WO2024055344A1 - 一种基于fpga的光纤振动解调装置和方法 - Google Patents

一种基于fpga的光纤振动解调装置和方法 Download PDF

Info

Publication number
WO2024055344A1
WO2024055344A1 PCT/CN2022/119925 CN2022119925W WO2024055344A1 WO 2024055344 A1 WO2024055344 A1 WO 2024055344A1 CN 2022119925 W CN2022119925 W CN 2022119925W WO 2024055344 A1 WO2024055344 A1 WO 2024055344A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
phase information
optical fiber
fpga
pulse
Prior art date
Application number
PCT/CN2022/119925
Other languages
English (en)
French (fr)
Inventor
钱磊
黎朵
熊艳
于本化
刘芹
Original Assignee
武汉理工光科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工光科股份有限公司 filed Critical 武汉理工光科股份有限公司
Publication of WO2024055344A1 publication Critical patent/WO2024055344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre

Definitions

  • the present invention relates to the field of optical fiber vibration detection sensing technology, and in particular to an optical fiber vibration demodulation method and device based on FPGA.
  • Optical fiber sensing is widely used in the field of vibration monitoring and sensing due to its advantages such as high sensitivity, long monitoring distance, and good environmental tolerance.
  • Optical fiber sensing networks have long detection distances and high spatial resolutions, and require a very large amount of data to be stored and processed.
  • the current traditional sequential processing method is to collect data through a data acquisition unit, store the collected data and then transmit it to the data processing unit for analysis.
  • the storage of collected data and the data transmission between the data acquisition unit and the data processing unit have become bottlenecks in further improving the optical fiber sensing distance, sensing density and demodulation speed.
  • FPGA has the advantage of parallel processing. Its huge logic resources can realize parallel processing and pipeline processing of demodulation algorithms. Therefore, it is necessary to provide an optical fiber vibration demodulation device combined with FPGA to realize high-speed, long-distance and multi-channel optical fiber transmission. Demodulation, improve the efficiency of fiber demodulation.
  • the purpose of the present invention is to overcome the above technical deficiencies and provide an FPGA-based optical fiber vibration demodulation device and method to achieve the purpose of high-speed, long-distance and multi-channel parallel flow demodulation of optical fibers.
  • the present invention provides an FPGA-based optical fiber vibration demodulation device, including an FPGA parallel processor.
  • the FPGA parallel processor provides a plurality of optical fiber channels, and each optical fiber channel is Including pulse coding module, ADC sampling module, phase demodulation module and phase combining module;
  • the FPGA parallel processor is used to control the pulse coding module, ADC sampling module, phase demodulation module and phase combining module in multiple optical fiber channels to simultaneously perform pulse coding, sampling, phase demodulation and phase combining processing respectively;
  • the FPGA parallel processor is also used to control the pulse coding module, ADC sampling module, phase demodulation module and phase combining module in each single optical fiber channel to simultaneously perform pulse coding, sampling, phase demodulation and phase combining processing respectively.
  • the pulse coding module is used to generate pulse coding and modulate the light source to generate coded pulse light
  • the ADC sampling module is used to collect scattering signals at different spatial locations of the optical fiber based on the triggering of the electrical pulse signal;
  • the phase demodulation module is used to demodulate the scattered signal to obtain scattered light phase information
  • the phase combining module is used to combine scattered light phase information in columns to obtain combined scattered light phase information.
  • the pulse encoding module generates encoded pulses that include a plurality of single pulses.
  • the time interval between two adjacent single pulse signals satisfies the following relationship: Among them, m is the number of pulses, T x (x is an integer greater than 0 and less than m) is the time interval between adjacent single pulses, and f s is the ADC sampling rate.
  • the ADC sampling module collects multiple groups of data through single pulse triggering, wherein the number of groups of data corresponds one-to-one to the number of optical fiber scattering signals at spatial positions.
  • each channel of the pulse signal collected by the ADC includes three channels of x, y and z channel information, wherein the three channels of channel information are respectively expressed by the following formula:
  • x(i) represents the information of x channel
  • y(i) represents the information of y channel
  • z(i) represents the information of z channel
  • A is the amplitude
  • the present invention also provides an FPGA-based optical fiber vibration demodulation method, which is applied to the above-mentioned FPGA-based optical fiber vibration demodulation device.
  • the method includes:
  • pulse encoding, ADC signal acquisition, phase demodulation and phase combining processing are performed on the incident light in each fiber channel at the same time, and the incident light in each cycle of the same fiber channel is simultaneously processed. Pulse coding, ADC signal acquisition, phase demodulation and phase combining processing.
  • the simultaneous pulse encoding, ADC signal acquisition, phase demodulation and phase combining processing of the incident light in each fiber channel includes:
  • the incident light in each channel is pulse-coded to obtain a single pulse modulated light.
  • the scattering signals at different spatial positions of the optical fiber are collected, and the phase of the first pulse in each cycle in each channel is analyzed. Adjust, obtain the first scattered light phase information, and record the first scattered light phase information into the FPGA parallel processor;
  • the accumulated phase information is post-processed to obtain the post-processed phase information, and the post-processed phase information is recorded into the FPGA parallel processor, and the scattering signal of each channel optical fiber is processed based on the FPGA parallel processor. Perform parallel processing.
  • the first scattered light phase information in the FPGA parallel processor is retrieved, and the first scattered light phase information is compared with the plurality of second scattered light phase information. Add to obtain the accumulated phase information, including:
  • the phase information is recorded into the FPGA parallel processor;
  • the third accumulated phase information in the FPGA parallel processor is retrieved, and the third accumulated phase information is added to the other second scattered light phase information to obtain accumulated phase information.
  • the scattered light phase information can be expressed by the following formula:
  • x(i) represents the information of x channel
  • y(i) represents the information of y channel
  • z(i) represents the information of z channel
