WO2024055345A1 - 基于分布式光纤的激励源运动状态分析方法、系统和设备 - Google Patents

基于分布式光纤的激励源运动状态分析方法、系统和设备 Download PDF

Info

Publication number
WO2024055345A1
WO2024055345A1 PCT/CN2022/119926 CN2022119926W WO2024055345A1 WO 2024055345 A1 WO2024055345 A1 WO 2024055345A1 CN 2022119926 W CN2022119926 W CN 2022119926W WO 2024055345 A1 WO2024055345 A1 WO 2024055345A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
vibration
optical fiber
excitation source
motion state
Prior art date
Application number
PCT/CN2022/119926
Other languages
English (en)
French (fr)
Inventor
杨玥
董雷
明昌朋
余灿
罗显庭
Original Assignee
武汉理工光科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工光科股份有限公司 filed Critical 武汉理工光科股份有限公司
Publication of WO2024055345A1 publication Critical patent/WO2024055345A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Definitions

  • the invention relates to the technical field of laser wavelength measurement, and in particular to a method, system and equipment for analyzing the motion state of an excitation source based on distributed optical fibers.
  • Distributed optical fiber sensing technology uses communication optical cables laid in the same trench as oil and gas pipelines as vibration sensing and signal transmission components. It has the advantages of long distance, real-time performance, corrosion resistance, anti-electromagnetic, light and flexible, etc., and has been used in some pipelines. successfully applied. As for the analysis and discrimination of vibration signals, effective alarms for destructive vibrations and reducing the false alarm rate of non-destructive vibrations are the key to improving system operation effects.
  • the main source of vibration excitation often detected by the fiber optic vibration measurement system comes from the vibration of highway vehicles along the pipeline.
  • vehicle vibrations come from vehicles driving along the highway, which is a non-threatening signal and does not require early warning; but for abnormal behaviors such as drilling holes and stealing oil, there are usually vehicles present before the behavior of damaging the pipeline begins. From the action of decelerating to braking, this type of vehicle vibration can be recognized by the distributed optical fiber vibration measurement system, and the alarm sensitivity and early warning level need to be increased in the corresponding area, so as to provide timely early warning of damage to oil and gas pipelines.
  • the present invention provides a method for analyzing the motion state of the excitation source based on distributed optical fibers, which includes:
  • the motion state of the vibration excitation source is determined according to the space-time series curve and the space-speed series curve.
  • optical fiber vibration data waterfall diagram is obtained according to the vibration excitation signal, including:
  • the vibration excitation signals collected at each moment are spliced according to space-time to obtain the optical fiber vibration signal matrix within the preset time period;
  • the characteristic connected domain of the excitation signal is obtained, including:
  • the portion of the binary image whose area exceeds the preset segmentation area threshold is regarded as the characteristic connected domain of the excitation signal.
  • determining the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber according to the characteristic connected domain of the excitation signal includes:
  • the sliding window algorithm is used to obtain the space-velocity sequence curve corresponding to the space-time sequence curve.
  • the sliding window algorithm is used to obtain the space-velocity sequence curve corresponding to the space-time sequence curve, including:
  • a sliding window of a preset length is used to slide in the correction curve, and linear fitting is performed on the data in the sliding window to obtain a space-velocity sequence curve corresponding to the space-time sequence curve.
  • determining the motion state of the vibration excitation source according to the space-time sequence curve and the space-velocity sequence curve includes:
  • the method further includes: when the motion state of the vibration excitation source is deceleration motion, determining the dwell point of the vibration excitation source.
  • determining the residence point of the vibration excitation source includes:
  • the maximum value of the vibration signal of each detection unit is extracted in the optical fiber vibration data waterfall diagram to obtain a maximum value sequence
  • the dwell point of the vibration excitation source is the second dwell point; when the second dwell point does not exist, the dwell point of the vibration excitation source is the first dwell point.
  • the invention also provides an excitation source motion state analysis system based on distributed optical fibers, including:
  • the signal acquisition module is used to acquire the vibration excitation signals of all detection points on the distributed optical fibers laid in the same trench as the oil and gas pipeline;
  • a waterfall chart generation module used to obtain a waterfall chart of optical fiber vibration data based on the vibration excitation signal
  • a connected domain determination module configured to obtain the characteristic connected domain of the excitation signal based on the optical fiber vibration data waterfall diagram
  • a curve generation module configured to determine the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber according to the characteristic connected domain of the excitation signal
  • a motion state determination module configured to determine the motion state of the vibration excitation source according to the space-time sequence curve and the space-velocity sequence curve.
  • the present invention also provides an electronic device, including a processor and a memory.
  • a computer program is stored on the memory.
  • the computer program is executed by the processor, a distributed-based method described in any of the above technical solutions is implemented. Method for analyzing the motion state of optical fiber excitation sources.
  • the beneficial effects of the present invention include: first, obtaining the vibration excitation signal of the optical fiber detection point and drawing the optical fiber vibration data waterfall diagram; secondly, obtaining the characteristic connected domain of the excitation signal according to the optical fiber vibration data waterfall diagram; thirdly, The space-time sequence curve and space-velocity sequence curve of the distributed optical fiber are determined according to the characteristic connected domain; finally, the motion state of the vibration excitation source is determined according to the space-time sequence curve and the space-velocity sequence curve.
  • the present invention uses distributed optical fibers as a detection system for excitation source vibration sensing signals, can realize long-distance passive distributed sensing, and has the advantages of high reliability and easy maintenance.
  • the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber are obtained, and the motion state of the vibration excitation source is determined based on these two curves.
  • the judgment method is simple and The calculation accuracy is high, and it can further determine the residence point of the vibration source on the basis of judging the motion state of the vibration source, which is conducive to optimizing the alarm effect of the oil and gas pipeline safety monitoring system and reducing the false alarm rate of the system.
  • Figure 1 is a schematic flow chart of one embodiment of the method for analyzing the motion state of an excitation source based on distributed optical fibers provided by the present invention
  • Figure 2 is a schematic diagram of an embodiment of an optical fiber vibration data waterfall chart provided by the present invention.
