can be a mixed-frequency antenna matrix.
  • the antenna module 240 can include four or more antenna arrays (antenna radiators).
  • the specific number of antenna arrays can be set according to scene requirements. Achieve multi-array arrangement of multiple antenna arrays. For example, when the antenna module includes four antenna arrays, the four antenna arrays can be distributed at the four corners of the indoor space to form four separate distribution points.
  • the four antenna arrays can maintain the communication signal side radiation to balance the indoor area and focus the micro-energy fan. area, the radiation performance of the antenna module 240 is better.
  • the above is only an exemplary description of the antenna module 240 provided in the embodiment of the present application, and its specific structure is not limited thereto. Any antenna structure that can transmit wireless signals/radio frequency energy under the action of an excitation signal is within the protection scope of the embodiments of this application.
  • the antenna module 240 can be mixed and grouped at different timings to ensure the frequency and reuse of antenna modulation through dynamic impedance matching, reduce the number and installation volume of antennas, and reduce the cost of setting up separate antennas;
  • the radio frequency power generated by the front-end work of the transmitting module 210, the control module 220, the adjusting module 230 and other front-end devices transmits micro energy through the multi-distributed antenna radiators, and can achieve a conventional value of more than 10 mW.
  • control module 220 can control one or more (two or more) antenna arrays in the antenna module 240 to transmit signals in a certain frequency band at the same time, or can also control another or more (two or more) antenna arrays in the antenna module 240 ( Two or more antenna arrays transmit another frequency band signal at the same time, so that the antenna module 240 of the embodiment of the present application can achieve multi-band radio frequency transmission.
  • the control module 220 can also control all or part of the antenna array to transmit a certain frequency band signal at a certain timing.
  • the control module 220 can also control all or part of the antenna array.
  • the antenna array can be the same as the aforementioned timing, or it can be the same as the timing.
  • the aforementioned antenna array with different timing transmits another frequency band signal at another timing. Therefore, the antenna module 240 of the embodiment of the present application can also implement multi-band radio frequency transmission.
  • the control module 220 can dynamically adjust and dynamically control the antenna module 240 based on information fed back by at least one of the antenna module 240 and the adjustment module 230, so that the antenna Module 240 can realize dynamic wireless transmission of multi-band radio frequency energy.
  • the energy transmitting device 200 in the embodiment of the present application includes a transmitting module 210, a control module 220, an adjusting module 230 and an antenna module 240.
  • a transmitting module 210 Centralized or distributed indoor space micro-energy transmission is realized within a distance of near field (0-10) meters; multi-band radio frequency energy dynamic wireless transmission can be realized; the energy transmitting device 200 of the embodiment of the present application takes into account the energy consumed by the transmission power
  • the energy transmitting device 200 in the embodiment of the present application is based on the dual implementation of micro-energy collection and communication based on international general wireless radio frequency technology.
  • the energy transmitting device 200 of the embodiment of the present application can also realize the transmission of multi-band radio frequency communication in a dynamic environment. efficiency and transmission security.
  • FIG. 25 is a second structural schematic diagram of the energy emitting device 200 provided by the embodiment of the present application.
  • the adjustment module 230 of the energy transmitting device 200 may include a frequency generation unit 231, a power amplification unit 232, and a dynamic adjustment unit 233.
  • the frequency generating unit 231 may be a unit that generates frequency through internal oscillation.
  • the frequency generating unit 231 may be, but is not limited to, a frequency generator or a frequency generating circuit.
  • the frequency generated by the frequency generating unit 231 can be pre-stored and set by the control module 220.
  • the setting range of the frequency generating unit 231 is between 300MHz and 2.4GHz, and the main locked frequency bands are 433MHz, 915MHz, 2.4GHz, etc.
  • the frequency generating unit 231 can be directly or indirectly electrically connected to the control module 220 to receive the control module. Control of block 220; the frequency generating unit 231 may also be directly or indirectly electrically connected to the antenna module 240 to transmit an excitation signal, such as an excitation signal after locking the frequency band, to the antenna module 240.
  • the frequency generating unit 231 can ensure effective distance transmission of micro-energy while also maintaining the smoothness and anti-interference of the communication channel, ensuring stable output.
  • the power amplification unit 232 may be electrically connected to the control module 220 directly or indirectly.
  • the power amplification unit 232 can synchronize the excitation signal transmitted by the control module 220 to generate a signal and amplify the power by a geometric multiple.
  • the power amplification unit 232 can ensure that the rated output of effective spatial transmission of micro energy can be achieved within a distance of 0-10 meters in the indoor near field.
  • the power amplification unit 232 can amplify the excitation signal transmitted by the control module 220 , and can transmit it to the frequency generating unit 231 through the control module 220 and to the antenna module 240 .
  • the power amplifying unit 232 can also amplify the excitation signal transmitted by the control module 220 and directly transmit it to the frequency generating unit 231 without passing through the control module 220 .
  • the embodiments of this application do not limit the specific working logic of the power amplifier.
  • the dynamic adjustment unit 233 can detect various environmental variables in real time through reflected signals within the distance of different indoor spaces.
  • the dynamic adjustment unit 233 can be used to dynamically adjust the correction or abnormality correction of the frequency generation unit 231 and the power amplification unit 232, which is very important.
  • a set of error correction mechanisms can prevent poor anti-interference and system failure due to frequency deviation or insufficient output power.
  • the dynamic adjustment unit 233 can be directly or indirectly electrically connected to the antenna module 240 to receive the reflected signal fed back by the antenna module to detect various environmental variables in real time.
  • the dynamic adjustment unit 233 can also be directly or indirectly electrically connected to the control module 220.
  • the dynamic adjustment unit can send the adjustment scheme (parameters) of the frequency generation unit 231 and the power amplification unit 232 to the control module 220, so that the control module 220 can adjust according to the dynamic adjustment
  • the latter parameters control the frequency generation unit 231 and the power amplification unit 232.
  • the dynamic adjustment unit 233 can also be directly or indirectly electrically connected to the frequency generation unit 231 and the power amplification unit 232, so that the dynamic adjustment unit 233 can directly and dynamically control the frequency generation unit 231 and the power amplification unit 232. Adjustment.
  • the embodiment of the present application does not specifically limit the control unit of the dynamic adjustment unit 233.
  • the adjustment module 230 in the embodiment of the present application includes a frequency generation unit 231, a power amplification unit 232 and a dynamic adjustment unit 233.
  • the three units work independently and cooperate with each other.
  • the control module 220 can balance the frequency generation unit 231 and power according to the back-end feedback information.
  • the three units of the amplification unit 232 and the dynamic adjustment unit 233 work under the same timing, which can not only realize wireless transmission of multi-band radio frequency energy, but also realize dynamic adjustment of multi-band radio frequency energy based on back-end feedback information. Therefore, this application
  • the energy transmitting device 200 of the embodiment can realize wireless dynamic transmission of radio frequency energy in the frequency band.
  • Figure 26 is a schematic diagram of an application scenario of the energy emitting device 200 shown in Figure 24.
  • the energy emitting device 200 in the embodiment of the present application can be matched with the passive electronic device 100 in the space transmission medium 600 .
  • the energy transmitting device 200 when radio frequency energy propagates in space, the energy transmitting device 200 can form a radio frequency transmitting device, the passive electronic device 100 can form a radio frequency receiving device, and the space transmission medium 600 can form a space for radio frequency signal propagation.
  • the excitation signal formed by the transmitting module 210, the control module 220 and the adjusting module 230 of the energy transmitting device 200 is amplified by the antenna module 240 of the energy transmitting device 200, and then propagates in the space transmission medium 600 (space) as a horn-shaped secondary wave.
  • the wavelength and wave surface gradually become weaker after a period of time. The energy is strongest in the center and weak around it.
  • the wavefront focusing sector forms the best energy conversion output, and the passive electronic device 100 can be within the range of the wavefront focusing sector, so that the passive electronic device 100 can better receive radio frequency energy.
  • the control module 220 or the adjustment module 230 can dynamically adjust the performance of the excitation signal output to the antenna module 240 according to the signal fed back by the antenna module 240, so that the passive electronic device 100 at the current location can be exactly the same. Within the focus sector of this wavefront.
  • the passive electronic device 100 can receive the multi-band radio frequency energy/micro energy transmitted by the energy transmitting device 200 and propagate the radio frequency energy/micro energy in the space transmission medium 600 of different dynamic environments. It can also be called an end terminal node.
  • the source electronic device 100 can be a receiving device for receiving the energy transmitted by the energy transmitting device 200 in the embodiment of the present application. With the continuous supply of electric energy from micro energy sources, all ultra-low power electronic intelligent terminals in the current space environment can continue to work. , permanent battery life and real-time communication connection.
  • the energy emitting device 200 and the passive electronic device 100 according to the embodiment of the present application:
  • a home router can provide wireless power and sustainable battery life to small electronic devices in a small room.
  • embodiments of the present application also provide a wireless transmission Method or multi-band radio frequency energy dynamic wireless transmission method, the method may include:
  • the preset frequency bands may be, but are not limited to, 433MHz, 915MHz, and 2.4GHz.
  • the transmit power changes adaptively with at least one parameter in time and space, so that the transmit power can be dynamically adjusted and converted between 0 dB and 27 dB.
  • the transmit power changes with time and space, and the 0dB-27dB conversion is adaptively and dynamically adjusted to achieve the specified effective distance.
  • the wireless transmission method or the multi-band radio frequency energy dynamic wireless transmission method of the embodiments of the present application can be applied to the energy transmitting device 200 and the communication system 10 of any of the above embodiments.
  • this method can also be applied to other modules, devices, storage media, and electronic equipment that can implement this solution, which is not limited by the embodiments of the present application.
  • the wireless transmission method or the multi-band radio frequency energy dynamic wireless transmission method in the embodiment of the present application can obtain the preset frequency point through the mutual cooperation of the transmitting module 210, the control module 220, the adjusting module 230 and the antenna module 240. , an excitation signal whose transmission power changes adaptively with at least one parameter in time and space; a solution that provides the excitation signal to the antenna module so that the antenna module transmits wireless signals or micro-energy or micro-energy to the outside.
  • the wireless transmission method or the multi-band radio frequency energy dynamic wireless transmission method in the embodiment of the present application can obtain the preset frequency point through the mutual cooperation of the transmitting module 210, the control module 220, the adjusting module 230 and the antenna module 240.