  • the FPGA-based optical fiber vibration demodulation device and method provided by the present invention includes: an FPGA parallel processor, the FPGA parallel processor provides multiple optical fiber channels, each of the optical fiber channels includes a pulse Encoding module, ADC sampling module, phase demodulation module and phase merging module; the FPGA parallel processor is used to control the pulse encoding module, ADC sampling module, phase demodulation module and phase merging module in multiple optical fiber channels to perform pulse processing simultaneously. Encoding, sampling, phase demodulation and phase merging processing; the FPGA parallel processor is also used to control the pulse encoding module, ADC sampling module, phase demodulation module and phase merging module in each single optical fiber channel to simultaneously perform pulse encoding, Sampling, phase demodulation and phase combining processing.
  • the device provided by the present invention is based on an FPGA parallel processor, which not only reduces the storage and transmission burden of the FPGA, but also supports more channels and longer distance optical fiber vibration phase demodulation. At the same time, it realizes parallel processing of multiple channels of optical fiber vibration and single-channel The streamlined processing of optical fiber improves the efficiency of optical fiber demodulation.
  • Figure 1 is a schematic structural diagram of an embodiment of an FPGA-based optical fiber vibration demodulation device provided by the present invention
  • FIG. 2 is a flow chart of an embodiment of the FPGA-based optical fiber vibration demodulation method provided by the present invention
  • FIG. 3 is a timing diagram of an embodiment of FPGA parallel processing in the FPGA-based optical fiber vibration demodulation method provided by the present invention
  • Figure 4 is a flow chart of the implementation of step S203 in the FPGA-based optical fiber vibration demodulation method provided by the present invention.
  • FIG. 5 is a timing diagram of FPGA parallel pipeline processing in the FPGA-based optical fiber vibration demodulation method provided by the present invention
  • Figure 6 is a schematic diagram of an embodiment of FPGA data storage and transmission in the FPGA-based optical fiber vibration demodulation method provided by the present invention.
  • the present invention relates to an FPGA-based optical fiber vibration demodulation device.
  • the present invention provides an FPGA-based optical fiber vibration demodulation device. Please refer to Figure 1. It includes: an FPGA parallel processor 2, and the FPGA parallel processor 2 includes Pulse encoding module 21, ADC sampling module 22, phase demodulation module 23 and phase combining module 24;
  • the FPGA parallel processor 2 is used to control the pulse coding module 21, ADC sampling module 22, phase demodulation module 23 and phase combining module 24 in multiple optical fiber channels to simultaneously perform pulse coding, sampling, phase demodulation and phase combining respectively. deal with;
  • the FPGA parallel processor 2 is also used to control the pulse encoding module 21, ADC sampling module 22, phase demodulation module 23 and phase combining module 24 in each single optical fiber channel to simultaneously perform pulse encoding, sampling, phase demodulation and phase processing respectively. Merge processing.
  • pulse coding, sampling, phase demodulation and phase combining processing are simultaneously performed on the optical fibers in multiple optical fiber channels, realizing parallel processing of optical fibers, and being able to process each optical fiber in a single optical fiber channel.
  • the periodic optical fiber simultaneously performs pulse encoding, sampling, phase demodulation and phase merging processing, realizing pipeline processing of the optical fiber.
  • the FPGA parallel processor the amount of data storage and transmission is reduced, and the high-speed, long-distance optical fiber is realized. Demodulation of distance.
  • the pulse coding module is used to generate pulse coding and modulate the light source 1 to generate coded pulse light;
  • the ADC sampling module 22 is used to collect scattering signals at different spatial locations of the optical fiber based on the triggering of the electrical pulse signal;
  • the phase demodulation module 23 is used to demodulate the scattered light signal to obtain scattered light phase information
  • the phase merging module 24 is used to combine the scattered light phase information in columns to obtain the combined scattered light phase information
  • the FPGA parallel processor 2 is used to simultaneously perform pulse encoding, sampling, phase demodulation and phase combining processing on multiple channel data, and is used to store the scattered light phase information and the combined scattered light phase information.
  • the light of the light source 1 is first modulated through the pulse encoding module 21, and then the ADC sampling module 22 is used to sample the modulated optical signal to obtain scattering signals at different spatial positions. Further, the phase demodulation module 23 is used to demodulate the obtained scattering signal to obtain the scattered light phase information, and store the obtained first scattered light phase information in each cycle into the memory of the FPGA, and then use
  • the addition and merging module 24 combines the scattered light phase information in columns to obtain the combined scattered light phase information, processes the scattered light signals within the period, stores the processed scattered light phase information into the FPGA, and simultaneously Parallel processing of signals from multiple channels not only reduces the storage and transmission burden of FPGA, but also supports fiber vibration phase demodulation with more channels and longer distances. It also realizes parallel processing and pipeline processing of fiber demodulation.
  • the FPGA parallel processor 2 is used to control the pulse encoding module, ADC sampling module, phase demodulation module and phase combining module in the same channel while performing corresponding pipeline processing operations on the scattering signal.
  • a 3 ⁇ 3 coupler is also included.
  • the 3 ⁇ 3 coupler is used to receive scattered signals in the optical fiber and divide the scattered signals into three scattered light signals.
  • the pulse encoding module generates encoding pulses, and the encoding pulses include multiple single pulses; first, the light source is modulated by a pulse encoder, and the encoding pulses are composed of m single pulses.
  • the time of adjacent single pulses The intervals are Tx (x is an integer greater than 0 and less than m), and satisfy the following relationship: Among them, fs is the ADC sampling rate, and m is an integer greater than or equal to 4.
  • the preset ADC acquisition method uses the ADC sampling module to collect n groups of data through single pulse triggering (each group of data corresponds to fiber scattering signals at different spatial positions), and the encoding pulse of each cycle is composed of m single pulses.
  • each channel corresponds to 3 signals, and each channel needs to collect m ⁇ n ⁇ 3 data in one cycle.
  • x, y, and z are the three signals of each channel respectively.
  • the amplitudes of the three signals are all equal to A, and the phase difference of the three signals is equal to 120°.
  • the specific performance is:
  • Pulse 1 ⁇ x 11 ,x 12 ,...,x 1n ⁇ , ⁇ y 11 ,y 12 ,...,y 1n ⁇ , ⁇ z 11 ,z 12 ,...,z 1n ⁇
  • Pulse 2 ⁇ 21 ,x 22 ,...,x 2n ⁇ , ⁇ y 21 ,y 22 ,...,y 2n ⁇ , ⁇ z 21 ,z 22 ,...,z 2n ⁇
  • Pulse m ⁇ m1 ,x m2 ,...,x mn ⁇ , ⁇ y m1 ,y m2 ,...,y mn ⁇ , ⁇ z m1 ,z m2 ,...,z mn ⁇