  • Figure 3 is a schematic diagram of an embodiment of a binary image provided by the present invention.
  • Figure 4 is a schematic diagram of an embodiment of a binary image after connected domain extraction provided by the present invention.
  • Figure 5 is a schematic diagram of an embodiment of the space-time series curve provided by the present invention.
  • Figure 6 is a schematic diagram of an embodiment of a correction curve after performing spline fitting on a space-time series curve provided by the present invention
  • Figure 7 is a schematic diagram of an embodiment of the space-velocity sequence curve provided by the present invention.
  • Figure 8 is a schematic diagram of an embodiment of the maximum sequence curve provided by the present invention.
  • Figure 9 is a schematic structural diagram of an embodiment of an excitation source motion state analysis system based on distributed optical fibers provided by the present invention.
  • FIG. 10 is a schematic structural diagram of an embodiment of an electronic device provided by the present invention.
  • Distributed optical fiber sensing technology uses communication optical cables laid in the same trench as oil and gas pipelines as vibration sensing and signal transmission components. For abnormal behaviors such as drilling and stealing oil, vehicles will generally slow down to a stop before the behavior of damaging the pipeline begins. It is necessary to improve the alarm sensitivity and early warning level of such signals, so as to provide timely early warning of damage to oil and gas pipelines. Therefore, rapid and accurate judgment of the motion status of the vibration signal source is of great significance for the safety monitoring of oil and gas pipelines.
  • FIG. 1 is a schematic flow chart of the method for analyzing the motion state of an excitation source based on distributed optical fibers, including:
  • Step S101 Obtain the vibration excitation signals of all detection points on the distributed optical fibers laid in the same trench as the oil and gas pipeline;
  • Step S102 Obtain the optical fiber vibration data waterfall chart according to the vibration excitation signal
  • Step S103 Obtain the characteristic connected domain of the excitation signal based on the optical fiber vibration data waterfall diagram
  • Step S104 Determine the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber according to the characteristic connected domain of the excitation signal
  • Step S105 Determine the motion state of the vibration excitation source according to the space-time sequence curve and the space-velocity sequence curve.
  • This embodiment provides a method for analyzing the motion state of the excitation source based on distributed optical fibers.
  • the vibration excitation signal of the optical fiber detection point is obtained and a waterfall diagram of the optical fiber vibration data is drawn.
  • the characteristic connected domain of the excitation signal is obtained according to the waterfall diagram of the optical fiber vibration data. ;
  • This embodiment uses distributed optical fibers as a detection system for excitation source vibration sensing signals, which can achieve long-distance passive distributed sensing and has the advantages of high reliability and easy maintenance.
  • the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber are obtained, and the motion state of the vibration excitation source is determined based on these two curves.
  • the judgment method is simple and The calculation accuracy is high, and it can further determine the residence point of the vibration source on the basis of judging the motion state of the vibration source, which is conducive to optimizing the alarm effect of the oil and gas pipeline safety monitoring system and reducing the false alarm rate of the system.
  • the optical fiber vibration data waterfall diagram is obtained according to the vibration excitation signal, including:
  • the vibration excitation signals collected at each moment are spliced according to space-time to obtain the optical fiber vibration signal matrix within the preset time period;
  • step S103 according to the optical fiber vibration data waterfall diagram, the characteristic connected domain of the excitation signal is obtained, including:
  • the portion of the binarized image whose area exceeds the preset segmentation area threshold is regarded as the characteristic connected domain of the excitation signal.
  • determining the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber according to the characteristic connected domain of the excitation signal includes:
  • the sliding window algorithm is used to obtain the space-velocity sequence curve corresponding to the space-time sequence curve.
  • the sliding window algorithm is used to obtain the space-velocity sequence curve corresponding to the space-time sequence curve, including:
  • a sliding window of a preset length is used to slide in the correction curve, and linear fitting is performed on the data in the sliding window to obtain a space-velocity sequence curve corresponding to the space-time sequence curve.
  • determining the motion state of the vibration excitation source according to the space-time sequence curve and the space-velocity sequence curve includes:
  • the first step Connect the communication optical cable laid in the same trench as the oil and gas pipeline to the distributed optical fiber vibration measurement system, and use it as a vibration sensor to collect vibration excitation signals along the oil and gas pipeline.
  • the data collected at each moment are divided into Space-time is spliced to obtain a full-segment vibration signal matrix within a period of time.
  • a waterfall chart of optical fiber vibration data is drawn. Each column in the waterfall chart is the time domain signal of each detection point; the optical fiber vibration
  • the data waterfall chart is shown in Figure 2.
  • Step 2 First calculate the median value for each column of signals in the waterfall chart, that is, each detection point extracts the median value of the signal amplitude of the time series to obtain the time series median sequence; then calculate the median value of the time series median sequence to obtain the spatial sequence.
  • the median value takes the median value of the spatial sequence as the base value, multiplies it by a preset multiple n a (such as a value of 10, the value range can be adjusted according to the actual situation), thereby obtaining the waterfall diagram segmentation threshold, and uses this segmentation
  • the threshold value binarizes the waterfall chart; as shown in Figure 3, Figure 3 is the binarized image after segmenting the waterfall chart.
  • Step 3 Extract the connected domain from the binary image, find the connected domain whose area exceeds the preset segmentation area threshold S pixels, and obtain the characteristic connected domain of the excitation signal; among them, S is adjusted according to the actual situation.
  • Figure 4 shows the binary image after connected domain extraction.
  • Step 4 For the characteristic connected domain of the excitation signal, extract the effective data segments with non-zero amplitude in the characteristic connected domain range from the original time domain signal of each detection point, and find the time point located in the middle, thus obtaining Space-time series curves of distributed optical fibers.
  • Figure 5 is a schematic diagram of the space-time series curve.
  • Step 5 Perform smooth spline fitting on the space-time series curve and correct the discontinuity of the time point positioning curve; as shown in Figure 6, Figure 6 shows the correction after spline fitting on the space-time series curve. Schematic diagram of the curve.
  • Step 6 Use a window of length L to slide in the space-time series, linearly fit the data in the window, and correspond the fitting coefficient to the center of the window to obtain the space-velocity sequence curve; where, the length of the sliding window