  • an excitation signal whose transmission power changes adaptively with at least one parameter in time and space
  • a solution that provides the excitation signal to the antenna module so that the antenna module transmits wireless signals or micro-energy or micro-energy to the outside for its specific implementation, please refer to the foregoing embodiment of the energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Near-Field Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Transmitters (AREA)

Abstract

本申请提供一种无源电子设备、微能源采集方法及储能方法,包括无线接收模块、电能管理模块和负载模块,无线接收模块用于接收空间内的无线信号、对特定频率的无线信号进行锁频、并将锁频后的无线信号转换为电信号;电能管理模块用于接收电信号并转换为电能;负载模块用于在电能管理模块的供电下工作。可以实现无源工作。

Description

无源电子设备、微能源采集方法及储能方法
本申请要求于2022年9月13日提交中国专利局、申请号为202211119234.9、发明名称为“无源电子设备、微能源采集方法及储能方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种无源电子设备、微能源采集方法及储能方法。
背景技术
随着信息技术的日趋成熟,基于人与物、物与物的物联网通信得到了快速的发展和广泛的应用,电子标签等电子设备是物联网通信中非常重要的设备。
相关技术中的电子设备需要依附于电池供电来维持工作状态,而电池既会对电子设备的结构例如防水结构带来挑战,也会增加电子设备的生产成本及电池损耗的维护成本,同时,废旧电池也会带来环保问题,影响人们的日常生活水平。
技术问题
相关技术中的电子设备需要依附于电池供电来维持工作状态,而电池既会对电子设备的结构例如防水结构带来挑战,也会增加电子设备的生产成本及电池损耗的维护成本,同时,废旧电池也会带来环保问题,影响人们的日常生活水平。
技术解决方案
本申请提供一种无源电子设备、微能源采集方法及储能方法,该无源电子设备可以采集自由空间内的无线射频微能源实现供电,无源电子设备可以不需要电池供电。
为了达到上述目的,本申请采取了以下技术方案:
第一方面,本申请提供一种无源电子设备,包括:
无线接收模块,用于接收空间内的无线信号、对特定频率的无线信号进行锁频、并将锁频后的无线信号转换为电信号;
电能管理模块,与所述无线接收模块电连接,所述电能管理模块用于接收所述电信号,并将所述电信号转换为电能;及
负载模块,与所述电能管理模块电连接,所述负载模块用于在所述电能管理模块提供的电能的供给下工作。
第二方面,本申请还提供一种微能源采集方法,包括:
接收空间内的无线信号;
对特定频率的无线信号进行锁频,并将锁频后的无线信号转换为电信号。
第三方面,本申请还提供一种储能方法,包括:
将预设单位时长内的呈交流特性的电信号采集混编为一组;
将每组中具有相近特征点的电信号提取标称;
将提取标称后的电信号形成稳定输出的聚合电能。
相较于现有技术,本申请的无源电子设备、微能源采集方法及储能方法,无线接收模块可以抓取空间内的无线信号并对特定频率的无线号进行锁频并将锁频后的无线信号转换为电信号;电能管理模块可以接收电信号并将电信号转换为电能;负载模块可以在电能管理模块提供的电能的供给下工作。从而,一方面,本申请无源电子设备不需要传统电池进行供电,可以做到“零功耗无线射频通信”;另一方面,无线接收模块可以根据空间内散射传播的微能源的频率进行自适应抓取,无线接收模块可以在多频段(例如800MHz至2.4GHz)的微能源中主动进行精准识别抓取,可以提高无线接收模块接收无线信号的灵敏度和效率;又一方面,本申请实施例的无线接收模块也可以自适应较宽频段的微能源,使得本申请实施例的无源电子标签的适用场景更广泛。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的无源电子设备的第一种结构示意图。
图2为图1所示的无源电子设备的第一种应用场景图。
图3为图1所示的无线接收模块的第一种结构示意图。
图4为图3所示的射频识别单元的一种结构示意图。
图5为图1所示的无线接收模块的第二种结构示意图。
图6为图5所示的电能控制单元的一种结构示意图。
图7为图1所示的电能管理模块的第一种结构示意图。
图8为图7所示的电能管理模块的一种电连接示意图。
图9为本申请实施例提供的无源电子设备的第二种结构示意图。
图10为图1所示的电能管理模块的第二种结构示意图。
图11为图1所示的电能管理模块的第三种结构示意图。
图12为图7所示的放大单元的一种结构示意图。
图13为本申请实施例提供的无源电子设备的第三种结构示意图。
图14为本申请实施例提供的无源电子设备的第四种结构示意图。
图15为本申请实施例提供的无源电子设备的第五种结构示意图。
图16为本申请实施例提供的无源电子设备的第六种结构示意图。
图17为图16所示的无源电子设备的一种电连接示意图。
图18为本申请实施例提供的通信系统的第一种结构示意图。
图19为本申请实施例提供的通信系统的第二种结构示意图。
图20为本申请实施例提供的通信系统的第三种结构示意图。
图21为本申请实施例提供的通信系统的第四种结构示意图。
图22为本申请实施例的定位方法的第一种应用场景图。
图23为本申请实施例的定位方法的第二种应用场景图。
图24为本申请实施例提供的能量发射设备的第一种结构示意图。
图25为本申请实施例提供的能量发射设备的第二种结构示意图。
图26为图24所示的能量发射设备的一种应用场景示意图。
具体实施方式
下面将结合本申请实施例中的附图1至附图26,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种无源电子设备,该无源电子设备可以采用微波空间散射原理,遵循能量守恒定律,将各种发射源无线散射在空中的各类微弱的纳安级电流的电磁波信号进行识别和微能源进行有效抓取,通过采集算法芯片,将这些微能源精确比对运算,存放在储能介质,所有运算单位内的微能源都可以有效地被储存下来,日积月累之后形成一个较大的能源池,以便供给至极低功耗下的各类智能化节点终端设备持续护航工作,使得各类物联网设备可以真正达到无电池、无维护的自适应智能化工作。可以理解的是,本申请实施例的无源电子设备可以是电子标签设备,也可以但不限于是无源锁、无源伞等设备,本申请实施例对无源电子设备的具体形态不进行限定。
请参考图1和图2,图1为本申请实施例提供的无源电子设备100的第一种结构示意图,图2为图1所示的无源电子设备100的第一种应用场景图。无源电子设备100可以包括无线接收模块110、电能管理模块120和负载模块130。
无线接收模块110可以接收空间内的无线信号,并且可以将无线信号转换为电信号(或者电能)。在该电信号(或者电能)的作用下,无线接收模块110又可以被激活工作并继续接收空间内的无线信号,从而无线接收模块110可以形成有效的正反馈机制,使得整个无线接收模块110可以在无电池或电源激励下完成微能源的采集工作。例如,如图2所示,在我们日常生活空间当中,可能存在多种无线电磁波散射在周围,例如但不限于家庭的无线保真(Wireless Fidelity,简称Wi-Fi)信号、共享单车周围的蓝牙低功耗(Bluetooth Low Energy,简称BLE)信号、通信基站的第三代移动通信技术(3rd-Generation,简称3G)信号、第四代移动通信技术(4th-Generation,简称4G)信号、第五代移动通信技术(5th-Generation,简称5G)信号等,这些不同频率的无线信号可以实时工作在同一空间内。本申请实施例的无线接收模块110可以接收空间内的无线信号并可以将这些电磁波形式的无线信号转换为电流形式的电信号或者电能信号,例如但不限于无线接收模块110可以将无线信号转换为微电流形式的电信号或者电能信号,该微电流可以是纳安级的微电流。无线接收模块110转换的电能或电信号,既可以供无线接收模块110自身工作,多于的电能或电信号也可以传输至电能管理模块120进行管理。
电能管理模块120可以与无线接收模块110直接或间接电连接以接收无线接收模块110传输 的电信号或者电能信号或者微电流。该电连接形式可以是通过导线等电连接件形成的物理的电连接形式,也可以是通过电磁耦合形式形成的非接触的耦合式电连接。本申请实施例对电能管理模块120与无线接收模块110的具体电连接方式不进行限定;并且,本申请后续实施例中涉及的电连接关系,也可以参考本申请实施例的说明,后文中不再进行赘述。
电能管理模块120可以接收无线接收模块110传输的电信号或者电能信号或者微电流,并可将该电信号或者电能信号或者微电流转换为可为供各个模块工作的稳定的电能。可以理解的是,无线接收模块110传输的电信号或者电能信号或者微电流可以是一级电能,电能管理模块120转换的电能可以是二级电能。电能管理模块120可以对无线接收模块110传输的该电信号或者电能或微电流进行管理,例如但不限于电能管理模块120可以对该电信号或者电能信号或者微电流进行放大、转换、分配、储存等操作,以使得一级电能可以转换为二级电能、二级电能可被统筹管理,从而,电能管理模块120可以实现无源电子设备100的中央控制功能。
负载模块130可以与电能管理模块120直接或间接电连接。负载模块130可以接收电能管理模块120传输的电能(二级电能)、并在该电能的供给下可以执行相应的操作以实现负载模块130的工作。可以理解的是,负载模块130可以是无源电子设备100的功能模块,可以使得无源电子设备100具有相应的功能。例如,当负载模块130为具有通信功能的蓝牙模块、近场通信模块时,则本申请实施例的无源电子设备100可以向外发射蓝牙信号、近场通信信号等实现无线通信;再例如当负载模块130为可以采集参数信息的传感器模块时,则本申请实施例的无源电子设备100可以具有采集相应参数的功能;当然,本申请实施例的负载模块130也可以包括多个功能结构,以使得负载模块130可以具有不同的功能。基于此,本申请实施例对负载模块130具体结构不进行限定,凡是可在电能管理模块120提供的电能的供给下工作的负载模块130的结构均在本申请实施例的保护范围内。
本申请实施例的无源电子设备100,无线接收模块110和电能管理模块120相配合可以将空间内的无线信号转换为电能,并供给至负载模块130使得负载模块130工作。从而,本申请实施例的无源电子设备100不需要传统电池进行供电,重构了过往以电池为代表的供电和电线传输的传统能源输送机制;突破了在极低功耗下的射频通信的可靠性工作并延长了散射距离;可以实现通信行业无线传输能源的可能;可以做到“零功耗无线射频通信”,具有行业先进性和市场应用兼容的普适性;可以解决物联网产业场景化、碎片式、个性化的智能终端低成本、可持续运营的困扰;可以对无线微能源进行有效采集、重新分配和利用,实现了无线微能源的再利用,可以避免能源危机下无线微能源的浪费,提高无线微能源的利用率。
其中,请结合图1并请参考图3,图3为图1所示的无线接收模块110的第一种结构示意图。无线接收模块110可以接收空间内的无线信号,并可以对特定频率的无线信号(包括与该无线信号相对应的电信号)进行锁频,并可以将锁频后的无线信号(包括与该无线信号相对应的电信号)转换为电信号或者电能信号(一级电能),例如无线接收模块110可以将锁频后的无线信号转为微电流信号或者微电流形式的电能。此时,电能管理模块120可以接收并管理该电信号或者电能信号或者微电流,并将该电信号或者电能信号或者微电流转换为电能(二级电能),以使得负载模块130可以在电能管理模块120提供的电能的供给下工作。
如图3所示,无线接收模块110可以包括接收天线单元111和射频识别单元112。接收天线单元111可以接收空间内的无线信号。射频识别单元112可以直接或间接与接收天线单元111电连接。射频识别单元112可以将接收天线单元111接收的无线信号转换为数字信号,并可以对该数字信号进行分频识别,射频识别单元112还可以对特定频率的数字信号进行锁频。
其中,接收天线单元111可以将空间内散射传播的不同频率的微能源进行抓取。接收天线单元111可以是具有高灵敏度的探针式的天线。由于无线射频信号在空间中传播时呈散射状存在于周围环境,常规人眼看不见、摸不着,各类射频信号掺杂在复杂环境中无法辨识。本申请实施例的接收天线单元111可以最快速度去寻找特定频率信号,并可以排除其他无线信号的干扰。本申请实施例的接收天线单元111可以在800MHz至2.4GHz频率范围内自适应调频接收空间内的无线信号,接收天线单元111的增益和灵敏度可在0至+15dB范围,最大可不超过无线电管理委员会规定的+20dB。接收天线单元111接收的信号可以快速到达射频识别单元112。