  • the FPGA-based optical fiber vibration demodulation method involved in the present invention can perform parallel processing and pipeline processing on signals of multiple cycles of multiple channels at the same time.
  • each optical fiber channel can be processed simultaneously.
  • the incident light in the optical fiber channel is pulse encoded, ADC signal collected, phase demodulated and phase merged, and the incident light in each cycle of the same optical fiber channel is pulse encoded, ADC signal collected, phase demodulated and phase merged simultaneously. .
  • the simultaneous pulse encoding, ADC signal acquisition, phase demodulation and phase combining processing of the incident light in each fiber channel includes:
  • the first pulse in each cycle in multiple channels is first phase demodulated to obtain the first scattered light phase information, and the first scattered light phase information is recorded into the FPGA, and then Phase demodulate the second pulse to the last pulse in each cycle to obtain corresponding multiple second scattered light phase information, and finally add the first scattered light phase information to the multiple second scattered light phase information. , and obtain the mean phase information, and record the mean phase information into the FPGA.
  • Each channel only needs to store one mean phase information for each cycle, and during the data transmission process, the current cycle of the channel can be characterized by the mean phase information.
  • the phase information status reduces the storage and transmission burden of FPGA, supports more channels and longer distance optical fiber vibration phase demodulation, realizes high-speed demodulation of optical fiber vibration and realizes parallel processing of multiple channels through FPGA, improving Phase demodulation efficiency.
  • the post-processing method includes averaging the data. Specifically, averaging the accumulated phase information to obtain the average phase information, and recording the average phase information into the FPGA; the post-processing method It also includes filtering the data. Specifically, filtering the accumulated phase information to obtain filtered phase information, and recording the filtered phase information into the FPGA.
  • Parallel processing means that multiple channels simultaneously perform phase demodulation of fiber pulses.
  • the first scattered light phase information in the FPGA is retrieved, and the first scattered light phase information is combined with the plurality of second scattered light
  • the optical phase information is added to obtain the accumulated phase information, including:
  • S403 retrieve the third accumulated phase information in the FPGA, add the third accumulated phase information to the other second scattered light phase information, and obtain the accumulated phase information.
  • each channel of each cycle simultaneously performs pulse encoding, sampling, phase demodulation and phase combining operations.
  • the first pulse signal in each cycle is phase demodulated to obtain the first
  • the scattered light phase information is recorded into the FPGA, and then the second scattered light phase information is obtained from the second pulse signal after demodulation and the first scattered light phase information is added, and the added result is temporarily recorded in the FPGA.
  • the phase demodulated results are added to the previous results.
  • the results stored in the FPGA are added once, and finally the accumulated results are averaged to obtain the average phase, and the final average phase is recorded in the FPGA as a phase information state representation signal of the current cycle of the current channel.
  • the scattered light phase information of the optical fiber sampling point is demodulated.
  • the phase information can be expressed by the following formula:
  • x(i) represents the information of x channel
  • y(i) represents the information of y channel
  • z(i) represents the information of z channel
  • phase analysis is:
  • first scattered light phase information and the plurality of second scattered light phase information are added using a column addition method.
  • the mean phase information can be expressed by the following formula:
  • n the number of pulses in each cycle
  • n the amount of data collected
  • the merged data is as follows:
  • the length of the optical fiber is 10km
  • the light source is modulated by generating coded pulses (the pulsed light of the light source is injected into the optical fiber and the signal light scattered back from the optical fiber is reflected by the Faraday mirror and then coupled through 3 ⁇ 3
  • the output of the device is 3 signals, the amplitudes of the 3 signals are equal, and the phase difference of the 3 signals is equal to 120°)
  • the encoding pulse consists of 10 single pulses, and the time interval between adjacent single pulses is Tx (x is greater than 0 an integer less than 10), and satisfy the following relationship:
  • the ADC sampling module uses a single pulse trigger to sample n sets of data at 200MHz (each set of data corresponds to the optical fiber scattering signal at a spatial position 0.5m apart).
  • Each cycle of encoding pulses consists of 10 single pulses, and each channel corresponds to 3 channels. signal, each channel needs to collect 10 ⁇ 20000 ⁇ 3 data in one cycle.
  • x, y, and z are the three signals of each channel respectively.
  • the amplitude of the three signals is equal to A, and the phase difference of the three signals is equal to 120°.
  • Pulse 1 ⁇ x 1-1 ,x 1-2 ,...,x 1-20000 ⁇ , ⁇ y 1-1 ,y 1-2 ,...,y 1-20000 ⁇ , ⁇ z 1-1 ,z 1-2 , whil,z 1-20000 ⁇
  • Pulse 2 ⁇ x 2-1 ,x 2-2 ,...,x 2-20000 ⁇ , ⁇ y 2-1 ,y 2-2 ,...,y 2-20000 ⁇ , ⁇ z 2-1 ,z 22 , whil,z 2-20000 ⁇
  • Pulse 10 ⁇ x 10-1 ,x 10-2 ,...,x 10-20000 ⁇ , ⁇ y 10-1 ,y 10-2 ,...,y 10-20000 ⁇ , ⁇ z 10-1 ,z 10-2 , whil,z 10-20000 ⁇
  • the data corresponding to pulse 1 is the optical fiber scattering signal at the spatial position of 0.5m, 1m, 1.5m, ..., 10km;
  • the data corresponding to pulse 2 is the optical fiber scattering signal at the spatial position of 0.45m, 0.95m, 1.45m, ..., 9999.95m Scattering signal;
  • the data corresponding to pulse m is the optical fiber scattering signal at the spatial position of 0.05m, 0.55m, 1.05m, ..., 9999.05m.
  • the scattered light phase information of the optical fiber sampling point is demodulated.
  • the change in the optical fiber scattered light phase can directly reflect the vibration of the optical fiber.
  • phase analysis is:
  • Multi-channel pulse encoding, ADC sampling, phase demodulation, and phase combining operations are performed simultaneously in each cycle.
  • the phase demodulation result of the first single pulse of each cycle is written to the FIFO; the second to m- 1 That is, the 2nd to 9th single pulse will read the phase result of the previous single pulse in this cycle from the FIFO, and accumulate the phase demodulation result of the current single pulse and the phase result of the previous single pulse.
  • n 20000, and only the combined phase demodulation results of each channel need to be stored.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于FPGA的光纤振动解调装置和方法,装置包括:FPGA并行处理器(2),FPGA并行处理器(2)提供多个光纤通道,每个光纤通道均包括脉冲编码模块(21)、ADC采样模块(22)、相位解调模块(23)和相位合并模块(24):FPGA并行处理器(2)用于控制多个光纤通道内的脉冲编码模块(21)、ADC采样模块(22)、相位解调模块(23)和相位合并模块(24)同时分别进行脉冲编码、采样、相位解调和相位合并处理;FPGA并行处理器(2)还用于控制每单个光纤通道内的脉冲编码模块(21)、ADC采样模块(22)、相位解调模块(23)和相位合并模块(24)同时分别进行脉冲编码、采样、相位解调和相位合并处理。实现了光纤多通道并行处理和单通道内光纤的流水处理,从而实现了光纤高速、长距离和多通道同时解调的目的。