  • the length of L is greater than 3 detection points and less than the total detection length, generally 50.
  • Figure 7 is a schematic diagram of the space-velocity sequence curve.
  • Step 7 According to the space-time correspondence relationship (i.e., space-time sequence curve) and the speed change trend (i.e., space-speed sequence curve), the accelerating and decelerating signals can be distinguished: the two corresponding relationships of accelerating have the same changing trend , the two corresponding relationships of decelerating and driving have opposite changing trends.
  • the vehicle For abnormal behaviors such as drilling and stealing oil, the vehicle will generally decelerate to a stop before the behavior of damaging the pipeline begins. Therefore, the behavior of decelerating and braking should be regarded as a key detection object to increase alarm sensitivity and early warning level.
  • the method further includes: determining the residence point of the vibration excitation source when the motion state of the vibration excitation source is deceleration motion.
  • determining the dwell point of the vibration excitation source includes:
  • the dwell point of the vibration excitation source is the second dwell point; when the second dwell point does not exist, the dwell point of the vibration excitation source is the first dwell point.
  • Step 1 For the excitation data segment judged to be a deceleration signal, find the maximum value of the sampling data of each detection unit in the optical fiber vibration data waterfall chart to obtain the maximum value sequence; as shown in Figure 8, Figure 8 is the curve of the maximum sequence. schematic diagram;
  • Step 2 For the maximum value sequence, determine the stopping interval according to the spatial area where the connected domain is located, and extract the data segment after stopping (used to calculate the noise floor), determine the median value of the data segment, and multiply it by a preset multiple , as the dwell amplitude threshold, find the latest position exceeding this threshold in the maximum value sequence, which is recorded as the first dwell point Pa ; as shown in Figure 8, the position indicated by the circle in Figure 8 is Pa;
  • This embodiment also provides a distributed optical fiber-based excitation source motion state analysis system.
  • the distributed optical fiber-based excitation source motion state analysis system 900 includes:
  • the signal acquisition module 901 is used to acquire the vibration excitation signals of all detection points on the distributed optical fibers laid in the same trench as the oil and gas pipeline;
  • the waterfall diagram generation module 902 is used to obtain the optical fiber vibration data waterfall diagram according to the vibration excitation signal
  • the connected domain determination module 903 is used to obtain the characteristic connected domain of the excitation signal based on the optical fiber vibration data waterfall diagram;
  • Curve generation module 904 configured to determine the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber according to the characteristic connected domain of the excitation signal;
  • the motion state determination module 905 is used to determine the motion state of the vibration excitation source according to the space-time sequence curve and the space-velocity sequence curve.
  • the present invention also provides an electronic device 1000.
  • the electronic device can be a mobile terminal, a desktop computer, a notebook, a palmtop Computing equipment such as computers and servers.
  • the electronic device includes a processor 1001, a memory 1002 and a display 1003.
  • Memory 1002 may, in some embodiments, be an internal storage unit of the computer device, such as a hard drive or memory of the computer device. In other embodiments, the memory 1002 can also be an external storage device of the computer device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), or a secure digital (Secure Digital, SD) card equipped on the computer device. Flash Card, etc. Further, the memory 1002 may also include both an internal storage unit of the computer device and an external storage device. The memory 1002 is used to store application software and various types of data installed on the computer device, such as program codes installed on the computer device. The memory 1002 may also be used to temporarily store data that has been output or is to be output.
  • an external storage device of the computer device such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), or a secure digital (Secure Digital, SD) card equipped on the computer device. Flash Card, etc.
  • the memory 1002 may also include both an internal storage unit of
  • the memory 1002 stores a method program 1004 for analyzing the motion state of an excitation source based on distributed optical fibers.
  • the program 1004 for analyzing the motion state of an excitation source based on distributed optical fibers can be executed by the processor 1001.
  • a distributed fiber-based excitation source motion state analysis method according to various embodiments of the present invention is implemented.
  • the processor 1001 may be a central processing unit (CPU), a microprocessor or other data processing chip, used to run program codes or process data stored in the memory 1002, for example, to execute a program based on Distributed optical fiber excitation source motion state analysis program, etc.
  • CPU central processing unit
  • microprocessor or other data processing chip
  • the display 1003 may be an LED display, a liquid crystal display, a touch-controlled liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light-emitting diode) touch device, etc.
  • the display 1003 is used for displaying information on the computer device and for displaying a visual user interface.
  • the components of the computer equipment 1001-1003 communicate with each other through the system bus.
  • the method, system and equipment for analyzing the motion state of the excitation source based on distributed optical fibers disclosed by the present invention firstly obtain the vibration excitation signal of the optical fiber detection point and draw the optical fiber vibration data waterfall diagram; secondly, obtain the excitation signal according to the optical fiber vibration data waterfall diagram. Characteristic connected domain; again, determine the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber based on the characteristic connected domain; finally, determine the motion state of the vibration excitation source based on the space-time sequence curve and space-velocity sequence curve .
  • the present invention uses distributed optical fibers as a detection system for excitation source vibration sensing signals, can realize long-distance passive distributed sensing, and has the advantages of high reliability and easy maintenance.
  • the space-time sequence curve and space-velocity sequence curve of the distributed optical fiber are obtained, and the motion state of the vibration excitation source is determined based on these two curves.
  • the judgment method is simple and The calculation accuracy is high, and it can further determine the residence point of the vibration source on the basis of judging the motion state of the vibration source, which is conducive to optimizing the alarm effect of the oil and gas pipeline safety monitoring system and reducing the false alarm rate of the system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种基于分布式光纤的激励源运动状态分析方法、系统和设备,分析方法包括:获取与油气管道同沟铺设的分布式光纤上所有探测点的振动激励信号(S101);根据振动激励信号得到光纤振动数据瀑布图(S102);根据光纤振动数据瀑布图,得到激励信号的特征连通域(S103);根据激励信号的特征连通域确定分布式光纤的空间-时间序列曲线和空间-速度序列曲线(S104);根据空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态(S105);其实现了长距离无源分布式感知,判断方法简单、计算准确率高,能够在判断振动源运动状态的基础上,进一步确定振动源的驻留点,有利于优化油气管道安全监测系统的报警效果,降低系统的误报率。