可以理解的是,本申请实施例的接收天线单元111既可以包括接收信号的天线辐射体,也可以包括天线射频电路,天线射频电路可以将天线辐射体接收的电磁波信号激励转换为模拟信号并形成基准信号源,以使得接收天线单元111可以快速将基准信号源传输至射频识别单元112。当然,该天线射频电路也可以集成在无源电子设备100的其他模块中,例如该无线射频电路也可以集成在射频识别单元112中。本申请实施例对接收天线单元111的具体结构不进行限定。
其中,射频识别单元112可以对接收天线单元111传输的无线信号相对应的数字信号进行识别、分频、分析,射频识别单元112可以将无线信号相对应的数字信号中信号强度最优、增益效果更好的信号识别出来,并以该识别的信号的频率作为特定频率,进一步对该特定频率的无线信号相 对应的数字信号进行锁频,并将锁频后的无线信号相对应的数字信号转换为电信号或者电能或微电流。可以理解的是,无线接收模块110可以将该特定频率参数存储起来或者传输至接收天线单元111或者射频识别单元112,以便于接收天线单元111或者射频识别单元112可以快速抓取和锁频该特定频率的信号。
可以理解的是,射频识别单元112进行锁频操作时的特定频率,也可以是预先设置的频率。此时,射频识别单元112也可以对接收天线单元111传输的无线信号进行识别、分频、分析,并抓取出特定频率的信号进行锁频操作。例如,无线接收模块110(例如射频识别单元112,或者后文的电能控制单元113)可以在接收天线单元111接收的无线信号转换的电信号或者电能或微电流的作用下被激活,而向接收天线单元111(例如接收天线单元111的射频电路)传输预先设置的频率,以便于接收天线单元111可以抓取更多该预设频率的无线信号。当然,被激活后的无线接收模块110也可以向射频识别单元112传输该预先设置的频率,以便于该射频识别单元112可以对该预设频率的信号进行锁频。需要说明的是,以上仅为本申请实施例的射频识别单元112对特定频率无线信号锁频的示例性举例,其并不限于此。凡是可以使得射频识别单元112进行锁频操作的方案均在本申请实施例的保护范围内。
可以理解的是,射频识别单元112可以将锁频后的数字信号传输至电能管理模块120中进行后续操作;射频识别单元112也可以将锁频后的数字信号进一步进行一级放大为电信号或者电能信号或者微电流,并使其中一部分电信号或者电能信号或者微电流的能量可以供接收天线单元111、射频识别单元112自身工作,另一部分电信号或者电能信号或者微电流的能量可以传输至电能管理模块120中后续操作。当然,射频识别单元112也可以将锁频后的数字信号传输至后续实施例中的电能控制单元(例如后文中图5所示的电能控制单元113)中进行相应的操作。本申请实施例对射频识别单元112锁频后的操作不进行限定。
可以理解的是,射频识别单元112可以但不限于是电路集成的芯片结构,也可以但不限于是不同独立器件集成的结构,本申请实施例对射频识别单元112的具体结构不进行限定。
本申请实施例的无线接收模块110可以抓取空间内的无线信号,无线接收模块110也可以对特定频率的无线信号进行锁频并将锁频后的无线信号转换为电能。从而,一方面,本申请实施例的无线接收模块110可以根据空间内散射传播的微能源的频率进行自适应抓取,无线接收模块110可以在多频段(例如800MHz至2.4GHz)的微能源主动进行精准识别抓取,可以提高无线接收模块110接收无线信号的灵敏度和效率;另一方面,本申请实施例的无线接收模块110也可以自适应较宽频段的微能源,使得本申请实施例的无源电子标签的适用场景更广泛。
其中,请结合图3并请参考图4,图4为图3所示的射频识别单元112的一种结构示意图。射频识别单元112可以包括模拟频率发生器1121、频率调谐器1122和锁频器1123。
模拟频率发生器1121可以与接收天线单元111直接或间接电连接,模拟频率发生器1121可以将接收天线单元111接收的无线信号转换为数字信号。可以理解的是,此过程中,既可以是接收天线单元111先将接收的无线信号转换为模拟信号并将模拟信号传输至模拟频率发生器1121,然后模拟频率发生器1121将与无线信号相对于的模拟信号转换为数字信号;也可以是接收天线单元111直接将无线信号传输至模拟频率发生器1121,然后由模拟频率发生器1121内部的一部分电路结构先将无线信号转换为模拟信号,接着另一部分电路将模拟信号转换为数字信号。需要说明的是,本申请实施例对模拟频率发生器1121的具体工作过程不进行限定。
可以理解的是,模拟频率发生器1121可以但不限于包括模拟数字转换器。本申请实施例对模拟频率发生器1121的具体结构不进行限定。
频率调谐器1122可以与模拟频率发生器1121直接或间接电连接。频率调谐器1122可以对数字信号进行识别、分析、分频等操作,从而可对天线接收单元接收的多频段(例如800MHz至2.4GHz)的微能源信号进行分频,以便于锁频器1123对也定频率的信号进行锁频。
可以理解的是,为了进一步对微能源信号进行分频,频率调谐器1122也可以对数字信号进行其他的处理,例如但不限于对数字信号调谐。本申请实施例对频率调谐器1122的具体工作方式不进行限定。
锁频器1123可以与频率调谐器1122直接或间接电连接,锁频器1123可以对特定频率的数字信号进行锁频,以便于抓取更多该特定频率的信号。
可以理解的是,锁频器1123既可以根据频率调谐器1122分析的数字信号中信号强度最优、增益效果更好的信号确定特定频率而实现锁频操作;锁频器1123也可以根据无源电子标签预先储存的特定频率参数而实现锁频操作。当然,锁频器1123也可以根据其他的方式实现锁频操作,本申请实施例对锁频器1123的具体工作方式不进行限定。
需要说明的是,以上仅为本申请实施例的射频识别单元112的示例性举例,射频识别单元112的具体结构并不限于此,例如但不限于还可以包括其他的电路结构。本申请实施例对射频识别单元112的具体结构不进行限定。
本申请实施例的射频识别单元112包括模拟频率发生器1121、频率调谐器1122和锁频器1123,三个部件相互配合,当有效的射频信号被侦测抓取后,射频识别单元112可以迅速自适应抓取特定频率的振荡频率点并进行同频谐振完成,从而,射频识别单元112可以自适应快速地将无线信号转换为电能信号。
其中,请结合图1并请参考图5,图5为图1所示的无线接收模块110的第二种结构示意图。本申请实施例的无线接收模块110还可以包括电能控制单元113。
电能控制单元113可以与射频识别单元112直接或间接电连接。电能控制单元113可以接收射频识别单元112传输的锁频后的信号例如数字信号,并对该信号例如数字信号进行增益放大并形成电信号或者电能信号或者微电流(即实现一级电能);电能控制单元113还可以对该电信号或者电能信号或者微电流进行分配、储存等管理等操作,以便于该电信号或者电能信号或者微电流形成的一级电能可以支持整个无线接收模块110的正常运行。
可以理解的是,电能控制单元113可以将电信号或者电能信号或者微电流形成的一级电能传输至射频识别单元112、接收天线单元111,以维持射频识别单元112、接收天线单元111的正常工作;当电能控制单元113中存储的一级电能在维持射频识别单元112、接收天线单元111的正常工作后还有多于的能量时,电能控制单元113也可以将多于的能量传输至电能管理模块120,以激活电能管理模块120并供电能管理模块120工作。
本申请实施例的无线接收模块110同时包括接收天线单元111、射频识别单元112和电能控制单元113,接收天线单元111可以从空间内抓取微能源信号,射频识别单元112可以对微能源信号进行识别、分频和锁频,电能控制单元113可以对锁频的信号进行储存和管理,从而,微能源信号既可以激活射频识别单元112,多于的微能源也可以源源不断保存在电能控制单元113内,形成了有效的正反馈机制,使得整个无线接收模块110可以实现无电池激励下工作。
其中,请结合图5并请参考图6,图6为图5所示的电能控制单元113的一种结构示意图。本申请实施例的电能控制单元113可以包括基准信号源电路1131、激励增益电路1132和微能源储存管理电路1133。
基准信号源电路1131可以与锁频器1123直接或间接电连接,基准信号源电路1131可以接收锁频器1123传输的锁频后的信号例如数字信号。
激励增益电路1132可以与基准信号源电路1131直接或间接电连接,激励增益电路1132可以对锁频后的信号例如数字信号进行增益放大并形成电信号或者电能信号或者微电流等形式的一级电能。可以理解的是,激励增益电路1132对锁频后的信号例如数字信号可以进行一级增益放大,通过增益放大到一定倍数,形成纳安级电信号或者电能信号或者微电流。
微能源储存管理电路1133可以与激励增益电路1132直接或间接电连接,微能源储存管理电路1133可以对激励增益电路1132放大后的电信号或者电能信号或者微电流进行管理。例如微能源储存管理电路1133内可以设有一小电容器件,可以存储放大后的电信号或者电能信号或者微电流的一级电能;再例如,微能源储存管理电路1133可以根据接收天线单元111、射频识别单元112的工作需求,将存储的部分电信号或者电能信号或者微电流传输至接收天线单元111和射频识别单元112,以维持二者的正常工作。又例如,微能源储存管理电路1133可以将维持无线接收模块110正常工作后多于的电信号或者电能信号或者微电流传输至电能管理模块120,以激活并维持电能管理模块120的工作。
需要说明的是,以上仅为本申请实施例的电能控制单元113的示例性说明,电能控制单元113的具体结构不限于此,例如但不限于,电能控制单元113可以将基准信号源电路1131、激励增益电路1132和微能源储存管理电路1133中一个或几个合成一个电路结构;再例如,电能控制单元113还可以包括更多的电路结构。本申请实施例对电能控制单元113的具体结构不进行限定,凡是,可对射频识别单元112锁频后的信号进行放大并管理的结构均可以在本申请实施例的保护范围内。
本申请实施例的电能控制单元113包括基准信号源电路1131、激励增益电路1132和微能源储存管理电路1133,三个部件相互配合,可以对射频识别单元112锁频后的信号进行放大和存储,电能控制单元113可以完成微能源信号的第一级放大存储管理。
需要说明的是,以上仅为本申请实施例的无线接收模块110的示例性举例,本申请实施例的无线接收模块110不局限于此,例如但不限于无线接收模块110还可以包括更多功能的其他结构。本申请实施例对无线接收模块110的具体结构不进行限定。其中,请再次参考图1,本申请实施例的电能管理模块120可以接收无线接收模块110传输的电信号或者电能信号或者微电流(一级电能),并可以将该电信号或者电能或微电流转换为稳定输出的聚合电能(二级电能)。此时,负载模块130可以在该稳定输出的聚合电能的供给下工作。
可以理解的是,无线接收模块110传输至电能管理模块120的电信号或者电能信号或者微电流可以是交流的电信号形式,电能管理模块120可以将预设单位时长内无线接收模块110传输的电信号或者电能信号或者微电流电信号采集混编为一组,并将每组中具有近似特征的电信号或者电能 信号或者微电流信号进行提取标称打包,使得交流特性的电信号或者电能信号或者微电流信号可以转换为稳定输出的聚合电能。该稳定输出的聚合电能可以供给至负载模块130,以便于负载模块130正常工作。需要说明的是,以上仅为电能管理模块120实现稳定输出聚合电能的示例性举例,例如但不限于电能管理模块120可以包括整流器并通过整流器实现上述功能。本申请实施例对电能管理模块120的实现稳定输出聚合电能的具体方式不进行限定。
可以理解的是,电能管理模块120还可以对该稳定输出的聚合电能进行储存,例如但不限于电能管理模块120可以包括一个超级电容结构以储存电能。负载模块130、无线接收模块110在该储存的电能的作用下可以维持正常工作。当然,无源电子设备100也可以单独包括一个储能模块,该储能模块可与电能管理模块120电连接,以接收电能管理模块120输出的聚合电能并进行存储。同时,该储能模块也可以与无源电子设备100的其他模块例如无线接收模块110、负载模块130直接或间接电连接以维持二者的正常工作。需要说明的是,本申请实施例对聚合电能的具体储存方式不进行限定。
本申请实施例的电能管理模块120可以将无线接收模块110传输的电能或微电流转换为稳定输出的聚合电能,该稳定输出的聚合电能可以保证负载模块130的正常工作。从而,本申请的电能管理模块120不需要复杂的硬件结构支持就可以实现交流电信号转换为稳定输出的电能,结构简单、操作方便,储能成本更低、供电效果更优。
其中,请结合图1并请参考图7和图8,图7为图1所示的电能管理模块120的第一种结构示意图,图8为图7所示的电能管理模块120的一种电连接示意图。电能管理模块120可以包括放大单元121和电能管理单元122。
放大单元121可以与无线接收模块110直接或间接电连接,例如放大模块可以与无线接收模块110的电能控制单元113直接或间接电连接,进一步地,放大模块可以与电能控制单元113的微能源储存管理电路1133直接或间接电连接。放大单元121可以接收无线接收模块110传输的电信号或者电能或微电流,并可对该电信号或者电能信号或者微电流进行放大。放大单元121可以将无线接收模块110传输的纳安级的电信号或者电能或微电流同步并进行逆变放大,放大单元121可以实现微能源的二级放大。