Description

一种基于FPGA的光纤振动解调装置和方法 技术领域
本发明涉及光纤振动检测传感技术领域,具体涉及一种基于FPGA的光纤振动解调方法和装置。
背景技术
光纤传感由于具有灵敏度高、监测距离长、环境耐受性好等优势,在振动监测传感领域具有广泛应用。光纤传感网络探测距离长、空间分辨率高,需要存储和处理的数据量非常大,现在传统顺序处理的方法是通过数据采集单元采集数据,将采集的数据存储再传输给数据处理单元进行解调处理,但这样采集数据的存储以及数据采集单元与数据处理单元之间的数据传输成为进一步提高光纤传感距离、传感密度以及解调速度的瓶颈。
FPGA拥有并行处理的优势,其巨大的逻辑资源可以实现解调算法的并行处理和流水处理,因此,需要提供一种结合FPGA的光纤振动解调装置,以实现光纤高速、长距离和多通道的解调,提高光纤解调的效率。
发明内容
本发明的目的在于克服上述技术不足,提供一种基于FPGA的光纤振动解调装置和方法,用以实现光纤高速、长距离和多通道的并行流水解调的目的。
为达到上述技术目的,第一方面,本发明提供了一种基于FPGA的光纤振动解调装置,包括FPGA并行处理器,所述FPGA并行处理器提供多个光纤通道,所述每个光纤通道均包括脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块;
所述FPGA并行处理器用于控制多个光纤通道内的脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块同时分别进行脉冲编码、采 样、相位解调和相位合并处理;
所述FPGA并行处理器还用于控制每单个光纤通道内的脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块同时分别进行脉冲编码、采样、相位解调和相位合并处理。
在一些实施例中,所述脉冲编码模块用于生成脉冲编码,并对光源进行调制,生成编码脉冲光;
所述ADC采样模块用于基于所述电脉冲信号的触发,采集光纤不同空间位置的散射信号;
所述相位解调模块用于对所述散射信号进行解调,以获得散射光相位信息;
所述相位合并模块用于对散射光相位信息进行按列合并,获得合并散射光相位信息。
在一些实施例中,所述脉冲编码模块生成编码脉冲,所述编码脉冲包括多个单脉冲。
在一些实施例中,所述相邻两个单脉冲信号的时间间隔满足以下关系:
Figure PCTCN2022119925-appb-000001
其中,m为脉冲个数,T x(x为大于0小于m的整数)为相邻单脉冲的时间间隔,f s为ADC采样率。
在一些实施例中,所述ADC采样模块通过单脉冲触发采集多组数据,其中,所述数据的组数与空间位置的光纤散射信号数目一一对应。
在一些实施例中,通过ADC采集的所述脉冲信号每个通道均包括x、y和z三路通道信息,其中,所述三路通道信息分别通过以下公式表达:
Figure PCTCN2022119925-appb-000002
Figure PCTCN2022119925-appb-000003
Figure PCTCN2022119925-appb-000004
其中,x(i)表示x通道的信息,y(i)表示y通道的信息,z(i)表示z通道 的信息,A为幅值,
Figure PCTCN2022119925-appb-000005
为相位。
第二方面,本发明还提供了一种基于FPGA的光纤振动解调方法,应用于上述所述的基于FPGA的光纤振动解调装置,所述方法包括:
基于所述FPGA并行处理器,同时对每个光纤通道内的入射光进行脉冲编码、ADC信号采集、相位解调和相位合并处理,并且对同一个光纤通道中每个周期内的入射光同时进行脉冲编码、ADC信号采集、相位解调和相位合并处理。
在一些实施例中,所述同时对每个光纤通道内的入射光进行脉冲编码、ADC信号采集、相位解调和相位合并处理,包括:
同时对每个通道内的入射光进行脉冲编码,得到单脉冲调制光,基于单脉冲调制光,采集光纤不同空间位置的散射信号,对各个通道中每个周期内的第一个脉冲进行相位解调,获得第一散射光相位信息,并将所述第一散射光相位信息记录至FPGA并行处理器中;
对各个通道中每个周期内的第二个脉冲至最后一个脉冲进行相位解调,获得对应的多个第二散射光相位信息;
调取所述FPGA并行处理器中的所述第一散射光相位信息,并将所述第一散射光相位信息与所述多个第二散射光相位信息进行相加,获得累加相位信息;
对所述累加相位信息进行后处理,获得后处理相位信息,并将所述后处理相位信息记录至所述FPGA并行处理器中,并基于所述FPGA并行处理器对每个通道光纤的散射信号进行并行处理。
在一些实施例中,所述调取所述FPGA并行处理器中的所述第一散射光相位信息,并将所述第一散射光相位信息与所述多个第二散射光相位信息进行相加,获得累加相位信息,包括:
调取所述第一散射光相位信息,将第二个脉冲对应的第二散射光相位信息与所述第一散射光相位信息相加,获得第二累加相位信息,并将所述 第二累加相位信息记录至所述FPGA并行处理器中;
调取所述FPGA并行处理器中的第二累加相位信息,将第三个脉冲对应的所述第二散射光相位信息与所述第二累加相位信息相加,获得第三累加相位信息,并将所述第三累加相位信息记录至所述FPGA并行处理器中;
调取所述所述FPGA并行处理器中的第三累加相位信息,将所述第三累加相位信息与其它所述第二散射光相位信息相加,获得累加相位信息。
在一些实施例中,所述散射光相位信息可通过如下公式表达:
Figure PCTCN2022119925-appb-000006
其中,x(i)表示x通道的信息,y(i)表示y通道的信息,z(i)表示z通道的信息,
Figure PCTCN2022119925-appb-000007
为相位信息。
与现有技术相比,本发明提供的基于FPGA的光纤振动解调装置和方法,包括:FPGA并行处理器,所述FPGA并行处理器提供多个光纤通道,所述每个光纤通道均包括脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块;所述FPGA并行处理器用于控制多个光纤通道内的脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块同时分别进行脉冲编码、采样、相位解调和相位合并处理;所述FPGA并行处理器还用于控制每单个光纤通道内的脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块同时分别进行脉冲编码、采样、相位解调和相位合并处理。本发明所提供的装置基于FPGA并行处理器,不仅减轻了FPGA存储传输负担,可支持更多通道、更长距离的光纤振动相位解调,同时实现了光纤振动多通道的并行处理和单通道内光纤的流水处理,提高了光纤解调的效率。
附图说明
图1是本发明提供的基于FPGA的光纤振动解调装置一实施例的结构示意图;
图2是本发明提供的基于FPGA的光纤振动解调方法的一实施例的流程图;
图3是本发明提供的基于FPGA的光纤振动解调方法中,FPGA并行处理一实施例的时序图;
图4是本发明提供的基于FPGA的光纤振动解调方法中,步骤S203一实施的流程图;
图5是本发明提供的基于FPGA的光纤振动解调方法中,FPGA并行流水处理时序图;
图6是本发明提供的基于FPGA的光纤振动解调方法中,FPGA数据存储传输一实施例的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明所涉及的基于FPGA的光纤振动解调装置,本发明提供了一种基于FPGA的光纤振动解调装置,请参阅图1,包括:FPGA并行处理器2,所述FPGA并行处理器2包括脉冲编码模块21、ADC采样模块22、相位解调模块23和相位合并模块24;
所述FPGA并行处理器2用于控制多个光纤通道内的脉冲编码模块21、ADC采样模块22、相位解调模块23和相位合并模块24同时分别进行脉冲编码、采样、相位解调和相位合并处理;