Description

基于分布式光纤的激励源运动状态分析方法、系统和设备 技术领域
本发明涉及激光波长测量技术领域,具体涉及一种基于分布式光纤的激励源运动状态分析方法、系统和设备。
背景技术
分布式光纤传感技术使用与油气管道同沟敷设的通信光缆作为振动传感与信号传输元件,具有长距离、实时性、耐腐蚀、抗电磁、轻便灵巧等优点,已经在部分管道中得到了成功应用。而对于振动信号的分析判别,对破坏性振动有效报警,同时降低非破坏性振动的误报率,是提升系统运行效果的关键。
在常规运行状态下,光纤测振系统经常探测到的主要振动激励源来自于管线沿线的公路车辆振动。在通常情况下,车辆振动来自于管线沿线公路上行驶的车辆,是无威胁信号,并不需要进行预警;但对于打孔盗油等异常行为,在破坏管道的行为开始之前,一般都会存在车辆减速至刹停的动作,此类车辆振动是可以被分布式光纤测振系统识别到的,并且需要对对应区域提高报警灵敏度和预警等级,从而及时对破坏油气管道的行为进行预警。
因此,需要设计一种基于分布式光纤的激励源运动状态分析方法、系统和设备,用以提高对油气管道破坏行为的检测准确度,降低非破坏性振动的误报率。
发明内容
有鉴于此,有必要提供一种基于分布式光纤的激励源运动状态分 析系统和方法,用以解决现有技术中,分布式光纤传感技术用于检测油气管道破坏行为时,误报率高、系统运行效果欠佳的技术问题。
为了解决上述问题,本发明提供一种基于分布式光纤的激励源运动状态分析方法,包括:
获取与油气管道同沟铺设的分布式光纤上所有探测点的振动激励信号;
根据所述振动激励信号得到光纤振动数据瀑布图;
根据所述光纤振动数据瀑布图,得到激励信号的特征连通域;
根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线;
根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。
进一步的,根据所述振动激励信号得到所述光纤振动数据瀑布图,包括:
根据所述分布式光纤上探测点的位置顺序,将各个时刻采集到的振动激励信号按照空间-时间进行拼接,得到预设时间段内的光纤振动信号矩阵;
根据所述光纤振动信号矩阵绘制光纤振动数据瀑布图。
进一步的,根据所述光纤振动数据瀑布图,得到激励信号的特征连通域,包括:
计算所述光纤振动数据瀑布图中每列数据的数据中值,根据所述数据中值确定瀑布图分割阈值;
根据所述瀑布图分割阈值对所述光纤振动数据瀑布图进行二值化,得到二值化图像;
将所述二值化图像中面积超过预设分割面积阈值的部分作为所 述激励信号的特征连通域。
进一步的,根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线,包括:
确定所述激励信号的特征连通域对应的所有探测点的振动激励信号时域数据,得到连通域时域数据;
提取所述连通域时域数据中幅值不为零的有效数据段;
根据所述有效数据段位于中间位置的时间点和对应的振动幅值,得到所述分布式光纤的空间-时间序列曲线;
利用滑窗算法得到所述空间-时间序列曲线对应的空间-速度序列曲线。
进一步的,利用滑窗算法得到所述空间-时间序列曲线对应的空间-速度序列曲线,包括:
对所述空间-时间序列曲线进行样条拟合,得到修正曲线;
利用预设长度的滑窗在所述修正曲线中滑动,对滑窗内的数据做线性拟合,得到所述空间-时间序列曲线对应的空间-速度序列曲线。
进一步的,根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态,包括:
判断所述空间-时间序列曲线和空间-速度序列曲线的变化趋势是否相同,当变化趋势相同时,确定所述振动激励源为加速运动;当变化趋势相反时,确定所述振动激励源为减速运动。
进一步的,所述方法还包括:当所述振动激励源的运动状态为减速运动时,确定所述振动激励源的驻留点。
进一步的,当所述振动激励源的运动状态为减速运动时,确定所述振动激励源的驻留点,包括:
当所述振动激励源的运动状态为减速运动时,在所述光纤振动数 据瀑布图中提取各个探测单元振动信号的最大值,得到最大值序列;
根据所述特征连通域确定驻留幅度阈值;
在所述最大值序列中确定最晚超过所述驻留幅度阈值的第一驻留点;
对所述最大值序列进行样条拟合,在所述样条拟合结果中进行寻峰,提取最晚超过所述驻留幅度阈值的峰值位置,记为第二驻留点;
当所述第二驻留点存在时,所述振动激励源的驻留点为所述第二驻留点;当所述第二驻留点不存在时,所述振动激励源的驻留点为所述第一驻留点。
本发明还提供一种基于分布式光纤的激励源运动状态分析系统,包括:
信号获取模块,用于获取与油气管道同沟铺设的分布式光纤上所有探测点的振动激励信号;
瀑布图生成模块,用于根据所述振动激励信号得到光纤振动数据瀑布图;
连通域确定模块,用于根据所述光纤振动数据瀑布图,得到激励信号的特征连通域;
曲线生成模块,用于根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线;
运动状态确定模块,用于根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。
本发明还提供一种电子设备,包括处理器以及存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现上述技术方案任一所述的一种基于分布式光纤的激励源运动状态分析方法。
与现有技术相比,本发明的有益效果包括:首先,获取光纤探测点的振动激励信号并绘制光纤振动数据瀑布图;其次,根据光纤振动数据瀑布图得到激励信号的特征连通域;再次,根据所述特征连通域确定分布式光纤的空间-时间序列曲线和空间-速度序列曲线;最后,根据空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。本发明通过分布式光纤作为激励源振动传感信号的探测系统,能够实现长距离无源分布式感知,并且具有可靠性高、维护方便的优点。通过对振动信号进行瀑布图绘制、连通域分割,得到了分布式光纤的空间-时间序列曲线和空间-速度序列曲线,并根据这两条曲线来确定振动激励源的运动状态,判断方法简单、计算准确率高,并且能够在判断振动源运动状态的基础上,进一步确定振动源的驻留点,有利于优化油气管道安全监测系统的报警效果,降低系统的误报率。