可以理解的是,放大单元121可以但不限于为功率放大器。本申请实施例对放大单元121的具体结构不进行限定,凡是可以对电能或者微电流进行放大的电路或结构均在本申请实施例的保护范围内。
电能管理单元122可以与放大单元121直接或间接电连接。电能管理单元122可以做好接收放大单元121传输的放大后的电信号或者电能信号或者微电流进行有效能源管理。电能管理单元122可以将放大后的电信号或者电能信号或者微电流转换为稳定输出的聚合电能。例如,电能管理单元122可以采用能量回收算法,该算法采用的是能量点创新特征集合混编算法实现稳定输出的聚合电能。具体而言,电能管理单元122可以将预设单位时长内无线接收模块110传输的电信号或者电能信号或者微电流电信号采集混编为一组,并将每组中具有近似特征的电信号或者电能信号或者微电流信号进行提取标称打包,使得交流特性的电信号或者电能信号或者微电流信号可以形成稳定输出的聚合电能。该稳定输出的聚合电能可以供给至负载模块130,以便于负载模块130正常工作。需要说明的是,以上仅为电能管理单元122实现稳定输出聚合电能的示例性举例,电能管理单元122也可以通过其他方式实现上述功能,例如但不限于电能管理单元122可以通过整流器实现上述功能。本申请实施例对电能管理单元122的实现稳定输出聚合电能的具体方式不进行限定。
可以理解的是,电能管理单元122还可以与无线接收模块110直接或间接电连接,例如电能管理单元122可以与无线接收模块110的电能控制单元113直接或间接电连接,进一步地,电能管理单元122可以与电能控制单元113的微能源储存管理电路1133直接或间接电连接。电能管理单元122可以在无线接收模块110传输的电信号或者电能信号或者微电流的激励作用下被激活并处于工作状态,以将放大单元121放大后的电信号或者电能信号或者微电流转换为稳定输出的聚合电能。当然,电能管理单元122也可以在放大单元121提供的放大后的电信号或者电能信号或者微电流的作用下被激活并处于工作状态,从而电能管理单元122实现聚合电能的稳定输出。需要说明的是,本申请实施例对电能管理单元122的具体方式不进行限定,凡是可将放大单元121放大后的电信号或者电能信号或者微电流转换为稳定输出的聚合电能的工作方式均可以在本申请实施例的保护范围内。
可以理解的是,电能管理单元122还可以将聚合电能储存起来。例如,电能管理单元122内部可以包括一电能储存单元例如但不限于一超级电容,该超级电容可以存储电能管理单元122转换的聚合电能,并可在其他模块需要电能支持时,向其他模块传输聚合电能。
当然,在另一些实施例中,请参考图9和图10,图9为本申请实施例提供的无源电子设备100的第二种结构示意图,图10为图1所示的电能管理模块120的第二种结构示意图,如图9所示,无源电子标签可以单独设置一电能储存单元140;或者如图10所示,电能管理模块120可以单独设 置一电能储存单元124。该电能储存单元140或者电能储存单元124可以与电能管理单元122直接或间接电连接并存储电能管理单元122传输的聚合电能,并可为其他的模块提供电能支持。基于此,本申请实施例对该聚合电能的具体储存方式不进行限定。
本申请实施例的电能管理模块120包括放大单元121和电能管理单元122,放大单元121可以实现无线接收模块110传输的电信号或者电能信号或者微电流的一级电能逆变放大,电能管理单元122可以将放大后呈交流特性的散射的微弱能量有效组合成稳定输出的聚合能量,该聚合能量可以有效地保证负载模块130的正常运行。
其中,请结合图7、图8并请参考图11,图11为图1所示的电能管理模块120的第三种结构示意图。电能管理模块120还可以包括控制管理单元123。
控制管理单元123可以与电能管理模块120中其他单元、无线接收模块110、负载模块130中的至少一个直接或间接电连接。控制管理单元123可以直接或间接与电能管理单元122电连接。电能管理单元122可以向控制管理单元123传输稳定输出的聚合电能,控制管理单元123可以接收该聚合电能并激活工作。
控制管理单元123可以与放大单元121直接或间接电连接。控制管理单元123可以根据电能管理单元122传输的聚合电能来控制放大单元121的工作。例如,控制管理单元123可以控制放大单元121的放大倍数。可以理解的是,放大单元121可以接收无线接收模块110例如微能源储存管理电路1133传输的电信号或者电能信号或者微电流,首先按照预设放大倍数(例如放大一倍)对该电信号或者电能信号或者微电流进行放大,并将放大后的电信号或者电能信号或者微电流传输至电能管理单元122并形成聚合电能,以使得控制管理单元123可被该聚合电能激活,控制管理单元123可以被快速激活。随后,控制管理单元123可以根据电能管理单元122传输的聚合电能来控制调整放大单元121的倍数(例如调整为放大两倍、三倍……),放大单元121可以根据调整后的放大倍数继续对接收的电信号或者电能信号或者微电流进行放大,这可使得聚合电能的转换速率更快。可以理解的是,在该过程中,控制管理单元123可以根据实际情况多次调节放大单元121的工作参数。本申请实施例对控制管理单元123控制放大单元121的具体工作方式不进行限定。
可以理解的是,控制管理单元123还可以与负载模块130电连接,控制管理单元123可以根据负载模块130的工作参数,控制电能管理单元122或者电能储存单元为负载模块130提供电能,并保证负载模块130的正常工作。可以理解的是,控制管理单元123也可以根据负载模块130的工作状态(例如负载模块130的耗电量)来反向控制放大单元121、电能管理单元122的工作,例如,可以根据负载模块130的工作状态,调整放大单元121的放大倍数,调整电能管理单元122对负载模块130电能的分配比例等。本申请实施例对控制管理单元123对负载模块130、放大单元121、电能管理单元122的具体控制方式不进行限定。
控制管理单元123也可以无线接收模块110直接或间接电连接,控制管理单元123也可以对无线接收模块110进行控制。例如但不限于当无源电子设备100存储的聚合电能达到一定程度后,不需要再将微能源转换为聚合电能,此时,控制管理单元123可以控制无线接收模块110停止工作。需要说明的是,以上仅为控制管理单元123对无线接收模块110进行控制的示例性具体,其他的控制方案也可以在本申请实施例的保护范围内。
可以理解的是,控制管理单元123可以是微控制单元(Microcontroller Unit,简称MCU)。控制管理单元123可以是整个无源电子设备100的微小型的计算处理中心,控制管理单元123可以在电能管理单元122提供的聚合能源的激励下工作,并可以承接完成放大单元121的有效信号源计算,还可以控制负载模块130工作。从而控制管理单元123可以控制无源电子设备100的各个模块及单元,在此不进行详述。
本申请实施例的电能管理模块120包括放大单元121、电能管理单元122和控制管理单元123,三个模块相互独立完成各自的工作,又可以相互协同作用。放大单元121可以将无线接收模块110传输的基础信号(电信号/电能/微电流)同步逆变放大,无线接收模块110中存储的一级电能可以激励唤醒电能管理单元122,电能管理单元122可以快速激活,可以提高无源电子设备100的响应速率;同时,电能管理单元122可以将放大单元121放大的信号转换为稳定输出的聚合能源,控制管理单元123可以根据无源电子设备100的工作状态处理整个无源电子设备100各个模块、各个单元之间的业务逻辑信息。
请再次参考图7并请参考图12,图12为图7所示的放大单元121的一种结构示意图。放大单元121可以包括基准采样电路1211、倍数放大电路1212和放大反馈电路1213。
基准采样电路1211可以与无线接收模块110例如无线接收模块110的电能控制单元113或者微能源储存管理电路1133直接或间接电连接,基准采样电路1211可以接收无线接收模块110传输的电信号或者电能或微电流。倍数放大电路1212可以与基准采样电路1211直接或间接电连接,倍数放大电路1212可以将接收的电信号或者电能或微电流放大一定倍数,以实线电信号或者电能或微电流的二级逆变放大。
可以理解的是,倍数放大电路1212可以直接或间接与电能管理单元122电连接,以便于倍数放大电路1212可以将逆变放大后的信号传输至电能管理单元122。当然,倍数放大电路1212也可以将该放大后的信号传输至放大反馈电路1213,并由放大反馈电路1213将逆变放大后的信号传输至电能管理单元122。本申请实施例对放大后的电信号传输至电能管理单元122的具体方式不进行限定。
可以理解的是,放大反馈电路1213可以直接或间接与倍数放大电路1212直接或间接电连接。该放大反馈电路1213也可以直接或间接与后文中的电能管理模块120的控制管理单元123直接或间接电连接,放大反馈电路1213可以接收控制管理单元123传输的放大倍数的调整信息,放大反馈电路1213可以将该调整信息传输至倍数放大电路1212,以便于倍数放大电路1212按照调整后的放大倍数对接收的电信号或者电能或微电流进行放大。
本申请实施例的放大电路包括基准采样电路1211、倍数放大电路1212和放大反馈电路1213相互配合、相互协同,既可以实现对电信号/电能/微电流的二次逆变放大,也可以接收控制管理单元123的控制、使得电信号/电能/微电流的二次逆变放大进行适应性控制,从而本申请实施例的放大电路可以使得微弱信号源在电能管理模块120中实现有效的稳压稳流。
需要说明的是,以上仅为本申请实施例提供的放大单元121的示例性说明,放大单元121的具体结构并不局限于此,例如但不限于放大单元121内部还可以包括多级倍数放大电路。凡是可对无线接收模块110传输的电信号或者电能信号或者微电流进行二级逆变放大的结构,均可以在本申请实施例的放大单元121的保护范围内。
需要说明的是,以上仅为本申请实施例提供的电能管理模块120的示例性说明,电能管理模块120的具体结构并不局限于此,例如电能管理模块120可以包括更多或者更少的模块,本申请实施例对电能管理模块120的具体结构不进行限定,凡是可以接收无线接收模块110传输的电信号/电能/微电流,并可以将其转换为电能的结构方案均可以在本申请实施例的保护范围内。
其中,请参考图13,图13为本申请实施例提供的无源电子设备100的第三种结构示意图。无源电子设备100的负载模块130可以包括蓝牙单元131。
蓝牙单元131可以与电能管理模块120直接或间接电连接,蓝牙单元131可以在电能管理模块120提供的电能的供给下向外发射信号例如向外广播信号。例如,当电能管理模块120接收无线接收模块110传输的电信号并将该电信号转换为稳定输出的聚合电能后,蓝牙单元131可以在电能管理模块120提供的稳定输出的聚合电能的供给下向外广播信号。
可以理解的是,蓝牙单元131可以与电能管理模块120的电能管理单元122直接或间接电连接,以接收电能管理单元122传输的稳定输出的聚合电能。蓝牙单元131也可以与存储有聚合电能的电能储存单元直接或间接电连接,以接收电能储存单元传输的稳定输出的聚合电能。蓝牙单元131也可以与电能管理模块120的控制管理单元123直接或间接电连接,以接收控制管理单元123的控制,例如控制管理单元123可以控制蓝牙模块在一定的触发条件下向外广播信号,在另一定的触发条件下停止向外广播信号。
可以理解的是,当其他的电子终端300接收到蓝牙单元131发射的广播信号后,可以对蓝牙单元131或者无源电子设备100进行识别,以执行相应的功能。例如,蓝牙单元131或者无源电子标签被识别后可以但不限于实现无源电子设备100的定位功能、扫码功能、内容推送功能。本申请实施例对蓝牙单元131的具体应用场景不进行限定。
可以理解的是,蓝牙单元131可以负责独立解析围绕BLE协议栈里的一部分特殊内容,并可以主动广播无线信号并发送becan信号。本申请实施例的蓝牙单元131可以仅向外发射广播信号而不用于接收信号,蓝牙单元131内部可以不包括与接收信号功能相适应的硬件及软件结构,蓝牙单元131可以作为BLE信号射频发射端的精简设计,该蓝牙单元131既要保证在兼容国际通用蓝牙协议栈的同时完成自身的极低功耗工作状态,还要兼顾考虑发射信号的功率,以保证场景接收终端(例如前述的电子终端300)的无线感知的使用体验。并且,在蓝牙单元131的使用过程中,蓝牙单元131的连接与断开自身是一个0-1的开关感应,蓝牙单元131要么向外发射信号例如广播信号,要么停止发射信号,相当于处于一个固定场景下的状态变化,从而使得本申请的蓝牙单元131主动上传发送的意义远大于传统的特高频(Ultra High Frequency,简称UHF)的被动接收的意思。本申请的蓝牙单元131将是未来物联网更受欢迎的自组网拓展应用的好网络。
本申请实施例的蓝牙单元131仅向外广播信号而不接收信号,既可以使得本申请实施例的蓝牙单元131的结构更简单、成本更低,还可以使得本申请的蓝牙单元131在极低功耗下可以工作,从而,本申请实施例的蓝牙单元131更适用于本申请的无源电子标签。