所述FPGA并行处理器2还用于控制每单个光纤通道内的脉冲编码模块21、ADC采样模块22、相位解调模块23和相位合并模块24同时分别进行脉冲编码、采样、相位解调和相位合并处理。
在本实施例中,基于FPGA并行处理器,对多个光纤通道中的光纤同时进行脉冲编码、采样、相位解调和相位合并处理,实现了光纤的并行处理,并且能够对单个光纤通道中各个周期的光纤同时进行脉冲编码、采样、相位解调和相位合并处理,实现了光纤的流水处理,进一步的,基于FPGA并行处理器,减少了数据的存储量和传输量,实现了光纤高速、长距离的解调。
在一些实施例中,所述脉冲编码模块用于生成脉冲编码,并对光源1进行调制,生成编码脉冲光;
所述ADC采样模块22用于基于所述电脉冲信号的触发,采集光纤不同空间位置的散射信号;
所述相位解调模块23用于对所述散射信号进行解调,以获得散射光相位信息;
所述相位合并模块24用于对散射光相位信息进行按列合并,获得合并散射光相位信息;
所述FPGA并行处理器2用于对多个通道数据同时进行脉冲编码、采样、相位解调和相位合并处理,并用于存储所述散射光相位信息以及所述合并散射光相位信息。
在本发明实施例中,基于FPGA并行处理器,首先通过脉冲编码模块21对光源1的光进行调制,随后利用ADC采样模块22对调制后的光信号进行采样,获得不同空间位置的散射信号,进一步的,采用相位解调模块23对获得的散射信号进行解调,以获得散射光相位信息,并将获得的每个周期内的第一个散射光相位信息存储至FPGA的存储器中,随后采用相加合并模块24对散射光相位信息进行按列合并,获得合并散射光相位信息,并对周期内的散射光信号进行处理,将处理后的散射光相位信息存储至FPGA中,并且通过FPGA同时对多个通道的信号进行并行处理,不仅减轻了FPGA存储传输负担,可支持更多通道、更长距离的光纤振动相位解调, 同时实现了光纤解调的并行处理和流水处理。
在一些实施例中,所述FPGA并行处理器2用于控制同一通道中的脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块同时对散射信号进行对应的流水处理操作。
在本实施例中,基于FPGA并行处理器,同时进行采集和解调操作,实现各模块间的并行流水处理,提高了光纤解调的效率。
在一些实施例中,还包括3×3耦合器,所述3×3耦合器用于接收光纤中散射的信号,并将所述散射的信号分为三路散射光信号。
在一些实施例中,所述脉冲编码模块生成编码脉冲,所述编码脉冲包括多个单脉冲;首先通过脉冲编码器对光源进行调制,编码脉冲由m个单脉冲构成,相邻单脉冲的时间间隔分别为Tx(x为大于0小于m的整数),并满足如下关系:
Figure PCTCN2022119925-appb-000008
其中,fs为ADC采样率,m为大于等于4的整数。
进一步的,预设的ADC采集法采用的是通过ADC采样模块通过单脉冲触发采集n组数据(每组数据对应不同空间位置的光纤散射信号),每个周期的编码脉冲由m个单脉冲构成,每个通道对应3路信号,一个周期内每个通道各需要采集m×n×3个数据。其中x、y、z分别为每个通道的3路信号,3路信号的幅度都等于A,并满足3路信号相位差都等于120°,具体表现为:
Figure PCTCN2022119925-appb-000009
脉冲1:{x 11,x 12,……,x 1n},{y 11,y 12,……,y 1n},{z 11,z 12,……,z 1n}
脉冲2:{ 21,x 22,……,x 2n},{y 21,y 22,……,y 2n},{z 21,z 22,……,z 2n}
脉冲m:{ m1,x m2,……,x mn},{y m1,y m2,……,y mn},{z m1,z m2,……,z mn}
本发明所涉及的基于FPGA的光纤振动解调方法,可同时对多个通道的多个周期的信号进行并行处理和流水处理,具体为,基于所述FPGA并 行处理器,同时对每个光纤通道内的入射光进行脉冲编码、ADC信号采集、相位解调和相位合并处理,并且对同一个光纤通道中每个周期内的入射光同时进行脉冲编码、ADC信号采集、相位解调和相位合并处理。
在一些实施例中,请参阅图2,所述同时对每个光纤通道内的入射光进行脉冲编码、ADC信号采集、相位解调和相位合并处理,包括:
S201、同时对每个通道内的入射光进行脉冲编码,得到单脉冲调制光,基于单脉冲调制光,采集光纤不同空间位置的散射信号,对各个通道中每个周期内的第一个脉冲进行相位解调,获得第一散射光相位信息,并将所述第一散射光相位信息记录至FPGA并行处理器中;
S202、对各个通道中每个周期内的第二个脉冲至最后一个脉冲进行相位解调,获得对应的多个第二散射光相位信息;
S203、调取所述FPGA并行处理器中的所述第一散射光相位信息,并将所述第一散射光相位信息与所述多个第二散射光相位信息进行相加,获得累加相位信息;
S204、对所述累加相位信息进行后处理,获得后处理相位信息,并将所述后处理相位信息记录至所述FPGA并行处理器中,并基于所述FPGA并行处理器对每个通道光纤的散射信号进行并行处理。
在本实施例中,首先对多个通道中每个周期内的第一个脉冲进行相位解调,获得第一散射光相位信息,并将所述第一散射光相位信息记录至FPGA中,随后对每个周期内的第二个脉冲至最后一个脉冲进行相位解调,获得对应的多个第二散射光相位信息,最后将第一散射光相位信息与多个第二散射光相位信息相加,并求取均值相位信息,并将均值相位信息记录至FPGA中,每个通道的每个周期仅需存一个均值相位信息,并且在数据传输过程中,通过均值相位信息即可表征通道当前周期的相位信息状态,减轻了FPGA存储传输负担,可支持更多通道、更长距离的光纤振动相位解调,实现了光纤振动的高速解调以及通过FPGA实现了多个通道的并行 处理,提高了相位解调的效率。
需要说明的是,后处理的方式包括对数据进行均值化处理,具体的,对所述累加相位信息进行均值化处理,获得均值相位信息,并将均值相位信息记录至FPGA中;后处理的方式还包括对数据进行滤波处理,具体的,对累加相位信息进行滤波处理,获得滤波后的相位信息,并将滤波后的相位信息记录至FPGA中。
进一步的,请参阅图3,并行处理表示多个通道同时进行光纤脉冲的相位解调。
在一些实施例中,请参阅图4和图5,所述调取所述FPGA中的所述第一散射光相位信息,并将所述第一散射光相位信息与所述多个第二散射光相位信息进行相加,获得累加相位信息,包括:
S401、调取所述第一散射光相位信息,将第二个脉冲对应的第二散射光相位信息与所述第一散射光相位信息相加,获得第二累加相位信息,并将所述第二累加相位信息记录至所述FPGA中;
S402、调取所述FPGA中的第二累加相位信息,将第三个脉冲对应的所述第二散射光相位信息与所述第二累加相位信息相加,获得第三累加相位信息,并将所述第三累加相位信息记录至所述FPGA中;
S403、调取所述所述FPGA中的第三累加相位信息,将所述第三累加相位信息与其它所述第二散射光相位信息相加,获得累加相位信息。
在本实施例中,每个周期的每个通道同时进行脉冲编码、采样、相位解调和相位合并操作,其中,将每个周期内的第一个脉冲信号经过相位解调后得到的第一散射光相位信息记录至FPGA中,随后从第二个脉冲信号经解调后获得第二散射光相位信息与第一散射光相位信息进行相加,并将相加后的结果记录至FPGA中暂时存储,最后将同一周期内的后续脉冲信号依次经过相位解调后的结果与前一次存储于FPGA中的结果相加,到达周期内最后一个脉冲信号时,将经过相位解调后的结果与前一次存储于 FPGA中的结果相加,最后将累计的结果作平均值处理,获得均值相位,并将最终的均值相位记录至FPGA中,作为当前通道当前周期的相位信息状态表征信号。
一些实施例中,通过对ADC采样采集到的数据进行相位解调处理,解调出光纤采样点的散射光相位信息,所述相位信息可通过如下公式表达:
Figure PCTCN2022119925-appb-000010