附图说明
图1为本发明提供的基于分布式光纤的激励源运动状态分析方法一实施例的流程示意图;
图2为本发明提供的光纤振动数据瀑布图一实施例的示意图;
图3为本发明提供的二值化图像一实施例的示意图;
图4为本发明提供的连通域提取后的二值化图像一实施例的示意图;
图5为本发明提供的空间-时间序列曲线一实施例的示意图;
图6为本发明提供的对空间-时间序列曲线进行样条拟合后的修正曲线一实施例的示意图;
图7为本发明提供的空间-速度序列曲线一实施例的示意图;
图8为本发明提供的最大序列的曲线一实施例的示意图;
图9为本发明提供的一种基于分布式光纤的激励源运动状态分 析系统一实施例的结构示意图;
图10为本发明提供的一种电子设备一实施例的结构示意图。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
在实施例描述之前,首先对分布式光纤传感技术在油气管道安全监测中的运用进行介绍。
分布式光纤传感技术使用与油气管道同沟敷设的通信光缆作为振动传感与信号传输元件,对于打孔盗油等异常行为,在破坏管道的行为开始之前,一般都会存在车辆减速至刹停的动作,需要对此类信号提高报警灵敏度和预警等级,从而及时对破坏油气管道的行为进行预警。因此,对振动信号源运动状态进行迅速、精准的判断,对油气管道的安全监测具有重要意义。
本发明实施例提供了一种基于分布式光纤的激励源运动状态分析方法,如图1所示,图1是所述基于分布式光纤的激励源运动状态分析方法的流程示意图,包括:
步骤S101:获取与油气管道同沟铺设的分布式光纤上所有探测点的振动激励信号;
步骤S102:根据所述振动激励信号得到光纤振动数据瀑布图;
步骤S103:根据所述光纤振动数据瀑布图,得到激励信号的特征连通域;
步骤S104:根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线;
步骤S105:根据所述空间-时间序列曲线和空间-速度序列曲线确 定振动激励源的运动状态。
本实施例提供的基于分布式光纤的激励源运动状态分析方法,首先,获取光纤探测点的振动激励信号并绘制光纤振动数据瀑布图;其次,根据光纤振动数据瀑布图得到激励信号的特征连通域;再次,根据所述特征连通域确定分布式光纤的空间-时间序列曲线和空间-速度序列曲线;最后,根据空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。本实施例通过分布式光纤作为激励源振动传感信号的探测系统,能够实现长距离无源分布式感知,并且具有可靠性高、维护方便的优点。通过对振动信号进行瀑布图绘制、连通域分割,得到了分布式光纤的空间-时间序列曲线和空间-速度序列曲线,并根据这两条曲线来确定振动激励源的运动状态,判断方法简单、计算准确率高,并且能够在判断振动源运动状态的基础上,进一步确定振动源的驻留点,有利于优化油气管道安全监测系统的报警效果,降低系统的误报率。
作为优选的实施例,在步骤S102中,根据所述振动激励信号得到所述光纤振动数据瀑布图,包括:
根据所述分布式光纤上探测点的位置顺序,将各个时刻采集到的振动激励信号按照空间-时间进行拼接,得到预设时间段内的光纤振动信号矩阵;
根据所述光纤振动信号矩阵绘制光纤振动数据瀑布图。
作为优选的实施例,在步骤S103中,根据所述光纤振动数据瀑布图,得到激励信号的特征连通域,包括:
计算所述光纤振动数据瀑布图中每列数据的数据中值,根据所述数据中值确定瀑布图分割阈值;
根据所述瀑布图分割阈值对所述光纤振动数据瀑布图进行二值 化,得到二值化图像;
将所述二值化图像中面积超过预设分割面积阈值的部分作为所述激励信号的特征连通域。
作为优选的实施例,在步骤S104中,根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线,包括:
确定所述激励信号的特征连通域对应的所有探测点的振动激励信号时域数据,得到连通域时域数据;
提取所述连通域时域数据中幅值不为零的有效数据段;
根据所述有效数据段位于中间位置的时间点和对应的振动幅值,得到所述分布式光纤的空间-时间序列曲线;
利用滑窗算法得到所述空间-时间序列曲线对应的空间-速度序列曲线。
作为优选的实施例,利用滑窗算法得到所述空间-时间序列曲线对应的空间-速度序列曲线,包括:
对所述空间-时间序列曲线进行样条拟合,得到修正曲线;
利用预设长度的滑窗在所述修正曲线中滑动,对滑窗内的数据做线性拟合,得到所述空间-时间序列曲线对应的空间-速度序列曲线。
作为优选的实施例,在步骤S105中,根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态,包括:
判断所述空间-时间序列曲线和空间-速度序列曲线的变化趋势是否相同,当变化趋势相同时,确定所述振动激励源为加速运动;当变化趋势相反时,确定所述振动激励源为减速运动。
下面结合图2至图7,对上述振动激励源的运动状态过程进行详细说明。
第一步:将与油气管道同沟铺设的通信光缆接入分布式光纤测振系统,作为振动传感器采集油气管道沿线的振动激励信号,根据监测单元的位置顺序,将各个时刻采集到的数据按空间-时间进行拼接,得到一段时间内的全段振动信号矩阵,根据该全段振动信号矩阵绘制光纤振动数据瀑布图,瀑布图中每一列为每个探测点的时域信号;所述光纤振动数据瀑布图如图2所示。
第二步:先对瀑布图的每列信号计算中值,即每个探测点各自提取时间序列的信号幅度中值,得到时序中值序列;再计算时序中值序列的中值,得到空间序列中值,以所述空间序列中值为基底值,乘以一个预设的倍数n a(如取值10,取值范围可根据实际情况进行调整),从而得到瀑布图分割阈值,用此分割阈值对瀑布图进行二值化;如图3所示,图3为对瀑布图分割后的二值化图像。
第三步:对二值化图像做连通域提取,找到面积超过预设分割面积阈值S个像素点的连通域,得到激励信号的特征连通域;其中,S根据实际情况进行调整。如图4所示,图4展示了连通域提取后的二值化图像。