其中,请集合图13并请参考图14和图15,图14为本申请实施例提供的无源电子设备100的第四种结构示意图,图15为本申请实施例提供的无源电子设备100的第五种结构示意图。本申请实施例的负载模块130还可以包括传感器单元132。
传感器单元132可以但不限于为微系统传感器(MEMS)。传感器单元132可以与电能管理模 块120直接或间接电连接,传感器单元132可以在电能管理模块120提供的电能的供给下采集参数信息。例如,当电能管理模块120接收无线接收模块110传输的电信号并将该电信号转换为稳定输出的聚合电能后,传感器单元132可以在电能管理模块120提供的稳定输出的聚合电能的供给采集参数信息。可以理解的是,该参数信息可以但不限于为无源电子设备100当前环境下的参数信息,例如但不限于温度参数信息、湿度参数信息、压力参数信息、高度参数信息等,传感器单元132可以采集无源电子设备100当前环境下温度参数、湿度、压力、高度等参数。
可以理解的是,传感器单元132可以与电能管理模块120的电能管理单元122直接或间接电连接,以接收电能管理单元122传输的稳定输出的聚合电能。传感器单元132也可以与存储有聚合电能的电能储存单元直接或间接电连接,以接收电能储存单元传输的稳定输出的聚合电能。传感器单元132也可以与电能管理模块120的控制管理单元123直接或间接电连接,以接收控制管理单元123的控制,例如,控制管理单元123可以控制传感器单元132在一定的触发条件下采集预设参数信息,在另一定的触发条件下停止采集预设参数信息。
可以理解的是,本申请实施例的负载模块130可以包括传感器单元132、蓝牙单元131中的至少一个。例如,如图13所示,负载模块130可以包括蓝牙单元131而不包括传感器单元132;再例如,如图14所示,负载模块130可以包括传感器单元132而不包括蓝牙单元131;又例如,如图15所示,负载模块130可以同时包括蓝牙单元131和传感器单元132。并且,本申请实施例的负载模块130可以包括一个或多个(两个及以上)的蓝牙单元131、一个或多个(两个及以上)的负载模块130。基于此,本申请实施例对蓝牙单元131、传感器单元132的设置及数量不进行限定。
可以理解的是,传感器单元132可以与其他的电子终端或者服务器或者云平台通信连接,传感器可以将采集的参数信息传输至其他的电子终端或者服务器或者云平台,以便于电子终端或者服务器或者云平台可以获取无源电子设备100当前环境下的相关信息。
当然,传感器单元132也可以直接或间接与蓝牙单元131电连接,传感器单元132可以将采集的相关信息转换为电信号例如模拟信号并发送至蓝牙单元131,蓝牙单元131可以将该电信号例如模拟信号主动向外广播发送出去。需要说明的是,以上仅为传感器单元132采集的参数信息向外传输的示例性说明,本申请实施例对传感器单元132采集的参数信息向外传输的具体方式不进行限定。
可以理解的是,本申请实施例的传感器单元132在整个无源电子设备100的框架中,是一个灵活的设计单元选项,无源电子设备100可以设置传感器单元132,也可以不设置传感器单元132。传感器单元132可以配合不同场景下,需要对无源电子设备100当前环境参数,例如温度、适度、压力、高度等进行空间感知。随后,传感器单元132可以依附在一个空间无线网络节点,可以将这些参数实时无线采集上报云平台后服务器,使得整个系统不仅增加了可行性的丰富内容,而且贴近生活所需,极大满足不同场景的需要。
本申请实施例的传感器单元132为可变的加载传感负载的任务单元,可以采集无源电子设备100当前环境下的参数信息并可利用蓝牙单元131主动广播上报至云平台,既可以降低传感器单元132的功耗,也可以拓展无源电子设备100的应用场景,提高无源电子设备100的适应性。
其中,请参考图16和图17,图16为本申请实施例提供的无源电子设备100的第六种结构示意图,图17为图16所示的无源电子设备的一种电连接示意图。无源电子设备100还包括加密存储单元150。
加密存储单元150可以与无线接收模块110、电能管理模块120、负载模块130中的至少一个直接或间接电连接,加密存储单元150可以存储数据,并可以防止非法篡改数据。
可以理解的是,加密存储单元150可以负责将无源电子设备100正常工作中重要的配置参数在掉电的情况下保存例如加密保存,并可以防止恶意非法篡改该数据;同时,加密存储单元150上冗余空间的扇区可以存放其他可随机擦写的数据。从而,使得加密存储单元150可以确保在有限的存储空间内合理配置存储空间并良性功耗控制存储操作,做到能源消耗与存取内容双向平衡。
可以理解的是,加密存储单元150可以配合电能管理模块120、负载模块130的数据加密,加密存储单元150可以作为电能管理模块120中电能管理单元122的加密数据中心的存储中心,也可以作为电能管理模块120中控制管理单元123的业务逻辑处理中心的存储中心,还可以作为蓝牙单元131中特殊配置协议的存储中心,又可以作为传感器单元132中模拟传感数据存储中心。
可以理解的是,加密存储单元150可以但不限为存储器,可以对存储器进行设计使得其既可以存储数据,也可以防止数据被非法篡改。本申请实施例对加密存储单元150的具体结构不进行限定。
可以理解的是,加密存储单元150可以作为无源电子设备100的一个单独模块,该加密存储单元150与可以集成在其他模块中,例如但不限于该加密存储单元150可以集成于电能管理模块120中而作为电能管理模块120的一部分。本申请实施例对加密存储单元150的具体结构不进行限定。
本申请实施例的加密存储单元150既可以存储数据,又可以对重要数据进行加密保存防止其 被篡改,从而,本申请实施例的加密存储单元150可以确保在有限的存储空间内合理配置存储空间并良性功耗控制存储操作,做到能源消耗与存取内容双向平衡。
本申请实施例的无源电子设备100,蓝牙单元131、加密存储单元150和传感器单元132,既可以相互独立工作,并可以相互协同工作。蓝牙单元131可以负责解析围绕BLE协议栈里特殊的一部分内容,并主动广播发送信号;加密存储单元150可以负责将重要的配置参数在掉电的情况下加密保存,冗余的空间的扇区可以存放其他可随机擦写的数据;传感器单元132作为可变的假造传感负载,可以模拟信号采集参数后随蓝牙单元131主动广播发送,从而,本申请实施例的无源电子设备100可以做到能源消耗与存取内容双向平衡。
需要说明的是,以上仅为本申请实施例的无源电子设备100的示例性说明,无源电子设备100的具体结构并不局限于,例如无源电子设备100还可以包括睡眠单元、唤醒单元等结构,本申请实施例对无源电子设备100的具体结构不进行限定。
基于上述无源电子设备100的结构,本申请实施例还提供了一种无线信号采集方法、无线信号获取方法、微能源采集方法或者微能源获取方法。该无线信号采集方法/无线信号获取方法/微能源采集方法/微能源获取方法可以包括:
接收空间内的无线信号或者微能源;对特定频率的无线信号或者微能源进行锁频,并将锁屏后的无线信号或者微能源转换为微电流、电能或者电信号(等形式的电能例如一级电能)。
在一些实施例中,本申请实施例的方法还可以包括:接收空间内的无线信号或微能源;将无线信号或微能源转换为数字信号、对数字信号进行分频、并对特定频率的数字信号进行锁频;对锁频后的数字信号进行增益放大并形成微电流、电能或者电信号(等形式的电能例如一级电能)、并对微电流、电能或者电信号(等形式的电能例如一级电能)进行管理。
可以理解的是,无线信号或者微能源可以是指各种发射源无线散射在空中的各类微弱的纳安级电流的电磁波信号。在我们日常生活空间当中,可能存在多种无线电磁波散射在周围,例如但不限于家庭Wi-Fi信号、共享单车周围的BLE信号、通信基站的3G信号、4G信号、5G信号等,这些不同频率的无线信号或者微能源可以实时工作在同一空间内。本申请实施例的无线信号采集方法/无线信号获取方法/微能源采集方法/微能源获取方法,可以采集或者获取空间内的这些无线信号或者微能源。需要说明的是,本申请任意实施例中的无线信号与微能源的概念可以互换,也就是桌,在本申请实施例中“无线信号”的表述均可以替换为“微能源”的表述,在此不进行详述。
可以理解的是,本申请实施例的无线信号采集方法/无线信号获取方法/微能源采集方法/微能源获取方法可以应用于上述任一实施例的无源电子设备100或者无源电子设备100的无线接收模块110中。当然,该方法也可以应用于其他能实现该方案的模块、装置、存储介质、电子设备中,本申请实施例对此不进行限定。
可以理解的是,本申请实施例的方法中,可以但不限于利用无源电子设备100的接收天线单元接收空间内的无线信号或微能源;可以但不限于利用射频识别单元对特定频率的无线信号或者微能源进行识别锁频;可以但不限于利用电能控制单元将锁频后的无线信号转换为微电流、电能或者电信号(等形式的电能例如一级电能)。
需要说明的是,在对特定频率的无线信号或微能源进行锁频、以及将锁频后的无线信号转或微能源转换为微电流、电能或者电信号的步骤中,本步骤中的方法所针对的对象不局限于特定频率的无线信号或微能源、以及锁频后的无线信号转或微能源,还可以是与该特定频率的无线信号或微能源相对应的电流信号例如模拟信号、与锁频后的无线信号转或微能源相对应的电流信号例如数字信号。换言之,本申请实施例的方法中的这两个步骤的操作对应不局限于无线信号及微能源,还可以包括与无线信号及微能源相对应的电流信号。
需要说明的是,本申请实施例的方法的具体内容及解释可以参见前述无源电子设备100的实施例的描述,在此不进行详述。
本申请实施例的无线信号采集方法/无线信号获取方法/微能源采集方法/微能源获取方法,可以接收空间内的无线信号或微能源,并可以对特定频率的无线信号或微能源进行锁频并将锁频后的无线信号或微能源转换为电能。从而,一方面,本申请实施例的方法可以根据空间内散射传播的微能源的频率进行自适应抓取,可以在多频段(例如800MHz至2.4GHz)的微能源主动进行精准识别抓取,可以提高接收无线信号的灵敏度和效率;另一方面,本申请实施例的方法也可以自适应较宽频段的微能源,使得本申请实施例的方法的适用场景更广泛。
基于上述无源电子设备100的结构,本申请实施例还提供了一种储能方法或者能量储存方法。该储能方法/能量储存方法包括:
接收呈交流特性或者散射特性的微电流、电能或者电信号(等形式的电能例如一级电能)、并将微电流、电能或者电信号(等形式的电能例如一级电能)转换为稳定输出的聚合电能。
在一些实施例中,该储能方法/能量储存方法还包括:将预设单位时长内的呈交流特性或者散射特性的微电流/电能/电信号(等形式的电能例如一级电能)采集混编为一组,并将每组中具有相 近特征点的微电流/电能/电信号(等形式的电能例如一级电能)提取标称,以使提取标称后的微电流/电能/电信号(等形式的电能例如一级电能)形成稳定输出的聚合电能。
在一些实施例中,该储能方法/能量储存方法还包括:接收呈交流特性或者散射特性的微电流、电能或者电信号(等形式的电能例如一级电能),并将该微电流/电能/电信号(等形式的电能例如一级电能)进行放大;将预设单位时长内的放大后的微电流/电能/电信号(等形式的电能例如一级电能)采集混编为一组,并将每组中具有相近特征点的微电流/电能/电信号(等形式的电能例如一级电能)提取标称,以使提取标称后的微电流/电能/电信号(等形式的电能例如一级电能)形成稳定输出的聚合电能;接收该聚合电能,并为其他功能模块供电以支持功能模块的工作。
可以理解的是,本申请实施例的储能方法/能量储存方法可以应用于上述任一实施例的无源电子设备100或者无源电子设备100的电能管理模块120中。当然,该方法也可以应用于其他能实现该方案的模块、装置、存储介质、电子设备中,本申请实施例对此不进行限定。
可以理解的是,本申请实施例的方法中,可以但不限于利用放大单元接收呈交流特性或者散射特性的微电流、电能或者电信号(等形式的电能例如一级电能),并将该微电流/电能/电信号(等形式的电能例如一级电能)进行放大;可以但不限于利用电能管理单元将预设单位时长内的放大后的微电流/电能/电信号(等形式的电能例如一级电能)采集混编为一组,并将每组中具有相近特征点的微电流/电能/电信号(等形式的电能例如一级电能)提取标称,以使提取标称后的微电流/电能/电信号(等形式的电能例如一级电能)形成稳定输出的聚合电能;可以但不限于利用控制管理单元接收所述聚合电能,并控制其他功能模块工作。
需要说明的是,本申请实施例的方法的具体内容及解释可以参见前述无源电子设备100的实施例的描述,在此不进行详述。
本申请实施例的储能方法/能量储存方法,可以将呈交流特性或者散射特性的微电流、电能或者电信号(等形式的电能例如一级电能)转换为稳定输出的聚合电能,该稳定输出的聚合电能可以保证功能模块的正常工作;该储能方法/能量储存方法不需要复杂的硬件结构支持就可以实现交流电信号转换为稳定输出的电能,储能成本更低、供电效果更优。
基于上述无源电子设备100的结构,本申请实施例还提供一种通信系统10,请参考图18,图18为本申请实施例提供的通信系统10的第一种结构示意图。该通信系统10可以包括无源电子设备100和能量发射设备200。