其中,x(i)表示x通道的信息,y(i)表示y通道的信息,z(i)表示z通道的信息,
Figure PCTCN2022119925-appb-000011
为相位信息。
在本实施例中,对于连续函数x、y、z而言,满足条件:
Figure PCTCN2022119925-appb-000012
由此可知:
Figure PCTCN2022119925-appb-000013
Figure PCTCN2022119925-appb-000014
公(2)+(3),可得:
Figure PCTCN2022119925-appb-000015
公式(2)-(3),可得:
Figure PCTCN2022119925-appb-000016
同理可得:
Figure PCTCN2022119925-appb-000017
Figure PCTCN2022119925-appb-000018
同理可得:
Figure PCTCN2022119925-appb-000019
Figure PCTCN2022119925-appb-000020
综上所说,公式(4)-(6),可得:
Figure PCTCN2022119925-appb-000021
公式(8)/(10),可得:
Figure PCTCN2022119925-appb-000022
相位解析为:
Figure PCTCN2022119925-appb-000023
进一步的,根据ADC采样模块2采集的数据,计算出的对应的光纤相位信息如下:
Figure PCTCN2022119925-appb-000024
需要说明的是,所述第一散射光相位信息与所述多个第二散射光相位信息采用列相加的方法进行相加处理。
在一些实施例中,所述均值相位信息可通过如下公式表示:
Figure PCTCN2022119925-appb-000025
其中,m表示每个周期内的脉冲数目,n表示采集的数据量,
Figure PCTCN2022119925-appb-000026
表示第m个秒冲对应的第n个相位信息,
Figure PCTCN2022119925-appb-000027
表示均值相位信息。
通过对相位解调后获得的相位信息进行按列合并处理,合并后的数据如下所示:
Figure PCTCN2022119925-appb-000028
在一个具体的实施例中,光纤长度10km,通过生成编码脉冲对光源进行调制(光源的脉冲光注入到光纤中并从光纤中散射回来的信号光经过法拉第旋镜反射后再经3×3耦合器输出为3路信号,3路信号的幅度相等,并且3路信号相位差都等于120°),编码脉冲由10个单脉冲构成,相邻单脉冲的时间间隔分别为Tx(x为大于0小于10的整数),并满足如下关系:
Figure PCTCN2022119925-appb-000029
其中fs=200MHz为ADC采样率。
通过ADC采样模块通过单脉冲触发进行200MHz采样n组数据(每组数据对应相隔0.5m的空间位置的光纤散射信号),每个周期的编码脉冲由10个单脉冲构成,每个通道对应3路信号,一个周期内每个通道各需要采集10×20000×3个数据。其中x、y、z分别为每个通道的3路信号,3路信号的幅度都等于A,并满足3路信号相位差都等于120°。
Figure PCTCN2022119925-appb-000030
Figure PCTCN2022119925-appb-000031
Figure PCTCN2022119925-appb-000032
脉冲1:{x 1-1,x 1-2,……,x 1-20000},{y 1-1,y 1-2,……,y 1-20000},{z 1-1,z 1-2,……,z 1-20000}
脉冲2:{x 2-1,x 2-2,……,x 2-20000},{y 2-1,y 2-2,……,y 2-20000},{z 2-1,z 22,……,z 2-20000}
……
脉冲10:{x 10-1,x 10-2,……,x 10-20000},{y 10-1,y 10-2,……,y 10-20000},{z 10-1, z 10-2,…...,z 10-20000}
其中脉冲1对应的数据为0.5m、1m、1.5m、…、10km的空间位置的光纤散射信号;脉冲2对应的数据为0.45m、0.95m、1.45m、…、9999.95m的空间位置的光纤散射信号;脉冲m对应的数据为0.05m、0.55m、1.05m、…、9999.05m的空间位置的光纤散射信号。
通过对ADC采样采集到的数据进行相位解调处理,解调出光纤采样点的散射光相位信息,光纤散射光相位的变化可以直接反映光纤振动情况。对于连续函数x、y、z而言,满足条件:
Figure PCTCN2022119925-appb-000033
根据公式1、2和4可推导出以下结果:
Figure PCTCN2022119925-appb-000034
Figure PCTCN2022119925-appb-000035
公式⑸+⑹,可得:
Figure PCTCN2022119925-appb-000036
公式⑸-⑹,可得:
Figure PCTCN2022119925-appb-000037
根据公式1、3和4同理可得:
Figure PCTCN2022119925-appb-000038
Figure PCTCN2022119925-appb-000039
根据公式2、3和4同理可得:
Figure PCTCN2022119925-appb-000040
Figure PCTCN2022119925-appb-000041
综上所说,公式⑺-⑼,可得:
Figure PCTCN2022119925-appb-000042
Figure PCTCN2022119925-appb-000043
公式(11)/(13),可得:
Figure PCTCN2022119925-appb-000044
相位解析为:
Figure PCTCN2022119925-appb-000045
根据ADC采样采集到的数据,计算出的对应的光纤相位信息如下:
Figure PCTCN2022119925-appb-000046
通过对相位解调后的相位信息进行按列合并的方式,合并后的数据如下所示:
Figure PCTCN2022119925-appb-000047
每个周期都会同时进行多通道的脉冲编码、ADC采样、相位解调、相位合并的操作,每个周期的第1个单脉冲下的相位解调结果写入到FIFO中;第2~m-1即第2~9个单脉冲会从FIFO中读取本周期上个单脉冲的相位结果,并将当前单脉冲下的相位解调的相位结果和上个单脉冲的相位结果累加, 将累加后的相位结果写入FIFO中;第m=10个单脉冲会从FIFO中读取本周期上个单脉冲的相位结果,并将当前单脉冲下的相位解调结果和上个单脉冲的相位结果累加并平均,将平均后的相位结果写入FIFO中,实现光纤相位解调的流水处理。由于相位解调和相位合并使用的是同一个FIFO,并且相位合并在读取一个相位结果后会写入一个累加或者平均后的相位结果,故每个通道最大的FIFO数据存储量为n=20000。请参阅图6,如果使用传统顺序处理的方法,需要将ADC采样采集的每个通道各m×n×3=10×20000×3个数据存储并传输给数据处理单元,才能执行相位解调和相位合并的操作,而使用FPGA并行流水处理,每个通道需要存储的相位解调和合并结果的数据量为n=20000,并只需要将每个通道的合并后的相位解调结果
Figure PCTCN2022119925-appb-000048
传输出去,相比传统顺序处理的方法,每个通道的每个周期的数据存储和传输量由原有的m×n×3=10×20000×3个缩减为n=20000个,数据存储和传输量降低3m=30倍,很大程度减轻了FPGA存储传输负担,可支持更多通道、更长距离的光纤振动相位解调,实现了光纤振动的高速解调。
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (10)