第四步:对激励信号的特征连通域,在每个探测点原始时域信号中提取在特征连通域范围中幅值不为零的有效数据段,并找到位于中间位置的时间点,从而得到分布式光纤的空间-时间序列曲线。如图5所示,图5为空间-时间序列曲线的示意图。
第五步:对空间-时间序列曲线做光滑样条拟合,修正时间点定位曲线的不连续性;如图6所示,图6为对空间-时间序列曲线进行样条拟合后的修正曲线的示意图。
第六步:使用长度为L的窗口,在空间-时间序列滑动,对窗口内的数据做线性拟合,将拟合系数和窗口中心进行对应,得到空间- 速度序列曲线;其中,滑窗长度L的长度大于3探测点数,小于总探测长度,一般取50。如图7所示,图7为空间-速度序列曲线的示意图。
第七步:根据空间-时间对应关系(即空间-时间序列曲线)和速度变化趋势(即空间-速度序列曲线),能够区分加速行驶和减速行驶信号:加速行驶这两个对应关系变化趋势相同,减速行驶这两个对应关系变化趋势相反。对于打孔盗油等异常行为,在破坏管道的行为开始之前,一般都会存在车辆减速至刹停的动作,因此对于减速刹停的行为要作为重点检测对象,提高报警灵敏度和预警等级。
为了对振动激励源的驻留位置进行定位,作为优选的实施例,所述方法还包括:当所述振动激励源的运动状态为减速运动时,确定所述振动激励源的驻留点。
作为优选的实施例,当所述振动激励源的运动状态为减速运动时,确定所述振动激励源的驻留点,包括:
当所述振动激励源的运动状态为减速运动时,在所述光纤振动数据瀑布图中提取各个探测单元振动信号的最大值,得到最大值序列;
根据所述特征连通域确定驻留幅度阈值;
在所述最大值序列中确定最晚超过所述驻留幅度阈值的第一驻留点;
对所述最大值序列进行样条拟合,在所述样条拟合结果中进行寻峰,提取最晚超过所述驻留幅度阈值的峰值位置,记为第二驻留点;
当所述第二驻留点存在时,所述振动激励源的驻留点为所述第二驻留点;当所述第二驻留点不存在时,所述振动激励源的驻留点为所述第一驻留点。
下面结合图8对激励源驻留点的判断过程进行详细说明。
第一步:对于判断为减速行驶信号的激励数据段,在光纤振动数据瀑布图中查找各个探测单元采样数据的最大值,得到最大值序列;如图8所示,图8为最大序列的曲线示意图;
第二步:对最大值序列,根据连通域所在空间区域判断刹停区间,并提取刹停之后的数据段(用于计算底噪),确定数据段的中值,乘以一个预设的倍数,作为驻留幅度阈值,的在最大值序列中找到最晚超过此阈值的位置,记为第一驻留点P a;如图8所示,图8中的圆圈指示位置即为Pa;
第三步:对最大值序列进行一次光滑样条拟合;图8中,黑色粗线为样条拟合后的结果,对光滑样条拟合结果寻峰,提取时间最晚的峰的位置,记为第二驻留点P b(图8中的星号指示位置,此图中,Pa和Pb刚好重合);如果P b存在,则激励源驻留点=P b;如果P b不存在,则激励源驻留点=P a
由于对于瀑布图图像阈值分割得到的激励图块,通过提取图像连通域的左/右边界,对激励源驻留位置进行定位并不是最精确的方法,车辆激励源在刹停的短时间内,信号振幅会产生一个跳变,因此,在第三步中,通过查找信号振幅产生的最后一个峰值点位置,可以更精确地定位激励源的驻留位置。
本实施例还提供了一种基于分布式光纤的激励源运动状态分析系统,如图9所示,所述基于分布式光纤的激励源运动状态分析系统900包括:
信号获取模块901,用于获取与油气管道同沟铺设的分布式光纤上所有探测点的振动激励信号;
瀑布图生成模块902,用于根据所述振动激励信号得到光纤振动数据瀑布图;
连通域确定模块903,用于根据所述光纤振动数据瀑布图,得到激励信号的特征连通域;
曲线生成模块904,用于根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线;
运动状态确定模块905,用于根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。
如图10所示,上述的一种基于分布式光纤的激励源运动状态分析方法,本发明还相应提供了一种电子设备1000,该电子设备可以是移动终端、桌上型计算机、笔记本、掌上电脑及服务器等计算设备。该电子设备包括处理器1001、存储器1002及显示器1003。
存储器1002在一些实施例中可以是计算机设备的内部存储单元,例如计算机设备的硬盘或内存。存储器1002在另一些实施例中也可以是计算机设备的外部存储设备,例如计算机设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器1002还可以既包括计算机设备的内部存储单元也包括外部存储设备。存储器1002用于存储安装于计算机设备的应用软件及各类数据,例如安装计算机设备的程序代码等。存储器1002还可以用于暂时地存储已经输出或者将要输出的数据。在一实施例中,存储器1002上存储有一种基于分布式光纤的激励源运动状态分析方法程序1004,该一种基于分布式光纤的激励源运动状态分析方法程序1004可被处理器1001所执行,从而实现本发明各实施例的一种基于分布式光纤的激励源运动状态分析方法。
处理器1001在一些实施例中可以是一中央处理器(Central Processing Unit,CPU),微处理器或其他数据处理芯片,用于运行 存储器1002中存储的程序代码或处理数据,例如执行一种基于分布式光纤的激励源运动状态分析程序等。
显示器1003在一些实施例中可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。显示器1003用于显示在计算机设备的信息以及用于显示可视化的用户界面。计算机设备的部件1001-1003通过系统总线相互通信。
本发明公开的基于分布式光纤的激励源运动状态分析方法、系统和设备,首先,获取光纤探测点的振动激励信号并绘制光纤振动数据瀑布图;其次,根据光纤振动数据瀑布图得到激励信号的特征连通域;再次,根据所述特征连通域确定分布式光纤的空间-时间序列曲线和空间-速度序列曲线;最后,根据空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。