无源电子设备100可以是前述任一实施例的无源电子设备100。该能量发射设备200可以是能发射无线信号的设备,例如但不限于为手机、路由器、热点设备、基站设备等。当然,也可以专门设计一款与无源电子设备100相匹配的能量发射设备200,以提高能量发射设备200与无源电子设备100之间的匹配度,以提高无源电子设备100将微能源转换为电能的转换效率。可以理解的是,能量发射设备200可以向空间发射无线信号,该无线信号可以但不限于为Wi-Fi信号、NFC信号、BLE信号、3G信号、4G信号、5G信号。
无源电子设备100可以与能量发射设备200通信连接,无源电子设备100可以接收该无线信号并可以将该无线信号转换为电能,以供无源电子设备100的负载模块130工作。无源电子设备100的具体工作方式可以参见前述实施例,在此不进行详述。
本申请实施例的通信系统10,能量发射设备200可向无源电子设备100发射无线信号,无源电子设备100可以利用该无线信号转换为电能并工作,从而,本申请的通信系统10可以实现无源工作。
基于上述无源电子设备100的结构,本申请实施例还提供一种通信系统10,请参考图19,图19为本申请实施例提供的通信系统10的第二种结构示意图。该通信系统10可以包括无源电子设备100和电子终端300。
该无源电子设备100可以是前述任一实施例的无源电子设备100。无源电子设备100可以接收空间内的无线信号(例如但不限于为能量发射设备200发射的无线信号)并可以将该无线信号转换为电能,以供无源电子设备100的负载模块130工作。无源电子设备100的具体工作方式可以参见前述实施例,在此不进行详述。
电子终端300可以与无源电子设备100通信连接。例如但不限于,电子终端300可以与无源电子设备100的蓝牙单元131通信连接,电子终端300可以接收蓝牙单元131主动向外广播的信号,以使得电子终端300可以接收无源电子设备100提供的相关信息。
可以理解的是,电子终端300可以为智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。本申请实施例对电子终端300的具体结构不进行限定。
本申请实施例的通信系统10,无源电子设备100可以采集空间内的无线信号转换为电能并工作,无源电子设备100还可以将相关信息通信传输至电子终端300,以使得电子终端300可以获取无源电子设备100的相关信息。基于此,本申请的通信系统10可以利用无源工作的无源电子设备 100采集信息,通信系统10的适用范围更广泛。
基于上述无源电子设备100的结构,本申请实施例还提供一种通信系统10,请参考图20,图20为本申请实施例提供的通信系统10的第三种结构示意图。该通信系统10可以包括无源电子设备100、能量发射设备200和电子终端300。
能量发射设备200可以是能发射无线信号的设备,例如但不限于为手机、路由器、热点设备、基站设备,或者为专门设计一款与无源电子设备100相匹配的能量发射设备200。该能量发射设备200可以向空间发射无线信号,该无线信号可以但不限于为Wi-Fi信号、NFC信号、BLE信号、3G信号、4G信号、5G信号。
无源电子设备100可以是前述任一实施例的无源电子设备100。无源电子设备100可以与能量发射设备200通信连接,无源电子设备100可以接收该无线信号并可以将该无线信号转换为电能,以供无源电子设备100的负载模块130工作。无源电子设备100的具体工作方式可以参见前述实施例,在此不进行详述。
电子终端300可以与无源电子设备100通信连接。电子终端300可以接收无源电子设备100向外传输的信号。例如,电子终端300可以与无源电子设备100的蓝牙单元131通信连接,电子终端300可以接收蓝牙单元131主动向外广播的信号,以使得电子终端300可以接收无源电子设备100提供的相关信息。
本申请实施例的通信系统10,能量发射设备200可向无源电子设备100发射无线信号,无源电子设备100可以利用该无线信号转换为电能并工作无源电子设备100还可以将相关信息通信传输至电子终端300,以使得电子终端300可以获取无源电子设备100的相关信息。从而,本申请的通信系统10的三个设备相互配合,协同工作,可以实现无源电子设备100的无源工作,通信系统10的适用范围更广泛。
基于上述无源电子设备100的结构,本申请实施例还提供一种通信系统10,请参考图21,图21为本申请实施例提供的通信系统10的第四种结构示意图。该通信系统10可以包括无源电子设备100和外部设备400。
无源电子设备100可以是前述任一实施例的无源电子设备100。无源电子设备100可以与能量发射设备200通信连接,无源电子设备100可以接收该无线信号并可以将该无线信号转换为电能,以供无源电子设备100的负载模块130工作。无源电子设备100的具体工作方式可以参见前述实施例,在此不进行详述。
外部设备400可以与无源电子设备100通信连接。该外部设备400可以是既能向无源电子设备100发射无线信号以使得无源电子设备100可以实现无源工作、又可以接收无源电子设备100主动向外发射的信息的设备。可以理解的是,该外部设备400可以向空间发射无线信号,该无线信号可以但不限于为Wi-Fi信号、NFC信号、BLE信号、3G信号、4G信号、5G信号。可以理解的是,该外部设备400也可以接收无源电子设备100向外传输的信号,例如,外部设备400可以接收蓝牙单元131主动向外广播的信号以使得外部设备400可以接收无源电子设备100提供的相关信息。
可以理解的是,该外部设备400可以但不限为智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。该外部设备400内部可以设置不同的模块或者程序,以实现外部设备400可以向无源电子设备100发射无线信号、以及外部设备400可以接收无源电子设备100主动向外广播的信号。本申请实施例对外部设备400的具体结构不进行限定。
本申请实施例的通信系统10,外部设备400可以集成发射无线信号及接收无源电子设备100广播信号两种功能,通信系统10的结构更简单。
需要说明的是,以上仅为本申请实施例的通信系统10的示例性说明,通信系统10的具体结构并不局限于,本申请实施例对通信系统10的具体结构不进行限定。
其中,基于上述无源电子设备100及通信系统10的结构,本申请实施例还提供了一种定位方法。该定位方法可以应用于上述任一实施例的无源电子设备100或者任意实施例的通信系统10。
该定位方法可以包括:通信系统的电子终端300可以向外发送无线信号(射频能量),若处于无源电子设备100的感应范围内,则无源电子设备100可以接收该无线信号并进行电能转换;当电子终端300接收到无源电子设备100已经接收无线信号的反馈信息后,电子终端300可以对无源电子设备100的当前位置进行定位。
在一些实施例中,请参考图22,图22为本申请实施例的定位方法的第一种应用场景图。电子终端300可以先向外发送第一覆盖范围(较大范围,例如但不限于5米)的无线信号(射频能量);当电子终端300确定在该第一覆盖范围内存在无源电子设备100例如蓝牙单元131接收到该无线信号(射频能量)后,电子终端300可以继续向外发射覆盖范围小于第一覆盖范围的第二覆盖范围(较小范围,例如但不限于1米)的无线信号(射频能量);当电子终端300确定在该第二覆盖范围内再次存在无源电子设备100例如蓝牙单元131接收到该无线信号(射频能量),则再次发送覆盖范 围更小的无线信号(射频能量);直至在第N覆盖范围内不存在无源电子设备100例如蓝牙单元131接收到该无线信号(射频能量),则此时可以确定无源电子设备100距离电子终端300的距离在第(N-1)覆盖范围与第N覆盖范围之间。或者,直至预设的第N覆盖范围内依然可以存在无源电子设备100例如蓝牙单元131接收到该无线信号(射频能量),则此时可以确定无源电子设备100距离电子终端300的距离小于等于该预设的第N覆盖范围内。从而,本申请的定位方法可以实现对无源电子设备100的快速定位。
可以理解的是,电子终端300每次发送的无线信号(射频能量)的覆盖范围均可以小于前一次发送的无线信号(射频能量)的覆盖范围。电子终端300可以按照等间距递减的方式缩小无线信号(射频能量)的覆盖范围,电子终端300也可以按照其他的方式缩小无线信号(射频能量)的覆盖范围,本申请实施例对此不进行限定。
可以理解的是,无源电子设备100可以与待定位物500直接或间接连接。例如,无源电子设备100可以通过卡嵌、粘贴等方式连接于待定位物500。当电子终端300实现对无源电子设备100的定位后,电子终端300也可以实现对待定位物500的定位。
需要说明的是,以上仅为本申请实施例的无源电子设备100实现定位的一种示例性说明,其他可以实现电子终端300对无源电子设备100定位的方案均在本申请实施例的保护范围内。
本申请实施例的定位方法,电子终端300通过发射不同范围内的无线信号(射频能量),可以先进行粗定位,再逐步进行精定位,方便用户快速找到无源电子设备100及与待定位物500。
其中,基于上述无源电子设备100及通信系统10的结构,本申请实施例还提供了一种定位方法。该定位方法可以应用于上述任一实施例的无源电子设备100或者任意实施例的通信系统10。
请参考图23,图23为本申请实施例的定位方法的第二种应用场景图。该定位方法可以包括:能量发射设备200或者外部设备400可以向外发送无线信号(射频能量),无源电子设备100可以接收该送无线信号(射频能量)并将其转换为电能,以使其负载模块工作。例如,无源电子设备100的蓝牙单元131可以向外发射无线信号例如向外广播信号;电子终端300或者外部设备400可以接收该无线信号例如向外广播信号并实现对无源电子设备100的定位。
可以理解的是,无源电子设备100可以与待定位物500直接或间接连接。例如,无源电子设备100可以通过卡嵌、粘贴等方式连接于待定位物500。当电子终端300实现对无源电子设备100的定位后,电子终端300也可以实现对待定位物500的定位。
可以理解的是,无源电子设备100的蓝牙单元131向外发送的无线信号例如向外广播信号可以携带相关位置信息;该位置信息可以是由无源电子设备100的传感器单元132提供的。当然,位置信息也可以由无源电子设备100的其他模块提供,本申请实施例对此不进行限定。
可以理解的是,电子终端300或者外部设备400也可以根据无源电子设备100向外发射无线信号例如向外广播信号分析计算得到蓝牙标签的方向、距离、位置。例如但不限于电子终端300或者外部设备400可以在多个不同的位置接收无源电子设备100向外发射无线信号例如向外广播信号,并根据该多个无线信号的不同信息分析出无源电子设备100的当前位置,从而实现对无源电子设备100及待定位物500的定位。需要说明的是,本申请实施例对电子终端300或者外部设备400对无源电子设备100进行定位的具体方式不进行限定。
本申请实施例的定位方法,无源电子设备100既可以在无电池供应的场景下实现无源工作,无源电子设备100还可以实现定位功能,无源电子设备100的适用范围更广泛。
其中,基于上述无源电子设备100、能量发射设备200、电子终端300、外部设备400等结构,本申请实施例还提供了一种能量发射设备200的具体结构。该能量发射设备200可以向无源电子设备100发射无线信号或者微能源,以供无源电子设备100实现无源工作。
请参考图24,图24为本申请实施例提供的能量发射设备200的第一种结构示意图。能量发射设备200包括发射模块210、控制模块220、调节模块230和天线模块240。
发射模块210可以是能量发射设备200的输入源模块。输入源的特征需要符合国家无线电管理委员会允许的公开安全无线频段和发射功率,以防止干扰、影响其他正常工作频段。本申请实施例的发射模块210采用多频段、动态输出功率的智能调制方法确定输出源。例如,在允许的公共频率点433MHz、915MHz,2.4GHz等三种频段下,分别将发射功率随着时间和空间的变化,自适应动态调节0dB-27dB转换,以达到所规定的有效距离内的微能量输出。
可以理解的是,发射模块210可以由外部固定式输入信号,额定输出功率由发射源规定,通常设定范围在12V、24V、48V/2A,发射模块210可以保证输入源的有效激励达成。
控制模块220可以与发射模块210直接或间接电连接,控制模块220可以接收发射模块210输出的信号并对该信号进行一系列的控制。例如,控制模块220可以在接收到发射模块210提供的电信号(电能信号)时,启动工作。再例如,控制模块220可以将发射模块210提供的电信号(电能信号)传输至后续的调节模块230、天线模块240以实现无线传输。
可以理解的是,控制模块220可以按照内部预先设定好的程序及单元之间处理业务流程的逻 辑关系,控制模块220内部可以集成了一个人工智能算法,使得控制模块220可以有效的捕捉到来自后端单元例如天线模块240、调节模块230反馈过来的大量参数例如频率调校处理,并可以根据该参数对调节模块230进行控制。
调节模块230可以与控制模块220直接或间接电连接,控制模块220也可以直接或间接与天线模块240直接或间接电连接。调节模块230可以对控制模块220传输的激励信号(电信号)进行处理、调节,并可以将处理、调节后的激励信号传输至天线模块240并使得天线模块240可以在该激励信号的作用下可以向外发射和接收无线信号。
可以理解的是,调节模块230可以对控制模块220传输的激励信号(电信号)进行振荡锁频、放大、动态调节,以使得调节模块230可以实现多个频段的信号传输。