  1. 一种基于FPGA的光纤振动解调装置,其特征在于,包括:FPGA并行处理器,所述FPGA并行处理器提供多个光纤通道,所述每个光纤通道均包括脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块;
    所述FPGA并行处理器用于控制多个光纤通道内的脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块同时分别进行脉冲编码、采样、相位解调和相位合并处理;
    所述FPGA并行处理器还用于控制每单个光纤通道内的脉冲编码模块、ADC采样模块、相位解调模块和相位合并模块同时分别进行脉冲编码、采样、相位解调和相位合并处理。
  2. 根据权利要求1所述的基于FPGA的光纤振动解调装置,其特征在于,所述脉冲编码模块用于生成脉冲编码,并对光源进行调制,得到编码脉冲光;
    所述ADC采样模块用于基于所述电脉冲信号的触发,采集光纤不同空间位置的散射信号;
    所述相位解调模块用于对所述散射信号进行解调,以获得散射光相位信息;
    所述相位合并模块用于对散射光相位信息进行按列合并,获得合并散射光相位信息。
  3. 根据权利要求2所述的基于FPGA的光纤振动解调装置,其特征在于,所述编码脉冲光包括多个单脉冲光。
  4. 根据权利要求3所述的基于FPGA的光纤振动解调装置,其特征在于,所述相邻两个单脉冲信号的时间间隔满足以下关系:
    Figure PCTCN2022119925-appb-100001
    Figure PCTCN2022119925-appb-100002
    其中,m为脉冲个数,T x(x为大于0小于m的整数)为相邻单脉冲的时间间隔,f s为ADC采样率。
  5. 根据权利要求3所述的基于FPGA的光纤振动解调装置,其特征在 于,所述ADC采样模块通过单脉冲触发采集多组数据,其中,所述数据的组数与空间位置的光纤散射信号数目一一对应。
  6. 根据权利要求5所述的基于FPGA的光纤振动解调装置,其特征在于,通过ADC采集的所述脉冲信号每个通道均包括x、y和z三路通道信息,其中,所述三路通道信息分别通过以下公式表达:
    Figure PCTCN2022119925-appb-100003
    Figure PCTCN2022119925-appb-100004
    Figure PCTCN2022119925-appb-100005
    其中,x(i)表示x通道的信息,y(i)表示y通道的信息,z(i)表示z通道的信息,A为幅值,
    Figure PCTCN2022119925-appb-100006
    为相位。
  7. 一种基于FPGA的光纤振动解调方法,应用于权利要求1-6任一项所述的基于FPGA的光纤振动解调装置,其特征在于,所述方法包括:
    基于所述FPGA并行处理器,同时对每个光纤通道内的入射光进行脉冲编码、ADC信号采集、相位解调和相位合并处理,并且对同一个光纤通道中每个周期内的入射光同时进行脉冲编码、ADC信号采集、相位解调和相位合并处理。
  8. 根据权利要求7所述的基于FPGA的光纤振动解调方法,其特征在于,所述同时对每个光纤通道内的入射光进行脉冲编码、ADC信号采集、相位解调和相位合并处理,包括:
    同时对每个通道内的入射光进行脉冲编码,得到单脉冲调制光,基于单脉冲调制光,采集光纤不同空间位置的散射信号,对各个通道中每个周期内的第一个脉冲进行相位解调,获得第一散射光相位信息,并将所述第一散射光相位信息记录至FPGA并行处理器中;
    对各个通道中每个周期内的第二个脉冲至最后一个脉冲进行相位解调,获得对应的多个第二散射光相位信息;
    调取所述FPGA并行处理器中的所述第一散射光相位信息,并将所述 第一散射光相位信息与所述多个第二散射光相位信息进行相加,获得累加相位信息;
    对所述累加相位信息进行后处理,获得后处理相位信息,并将所述后处理相位信息记录至所述FPGA并行处理器中,并基于所述FPGA并行处理器对每个通道光纤的散射信号进行并行处理。
  9. 根据权利要求8所述的基于FPGA的光纤振动解调方法,其特征在于,所述调取所述FPGA并行处理器中的所述第一散射光相位信息,并将所述第一散射光相位信息与所述多个第二散射光相位信息进行相加,获得累加相位信息,包括:
    调取所述第一散射光相位信息,将第二个脉冲对应的第二散射光相位信息与所述第一散射光相位信息相加,获得第二累加相位信息,并将所述第二累加相位信息记录至所述FPGA并行处理器中;
    调取所述FPGA并行处理器中的第二累加相位信息,将第三个脉冲对应的所述第二散射光相位信息与所述第二累加相位信息相加,获得第三累加相位信息,并将所述第三累加相位信息记录至所述FPGA并行处理器中;
    调取所述FPGA并行处理器中的第三累加相位信息,将所述第三累加相位信息与其它所述第二散射光相位信息相加,获得累加相位信息。
  10. 根据权利要求9所述的基于FPGA的光纤振动解调方法,其特征在于,所述散射光相位信息可通过如下公式表达:
    Figure PCTCN2022119925-appb-100007
    其中,x(i)表示x通道的信息,y(i)表示y通道的信息,z(i)表示z通道的信息,
    Figure PCTCN2022119925-appb-100008
    为相位信息。
PCT/CN2022/119925 2022-09-14 2022-09-20 一种基于fpga的光纤振动解调装置和方法 WO2024055344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211114759.3A CN115479659A (zh) 2022-09-14 2022-09-14 一种基于fpga的光纤振动解调装置和方法
CN202211114759.3 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024055344A1 true WO2024055344A1 (zh) 2024-03-21