本发明通过分布式光纤作为激励源振动传感信号的探测系统,能够实现长距离无源分布式感知,并且具有可靠性高、维护方便的优点。通过对振动信号进行瀑布图绘制、连通域分割,得到了分布式光纤的空间-时间序列曲线和空间-速度序列曲线,并根据这两条曲线来确定振动激励源的运动状态,判断方法简单、计算准确率高,并且能够在判断振动源运动状态的基础上,进一步确定振动源的驻留点,有利于优化油气管道安全监测系统的报警效果,降低系统的误报率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种基于分布式光纤的激励源运动状态分析方法,其特征在于,包括;
    获取与油气管道同沟铺设的分布式光纤上所有探测点的振动激励信号;
    根据所述振动激励信号得到光纤振动数据瀑布图;
    根据所述光纤振动数据瀑布图,得到激励信号的特征连通域;
    根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线;
    根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。
  2. 根据权利要求1所述的一种基于分布式光纤的激励源运动状态分析方法,其特征在于,根据所述振动激励信号得到所述光纤振动数据瀑布图,包括:
    根据所述分布式光纤上探测点的空间位置,将各个时刻采集到的振动激励信号按照空间-时间进行拼接,得到预设时间段内的光纤振动信号矩阵;
    根据所述光纤振动信号矩阵绘制光纤振动数据瀑布图。
  3. 根据权利要求1所述的一种基于分布式光纤的激励源运动状态分析方法,其特征在于,根据所述光纤振动数据瀑布图,得到激励信号的特征连通域,包括:
    计算所述光纤振动数据瀑布图中每列数据的数据中值,根据所述数据中值确定瀑布图分割阈值;
    根据所述瀑布图分割阈值对所述光纤振动数据瀑布图进行二值化,得到二值化图像;
    将所述二值化图像中面积超过预设分割面积阈值的部分作为所 述激励信号的特征连通域。
  4. 根据权利要求1所述的一种基于分布式光纤的激励源运动状态分析方法,其特征在于,根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线,包括:
    确定所述激励信号的特征连通域对应的所有探测点的振动激励信号时域数据,得到连通域时域数据;
    提取所述连通域时域数据中幅值不为零的有效数据段;
    根据所述有效数据段位于中间位置的时间点和对应的振动幅值,得到所述分布式光纤的空间-时间序列曲线;
    利用滑窗算法得到所述空间-时间序列曲线对应的空间-速度序列曲线。
  5. 根据权利要求4所述的一种基于分布式光纤的激励源运动状态分析方法,其特征在于,利用滑窗算法得到所述空间-时间序列曲线对应的空间-速度序列曲线,包括:
    对所述空间-时间序列曲线进行样条拟合,得到修正曲线;
    利用预设长度的滑窗在所述修正曲线中滑动,对滑窗内的数据做线性拟合,得到所述空间-时间序列曲线对应的空间-速度序列曲线。
  6. 根据权利要求1所述的一种基于分布式光纤的激励源运动状态分析系统,其特征在于,根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态,包括:
    判断所述空间-时间序列曲线和空间-速度序列曲线的变化趋势是否相同,当变化趋势相同时,确定所述振动激励源为加速运动;当变化趋势相反时,确定所述振动激励源为减速运动。
  7. 根据权利要求6所述的一种基于分布式光纤的激励源运动状态分析方法,其特征在于,还包括:
    当所述振动激励源的运动状态为减速运动时,确定所述振动激励源的驻留点。
  8. 根据权利要求7所述的一种基于分布式光纤的激励源运动状态分析方法,其特征在于,当所述振动激励源的运动状态为减速运动时,确定所述振动激励源的驻留点,包括:
    当所述振动激励源的运动状态为减速运动时,在所述光纤振动数据瀑布图中提取各个探测单元振动信号的最大值,得到最大值序列;
    根据所述特征连通域确定驻留幅度阈值;
    在所述最大值序列中确定最晚超过所述驻留幅度阈值的第一驻留点;
    对所述最大值序列进行样条拟合,在所述样条拟合结果中进行寻峰,提取最晚超过所述驻留幅度阈值的峰值位置,记为第二驻留点;
    当所述第二驻留点存在时,所述振动激励源的驻留点为所述第二驻留点;当所述第二驻留点不存在时,所述振动激励源的驻留点为所述第一驻留点。
  9. 一种基于分布式光纤的激励源运动状态分析系统,其特征在于,包括:
    信号获取模块,用于获取与油气管道同沟铺设的分布式光纤上所有探测点的振动激励信号;
    瀑布图生成模块,用于根据所述振动激励信号得到光纤振动数据瀑布图;
    连通域确定模块,用于根据所述光纤振动数据瀑布图,得到激励信号的特征连通域;
    曲线生成模块,用于根据所述激励信号的特征连通域确定所述分布式光纤的空间-时间序列曲线和空间-速度序列曲线;
    运动状态确定模块,用于根据所述空间-时间序列曲线和空间-速度序列曲线确定振动激励源的运动状态。
  10. 一种电子设备,其特征在于,包括处理器以及存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现如权利要求1-8任一所述的一种基于分布式光纤的激励源运动状态分析方法。
PCT/CN2022/119926 2022-09-13 2022-09-20 基于分布式光纤的激励源运动状态分析方法、系统和设备 WO2024055345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211110119.5 2022-09-13
CN202211110119.5A CN115452124A (zh) 2022-09-13 2022-09-13 基于分布式光纤的激励源运动状态分析方法、系统和设备