天线模块240可以直接或间接与调节模块230电连接,以接收调节后的激励信号并向外传输无线信号。天线模块240也可以直接或间接与控制模块220电连接,天线模块240可以将接收到的信号反馈至控制模块220,以便于控制模块220在接收到后端反馈的信号后,可以适应性控制调节模块230。
可以理解的是,天线模块240可以包括天线辐射体,也可以包括与天线辐射体相适配的射频电路(包括但不限于匹配电路、调谐电路、滤波电路),以使得天线模块240可以根据调节模块230输出的相关参数,动态阻抗匹配,实现天线模块240性能的最优化。
可以理解的是,天线模块240可以为混频天线矩阵,例如但不限于天线模块240可以包括四个及四个以上的天线阵列(天线辐射体),天线阵列的具体数量可以根据场景要求设置,实现多个天线阵列的多阵列排布。例如,当天线模块包括四个天线阵列时,该四个天线阵列可以分布在室内空间的四个角落形成四个分别布点,四个天线阵列可以保持通信信号副射均衡室内面积以及聚焦微能源扇区,天线模块240的辐射性能更优。需要说明的是,以上仅为本申请实施例提供的天线模块240的示例性说明,其具体结构并不局限于此,凡是可在激励信号的作用下传输无线信号/射频能量的天线结构均在本申请实施例的保护范围内。
可以理解的是,天线模块240可以在不同时序下混频编组,通过动态阻抗匹配以保证天线调制的频率及复用,减少天线的数量及安装体积,并且可以降低单独分别设立天线的成本困扰;与此同时,发射模块210、控制模块220、调节模块230等前端做功所产生的射频功率通过多分布的天线辐射体向外副射传输微能量,可以实现常规值在10mW以上。
可以理解的是,控制模块220可以控制天线模块240中的一个或多个(两个及以上)的天线阵列同时传输某一频段信号,也可以控制天线模块240中的另一个或另多个(两个及以上)的天线阵列同时传输另一频段信号,从而本申请实施例的天线模块240可以实现多频段射频传输。当然,控制模块220也可以控制全部的或者部分的天线阵列在某一时序传输某一频段信号,控制模块220也可以控制全部的或者部分的天线阵列可以与前述时序相同的天线阵列,也可以与前述时序不同的天线阵列)在另一时序传输另一频段信号,从而,本申请实施例的天线模块240也可以实现多频段射频传输。
可以理解的是,在天线模块240实现多频段射频传输的过程中,控制模块220可以根据天线模块240、调节模块230中的至少一个反馈的信息来动态调节及动态控制天线模块240,以使得天线模块240可以实现多频段射频能量的动态无线传输。
本申请实施例的能量发射设备200,包括发射模块210、控制模块220、调节模块230和天线模块240,在四个模块的相互配合、相互协同下,根据无线射频在空间传播反向散射特点,在近场(0-10)米的距离内实现集中或分布式室内空间微能源传输;可以实现多频段射频能量动态无线传输;本申请实施例的能量发射设备200考虑了发射功率所消耗的能量浪费问题,本申请实施例的能量发射设备200基于国际通用无线射频技术的微能源采集和通信双重实现,既可以在传输过程中保证传输功率的安全和国际无线电管理委员会的标准约束,同时又可以保证在场景距离规定内,达到传输效率,也就是额定负载的工作要求,还可以保证技术转化为产品的实现可量产规模化,特别是在发射天线的材料和相位,以及口径大小的平衡,以保证场景的安装适配和便捷运营维护,可以实现射频通信在室内无线传输电源的可行性及应用场景;本申请实施例的能量发射设备200也可以实现多频段射频通信在动态环境下的传输效率及传输安全。
其中,请结合图24,并请参考图25,图25为本申请实施例提供的能量发射设备200的第二种结构示意图。能量发射设备200的调节模块230可以包括频率发生单元231、功率放大单元232、动态调节单元233。
频率发生单元231可以为内部振荡产生频率的单元,频率发生单元231可以但不限于为频率发生器或者频率发生电路。频率发生单元231所产生的频率可以由控制模块220预先存储设置,通常频率发生单元231设定范围在300MHz至2.4GHz之间,主要锁定频段有433MHz、915MHz、2.4GHz等。
可以理解的是,频率发生单元231既可以与控制模块220直接或间接电连接,以接收控制模 块220的控制;频率发生单元231也可以直接或间接与天线模块240电连接,以向天线模块240传输激励信号例如锁定频段后的激励信号。频率发生单元231可以确保有效距离传输微能量的同时,还保持通信信道的顺畅和抗干扰,可以保证稳定输出。
功率放大单元232可以直接或间接与控制模块220电连接。功率放大单元232可以将控制模块220传输的激励信号同步产生信号和功率以几何倍数来放大。功率放大单元232可以保证在室内近场0-10米的距离内可以达到有效空间传输微能源的额定输出。
可以理解的是,功率放大单元232可以将控制模块220传输的激励信号放大,并可以通过控制模块220传输至频率发生单元231并传输至天线模块240。当然,功率放大单元232也可以将控制模块220传输的激励信号放大并直接传输至频率发生单元231而不经过控制模块220。本申请实施例对功率放大器的具体工作逻辑不进行限定。
动态调节单元233可以根据在不同室内空间的距离内,通过反射信号实时检测各个环境变量,动态调节单元233可以用来动态调节频率发生单元231和功率放大单元232的修正或异常修正,是非常重要的一套纠错机制,可以防止因频偏或者输出功率不够的情况下,导致抗干扰差和系统失效。
可以理解的是,动态调节单元233可以直接或间接与天线模块240电连接,以接收天线模块反馈的反射信号,以实时检测各个环境变量。动态调节单元233也可以直接或间接与控制模块220电连接,动态调节单元可以将频率发生单元231和功率放大单元232的调整方案(参数)发送至控制模块220,以便于控制模块220根据动态调整后的参数控制频率发生单元231和功率放大单元232。当然,在一些实施例中,动态调节单元233也可以直接或间接与频率发生单元231、功率放大单元232电连接,以使得动态调节单元233可以直接动态控制频率发生单元231、功率放大单元232进行调整。本申请实施例对动态调节单元233的控制单元不进行具体的限定。
本申请实施例的调节模块230包括频率发生单元231、功率放大单元232和动态调节单元233,三个单元独立工作、相互协同,控制模块220可以根据后端反馈信息,平衡频率发生单元231、功率放大单元232和动态调节单元233这三个单元在同一时序下的工作,既可以实现多频段射频能量无线传输,也可以根据后端反馈信息实现对多频段射频能量的动态调整,从而,本申请实施例的能量发射设备200可以实现频段射频能量的无线动态传输。
其中,基于本申请实施例的能量发射设备200,请参考图26,图26为图24所示的能量发射设备200的一种应用场景示意图。本申请实施例的能量发射设备200可以在空间传输介质600内与无源电子设备100相匹配适用。
如图26所示,射频能量在空间传播中,能量发射设备200可以形成无线射频发射装置,无源电子设备100可以形成无线射频接收装置,空间传输介质600可以形成无线射频信号传播的空间。能量发射设备200的发射模块210、控制模块220及调节模块230形成的激励信号经能量发射设备200的天线模块240放大后,在空间传输介质600(空间)内传播呈喇叭状的副射波,波长和波面经过一段时间后渐渐变弱,中心能量最强,四周微弱。波面聚焦扇区形成最好的能源转化输出,无源电子设备100可以处于该波面聚焦扇区范围内,以便于无源电子设备100能更好地接收射频能量。当然,实际调试过程中,控制模块220或调节模块230与可以根据天线模块240反馈回的信号,动态调整向天线模块240输出的激励信号的性能,以便于当前位置的无源电子设备100可以正好处于该波面聚焦扇区范围内。
无源电子设备100可以接收能量发射设备200发射的多频段射频能量/微能源在不同的动态环境的空间传输介质600内进行传播后的射频能量/微能源,也可以称为末端终端节点,无源电子设备100可以为接收本申请实施例的能量发射设备200传输能量的接收装置,有了微能源的源源不断的供给电能,当前空间环境下所有超低功耗的电子智能终端都可以持续工作,永久续航和实时通信连接。
本申请实施例的能量发射设备200和无源电子设备100:
1、是国内业界首个真正意义上解决了长达几十年通信行业里一直困扰的方案;在安全发射功率下、一部分通过热能消耗散发浪费掉的,将有效的转化为微能源收集存储利用起来,达到了既能通信,又能传输电能的双重利好。
2、完全可兼容实践突破解决了射频通信发射端的室内应用和0-3米以内的有效性。比方说,家庭路由器在小型房间内就可以给小型的电子设备实现无线供电和可持续永久续航。
3.各项技术要求完全符合国家无线电管理委员会及国际通用标准组织的规范,可以很好的兼容以往设备和未来的标准延续性,做到通用通配。
4、支持现有天线设计规范和材料的复用性,很好的满足商用及工业应用的安装便捷,容易维护,便于规模化生产,成本可控。
5、为未来射频微功率无线传电,替代传统的布线和更换电池,指明探索出来了一条新的方向和可行的产品化道路,真正有利用于国家,行业,以及人们的生产生活的重复利用的新价值。
基于上述能量发射设备200和无源电子设备100的结构,本申请实施例还提供一种无线传输 方法或者多频段射频能量动态无线传输方法,该方法可以包括:
获取预设频点的、发射功率随时间和空间中至少一个参数适应性变化的激励信号;向天线模块提供该激励信号,以使天线模块向外传输无线信号或者微能量或者微能源。
可以理解的是,该预设频段可以但不限于为433MHz、915MHz,2.4GHz。可以理解的是,发射功率随时间和空间中至少一个参数适应性变化,以使得该发射功率可以在0dB-27dB动态调节转换。例如,在允许的公共频率点433MHz、915MHz,2.4GHz等三种频段下,分别将发射功率随着时间和空间的变化,自适应动态调节0dB-27dB转换,以达到所规定的有效距离内的微能量输出。
可以理解的是,本申请实施例的无线传输方法或者多频段射频能量动态无线传输方法可以应用于上述任一实施例的能量发射设备200、通信系统10。当然,该方法也可以应用于其他能实现该方案的模块、装置、存储介质、电子设备中,本申请实施例对此不进行限定。
可以理解的是,本申请实施例的无线传输方法或者多频段射频能量动态无线传输方法,可以通过发射模块210、控制模块220、调节模块230和天线模块240的相互配合实现获取预设频点的、发射功率随时间和空间中至少一个参数适应性变化的激励信号;向天线模块提供该激励信号,以使天线模块向外传输无线信号或者微能量或者微能源的方案。其具体的实现方式可以参见前述能量发射设备200的实施例,在此不再进行详述。
需要说明的是,本申请的上述所有实施例的说明以及所有附图的说明并不用于对本申请保护范围的限定。本申请实施例中的各个设备、模块、电源、电路等结构实施例及各种方法实施例,在不相冲突的前提下可以任意组合,组合后的实施例也在本申请实施例的保护范围内。
需要说明的是,在本申请的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上对本申请实施例提供的无源电子设备、通信系统、能量发射设备、微能源采集方法、储能方法及多频段射频能量动态无线传输方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明。同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种无源电子设备,其中,包括:
    无线接收模块,用于接收空间内的无线信号、对特定频率的无线信号进行锁频、并将锁频后的无线信号转换为电信号;
    电能管理模块,与所述无线接收模块电连接,所述电能管理模块用于接收所述电信号,并将所述电信号转换为电能;及
    负载模块,与所述电能管理模块电连接,所述负载模块用于在所述电能管理模块提供的电能的供给下工作。
  2. 根据权利要求1所述的无源电子设备,其中,所述无线接收模块包括:
    接收天线单元,用于接收空间内的无线信号;及
    射频识别单元,与所述接收天线单元电连接,所述射频识别单元用于将所述无线信号转换为数字信号、对所述数字信号进行分频、并对特定频率的数字信号进行锁频。
  3. 根据权利要求2所述的无源电子设备,其中,所述射频识别单元包括:
    模拟频率发生器,与所述接收天线单元电连接,所述模拟频率发生器用于将所述接收天线单元接收的无线信号转换为数字信号;
    频率调谐器,与所述模拟频率发生器电连接,所述频率调谐器用于对所述数字信号进行识别、分析和分频;
    锁频器,与所述频率调谐器电连接,所述锁频器用于对特定频率的数字信号进行锁频。
  4. 根据权利要求2所述的无源电子设备,其中,所述无线接收模块还包括:
    电能控制单元,与所述射频识别单元电连接,所述电能控制单元用于接收锁频后的数字信号、对锁频后的数字信号进行增益放大并形成微电流、并对所述微电流进行管理。
  5. 根据权利要求4所述的无源电子设备,其中,所述电能控制单元包括:
    基准信号源电路,与所述锁频器电连接,所述基准信号源电路用于接收所述锁频器传输的锁频后的信号;