Family

ID=84393005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119925 WO2024055344A1 (zh) 2022-09-14 2022-09-20 一种基于fpga的光纤振动解调装置和方法

Country Status (2)

Country Link
CN (1) CN115479659A (zh)
WO (1) WO2024055344A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048684A (zh) * 2014-02-13 2014-09-17 上海温光自动化技术有限公司 基于编码脉冲光信号的otdr装置和方法
CN104568119A (zh) * 2015-01-14 2015-04-29 天津大学 一种单光源脉冲编码的光纤振动传感系统及其传感方法
CN106404153A (zh) * 2015-10-13 2017-02-15 北京信息科技大学 一种并行分布式计算的多通道光纤光栅振动信号智能传感器系统
CN107941255A (zh) * 2017-12-29 2018-04-20 武汉理工光科股份有限公司 基于fpga的弱光纤光栅高速解调装置及方法
CN109100007A (zh) * 2018-07-30 2018-12-28 太原理工大学 基于编码脉冲的光纤振动定位装置及方法
CN109323751A (zh) * 2018-11-14 2019-02-12 四川鸿禾阳科技有限公司 一种脉冲编码的分布式光纤振动传感方法及装置
US20220163377A1 (en) * 2019-03-12 2022-05-26 Hutek Inc Sas System and method for detecting vibrations in the periphery of an optical fibre

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048684A (zh) * 2014-02-13 2014-09-17 上海温光自动化技术有限公司 基于编码脉冲光信号的otdr装置和方法
CN104568119A (zh) * 2015-01-14 2015-04-29 天津大学 一种单光源脉冲编码的光纤振动传感系统及其传感方法
CN106404153A (zh) * 2015-10-13 2017-02-15 北京信息科技大学 一种并行分布式计算的多通道光纤光栅振动信号智能传感器系统
CN107941255A (zh) * 2017-12-29 2018-04-20 武汉理工光科股份有限公司 基于fpga的弱光纤光栅高速解调装置及方法
CN109100007A (zh) * 2018-07-30 2018-12-28 太原理工大学 基于编码脉冲的光纤振动定位装置及方法
CN109323751A (zh) * 2018-11-14 2019-02-12 四川鸿禾阳科技有限公司 一种脉冲编码的分布式光纤振动传感方法及装置
US20220163377A1 (en) * 2019-03-12 2022-05-26 Hutek Inc Sas System and method for detecting vibrations in the periphery of an optical fibre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAN YUE, WANG JIAN: "Signal Sampling and Processing System of Optical Fiber Vibration Sensor Based on FPGA", PROGRAMMABLE CONTROLLER AND FACTORY AUTOMATION (PLC FA), no. 6, 30 June 2012 (2012-06-30), pages 64 - 67, XP009555055, ISSN: 1606-5123 *

Also Published As

Publication number Publication date
CN115479659A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN102307046B (zh) 一种时间分辨光子计数成像系统及方法
US20150028213A1 (en) System and Method For LIDAR Signal Conditioning
CN102323959B (zh) 用于时间分辨光子计数成像的采集卡
CN103604449A (zh) 基于fpga的快速寻峰方法及系统
CN104077492A (zh) 一种基于fpga的采样数据内插方法
CN102891956A (zh) 基于编码孔径透镜阵列的压缩成像系统的设计方法
WO2024055344A1 (zh) 一种基于fpga的光纤振动解调装置和方法
CN108254087A (zh) 一种单光子探测器系统及控制方法
WO2021035896A1 (zh) 一种海洋地震数据采集控制装置
CN109443557B (zh) 一种单光子脉冲到达时间探测装置
CN107941255B (zh) 基于fpga的弱光纤光栅高速解调装置及方法
CN202334490U (zh) 用于时间分辨光子计数成像的采集卡
CN102944255B (zh) 数字化光纤光栅解调仪表及方法
CN105163045A (zh) 一种用于图像传感器的像素信号读出方法
CN112711393B (zh) 一种基于fpga的实时多通道累加方法
CN111585742B (zh) 一种多路信号峰值同步检测系统
CN107907123B (zh) 一种高速信号采集处理系统
CN102980648A (zh) 用于光纤振动测量系统的实时数据采集与信号预处理设备及其方法
CN113806277A (zh) 基于srio协议的fpga与dsp的数据传输系统
CN202735510U (zh) 新型高速导航雷达记录回放系统
CN112291025A (zh) 一种基于光纤滑环的旋转信号等方位同步触发采集方法
CN107907866B (zh) 一种用于阵列雷达信号数字化的电路、方法及装置
CN110688083A (zh) 一种基于ddr3的高速数据流长延时储频转发方法
CN111766219A (zh) 一种基于光尺传感的高信噪比太赫兹装置及信号的采样方法
CN118210266B (zh) 多通道多触发模式同步数据采集方法与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958534

Country of ref document: EP

Kind code of ref document: A1