Publications (1)

Publication Number Publication Date
WO2024055345A1 true WO2024055345A1 (zh) 2024-03-21

Family

ID=84302462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119926 WO2024055345A1 (zh) 2022-09-13 2022-09-20 基于分布式光纤的激励源运动状态分析方法、系统和设备

Country Status (2)

Country Link
CN (1) CN115452124A (zh)
WO (1) WO2024055345A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100388A1 (en) * 2016-10-10 2018-04-12 Schlumberger Technology Corporation Treatment based on fiber cable sensor data
CN108150836A (zh) * 2016-12-02 2018-06-12 天津超音科技有限公司 基于光纤的油气管道泄漏监测预警系统
CN111006849A (zh) * 2019-12-24 2020-04-14 中石化石油工程技术服务有限公司 一种判断油气管道伴行光缆敷设状态的方法及系统
CN111810768A (zh) * 2020-06-29 2020-10-23 武汉理工光科股份有限公司 基于分布式光纤传感的清管器行进状态监测方法及装置
CN114046867A (zh) * 2021-11-04 2022-02-15 国家石油天然气管网集团有限公司 基于分布式光纤振动传感系统的振动源横向距离估测方法
US20220230539A1 (en) * 2021-01-15 2022-07-21 Nec Laboratories America, Inc Road traffic extraction for unknown anomaly detection using distributed fiber optic sensing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100388A1 (en) * 2016-10-10 2018-04-12 Schlumberger Technology Corporation Treatment based on fiber cable sensor data
CN108150836A (zh) * 2016-12-02 2018-06-12 天津超音科技有限公司 基于光纤的油气管道泄漏监测预警系统
CN111006849A (zh) * 2019-12-24 2020-04-14 中石化石油工程技术服务有限公司 一种判断油气管道伴行光缆敷设状态的方法及系统
CN111810768A (zh) * 2020-06-29 2020-10-23 武汉理工光科股份有限公司 基于分布式光纤传感的清管器行进状态监测方法及装置
US20220230539A1 (en) * 2021-01-15 2022-07-21 Nec Laboratories America, Inc Road traffic extraction for unknown anomaly detection using distributed fiber optic sensing
CN114046867A (zh) * 2021-11-04 2022-02-15 国家石油天然气管网集团有限公司 基于分布式光纤振动传感系统的振动源横向距离估测方法

Also Published As

Publication number Publication date
CN115452124A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN109374115B (zh) 基于φ-OTDR的油气管线外破振动监测识别方法
CN201191221Y (zh) 分布式光纤振动传感系统扰动信号判别模块
Catalano et al. Automatic traffic monitoring by ϕ-OTDR data and Hough transform in a real-field environment
CN109374116B (zh) 地埋式光纤传感振动探测系统的挖掘行为识别方法
CN112686110A (zh) 一种离心泵故障诊断方法、装置、设备及存储介质
CN103196465A (zh) 一种相敏光时域反射仪传感信号噪声分离及信号提取方法
CN114877263A (zh) 一种管道微泄露特征信息监测方法、系统、设备及介质
CN105447444B (zh) 一种基于差分窗和模板匹配的otdr事件分析算法
CN101299635B (zh) 宽域全光纤扰动信号前-后判别装置及方法
CN111507310A (zh) 一种基于φ-otdr的光缆通道内人为触缆作业信号识别方法
CN112032575B (zh) 一种基于弱光栅的管道安全监测方法、系统及存储介质
WO2024055345A1 (zh) 基于分布式光纤的激励源运动状态分析方法、系统和设备
CN117552793B (zh) 一种盾构刀盘磨损状态的定量评估方法、系统及终端
Qiu et al. A new detection method based on CFAR and DE for OFPS
CN111539393B (zh) 基于emd分解与lstm的油气管道第三方施工预警方法
CN112556823A (zh) 基于分布式光纤传感的油气管线清管器卡球定位监测方法及装置
US20230024104A1 (en) Identification of false transformer humming using machine learning
Tian et al. Detection and recognition of mechanical, digging and vehicle signals in the optical fiber pre-warning system
CN113670219B (zh) 一种光纤线路的应变解调方法、装置、设备及介质
US20220230539A1 (en) Road traffic extraction for unknown anomaly detection using distributed fiber optic sensing
Zhong et al. Research on classification method of abnormal vibration of pipeline based on SVM
CN107631697B (zh) 一种基于cotdr的地铁隧道施工安全临时监测方法
WO2024040653A1 (zh) 一种振动源变化趋势判断方法、设备及存储介质
CN115859075B (zh) 一种用于机场区域的航空器机型识别装置及其方法
CN117668669B (zh) 基于改进YOLOv7的管道安全监测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958535

Country of ref document: EP

Kind code of ref document: A1