    激励增益电路,与所述基准信号源电路电连接,所述激励增益电路用于对锁频后的信号进行增益放大并形成微电流;
    微能源储存管理电路,与所述激励增益电路电连接,所述微能源储存管理电路用于对所述激励增益电路放大后的微电流进行管理。
  6. 根据权利要求1所述的无源电子设备,其中,所述电能管理模块还用于接收所述无线接收模块传输的电信号、并将所述电信号转换为稳定输出的聚合电能。
  7. 根据权利要求6所述的无源电子设备,其中,所述电能管理模块包括:
    放大单元,与所述无线接收模块电连接,所述放大单元用于接收所述无线接收模块传输的电信号并对所述电信号进行放大;及
    电能管理单元,与所述放大单元电连接,所述电能管理单元用于将放大后的电信号转换为稳定输出的聚合电能。
  8. 根据权利要求7所述的无源电子设备,其中,所述电能管理模块还包括:
    控制管理单元,与所述放大单元、所述电能管理单元和所述负载模块电连接,所述控制管理单元用于接收所述聚合电能,并用于控制所述放大单元、所述负载模块中的至少一个工作。
  9. 根据权利要求8所述的无源电子设备,其中,所述放大单元包括:
    基准采样电路,与所述无线接收模块电连接,所述基准采样电路用于接收所述无线接收模块传输的电信号、电能或微电流;
    倍数放大电路,与所述基准采样电压电连接,所述倍数放大电路用于将接收的电信号、电能或微电流放大设定倍数。
  10. 根据权利要求9所述的无源电子设备,其中,所述放大单元还包括:
    放大反馈电路,与所述倍数放大电路以及所述控制管理单元电连接,所述放大反馈电路用于接收所述控制管理单元传输的放大倍数的调整信息,并将该调整信息传输至所述倍数放大电路。
  11. 根据权利要求7所述的无源电子设备,其中,所述电能管理单元用于将预设单位时长内所述无线接收模块传输的电信号、电能信号或者微电流电信号采集混编为一组,并将每组中具有近似特征的电信号、电能信号或者微电流信号进行提取标称打包,使得交流特性的电信号、电能信号或者微电流信号形成稳定输出的聚合电能。
  12. 根据权利要求1所述的无源电子设备,其中,所述无源电子设备还包括:
    加密存储单元,与所述电能管理模块、所述负载模块中的至少一个电连接,所述加密存储单元用于存储数据,并用于防止非法篡改数据。
  13. 根据权利要求1所述的无源电子设备,其中,所述负载模块包括:
    蓝牙单元,与所述电能管理模块电连接,所述蓝牙单元用于在所述电能管理模块提供的电能的供给下向外广播信号。
  14. 根据权利要求1所述的无源电子设备,其中,所述负载模块还包括:
    传感器单元,与所述电能管理模块电连接,所述传感器单元用于在所述电能管理模块提供的电能的供给下采集信息。
  15. 根据权利要求1所述的无源电子设备,其中,还包括:
    睡眠单元,用于控制所述无源电子设备的休眠状态;和/或
    唤醒单元,用于唤醒所述无源电子设备的工作状态。
  16. 一种微能源采集方法,其中,包括:
    接收空间内的无线信号;
    对特定频率的无线信号进行锁频,并将锁频后的无线信号转换为电信号。
  17. 根据权利要求16所述的微能源采集方法,其中,还包括:
    接收空间内的无线信号或微能源;
    将所述无线信号或微能源转换为数字信号、对所述数字信号进行分频、并对特定频率的数字信号进行锁频;
    对锁频后的数字信号进行增益放大并形成微电流、电能或者电信号、并对微电流、电能或者电信号进行管理。
  18. 一种储能方法,其中,包括:
    将预设单位时长内的呈交流特性的电信号采集混编为一组;
    将每组中具有相近特征点的电信号提取标称;
    将提取标称后的电信号形成稳定输出的聚合电能。
  19. 根据权利要求18所述的储能方法,其中,还包括:
    接收呈交流特性或者散射特性的微电流、电能或者电信号;
    将微电流、电能或者电信号转换为稳定输出的聚合电能。
  20. 根据权利要求18所述的储能方法,其中,还包括:
    接收呈交流特性或者散射特性的微电流、电能或者电信号,并将所述微电流、所述电能或所述电信号进行放大;
    将预设单位时长内的放大后的微电流、电能或电信号采集混编为一组,并将每组中具有相近特征点的微电流、电能或电信号提取标称,以使提取标称后的微电流、电能或电信号形成稳定输出的聚合电能;
    接收该聚合电能,并为其他功能模块供电以支持功能模块的工作。
PCT/CN2023/078741 2022-09-13 2023-02-28 无源电子设备、微能源采集方法及储能方法 WO2024055532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211119234.9 2022-09-13
CN202211119234 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024055532A1 true WO2024055532A1 (zh) 2024-03-21

Family

ID=85425213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078741 WO2024055532A1 (zh) 2022-09-13 2023-02-28 无源电子设备、微能源采集方法及储能方法

Country Status (2)

Country Link
CN (6) CN115864676A (zh)
WO (1) WO2024055532A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919202A1 (en) * 2014-03-10 2015-09-16 Assa Abloy Ab RFID powered lock device
CN105958670A (zh) * 2016-05-31 2016-09-21 宁波微能物联科技有限公司 为无线传感节点供电的射频能量采集装置及无线传感节点的工作方法
CN107016433A (zh) * 2017-03-28 2017-08-04 西安电子科技大学 基于无线射频能量收集装置的可穿戴无源rfid设备
CN108988509A (zh) * 2018-08-30 2018-12-11 沈阳航空航天大学 环境射频能量收集管理与无线环境参数采集装置及方法
CN109756035A (zh) * 2018-12-04 2019-05-14 中国科学院深圳先进技术研究院 一种无源传感器、无源传感器系统以及工作方法
CN109802498A (zh) * 2019-02-22 2019-05-24 上海鹄恩信息科技有限公司 一种基于射频电磁波能量收集的供电系统、方法及装置
CN211831176U (zh) * 2020-09-28 2020-10-30 成都飞英思特科技有限公司 一种近场射频能量与数据的协同传输系统
CN114142621A (zh) * 2021-10-28 2022-03-04 西安交通大学 一种基于射频能量的低功耗传感器无线供电系统
CN114623859A (zh) * 2020-12-14 2022-06-14 上海新微技术研发中心有限公司 无源固定频率触发传感器系统
CN114722987A (zh) * 2022-02-23 2022-07-08 无锡旗连电子科技有限公司 一种无源AIoT节点的实现方法及芯片

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919202A1 (en) * 2014-03-10 2015-09-16 Assa Abloy Ab RFID powered lock device
CN105958670A (zh) * 2016-05-31 2016-09-21 宁波微能物联科技有限公司 为无线传感节点供电的射频能量采集装置及无线传感节点的工作方法
CN107016433A (zh) * 2017-03-28 2017-08-04 西安电子科技大学 基于无线射频能量收集装置的可穿戴无源rfid设备
CN108988509A (zh) * 2018-08-30 2018-12-11 沈阳航空航天大学 环境射频能量收集管理与无线环境参数采集装置及方法
CN109756035A (zh) * 2018-12-04 2019-05-14 中国科学院深圳先进技术研究院 一种无源传感器、无源传感器系统以及工作方法
CN109802498A (zh) * 2019-02-22 2019-05-24 上海鹄恩信息科技有限公司 一种基于射频电磁波能量收集的供电系统、方法及装置
CN211831176U (zh) * 2020-09-28 2020-10-30 成都飞英思特科技有限公司 一种近场射频能量与数据的协同传输系统
CN114623859A (zh) * 2020-12-14 2022-06-14 上海新微技术研发中心有限公司 无源固定频率触发传感器系统
CN114142621A (zh) * 2021-10-28 2022-03-04 西安交通大学 一种基于射频能量的低功耗传感器无线供电系统
CN114722987A (zh) * 2022-02-23 2022-07-08 无锡旗连电子科技有限公司 一种无源AIoT节点的实现方法及芯片

Also Published As

Publication number Publication date
CN115864676A (zh) 2023-03-28
CN115800562A (zh) 2023-03-14
CN115986948A (zh) 2023-04-18
CN115987316A (zh) 2023-04-18
CN116015337A (zh) 2023-04-25
CN117714982A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US9680327B2 (en) RF energy harvesting by a network node
CN203251317U (zh) 应用蓝牙低能耗ble模块的智能家居监控系统
Ji et al. The efficient BackFi transmission design in ambient backscatter communication systems for IoT
CN105099007B (zh) 辐射式无线电能传输系统中交互过程状态定义及转换方法
KR20150049944A (ko) 무선 충전 장치 및 그 제어방법
Oller et al. IEEE 802.11‐enabled wake‐up radio system: design and performance evaluation
CN106208422B (zh) 无线充电方法及装置
WO2024055532A1 (zh) 无源电子设备、微能源采集方法及储能方法
CN105303812A (zh) 红外转发器及红外智能控制系统
Del Prete et al. A dual-band wake-up radio for ultra-low power wireless sensor networks
CN105430719A (zh) 一种无线访问接入点终端及其智能节电的方法
CN107124691A (zh) 一种低功耗蓝牙辅助的WiFi智能接入方法
CN108810842A (zh) 一种无线传感器网络节点及用于该节点的mac协议方法
CN203522763U (zh) 具有网络控制功能的无线信号屏蔽器
CN106254028B (zh) 一种微功率智能数字定向手机信号屏蔽器
CN206312524U (zh) 智能无线超市价标
CN104507040A (zh) 低功耗远距离传输系统及其控制方法
Terada et al. Enhancement of MAC protocol for power reduction in LoRa WAn
Zhang et al. Energy harvesting and information transmission protocol in sensors networks
CN114298261B (zh) 双端口无源标签、相关装置和方法
CN204832426U (zh) 一种改进型便携式局部放电检测仪
CN204596129U (zh) 用于国网ii型集中器的小型化高速数传通讯模块
CN205725749U (zh) 无尾现场记录装置及系统
Tanizawa et al. Zero-watt networked standby: Development and evaluation of a home a/v network system
CN216414598U (zh) 一种基于Lora的传感器数据无线采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864275

Country of ref document: EP

Kind code of ref document: A1